Science.gov

Sample records for endlagerkonzepte einlagerungstechnik fuer

  1. 20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. HISTORIC VIEW OF THE VEREIN FUER RAUMSCHIFFAHRT, 1930. LEFT TO RIGHT: RUDOLF NEBEL, FRANZ RITTER, UNKNOWN, KURT HEINISCH, UNKNOWN, HERMANN OBERTH, UNKNOWN, KLAUS RIEDEL, WERNHER VON BRAUN, UNKNOWN, KLAUS RIEDEL HOLDS EARLY VERSION OR MODEL FOR THE MINIMUM ROCKET, 'MIRAK'. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. Neue Spiele fuer den Deutschunterricht (New Games for the German Classroom).

    ERIC Educational Resources Information Center

    Wolf-Manfre, Eva

    This document includes games and activities for the German as a foreign language class. There are games designed to help students get to know one another, games to help develop vocabulary skills and grammar, and activities for role playing. A list of references and resources is included as well as an index to abbreviations and symbols. (AB)

  3. Une lecon de "Franzoesisch fuer Sie" - Niveau 1 (A Lesson of "French for You," Level 1)

    ERIC Educational Resources Information Center

    Feldhendler, Daniel; And Others

    1974-01-01

    Using as an example Lesson 12 from the text for adults, "Franzoesisch fur Sie" ("French for You") (Huber, Munich), a teaching outline addressed to language learners at the beginners' level is presented. (Text is in German.) (IFS/WGA)

  4. Hoer-Sprech-Uebungen fuer Iraner (Aural-Oral Exercises for Iranians).

    ERIC Educational Resources Information Center

    Scharf, Kurt

    1980-01-01

    Exercises are presented as supplementary material for beginning classes. Many examples illustrate ways to consolidate the learned material, with particular reference to the textbook "Ich lerne Deutsch" and its pictures. Other exercises are designed to compare German and Farsi sentence structure. (IFS/WGA)

  5. The Fringe Reading Facility at the Max-Planck-Institut fuer Stroemungsforschung

    NASA Technical Reports Server (NTRS)

    Becker, F.; Meier, G. E. A.; Wegner, H.; Timm, R.; Wenskus, R.

    1987-01-01

    A Mach-Zehnder interferometer is used for optical flow measurements in a transonic wind tunnel. Holographic interferograms are reconstructed by illumination with a He-Ne-laser and viewed by a video camera through wide angle optics. This setup was used for investigating industrial double exposure holograms of truck tires in order to develop methods of automatic recognition of certain manufacturing faults. Automatic input is achieved by a transient recorder digitizing the output of a TV camera and transferring the digitized data to a PDP11-34. Interest centered around sequences of interferograms showing the interaction of vortices with a profile and subsequent emission of sound generated by this process. The objective is the extraction of quantitative data which relates to the emission of noise.

  6. Lesekurse fuer Anfaenger-Fachbereich Psychologie (Reading Courses for Beginners-Psychology)

    ERIC Educational Resources Information Center

    Armaleo-Popper, Lore

    1976-01-01

    Describes a German course for psychologists, given in Italy by the author, using eight original texts by Freud and Mitscherlich. These were assigned for 40-50 hours' continuation reading at home, or were discussed in the 100-120 hours in the classroom. (Text is in German.) (IFS/WGA)

  7. Gesellschaft fuer angewandte Mathematik und Mechanik, Annual Scientific Meeting, Wiesbaden, West Germany, April 16-20, 1979, Reports. Part 2

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The journal reports on research in flow mechanics, applied analysis and mathematical physics, along with optimization and stochastic procedures and mathematical methods for economics. Papers are presented on transport processes in a magnetized plasma, flow and heat movement between rotating disks, 3-D characteristic surfaces in the analytical method of characteristics, and a comparison of high flow theory and experimental results for supersonic flow. Attention is also given to the transient development of an electrochemical process, a Galerkin based finite difference algorithm for nonlinear branching problems, the stability of implicit Runge-Kutta procedures with parabolic differential equations, and analytical results in random fields filtering theory.

  8. Gesellschaft fuer angewandte Mathematik und Mechanik, Scientific Annual Meeting, Universitaet Hannover, Hanover, Federal Republic of Germany, Apr. 8-12, 1990, Reports

    NASA Astrophysics Data System (ADS)

    Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.

  9. Plaedoyer fuer den "RCT"--Zu Peter W. Kahls "Bemerkungen" (A Plea for the Reading Comprehension Test--On Peter W. Kahl's "Bemerkungen")

    ERIC Educational Resources Information Center

    Neuner, Gerhard

    1977-01-01

    Rejects criticism of Kahl's position in his article on the Reading Comprehension Test (in this journal, issue no. 3, 1977), pointing out that the test is constructed according to the prescribed guidelines. (Text is in German.) (IFS/WGA)

  10. Zur Frage der Textauswahl in einem Lesekurs fuer die Sozialwissenschaften (On the Question of the Choice of Textbooks in a Course in the Social Sciences)

    ERIC Educational Resources Information Center

    Apelt, Hans-Peter

    1974-01-01

    Passages from three selected samples of textbooks are used to show what requirements are made of textbooks in the social sciences. Some hints are given to the teacher for converting reading suggestions into instructional material. Short texts from Karl Marx are also suggested. (Text is in German.) (IFS/WGA)

  11. Materialien und Modelle fuer den Franzoesischunterricht in der Sekundarstufe Zwei (Materials and Models for Teaching French in Grades 11-13)

    ERIC Educational Resources Information Center

    Frei, Alfons

    1978-01-01

    Texts available for French courses in the highest grades are listed according to topics, which include: position of women, today's youth, the language of advertising, French colonialism, holidays and tourism, modern city living, criminality, French politics. Hints for the teacher are included. (Text is in German.) (IFS/WGA)

  12. Entwicklung eines Einstufungstests fuer Deutsch als Fremdsprache an der Universitaet Bonn (Developing a Placement Test for German as a Foreign Language at the University of Bonn).

    ERIC Educational Resources Information Center

    Kummer, Manfred; And Others

    1978-01-01

    Discusses various test types, and specifically the placement test for German as a foreign language at Bonn University, describing the segments: multiple-choice questions and "fill-in" dictations based on given texts. Test content varies according to students' nationality. Grading procedures are also described. (IFS/WGA)

  13. Neuropathological research at the "Deutsche Forschungsanstalt fuer Psychiatrie" (German Institute for Psychiatric Research) in Munich (Kaiser-Wilhelm-Institute). Scientific utilization of children's organs from the "Kinderfachabteilungen" (Children's Special Departments) at Bavarian State Hospitals.

    PubMed

    Steger, Florian

    2006-09-01

    During National Socialism, the politically motivated interest in psychiatric genetic research lead to the founding of research departments specialized in pathological-anatomical brain research, the two Kaiser Wilhelm-Institutes (KWI) in Berlin and Munich. The latter was indirectly provided with brain material by Bavarian State Hospitals, to three of which "Kinderfachabteilungen" (Special Pediatric Units) were affiliated. As children became victims of the systematically conducted child "euthanasia" in these Special Pediatric Units, this paper will address the question whether and to which extent the organs from victims of child "euthanasia" were used for (neuro-) pathological research at the KWI in Munich. By means of case studies and medical histories (with focus on the situation in Kaufbeuren-Irsee), I will argue that pediatric departments on a regular base delivered slide preparations, that the child "euthanasia" conduced in these departments systematically contributed to neuropathological research and that slide preparations from victims of child "euthanasia" were used in scientific publications after 1945.

  14. Utopische Literatur im Leistungskurs Englisch. Vorschlaege fuer Planung und Durchfuehrung eines halbjaehrigen Kurses (Utopian Literature in the English Honors Course. Suggestions for Planning and Teaching a Half-Year Course)

    ERIC Educational Resources Information Center

    Schnitter, Helmut

    1976-01-01

    Gives prerequisites for participation, editions of texts used (Orwell, "1984"; Huxley, "Brave New World"; More, "Utopia") and mentions auxiliary materials. After listing aims of the course, gives suggestions as to method and organization of the course. Sketches various phases of discussion and forms for checking on learning goals. (Text is in…

  15. Integrierter Sprach- und Sachunterricht im Spanischkurs fuer Fortgeschrittene am Beispiel des Themas "La Emigracion actual" (Integrated Instruction in Language and Realia in the Advanced Spanish Course, with, as an Example, the Topic "The Present Emigration")

    ERIC Educational Resources Information Center

    Christ, Ingeborg

    1975-01-01

    Advanced-level Spanish courses often lead outside everyday situations. Text, topic, language content and skill orientation form a complex of conditions for advanced learning. Consequences of significance for the learning process are discussed, with the topic "la emigracion actual" ("the present emigration") as a base. (Text is in German.) (IFS/WGA)

  16. Exploring an ultracold Fermi-Fermi mixture: interspecies Feshbach resonances of ^6Li-^40K

    NASA Astrophysics Data System (ADS)

    Schreck, Florian

    2008-03-01

    We report on the observation of interspecies Feshbach resonances in an ultracold mixture of two fermionic species, ^6Li and ^40K. Interpretation of the data unambiguously assigns molecular bound states to the various resonances and fully characterizes the ground-state scattering properties in any combination of spin states. Using this knowledge we hope to be able to produce ^6Li-^40K molecules, cool them to quantum degeneracy, and study their BEC-BCS crossover. In collaboration with: F. Schreck, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria; E. Wille, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria and Institut fuer Experimentalphysik und Forschungszentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck, Austria; F.M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria; R. Grimm, Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria and Institut fuer Experimentalphysik und Forschungszentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck, Austria; T.G. Tiecke, J.T.M. Walraven,Van der Waals-Zeeman Institute of the University of Amsterdam, 1018 XE, The Netherlands; S.J.J.M.F. Kokkelmans, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; E. Tiesinga, P.S. Julienne, Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899-8423, USA

  17. 18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE VEREIN FUER RAUMSCHIFFAHRT (GERMAN SOCIETY FOR SPACE TRAVEL), DRIVES HIS ROCKET CAR IN 1931. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  18. De-Infinitiv oder reiner Infinitiv im Franzoesischen. Ein Beispiel fuer die Verwertung von Ergebnissen der linguistischen Grammatik in einer didaktischen Grammatik. ("De-" Infinitive or Pure Infinitive in French. An Example of the Utilization of Findings of Linguistic Grammar in a Teaching Grammar).

    ERIC Educational Resources Information Center

    Seelbach, Dieter

    1978-01-01

    Recommends the "distributional" and transformational grammar approach as especially suitable for developing a teaching grammar for dealing with the French simple infinitive and infinitive with "de". (IFS/WGA)

  19. Allgemeine Sprachfaehigkeit und Fremdsprachenerwerb. Zur Struktur von Leistungsdimensionen und linguistischer Kompetenz des Fremdsprachenlerners (General Language Ability and Foreign Language Acquisition. On the Structure of Performance Dimensions and the Linguistic Competence of the Foreign Language Learner). Diskussions beitraege aus dem Institute fuer Bildungsforschung, No. 1.

    ERIC Educational Resources Information Center

    Sang, Fritz; Vollmer, Helmut J.

    This study investigates the theoretical plausibility and empirical validity of the assumption that all performance in a foreign language can be traced back to a single factor, the general language ability factor. The theoretical background of this hypothesis is reviewed in detail. The concept of a unitary linguistic competence, interpreted as an…

  20. Working Time and the Volume of Work in Germany: The IAB Concept of Measurement. IAB Labour Market Research Topics.

    ERIC Educational Resources Information Center

    Bach, Hans-Uwe; Koch, Susanne

    The Institut fuer Arbeitsmarkt- und Berufsforschung (IAB) or Institute for Employment Research has developed a detailed working time and volume of work measurement concept in order to more comprehensively assess the demand for labor. The individual components of working time in Germany are obtained from various data sources and combined to form…

  1. Analysen zum Unterrichtshandeln - Band 5, IDM-Reihe, Untersuchungen zum Mathematikunterricht. (Analysis of Instructional Actions - Volume 5, IDM Series, Inquiries into Mathematics Instruction.)

    ERIC Educational Resources Information Center

    Bauersfeld, Heinrich; And Others

    This set of five papers, written in German with abstracts in English, was collected by the Institut fuer Didaktit der Mathematik (Institute for the Teaching of Mathematics) at the University of Bielefeld in West Germany. In the first paper, Bauersfeld used a transcript of a videotaped scene of group work out of school as a basis for analyzing…

  2. Lernen und Lehren von Mathematik-Analysen zum Unterrichtshandeln II - Band 6, IDM-Reihe, Untersuchungen zum Mathematikunterricht. (Learning and Teaching of Mathematics - Analysis of Instructional Actions II - Volume 6, IDM Series, Inquiries into Mathematics Instruction.)

    ERIC Educational Resources Information Center

    Bauersfeld, Heinrich; And Others

    This set of five papers, written in German with abstracts in English, was collected by the Institut fuer Didaktit der Mathematik (Institute for the Teaching of Mathematics) at the University of Bielefeld in West Germany. In the first paper, Bauersfeld considers domains of subjective experiences as the best issue for an interactive theory of…

  3. BKG/DGFI Combination Center Annual Report 2012

    NASA Technical Reports Server (NTRS)

    Bachmann, Sabine; Loesler, Michael; Heinkelmann, Robert; Gerstl, Michael

    2013-01-01

    This report summarizes the activities of the Federal Agency for Cartography and Geodesy (Bundesamt fuer Kartographie und Geodaesie, BKG) and the German Geodetic Research Institute (Deutsches Geodaetisches Forschungsinstitut, DGFI)BKG/DGFI Combination Center in 2011 and outlines the planned activities for the year 2012. The main focus was to stabilize outlier detection and to update the Web presentation of the combined products.

  4. 22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. HISTORIC VIEW OF EARLY TEST STAND IN GERMANY PERHAPS THE ENGINE IS FOR THE VFR'S (VEREIN FUER RAUMSCHIFFAHRT) 4 STICK REPULSOR. ENGINE IN PHOTOS IS BEING TANKED WITH LOX (NOTICE THE FROST FORMING AT THE BOTTOM OF THE TANK BEHIND THE LADDER. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  5. Interface science of controlled metal/metal and metal/ceramic interfaces prepared using ultrahigh vacuum diffusion bonding

    SciTech Connect

    King, W.E.; Campbell, G.H.; Coombs, A.W.; Johnson, G.W.; Kelly, B.E.; Reitz, T.C.; Stoner, S.L.; Wien, W.L.; Wilson, D.M.

    1993-04-01

    We have designed, constructed, and are operating a capability for production of controlled homophase and heterophase interfaces: an ultrahigh vacuum diffusion bonding machine. This machine is based on a previous design which is operating at the Max Planck Institut fuer Metallforschung, Institut fuer Werkstoffwissenschaft, Stuttgart, FRG. In this method, flat-polished single or polycrystals of materials with controlled surfaced topography can be heat treated up to 1500C in ultrahigh vacuum. Surfaces of annealed samples can be sputter cleaned and characterized prior to bonding. Samples can then be precisely aligned crystallographically to obtain desired grain boundary misorientations. Material couples can then be bonded at temperatures up to 1500C and pressures up to 10 MPa. Results are presented from initial work on Mo grain boundaries and Cu/Al{sub 2}A{sub 3} interfaces.

  6. European whole body counter measurement intercomparison.

    PubMed

    Thieme, M; Hunt, E L; König, K; Schmitt-Hannig, A; Gödde, R

    1998-04-01

    In order to test the common quality standards for the performance of measurements of internal radioactivity, the European Commission funded a European intercomparison of whole body counters, which was organized and carried out by the Institut fuer Strahlenhygiene (part of the German Bundesamt fuer Strahlenschutz). Forty-four whole body counting facilities from forty-two institutions in nineteen countries (the fifteen member states of the European Union plus Hungary, the Czech Republic, Switzerland and Norway) took part in this intercomparison, which made it the most comprehensive ever carried out in Europe. For the study, the 70 kg tissue equivalent St Petersburg phantom was used with rods containing 40K, 57Co, 60Co, and 137Cs. The overall results of the whole body counter study were rather good.

  7. VizieR Online Data Catalog: Catalogue of Nearby Stars, Edition 1969 (Gliese, 1979)

    NASA Astrophysics Data System (ADS)

    Gliese, W.

    2015-11-01

    The Catalogue of Nearby Stars, Edition 1969, is a new edition of the "Katalog der Sterne naeher als 20pc fuer 1950.0" (Giiese 1957, Astron. Rechen-Inst. Heidelberg Mitt. A, 8). It contains the data available at the end of 1968 for the 915 stars of the first edition, as well as stars with parallaxes >=0.045arcsec. (1 data file).

  8. Subcontracted R and D final report: analysis of samples obtained from GKT gasification test of Kentucky coal. Nonproprietary version

    SciTech Connect

    Raman, S.V.

    1983-09-01

    A laboratory test program was performed to obtain detailed compositional data on the Gesellshaft fuer Kohle-Technologie (GKT) gasifier feed and effluent streams. GKT performed pilot gasification tests with Kentucky No. 9 coal and collected various samples which were analyzed by GKT and the Radian Corporation, Austin, Texas. The coal chosen had good liquefaction characteristics and a high gasification reactivity. No organic priority pollutants or PAH compounds were detected in the wash water, and solid waste leachates were within RCRA metals limits.

  9. Spectral radiance calibrations between 165-300 nm - An interlaboratory comparison

    NASA Technical Reports Server (NTRS)

    Bridges, J. M.; Ott, W. R.; Pitz, E.; Schulz, A.; Einfeld, D.; Stuck, D.

    1977-01-01

    The spectral radiance of deuterium lamps calibrated by the Max-Planck-Institut fuer Astronomie (MPI), by the U.S. National Bureau of Standards (NBS), and by the Physikalisch-Technische Bundesanstalt (PTB) are compared to check the agreement of UV radiometric scales. The NBS group used the optically thin continuum radiation from a wall-stabilized hydrogen arc as its fundamental radiometric standard, while the MPI and PTB groups used the synchrotron radiation facility in DESY. It is found that the spectral radiance scales based upon the DESY synchrotron and the NBS hydrogen arc are consistent, at least for one wavelength relative to another.

  10. Roentgensatellit (ROSAT)

    NASA Technical Reports Server (NTRS)

    Guckenbiehl, F.; Ousley, G. W., Sr.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for ROSAT (Roentgensatellit) are summarized. ROSAT is an international cooperative program between NASA and the Bundesministerium fuer Forschung and Technologie (BMFT). The satellite was launched on a Delta 2 vehicle and placed in a circular orbit at an altitude of 580 km, with a 53-deg inclination. The mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry and command; and tracking support responsibility.

