Science.gov

Sample records for endocannabinoid system activation

  1. Activation of the peripheral endocannabinoid system in human obesity.

    PubMed

    Engeli, Stefan; Böhnke, Jana; Feldpausch, Mareike; Gorzelniak, Kerstin; Janke, Jürgen; Bátkai, Sándor; Pacher, Pál; Harvey-White, Judy; Luft, Friedrich C; Sharma, Arya M; Jordan, Jens

    2005-10-01

    Obesity is the main risk factor for the development of type 2 diabetes. Activation of the central endocannabinoid system increases food intake and promotes weight gain. Blockade of the cannabinoid type 1 (CB-1) receptor reduces body weight in animals by central and peripheral actions; the role of the peripheral endocannabinoid system in human obesity is now being extensively investigated. We measured circulating endocannabinoid concentrations and studied the expression of CB-1 and the main degrading enzyme, fatty acid amide hydrolase (FAAH), in adipose tissue of lean (n = 20) and obese (n = 20) women and after a 5% weight loss in a second group of women (n = 17). Circulating levels of anandamide and 1/2-arachidonoylglycerol were increased by 35 and 52% in obese compared with lean women (P < 0.05). Adipose tissue mRNA levels were reduced by -34% for CB-1 and -59% for FAAH in obese subjects (P < 0.05). A strong negative correlation was found between FAAH expression in adipose tissue and circulating endocannabinoids. Circulating endocannabinoids and CB-1 or FAAH expression were not affected by 5% weight loss. The expression of CB-1 and FAAH was increased in mature human adipocytes compared with in preadipocytes and was found in several human tissues. Our findings support the presence of a peripheral endocannabinoid system that is upregulated in human obesity.

  2. Effects of activation of endocannabinoid system on myocardial metabolism.

    PubMed

    Polak, Agnieszka; Harasim, Ewa; Chabowski, Adrian

    2016-05-21

    Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  3. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats

    PubMed Central

    Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea

    2014-01-01

    Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916

  4. Polymodal activation of the endocannabinoid system in the extended amygdala.

    PubMed

    Puente, Nagore; Cui, Yihui; Lassalle, Olivier; Lafourcade, Mathieu; Georges, François; Venance, Laurent; Grandes, Pedro; Manzoni, Olivier J

    2011-11-06

    The reason why neurons synthesize more than one endocannabinoid (eCB) and how this is involved in the regulation of synaptic plasticity in a single neuron is not known. We found that 2-arachidonoylglycerol (2-AG) and anandamide mediate different forms of plasticity in the extended amygdala of rats. Dendritic L-type Ca(2+) channels and the subsequent release of 2-AG acting on presynaptic CB1 receptors triggered retrograde short-term depression. Long-term depression was mediated by postsynaptic mGluR5-dependent release of anandamide acting on postsynaptic TRPV1 receptors. In contrast, 2-AG/CB1R-mediated retrograde signaling mediated both forms of plasticity in the striatum. These data illustrate how the eCB system can function as a polymodal signal integrator to allow the diversification of synaptic plasticity in a single neuron.

  5. [The endocannabinoid system in obesity].

    PubMed

    Pataky, Zoltan; Bobbioni-Harsch, Elisabetta; Carpentier, Anne; Golay, Alain

    2013-03-27

    The endocannabinoid system is involved in the regulation of energy balance and metabolism. Endocannabinoids have central effects with raising appetite and hunger. On the other hand, different components of the endocannabinoid system are also found in peripheral organs and tissues and they could impact the lipid and glucose metabolism. Obesity is associated with an overactivity of the endocannabinoid system with increased both plasmatic and visceral adipose tissue levels. The amount of the intra-abdominal fat mass is an indicator of the peripheral endocannabinoid system dysregulation. Endocannabinoids-like molecules with more pronounced peripheral effects on lipids and glucose metabolism could be a new target of obesity treatment.

  6. Activation of Endocannabinoid System Is Associated with Persistent Inflammation in Human Aortic Aneurysm

    PubMed Central

    Gestrich, Christopher; Duerr, Georg D.; Heinemann, Jan C.; Meertz, Anne; Probst, Chris; Roell, Wilhelm; Schiller, Wolfgang; Zimmer, Andreas; Bindila, Laura; Lutz, Beat; Welz, Armin; Dewald, Oliver

    2015-01-01

    Human aortic aneurysms have been associated with inflammation and vascular remodeling. Since the endocannabinoid system modulates inflammation and tissue remodeling, we investigated its components in human aortic aneurysms. We obtained anterior aortic wall samples from patients undergoing elective surgery for aortic aneurysm or coronary artery disease as controls. Histological and molecular analysis (RT-qPCR) was performed, and endocannabinoid concentration was determined using LC-MRM. Patient characteristics were comparable between the groups except for a higher incidence of arterial hypertension and diabetes in the control group. mRNA level of cannabinoid receptors was significantly higher in aneurysms than in controls. Concentration of the endocannabinoid 2-arachidonoylglycerol was significantly higher, while the second endocannabinoid anandamide and its metabolite arachidonic acid and palmitoylethanolamide were significantly lower in aneurysms. Histology revealed persistent infiltration of newly recruited leukocytes and significantly higher mononuclear cell density in adventitia of the aneurysms. Proinflammatory environment in aneurysms was shown by significant upregulation of M-CSF and PPARγ but associated with downregulation of chemokines. We found comparable collagen-stained area between the groups, significantly decreased mRNA level of CTGF, osteopontin-1, and MMP-2, and increased TIMP-4 expression in aneurysms. Our data provides evidence for endocannabinoid system activation in human aortic aneurysms, associated with persistent low-level inflammation and vascular remodeling. PMID:26539497

  7. Seizing an Opportunity for the Endocannabinoid System

    PubMed Central

    2014-01-01

    Exogenous cannabinoids can limit seizures and neurodegeneration, and their actions are largely mimicked by endogenous cannabinoids (endocannabinoids). Endocannabinoids are mobilized by epileptiform activity and in turn influence this activity by inhibiting synaptic transmission; both excitatory and some inhibitory synapses can be suppressed, leading to potentially complex outcomes. Moreover, the endocannabinoid system is not a fixed entity, and its strength can be enhanced or reduced. Endocannabinoids and their receptors are altered by epileptic seizures in ways that can reduce the efficacy of both exogenous and endogenous cannabinoids in sometimes unexpected ways. PMID:25346637

  8. The endocannabinoid system and extinction learning.

    PubMed

    Lutz, Beat

    2007-08-01

    The endocannabinoid system has emerged as a versatile neuromodulatory system, implicated in a plethora of physiological and pathophysiological processes. Cannabinoid receptor type 1 (CB1 receptor) and endocannabinoids are widely distributed in the brain. Their roles in learning and memory have been well documented, using rodents in various memory tests. Depending on the test, the endocannabinoid system is required in the acquisition and/or extinction of memory. In particular, the activation of CB1 receptor-mediated signaling is centrally involved in the facilitation of behavioral adaptation after the acquisition of aversive memories. As several human psychiatric disorders, such as phobia, generalized anxiety disorders, and posttraumatic stress disorder (PTSD) appear to involve aberrant memory processing and impaired adaptation to changed environmental conditions, the hope has been fuelled that the endocannabinoid system might be a valuable therapeutic target for the treatment of these disorders. This review summarizes the current data on the role of the endocannabinoid system in the modulation of extinction learning.

  9. Endocannabinoids and the haematological system

    PubMed Central

    Randall, M D

    2007-01-01

    Endocannabinoids are blood borne and may also be secreted by the endothelium. Accordingly, there has been interest in the interactions between (endo)cannabinoids and blood cells. There is certainly evidence that (endo)cannabinoids may promote platelet activation, indicating that they may be thrombogenic. Platelets are involved both in the metabolism and release of endocannabinoids, and so it is possible that their circulating levels may be regulated by platelets. This process is altered in disease states such that platelet-derived endocannabinoids contribute towards hypotension in cardiovascular shock. Not only may endocannabinoids regulate platelet function and possibly lead to thrombogenesis, but they may also influence haematopoiesis. Given these emerging roles, the aim of this review is to examine the interactions between cannabinoids and blood. PMID:17704826

  10. The activated endocannabinoid system in atherosclerosis: driving force or protective mechanism?

    PubMed

    Steffens, Sabine; Pacher, Pal

    2015-01-01

    Atherosclerosis and its major acute complications, myocardial infarction and stroke, are the leading causes of death and morbidity worldwide. Despite major advances in cardiovascular intervention and healthcare, improving preventive care and treatment remains a continuous mission for cardiovascular research. Within the last 10 to 15 years, the endocannabinoid system has emerged as an important lipid signaling system involved in many biological processes. Growing evidence suggests that an overactive endocannabinoid-CB1 receptor signaling promotes the development of cardiovascular risk factors such as obesity, insulin resistance and dyslipidemia. This prompted an increasing interest in studying the role of the endocannabinoid system in atherosclerosis. As opposed to the detrimental actions of CB1 signaling, the endocannabinoid-CB2 receptor axis exhibits an anti-inflammatory and atheroprotective role. We will review recent findings from experimental and clinical studies aimed at understanding the complex actions of endocannabinoid signaling in cardiovascular disease. This is followed by an outlook on emerging targets for possible therapeutic intervention.

  11. Dysregulation of the endocannabinoid system in obesity.

    PubMed

    Engeli, S

    2008-05-01

    An activation of the endocannabinoid system (ECS) in obesity with increased concentrations of endocannabinoids in several tissues and in the circulation is described in this review. This increased availability of endocannabinoids might stimulate cannabinoid receptors in a pathophysiological manner. The successful use of the cannabinoid receptor CB(1) inverse agonists rimonabant and taranabant for weight loss and the treatment of obesity-associated metabolic disorders might well be through blocking this overstimulation of cannabinoid receptors. At present, no single mechanism has been identified that explains the increased bioavailability of endocannabinoids in obesity. Both increased synthesis and decreased degradation appear to operate in a species- and tissue-dependent manner, but many pieces of the puzzle still need to be collected. For example, most data show decreased fatty acid amide hydrolase (FAAH) expression and/or activity as a result of obesity or high-fat intake, but the endocannabinoid predominantly increased in tissues is 2-arachidonoylglycerol (2-AG), which is not degraded by FAAH in vivo. Furthermore, the influence of dietary fatty acids on the synthesis of endocannabinoids needs to be studied in much more detail. Although weight loss does not seem to influence activation of the endocannabinoid system (ECS) in human obesity, suggesting an underlying mechanisms independent of body weight, no such mechanism at the genetic level has yet been identified either. Thus, activation of the ECS is a hallmark of abdominal obesity, and explains the success of pharmacological CB(1) blockade, but serious attempts have to be made to clarify the underlying mechanisms of this activation.

  12. Alcohol inhibits luteinizing hormone-releasing hormone release by activating the endocannabinoid system

    PubMed Central

    Fernández-Solari, Javier; Scorticati, Camila; Mohn, Claudia; De Laurentiis, Andrea; Billi, Silvia; Franchi, Ana; McCann, Samuel M.; Rettori, Valeria

    2004-01-01

    We hypothesized that ethanol (EtOH) might act through the endocannabinoid system to inhibit luteinizing hormone-releasing hormone (LHRH) release. Therefore, we examined the mechanism by which EtOH and anandamide (AEA), an endogenous cannabinoid, inhibit LHRH release from incubated medial basal hypothalamic explants. In previous work, we demonstrated that EtOH inhibits the N-methyl-d-aspartic acid-stimulated release of LHRH by increasing the release of two neurotransmitters: β-endorphin and γ-aminobutyric acid (GABA). In the present work, bicuculline, a GABAergic antagonist, completely prevented the inhibition of AEA (10-9M) on N-methyl-d-aspartic acid-induced LHRH release, but naltrexone, a μ-opioid receptor antagonist, had no effect. AEA also significantly increased GABA release but had no effect on β-endorphin release. Therefore, AEA could inhibit LHRH release by increasing GABA but not β-endorphin release. Because EtOH and AEA acted similarly to inhibit LHRH release, we investigated whether both substances would affect the adenylate cyclase activity acting through the same GTP-coupled receptors, the cannabinoid receptors 1 (CB1-rs). AEA and EtOH (10-1M) reduced the forskolin-stimulated accumulation of cAMP, but AM251, a specific antagonist of CB1-r, significantly blocked that inhibition. Additionally we investigated whether CB1-r is involved in the inhibition of LHRH by EtOH and AEA. AEA and EtOH reduced forskolin-stimulated LHRH release, but AM251 significantly blocked that inhibition. Also, we demonstrated that EtOH did not act by increasing AEA synthase activity to inhibit LHRH release in our experimental conditions. Therefore, our results indicate that EtOH inhibits the release of LHRH acting through the endocannabinoid system. PMID:14981261

  13. Myocardial hypertrophy is associated with inflammation and activation of endocannabinoid system in patients with aortic valve stenosis.