  11. STORAGE RING MEASUREMENT OF ELECTRON IMPACT IONIZATION FOR Mg{sup 7+} FORMING Mg{sup 8+}

    SciTech Connect

    Hahn, M.; Lestinsky, M.; Novotny, O.; Savin, D. W.; Bernhardt, D.; Mueller, A.; Schippers, S.; Wolf, A.

    2010-04-01

    We report electron impact ionization cross section measurements for Mg{sup 7+} forming Mg{sup 8+} at center of mass energies from approximately 200 eV to 2000 eV. The experimental work was performed using the heavy-ion storage ring TSR located at the Max-Planck-Institut fuer Kernphysik in Heidelberg, Germany. We find good agreement with distorted wave calculations using both the GIPPER code of the Los Alamos Atomic Physics Code suite and using the Flexible Atomic Code.

  12. Current status of fusion-relevant covariance data

    SciTech Connect

    Muir, D.W.

    1994-09-12

    The following review of the current status of formatted data covariance files and their multigroup processing is a contribution to the IAEA Advisory Group Meeting on ``Improved Evaluations and Integral Data Testing for FENDL,`` to be held at the Max-Planck-Institut fuer Plasmaphysik, Garching, Germany, 12--16 September 1994. The draft agenda of this meeting lists as Item 6 the ``assessment of present status and role of uncertainty files, their processing and sensitivity studies related to FENDL.`` We conclude that this is an important and timely topic and recommend needed actions in this field.

  13. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Ahmad, Nash'at N.; Holzaepfel, Frank; VanValkenburg, Randal L.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  14. Measurement of Quantum Phase-Slips in Josephson Junction Chains

    NASA Astrophysics Data System (ADS)

    Guichard, Wiebke

    2011-03-01

    Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.

  15. Handbook of environmental chemistry. Volume 4. Part A, air pollution

    SciTech Connect

    Hutzinger, O.

    1986-01-01

    Five authors have each contributed one chapter to this first part (A) of the series on Air Pollution (Volume 4). Thus the book is neither a handbook compilation of reference data nor a text on the subject of air pollution. The first and shortest chapter (22 pages) by A. Wint of the University of Nottingham, England, is an overview called Air Pollution in Perspective. The second chapter, by P. Fabian of Max-Planck-Institute fuer Aeronomie, FRG, is titled Halogenated Hydrocarbons in the Atmosphere. This chapter, in 29 pages, summarizes current data on twenty of these compounds. Hans Guesten of the Institute fuer Radiochemie, Karlsruhe, FRG, contributed chapter 3 on Formation, Transport, and Control of Photochemical Smog (52 pages). This chapter is a good survey of current understanding of smog although each of the three topics promised in the title could by itself take up a good sized book. Atmospheric Distribution of Pollutants and Modeling of Air Pollution Dispersion by H. van Dop of the Royal Netherlands Meteorological Institute, the Netherlands, makes up Chapter 4 (42 pages). The article is written from a meteorological perspective. The last chapter, by J.M. Hales of Battelle Pacific Northwest Laboratories, USA, is titled The Mathematical Characterization of Precipitation Scavenging and Precipitation Chemistry (74 pages). Removal of pollutants from the atmosphere by precipitation is good news/bad news.

  16. (HFR-B1 experiment reporting and capsule disassembly)

    SciTech Connect

    Myers, B.F.

    1991-02-22

    The traveler visited the Joint Research Centre (JRC), Petten, The Netherlands, the Forschungszentrum GmbH (KFA), Juelich, Germany; and the Zentralinstitut fuer Kernforschung (ZfK), Rossendorf, Germany, during the period January 28 through February 9. At JRC, the analysis of the experiment HFR-B1 was discussed; a new schedule for issuance of the final data report was established. Other discussions at JRC concerned the capabilities of Petten to conduct two reactor experiments being proposed under the US/FRG cooperative program and the initial results of a proof test of Germany fuel spheres. At KFA, the main emphasis was on the disassembly of capsules 2 and 3 of the HFR-B1 experiment and agreement on the examinations and tests to be conducted with the disassembled components. The disassembly of capsule 3 was observed. Extensive discussions were conducted on the work, both experimental and analytical, being conducted in the Institut fuer Sicherheitsforschung und Reaktor Technologie. A major portion of the experimental work is being conducted at ZfK and a visit to this laboratory, sponosored by the KFA, was made on February 6 and 7. Cooperation with the US on the experimental and analytical work in the safety area was strongly emphasized. 1 tab.

  17. SUNRISE: a balloon-borne telescope for high resolution solar observations in the visible and UV

    NASA Astrophysics Data System (ADS)

    Solanki, Sami K.; Gandorfer, Achim M.; Schuessler, Manfred; Curdt, W.; Lites, Bruce W.; Martinez-Pillet, Valentin; Schmidt, Wolfgang; Title, Alan M.

    2003-02-01

    Sunrise is a light-weight solar telescope with a 1 m aperture for spectro-polarimetric observations of the solar atmosphere. The telescope is planned to be operated during a series of long-duration balloon flights in order to obtain time series of spectra and images at the diffraction-limit and to study the UV spectral region down to ~200 nm, which is not accessible from the ground. The central aim of Sunrise is to understand the structure and dynamics of the magnetic field in the solar atmosphere. Through its interaction with the convective flow field, the magnetic field in the solar photosphere develops intense field concentrations on scales below 100 km, which are crucial for the dynamics and energetics of the whole solar atmosphere. In addition, Sunrise aims to provide information on the structure and dynamics of the solar chromosphere and on the physics of solar irradiance changes. Sunrise is a joint project of the Max-Planck-Institut fuer Aeronomie (MPAe), Katlenburg-Lindau, with the Kiepenheuer-Institut fuer Sonnenphysik (KIS), Freiburg, the High-Altitude Observatory (HAO), Boulder, the Lockheed-Martin Solar and Astrophysics Lab. (LMSAL), Palo Alto, and the Instituto de Astrofi sica de Canarias, La Laguna, Tenerife. In addition, there are close contacts with associated scientists from a variety of institutes.

  18. Innovative Conditioning Procedures for the Generation of Radioactive Waste Products which are Stable for Intermediate Storage or Repository-Independent in Final Storage

    SciTech Connect

    Steinmetz, H.J.; Heimbach, H.; Odoj, R.; Pruesse, R.; Wartenberg, W.

    2006-07-01

    The German Federal Government aims at a future final storage site for all kinds of radioactive waste within 30 years. Existing and newly-produced radioactive waste therefore has to be stored in interim storage facilities over very long periods of time. At present, most German radioactive waste or waste packages are produced and qualified according to the acceptance criteria of the projected final repository KONRAD. [1] Nevertheless, conditioning strategies for crude radioactive waste have to take into account the open question of the future repository site as well as requirements for long-term interim storage. The Quality Control Group for Radioactive Waste (in German: Produktkontrollstelle fuer radioaktive Abfaelle - PKS) works as an independent expert organisation for the quality checking of radioactive waste packages as well as evaluating conditioning procedures for waste containers suitable for final storage on behalf of the Federal Office for Radiation Protection (in German: Bundesamt fuer Strahlenschutz - BfS). The Institute for Safety Research and Reactor Technology (in German: Institut fuer Sicherheitsforschung and Reaktortechnik - ISR) of the Research Centre Juelich investigates scientific/technical problems of nuclear disposal, especially in the field of waste treatment. In this context, ISR and PKS investigated and/or evaluated innovative procedures, by means of which radioactive waste flows may be minimized and rendered inert. QSA Global (formerly: AEA Technology QSA) conditions radioactive waste of German users from the fields of medicine, research and industry as well as from its own radioactive source production and operates an intermediate storage facility for radioactive waste containers. This poster deals with the characteristics and possible applications of new waste fixation media on the basis of organic and inorganic mineral polymers; with the approach of producing inherently safe waste forms for various geological formations. Plasma technology

  19. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 1, October 1, 1980-January 31, 1981

    SciTech Connect

    Bube, R. H.

    1981-01-01

    This program is concerned with the investigation of the materials properties of CdTe thin films deposited by hot-wall vacuum evaporation and of CdTe single crystalline material, particularly those relevant to solar cell applications in which CdTe is the absorbing member. Progress is reported on: (a) an evaluation of CdTe homojunctions formed by HWVE of CdTe by Walter Huber at the laboratory of Dr. Adolfo Lopez-Otero at the Institut fuer Physik of the University of Linz, using single crystal p-type CdTe from Stanford as a substrate; (b) the design and construction of a HWVE apparatus at Stanford; and (c) properties of grain boundaries in large grain polycrystalline CdTe.

  20. Proceedings of the 8th high energy heavy ion study

    SciTech Connect

    Harris, J.W.; Wozniak, G.J.

    1988-01-01

    This was the eighth in a series of conferences jointly sponsored by the Nuclear Science Division of LBL and the Gesellschaft fuer Schwerionenforschung in West Germany. Sixty papers on current research at both relativistic and intermediate energies are included in this report. Topics covered consisted of: Equation of State of Nuclear Matter, Pion and High Energy Gamma Emission, Theory of Multifragmentation, Intermediate Energies, Fragmentation, Atomic Physics, Nuclear Structure, Electromagnetic Processes, and New Facilities planned for SIS-ESR. The latest design parameters of the Bevalac Upgrade Proposal were reviewed for the user community. Also, the design of a new electronic 4..pi.. detector, a time projection chamber which would be placed at the HISS facility, was presented.

  1. The Nagra-DOE Cooperative Project

    SciTech Connect

    Long, J.C.S.; Levitch, R.A.; Zuidema, P.

    1993-04-01

    The Nagra-DOE Cooperative (NDC-I) research program was sponsored by the US Department of Energy (DOE) through the Lawrence Berkeley Laboratory (LBL), and the Swiss Nationale Genossenschaft fuer die Lagerung radioaktiver Abfaella (Nagra). Scientists participating in this project explored the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Six joint tasks were defined and are described briefly below. Tasks 1, 2, 3 and 5 were concerned with the characterization of fractured rock. Task 5 in particular was focused on investigations at the Grimsel Underground Laboratory in the Swiss Alps. Tasks 2 and 6 focused on the phenomenology associated with storing radioactive waste underground.

  2. The NGS Pyramid wavefront sensor for ERIS

    NASA Astrophysics Data System (ADS)

    Riccardi, A.; Antichi, J.; Quirós-Pacheco, F.; Esposito, S.; Carbonaro, L.; Agapito, G.; Biliotti, V.; Briguglio, R.; Di Rico, G.; Dolci, M.; Ferruzzi, D.; Pinna, E.; Puglisi, A.; Xompero, M.; Marchetti, E.; Fedrigo, E.; Le Louarn, M.; Conzelmann, R.; Delabre, B.; Amico, P.; Hubin, N.

    2014-07-01

    ERIS is the new Single Conjugate Adaptive Optics (AO) instrument for VLT in construction at ESO with the collaboration of Max-Planck Institut fuer Extraterrestrische Physik, ETH-Institute for Astronomy and INAF - Osservatorio Astrofisico di Arcetri. The ERIS AO system relies on a 40×40 sub-aperture Pyramid Wavefront Sensor (PWFS) for two operating modes: a pure Natural Guide Star high-order sensing for high Strehl and contrast correction and a low-order visible sensing in support of the Laser Guide Star AO mode. In this paper we present in detail the preliminary design of the ERIS PWFS that is developed under the responsibility of INAF-Osservatorio Astrofisico di Arcetri in collaboration with ESO.

  3. Thick Nano-Crystalline Diamond films for fusion applications

    SciTech Connect

    Dawedeit, Christoph

    2010-06-30

    This Diplomarbeit deals with the characterization of 9 differently grown diamond samples. Several techniques were used to determine the quality of these specimens for inertial confinement fusion targets. The quality of chemical vapor deposition diamond is usually considered in terms of the proportion of sp3-bonded carbon to sp2-bonded carbon in the sample. For fusion targets smoothness, Hydrogen content and density of the diamonds are further important characteristics. These characteristics are analyzed in this thesis. The research for thesis was done at Lawrence Livermore National Laboratory in collaboration with the Fraunhofer Institut für angewandte Festkörperphysik Freiburg, Germany. Additionally the Lehrstuhl fuer Nukleartechnik at Technical University of Germany supported the work.

  4. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    SciTech Connect

    Krainov, V. P.

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeeman splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.

  5. Observatory Improvements for SOFIA

    NASA Technical Reports Server (NTRS)

    Peralta, Robert A.; Jensen, Stephen C.

    2012-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint project between NASA and Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), the German Space Agency. SOFIA is based in a Boeing 747 SP and flown in the stratosphere to observe infrared wavelengths unobservable from the ground. In 2007 Dryden Flight Research Center (DFRC) inherited and began work on improving the plane and its telescope. The improvements continue today with upgrading the plane and improving the telescope. The Observatory Verification and Validation (V&V) process is to ensure that the observatory is where the program says it is. The Telescope Status Display (TSD) will provide any information from the on board network to monitors that will display the requested information. In order to assess risks to the program, one must work through the various threats associate with that risk. Once all the risks are closed the program can work towards improving the observatory.

  6. An intelligent ground operator support system

    NASA Technical Reports Server (NTRS)

    Goerlach, Thomas; Ohlendorf, Gerhard; Plassmeier, Frank; Bruege, Uwe

    1994-01-01

    This paper presents first results of the project 'Technologien fuer die intelligente Kontrolle von Raumfahrzeugen' (TIKON). The TIKON objective was the demonstration of feasibility and profit of the application of artificial intelligence in the space business. For that purpose a prototype system has been developed and implemented for the operation support of the Roentgen Satellite (ROSAT), a scientific spacecraft designed to perform the first all-sky survey with a high-resolution X-ray telescope and to investigate the emission of specific celestial sources. The prototype integrates a scheduler and a diagnosis tool both based on artificial intelligence techniques. The user interface is menu driven and provides synoptic displays for the visualization of the system status. The prototype has been used and tested in parallel to an already existing operational system.

  7. Highlights from the 2013 International Sherwood Fusion Theory Conference, Santa Fe, NM

    SciTech Connect

    2013-04-15

    The 2013 International Sherwood Fusion Theory Conference was held in Santa Fe, NM from April 15-17. There were 15 invited talks spanning the field of fusion theory on topics such as stellerator theory, intrinsic rotation in tokamaks, transport in the plasma edge, and plasma-wall interactions. Author-provided summaries of several of the invited talks are included on pages 5 to 10 of this document. Plenary talks were given by Per Helander (Max-Planck-Institut fuer Plasmaphysik, Greifswald, Germany) on “Overview of recent developments in stellerator theory”, Amit Misra (Los Alamos National Laboratory) on “Stable storage of Helium at interfaces in nanocomposites”, Sergei Krasheninnikov (UC San Diego) on “On the physics of the first wall in fusion devices”, and Stuart Bale (UC Berkeley) on “Solar wind thermodynamics and turbulence: collisional – collisionless transitions”.

  8. Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films

    SciTech Connect

    Stierle, A.; Steinhaeuser, A.; Ruehm, A.; Renner, F.U.; Weigel, R.; Kasper, N.; Dosch, H.

    2004-12-01

    A dedicated beamline for the Max-Planck-Institut fuer Metallforschung was recently taken into operation at the Angstroemquelle Karlsruhe (ANKA). Here we describe the layout of the beamline optics and the experimental end-station, consisting of a heavy duty multiple circle diffractometer. For both a new design was realized, combining a maximum flexibility in the beam properties [white, pink (focused) monochromatic, energy range 6-20 keV] with a special diffractometer for heavy sample environments up to 500 kg, that can be run in different geometrical modes. In addition the angular-reciprocal space transformations for the diffractometer in use are derived, which allows an operation of the instrument in the convenient six circle mode. As an example, results from surface x-ray diffraction on a Cu{sub 3}Au(111) single crystal are presented.

  9. Progress in Heavy Ion Fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  10. Overview of the German industrial research project ADAPTRONIK

    NASA Astrophysics Data System (ADS)

    Hanselka, Holger

    2000-06-01

    In 1997 BMBF, within the framework of an idea competition for future-oriented key technologies and their industrial utilization, called for project proposals from industries and research for so-called 'Leitprojekts'. An independent group of experts selected few project proposals form the many submitted, and prosed them to BMBF for promotion. One of these projects is the BMBF-Leitprojekt ADAPTRONIK which is introduced in this paper. The Leitprojekt ADAPTRONIK which is conducted under the responsibility of Deutsches Zentrum fuer Luft-und Raumfahrt e.V. in Brunswick, focuses on the strucutre-conforming integration of piezoelectric fibers and patches in structures for lightweight construction. It is aimed at active vibration and noise reduction, contour deformation and micro-positioning in the very sense of adaptronics in various industrial applications. The project targets are prototype assemblies from the fields of automotive industry, rail vehicles, mechanical engineering, medical engineering, and aerospace.

  11. Observation of Spontaneous Neoclassical Tearing Modes

    SciTech Connect

    E.D. Fredrickson

    2001-10-03

    We present data in this paper from the Tokamak Fusion Test Reactor (TFTR) which challenges the commonly held belief that extrinsic MHD events such as sawteeth or ELMs [edge localized modes] are required to provide the seed islands that trigger Neoclassical Tearing Modes (NTMs). While sawteeth are reported to provide the trigger for most of the NTMs on DIII-D [at General Atomics in San Diego, California] and ASDEX-U [at Max-Planck-Institut fuer Plasmaphysik in Garching, Germany], the majority of NTMs seen in TFTR occur in plasmas without sawteeth, that is which are above the beta threshold for sawtooth stabilization. Examples of NTMs appearing in the absence of any detectable extrinsic MHD activity will be shown. Conversely, large n=1 modes in plasmas above the NTM beta threshold generally do not trigger NTMs. An alternative mechanism for generating seed islands will be discussed.

  12. CRYOGENIC AND VACUUM TECHNOLOGICAL ASPECTS OF THE LOW-ENERGY ELECTROSTATIC CRYOGENIC STORAGE RING

    SciTech Connect

    Orlov, D. A.; Lange, M.; Froese, M.; Hahn, R. von; Grieser, M.; Mallinger, V.; Sieber, T.; Weber, T.; Wolf, A.; Rappaport, M.