    PubMed

    Duerr, Georg D; Heinemann, Jan C; Dunkel, Silke; Zimmer, Andreas; Lutz, Beat; Lerner, Raissa; Roell, Wilhelm; Mellert, Fritz; Probst, Chris; Esmailzadeh, Bahman; Welz, Armin; Dewald, Oliver

    2013-05-30

    Endocannabinoids and their receptors have been associated with cardiac adaptation to injury, inflammation and fibrosis. Experimental studies suggested a role for inflammatory reaction and active remodeling in myocardial hypertrophy, but they have not been shown in human hypertrophy. We investigated the association of the endocannabinoid system with myocardial hypertrophy in patients with aortic stenosis. Myocardial biopsies were collected from patients with aortic stenosis (AS) and atrial myxoma as controls during surgery. Histological and molecular analysis of endocannabinoids and their receptors, inflammatory and remodeling-related cells and mediators was performed. Myocardial hypertrophy was confirmed with significantly higher cardiomyocyte diameter in AS than in myxoma patients, which had normal cell size. AS patients presented compensated myocardial adaptation to pressure overload. AS patients had significantly higher: concentration of endocannabinoid anandamide, expression of its degrading enzyme FAAH, and of cannabinoid receptor CB2, being predominantly located on cardiomyocytes. Cell density of macrophages and newly recruited leukocytes were higher in AS group, which together with increased expression of chemokines CCL2, CCL4 and CXCL8, and suppression of anti-inflammatory IL-10 indicates persistent inflammatory reaction. We found higher myofibroblast density and stronger tenascin C staining along with mRNA induction of tenascin C and CTGF in AS patients showing active myocardial remodeling. Our study shows for the first time activation of the endocannabinoid system and predominant expression of its receptor CB2 on cardiomyocytes being associated with persistent inflammation and active remodeling in hypertrophic myocardium of patients with aortic stenosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. The endocannabinoid system and nondrug rewarding behaviours.

    PubMed

    Fattore, Liana; Melis, Miriam; Fadda, Paola; Pistis, Marco; Fratta, Walter

    2010-07-01

    Rewarding behaviours such as sexual activity, eating, nursing, parenting, social interactions, and play activity are conserved strongly in evolution, and they are essential for development and survival. All of these behaviours are enjoyable and represent pleasant experiences with a high reward value. Remarkably, rewarding behaviours activate the same brain circuits that mediate the positive reinforcing effects of drugs of abuse and of other forms of addiction, such as gambling and food addiction. Given the involvement of the endocannabinoid system in a variety of physiological functions of the nervous system, it is not surprising that it takes part in the complex machinery that regulates gratification and perception of pleasure. In this review, we focus first on the role of the endocannabinoid system in the modulation of neural activity and synaptic functions in brain regions that are involved in natural and nonnatural rewards (namely, the ventral tegmental area, striatum, amygdala, and prefrontal cortex). Then, we examine the role of the endocannabinoid system in modulating behaviours that directly or indirectly activate these brain reward pathways. More specifically, current knowledge of the effects of the pharmacological manipulation of the endocannabinoid system on natural (eating, sexual behaviour, parenting, and social play) and pathological (gambling) rewarding behaviours is summarised and discussed.

  15. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.

    PubMed

    Kempf, K; Hector, J; Strate, T; Schwarzloh, B; Rose, B; Herder, C; Martin, S; Algenstaedt, P

    2007-08-01

    The aim of the study was to investigate if the endocannabinoid system (ECS) is activated in visceral adipose tissue and if adipose tissue inflammation affects the ECS activation state. Therefore, expression of fatty acid amide hydrolase (FAAH), cannabinoid receptor 1 (Cb1), adiponectin, and tumor necrosis factor (TNF)-alpha was compared in visceral adipose tissue from 10 normal-weight (BMI 24.4+/-1.1 kg/m2) and 11 obese subjects (BMI 37.6+/-13.6 kg/m2) using quantitative RT-PCR, and gene expression changes were analyzed after in vitro stimulation of visceral adipose tissue with TNF-alpha. The data demonstrate that the ECS is activated in obese visceral adipose tissue as shown by decreased FAAH, Cb1, and adiponectin expression. Obesity-related ECS activation is accompanied by elevated expression of the pro-inflammatory cytokine TNF-alpha, which in turn stimulates ECS activation in vitro. Our data show a strong association between adipose tissue inflammation and ECS activation in obesity, and indicate that a pro-inflammatory state may directly activate the ECS.

  16. Endocannabinoid System and Synaptic Plasticity: Implications for Emotional Responses

    PubMed Central

    Viveros, María-Paz; Marco, Eva-María; Llorente, Ricardo; López-Gallardo, Meritxell

    2007-01-01

    The endocannabinoid system has been involved in the regulation of anxiety, and proposed as an inhibitory modulator of neuronal, behavioral and adrenocortical responses to stressful stimuli. Brain regions such as the amygdala, hippocampus and cortex, which are directly involved in the regulation of emotional behavior, contain high densities of cannabinoid CB1 receptors. Mutant mice lacking CB1 receptors show anxiogenic and depressive-like behaviors as well as an altered hypothalamus pituitary adrenal axis activity, whereas enhancement of endocannabinoid signaling produces anxiolytic and antidepressant-like effects. Genetic and pharmacological approaches also support an involvement of endocannabinoids in extinction of aversive memories. Thus, the endocannabinoid system appears to play a pivotal role in the regulation of emotional states. Endocannabinoids have emerged as mediators of short- and long-term synaptic plasticity in diverse brain structures. Despite the fact that most of the studies on this field have been performed using in vitro models, endocannabinoid-mediated plasticity might be considered as a plausible candidate underlying some of the diverse physiological functions of the endogenous cannabinoid system, including developmental, affective and cognitive processes. In this paper, we will focus on the functional relevance of endocannabinoid-mediated plasticity within the framework of emotional responses. Alterations of the endocannabinoid system may constitute an important factor in the aetiology of certain neuropsychiatric disorders, and, in turn, enhancers of endocannabinoid signaling could represent a potential therapeutical tool in the treatment of both anxiety and depressive symptoms. PMID:17641734

  17. The brain endocannabinoid system in the regulation of energy balance.

    PubMed

    Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena

    2009-02-01

    The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.

  18. The endocannabinoid system and cancer: therapeutic implication

    PubMed Central

    Guindon, Josée; Hohmann, Andrea G

    2011-01-01

    The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, Δ9-tetrahydrocannabinol (Δ9-THC), produces its effects through activation of CB1 and CB2 receptors. CB1 receptors are expressed at high levels in the central nervous system (CNS), whereas CB2 receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer. This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed. Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients. Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21410463

  19. Endocannabinoids and the Cardiovascular System in Health and Disease.

    PubMed

    O'Sullivan, Saoirse Elizabeth

    2015-01-01

    The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.

  20. mGluR1/5 activation in the lateral hypothalamus increases food intake via the endocannabinoid system.

    PubMed

    Sánchez-Fuentes, Asai; Marichal-Cancino, Bruno A; Méndez-Díaz, Mónica; Becerril-Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Prospéro-Garcia, Oscar

    2016-09-19

    Mounting evidence has shown that glutamatergic and endocannabinoid systems in the hypothalamus regulate mammalian food intake. Stimulation of hypothalamic mGluR1/5 and CB1 receptors induces hyperphagia suggesting a possible interaction between these systems to control food intake. In addition, synthesis of endocannabinoids has been reported after mGluR1/5 stimulation in the brain. The aim of this study was to examine the potential cannabinergic activity in the food intake induction by lateral hypothalamic stimulation of mGluR1/5. Wistar albino male rats received bilateral infusions in the lateral hypothalamus (LH) of: (i) vehicle; (ii) (RS)-2-Chloro-5-hidroxyphenylglycine (CHPG; mGluR1/5 agonist); (iii) 2-AG (CB1 endogenous agonist); (iv) AM251 (CB1 antagonist); (v) tetrahydrolipstatin (THL, 1.2μg; diacyl-glycerol lipase inhibitor); and (vi) combinations of CHPG + with the other aforementioned drugs. Food intake was evaluated the first two hours after drug administration. CHPG significantly increased food intake; whereas CHPG in combination with a dose of 2-AG (with no effects on food intake) greatly increased food ingestion compared to CHPG alone. The increase induced by CHPG in food intake was prevented with AM251 or THL. These results suggest that activation of mGluR1/5 in the lateral hypothalamus induces an orexigenic effect via activation of the endocannabinoid system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Targeting the Endocannabinoid System in Alzheimer's Disease

    PubMed Central

    Koppel, Jeremy; Davies, Peter

    2010-01-01

    The endocannabinoid system is rapidly emerging as a potential drug target for a variety of immune-mediated central nervous system diseases. There is a growing body of evidence suggesting that endocannabinoid interventions may have particular relevance to Alzheimer's disease. Here we present a review of endocannabinoid physiology, the evidence that underscores its utility as a potential target for intervention in Alzheimer's disease, and suggest future pathways of research. PMID:18997302

  2. Beyond Cannabis: Plants and the Endocannabinoid System.

    PubMed

    Russo, Ethan B

    2016-07-01

    Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages

    PubMed Central

    2014-01-01

    Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187

  4. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages.

    PubMed

    Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola

    2014-04-17

    Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.

  5. Motion Sickness, Stress and the Endocannabinoid System

    PubMed Central

    Choukèr, Alexander; Kaufmann, Ines; Kreth, Simone; Hauer, Daniela; Feuerecker, Matthias; Thieme, Detlef; Vogeser, Michael; Thiel, Manfred; Schelling, Gustav

    2010-01-01

    Background A substantial number of individuals are at risk for the development of motion sickness induced nausea and vomiting (N&V) during road, air or sea travel. Motion sickness can be extremely stressful but the neurobiologic mechanisms leading to motion sickness are not clear. The endocannabinoid system (ECS) represents an important neuromodulator of stress and N&V. Inhibitory effects of the ECS on N&V are mediated by endocannabinoid-receptor activation. Methodology/Principal Findings We studied the activity of the ECS in human volunteers (n = 21) during parabolic flight maneuvers (PFs). During PFs, microgravity conditions (<10−2 g) are generated for approximately 22 s which results in a profound kinetic stimulus. Blood endocannabinoids (anandamide and 2-arachidonoylglycerol, 2-AG) were measured from blood samples taken in-flight before start of the parabolic maneuvers, after 10, 20, and 30 parabolas, in-flight after termination of PFs and 24 h later. Volunteers who developed acute motion sickness (n = 7) showed significantly higher stress scores but lower endocannabinoid levels during PFs. After 20 parabolas, blood anandamide levels had dropped significantly in volunteers with motion sickness (from 0.39±0.40 to 0.22±0.25 ng/ml) but increased in participants without the condition (from 0.43±0.23 to 0.60±0.38 ng/ml) resulting in significantly higher anandamide levels in participants without motion sickness (p = 0.02). 2-AG levels in individuals with motion sickness were low and almost unchanged throughout the experiment but showed a robust increase in participants without motion sickness. Cannabinoid-receptor 1 (CB1) but not cannabinoid-receptor 2 (CB2) mRNA expression in leucocytes 4 h after the experiment was significantly lower in volunteers with motion sickness than in participants without N&V. Conclusions/Significance These findings demonstrate that stress and motion sickness in humans are associated with impaired endocannabinoid activity

  6. The endocannabinoid system and energy metabolism.

    PubMed

    Bellocchio, L; Cervino, C; Pasquali, R; Pagotto, U

    2008-06-01

    Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors [cannabinoid receptor type 1 (CB1) and CB2] participate in the physiological modulation of many central and peripheral functions. The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received considerable attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptors and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control several metabolic functions by acting on peripheral tissues such as adipocytes, hepatocytes, the gastrointestinal tract, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, and therefore drugs interfering with this overactivation by blocking CB1 receptors are considered as potentially valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  7. The endocannabinoid system and neuropathic pain.