    2008-03-16

    The cryogenic and vacuum concepts for the electrostatic Cryogenic ion Storage Ring (CSR), under construction at the Max-Planck-Institut fuer Kernphysik in Heidelberg, is presented. The ring will operate in a broad temperature range from 2 to 300 K and is required to be bakeable up to 600 K. Extremely high vacuum and low temperatures are necessary to achieve long lifetimes of the molecular ions stored in the ring so that the ions will have enough time to cool by radiation to their vibrational and rotational ground states. To test cryogenic and vacuum technological aspects of the CSR, a prototype is being built and will be connected to the commercial cryogenic refrigerator recently installed, including a specialized 2-K connection system. The first results and the status of current work with the prototype are also presented.

  13. Space Radar Image of Kilauea, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Data acquired on April 13, 1994 and on October 4, 1994 from the X-band Synthetic Aperture Radar on board the space shuttle Endeavour were used to generate interferometric fringes, which were overlaid on the X-SAR image of Kilauea. The volcano is centered in this image at 19.58 degrees north latitude and 155.55 degrees west longitude. The image covers about 9 kilometers by 13 kilometers (5.6 miles by 8 miles). The X-band fringes correspond clearly to the expected topographic image. The yellow line indicates the area below which was used for the three-dimensional image using altitude lines. The yellow rectangular frame fences the area for the final topographic image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo Componenti Elettronici (IRECE) at the University of Naples was a partner in interferometry analysis.

  14. Evaluation of the long-term efficacy and safety of an imidacloprid 10%/flumethrin 4.5% polymer matrix collar (Seresto®) in dogs and cats naturally infested with fleas and/or ticks in multicentre clinical field studies in Europe

    PubMed Central

    2012-01-01

    Background The objective of these two GCP multicentre European clinical field studies was to evaluate the long-term efficacy and safety of a new imidacloprid/flumethrin collar (Seresto®, Bayer AnimalHealth, Investigational Veterinary Product(IVP)) in dogs and cats naturally infested with fleas and/or ticks in comparison to a dimpylat collar ("Ungezieferband fuer Hunde/fuer Katzen", Beaphar, Control Product (CP)). Methods 232 (IVP) and 81 (CP) cats and 271(IVP) and 129 (CP) dogs were treated with either product according to label claims and formed the safety population. Flea and tick counts were conducted in monthly intervals for up to 8 months in the efficacy subpopulation consisting of 118 (IVP) + 47 (CP) cats and 197 (IVP) + 94 (CP) dogs. Efficacy was calculated as reduction of infestation rate within the same treatment group and statistically compared between the two treatment groups. Results Preventive efficacy against fleas in cats/dogs varied in the IVP group between 97.4%/94.1% and 100%/100% (overall mean: 98.3%/96.7%) throughout the 8 month period and in the CP group between 57.1%/28.2% and 96.1%/67.8% (overall mean: 79.3%/57.9%). Preventive efficacy against ticks in cats/dogs varied in the IVP group between 94.0%/91.2% and 100%/100% (overall mean: 98.4%/94.7%) throughout the 8 month period and in the CP group between 90.7%/79.9% and 100%/88.0% (overall mean: 96.9%/85.6%). The IVP group was statistically non-inferior to the CP group, and on various assessment days, statistical superiority was proven for flea and tick count reduction in dogs and cats. Both treatments proved to be safe in dogs and cats with mainly minor local observations at the application site. There was moreover, no incidence of any mechanical problem with the collar in dogs and cats during the entire study period. Conclusions The imidacloprid/flumethrin collar proved to reduce tick counts by at least 90% and flea counts by at least 95% for a period of at least 7-8 months in cats and dogs

  15. space Radar Image of Long Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of Central African Gorilla Habitat

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  17. Healthcare, molecular tools and applied genome research.

    PubMed

    Groves, M

    2000-11-01

    Biotechnology 2000 offered a rare opportunity for scientists from academia and industry to present and discuss data in fields as diverse as environmental biotechnology and applied genome research. The healthcare section of the meeting encompassed a number of gene therapy delivery systems that are successfully treating genetic disorders. Beta-thalassemia is being corrected in mice by continous erythropoeitin delivery from engineered muscles cells, and from naked DNA electrotransfer into muscles, as described by Dr JM Heard (Institut Pasteur, Paris, France). Dr Reszka (Max-Delbrueck-Centrum fuer Molekulare Medizin, Berlin, Germany), meanwhile, described a treatment for liver metastasis in the form of a drug carrier emolization system, DCES (Max-Delbrueck-Centrum fuer Molekulare Medizin), composed of surface modified liposomes and a substance for chemo-occlusion, which drastically reduces the blood supply to the tumor and promotes apoptosis, necrosis and antiangiogenesis. In the molecular tools section, Willem Stemmer (Maxygen Inc, Redwood City, CA, USA) gave an insight into the importance that techniques, such as molecular breeding (DNA shuffling), have in the evolution of molecules with improved function, over a range of fields including pharmaceuticals, vaccines, agriculture and chemicals. Technologies, such as ribosome display, which can incorporate the evolution and the specific enrichment of proteins/peptides in cycles of selection, could play an enormous role in the production of novel therapeutics and diagnostics in future years, as explained by Andreas Plückthun (Institute of Biochemistry, University of Zurich, Switzerland). Applied genome research offered technologies, such as the 'in vitro expression cloning', described by Dr Zwick (Promega Corp, Madison, WI, USA), are providing a functional analysis for the overwhelming flow of data emerging from high-throughput sequencing of genomes and from high-density gene expression microarrays (DNA chips). The

  18. Space Radar Image of Long Valley, California - 3D view

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  19. Space Radar Image of Colima Volcano, Jalisco, Mexico

    NASA Technical Reports Server (NTRS)

    1994-01-01

    and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of Raco Vegetation Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  1. Space Radar Image of Kilauea, Hawaii - interferometry 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR. The Instituto Ricerca Elettromagnetismo

  2. SPace Radar Image of Fort Irwin, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  3. Space Radar Image of Long Valley, California in 3-D

    NASA Technical Reports Server (NTRS)

    1994-01-01

    induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Hong Kong, China

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-SAR image spanning an area of approximately 20 kilometers by 40 kilometers (12 miles by 25 miles) of the island of Hong Kong, the Kowloon Peninsula and the new territories in southern China, taken by the imaging radar on board the space shuttle Endeavour on October 4, 1994. North is toward the top left corner of the image. The Kaitak Airport runway on Kowloon Peninsula (center right of image) was built on reclaimed land and extends almost 3 kilometers (nearly 2 miles) into Victoria Harbor. To the south of the harbor lies the island of Hong Kong. The bright areas around the harbor are the major residential and business districts. Housing more than six million residents, Hong Kong is the most densely populated area in the world. The large number of objects visible in the harbor and surrounding waters are a variety of sea-going vessels, anchored in one of the busiest seaports in the Far East. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in

  7. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  8. North Central Thailand

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  9. Space Radar Image of Raco Biomass Map

    NASA Technical Reports Server (NTRS)

    1999-01-01

    space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  10. The Wonders of Physics Outreach Program

    NASA Astrophysics Data System (ADS)

    Sprott, J. C.; Mirus, K. A.; Newman, D. E.; Watts, C.; Feeley, R. E.; Fernandez, E.; Fontana, P. W.; Krajewski, T.; Lovell, T. W.; Oliva, S.; Stoneking, M. R.; Thomas, M. A.; Jaimison, W.; Maas, K.; Milbrandt, R.; Mullman, K.; Narf, S.; Nesnidal, R.; Nonn, P.

    1996-11-01

    One important step toward public education about fusion energy is to first elevate the public's appreciation of science in general. Toward this end, the Wonders of Physics program was started at the University of Wisconsin-Madison in 1984 as a public lecture and demonstration series in an attempt to stem a growing tide of science illiteracy and to bolster the public's perception of the scientific enterprise. Since that time, it has grown into a public outreach endeavor which consists of a traveling demonstration show, educational pamphlets, videos, software, a website (http://sprott.physics.wisc.edu/wop.htm), and the annual public lecture demonstration series including tours highlighting the Madison Symmetric Torus and departmental facilities. The presentation has been made about 400 times to a total audience in excess of 50,000. Sample educational materials and Lecture Kits will be available at the poster session. Currently at Oak Ridge National Laboratories. Currently at Max Planck Institut fuer Plasmaphysik. *Currently at Johnson Controls.

  11. Application of Surface Micro-Discharge plasma to spacecraft component decontamination

    NASA Astrophysics Data System (ADS)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia; Weber, Peter; Morfill, Gregor; Thomas, Hubertus

    2013-09-01

    In the field of extinct or extant extraterrestrial life research on other planets and moons, the prevention of biological contamination through spaceprobes is one of the most important requirements, and its detailed conditions are defined by the COSPAR planetary protection policy. Currently, a dry heat microbial reduction (DHMR) method is the only applicable way to satisfy the demand, which could, however, damage the sophisticated components like integrated circuits. In this study, cold atmospheric plasma based on the Surface Micro-Discharge technology was investigated for inactivation of different types of bacteria and endospores as an alternative method. After 90 min of plasma gas exposure, 3-6 log reductions were observed for the vegetative bacteria Escherichia coliand Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, B. safensis, B. megaterium, B. megaterium 2c1 and B. thuringiensis E24. Furthermore, the applicability of the system for spacecraft decontamination was checked by studying the inactivation homogeneity, the temperature at the area of interest and the effects of the plasma gas exposure on different materials. The authors would like to acknowledge the financial support from Deutches Zentrum fuer Luft- und Raumfahrt (FKZ 50 JR1005).

  12. The first educational interferometer in Mexico (FEYMANS): A novel project

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Saucedo Morales, Julio Cesar; Carreto, Francisco; Valdes Estrada, Erik; Wendolyn Blanco Cardenas, Monica; Rodríguez Garza, Carolina B.; Pech Castillo, Gerardo A.; Ángel Vaquerizo, Juan

    2016-07-01

    An interferometer is composed of several radio telescopes (dishes) separated by a defined distance and used in synchrony. This kind of array produces a superior angular resolution, better than the resolution achieved by a single dish of the same combined area. In this work we propose the First Educational Youth Mexican Array North South, FEYMANS. It consists of an educational interferometer with initially four dishes. This array harvests Mexico's geography by locating each dish at the periphery of the country; creating new scientific links of provincial populations with the capital. The FEYMANS project focus in high school students and their projects on physics, chemistry and astronomy as a final project. Also, it can be used for bachelor theses. The initial and central dish-node is planed to be in Mexico City. After its construction, the efforts will focus to build subsequent nodes, on the Northwest region, Northeast, or Southeast. Region Northwest will give service to Baja California, Sonora and Chihuahua states. Region Northeast will cover Coahuila, Nuevo Leon and Tamaulipas. Finally, region Southeast will give access to Yucatan, Quintana Roo, Campeche, Tabasco and Chiapas. This project has been conceived by young professional astronomers and Mexican experts that will operate each node. Also, we have the technical support of the "Max Planck Institute fuer Radioastronomy in Bonn Germany" and the educational model of the "PARTNeR" project in Spain. This interferometer will be financed by Mexico's Federal Congress and by Mexico City's Legislative Assembly (ALDF).

  13. Experimental verification of a real-time compensation functionality for dose changes due to target motion in scanned particle therapy

    SciTech Connect

    Luechtenborg, Robert; Saito, Nami; Durante, Marco; Bert, Christoph

    2011-10-15

    Purpose: Implementation and experimental assessment of a real-time dose compensation system for beam tracking in scanned carbon beam therapy of intrafractionally moving targets. Methods: A real-time dose compensation functionality has been developed and implemented at the experimental branch of the beam tracking system at GSI Helmholtzzentrum fuer Schwerionenforschung (GSI). Treatment plans for different target geometries have been optimized. They have been delivered using scanned carbon ions with beam tracking (BT) and real-time dose compensation combined with beam tracking (RDBT), respectively. Target motion was introduced by a rotating table. Dose distributions were assessed by ionization chamber measurements and dose reconstructions. These distributions have been compared to stationary delivery for BT as well as RDBT. Additionally simulations have been performed to investigate the dependence of delivered dose distributions on varying motion starting phases for BT and RDBT, respectively. Results: Average measured dose differences between static delivery and motion influenced delivery could be reduced from 27-68 mGy when BT was used to 12-37 mGy when RDBT was used. Nominal dose was 1000 mGy. Simulated dose deliveries showed improvements in dose delivery and robustness against varying starting motion phases when RDBT was used. Conclusions: A real-time dose compensation functionality extending the existing beam tracking functionality has been implemented and verified by measurements. Measurements and simulated dose deliveries show that real-time dose compensation can substantially improve delivered dose distributions for large rotational target motion compared to beam tracking alone.

  14. Extraction of the vibrational dynamics from the spectra of highly excited molecules and periodic orbit quantization by harmonic inversion

    NASA Astrophysics Data System (ADS)

    Atilgan, Erdinc

    Part I. The effective spectroscopic Hamiltonian fitted to experiment by Troellsch and Temps {A. Troellsch, F. Temps Zeitschrift fuer Physikalische Chemie 215, 207, (2001)} and describing high vibrational excitation to bound and resonant states, is used in conjunction with methods of nonlinear classical dynamics and semiclassical mechanics to extract for all the observed highly excited resonance levels in Polyad 8, the molecular motions upon which they are quantized. Two types of interlaced dynamically distinct ladders of states are revealed. The rungs of these ladders intersperse making the spectra complex. The resonant 2:2:1 frequency ratio of the DC, CO stretches and the bend respectively is what causes the complexity and is what caused past attempts at interpretation to be at best incomplete. All states are assigned with physically meaningful quantum numbers corresponding to quasiconserved quantities. Most interestingly it is pointed out that much of the information and assignment can be done without any calculations at all, using only the qualitative ideas from nonlinear, semiclassical and quantum mechanics along with the information supplied by the experimentalist. Part II. In systems with few degrees of freedom modern quantum calculations are, in general, numerically more efficient than semiclassical methods. However, this situation can be reversed with increasing dimension of the problem. For a three-dimensional system, viz. the hyperbolic four-sphere scattering system, we demonstrate the superiority of semiclassical versus quantum calculations. Semiclassical resonances can easily be obtained even in energy regions which are unattainable with the currently available quantum techniques.

  15. Upgrade to the control system of the reflectometry diagnostic of ASDEX upgrade

    SciTech Connect

    Graca, S.; Santos, J.; Manso, M.E.

    2004-10-01

    The broadband frequency modulation-continuous wave microwave/millimeter wave reflectometer of ASDEX upgrade tokamak (Institut fuer Plasma Physik (IPP), Garching, Germany) developed by Centro de Fusao Nuclear (Lisboa, Portugal) with the collaboration of IPP, is a complex system with 13 channels (O and X modes) and two types of operation modes (swept and fixed frequency). The control system that ensures remote operation of the diagnostic incorporates VME and CAMAC bus based acquisition/timing systems. Microprocessor input/output boards are used to control and monitor the microwave circuitry and associated electronic devices. The implementation of the control system is based on an object-oriented client/server model: a centralized server manages the hardware and receives input from remote clients. Communication is handled through transmission control protocol/internet protocol sockets. Here we describe recent upgrades of the control system aiming to: (i) accommodate new channels; (ii) adapt to the heterogeneity of computing platforms and operating systems; and (iii) overcome remote access restrictions. Platform and operating system independence was achieved by redesigning the graphical user interface in JAVA. As secure shell is the standard remote access protocol adopted in major fusion laboratories, secure shell tunneling was implemented to allow remote operation of the diagnostic through the existing firewalls.

  16. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  17. Proton microscopy at GSI and FAIR

    SciTech Connect

    Merrill, Frank E; Mariam, Fesseha G; Golubev, A A; Turtikov, V I; Varentsov, D

    2009-01-01

    Proton radiography was invented in the 1990's at Los Alamos National Laboratory (LANL) as a diagnostic to study dynamic material properties under extreme pressures, strain and strain rate. Since this time hundreds of dynamic proton radiography experiments have been performed at LANL and facilities have been commissioned at the Institute for Theoretical and Experimental Physics (ITEP) in Russia for similar applications in dynamic material studies. Recently an international collaboration was formed to develop a new proton radiography capability for the study of dynamic material properties at the Facility for Anti-proton and Ion Research (FAIR) located at Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. This new Proton microscope for FAIR (PRIOR) will provide radiographic imaging of dynamic systems with unprecedented spatial, temporal and density resolution, resulting in a window for understanding dynamic material properties at new length scales. These dynamic experiments will be driven with many energy sources including heavy ions, high explosives and lasers. The design of the proton microscope and expected radiographic performance is presented.

  18. Round-robin pretest analyses of a 1:6-scale reinforced concrete containment model subject to static internal pressurization

    SciTech Connect

    Clauss, D.B.

    1987-05-01

    Analyses of a 1:6-scale reinforced concrete containment model that will be tested to failure at Sandia National Laboratories in the spring of 1987 were conducted by the following organizations in the United States and Europe: Sandia National Laboratories (USA), Argonne National Laboratory (USA), Electric Power Research Institute (USA), Commissariat a L'Energie Atomique (France), HM Nuclear Installations Inspectorate (UK), Comitato Nazionale per la ricerca e per lo sviluppo dell'Energia Nucleare e delle Energie Alternative (Italy), UK Atomic Energy Authority, Safety and Reliability Directorate (UK), Gesellschaft fuer Reaktorsicherheit (FRG), Brookhaven National Laboratory (USA), and Central Electricity Generating Board (UK). Each organization was supplied with a standard information package, which included construction drawings and actual material properties for most of the materials used in the model. Each organization worked independently using their own analytical methods. This report includes descriptions of the various analytical approaches and pretest predictions submitted by each organization. Significant milestones that occur with increasing pressure, such as damage to the concrete (cracking and crushing) and yielding of the steel components, and the failure pressure (capacity) and failure mechanism are described. Analytical predictions for pressure histories of strain in the liner and rebar and displacements are compared at locations where experimental results will be available after the test. Thus, these predictions can be compared to one another and to experimental results after the test.

  19. Seismic sounding of convection in the Sun

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Katepalli R.