    PubMed

    Maldonado, Rafael; Baños, Josep Eladi; Cabañero, David

    2016-02-01

    The research of new therapeutic strategies for neuropathic pain represents a major current priority. Important drawbacks to advance in the development of these therapies are the limited translational value of the animal models now available and the elucidation of the complex neuronal and immune pathophysiological mechanisms underlying neuropathic pain. One of the neurotransmitter systems participating in neuropathic pain control that has recently raised a particular interest is the endocannabinoid system. This system is highly expressed in neurons and immune cells, and it plays a crucial role in the development of neuropathic pain. Preclinical studies have provided important findings, revealing the potential interest of the endocannabinoid system for the treatment of neuropathic pain. These studies have reported the analgesic effects of cannabinoid agonists in multiple neuropathic pain models, and they have identified specific targets within this system to develop more effective and safe analgesic compounds. However, further studies using more relevant neuropathic pain animal models are required to confirm these interesting results. Several clinical studies suggest that cannabinoids significantly reduced neuropathic pain, although most of these trials fail the required standards of quality. The different pain patient populations included in the systematic reviews also make it difficult to get adequate conclusions. Therefore, additional clinical trials that consider an adequate number of patients, the use active treatments as controls, and longer duration of administration are required to have an adequate profile of the effectiveness and safety of cannabinoids in neuropathic pain.

  8. Effects of Endocannabinoid System Modulation on Cognitive and Emotional Behavior

    PubMed Central

    Zanettini, Claudio; Panlilio, Leigh V.; Aliczki, Mano; Goldberg, Steven R.; Haller, József; Yasar, Sevil

    2011-01-01

    Cannabis has long been known to produce cognitive and emotional effects. Research has shown that cannabinoid drugs produce these effects by driving the brain’s endogenous cannabinoid system and that this system plays a modulatory role in many cognitive and emotional processes. This review focuses on the effects of endocannabinoid system modulation in animal models of cognition (learning and memory) and emotion (anxiety and depression). We review studies in which natural or synthetic cannabinoid agonists were administered to directly stimulate cannabinoid receptors or, conversely, where cannabinoid antagonists were administered to inhibit the activity of cannabinoid receptors. In addition, studies are reviewed that involved genetic disruption of cannabinoid receptors or genetic or pharmacological manipulation of the endocannabinoid-degrading enzyme, fatty acid amide hydrolase (FAAH). Endocannabinoids affect the function of many neurotransmitter systems, some of which play opposing roles. The diversity of cannabinoid roles and the complexity of task-dependent activation of neuronal circuits may lead to the effects of endocannabinoid system modulation being strongly dependent on environmental conditions. Recent findings are reviewed that raise the possibility that endocannabinoid signaling may change the impact of environmental influences on emotional and cognitive behavior rather than selectively affecting any specific behavior. PMID:21949506

  9. Endocannabinoid system and cardio-metabolic risk.

    PubMed

    Loh, K Y; Kew, S T

    2008-10-01

    Recent research in bio-medical science has shown an integral role of endocannabinoid system (ECS) in determining cardio-metabolic risk of human body. The mechanism is mediated through binding of endocannabinoids at the CB1 receptors. The stimulation of CB1 receptor in the brain is believed to control and mediate the effects on appetite. In normal physiology, CB1 receptors activation is responsible for energy homeostasis, govern emotions and behaviors such as anxiety, fear, appetite, food and water intake. CB1 receptors also found in peripheral tissues like liver, pancreas, skeletal muscles and adipose tissues, which play an important role in lipid and glucose metabolism. Over-activation of ECS is associated with various metabolic diseases such as dyslipidemia, insulin resistance, lipogenesis, excessive weight gain and increasing intra-abdominal obesity. All these events lead to increased cardiovascular risk. Use of selective CB1 receptor blocker such as rimonabant has shown to reduced waist circumference, better glycemic control, lower triglyceride levels, raise HDL cholesterol and over all reduction in total body fat. This drug has been recommended for patients with metabolic syndrome.

  10. The Endocannabinoid System: A Putative Role in Neurodegenerative Diseases

    PubMed Central

    Di Iorio, Giuseppe; Lupi, Matteo; Sarchione, Fabiola; Matarazzo, Ilaria; Santacroce, Rita; Petruccelli, Filippo; Martinotti, Giovanni; Di Giannantonio, Massimo

    2013-01-01

    Background: Following the characterization of the chemical structure of D9-tetrahydrocannabinol (THC), the main psychoactive constituent of marijuana, researchers have moved on with scientific valuable explorations. Objectives: The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases. Materials and Methods: The article is a critical analysis of the most recent data currently present in scientific literature on the subject; a qualitative synthesis of only the most significant articles has been performed. Results: In central nervous system, endocannabinoids show a neuromodulatory function, often of retrograde type. This way, they play an important role in synaptic plasticity and in cognitive, motor, sensory and affective processes. In addition, in some acute or chronic pathologies of central nervous system, such as neurodegenerative and neuroinflammatory diseases, endocannabinoids can perform a pro-homeostatic and neuroprotective function, through the activation of CB1 and CB2 receptors. Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases. Conclusions: The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology. PMID:24971285

  11. Modulating the endocannabinoid system in human health and disease--successes and failures.

    PubMed

    Pacher, Pál; Kunos, George

    2013-05-01

    The discovery of the endocannabinoid system, comprising the G-protein coupled cannabinoid 1 and 2 receptors (CB1/2), their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, has triggered an avalanche of experimental studies implicating the endocannabinoid system in a growing number of physiological/pathological functions. These studies have also suggested that modulating the activity of the endocannabinoid system holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders; obesity/metabolic syndrome; cachexia; chemotherapy-induced nausea and vomiting; and tissue injury and pain, amongst others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally-restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain, have introduced unexpected complexities, suggesting that a better understanding of the pathophysiological role of the endocannabinoid system is required to devise clinically successful treatment strategies.

  12. The role of the endocannabinoid system in atherosclerosis.

    PubMed

    Mach, F; Steffens, S

    2008-05-01

    Our current understanding of the pathophysiology of atherosclerosis suggests a prominent role for immune responses from its initiation through its complications. Given the increasing prevalence of cardiovascular risk factors worldwide, there is an urgent need to better understand the underlying mechanisms to improve current treatment protocols. A growing body of evidence suggests that endocannabinoid signalling plays a critical role in the pathogenesis of atherogenesis and its clinical manifestations. Blocking CB(1) receptors has been shown to mediate not only weight reduction, but also several cardiometabolic effects in rodents and humans, indicating a potential relevance for the process of atherosclerosis. Activation of CB(2) receptors with Delta(9)-tetrahydrocannabinol (THC) has been shown to inhibit atherosclerotic plaque progression in mice, mainly by inhibiting macrophage recruitment. Endocannabinoids released from endothelial cells, macrophages or platelets, reduce hypertension in rodents, a major risk factor for atherosclerosis. In addition, anandamide inhibits inflammatory gene expression in endothelial cells, and consequently monocyte adhesion. Conversely, endocannabinoids might also mediate pro-atherosclerotic effects by inducing platelet activation. In conclusion, the precise role of the endocannabinoid system during atherosclerosis is not yet understood. Whether increased endocannabinoid signalling is associated with disease progression and increased risk of acute thrombotic events remains to be determined.

  13. The endocannabinoid system as a novel approach for managing obesity.

    PubMed

    Lillo, Joseph L

    2007-04-01

    The recent discovery of the endocannabinoid system has led to the development of promising treatments for patients with obesity and associated cardiometabolic risk factors. Basic research has demonstrated that the endocannabinoid system plays an integral role in the regulation of food intake, metabolism, and storage. Research with the endocannabinoid receptor antagonist rimonabant has demonstrated statistically significant improvements in body weight, fasting insulin levels, glucose tolerance, high-density lipoprotein cholesterol levels, serum triglyceride levels, and waist circumference, compared with placebo. Rimonabant has also produced statistically significant improvements in inflammatory markers. Research with rimonabant has demonstrated sustained efficacy for as long as 2 years when used in conjunction with a reduced-calorie diet and moderate physical activity. Rimonabant is the first cannabinoid receptor 1 antagonist to be marketed in Europe and the first to file an New Drug Application in the United States. It may provide a novel therapeutic strategy for the treatment of patients with obesity and associated cardiometabolic risk factors.

  14. The endocannabinoid system and its relevance for nutrition.

    PubMed

    Maccarrone, Mauro; Gasperi, Valeria; Catani, Maria Valeria; Diep, Thi Ai; Dainese, Enrico; Hansen, Harald S; Avigliano, Luciana

    2010-08-21

    Endocannabinoids bind to cannabinoid, vanilloid, and peroxisome proliferator-activated receptors. The biological actions of these polyunsaturated lipids are controlled by key agents responsible for their synthesis, transport and degradation, which together form an endocannabinoid system (ECS). In the past few years, evidence has been accumulated for a role of the ECS in regulating food intake and energy balance, both centrally and peripherally. In addition, up-regulation of the ECS in the gastrointestinal tract has a potential impact on inflammatory bowel diseases. In this review, the main features of the ECS are summarized in order to put in better focus our current knowledge of the nutritional relevance of endocannabinoid signaling and of its role in obesity, cardiovascular pathologies, and gastrointestinal diseases. The central and peripheral pathways that underlie these effects are discussed, as well as the possible exploitation of ECS components as novel drug targets for therapeutic intervention in eating disorders.

  15. The endocannabinoid signaling system: a potential target for next-generation therapeutics for alcoholism

    PubMed Central

    Basavarajappa, Balapal S.

    2007-01-01

    Research into the endocannabinoid signaling system has grown exponentially in recent years following the discovery of cannabinoid receptors (CB) and their endogenous ligands, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of the endocannabinoid signaling system in various aspects of alcoholism, including alcohol-seeking behavior. Alcohol increases the synthesis or impairs the degradation of endocannabinoids, leading to a locally elevated endocannabinoid tone within the brain. Elevated endocannabinoid tone might be expected to result in compensatory down-regulation of CB1 receptors or dampened signal transduction. Following release, endocannabinoids diffuse back to the presynaptic neuron where they act as short-range modulators of synaptic activity by altering neurotransmitter release and synaptic plasticity. Mice treated with the CB1 receptor antagonist SR141716A (rimonabant) or homozygous for a deletion of the CB1 receptor gene exhibit reduced voluntary alcohol intake. CB1 knockout mice also show increased alcohol sensitivity, withdrawal, and reduced conditioned place preference. Conversely, activation of CB1 receptor promotes alcohol intake. Recent studies also suggest that elevated endocannabinoid tone due to impaired degradation contributes to high alcohol preference and self-administration. These effects are reversed by local administration of rimonabant, suggesting the participation of the endocannabinoid signaling system in high alcohol preference and self-administration. These recent advances will be reviewed with an emphasis on the endocannabinoid signaling system for possible therapeutic interventions of alcoholism. PMID:17692039

  16. The Endocannabinoid System as an Emerging Target of Pharmacotherapy

    PubMed Central

    PACHER, PÁL; BÁTKAI, SÁNDOR; KUNOS, GEORGE

    2008-01-01

    The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB1 receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB1 receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB2 receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The

  17. The endocannabinoid system as an emerging target of pharmacotherapy.

    PubMed

    Pacher, Pál; Bátkai, Sándor; Kunos, George

    2006-09-01

    The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The

  18. The rat pineal gland comprises an endocannabinoid system.

    PubMed

    Koch, Marco; Habazettl, Iris; Dehghani, Faramarz; Korf, Horst-Werner

    2008-11-01

    In the mammalian pineal gland, the rhythm in melatonin biosynthesis depends on the norepinephrine (NE)-driven regulation of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme of melatonin biosynthesis. A recent study showed that phytocannabinoids like tetrahydrocannabinol reduce AANAT activity and attenuate NE-induced melatonin biosynthesis in rat pineal glands, raising the possibility that an endocannabinoid system is present in the pineal gland. To test this hypothesis, we analyzed cannabinoid (CB) receptors and specific enzymes for endocannabinoid biosynthesis or catabolism in rat pineal glands and cultured pinealocytes. Immunohistochemical and immunoblot analyses revealed the presence of CB1 and CB2 receptor proteins, of N-acyl phosphatidyl ethanolamine hydrolyzing phospholipase D (NAPE-PLD), an enzyme catalyzing endocannabinoid biosynthesis and of fatty acid amide hydrolase (FAAH), an endocannabinoid catabolizing enzyme, in pinealocytes, and in pineal sympathetic nerve fibers identified by double immunofluorescence with an antibody against tyrosine hydroxylase. The immunosignals for the CB2 receptor, NAPE-PLD, and FAAH found in pinealocytes did not vary under a 12 hr light:12 hr dark cycle. The CB1 receptor immunoreaction in pinealocytes was significantly reduced at the end of the light phase [zeitgeber time (ZT) 12]. The immunosignal for NAPE-PLD found in pineal sympathetic nerve fibers was reduced in the middle of the dark phase (ZT 18). Stimulation of cultured pinealocytes with NE affected neither the subcellular distribution nor the intensity of the immunosignals for the investigated CB receptors and enzymes. In summary, the pineal gland comprises indispensable compounds of the endocannabinoid system indicating that endocannabinoids may be involved in the control of pineal physiology.

  19. Endocannabinoids Control Platelet Activation and Limit Aggregate Formation under Flow

    PubMed Central

    De Angelis, Valentina; Koekman, Arnold C.; Weeterings, Cees; Roest, Mark; de Groot, Philip G.; Herczenik, Eszter; Maas, Coen

    2014-01-01

    Background The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function. Objectives Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo. Methods and Results We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa. Conclusions Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function

  20. The emerging role of the endocannabinoid system in cardiovascular disease.

    PubMed

    Pacher, Pál; Steffens, Sabine

    2009-06-01

    Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB(1) and CB(2). Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB(1) receptors. Furthermore, tonic activation of CB(1) receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB(2) receptors in immune cells exerts various immunomodulatory effects, and the CB(2) receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.

  1. [A role for the endocannabinoid system in obesity].

    PubMed

    Valenzuela, Carina; Aguirre, Carolina; Castillo, Valeska; Ronco, Ana María; Llanos, Miguel

    2010-05-01

    Endocannabinoids are the endogenous ligands for the cannabinoid receptors type 1 and 2. These membrane receptors are responsible for the psychotropic effects of Cannabis Sativa, when bound to its active component known as (-)-Delta(9)-tetrahydro-cannabinol. Cannabinoid receptors, endocannabinoids and the enzymes catalyzing their biosynthesis and degradation, constitute the endocannabinoid system (ECS), which has a remarkable role controlling energy balance, both at central nervous system and peripheral tissues. The ECS regulates food ingestion by stimulating a network of orexigenic neurons present in the hypothalamus and reinforcing motivation and reward to food consumption in the nucleus accumbens. Regarding peripheral tissues, this system controls lipid and glucose metabolism at different levels, reduces energy expenditure and leads energy balance to fat storage. Metabolic alterations, including excessive accumulation of abdominal fat, dyslipidaemia and hyperglicaemia, are suggested to be associated to a hyperactivated ECS. Since obesity is one of the major health problems in modern societies, in this review we discuss the role of the endocannabinoid system in metabolic pathways associated to control mechanisms of energy balance and its involvement in overweight and obesity. In addition, we also discuss therapeutic possibilities and emergent problems due to cannabinoid receptor type 1 antagonism utilized as treatment for such alterations.

  2. [Impact of endocannabinoid system in modulation of cardiometabolic risk factors].

    PubMed

    Sulcová, A

    2006-06-01

    Endocannabinoid system, the complex of specific cannabinoid receptors (CB1 and CB2 subtypes) and their endogenous agonistic ligands (endocannabinoids) plays, besides others, an important role in the central and peripheral regulation of food intake, fat accumulation, and lipid and glucose metabolism. Alterations of these functions are associated with endocannabinoid system hyperactivity. The cannabinoid receptor CB1 antagonist rimonabant normalizes the over activated endocannabinoid system which contributes to the regulation of energy homeostasis, and improves lipid and glucose metabolism--decreases body weight, waist circumference, intra-abdominal obesity and triglycerides, increases HDL-C, improves insulin sensitivity according to HOMA index. Results of the international multicentric clinical trials confirm that rimonabant is well tolerated and show antiatherogenic effects (increased adiponectin, decreased marker of inflammation CRP and improvement of LDL profile) as well as decreased percentage of subjects with NCEP/ATPIII (National Cholesterol Education Program Adult Treatment Panel III) defined metabolic syndrome. Thus, the CB1 cannabinoid receptor antagonist rimonabant is suggested to be a prospective drug decreasing cardiometabolic risk factors.

  3. The endocannabinoid system and cardiometabolic risk.

    PubMed

    Szmitko, Paul E; Verma, Subodh

    2008-08-01

    Worldwide, the rates of obesity are rapidly rising. Abdominal obesity in particular is associated with increased cardiovascular risk factors, namely increased triglycerides, low high-density lipoprotein (HDL) cholesterol, elevated blood pressure and increased plasma glucose. The cluster of these obesity-related metabolic disorders identifies individuals with the cardiometabolic syndrome, who are at particular risk for cardiovascular disease and type 2 diabetes. The accumulation of intra-abdominal fat and the subsequent development of visceral obesity rely on the body's mechanisms to store energy and to stimulate appetite. The endocannabinoid system has been implicated in the regulation of energy balance and has emerged as a critical target for the modulation of visceral obesity and insulin resistance. Its overactivity appears to be associated with the development of obesity. The current review examines the role of the endocannabinoid system in cardiometabolic disease and its basis as a target for modulating cardiovascular risk.

  4. The endocannabinoid system, cannabinoids, and pain.

    PubMed

    Fine, Perry G; Rosenfeld, Mark J

    2013-01-01

    The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB 1 receptors) and in the periphery (primarily but not exclusively CB 2 receptors) are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking), as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain.

  5. The Endocannabinoid System, Cannabinoids, and Pain

    PubMed Central

    Fine, Perry G.; Rosenfeld, Mark J.

    2013-01-01

    The endocannabinoid system is involved in a host of homeostatic and physiologic functions, including modulation of pain and inflammation. The specific roles of currently identified endocannabinoids that act as ligands at endogenous cannabinoid receptors within the central nervous system (primarily but not exclusively CB1 receptors) and in the periphery (primarily but not exclusively CB2 receptors) are only partially elucidated, but they do exert an influence on nociception. Exogenous plant-based cannabinoids (phytocannabinoids) and chemically related compounds, like the terpenes, commonly found in many foods, have been found to exert significant analgesic effects in various chronic pain conditions. Currently, the use of Δ9-tetrahydrocannabinol is limited by its psychoactive effects and predominant delivery route (smoking), as well as regulatory or legal constraints. However, other phytocannabinoids in combination, especially cannabidiol and β-caryophyllene, delivered by the oral route appear to be promising candidates for the treatment of chronic pain due to their high safety and low adverse effects profiles. This review will provide the reader with the foundational basic and clinical science linking the endocannabinoid system and the phytocannabinoids with their potentially therapeutic role in the management of chronic pain. PMID:24228165

  6. Endocannabinoid system: Role in depression, reward and pain control (Review)

    PubMed Central

    Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia

    2016-01-01

    Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9-tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined. PMID:27484193

  7. Updates in Reproduction Coming from the Endocannabinoid System

    PubMed Central

    Bradshaw, Heather B.

    2014-01-01

    The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility. PMID:24550985

  8. The skeletal endocannabinoid system: clinical and experimental insights.

    PubMed

    Raphael, Bitya; Gabet, Yankel

    2016-05-01

    Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.

  9. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.

    PubMed

    Gertsch, Jürg

    2008-05-01

    Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

  10. Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation.

    PubMed

    Krott, Lucia M; Piscitelli, Fabiana; Heine, Markus; Borrino, Simona; Scheja, Ludger; Silvestri, Cristoforo; Heeren, Joerg; Di Marzo, Vincenzo

    2016-03-01

    The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning.

  11. The endocannabinoid system and the treatment of obesity.

    PubMed

    Pagotto, Uberto; Vicennati, Valentina; Pasquali, Renato

    2005-01-01

    The endocannabinoids are endogenous lipids capable of binding to both cannabinoid receptors (CB) CB1 and CB2. These receptors belong to the G protein-coupled family receptors and they were discovered while investigating the mode of action of ?(9)-tetrahydrocannabinol, a component of Cannabis sativa, to which they bind with high affinity. Among many other brain sites, CB1 is present in the hypothalamic nuclei involved in the control of energy balance and body weight, as well as in neurons of the mesolimbic system which is believed to mediate the incentive value of food. At central nervous system level, CB1 activation is necessary to induce food intake after a short period of food deprivation, and when CB1 is activated by endocannabinoids produced in situ, a stimulation of the ingestion of palatable food has been described. CB1 stimulation leads to modulation of the release of some hypothalamic anorexigenic and orexigenic mediators, as well as of dopamine in the nucleus accumbens shell. Recent evidence has proved that CB1 is also present in the peripheral organs, such as the adipose tissue and gastrointestinal system, key organs in the regulation of energy metabolism. Animal models have provided solid evidence that genetically induced obesity leads to long-lasting overstimulation of endocannabinoid system synthesis resulting in permanent overactivation of CB1, which may then contribute to the maintenance of this disease. Importantly, at peripheral level, CB1 activation has been shown to stimulate lipogenesis in adipocytes. CB1 blockers increase adiponectin production in adipocytes, which leads to increased fatty acid oxidation and free fatty acid clearance. Moreover, CB1 has been shown to be up-regulated in adipocytes derived from obese rodents. These results support the role of endocannabinoids in the development and maintenance of obesity, paving the way for the development of a new class of drugs such as the CB1 blockers as a therapy for tackling obesity and the

  12. The endocannabinoid system: its roles in energy balance and potential as a target for obesity treatment.

    PubMed

    André, Aurore; Gonthier, Marie-Paule

    2010-11-01

    Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.

  13. [Endocannabinoid system and energy metabolism: physiology and pathophysiology].

    PubMed

    Pagotto, Uberto; Vicennati, Valentina; Pasquali, Renato

    2008-04-01

    The ability of the endocannabinoid system to control appetite, food intake and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system has recently been shown to control several metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the skeletal muscles and the endocrine pancreas. The relevance of the system is further strengthened by the notion that visceral obesity seems to be a condition in which an overactivation of the endocannabinoid system occurs, therefore drugs interfering with this overactivation by blocking CB1 receptor are considered as valuable candidates for the treatment of obesity and related cardiometabolic risk factors.