    2015-11-01

    Thermal convection is the dominant mechanism of energy transport in the outer envelope of the Sun (one-third by radius). It drives global fluid circulations and magnetic fields observed on the solar surface. Convection excites a broadband spectrum of acoustic waves that propagate within the interior and set up modal resonances. These acoustic waves, also called seismic waves, are observed at the surface of the Sun by space- and ground-based telescopes. Seismic sounding, the study of these seismic waves to infer the internal properties of the Sun, constitutes helioseismology. Here we review our knowledge of solar convection, especially that obtained through seismic inference. Several characteristics of solar convection, such as differential rotation, anisotropic Reynolds stresses, the influence of rotation on convection and supergranulation, are considered. On larger scales, several inferences suggest that convective velocities are substantially smaller than those predicted by theory and simulations. This discrepancy challenges the models of internal differential rotation that rely on convective stresses as a driving mechanism and provide an important benchmark for numerical simulations. In collaboration with Shravan Hanasoge, Tata Institute of Fundamental Research, Mumbai and Laurent Gizon, Max-Planck-Institut fuer Sonnensystemforschung, Goettingen.

  20. 3D-PIC simulation of an inductively coupled ion source

    NASA Astrophysics Data System (ADS)

    Henrich, Robert; Muehlich, Nina Sarah; Becker, Michael; Heiliger, Christian

    2015-09-01

    Inductively coupled ion sources are applied to a wide range of plasma applications, especially surface modifications. The knowledge of the behavior and precise information of the plasma parameters are of main importance. These values are tedious to measure without influencing the discharge. By applying our fully three-dimensional PlasmaPIC tool we are able to reach these plasma parameters with a spatial and temporal resolution which is quite hard to achieve experimentally. PlasmaPIC is used for modeling discharges in arbitrary geometries without limitations to any symmetry. By this means we are able to demonstrate that the plasma density has an irrotational character. Furthermore, we will show the dependence of the plasma parameters of different working conditions. We will show that for gridded inductively coupled ion sources the neutral gas pressure inside the discharge chamber depends on the extraction of ions. This effect is considered in PlasmaPIC by a self-consistent coupling of the neutral gas simulation and the plasma simulation whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  1. SOFIA: Flying the Telescope

    NASA Technical Reports Server (NTRS)

    Asher, Troy; Cumming, Steve

    2012-01-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an international cooperative development and operations program between the United States National Aeronautics and Space Administration (NASA) and the German Space Agency, DLR (Deutsches Zentrum fuer Luft-und Raumfahrt). SOFIA is a 2.5 meter, optical/infrared/sub-millimeter telescope mounted in a Boeing model 747SP-21 aircraft and will be used for many basic astronomical observations performed at stratospheric altitudes. It will accommodate installation of different focal plane instruments with in-flight accessibility provided by investigators selected from the international science community. The Facility operational lifetime is planned to be greater than 20 years. This presentation will present the results of developmental testing of SOFIA, including analysis, envelope expansion and the first operational mission. It will describe a brief history of open cavities in flight, how NASA designed and tested SOFIAs cavity, as well as flight test results. It will focus on how the test team achieved key milestones by systematically and efficiently reducing the number of test points to only those absolutely necessary to achieve mission requirements, thereby meeting all requirements and saving the potential loss of program funding. Finally, it will showcase examples of the observatory in action and the first operational mission of the observatory, illustrating the usefulness of the system to the international scientific community. Lessons learned on how to whittle a mountain of test points into a manageable sum will be presented at the conclusion.

  2. BioRef: A versatile time-of-flight reflectometer for soft matter applications at Helmholtz-Zentrum Berlin

    SciTech Connect

    Strobl, M.; Kreuzer, M.; Steitz, R.; Rose, M.; Herrlich, H.; Mezei, F.; Grunze, M.; Dahint, R.

    2011-05-15

    BioRef is a versatile novel time-of-flight reflectometer featuring a sample environment for in situ infrared spectroscopy at the reactor neutron source BER II of the Helmholtz Zentrum Berlin fuer Materialien und Energie (HZB). After two years of design and construction phase the instrument has recently undergone commissioning and is now available for specular and off-specular neutron reflectivity measurements. BioRef is especially dedicated to the investigation of soft matter systems and studies at the solid-liquid interface. Due to flexible resolution modes and variable addressable wavelength bands that allow for focusing onto a selected scattering vector range, BioRef enables a broad range of surface and interface investigations and even kinetic studies with subsecond time resolution. The instrumental settings can be tailored to the specific requirements of a wide range of applications. The performance is demonstrated by several reference measurements, and the unique option of in situ on-board infrared spectroscopy is illustrated by the example of a phase transition study in a lipid multilayer film.

  3. DKIST visible tunable filter control software: connecting the DKIST framework to OPC UA

    NASA Astrophysics Data System (ADS)

    Bell, Alexander; Halbgewachs, Clemens; Kentischer, Thomas J.; Schmidt, Wolfgang; von der Lühe, Oskar; Sigwarth, Michael; Fischer, Andreas

    2014-07-01

    The Visible Tunable Filter (VTF) is a narrowband tunable filter system for imaging spectroscopy and spectropolarimetry based on large-format Fabry Perot interferometers that is currently built by the Kiepenheuer Institut fuer Sonnenphysik for the Daniel K. Inouye Solar Telescope (DKIST). The control software must handle around 30 motorised drives, 3 etalons, a polarizing modulator, a helium neon laser for system calibration, temperature controllers and a multitude of sensors. The VTF is foreseen as one of the DKISTs first-light instruments and should become operational in 2019. In the design of the control software we strongly separate between the high-level part interfacing to the DKIST common services framework (CSF) and the low-level control system software which guarantees real-time performance and synchronization to precision time protocol (PTP) based observatory time. For the latter we chose a programmable logic controller (PLC) from Beckhoff Automation GmbH which supports a wide set of input and output devices as well as distributed clocks for synchronizing signals down to the sub-microsecond level. In this paper we present the design of the required control system software as well as our work on extending the DKIST CSF to use the OPC Unified Architecture (OPC UA) standard which provides a cross-platform communication standard for process control and automation as an interface between the high-level software and the real-time control system.

  4. Asgard impact structure on Callisto

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This four-frame mosaic shows the ancient impact structure Asgard on Jupiter's moon Callisto. This image is centered at 30 degrees north, 142 degrees west. The Asgard structure is approximately 1700 km across (1,056 mi) and consists of a bright central zone surrounded by discontinuous rings. The rings are tectonic features with scarps near the central zone and troughs at the outer margin. Several large impacts have smashed into Callisto after the formation of Asgard. The very young, bright-rayed crater Burr is located on the northern part of Asgard. This mosaic has been projected to show a uniform scale between the four mosaiced images. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

    This image was taken on November 4, 1996, at a distance of 111,891 kilometers (69,070 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its third orbit around Jupiter.

    The Galileo mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, D.C.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  5. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (Project FALSIRE)

    SciTech Connect

    Bass, B.R.; Pugh, C.E.; Keeney-Walker, J.; Schulz, H.; Sievers, J.

    1993-06-01

    This report summarizes the recently completed Phase I of the Project for Fracture Analysis of Large-Scale International Reference Experiments (Project FALSIRE). Project FALSIRE was created by the Fracture Assessment Group (FAG) of Principal Working Group No. 3 (PWG/3) of the Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency`s (NEA`s) Committee on the Safety of Nuclear Installations (CSNI). Motivation for the project was derived from recognition by the CSNI-PWG/3 that inconsistencies were being revealed in predictive capabilities of a variety of fracture assessment methods, especially in ductile fracture applications. As a consequence, the CSNI/FAG was formed to evaluate fracture prediction capabilities currently used in safety assessments of nuclear components. Members are from laboratories and research organizations in Western Europe, Japan, and the United States of America (USA). On behalf of the CSNI/FAG, the US Nuclear Regulatory Commission`s (NRC`s) Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) and the Gesellschaft fuer Anlagen--und Reaktorsicherheit (GRS), Koeln, Federal Republic of Germany (FRG) had responsibility for organization arrangements related to Project FALSIRE. The group is chaired by H. Schulz from GRS, Koeln, FRG.

  6. CO submillimeter observations from Gornergrat

    NASA Astrophysics Data System (ADS)

    Winnewisser, G.; Zimmermann, P.; Hernichel, J.; Miller, M.; Schieder, R.; Ungerecht, Sh.

    1990-04-01

    The KOSMA (Koelner Observatorium fuer Submillimeter Astronomie) 3-m telescope on Gornergrat near Zermatt, Switzerland, has been successfully operated in the sub-mm region for observations of the J = 3-2 transition of CO at 345.8 GHz from December 1988 through April 1989. The observations were carried out with a GaAs Schottky mixer receiver which has a system temperature of 600 K (DSB). The excellent weather conditions are demonstrated by a total content of precipitable water frequently less than 2 mm, and 20 percent of the time reaching below 1 mm, sometimes as low as 0.5 mm. The telescope reflector surface was manufactured to be within 30 microns (rms) of the ideal paraboloid and thus well suited for sub-mm observations. Pointing accuracy has been improved with the aid of an optical telescope to 14 arcsec (rms) in azimuth and elevation. Representative spectra from molecular clouds, some of which have been mapped extensively, are shown.

  7. Experiments on Synthesis of the Heaviest Element at RIKEN

    SciTech Connect

    Morita, K.; Morimoto, K.; Kaji, D.; Haba, H.; Kanumgo, R.; Katori, K.; Kikunaga, H.; Ohnishi, T.; Suda, T.; Yoneda, A.; Yoshida, A.; Akiyama, T.; Goto, S.; Ideguchi, E.; Koura, H.; Kudo, H.; Ozawa, A.; Sueki, K.; Sato, N.; Tokanai, F.

    2007-02-26

    At the Institute of Physical and Chemical Research (RIKEN) a series of experiments studying the productions and their decays of the heaviest elements have been performed by using a gas-filled recoil ion separator GARIS. Results on the isotope of the 112th element, 277112, and on that of the 113th element, 278113, are reviewed. Tow decay chains which are assigned to be ones originating from the isotope 277112 were observed in the 208Pb(70Zn, n) reaction. Both chains consisted of four consecutive alpha decays followed by a spontaneous fission. The results provide a confirmation of the production and decay of the isotope 277112 reported by a research group at Gesellschaft fuer Schwerionenforschung (GSI), Germany, produced via the same reaction by using a velocity filter. Tow decay chains, both consisted of four consecutive alpha decays followed by a spontaneous fission, were observed also in the reaction 209Bi(70Zn, n). Those are assigned to be the convincing candidate events of the decays of the isotope of the 113th element, 278113, and its daughter nuclei, 274Rg, 270Mt, 266Bh, and 262Db.

  8. Nuclear quantum effects in water

    NASA Astrophysics Data System (ADS)

    Morrone, Joseph; Car, Roberto

    2008-03-01

    In this work, a path integral Car-Parrinello molecular dynamicsootnotetextCPMD V3.11 Copyright IBM Corp 1990-2006, Copyright MPI fuer Festkoerperforschung Stuttgart 1997-2001. simulation of liquid water is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed ``open'' path integral molecular dynamics methodologyootnotetextJ.A. Morrone, V. Srinivasan, D. Sebastiani, R. Car J. Chem. Phys. 126 234504 (2007).. It is shown that these results, which are consistent with our computations of the liquid structure, are in good agreement with neutron Compton scattering dataootnotetextG.F. Reiter, J.C. Li, J. Mayers, T. Abdul-Redah, P. Platzman Braz. J. Phys. 34 142 (2004).. The remaining discrepancies between experiment and the present results are indicative of some degree of over-binding in the hydrogen bond network, likely engendered by the use of semi-local approximations to density functional theory in order to describe the electronic structure.

  9. The ARCHES project

    NASA Astrophysics Data System (ADS)

    Motch, C.; Arches Consortium

    2014-07-01

    ARCHES (Astronomical Resource Cross-matching for High Energy Studies) is a FP7-Space funded project started in 2013 and involving the Observatoire Astronomique de Strasbourg including the CDS (France), the Leibniz-Institut fuer Astrophysik Potsdam (Germany), the University of Leicester (UK), the Universidad de Cantabria (IFCA, Spain) and the Instituto Nacional de Técnica Aeroespacial (Madrid, Spain). ARCHES aims at providing the international astronomical community with well-characterised multi-wavelength data in the form of spectral energy distributions (SEDs) for large sets of objects extracted from the 3XMM catalogue. The project develops new tools implementing fully probabilistic simultaneous cross-correlation of several catalogues. SEDs are based on an enhanced version of the 3XMM catalogue and on a careful selection of the most relevant multi-wavelength archival catalogues. In order to ensure the largest audience, SEDs will be distributed to the international community through CDS services and through the Virtual Observatory. These enhanced resources are currently tested in the framework of several science cases. An integrated cluster finder is developed at Potsdam, AGN science is studied at Leicester and IFCA while populations of Galactic X-ray sources are investigated at Strasbourg and Madrid.

  10. Numerical and experimental study of unsteady flow field and vibration in radial inflow turbines

    SciTech Connect

    Kreuz-Ihli, T.; Filsinger, D.; Schulz, A.; Wittig, S.

    2000-04-01

    The blades of turbocharger impellers are exposed to unsteady aerodynamic forces, which cause blade vibrations and may lead to failures. An indispensable requirement for a safe design of radial inflow turbines is a detailed knowledge of the exciting forces. Up to now, only a few investigations relating to unsteady aerodynamic forces in radial turbines have been presented. To give a detailed insight into the complex phenomena, a comprehensive research project was initiated at the Institut fuer Thermische Stroemungsmaschinen, at the University of Karlsruhe. A turbocharger test rig was installed in the high-pressure, high-temperature laboratory of the institute. The present paper gives a description of the test rig design and the measuring techniques. The flow field in a vaneless radial inflow turbine was analyzed using laser-Doppler anemometry. First results of unsteady flow field investigations in the turbine scroll and unsteady phase-resolved measurements of the flow field in the turbine rotor will be discussed. Moreover, results from finite element calculations analyzing frequencies and mode shapes are presented. As vibrations in turbines of turbochargers are assumed to be predominantly excited by unsteady aerodynamic forces, a method to predict the actual transient flow in a radial turbine utilizing the commercial Navier-Stokes solver TASCflow3d was developed. Results of the unsteady calculations are presented and comparisons with the measured unsteady flow field are made. As a major result, the excitation effect of the tongue region in a vaneless radial inflow turbine can be demonstrated.

  11. The University of Stuttgart IKE/University of Arizona student research program

    SciTech Connect

    Seale, R.L. )

    1988-01-01

    The University of Stuttgart's Institut fuer Kernenergetik und Energiesysteme (IKE) and the University of Arizona have had a joint program in which graduate students from the IKE spend 1 yr on the University of Arizona campus. This program started in 1982 largely as the result of an initiative begun by K.H. Hoecker, then director of IKE. Since 1985, Alfred Voss has been director and the program has continued without interruption. Under the program, the Deutscher Akademisher Austauschdienst, a government agency of the Federal Republic of Germany has funded scholarships for students from IKE, which provide support for 1 yr during which they attend the University of Arizona as visiting student scholars and engage in a research project under the direction of one of our faculty, which satisfies a part of the requirements for the Ingenieur-Diplom Fachrichtung Maschinenbau. The students get credit for their research from the University of Stuttgart. The topics have a broad range and include software development, artificial intelligence, radiation transport, and energy management studies.

  12. 17th International Microgravity Measurements Group Meeting

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard

    1998-01-01

    The Seventeenth International Microgravity Measurements Group (MGMG) meeting was held 24-26 March 1998 at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. This meeting focused on the transition of microgravity science research from the Shuttle, Mir, and free flyers to the International Space Station. The MGMG series of meetings are conducted by the Principal Investigator Microgravity Services project of the Microgravity Science Division at the NASA Lewis Research Center. The MGMG meetings provide a forum for the exchange of information and ideas about the microgravity environment and microgravity acceleration research in the Microgravity Research Program. The meeting had participation from investigators in all areas of microgravity research. The attendees included representatives from: NASA centers; National Space Development Agency of Japan; European Space Agency; Daimler Benz Aerospace AG; Deutsches Zentrum fuer Luft- und Raumfahrt; Centre National d'Etudes Spatiales; Canadian Space Agency, national research institutions; Universities in U.S., Italy, Germany, and Russia; and commercial companies in the U.S. and Russia. Several agencies presented summaries of the measurement, analysis, and characterization of the microgravity environment of the Shuttle, Mir, and sounding rockets over the past fifteen years. This extensive effort has laid a foundation for pursuing a similar course during future microgravity science experiment operations on the ISS. Future activities of microgravity environment characterization were discussed by several agencies who plan to operate on the ISS.

  13. German Data Center for the Solar Dynamics Observatory: A model for the PLATO mission?

    NASA Astrophysics Data System (ADS)

    Burston, R.; Gizon, L.; Saidi, Y.; Solanki, S. K.

    2008-12-01

    The German Data Center for the Solar Dynamics Observatory (GDC-SDO), hosted by the Max Planck Institute for Solar System Research in Germany, will provide access to SDO data for the German solar physics community. The GDC-SDO will make available all the relevant Helioseismic and Magnetic Imager (HMI) data for helioseismology and smaller se- lected Atmospheric Imaging Assembly (AIA) data sets. This project commenced in August 2007 and is funded by the German Aerospace Center (Deutsches zentrum fuer Luft- und Raumfahrt or DLR) until December 2012. An important component of the GDC-SDO is the Data Record Management System (DRMS), developed in collaboration with the Stan- ford/Lockheed Joint Science Operations Center (JSOC). The PEGASUS workflow manage- ment system will be used to implement GDC-SDO data analysis pipelines. This makes use of the CONDOR High Throughput Computing Project for optimal job scheduling and also the GLOBUS Toolkit to enable grid technologies. Additional information about the GDC-SDO can be found at http://www.mps.mpg.de/projects/seismo/GDC1/index.html. Here, we sug- gest a similar structure and philosophy should be ideal for the PLATO mission, which looks for planetary transits and stellar oscillations and is being studied by ESA for an M-Mission slot in Cosmic Vision.

  14. Construction and manufacturing of a microgearhead with 1.9-mm outer diameter for universal application

    NASA Astrophysics Data System (ADS)

    Thuerigen, Christian; Beckord, Ulrich; Bessey, Reiner

    1999-03-01

    Many new applications in medicine, telecommunication, automation systems etc. require powerful microdrives. Speeds up to 100.000 rpm and output torques in the (mu) Nm-range are typical characteristics of electromagnetic micromotors with diameters of a few millimeters. To accomplish a powerful microdrive, these micromotors have to be combined with micro gearheads of the same outer diameter. For such a micro gearhead with toothed wheels manufactured by use of the LIGA process a multi-stage planetary gear has many advantages. Many stages with different gear ratios can be combined to achieve a great number of different transmission, but manufacturing tolerances and a clearance for assembly must be respected. Therefore besides the selection of a reliable gearhead type and a suitable manufacturing process the optimization of the tooth profile is the key to the implementation of powerful micro gear systems with high output torques and efficiencies. The involute profile is the most suitable toothing, but many calculations and simulations are required to find the right modulus, total depth of teeth, profile offset etc. In a joint project Dr. Fritz Faulhaber GmbH and Co. KG and the Institut fuer Mikrotechnik Mainz GmbH developed a powerful microdevice with an outer diameter of only 1.9 mm.