  14. The endocannabinoid system and associative learning and memory in zebrafish.

    PubMed

    Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard

    2015-09-01

    In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Endocannabinoid system and drug addiction: new insights from mutant mice approaches.

    PubMed

    Maldonado, Rafael; Robledo, Patricia; Berrendero, Fernando

    2013-08-01

    The involvement of the endocannabinoid system in drug addiction was initially studied by the use of compounds with different affinities for each cannabinoid receptor or for the proteins involved in endocannabinoids inactivation. The generation of genetically modified mice with selective mutations in these endocannabinoid system components has now provided important advances in establishing their specific contribution to drug addiction. These genetic tools have identified the particular interest of CB1 cannabinoid receptor and endogenous anandamide as potential targets for drug addiction treatment. Novel genetic tools will allow determining if the modulation of CB2 cannabinoid receptor activity and 2-arachidonoylglycerol tone can also have an important therapeutic relevance for drug addiction.

  16. [A role for the endocannabinoid system in hepatic steatosis].

    PubMed

    Valenzuela, Carina; Castillo, Valeska; Ronco, Ana María; Aguirre, Carolina; Hirsch, Sandra; Llanos, Miguel

    2014-03-01

    The endocannabinoid system (SEC) is an important modulator of several metabolic functions. This system is composed by cannabinoid receptors type 1 and 2 (RCB1 and RCB2), their endogenous ligands, known as endocannabinoids, and the enzymes involved in their synthesis and degradation. A deregulated SEC originates metabolic alterations in several tissues, resulting in the typical manifestations of the metabolic syndrome. Liver steatosis of different origins constitutes a physiopathological condition where an altered hepatic SEC is observed. In this condition, there is an increased expression of RCB1 and/or higher endocannabinoid levels in different hepatic cells, which may exert an autocrine/paracrine hyperstimulation of RCB1/RCB2. Activation of RCB1 stimulate the expression of several hepatocyte lipogenic factors, thus leading to increased de novo fatty acids synthesis and consequently to an abnormal accumulation of triglycerides. The effect of RCB2 activity on hepatic function is still controversial because, on one side its stimulation has an interesting protective effect on alcoholic liver disease while, on the other, it may enhance the development of hepatic steatosis in experimental models of diet-induced obesity. In this review we discuss the proposed mechanisms by which SEC is involved in the etiology of hepatic steatosis, as well as the therapeutic possibilities involving peripheral RCB1/RCB2 antagonism/agonism, for the treatment of this condition.

  17. [Importance of the endocannabinoid system in the regulation of energy homeostasis].

    PubMed

    Kvasnicka, T

    2008-02-01

    The endocannabinoid system is an endogenous signaling system that plays a role in the regulation of energy homeostasis and lipid and glucose metabolism-all of which can influence cardiometabolic risk. The endocannabinoid system appears to be a promising novel mechanistic pathway that modulates important aspects afcardiovascular and metabolic function. The endocannabinoid system is normally a silent physiologic system that becomes transiently activated, that is, only when needed. Evidence suggests that the endocannabinoid system is tonically overactive in human obesity and in animal models of genetic and diet-induced obesity. However, there is evidence in studies that the ECS is tonically overactivated in obesity, although it remains unclear whether overactivation of the ECS precedes or is consequent to expression of the obese phenotype. Rimonabant, a selective cannabinoid-1 receptor (CB1) blocker, has been shown to reduce smoking, body weight and improve and improves the profile of several metabolic risk factors in high-risk patients.

  18. The endocannabinoid system in anxiety, fear memory and habituation

    PubMed Central

    Ruehle, S; Rey, A Aparisi; Remmers, F

    2012-01-01

    Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses. PMID:21768162

  19. Involvement of the endocannabinoid system in periodontal healing

    SciTech Connect

    Kozono, Sayaka; Matsuyama, Takashi; Biwasa, Kamal Krishna; Kawahara, Ko-ichi; Nakajima, Yumiko; Yoshimoto, Takehiko; Yonamine, Yutaka; Kadomatsu, Hideshi; Tancharoen, Salunya; Hashiguchi, Teruto; Noguchi, Kazuyuki; Maruyama, Ikuro

    2010-04-16

    Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation of human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.

  20. The endocannabinoid system in normal and pathological brain ageing.

    PubMed

    Bilkei-Gorzo, Andras

    2012-12-05

    The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.

  1. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system

    PubMed Central

    Schlosburg, Joel E.; Blankman, Jacqueline L.; Long, Jonathan Z.; Nomura, Daniel K.; Pan, Bin; Kinsey, Steven G.; Nguyen, Peter T.; Ramesh, Divya; Booker, Lamont; Burston, James J.; Thomas, Elizabeth A.; Selley, Dana E.; Sim-Selley, Laura J.; Liu, Qingsong; Lichtman, Aron H.; Cravatt, Benjamin F.

    2010-01-01

    Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. Here we show that a similar form of functional antagonism is produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of MAGL. Chronic MAGL blockade also caused physical dependence, impaired endocannabinoid-dependent synaptic plasticity, and desensitization of brain CB1 receptors. These data contrasted with blockade of fatty acid amide hydrolase (FAAH), an enzyme that degrades the other major endocannabinoid anandamide, which produced sustained analgesia without impairing CB1 receptors. Thus, individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively. PMID:20729846

  2. The role of the endocannabinoid system in pain.

    PubMed

    Woodhams, Stephen G; Sagar, Devi Rani; Burston, James J; Chapman, Victoria

    2015-01-01

    Preparations of the Cannabis sativa plant have been used to analgesic effect for millenia, but only in recent decades has the endogenous system responsible for these effects been described. The endocannabinoid (EC) system is now known to be one of the key endogenous systems regulating pain sensation, with modulatory actions at all stages of pain processing pathways. The EC system is composed of two main cannabinoid receptors (CB1 and CB2) and two main classes of endogenous ligands or endocannabinoids (ECs). The receptors have distinct expression profiles, with CB1 receptors found at presynaptic sites throughout the peripheral and central nervous systems (PNS and CNS, respectively), whilst CB2 receptor is found principally (but not exclusively) on immune cells. The endocannabinoid ligands are lipid neurotransmitters belonging to either the N-acyl ethanolamine (NAEs) class, e.g. anandamide (AEA), or the monoacylglycerol class, e.g. 2-arachidonoyl glycerol (2-AG). Both classes are short-acting transmitter substances, being synthesised on demand and with signalling rapidly terminated by specific enzymes. ECs acting at CB1 negatively regulate neurotransmission throughout the nervous system, whilst those acting at CB2 regulate the activity of CNS immune cells. Signalling through both of these receptor subtypes has a role in normal nociceptive processing and also in the development resolution of acute pain states. In this chapter, we describe the general features of the EC system as related to pain and nociception and discuss the wealth of preclinical and clinical data involving targeting the EC system with focus on two areas of particular promise: modulation of 2-AG signalling via specific enzyme inhibitors and the role of spinal CB2 in chronic pain states.

  3. Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome.

    PubMed

    Vemuri, V Kiran; Janero, David R; Makriyannis, Alexandros

    2008-03-18

    Endogenous signaling lipids ("endocannabinoids") functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the

  4. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors

    PubMed Central

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2016-01-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540

  5. Prior stimulation of the endocannabinoid system prevents methamphetamine-induced dopaminergic neurotoxicity in the striatum through activation of CB2 receptors.

    PubMed

    Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie

    2014-12-01

    Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'.

  6. The emerging role of the endocannabinoid system in endocrine regulation and energy balance.

    PubMed

    Pagotto, Uberto; Marsicano, Giovanni; Cota, Daniela; Lutz, Beat; Pasquali, Renato

    2006-02-01

    During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases

  7. [The endocannabinoid system role in the pathogenesis of obesity and depression].

    PubMed

    Zdanowicz, Anna; Kaźmierczak, Wieńczysław; Wierzbiński, Piotr

    2015-07-01

    Excessive consumption and obesity do not always have to be strictly pathological. The adjustment of food intake as well as the pleasure of eating are the results of the circulation of neurotransmitters, hormones and glucocorticoids which have an ability to regulate the activity of many receptors connected with G protein, including endocannabinoid receptors. The key role of endocannabinoids in pathogenesis of obesity is their overproduction by adipose cells. Endocannabinoids (eCBs) affect CB1 receptors and increase hunger, willingness to intake food, decrease peristalsis and delay stomach emptying. In obese people increased levels of both central and peripheral endocannabinoids are observed. It may be connected with higher availability of endocannabinoid precursors to synthesis from adipose tissue and lipids. Raised concentration of eCBs in the body may be the consequence of their catabolism dysfunction. There is a positive correlation between amount the number of receptors in the peripheral tissues and obesity increase. It is thought that expression of CB1 receptors in mesolimbic system is connected with motivation to consume food in response to rewarding factor. The appetite increase after cannabinoids use is probably caused by rewarding action of the consumed food and it results from excessive dopaminergic transmission in award system. The pharmacological inhibition of endocannabinoids activity leads to weight loss, but may also have negative consequences such as decreased mood, reduced tolerance of pain, intensified anxiety, anhedonia, depressive symptoms, even suicidal thoughts. In post mortem examinations a decrease in CB1 receptor density in grey matter of glial cells in patients with major depression was identified. The pleiotropic and extensive activity of endocannabinoid system can influence a range of neurotransmitters thereby modulating the psychiatric life phenomena, simultaneously being involved in metabolism control and energetic system of human body

  8. The endocannabinoid system and emotional processing: a pharmacological fMRI study with ∆9-tetrahydrocannabinol.

    PubMed

    Bossong, Matthijs G; van Hell, Hendrika H; Jager, Gerry; Kahn, René S; Ramsey, Nick F; Jansma, J Martijn

    2013-12-01

    Various psychiatric disorders such as major depression are associated with abnormalities in emotional processing. Evidence indicating involvement of the endocannabinoid system in emotional processing, and thus potentially in related abnormalities, is increasing. In the present study, we examined the role of the endocannabinoid system in processing of stimuli with a positive and negative emotional content in healthy volunteers. A pharmacological functional magnetic resonance imaging (fMRI) study was conducted with a placebo-controlled, cross-over design, investigating effects of the endocannabinoid agonist ∆9-tetrahydrocannabinol (THC) on brain function related to emotional processing in 11 healthy subjects. Performance and brain activity during matching of stimuli with a negative ('fearful faces') or a positive content ('happy faces') were assessed after placebo and THC administration. After THC administration, performance accuracy was decreased for stimuli with a negative but not for stimuli with a positive emotional content. Our task activated a network of brain regions including amygdala, orbital frontal gyrus, hippocampus, parietal gyrus, prefrontal cortex, and regions in the occipital cortex. THC interacted with emotional content, as activity in this network was reduced for negative content, while activity for positive content was increased. These results indicate that THC administration reduces the negative bias in emotional processing. This adds human evidence to support the hypothesis that the endocannabinoid system is involved in modulation of emotional processing. Our findings also suggest a possible role for the endocannabinoid system in abnormal emotional processing, and may thus be relevant for psychiatric disorders such as major depression.

  9. Pharmacotherapeutic targeting of the endocannabinoid signaling system: Drugs for obesity and the metabolic syndrome

    PubMed Central

    Vemuri, V. Kiran; Janero, David R.; Makriyannis, Alexandros

    2013-01-01

    Endogenous signaling lipids (“endocannabinoids”) functionally related to Δ9-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the

  10. [The role of endocannabinoid system in physiological and pathological processes in the eye].