  15. PlasmaPIC: A tool for modeling low-temperature plasma discharges

    NASA Astrophysics Data System (ADS)

    Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian

    2015-09-01

    PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  16. Microscopy of semiconducting materials

    NASA Astrophysics Data System (ADS)

    Pennycook, S. J.

    1991-04-01

    The purpose of the trip was to present an invited talk at the 7th Oxford Conference on Microscopy of Semiconducting Materials entitled, High-Resolution Z-Contrast Imaging of Heterostructures and Superlattices, (Oxford, United Kingdom) and to visit VG Microscopes, East Grinstead, for discussions on the progress of the Oak Ridge National Laboratory (ORNL) 300-kV high-resolution scanning transmission electron microscope (STEM), which is currently on order. The traveler also visited three other institutions with 100-kV STEMs that either have or intend to purchase the necessary modifications to provide Z-contrast capability similar to that of the existing ORNL machine. Specifically, Max-Planck Institut fuer Metallforschung (Stuttgart, Germany); Cambridge University, Department of Materials Science and Metallurgy (Cambridge, United Kingdom); and Cavendish Laboratory, Cambridge University (Cambridge, United Kingdom) were visited. In addition, discussions were held with C. Humphreys on the possibility of obtaining joint funding for collaborative research involving electron beam writing and Z-contrast imaging in the Cambridge and Oak Ridge STEMs, respectively.

  17. The development of the radio frequency driven negative ion source for neutral beam injectors (invited)

    SciTech Connect

    Kraus, W.; Fantz, U.; Franzen, P.; Froeschle, M.; Heinemann, B.; Riedl, R.; Wuenderlich, D.

    2012-02-15

    Large and powerful negative hydrogen ion sources are required for the neutral beam injection (NBI) systems of future fusion devices. Simplicity and maintenance-free operation favors RF sources, which are developed intensively at the Max-Planck-Institut fuer Plasmaphysik (IPP) since many years. The negative hydrogen ions are generated by caesium-enhanced surface conversion of atoms and positive ions on the plasma grid surface. With a small scale prototype the required high ion current density and the low fraction of co-extracted electrons at low pressure as well as stable pulses up to 1 h could be demonstrated. The modular design allows extension to large source dimensions. This has led to the decision to choose RF sources for the NBI of the international fusion reactor, ITER. As an intermediate step towards the full size ITER source at IPP, the development will be continued with a half-size source on the new ELISE testbed. This will enable to gain experience for the first time with negative hydrogen ion beams from RF sources of these dimensions.

  18. EARLY SCIENCE WITH SOFIA, THE STRATOSPHERIC OBSERVATORY FOR INFRARED ASTRONOMY

    SciTech Connect

    Young, E. T.; Becklin, E. E.; De Buizer, J. M.; Andersson, B.-G.; Casey, S. C.; Helton, L. A.; Marcum, P. M.; Roellig, T. L.; Temi, P.; Herter, T. L.; Guesten, R.; Dunham, E. W.; Backman, D.; Burgdorf, M.; Caroff, L. J.; Erickson, E. F.; Davidson, J. A.; Gehrz, R. D.; Harper, D. A.; Harvey, P. M.; and others

    2012-04-20

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is an airborne observatory consisting of a specially modified Boeing 747SP with a 2.7 m telescope, flying at altitudes as high as 13.7 km (45,000 ft). Designed to observe at wavelengths from 0.3 {mu}m to 1.6 mm, SOFIA operates above 99.8% of the water vapor that obscures much of the infrared and submillimeter. SOFIA has seven science instruments under development, including an occultation photometer, near-, mid-, and far-infrared cameras, infrared spectrometers, and heterodyne receivers. SOFIA, a joint project between NASA and the German Aerospace Center Deutsches Zentrum fuer Luft und-Raumfahrt, began initial science flights in 2010 December, and has conducted 30 science flights in the subsequent year. During this early science period three instruments have flown: the mid-infrared camera FORCAST, the heterodyne spectrometer GREAT, and the occultation photometer HIPO. This Letter provides an overview of the observatory and its early performance.

  19. Cryogenic Concept for the Low-energy Electrostatic Cryogenic Storage Ring (CSR) at MPI-K in Heidelberg

    SciTech Connect

    Hahn, R. von; Andrianarijaona, V.; Crespo Lopez-Urrutia, J. R.; Fadil, H.; Grieser, M.; Mallinger, V.; Orlov, D. A.; Schroeter, C. D.; Schwalm, D.; Ullrich, J.; Weber, T.; Wolf, A.; Haberstroh, Ch.; Quack, H.; Rappaport, M.; Zajfman, D.

    2006-04-27

    At the Max-Planck-Institut fuer Kernphysik in Heidelberg a next generation electrostatic storage ring for cryogenic temperatures is under development. The main focus of this unique machine is the research on ions, molecules and clusters up to bio molecules in the energy range of 20-300 keV at low temperatures down to 2 Kelvin. The achievement of this low temperature for all material walls seen by the ions in the storage ring will allow novel experiments to be performed, such as rotational and vibrational state control of molecular ions and their interaction with ultra-low energy electrons and laser radiation. The low temperature of the storage ring not only causes a strong reduction of black body radiation incident onto the stored particles, but also acts as a large cryopump, expected to lead to a vacuum in the 10-15 mbar range. In this paper the cryogenic concept of the storage ring and the related vacuum design will be presented.

  20. Hot Electron Diagnostics using X-rays and Cerenkov Radiation

    SciTech Connect

    Stein, J; Fill, E E; Pretzler, G; Brandl, F; Kuba, J; Habs, D

    2003-12-21

    The propagation of laser-generated hot electrons through matter and across narrow vacuum gaps is studied. We use the ATLAS titanium-sapphire laser of Max-Planck-Institut fuer Quantenoptik to irradiate 10 {proportional_to}m to 100 {proportional_to}m thick copper foils at intensities up to 10{sup 19} W/cm{sup 2}, generating electrons with temperatures in the MeV-range. After propagating through the target the electrons are detected via Cerenkov radiation generated in a suitable medium and by hard X-rays emitted from an X-ray ''fluor''. In some experiments a plastic scintillator was used to monitor the electrons. These diagnostics allow to characterize the electrons with respect to their energy, number and directionality. We also investigate the propagation of the hot electrons across narrow vacuum gaps, with a width ranging from several 100 {proportional_to}m down to 25 {proportional_to}m. The effect of self-generated fields in preventing electrons to cross the gap is demonstrated. Implications of these experiments with respect to pumping of X-ray lasers, isochoric heating by X-rays and developing optics for 4th-generation light sources will be discussed.

  1. Space Radar Image of Glascow, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Space Radar Image of Bebedauro, Brazil, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  3. Space Radar Image of Missouri River, Glasgow, Missouri

    NASA Technical Reports Server (NTRS)

    1994-01-01

    ) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Estaciais, during the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the first and second flights of the SIR-C/X-SAR system have validated the interpretation of the radar images. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Karisoke & Virunga Volcanoes

    NASA Technical Reports Server (NTRS)

    1994-01-01

    vegetation maps of the area to aid in their studies of the last 650 mountain gorillas in the world. The faint lines above the bamboo forest are the result of agricultural terracing by the people who live in the region. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V. (DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image of Kliuchevskoi, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    mature in Kamchatka's 120-day growing season. The forest industry is managing these forests and practicing selective cutting to allow younger trees time to grow and reseed. X-SAR images will aid in mapping these deforested areas and in encouraging further recultivation efforts. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  8. Space Radar Image of Raco, Michigan, ecological test site

    NASA Technical Reports Server (NTRS)

    1994-01-01

    global changes resulting from climatic warming. Baseline studies of vegetation are essential in monitoring these expected changes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  10. Space Radar Image of North Sea, Germany

    NASA Technical Reports Server (NTRS)

    1994-01-01

    swiftly than is currently possible. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  11. Safsaf Oasis, Egypt

    NASA Technical Reports Server (NTRS)

    1998-01-01

    is C-band, horizontally transmitted and received; and blue is X-band, vertically transmitted and received. The radar image was acquired by the Spaceborne Imaging Radar-C/ X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 16, 1994, on board the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Earth Science Enterprise. The Landsat Program is managed jointly by NASA, the National Oceanic and Atmospheric Administration and the United States Geological Survey.

    Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  12. Space Radar Image of Colombian Volcano

    NASA Technical Reports Server (NTRS)

    1999-01-01

    weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companiesfor the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency,Agenzia SpazialeItaliana (ASI), with the Deutsche Forschungsanstalt fuer Luft undRaumfahrt e.v.(DLR), the major partner in science,operations, and data processing of X-SAR.

  13. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1994-01-01

    site is covered by glaciers. Corner reflectors are set up for calibration. Five corner reflectors can be seen on the Gepatschferner and two can be seen on the Vernagtferner. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  14. Space Radar Image of Rabaul Volcano, New Guinea

    NASA Technical Reports Server (NTRS)

    1994-01-01

    the image. Ashfall and subsequent rains caused the collapse of most buildings in the town of Rabaul. Mudflows and flooding continue to pose serious threats to the town and surrounding villages. Volcanologists and local authorities expect to use data such as this radar image to assist them in identifying the mechanisms of the eruption and future hazardous conditions that may be associated with the vigorously active volcano. Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  15. Space Radar Image of Houston, Texas

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-band Synthetic Aperture Radar(SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of the Lost City of Ubar

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  17. Space Radar Image of Flevoland, Netherlands

    NASA Technical Reports Server (NTRS)

    1999-01-01

    used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  18. Space Radar Image of Oberpfaffenhofen, Germany

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  19. Space Radar Image of Kiluchevskoi, Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    flanks of the volcano. Paths of these flows can be seen as thin lines in various shades of blue and green on the north flank in the center of the image. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of Weddell Sea Ice

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -ice growth perhaps 5 to 10 centimeters (2 to 4 inches) thick. The more extensive dark zones are covered by a slightly thicker layer of smooth, level ice up to 70 centimeters (28 inches) thick. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  1. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  2. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science operations and data processing of X-SAR.

  3. Space Radar Image of Moscow, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Taal Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Patagonian Ice Fields

    NASA Technical Reports Server (NTRS)

    1994-01-01

    , a direct indication of the steep meteorological gradients known to exist in this region. The bluer color of the outlet glaciers is probably due to a thin snow cover. A portion of the terminus of the outlet glacier at the top left center of the images has advanced approximately 600 meters (1,970 feet) in the five-and-a-half months between the two missions. Because of the persistent cloud cover this observation was only possible by using the orbiting, remote imaging radar system. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  6. Space Radar Image of Kliuchevskoi Volcano, Russia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  7. Space Radar Image of West Texas - SAR scan

    NASA Technical Reports Server (NTRS)

    1999-01-01

    forthcoming Canadian RADARSAT satellite. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR.

  8. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR, scientists will be able to discern these areas even more clearly. Space Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  9. Space Radar Image of Kilauea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    radar missions to help in better understanding the processes responsible for volcanic eruptions and earthquakes. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  10. Space Radar Image of the Silk route in Niya, Taklamak, China

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  11. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    . The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  12. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  13. Space Radar Image of the Yucatan Impact Crater Site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations, and data processing of X-SAR. Research on the biological effects of the Chicxulub impact is supported by the NASA Exobiology Program.

  14. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  15. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb-1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e- → γISR/FSRμ+μ-, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  16. Evidence for e+e- →γχc1,2 at center-of-mass energies from 4.009 to 4.360 GeV

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; L. Liu, C.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; R. Shepherd, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; D. Wang(Yadi, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-04-01

    Using data samples collected at center-of-mass energies of √s = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+e- → γχcJ (J=0, 1, 2) and find evidence for e+e- → γχc1 and e+e- → γχc2 with statistical significances of 3.0σ and 3.4σ, respectively. The Born cross sections σB(e+e- → γχcJ), as well as their upper limits at the 90% confidence level (C.L.) are determined at each center-of-mass energy. Supported by National Key Basic Research Program of China (2015CB856700), Joint Funds of National Natural Science Foundation of China (11079008, 11179007, U1232201, U1332201, U1232107), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  17. Alternative-Fuel Effects on Contrails & Cruise Emissions (ACCESS-2) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce E.

    2015-01-01

    Although the emission performance of gas-turbine engines burning renewable aviation fuels have been thoroughly documented in recent ground-based studies, there is still great uncertainty regarding how the fuels effect aircraft exhaust composition and contrail formation at cruise altitudes. To fill this information gap, the NASA Aeronautics Research Mission Directorate sponsored the ACCESS flight series to make detailed measurements of trace gases, aerosols and ice particles in the near-field behind the NASA DC-8 aircraft as it burned either standard petroleum-based fuel of varying sulfur content or a 50:50 blend of standard fuel and a hydro-treated esters and fatty acid (HEFA) jet fuel produced from camelina plant oil. ACCESS 1, conducted in spring 2013 near Palmdale CA, focused on refining flight plans and sampling techniques and used the instrumented NASA Langley HU-25 aircraft to document DC-8 emissions and contrails on five separate flights of approx.2 hour duration. ACCESS 2, conducted from Palmdale in May 2014, engaged partners from the Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) and National Research Council-Canada to provide additional scientific expertise and sampling aircraft (Falcon 20 and CT-133, respectively) with more extensive trace gas, particle, or air motion measurement capability. Eight, muliti-aircraft research flights of 2 to 4 hour duration were conducted to document the emissions and contrail properties of the DC-8 as it 1) burned low sulfur Jet A, high sulfur Jet A or low sulfur Jet A/HEFA blend, 2) flew at altitudes between 6 and 11 km, and 3) operated its engines at three different fuel flow rates. This presentation further describes the ACCESS flight experiments, examines fuel type and thrust setting impacts on engine emissions, and compares cruise-altitude observations with similar data acquired in ground tests.

  18. Carbon ion radiotherapy of skull base chondrosarcomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Nikoghosyan, Anna; Hof, Holger; Didinger, Bernd; Combs, Stephanie E.; Jaekel, Oliver; Karger, Christian P.; Edler, Lutz; Debus, Juergen

    2007-01-01

    Purpose: To evaluate the effectiveness and toxicity of carbon ion radiotherapy in chondrosarcomas of the skull base. Patients and Methods: Between November 1998 and September 2005, 54 patients with low-grade and intermediate-grade chondrosarcomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany. All patients had gross residual tumors after surgery. Median total dose was 60 CGE (weekly fractionation 7 x 3.0 CGE). All patients were followed prospectively in regular intervals after treatment. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and Radiation Therapy Oncology Group (RTOG)/European Organization for Research and Treatment of Cancer (EORTC) score. Results: Median follow-up was 33 months (range, 3-84 months). Only 2 patients developed local recurrences. The actuarial local control rates were 96.2% and 89.8% at 3 and 4 years; overall survival was 98.2%at 5 years. Only 1 patient developed a mucositis CTCAE Grade 3; the remaining patients did not develop any acute toxicities >CTCAE Grade 2. Five patients developed minor late toxicities (RTOG/EORTC Grades 1-2), including bilateral cataract (n = 1), sensory hearing loss (n = 1), a reduction of growth hormone (n = 1), and asymptomatic radiation-induced white matter changes of the adjacent temporal lobe (n = 2). Grade 3 late toxicity occurred in 1 patient (1.9%) only. Conclusions: Carbon ion RT is an effective treatment for low- and intermediate-grade chondrosarcomas of the skull base offering high local control rates with low toxicity.

  19. Effectiveness of Carbon Ion Radiotherapy in the Treatment of Skull-Base Chordomas

    SciTech Connect

    Schulz-Ertner, Daniela . E-mail: Daniela.Ertner@med.uni-heidelberg.de; Karger, Christian P.; Feuerhake, Alexandra; Nikoghosyan, Anna; Combs, Stephanie E.; Jaekel, Oliver; Edler, Lutz; Scholz, Michael; Debus, Juergen

    2007-06-01

    Purpose: The aim of this study was to evaluate the effectiveness and toxicity of carbon ion radiotherapy in chordomas of the skull base. Methods and Materials: Between November 1998 and July 2005, a total of 96 patients with chordomas of the skull base have been treated with carbon ion radiation therapy (RT) using the raster scan technique at the Gesellschaft fuer Schwerionenforschung (GSI) in Darmstadt, Germany. All patients had gross residual tumors. Median total dose was 60 CGE (range, 60-70 CGE) delivered in 20 fractions within 3 weeks. Local control and overall survival rates were calculated using the Kaplan-Meier method. Toxicity was assessed according to the Common Terminology Criteria (CTCAE v.3.0) and the Radiation Therapy Oncology Group (RTOG) / European Organization for Research and Treatment of Cancer (EORTC) score. Results: Mean follow-up was 31 months (range, 3-91 months). Fifteen patients developed local recurrences after carbon ion RT. The actuarial local control rates were 80.6% and 70.0% at 3 and 5 years, respectively. Target doses in excess of 60 CGE and primary tumor status were associated with higher local control rates. Overall survival was 91.8% and 88.5% at 3 and 5 years, respectively. Late toxicity consisted of optic nerve neuropathy RTOG/EORTC Grade 3 in 4.1% of the patients and necrosis of a fat plomb in 1 patient. Minor temporal lobe injury (RTOG/EORTC Grade 1-2) occurred in 7 patients (7.2%). Conclusions: Carbon ion RT offers an effective treatment option for skull-base chordomas with acceptable toxicity. Doses in excess of 75 CGE with 2 CGE per fraction are likely to increase local control probability.

  20. Performance Simulations for a Spaceborne Methane Lidar Mission

    NASA Technical Reports Server (NTRS)

    Kiemle, C.; Kawa, Stephan Randolph; Quatrevalet, Mathieu; Browell, Edward V.