    PubMed

    Nadolska, Krystyna; Goś, Roman

    2008-01-01

    Plant of Cannabis sativa/ marihuana except for its psychotropic effects possesses a range of pharmacological properties, that has been utilized for medical purposes over a period of millenia. Investigations concerning biochemical mechanism of action of the main and most active pharmacological compound of Cannabis sativa, cannabinoid 9-THC, contributed to the discovery of cannabinoid receptors both in the central nervous system (CNS) and peripheral tissues, that mediated actions of this substance. The discovery made possible identification of a new, endogenous signaling system reffered to as the endocannabinoid system. Besides cannabinoid receptors CB1 and CB2, the system includes it's endogenic ligands (endocannabinoids) and compounds that participate in their biosynthesis and inactivation. Structure and functioning of the endocannabinoid system is conservative in all vertebrates. It's activation with plant, synthetic and endogenous cannabinoids has an influence on multiple physiological and pathological processes within the eye.

  11. The endocannabinoid system and appetite: relevance for food reward.

    PubMed

    Jager, Gerry; Witkamp, Renger F

    2014-06-01

    Mounting evidence substantiates the central role of the endocannabinoid system (ECS) in the modulation of both homeostatic and hedonic elements of appetite and food intake. Conversely, feeding status and dietary patterns directly influence activity of the ECS. Following a general introduction on the functioning of the ECS, the present review specifically addresses its role in the modulation of hedonic eating. Humans possess strong motivational systems triggered by rewarding aspects of food. Food reward is comprised of two components: one appetitive (orienting towards food); the other consummatory (hedonic evaluation), also referred to as 'wanting' and 'liking', respectively. Endocannabinoid tone seems to influence both the motivation to feed and the hedonic value of foods, probably by modifying palatability. Human physiology underlying hedonic eating is still not fully understood. A better understanding of the role of the ECS in the rewarding value of specific foods or diets could offer new possibilities to optimise the balance between energy and nutrient intake for different target groups. These groups include the obese and overweight, and potentially individuals suffering from malnutrition. Examples for the latter group are patients with disease-related anorexia, as well as the growing population of frail elderly suffering from persistent loss of food enjoyment and appetite resulting in malnutrition and involuntary weight loss. It has become clear that the psychobiology of food hedonics is extremely complex and the clinical failure of CB1 inverse agonists including rimonabant (Accomplia®) has shown that 'quick wins' in this field are unlikely.

  12. Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain

    PubMed Central

    Casanova, Christian

    2016-01-01

    Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases. PMID:26839718

  13. Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.

    PubMed

    Bouchard, Jean-François; Casanova, Christian; Cécyre, Bruno; Redmond, William John

    2016-01-01

    Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.

  14. Targeting the endocannabinoid system to treat anxiety-related disorders.

    PubMed

    Korem, Nachshon; Zer-Aviv, Tomer Mizrachi; Ganon-Elazar, Eti; Abush, Hila; Akirav, Irit

    2016-05-01

    The endocannabinoid system plays an important role in the control of emotions, and its dysregulation has been implicated in several psychiatric disorders. The most common self-reported reason for using cannabis is rooted in its ability to reduce feelings of stress, tension, and anxiety. Nevertheless, there are only few studies in controlled clinical settings that confirm that administration of cannabinoids can benefit patients with a post-traumatic stress disorder (PTSD). There are considerable encouraging preclinical data to suggest that endocannabinoid-targeted therapeutics for anxiety disorders should continue. In this review, we will describe data supporting a role for the endocannabinoid system in preventing and treating anxiety-like behavior in animal models and PTSD patients. Cannabinoids have shown beneficial outcomes in rat and mouse models of anxiety and PTSD, but they also may have untoward effects that discourage their chronic usage, including anxiogenic effects. Hence, clinical and preclinical research on the endocannabinoid system should further study the effects of cannabinoids on anxiety and help determine whether the benefits of using exogenous cannabinoids outweigh the risks. In general, this review suggests that targeting the endocannabinoid system represents an attractive and novel approach to the treatment of anxiety-related disorders and, in particular, PTSD.

  15. Effects of endocannabinoid and endovanilloid systems on aversive memory extinction.

    PubMed

    Laricchiuta, Daniela; Centonze, Diego; Petrosini, Laura

    2013-11-01

    In contextual fear conditioning animals have to integrate various elemental stimuli into a coherent representation of the condition and then associate context representation with punishment. Although several studies indicated the modulating role of endocannabinoid system (ECS) on the associative learning, ECS effect on contextual fear conditioning requires further investigations. The present study assessed the effects of the increased endocannabinoid anandamide (AEA) tone on acquisition, retrieval and extinction of the contextual fear conditioning. Given that AEA may bind to cannabinoid type 1 (CB1) receptors as well as to postsynaptic ionotropic Transient Receptor Potential Vanilloid type 1 (TRPV1) channels, particular attention was paid in determining how the increased AEA tone influenced fear responses. Furthermore, it was investigated how the ECS modulated the effects of stress-sensitization on fear response. Thus, mice submitted or not to a social defeat stress protocol were treated with drugs acting on ECS, CB1 receptors or TRPV1 channels and tested in a contextual fear conditioning whose conditioning, retrieval and extinction phases were analyzed. ECS activation influenced the extinction process and contrasted the stress effects on fear memory. Furthermore, CB1 receptor antagonist blocked and TRPV1 channel antagonist promoted short- and long-term extinction. The present study indicates that ECS controls the extinction of aversive memories in the contextual fear conditioning.

  16. The endocannabinoid system during development: emphasis on perinatal events and delayed effects.

    PubMed

    Fride, Ester; Gobshtis, Nikolai; Dahan, Hodaya; Weller, Aron; Giuffrida, Andrea; Ben-Shabat, Shimon

    2009-01-01

    The endocannabinoid system (ECS) including its receptors, endogenous ligands ("endocannabinoids"), synthesizing and degradating enzymes, and transporter molecules has been detected from the earliest embryonal stages and throughout pre- and postnatal development; endocannabinoids, notably 2-arachidonoylglycerol, are also present in maternal milk. During three developmental stages, (1) early embryonal, (2) prenatal brain development, and (3) postnatal suckling, the ECS plays an essential role for development and survival. During early gestation, successful embryonal passage through the oviduct and implantation into the uterus require critical enzymatic control of the endocannabinoids. During fetal life, endocannabinoids and the cannabinoid CB(1) receptor are important for brain development, regulating neural progenitor differentiation and guiding axonal migration and synaptogenesis. Postnatally, CB(1) receptor activation by 2-arachidonoylglycerol appears to play a critical role in the initiation of milk suckling in mouse pups, possibly by enabling innervation and/or activation of the tongue muscles. Perinatal manipulation of the ECS, by administering cannabinoids or by maternal marijuana consumption, alters neurotransmitter and behavioral functions in the offspring. Interestingly, the sequelae of prenatal cannabinoids are similar to many effects of prenatal stress, which may suggest that prenatal stress impacts on the ECS and that vice versa prenatal cannabinoid exposure may interfere with the ability of the fetus to cope with the stress. Future studies should further clarify the mechanisms involved in the developmental roles of the ECS and understand better the adverse effects of prenatal exposure, to design strategies for the treatment of conditions including infertility, addiction, and failure-to-thrive.

  17. The endocannabinoid network: insight into the regulation of the neuroendocrine and metabolic systems.

    PubMed

    Lastra-Lastra, Guido; Lastra-Gonzalez, Guido; Manrique, Camila

    2007-01-01

    The dramatic increase in the prevalence of obesity worldwide represents one of the most important challenges of modern medicine, owing to its myriad related complications-in particular cardiovascular disease, the leading cause of death worldwide. Originating from early studies with Cannabis sativa, the active compound of marijuana, there has been an impressive progress in the knowledge about the endocannabinoid network, leading to the identification of specific pathways that modulate feeding behavior. The effects of endocannabinoids are not limited to the central nervous system, but also include peripheral tissues. Experimental and clinic trials have demonstrated the efficacy of endocannabinoid antagonists in the management of obesity and the cardiometabolic syndrome. Better understanding of the mechanisms underlying obesity will lead to development of more active and specific agents, which surely will enlarge the role of this efficacious alternative for management of obesity.

  18. Influence of dietary fat intake on the endocannabinoid system in lean and obese subjects.

    PubMed

    Engeli, Stefan; Lehmann, Anne-Christin; Kaminski, Jana; Haas, Verena; Janke, Jürgen; Zoerner, Alexander A; Luft, Friedrich C; Tsikas, Dimitrios; Jordan, Jens

    2014-05-01

    Endocannabinoid system (ECS) activation promotes obesity-associated metabolic disease. Increased dietary fat intake increases blood endocannabinoids and alters adipose and skeletal muscle ECS gene expression in human. Two weeks isocaloric low- (LFD) and high-fat diets (HFD) in obese (n = 12) and normal-weight (n = 17) subjects in a randomized cross-over study were compared. Blood endocannabinoids were measured in the fasting condition and after food intake using mass spectrometry. Adipose and skeletal muscle gene expression was determined using real-time RT-PCR. Baseline fasting plasma endocannabinoids were similar with both diets. Anandamide decreased similarly with high- or low-fat test meals in both groups. Baseline arachidonoylglycerol plasma concentrations were similar between groups and diets, and unresponsive to eating. In subcutaneous adipose tissue, DAGL-α mRNA was upregulated and fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) mRNAs were down-regulated in obese subjects, but the diets had no influence. In contrast, the HFD produced pronounced reductions in skeletal muscle CB1-R and MAGL mRNA expression, whereas obesity did not affect muscular gene expression. Weight-neutral changes in dietary fat intake cannot explain excessive endocannabinoid availability in human obesity. Obesity and dietary fat intake affect ECS gene expression in a tissue-specific manner. Copyright © 2014 The Obesity Society.

  19. The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.

    PubMed

    Mazier, Wilfrid; Saucisse, Nicolas; Gatta-Cherifi, Blandine; Cota, Daniela

    2015-10-01

    The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability. Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling. ECS activity is beneficial when access to food is scarce or unpredictable. However, when food is plentiful, the ECS favors obesity and metabolic disease. We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.

  20. Modulating the endocannabinoid system in human health and disease: successes and failures

    PubMed Central

    Pacher, Pál; Kunos, George

    2013-01-01

    The discovery of the endocannabinoid system (ECS; comprising of G-protein coupled cannabinoid 1 and 2 receptors, their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, triggered an avalanche of experimental studies that have implicated the ECS in a growing number of physiological/pathological functions. They also suggested that modulating ECS activity holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders, obesity/metabolic syndrome, cachexia, chemotherapy-induced nausea and vomiting, tissue injury and pain, among others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain introduced unexpected complexities, and suggested that better understanding of the pathophysiological role of the ECS is required in order to devise clinically successful treatment strategies, which will be critically reviewed in this brief synopsis. PMID:23551849

  1. The endocannabinoid system and the control of glucose homeostasis.

    PubMed

    Nogueiras, R; Rohner-Jeanrenaud, F; Woods, S C; Tschöp, M H

    2008-05-01

    Blockade of the CB(1) receptor is one of the promising strategies for the treatment of obesity. The first selective CB(1) receptor antagonist, rimonabant, which has already successfully completed phase III clinical trials, led to sustained weight loss and a reduction in waist circumference. Patients treated with rimonabant also demonstrated statistically significant improvement in high-density lipoprotein cholesterol levels, triglyceride levels and insulin resistance, as well as a reduced overall prevalence of metabolic syndrome. Currently, one of the most discussed aspects of endocannabinoid system function is to what extent the endocannabinoid system might affect metabolism independently of its control over body weight and food intake. Specifically, a food-intake- and body-weight-independent role in the regulation of glucose homeostasis and insulin sensitivity could have major impact on the potential of drug candidates targeting the endocannabinoid system for the prevention and treatment of metabolic syndrome. This review summarises the effects of the endocannabinoid system on glucose homeostasis and insulin sensitivity.

  2. The CB1 endocannabinoid system modulates adipocyte insulin sensitivity.

    PubMed

    Motaghedi, Roja; McGraw, Timothy E

    2008-08-01

    Mounting evidence suggests that the endocannabinoid system regulates energy metabolism through direct effects on peripheral tissues as well as central effects that regulate appetite. Here we examined the effect of cannabinoid receptor 1 (CB1) signaling on insulin action in fat cells. We examined effects of the natural CB1 agonist, 2-Arachidonoylglycerol (2-AG), and the synthetic CB1 antagonist, SR141716, on insulin action in cultured adipocytes. We used translocation of glucose transporter GLUT4 to plasma membrane (PM) as a measure of insulin action. 2-AG activation of the CB1 receptor promoted insulin sensitivity whereas antagonism by SR141716 reduced insulin sensitivity. Neither drug affected GLUT4 translocation in the absence of insulin or with high doses of insulin. Consistent with these results we found that insulin-stimulated phosphorylation of the protein kinase Akt was increased by 2-AG, attenuated by SR141716, and unaffected in the absence of insulin or by addition of high-dose insulin. These data provide a functional and molecular link between the CB1 receptor and insulin sensitivity, because insulin-stimulated phosphorylation of Akt is required for GLUT4 translocation to the PM. The sensitizing effects of 2-AG were abrogated by SR141716 and Pertussis toxin, indicating that the effects are mediated by CB1 receptor. Importantly, neither 2-AG nor SR141716 alone or in combination with maximal dose of insulin had effects on GLUT4 translocation and Akt phosphorylation. These data are consistent with a model in which the endocannabinoid system sets the sensitivity of the insulin response in adipocytes rather than directly regulating the redistribution of GLUT4 or Akt phosphorylation.

  3. Ulcerative Colitis Induces Changes on the Expression of the Endocannabinoid System in the Human Colonic Tissue

    PubMed Central

    Iglesias, Mar; Bermudez-Silva, Francisco Javier; Rodríguez de Fonseca, Fernando; Andreu, Montserrat

    2009-01-01

    Background Recent studies suggest potential roles of the endocannabinoid system in gastrointestinal inflammation. Although cannabinoid CB2 receptor expression is increased in inflammatory disorders, the presence and function of the remaining proteins of the endocannabinoid system in the colonic tissue is not well characterized. Methodology Cannabinoid CB1 and CB2 receptors, the enzymes for endocannabinoid biosynthesis DAGLα, DAGLβ and NAPE-PLD, and the endocannabinoid-degradating enzymes FAAH and MAGL were analysed in both acute untreated active ulcerative pancolitis and treated quiescent patients in comparison with healthy human colonic tissue by immunocytochemistry. Analyses were carried out according to clinical criteria, taking into account the severity at onset and treatment received. Principal Findings Western blot and immunocytochemistry indicated that the endocannabinoid system is present in the colonic tissue, but it shows a differential distribution in epithelium, lamina propria, smooth muscle and enteric plexi. Quantification of epithelial immunoreactivity showed an increase of CB2 receptor, DAGLα and MAGL expression, mainly in mild and moderate pancolitis patients. In contrast, NAPE-PLD expression decreased in moderate and severe pancolitis patients. During quiescent pancolitis, CB1, CB2 and DAGLα expression dropped, while NAPE-PLD expression rose, mainly in patients treated with 5-ASA or 5-ASA+corticosteroids. The number of immune cells containing MAGL and FAAH in the lamina propria increased in acute pancolitis patients, but dropped after treatment. Conclusions Endocannabinoids signaling pathway, through CB2 receptor, may reduce colitis-associated inflammation suggesting a potential drugable target for the treatment of inflammatory bowel diseases. PMID:19730730

  4. The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications.

    PubMed

    Horváth, Béla; Mukhopadhyay, Partha; Haskó, György; Pacher, Pál

    2012-02-01

    Oxidative stress and inflammation play critical roles in the development of diabetes and its complications. Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions. The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications. This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system. The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed.

  5. Roles for the endocannabinoid system in ethanol-motivated behavior

    PubMed Central

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2015-01-01

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. PMID:26123153

  6. Roles for the endocannabinoid system in ethanol-motivated behavior.

    PubMed

    Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J

    2016-02-04

    Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination.

  7. Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli

    PubMed Central

    Laricchiuta, Daniela; Musella, Alessandra; Rossi, Silvia; Centonze, Diego

    2014-01-01

    Rewarding effects have been related to enhanced dopamine (DA) release in corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction in the responses to reward is described. This study investigated the link between endocannabinoid and DAergic transmission in the processes that are related to response to two types of reward, palatable food and novelty. Mice treated with drugs acting on endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny neurons of the dorsomedial striatum was analyzed. The endocannabinoid potentiation by URB597 magnified approach behavior for reward (food and novelty) and in parallel inhibited dorsostriatal GABAergic neurotransmission. The decreased activity of CB1 receptor by AM251 (alone or with URB597) or of DAergic D2 receptor by haloperidol had inhibitory effects toward the reward and did not permit the inhibition of dorsostriatal GABAergic transmission. When haloperidol was coadministered with URB597, a restoration effect on reward and reward-dependent motor activity was observed, only if the reward was the palatable food. In parallel, the coadministration led to restoring inhibition of CB1-mediated GABAergic transmission. Thus, in the presence of simultaneous ECS activation and inhibition of DAergic system the response to reward appears to be a stimulus-dependent manner. PMID:24904335

  8. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.

    PubMed

    Galdino, Giovane; Romero, Thiago R L; Silva, José Felipe P; Aguiar, Daniele C; de Paula, Ana Maria; Cruz, Jader S; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor D; Di Marzo, Vincenzo; Perez, Andrea C

    2014-02-01

    Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. Additionally, pretreatment (s.c., i.t. and i.c.v.) with endocannabinoid metabolizing enzyme inhibitors (MAFP and JZL184) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified this antinociceptive effect. These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels.

  9. The endocannabinoid-CB(1) receptor system in pre- and postnatal life.

    PubMed

    Fride, Ester

    2004-10-01

    Recent research suggests that the endogenous cannabinoids ("endocannabinoids") and their cannabinoid receptors have a major influence during pre- and postnatal development. First, high levels of the endocannaboid anandamide and cannabinoid receptors are present in the preimplantation embryo and in the uterus, while a temporary reduction of anandamide levels is essential for embryonal implantation. In women accordingly, an inverse association has been reported between fatty acid amide hydrolase (the anandamide degrading enzyme) in human lymphocytes and miscarriage. Second, CB(1) receptors display a transient presence in white matter areas of the pre- and postnatal nervous system, suggesting a role for CB(1) receptors in brain development. Third, endocannabinoids have been detected in maternal milk and activation of CB(1) receptors appears to be critical for milk sucking by newborn mice, apparently activating oral-motor musculature. Fourth, anandamide has neuroprotectant properties in the developing postnatal brain. Finally, prenatal exposure to the active constituent of marihuana (Delta(9)-tetrahydrocannabinol) or to anandamide affects prefrontal cortical functions, memory and motor and addictive behaviors, suggesting a role for the endocannabinoid CB(1) receptor system in the brain structures which control these functions. Further observations suggest that children may be less prone to psychoactive side effects of Delta(9)-tetrahydrocannabinol or endocannabinoids than adults. The medical implications of these novel developments are far reaching and suggest a promising future for cannabinoids in pediatric medicine for conditions including "non-organic failure-to-thrive" and cystic fibrosis.

  10. Role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice.

    PubMed

    Egashira, Nobuaki; Shirakawa, Atsunori; Okuno, Ryoko; Mishima, Kenichi; Iwasaki, Katsunori; Oishi, Ryozo; Fujiwara, Michihiro

    2011-07-01

    We previously reported that systemic administration of the endocannabinoid anandamide inhibited the head-twitches induced by the hallucinogenic drug 2,5-dimethoxy-4-iodoamphetamine (DOI) in mice, which is mediated via the activation of 5-HT(2A) receptors. Endocannabinoid and glutamatergic systems have been suggested to modulate the function of 5-HT(2A) receptors. In the present study, we further investigated the role of endocannabinoid and glutamatergic systems in DOI-induced head-twitch response in mice. An anandamide transport inhibitor AM404 (0.3-3mg/kg, i.p.), a fatty acid amide hydrolase inhibitor URB597 (0.1-10mg/kg, i.p.), a glutamate release inhibitor riluzole (0.3 and 1mg/kg, i.p.), a natural glutamate analog l-glutamylethylamide (theanine, 1 and 3mg/kg, p.o.) and an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist NBQX (0.01-0.3mg/kg, i.p.) significantly inhibited DOI-induced head-twitch response. The AMPA receptor positive modulator aniracetam (30 or 100mg/kg, p.o.) reversed inhibition of head-twitch response by NBQX and URB597. These findings indicated that endocannabinoid and glutamatergic systems participate in the mechanism of action of DOI to induce head-twitch response.

  11. Endocannabinoid system as a regulator of tumor cell malignancy – biological pathways and clinical significance

    PubMed Central

    Pyszniak, Maria; Tabarkiewicz, Jacek; Łuszczki, Jarogniew J

    2016-01-01

    The endocannabinoid system (ECS) comprises cannabinoid receptors (CBs), endogenous cannabinoids, and enzymes responsible for their synthesis, transport, and degradation of (endo)cannabinoids. To date, two CBs, CB1 and CB2, have been characterized; however, orphan G-protein-coupled receptor GPR55 has been suggested to be the third putative CB. Several different types of cancer present abnormal expression of CBs, as well as other components of ECS, and this has been shown to correlate with the clinical outcome. Although most effects of (endo)cannabinoids are mediated through stimulation of classical CBs, they also interact with several molecules, either prosurvival or proapoptotic molecules. It should be noted that the mode of action of exogenous cannabinoids differs significantly from that of endocannabinoid and results from the studies on their activity both in vivo and in vitro could not be easily compared. This review highlights the main signaling pathways involved in the antitumor activity of cannabinoids and the influence of their activation on cancer cell biology. We also discuss changes in the expression pattern of the ECS in various cancer types that have an impact on disease progression and patient survival. A growing amount of experimental data imply possible exploitation of cannabinoids in cancer therapy. PMID:27486335

  12. The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.

    PubMed

    Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel

    2017-01-01

    indicate that the sleep-wake cycle is under the influence of endocannabinoids since the blocking of the CB1 cannabinoid receptor or the pharmacological inhibition of FAAH activity promotes wakefulness, whereas the obstruction of AMT function enhances sleep. However, no solid evidence is available regarding the role of the endocannabinoid system in an unquestionable emotional component of the sleep: Dream activity. Since dreaming is a mental activity that occurs during sleep (characterized by emotions, sensory perceptions, and bizarre components) and the endocannabinoid system modulates neurobiological processes involving consciousness, such as learning and memory, attention, pain perception, emotions and sleep, it is acceptable to hypothesize that the endocannabinoid system might be modulating dream activity. In this regard, an accumulative body of evidence in human and animal models has been reported regarding the role of the endocannabinoid system in the control of emotional states and dreams. Moreover, preliminary studies in humans have indicated that treatment with cannabinoids may decrease post-traumatic stress disorder symptoms, including nightmares. Thus, based on a review of the literature available in PubMed, this article hypothesizes a conceptual framework within which the endocannabinoid system might influence the generation of dream experiences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Rimonabant: an antagonist drug of the endocannabinoid system for the treatment of obesity.