    2014-01-01

    Future spaceborne lidar measurements of key anthropogenic greenhouse gases are expected to close current observational gaps particularly over remote, polar, and aerosol-contaminated regions, where actual in situ and passive remote sensing observation techniques have difficulties. For methane, a "Methane Remote Lidar Mission" was proposed by Deutsches Zentrum fuer Luft- und Raumfahrt and Centre National d'Etudes Spatiales in the frame of a German-French climate monitoring initiative. Simulations assess the performance of this mission with the help of Moderate Resolution Imaging Spectroradiometer and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations of the earth's surface albedo and atmospheric optical depth. These are key environmental parameters for integrated path differential absorption lidar which uses the surface backscatter to measure the total atmospheric methane column. Results showthat a lidar with an average optical power of 0.45W at 1.6 µm wavelength and a telescope diameter of 0.55 m, installed on a low Earth orbit platform(506 km), will measure methane columns at precisions of 1.2%, 1.7%, and 2.1% over land, water, and snow or ice surfaces, respectively, for monthly aggregated measurement samples within areas of 50 × 50 km2. Globally, the mean precision for the simulated year 2007 is 1.6%, with a standard deviation of 0.7%. At high latitudes, a lower reflectance due to snow and ice is compensated by denser measurements, owing to the orbital pattern. Over key methane source regions such as densely populated areas, boreal and tropical wetlands, or permafrost, our simulations show that the measurement precision will be between 1 and 2%.

  1. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    SciTech Connect

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan; Collette, Andrew; Drake, Keith; Northway, Paige; Gruen, Eberhard; Mocker, Anna; Munsat, Tobin; Srama, Ralf; and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  2. Protection of Operators and Environment - the Safety Concept of the Karlsruhe Vitrification Plant VEK

    SciTech Connect

    Fleisch, J.; Kuttruf, H.; Lumpp, W.; Pfeifer, W.; Roth, G.; Weisenburger, S.

    2002-02-26

    The Karlsruhe Vitrification Plant (VEK) plant is a milestone in decommissioning and complete dismantling of the former Karlsruhe Reprocessing Plant WAK, which is in an advanced stage of disassembly. The VEK is scheduled to vitrify approx. 70 m3 of the highly radioactive liquid waste (HLW) resulting from reprocessing. Site preparation, civil work and component manufacturing began in 1999. The building will be finalized by mid of 2002, hot vitrification operation is currently scheduled for 2004/2005. Provisions against damages arising from construction and operation of the VEK had to be made in accordance with the state of the art as laid down in the German Atomic Law and the Radiation Protection Regulations. For this purpose, the appropriate analysis of accidents and their external and internal impacts were investigated. During the detailed design phase, a failure effects analysis was carried out, in which single events were studied with respect to the objectives of protection and ensuring activity containment, limiting radioactive discharges to the environment and protecting of the staff. Parallel to the planning phase of the VEK plant a cold prototype test facility (PVA) covering the main process steps was constructed and operated at the Institut fuer Nukleare Entsorgung (INE) of FZK. This pilot operation served to demonstrate the process technique and its operation with a simulated waste solution, and to test the main items of equipment, but was conducted also to use the experimental data and experience to back the safety concept of the radioactive VEK plant. This paper describes the basis of the safety concept of the VEK plant and results of the failure effect analysis. The experimental simulation of the failure scenarios, their effect on the process behavior, and the controllability of these events as well as the effect of the results on the safety concept of VEK are discussed. Additionally, an overview of the actual status of civil work and manufacturing of

  3. Measurements of the center-of-mass energies at BESIII via the di-muon process

    NASA Astrophysics Data System (ADS)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb‑1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e‑ → γISR/FSRμ+μ‑, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  4. Correlation of bone fragments reposition and related parameters in thoracolumbar burst fractures patients

    PubMed Central

    Dai, Jianhui; Lin, Haibin; Niu, Susheng; Wu, Xianwei; Wu, Yujun; Zhang, Huaizhi

    2015-01-01

    The aim of this study is to determine if thoracolumbar vertebral body collapse or canal compromise (CC) is associated with reposition of bone fragment. We retrospective review medical charts of patients with thoracolumbar burst fractures from July 2010 to September 2013. The fractures were classified according to the Arbeit Fuer Osteoosynthese (AO) classification system. Neurological status was classified according to American Spinal Injury Association (ASIA). Patients were divided into two groups (reposition group and non-reposition group) according to whether the bone fragments were reposition or non-reposition after surgery. Mimics measured mid-sagittal canal diameter (MSD), transverse canal diameter (TCD), local kyphosis (LK) and calculated anterior vertebral body compression ratio (AVBCR), middle vertebral body compression ratio (MVBCR), posterior vertebral body compression ratio (PVBCR), and mid-sagittal canal diameter compression ratio (MSDCR) on the preoperative CT image. The results indicated that 55 patients were included in the study. There are 35 patients with reposition of bone fragment and 20 patients with non-reposition of bone fragment after surgery. There were significant difference on MSD (t = 3.258, P = 0.002), TCD (t = 2.197, P = 0.032), AVBCR (t = -2.063, P = 0.044), MVBCR (t = -2.526, P = 0.015), PVBCR (t = -2.211, P = 0.031), MSDCR (t = -4.975, P = 0.000) between two groups before surgery. There was a significant correlation between reposition of bone fragment and AO classification (OR = 5.251, P = 0.022), and MSDCR (OR = 7.366, P = 0.007). There was no significant correlation between reposition and AVBCR, MVBCR, PVBCR, LK, MSD and TCD. In conclusion, this study indicates that AO classification and MSDCR are predictors of reposition of bone fragment. PMID:26379913

  5. DIY EOS: Experimentally Validated Equations of State for Planetary Fluids to GPa Pressures, Tools for Understanding Planetary Processes and Habitability

    NASA Astrophysics Data System (ADS)

    Vance, Steven; Brown, J. Michael; Bollengier, Olivier

    2016-10-01

    Sound speeds are fundamental to seismology, and provide a path allowing the accurate determination of thermodynamic potentials. Prior equations of state (EOS) for pure ammonia (Harr and Gallagher 1978, Tillner-Roth et al. 1993) are based primarily on measured densities and heat capacities. Sound speeds, not included in the fitting, are poorly predicted.We couple recent high pressure sound speed data with prior densities and heat capacities to generate a new equation of state. Our representation fits both the earlier lower pressure work as well as measured sound speeds to 4 GPa and 700 K and the Hugoniot to 70 GPa and 6000 K.In contrast to the damped polynomial representation previously used, our equation of state is based on local basis functions in the form of tensor b-splines. Regularization allows the thermodynamic surface to be continued into regimes poorly sampled by experiments. We discuss application of this framework for aqueous equations of state validated by experimental measurements. Preliminary equations of state have been prepared applying the local basis function methodology to aqueous NH3, Mg2SO4, NaCl, and Na2SO4. We describe its use for developing new equations of state, and provide some applications of the new thermodynamic data to the interior structures of gas giant planets and ocean worlds.References:L. Haar and J. S. Gallagher. Thermodynamic properties of ammonia. American Chemical Society and the American Institute of Physics for the National Bureau of Standards, 1978.R. Tillner-Roth, F. Harms-Watzenberg, and H. Baehr. Eine neue fundamentalgleichung fuer ammoniak. DKV TAGUNGSBERICHT, 20:67–67, 1993.

  6. Methodology, status and plans for development and assessment of the code ATHLET

    SciTech Connect

    Teschendorff, V.; Austregesilo, H.; Lerchl, G.

    1997-07-01

    The thermal-hydraulic computer code ATHLET (Analysis of THermal-hydraulics of LEaks and Transients) is being developed by the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) for the analysis of anticipated and abnormal plant transients, small and intermediate leaks as well as large breaks in light water reactors. The aim of the code development is to cover the whole spectrum of design basis and beyond design basis accidents (without core degradation) for PWRs and BWRs with only one code. The main code features are: advanced thermal-hydraulics; modular code architecture; separation between physical models and numerical methods; pre- and post-processing tools; portability. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialization by a steady-state calculation, full-range drift-flux model, dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The code development is accompained by a systematic and comprehensive validation program. A large number of integral experiments and separate effect tests, including the major International Standard Problems, have been calculated by GRS and by independent organizations. The ATHLET validation matrix is a well balanced set of integral and separate effects tests derived from the CSNI proposal emphasizing, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities.

  7. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  8. Natural and False Color Views of Europa

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This image shows two views of the trailing hemisphere of Jupiter's ice-covered satellite, Europa. The left image shows the approximate natural color appearance of Europa. The image on the right is a false-color composite version combining violet, green and infrared images to enhance color differences in the predominantly water-ice crust of Europa. Dark brown areas represent rocky material derived from the interior, implanted by impact, or from a combination of interior and exterior sources. Bright plains in the polar areas (top and bottom) are shown in tones of blue to distinguish possibly coarse-grained ice (dark blue) from fine-grained ice (light blue). Long, dark lines are fractures in the crust, some of which are more than 3,000 kilometers (1,850 miles) long. The bright feature containing a central dark spot in the lower third of the image is a young impact crater some 50 kilometers (31 miles) in diameter. This crater has been provisionally named 'Pwyll' for the Celtic god of the underworld.

    Europa is about 3,160 kilometers (1,950 miles) in diameter, or about the size of Earth's moon. This image was taken on September 7, 1996, at a range of 677,000 kilometers (417,900 miles) by the solid state imaging television camera onboard the Galileo spacecraft during its second orbit around Jupiter. The image was processed by Deutsche Forschungsanstalt fuer Luftund Raumfahrt e.V., Berlin, Germany.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http://www.jpl.nasa.gov/galileo/sepo

  9. CO J = 1-0 AND J = 2-1 LINE OBSERVATIONS OF THE MOLECULAR-CLOUD-BLOCKED SUPERNOVA REMNANT 3C434.1

    SciTech Connect

    Jeong, Il-Gyo; Koo, Bon-Chul; Cho, Wan-Kee; Kramer, Carsten; Stutzki, Juergen; Byun, Do-Young E-mail: koo@astro.snu.ac.kr

    2013-06-20

    We present the results of CO emission line observations toward the semicircular Galactic supernova remnant (SNR) 3C434.1 (G94.0+1.0). We mapped an area covering the whole SNR in the {sup 12}CO J = 1-0 emission line using the Seoul Radio Astronomy Observatory 6 m telescope and found a large molecular cloud superposed on the faint western part of the SNR. The cloud was elongated along the north-south direction and showed a very good spatial correlation with the radio features of the SNR. We carried out {sup 12}CO J = 2-1 line observations of this cloud using the Koelner Observatorium fuer Sub-Millimeter Astronomie 3 m telescope and found a region in which the {sup 12}CO J = 2-1 to J = 1-0 ratio was high ({approx}1.6). This higher excitation, together with the morphological relation, strongly suggested that the molecular cloud was interacting with the SNR. The systemic velocity of the molecular cloud (-13 km s{sup -1}) gave a kinematic distance of 3.0 kpc to the SNR-molecular cloud system. We derived the physical parameters of the SNR based on this new distance. We examined the variation of the radio spectral index over the remnant and found that it was flatter in the western part, wherein the SNR was interacting with the molecular cloud. We therefore propose that 3C434.1 is the remnant of a supernova explosion that occurred just outside the boundary of a relatively thin, sheet-like molecular cloud. We present a hydrodynamic model showing that its asymmetric radio morphology can result from its interaction with this blocking molecular cloud.

  10. Autocollimators for Deflectometry: Current Status and Future Progress

    SciTech Connect

    Geckeler, Ralf; Just, Andreas; Krause, Michael; Yashchuk, Valeriy V.

    2009-06-15

    The proliferation of autocollimator-based surface profilometers at synchrotron metrology laboratories worldwide necessitates a detailed understanding of the parameters influencing their angular response. A comprehensive overview of the current status of autocollimator characterization and calibration at the Physikalisch-Technische Bundesanstalt (PTB) and its implications for their optimal application are provided, as well as information on future challenges and expected progress. Autocollimator-based deflectometric profilometers are in operation at the PTB, the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, USA, the BESSY II, Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Germany, and the Diamond Light Source Ltd (DLS), UK. A continuous topic of research at the PTB is to investigate the factors influencing the angular response of autocollimators and to provide the most accurate calibration of the instruments to aid users in their application and manufacturers in their improvements [1-3]. At the PTB, the calibration of autocollimators is realized by a direct comparison of the devices with the primary angle reference standard [1]. With highly stable autocollimators, calibrations with standard measurement uncertainties of u = 0.003 arcsec (15 nrad) have been achieved [2,3]. The influence of a number of parameters on the angle measurement with autocollimators have been investigated in detail, such as the reflectivity of the surface under test (SUT), the diameter and shape of the aperture stop, its position both along the autocollimator's optical axis and perpendicular to it [2], as well as the optical path length of the autocollimator beam [3]. Extensive information on these errors and their minimization will be presented.

  11. The Construction of the Konrad Repository - Status and Perspective - 13034

    SciTech Connect

    Kunze, V.

    2013-07-01

    Due to the Atomic Energy Act of Germany the Federation is responsible for the construction and operation of installations for the safekeeping and disposal of radioactive waste. The Federal Office for Radiation Protection (Bundesamt fuer Strahlenschutz - BfS) is assigned with this duty. In 1982 the abandoned iron ore mine Konrad near Salzgitter (Federal State of Lower Saxony) was proposed as a repository for low and intermediate level radioactive waste with negligible heat generation. After 20 years of plan approval procedure the license was granted by the Ministry for Environment of Lower Saxony in May 2002. This decision was finally confirmed by the Federal Administrative Court in March 2007. The construction has started, but former assumptions about the beginning of waste emplacement tuned out to be too optimistic. In the course of the preparatory work and the implementation planning it turned out that many changes need to be done. As a matter of fact most of the documents and planning originate from the 1990's and need to be revised because from that time on until now no adaptation was appropriate. The necessity to apply the state-of-the-art technology and other legal implications give rise to further changes and new licensing procedures, especially building licenses. Furthermore, the license from 2002 also includes a lot of collateral clauses that need to be fulfilled before radioactive waste can be emplaced. With this in mind, the time frame for the construction of the Konrad repository was revised in 2010. As a result, the completion of the erection before 2019 does not seem to be realistic. (authors)

  12. LISA 8 Science Organizing Committee and Local Organizing Committee LISA 8 Science Organizing Committee and Local Organizing Committee

    NASA Astrophysics Data System (ADS)

    2011-05-01

    Science Organising Committee (SOC) Tom Abel, Stanford University Odylio Aguiar, Instituto Nacional de Pesquisas Espaciais Tal Alexander, Wizemann Institute Peter Bender, University of Colorado Pierre Binetruy, APC - College de France Sasha Buchman, Stanford University Robert Byer, Stanford University Manuela Campanelli, University of Texas Joan Centrella, NASA/Goddard Massimo Cerdonio, University of Padova Eugenio Coccia, University of Roma-2 Neil Cornish, Montana State University Michael Cruise, University of Birmingham Curt Cutler, NASA/JPL Karsten Danzmann, University of Hannover Sam Finn, Penn State University Jens Gundlach, NPL Gerhard Heinzel, Max-Planck-Institut fuer Gravitationsphysik Craig Hogan, University of Washington Jim Hough, University of Glasgow Scott Hughes, MIT Oliver Jennrich, ESTEC Philippe Jetzer, University Zurich Seiji Kawamura, National Observatory, Japan Alberto Lobo, ICE-CSIC and IEEC Avi Loeb, Harvard University Piero Madau, Lick Observatory Yannick Mellier, IAP, Paris Peter Michelson, Stanford University Guido Mueller, University of Florida Sterl Phinney, Caltech Tom Prince, NASA/JPL Doug Richstone, University of Michigan Bernard Schutz, AEI Potsdam Tuck Stebbins, NASA/Goddard Tim Sumner, Imperial College, London Ke-Xun Sun, Stanford University Kip Thorne, Caltech Michele Vallisneri, NASA/JPL Alberto Vecchio, University of Birmingham Jean-Yves Vinet, OCA, Nice Stefano Vitale, University of Trento Rai Weiss, MIT Nick White, NASA/Goddard Local Organising Committee (LOC) Sasha Buchman (Stanford University) Robert Byer (Stanford University) Sara Charbonneau-Lefort (Stanford University) Nancy Christianson (Stanford University) John Conklin (Stanford University) Dan DeBra (Stanford University) Jan Goebel (Stanford University) Vivian Drew (Stanford University) Ke-Xun Sun (Stanford University) Lucy Zhou (Stanford University) Andrea Zoellner (Stanford University)

  13. Dedication to Professor Hannspeter Winter (1941 2006): Dedication to Professor Hannspeter Winter (1941 2006)

    NASA Astrophysics Data System (ADS)

    McCullough, Bob

    2007-03-01

    Professor H Winter. It was with great sadness that we learnt of the death of colleague and friend Professor Hannspeter Winter in Vienna on the 8 November 2006. In memory of him and the contribution he made both to our conference and to the field of the physics of highly charged ions we dedicate these proceedings. Hannspeter was one of our distinguished invited speakers at HCI2006 and gave a talk on the status of the ITER programme. His invited paper on the subject is included in these proceedings. Hannspeter will be particularly remembered for his pioneering work on ion-surface interactions that, together with his colleagues at the Vienna University of Technology (TUW), has stimulated a worldwide experimental and theoretical interest in this field. He was appointed Director of the Institut fuer Allgemeine Physik at TUW in 1987 and using both his scientific and management skills has made it one of the leading university physics laboratories in the world. His research publications, of which there are 270, have inspired many others to work in the field of atomic and plasma physics. He was also a great European playing a major role in the EURATOM fusion programme, the European Physical Society and the International Union of Pure and Applied Physics and was an evaluator and advisory board member for many national and international institutions. Hannspeter was also an interesting and friendly social companion with interests in current affairs, music and fine wines and will be greatly missed both on a scientific and social level. Our condolences go to his wife Renate, son Dorian and his relatives. R W McCullough Co-chair HCI2006

  14. Investigations and results concerning railway-induced ground-borne vibrations in Germany

    NASA Astrophysics Data System (ADS)

    Degen, K. G.; Behr, W.; Grütz, H.-P.

    2006-06-01

    Besides noise reduction, ground-borne vibrations induced by railways are another important environmental issue associated with the construction of new or the reconstruction of existing railway lines that had to be tackled during the last decade. Annoyance can occur, particularly for lines in urban areas at small distances to neighbouring houses or lines in shallow depth tunnels under buildings. The ground-borne vibrations can be perceived by the inhabitants via the floor vibrations, as well as via the air-borne noise radiated inside the building by the vibrating building structures (secondary noise). At present, legal specifications for judging railway-induced ground-borne vibrations do not exist in Germany. In order to review common practices, an experimental psycho-physical laboratory study was performed. To estimate the annoyance of railway-induced vibrations, the mean vibration energy of a train pass-by seems much more significant and related to the annoyance than the commonly used RMS value according to the German standard DIN 4150-2. The minimum difference in vibration that can be felt by people was found at a signal difference of 25%. This paper will review results of a project performed in cooperation with the engineering office Obermeyer in Munich and the Technical University of Munich [A. Said, D. Fleischer, H. Kilcher, H. Fastl, H.-P. Grütz, Zur Bewertung von Erschütterungsimmissionen aus dem Schienenverkehr, Zeitschrift fuer Lärmbekämpfung, Vol. 48(6), Springer VDI Verlag, Düsseldorf, 2001.] and will link them to further demands on research and on development of suitable guiding principles and legislative regulations.

  15. The Musca cloud: A 6 pc-long velocity-coherent, sonic filament

    NASA Astrophysics Data System (ADS)

    Hacar, A.; Kainulainen, J.; Tafalla, M.; Beuther, H.; Alves, J.

    2016-03-01

    Filaments play a central role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in 13CO and C18O (2-1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its ~6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e. σNT/cs ≲ 1) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the interstellar medium. The transonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from the turbulent regime over multi-parsec scales. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut fuer Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory (ESO programme 087.C-0583).The reduced datacubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A97

  16. Industrial approach to piezoelectric damping of large fighter aircraft components

    NASA Astrophysics Data System (ADS)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  17. GOCE Reduced-dynamic Orbits - Inter-agency Comparisons

    NASA Astrophysics Data System (ADS)

    Bock, H.; Jaeggi, A.; Meyer, U.; van den IJssel, J.; Visser, P. N.; Swatschina, P.; Montenbruck, O.

    2011-12-01

    The Gravity and Ocean Circulation Explorer (GOCE) mission of the European Space Agency is now in orbit since more than two years. The 12-channel, dual-frequency GPS receiver delivers high-quality data for determination of precise orbits. These orbit solutions are used to accurately geolocate the gradiometer observations and to provide complementary information for the long-wavelength gravity field part. Operational orbit products are routinely generated by the Department of Earth Observation and Space Systems at Delft University of Technology (DEOS, Rapid Science Orbit, RSO) and the Astronomical Institute of the University of Bern (AIUB, Precise Science Orbit, PSO) using different software packages (GEODYN/GHOST, BERNESE) and analysis strategies. Internal orbit comparisons and external validations with independent Satellite Laser Ranging measurements demonstrate that both orbit products fully meet the corresponding mission accuracy requirements of 50 cm (RSO) and 2 cm (PSO), respectively. For an independent performance assessment, orbit solutions are, furthermore, generated at Deutsches Zentrum fuer Luft- und Raumfahrt (DLR) on a best effort basis using the GHOST software. In addition to the RSO product, post-processed orbit solutions based on GEODYN are generated at DEOS as well. We provide an overview of the adopted analysis strategies and present inter-agency comparisons of the individual reduced-dynamic orbit solutions based on one year of data. A cross-comparison of the various orbits indicates a good agreement of a few cm 3D rms accuracy, but reveals small systematic biases, e.g., in the radial direction. Special emphasis will be given to the assessment and discussion of the systematic biases, which are related to different orbit modeling strategies used to cope with non-gravitational accelerations.

  18. ROSAT Discovers Unique, Distant Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    1995-06-01

    measured (by obtaining spectra of the arcs and measuring their redshift). The masses of galaxy clusters are important for the determination, for instance of the mean density and distribution of matter in the universe. This is because these clusters are the most massive, clearly defined objects known and as such trace these parameters in the universe on very large scales. Another possibility to derive the cluster mass is offered by X-ray observations, because the distribution of the hot, X-ray emitting gas traces the gravitational field of the cluster. Recently, in some clusters there has been a discrepancy between the mass determined in this way and that found from gravitational lensing effects. The team of astronomers now hopes that follow-up X-ray observations of RXJ1347.5-1145 will help to solve this puzzle. Moreover, the combination of extremely high X-ray brightness and the possibility to perform a rather accurate mass determination by the gravitational lensing effect makes this particular cluster a truly unique object. In view of the exceptional X-ray brightness, a very high mass is expected. The exact determination will be possible, as soon as spectra have been obtained of the two arcs. Contrary to what is the case in other clusters, this will not be so difficult, due to their unusual brightness and their ideal geometrical configuration. [1] This is a joint Press Release of ESO and the Max-Planck-Society. It is accompanied by a B/W photo. [2] The investigation described in this Press Release is the subject of a Letter to the Editor which will soon appear in the European journal Astronomy & Astrophysics, with the following authors: Sabine Schindler (Max-Planck-Institut fuer Extraterrestrische Physik and Max-Planck-Institut fuer Astrophysik, Garching, Germany), Hans Boehringer, Doris M. Neumann and Ulrich G. Briel (Max-Planck-Institut fuer Extraterrestrische Physik, Garching, Germany), Luigi Guzzo (Osservatorio Astronomico di Brera, Merate, Italy), Guido Chincarini

  19. Space Radar Image of Niya ruins, Taklamakan desert

    NASA Technical Reports Server (NTRS)

    1999-01-01

    human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtange-legenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstaltfuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    SciTech Connect

    Uzawa, Akiko; Ando, Koichi Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-04-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 {gamma} rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D{sub 10} doses (mean {+-} standard deviation) of HSG cells ranged from 2.37 {+-} 0.14 Gy to 3.47 {+-} 0.19 Gy for Chiba and from 2.31 {+-} 0.11 Gy to 3.66 {+-} 0.17 Gy for Darmstadt. Isoeffective D{sub 10} doses of gut crypts after single doses ranged from 8.25 {+-} 0.17 Gy to 10.32 {+-} 0.14 Gy for Chiba and from 8.27 {+-} 0.10 Gy to 10.27 {+-} 0.27 Gy for Darmstadt, whereas isoeffective D{sub 30} doses after three fractionated doses were 9.89 {+-} 0.17 Gy through 13.70 {+-} 0.54 Gy and 10.14 {+-} 0.20 Gy through 13.30 {+-} 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  1. Space Radar Image of Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  2. Direct optimization method for reentry trajectory design

    NASA Astrophysics Data System (ADS)

    Jallade, S.; Huber, P.; Potti, J.; Dutruel-Lecohier, G.

    The software package called `Reentry and Atmospheric Transfer Trajectory' (RATT) was developed under ESA contract for the design of atmospheric trajectories. It includes four software TOP (Trajectory OPtimization) programs, which optimize reentry and aeroassisted transfer trajectories. 6FD and 3FD (6 and 3 degrees of freedom Flight Dynamic) are devoted to the simulation of the trajectory. SCA (Sensitivity and Covariance Analysis) performs covariance analysis on a given trajectory with respect to different uncertainties and error sources. TOP provides the optimum guidance law of a three degree of freedom reentry of aeroassisted transfer (AAOT) trajectories. Deorbit and reorbit impulses (if necessary) can be taken into account in the optimization. A wide choice of cost function is available to the user such as the integrated heat flux, or the sum of the velocity impulses, or a linear combination of both of them for trajectory and vehicle design. The crossrange and the downrange can be maximized during reentry trajectory. Path constraints are available on the load factor, the heat flux and the dynamic pressure. Results on these proposed options are presented. TOPPHY is the part of the TOP software corresponding to the definition and the computation of the optimization problemphysics. TOPPHY can interface with several optimizes with dynamic solvers: TOPOP and TROPIC using direct collocation methods and PROMIS using direct multiple shooting method. TOPOP was developed in the frame of this contract, it uses Hermite polynomials for the collocation method and the NPSOL optimizer from the NAG library. Both TROPIC and PROMIS were developed by the DLR (Deutsche Forschungsanstalt fuer Luft und Raumfahrt) and use the SLSQP optimizer. For the dynamic equation resolution, TROPIC uses a collocation method with Splines and PROMIS uses a multiple shooting method with finite differences. The three different optimizers including dynamics were tested on the reentry trajectory of the

  3. Space Radar Image Isla Isabela in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  4. Radar Image of Galapagos Island

    NASA Technical Reports Server (NTRS)

    1994-01-01

    which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  5. Space Radar Image of Mammoth, California in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a three-dimensional perspective of Mammoth Mountain, California. This view was constructed by overlaying a Spaceborne Imaging Radar-C (SIR-C) radar image on a U.S. Geological Survey digital elevation map. Vertical exaggeration is 1.87 times. The image is centered at 37.6 degrees north, 119.0 degrees west. It was acquired from the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard space shuttle Endeavour on its 67th orbit on April 13, 1994. In this color representation, red is C-band HV-polarization, green is C-band VV-polarization and blue is the ratio of C-band VV to C-band HV. Blue areas are smooth, and yellow areas are rock out-crops with varying amounts of snow and vegetation. Crowley Lake is in the foreground, and Highway 395 crosses in the middle of the image. Mammoth Mountain is shown in the upper right. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  6. Application of Ion and Electron Momentum Imaging to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Cocke, C. L.

    2000-06-01

    COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic

  7. Color Image of Death Valley, California from SIR-C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  8. Space Radar Image of Namib Desert in Southern Namib

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a C-band, VV polarization radar image of the Namib desert in southern Namibia, near the coast of South West Africa. The image is centered at about 25 degrees South latitude, 15.5 degrees East longitude. This image was one of the first acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) when it was taken on orbit 4 from the shuttle Endeavour on April 9, 1994. The area shown is approximately 78 kilometers by 20 kilometers. The dominant features in the image are complex sand dune patterns formed by the prevailing winds in this part of the Namib desert. The Namib desert is an extremely dry area formed largely because of the influence of the cold Benguela ocean current that flows northward along the coast of Namibia. The bright areas at the bottom of the image are exposed outcrops of Precambrian rocks. This extremely barren area is a region rich in diamonds that through the centuries have washed down from the mountains. The town of Luderitz is located just to the south of the area shown. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Aumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia

  9. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf; Auer, Siegfried; Baust, Guenter; Matt, Guenter; Otto, Katharina; Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan; Fiege, Katherina; Postberg, Frank; Gruen, Eberhard; Heckmann, Frieder; Helfert, Stefan; Hillier, Jonathan; Mellert, Tobias; and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and

  10. A Mathematical Physicist's Approach to Virology

    NASA Astrophysics Data System (ADS)

    Twarock, Reidun

    2012-02-01

    The following talk has been given in a special session dedicated to Professor Heinz-Dietrich Doebner at QTS in Prague in August 2011 on the occasion of his 80th birthday. It documents my journey from being a PhD student in Mathematical Physics at the Arnold Sommerfeld Institute in Clausthal under his supervision, to becoming a Professor of Mathematical Biology at the University of York in the UK. I am currently heading an interdisciplinary research group of eight PDRAs and PhDs, focussed on investigating the structures of viruses from a symmetry perspective and unravelling the implications of virus structure on how viruses form and infect their hosts. A central element in my research is my fascination with the development and application of symmetry techniques, which stems from my time in Clausthal when working with Professor Doebner and colleagues. I would like to thank Professor Doebner for these important formative years in Clausthal. Der folgende Vortrag war mein Beitrag zu einer Festsitzung fuer Herrn Professor Heinz-Dietrich Doebner auf der Tagung QTS im August 2011 anläßlich seines achzigsten Geburtstags. Dieser Beitrag dokumentiert, wie sich meine Forschungen aus der Zeit als Doktorandin von Herrn Professor Doebner in Mathematischer Physik am Arnold Sommerfeld Institut in Clausthal weiterentwickelt haben, und zu meiner Professur in Mathematischer Biologie an der Universität York geführt haben. Ich leite dort zur Zeit eine interdisziplinäre Forschungsgruppe von acht Postdocs und Doktoranden, die sich mit der Entwicklung und Anwendung von Symmetrie-Techniken in der Virologie beschäftigt, und insbesondere untersucht, wie sich die Symmetrie-Eigenschaften von Viren auf deren Entstehung und Funktionsweise auswirken. Eine wichtige Vorraussetzung für dieses Forschungsprogramm ist meine Faszination für die Modellierung von Symmetrie-Eigenschaften, die ich während meiner Zusammenarbeit mit Herrn Professor Doebner und Kollegen in Clausthal entwickelt habe

  11. Relativistic electron beam interaction and Ka - generation in solid targets

    SciTech Connect

    Eder, D C; Eidman, K; Fill, E; Pretzler, G; Saemann, A

    1999-06-01

    When fs laser pulses interact with solid surfaces at intensities I{lambda}{sup 2} > 10{sup 18} W/cm{sup 2} {micro}m{sup 2}, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K{sub {alpha}}) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fuer Quantenoptik, the authors investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 {micro}m. By varying the position of the focus, they measure the copper K{sub {alpha}} - yield as a function of intensity in a range of 10{sup 15} to 2 x 10{sup 18} W/cm{sup 2} while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10{sup 17} W/cm{sup 2}. However, this result is readily explained by the weak scaling of the hot-electron temperature with intensity. An efficiency of 2 x 10{sup -4} for the conversion of laser energy into copper K{sub {alpha}} is measured. Simulations of the interaction of the hot electrons with the cold target material and the conversion into X-rays are carried out by means of the TIGER/ITS code, a time-independent, coupled electron/photon Monte Carlo transport code. The code calculates the propagation of individual electrons and the generation of photons in cold material. Comparison of the code predictions with the data shows an efficiency of 15% for the generation of electrons with energies in the 100 keV range. A second experiment involves the demonstration of photopumping of an innershell transition in cobalt by the copper radiation. Comparing the emission with the one of nickel, which is not photopumped by copper K{sub {alpha}} photons

  12. Safety and Security of Radioactive Sealed and Disused/Orphan Sources in Ukraine - German Contribution - 13359

    SciTech Connect

    Brasser, Thomas; Hertes, Uwe; Meyer, Thorsten; Uhlenbruck, Hermann; Shevtsov, Alexey

    2013-07-01

    Within the scope of 'Nuclear Security of Radioactive Sources', the German government implemented the modernization of Ukrainian State Production Company's transport and storage facility for radioactive sources (TSF) in Kiev. The overall management of optimizing the physical protection of the storage facility (including the construction of a hot cell for handling the radioactive sources) is currently carried out by the German Federal Foreign Office (AA). AA jointly have assigned Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Germany's leading expert institution in the area of nuclear safety and waste management, to implement the project and to ensure transparency by financial and technical monitoring. Sealed radioactive sources are widely used in industry, medicine and research. Their life cycle starts with the production and finally ends with the interim/long-term storage of the disused sources. In Ukraine, IZOTOP is responsible for all radioactive sources throughout their life cycle. IZOTOP's transport and storage facility (TSF) is the only Ukrainian storage facility for factory-fresh radioactive sources up to an activity of about 1 million Ci (3.7 1016 Bq). The TSF is specially designed for the storage and handling of radioactive sources. Storage began in 1968, and is licensed by the Ukrainian state authorities. Beside the outdated state of TSF's physical protection and the vulnerability of the facility linked with it, the lack of a hot cell for handling and repacking radioactive sources on the site itself represents an additional potential hazard. The project, financed by the German Federal Foreign Office, aims to significantly improve the security of radioactive sources during their storage and handling at the TSF site. Main tasks of the project are a) the modernization of the physical protection of the TSF itself in order to prevent any unauthorized access to radioactive sources as well as b) the construction of a hot cell to reduce the number of

  13. Progress in the GEOROC Database - Fast and Simple Access to Analytical Data by Precompilation

    NASA Astrophysics Data System (ADS)

    Sarbas, B.

    2001-12-01

    The geochemical database GEOROC of the Max-Planck-Institut fuer Chemie in Mainz http://georoc.mpch-mainz.gwdg.de includes the published chemical analyses of samples from Oceanic Islands, Convergent Margins, and Large Igneous Provinces. As a whole, the database comprises about 77,000 whole-rock, 35,000 mineral and 3,000 inclusion analyses published in about 2,800 papers (status Sept. 2001). For the individual tectonic settings, the following numbers of analyses are available: Oceanic Islands - 25,000 whole rocks, 14,000 minerals, 1,500 inclusions Convergent Margins - 20,000 whole rocks, 9,000 minerals, 500 inclusions Large Igneous Provinces - 32,000 whole rocks, 12,000 minerals, 1500 inclusions. Data entry is complete for samples from Oceanic Islands and Oceanic Large Igneous Provinces. Newly published papers are added regularly. Among the Continental Flood Basalts, which comprise 25,000 whole-rock and 12,000 mineral analyses, large and nearly complete datasets are available for the Columbia River, Deccan, Karoo, Paraná, and Siberian Plateau Basalts. Data for Convergent Margins have been added to the database most recently. The database includes, for instance, for the Honshu Arc 3,300, for the Izu-Bonin Arc 1,550, for the Mariana Arc 1,800, for the Kurile Arc 1,400, for the Aleutian Arc 1,500, for the Cascades 500, for the Andes 1,600, for the Lesser Antilles 1,100, and for the Tonga Arc 1,400 whole-rock analyses. For many localities, huge numbers of analyses (more than 2000) are included in the GEOROC database. The selection and compilation of such substantial datasets proved to be difficult and time-consuming when using the web interface of the database. Therefore, we are building precompiled datasets that include all published whole-rock analyses and a fixed set of location and sample metadata for the respective locations. These precompiled datasets are stored as Excel files and can be downloaded easily and rapidly. If multiple element analyses exist for a

  14. Replacement of the in vivo neutralisation test for efficacy demonstration of tetanus vaccines ad us. vet.

    PubMed

    Rosskopf, Ute; Noeske, Kerstin; Werner, Esther

    2005-01-01

    The bacterium Clostridium (C.) tetani is an ubiquitous pathogen. This anaerobic, gram-positive bacterium can form spores and can be found in the whole environment. It enters the body via injuries of the skin and wounds where it releases the neurotoxin "tetanospasmin" (= tetanus toxin). The animals most susceptible to tetanus infection are horses and sheep. Only active immunisation by tetanus vaccine provides effective protection against tetanus intoxication. The marketing authorisation requirements stipulate that efficacy of tetanus vaccines ad us. vet. must be demonstrated in all target animal species via determination of neutralising tetanus serum antitoxin concentrations. The standard method used for this purpose is still the toxin neutralisation test (TNT), as it quantifies the tetanus toxin-neutralising effect of tetanus serum antibodies in vivo. In this test, tetanus toxin is added to dilutions of serum from vaccinated horse and sheep. The serum dilutions are then administered to mice or guinea pigs, which are observed for toxic symptoms. Against the background of animal protection, the goal of one project of the Paul-Ehrlich-Institut (Bundesministerium fuer Bildung und Forschung (Federal Ministry for Education and Research), 0312636) was to establish an alternative to the toxin neutralisation test, enabling the testing of efficacy of tetanus vaccines with serological in vitro methods. For this purpose, a so-called double antigen ELISA (DAE) was established which enables the testing of sera of different species in one assay. In addition, the sera were tested in an indirect ELISA for horses and sheep separately. Altogether, ten groups of horses and eight groups of sheep were immunised with ten animals per group each. The tetanus vaccines comprised almost all products authorised for the German market at the start of the project. 564 horse sera and 257 sheep sera were tested using the two ELISA methods. Some sera were also tested in vivo. The kinetics of

  15. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  16. Space Radar Image of Mt. Rainer, Washington

    NASA Technical Reports Server (NTRS)

    1994-01-01

    White River, and the river leaving the mountain at the bottom right of the image (south) is the Nisqually River, which flows out of the Nisqually glacier on the mountain. The river leaving to the left of the mountain is the Carbon River, leading west and north toward heavily populated regions near Tacoma. The dark patch at the top right of the image is Bumping Lake. Other dark areas seen to the right of ridges throughout the image are radar shadow zones. Radar images can be used to study the volcanic structure and the surrounding regions with linear rock boundaries and faults. In addition, the recovery of forested lands from natural disasters and the success of reforestation programs can also be monitored. Ultimately this data may be used to study the advance and retreat of glaciers and other forces of global change. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), the C-band (6 cm) and the X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  17. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrte.v. (DLR), the major partner in science, operations and data processing of X-SAR.

  18. Space Radar Image of Mount Pinatubo Volcano, Philippines

    NASA Technical Reports Server (NTRS)

    1994-01-01

    radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  19. Space Radar Image of Prince Albert, Canada, seasonal

    NASA Technical Reports Server (NTRS)

    1994-01-01

    -C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of San Rafael Glacier, Chile

    NASA Technical Reports Server (NTRS)

    1994-01-01

    means. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) are part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm), and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes that are caused by nature and those changes that are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  1. Space Radar Image of Mammoth Mountain, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    cover and alpine glaciers are critical to the radiation and water balances. SIR-C/X-SAR is a powerful tool because it is sensitive to most snowpack conditions and is less influenced by weather conditions than other remote sensing instruments, such as Landsat. In parallel with the operational SIR-C data processing, an experimental effort is being conducted to test SAR data processing using the Jet Propulsion Laboratory's massively parallel supercomputing facility, centered around the Cray Research T3D. These experiments will assess the abilities of large supercomputers to produce high throughput SAR processing in preparation for upcoming data-intensive SAR missions. The images released here were produced as part of this experimental effort. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  2. Space Radar Image of Long Valley, California -Interferometry/Topography

    NASA Technical Reports Server (NTRS)

    1994-01-01

    this area is about 1,320 meters (4,330 feet). Brightness variations come from the radar image, which has been geometrically corrected to remove radar distortions and rotated to have north toward the top. The image in the lower right is a three-dimensional perspective view of the northeast rim of the Long Valley caldera, looking toward the northwest. SIR-C C-band radar image data are draped over topographic data derived from the interferometry processing. No vertical exaggeration has been applied. Combining topographic and radar image data allows scientists to examine relationships between geologic structures and landforms, and other properties of the land cover, such as soil type, vegetation distribution and hydrologic characteristics. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v.(DLR), the major partner in science, operations and data processing of X-SAR.

  3. Space Radar Image of Weddell Sea, Antarctica

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . Oceanographers believe this process forms most of the oceans' deep water. Sea ice covering all of the southern oceans, including the Weddell Sea, typically reaches its most northerly extent in about September. As periods of daylight become gradually longer in the Southern Hemisphere, ice formation stops and the ice edge retreats southward. By February, most of the sea ice surrounding Antarctica disappears. Imaging radar is extremely useful for studying the polar regions because of the long periods of darkness and extensive cloud cover. The multiple frequencies of the SIR-C/X-SAR instruments allow further study into ways of improving the separation of the various thickness ranges of sea ice, which are vital to understanding the heat balance in the ice, ocean and atmospheric system. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI), with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  4. Space Radar Image of Bahia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    . The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer luft und Raumfahrt e.V.(DLR), the major partner in science, operations and data processing of X-SAR.

  5. Space Radar Image of Mammoth, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fur Luft und Raumfahrt e.v. (DLR), the major partner in science, operation and data processing of X-SAR.

  6. Space Radar Image of Prince Albert, Canada

    NASA Technical Reports Server (NTRS)

    1999-01-01

    -greenish areas are young jack pine trees, 3 to 5 meters (10 to 16 feet) in height and 11 to 16 years old. The green areas are due to the relative high intensity of the HV channel which is strongly correlated with the amount of biomass. L-band HV channel shows the biomass variations over the entire region. Most of the green areas, when compared to the forest cover maps are identified as black spruce trees. The dark blue and dark purple colors show recently harvested or regrowth areas respectively. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  7. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  8. SPace Radar Image of Mt. Pinatubo, Philippines

    NASA Technical Reports Server (NTRS)

    1999-01-01

    the next 10 to 15 years. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  9. Roter Kamm Impact Crater in Namibia

    NASA Technical Reports Server (NTRS)

    1995-01-01

    the surface of the Earth help geologists understand the role of the impact process in the Earth's evolution, including effects on the atmosphere and on biological evolution.

    Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  10. To Boldly Go: America's Next Era in Space. The Plasma Universe

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Dr. France Cordova, NASA's Chief Scientist, chaired this, the eighth seminar in the Administrator's Seminar Series. She introduced the NASA Administrator, Daniel S. Goldin, who, in turn, introduced the subject of plasma. Plasma, an ionized gas, is a function of temperature and density. We ve learned that, at Jupiter, the radiation is dense. But, Goldin asked, what else do we know? Dr. Cordova then introduced Dr. James Van Allen, for whom the Van Allen radiation belt was named. Dr. Van Allen, a member of the University of Iowa faculty, discussed the growing interest in practical applications of space physics, including radiation fields and particles, plasmas and ionospheres. He listed a hierarchy of magnetic fields, beginning at the top, as pulsars, the Sun, planets, interplanetary medium, and interstellar medium. He pointed out that we have investigated eight of the nine known planets,. He listed three basic energy sources as 1) kinetic energy from flowing plasma such as constitutional solar wind or interstellar wind; 2) rotational energy of the planet, and 3) orbital energy of satellites. He believes there are seven sources of energetic particles and five potential places where particles may go. The next speaker, Dr. Ian Axford of New Zealand, has been associated with the Max Planck Institut fuer Aeronomie and plasma physics. He has studied solar and galactic winds and clusters of galaxies of which there are several thousand. He believes that the solar wind temperature is in the millions of degrees. The final speaker was Dr. Roger Blanford of the California Institute of Technology. He classified extreme plasmas as lab plasmas and cosmic plasmas. Cosmic plasmas are from supernovae remnants. These have supplied us with heavy elements and may come via a shock front of 10(sup 15) electron volts. To understand the physics of plasma, one must learn about x-rays, the maximum energy of acceleration by supernova remnants, particle acceleration and composition of cosmic

  11. Space Radar Image of Oetzal, Austria

    NASA Technical Reports Server (NTRS)

    1999-01-01

    microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  12. PREFACE: XVth International Conference on Calorimetry in High Energy Physics (CALOR2012)

    NASA Astrophysics Data System (ADS)

    Akchurin, Nural

    2012-12-01

    Livan, Pavia Univ. & INFN Pasquale Lubrano, INFN Perugia Steve Magill, ANL Amelia Maio, LIPP Lisbon Horst Oberlack, MPI Munich Adam Para, FNAL Klaus Pretzl, Univ. of Bern Yifang Wang, IHEP Beijing Richard Wigmans, TTU Ren-Yuan Zhu, Caltech Local Organizing Committee: Nural Akchurin, TTU Debra Boyce, TTU (Secretary) Xiadong Jiang, LANL Jon Kapustinsky, LANL Sung-Won Lee, TTU Sally Seidel, UNM Igor Volobouev, TTU Session Conveners: LHC I-III: David Barney (CERN) Ana Henriques (CERN) Sally Seidel (UNM) Calorimetry Techniques I-II: Francesca Tedaldi (ETH-Zurich) Tao Hu (IHEP-Beijing) Calorimetry Techniques III-IV: Craig Woody (BNL) Tohru Takeshita (Shinshu) Astrophysics and Neutrinos: Don Groom (LBNL) Steve Magill (ANL) Operating Calorimeters: Jordan Damgov (TTU) Gabriella Gaudio (INFN-Pavia) Frank Chlebana (FNAL) Algorithms and Simulations: Artur Apresyan (Caltech) Igor Volobouev (TTU) Front-end and Trigger: Chris Tully (Princeton) Kejun Zhu (IHEP-Beijing) Future Calorimetry: Michele Livan (Pavia Univ.) Frank Simon (MPI) Vishnu Zutshi (NICADD) List of Participants: ABOUZEID, Hass University of Toronto AKCHURIN, Nural Texas Tech University ANDEEN, Timothy Columbia University ANDERSON, Jake Fermilab APRESYAN, Artur California Institute of Technology AUFFRAY, Etiennette CERN BARILLARI, Teresa Max-Planck-Inst. fuer Physik BARNEY, David CERN BESSON, Dave University of Kansas BOYCE, Debra Texas Tech University BRUEL, Philippe LLR, Ecole Polytechnique, CNRS/IN2P3 BUCHANAN, Norm Colorado State University CARLOGANU, Cristina LPC Clermont Ferrand / IN2P3 / CNRS CHEFDEVILLE, Maximilien CNRS/IN2P3/LAPP CHLEBANA, Frank Fermilab CLARK, Jonathan Texas Tech University CONDE MUINO, Patricia LIP-Lisboa COWDEN, Christopher Texas Tech University DA SILVA, Cesar Luiz Los Alamos National Lab DAMGOV, Jordan Texas Tech University DAVYGORA, Yuriy University of Heidelberg DEMERS, Sarah Yale University EIGEN, Gerald University of Bergen EUSEBI, Ricardo Texas A&M University FERRI, Federico CEA

  13. Discovery of a Satellite around a Near-Earth Asteroid

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Institut fuer Planetenerkundung and Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR) . [2] See ESO Press Release 09/94 of 18 May 1994. [3] Asteroids are small solid planetary bodies revolving around the Sun in orbits that are mostly located in the so-called Main Asteroid Belt, confined between the orbits of Mars and Jupiter. Most of them are thought to be fragments derived from catastrophic, past collisions between larger asteroids. By mid-1997, the orbits of about 8000 asteroids in the solar system were sufficiently well known to allow them to be officially numbered by the rules of the International Astronomical Union. (3671) Dionysus was discovered in 1984 at the Palomar Observatory (California, USA) and is named after the Greek god of wine. [4] The gravitational influence of the giant planet Jupiter can modify the orbits of asteroids located in particular regions of the Main Belt (the effect is refered to as `orbital perturbations'). As a result, the orbit of an asteroid may `cross' that of a major planet, and eventually it may become a NEO , i.e. a near-Earth object. The orbits of NEO's are highly unstable over times comparable to the age of the solar system. This instability can result in a collision with one of the terrestrial (inner) planets, or with the Sun, or in the ejection of the asteroid out of the solar system. The present orbit of (3671) Dionysus is such that this object is not likely to collide with the Earth in the foreseeable future. [5] The method of analyzing the lightcurve of Dionysus consists of `removing' (subtracting) the normal short-period brightness variations due to rotation of the asteroid and plotting the residuals against time, cf. Press Photo 20/97. The residual lightcurve shows a clear resemblance with typical lightcurves of eclipsing binary stellar systems (in which two stars move around each other, producing mutual eclipses) and leads to a model of two bodies revolving around a common gravitational centre, in an orbital

  14. EDITORIAL: Message from the Editor Message from the Editor

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2012-01-01

    Board Members, Guest Editors of special editions and those referees who were already listed in the last years. The following people have been selected: Marina Becoulet, CEA Cadarache, France Russell Doerner, University of California - San Diego, USA Emiliano Fable, Max-Planck-Institut fuer Plasmaphysik, Germany Akihide Fujisawa, Kyushi University, Japan Gerardo Giruzzi, CEA Cadarache, France Grigory Kagan, LANL, USA Morten Lennholm, CCFE, UK Akinobu Matsuyama, NIFS, Japan Peter Stangeby, University of Toronto, Canada Leonid Zakharov, PPPL, USA In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2011. Our thanks to them! Authors The winner of the 2011 Nuclear Fusion Award is H. Urano, for the paper 'Dimensionless parameter dependence of H-mode pedestal width using hydrogen and deuterium plasmas in JT-60U' (Nucl. Fusion 48 045008). The award was presented at the Plasma Conference 2011 (Joint meeting of 28th JSPF Annual Meeting, The 29th Symposium on Plasma Processing, and Division of Plasma Physics, 2011 Autumn Meeting of The Physical Society of Japan). This is the sixth year that the International Atomic Energy Agency (IAEA) has awarded an annual prize to honour exceptional work published in Nuclear Fusion. IOP Publishing has generously made a contribution of $2500 to the award. The Nuclear Fusion Electronic Archive The journal's electronic archive has been online since the beginning of the year. The archive has been a roaring success and has contributed to the nearly 300 000 downloads of journal papers in 2011. The archive can be accessed via http://iopscience.iop.org/0029-5515/page/Archive. It has direct links to 16 landmark papers, from authors such as Artsimovich and Mercier. The Nuclear Fusion office and IOP Publishing Just as the journal depends on the authors and referees, so its success is also

  15. EDITORIAL: Message from the Editor

    NASA Astrophysics Data System (ADS)

    Thomas, Paul

    2009-01-01

    The end of 2008 cannot pass without remarking that the economic news has repeatedly strengthened the case for nuclear fusion; not perhaps to solve the immediate crises but to offer long-term security of energy supply. Although temporary, the passage of the price of oil through 100 per barrel is a portent of things to come and should bolster our collective determination to develop nuclear fusion into a viable energy source. It is with great pride, therefore, that I can highlight the contributions that the Nuclear Fusion journal has made to the research programme and the consolidation of its position as the lead journal in the field. Of course, the journal would be nothing without its authors and referees and I would like to pass on my sincere thanks to them all for their work in 2008 and look forward to a continuing, successful collaboration in 2009. Refereeing The Nuclear Fusion Editorial Office understands how much effort is required of our referees. The Editorial Board decided that an expression of thanks to our most loyal referees is appropriate and so, since January 2005, we have been offering the top ten most loyal referees over the past year a personal subscription to Nuclear Fusion with electronic access for one year, free of charge. To select the top referees we have adopted the criterion that a researcher should have acted as a referee or adjudicator for at least two different manuscripts during the period from November 2007 to November 2008 and provided particularly detailed advice to the authors. We have excluded our Board members and those referees who were already listed in the last four years. According to our records the following people met this criterion. Congratulations and many, many thanks! T. Hino (Hokkaido University, Japan) M. Sugihara (ITER Cadarache, France) M. Dreval (Saskatchewan University, Canada) M. Fenstermacher (General Atomics, USA) V.S. Marchenko (Institute for Nuclear Research, Ukraine) G.V. Pereverzev (Max-Planck-Institut fuer

  16. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italian

  17. Space Radar Image of Kilauea, Hawaii in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA)

  18. Message from the Editor

    NASA Astrophysics Data System (ADS)

    Stambaugh, Ronald D.

    2013-01-01

    reviewed five manuscripts in the period November 2011 to December 2012 and provided excellent advice to the authors. We have excluded our Board Members, Guest Editors of special editions and those referees who were already listed in recent years. The following people have been selected: Marina Becoulet, CEA-Cadarache, France Jiaqui Dong, Southwestern Institute of Physics, China Emiliano Fable, Max-Planck-Institut für Plasmaphysik, Germany Ambrogio Fasoli, Ecole Polytechnique Federale de Lausanne, Switzerland Eric Fredrickson, Princeton Plasma Physics Laboratory, USA Manuel Garcia-Munoz, Max-Planck-Institut fuer Plasmaphysik, Germany William Heidbrink, California University, USA Katsumi Ida, National Inst. For Fusion Science, Japan Peter Stangeby, Toronto University, Canada James Strachan, Princeton Plasma Physics Laboratory, USA Victor Yavorskij, Ukraine National Academy of Sciences, Ukraine In addition, there is a group of several hundred referees who have helped us in the past year to maintain the high scientific standard of Nuclear Fusion. At the end of this issue we give the full list of all referees for 2012. Our thanks to them!

  19. Space Radar Image of Raco, Michigan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    German space agency, Deutsche Agentur fr Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI) with the Deutsche Forschungsanstalt fuer Luft und Raumfahrt e.v. (DLR) which is major partner in science, operations and data processing of X-SAR.

  20. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Ag

  1. Space Radar Image of Safsaf, North Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    , Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  2. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    (UT4). Mirrors and Instruments As earlier announced, ESO officially received the first 8.2-metre VLT mirror from REOSC in Paris [3] on November 21. The polishing of the second mirror has already started and, based on the experience gained with the first, it is expected that this work will be accomplished in less time. The third blank is already at REOSC and the fourth will soon be ready at Schott Glaswerke in Mainz (Germany). Following extended studies, and as yet another move towards new technology within the VLT project, it has now been decided to make the 1.2-metre secondary VLT mirrors of beryllium, a very light, exotic metal. The contracting firm is Dornier of the DASA group (Germany). This saves much weight and allows these relatively large mirrors to be efficiently used in the `chopping and tilting' mode needed for observations in the infrared wavelength region as well as for the critical, image-sharpening adaptive optics system. Significant progress has also been achieved on the first astronomical instruments which will be installed at the VLT. The integration of the first two of these, ISAAC and CONICA which will be installed on UT1 in the course of 1997, has already started in the ESO laboratories at the Headquarters in Garching. Important advances have also taken place within the FORS (managed by a consortium of Landessternwarte Heidelberg, Universitaets-Sternwarte Goettingen and Institut fuer Astronomie und Astrophysik der Ludwig Maximilians Universitaet Muenchen) and FUEGOS (Paris Observatory, Meudon Observatory, Toulouse Observatory, Geneva Observatory and Bologna Observatory) projects. More details about these and other VLT instruments will be given in later communications. Notes: [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. This time, Council was invited to Milan by the Director of the Osservatorio di Brera (Milan