    PubMed

    Leite, Carlos E; Mocelin, Clei A; Petersen, Guilherme O; Leal, Mirna B; Thiesen, Flavia V

    2009-01-01

    Obesity, an ever-increasing problem in the industrialized world, has long been a target of research for a cure or, at least, control of its expansion. In the search for treatment, the recently discovered endocannabinoid system has emerged as a new target for controlling obesity and its associated conditions. The endocannabinoid system plays an important role in controlling weight and energy balance in humans. This system is activated to a greater extent in obese patients, and the specific blockage of its receptors is the aim of rimonabant, one of the most recent drugs created for the treatment of obesity. This drug acts as a blockade for endocannabinoid receptors found in the brain and peripheral organs that play an important role on carbohydrate and fat metabolism. Clinical studies have confirmed that, when used in combination with a low calorie diet, rimonabant promotes loss in body weight, loss in abdominal circumference, and improvements in dyslipidemia. Rimonabant is also being tested as a potential anti-smoking treatment since endocannabinoids are related to the pleasurable effect of nicotine. Thus, rimonabant constitutes a new therapeutic approach to obesity and cardiovascular risk factors. Studies show effectiveness in weight loss; however, side effects such as psychiatric alterations have been reported, including depression and anxiety. These side effects have led the FDA (Food and Drug Administration) to not approve this drug in the United States. For a more complete evaluation on the safety of this drug, additional studies are in progress.

  14. Endocannabinoid System: A Multi-Facet Therapeutic Target.

    PubMed

    Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit

    2016-01-01

    Cannabis sativa is also popularly known as marijuana. It has been cultivated and used by man for recreational and medicinal purposes since many centuries. Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries. The research of drugs acting on endocannabinoid system has seen many ups and downs in the recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve "protective role" in many medical conditions. Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson's disease, Huntington's disease, Alzheimer's disease and Tourette's syndrome could possibly be treated by drugs modulating endocannabinoid system. Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008. Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish

  15. Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain.

    PubMed

    Munawar, Neha; Oriowo, Mabayoje A; Masocha, Willias

    2017-01-01

    Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2',3'-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the

  16. Antihyperalgesic Activities of Endocannabinoids in a Mouse Model of Antiretroviral-Induced Neuropathic Pain

    PubMed Central

    Munawar, Neha; Oriowo, Mabayoje A.; Masocha, Willias

    2017-01-01

    Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2′,3′-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the

  17. Brain endocannabinoid system is involved in fluoxetine-induced anorexia.

    PubMed

    Zarate, Jon; Churruca, Itziar; Pascual, Jesús; Casis, Luis; Sallés, Joan; Echevarría, Enrique

    2008-06-01

    In order to describe the effects of chronic fluoxetine administration on the brain endocannabinoid system in lean and obese Zucker rats, brain immunostaining for the CB1 and CB1-phosphorylated cannabinoid receptors was carried out. Obese Zucker rats showed significantly increased the numbers of neural cells positively immunostained for the CB1-phosphorylated receptor in the striatum, compared to their lean litter-mates. Chronic fluoxetine administration decreased the number of neural cells immunostained for CB1-phosphorylated receptor in several striatal and hippocampal regions of obese Zucker rats, compared to controls treated with saline. In contrast, no change in CB1-phosphorylated receptor immunostaining was observed in fluoxetine-treated lean rats, with respect to controls. Taken together, these results suggest the involvement of the hippocampal and striatal endocannabinoid receptor system in fluoxetine-induced anorexia in lean and obese Zucker rats.

  18. The Endocannabinoid System as a Therapeutic Target in Glaucoma

    PubMed Central

    Cairns, Elizabeth A.; Baldridge, William H.; Kelly, Melanie E. M.

    2016-01-01

    Glaucoma is an irreversible blinding eye disease which produces progressive retinal ganglion cell (RGC) loss. Intraocular pressure (IOP) is currently the only modifiable risk factor, and lowering IOP results in reduced risk of progression of the disorder. The endocannabinoid system (ECS) has attracted considerable attention as a potential target for the treatment of glaucoma, largely due to the observed IOP lowering effects seen after administration of exogenous cannabinoids. However, recent evidence has suggested that modulation of the ECS may also be neuroprotective. This paper will review the use of cannabinoids in glaucoma, presenting pertinent information regarding the pathophysiology of glaucoma and how alterations in cannabinoid signalling may contribute to glaucoma pathology. Additionally, the mechanisms and potential for the use of cannabinoids and other novel agents that target the endocannabinoid system in the treatment of glaucoma will be discussed. PMID:26881140

  19. The role of the pancreatic endocannabinoid system in glucose metabolism.

    PubMed

    Bermúdez-Silva, Francisco J; Suárez Pérez, Juan; Nadal, Angel; Rodríguez de Fonseca, Fernando

    2009-02-01

    The endogenous cannabinoid system participates in the regulation of energy homeostasis, and this fact led to the identification of a new group of therapeutic agents for complicated obesity and diabetes. Cannabinoid receptor antagonists are now realities in clinical practice. The use of such antagonists for reducing body weight gain, lowering cholesterol and improving glucose homeostasis is based on the ability of the endocannabinoids to coordinately regulate energy homeostasis by interacting with central and peripheral targets, including adipose tissue, muscle, liver and endocrine pancreas. In this review we will analyse the presence of this system in the main cell types of the islets of Langerhans, as well as the physiological relevance of the endocannabinoids and parent acylethanolamides in hormone secretion and glucose homeostasis. We will also analyse the impact that these findings may have in clinical practice and the potential outcome of new therapeutic strategies for modulating glucose homeostasis and insulin/glucagon secretion.

  20. The role of the endocannabinoid system in the regulation of energy expenditure.

    PubMed

    Cavuoto, Paul; Wittert, Gary A

    2009-02-01

    Endocannabinoids, a lipid-derived signaling system, regulate appetite and motivation to eat via effects in the hypothalamus and nucleus accumbens. Not all the effects of endocannabinoids on fat mass can be explained by the regulation of food intake alone. Endocannabinoids and their receptors are located in areas of the central nervous system and multiple peripheral tissues involved in the regulation of intermediary metabolism and energy expenditure. In addition to regulating food intake by both central and peripherally mediated effects, endocannabinoids modify glucose and lipid metabolism so as to promote energy storage via lipogenesis and reduce energy expenditure. The endocannabinoid system appears to be overactive in obesity and may serve to maintain fat mass and underlies some of the metabolic consequences of obesity. Inhibition of the cannabinoid type-1 receptor ameliorates the effects of endocannabinoids on food intake and energy metabolism; lipogenesis is inhibited, lipolysis, fatty acid oxidation and glucose uptake increase.

  1. Therapeutic potential of the endocannabinoid system in the brain.

    PubMed

    Ramos, José Antonio; González, Sara; Sagredo, Onintza; Gómez-Ruiz, María; Fernández-Ruiz, Javier

    2005-07-01

    Cannabinoids have been predominantly considered as the substances responsible of the psychoactive properties of marijuana and other derivatives of Cannabis sativa. However, these compounds are now being also considered for their therapeutic potential, since the term "cannabinoid" includes much more compounds than those present in Cannabis sativa derivatives. Among them, there are numerous synthetic cannabinoids obtained by modifications from plant-derived cannabinoids, but also from the compounds that behave as endogenous ligands for the different cannabinoid receptor subtypes. Within the family of "cannabinoid-related compounds", one should also include some prototypes of selective antagonists for these receptors, and also the recently developed inhibitors of the mechanism of finalization of the biological action of endocannabinoids (transporter + FAAH). All this boom of the cannabinoid pharmacology has, therefore, an explanation in the recent discovery and characterization of the endocannabinoid signaling system, which plays a modulatory role mainly in the brain but also in the periphery. The objective of the present article will be to review, from pharmacological and biochemical points of view, the more recent advances in the study of the endocannabinoid system and their functions in the brain, as well as their alterations in a variety of pathologies and the proposed therapeutic benefits of novel cannabinoid-related compounds that improve the pharmacokinetic and pharmacodynamic properties of classic cannabinoids.

  2. Marijuana, the Endocannabinoid System and the Female Reproductive System.

    PubMed

    Brents, Lisa K

    2016-06-01

    Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system.

  3. Marijuana, the Endocannabinoid System and the Female Reproductive System

    PubMed Central

    Brents, Lisa K.

    2016-01-01

    Marijuana use among women is highly prevalent, but the societal conversation on marijuana rarely focuses on how marijuana affects female reproduction and endocrinology. This article reviews the current scientific literature regarding marijuana use and hypothalamic-pituitary-ovarian (HPO) axis regulation, ovarian hormone production, the menstrual cycle, and fertility. Evidence suggests that marijuana can reduce female fertility by disrupting hypothalamic release of gonadotropin releasing hormone (GnRH), leading to reduced estrogen and progesterone production and anovulatory menstrual cycles. Tolerance to these effects has been shown in rhesus monkeys, but the effects of chronic marijuana use on human female reproduction are largely unknown. Marijuana-induced analgesia, drug reinforcement properties, tolerance, and dependence are influenced by ovarian hormones, with estrogen generally increasing and progesterone decreasing sensitivity to marijuana. Carefully controlled regulation of the Endocannabinoid System (ECS) is required for successful reproduction, and the exogenous cannabinoids in marijuana may disrupt the delicate balance of the ECS in the female reproductive system. PMID:27354844

  4. Expression of the endocannabinoid system in fibroblasts and myofascial tissues.

    PubMed

    McPartland, John M

    2008-04-01

    The endocannabinoid (eCB) system, like the better-known endorphin system, consists of cell membrane receptors, endogenous ligands and ligand-metabolizing enzymes. Two cannabinoid receptors are known: CB(1) is principally located in the nervous system, whereas CB(2) is primarily associated with the immune system. Two eCB ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are mimicked by cannabis plant compounds. The first purpose of this paper was to review the eCB system in detail, highlighting aspects of interest to bodyworkers, especially eCB modulation of pain and inflammation. Evidence suggests the eCB system may help resolve myofascial trigger points and relieve symptoms of fibromyalgia. However, expression of the eCB system in myofascial tissues has not been established. The second purpose of this paper was to investigate the eCB system in fibroblasts and other fascia-related cells. The investigation used a bioinformatics approach, obtaining microarray data via the GEO database (www.ncbi.nlm.nih.gov/geo/). GEO data mining revealed that fibroblasts, myofibroblasts, chondrocytes and synoviocytes expressed CB(1), CB(2) and eCB ligand-metabolizing enzymes. Fibroblast CB(1) levels nearly equalled levels expressed by adipocytes. CB(1) levels upregulated after exposure to inflammatory cytokines and equiaxial stretching of fibroblasts. The eCB system affects fibroblast remodeling through lipid rafts associated with focal adhesions and dampens cartilage destruction by decreasing fibroblast-secreted metalloproteinase enzymes. In conclusion, the eCB system helps shape biodynamic embryological development, diminishes nociception and pain, reduces inflammation in myofascial tissues and plays a role in fascial reorganization. Practitioners wield several tools that upregulate eCB activity, including myofascial manipulation, diet and lifestyle modifications, and pharmaceutical approaches.

  5. Natural and synthetic endocannabinoids and their structure-activity relationships.

    PubMed

    Palmer, S L; Khanolkar, A D; Makriyannis, A

    2000-09-01

    significantly advanced our understanding of cannabinoid biochemistry. This summary seeks to define the pharmacology of endocannabinoids and to focus on the structure-activity relationships (SAR) of anandamide for the CB1 cannabinoid receptor.

  6. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    PubMed Central

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  7. [The endocannabinoid system and its possible role in neurobiology of psychiatric disorders].

    PubMed

    Caroti, Eleonora; Cuoco, Valentina; Marconi, Michela; Ratti, Flavia; Bersani, Giuseppe

    2013-01-01

    In the last years, numerous researches led to identify endocannabinoid system, a sophisticated short-range signaling system which is located both in Central Nervous System (CNS) and in whole organism. Because of its flexibility of expression, it plays a modulatory role in controlling the answers to stimuli which disturb homeostasis. On one hand it lets them occur whilst on the other it limits them in order to protect organism from consequences due to excessive reaction. In the CNS, endocannabinoid system is able to control the release of several neurotransmitters thanks to its retrograde signaling, modulating synaptic activity. Analysing this property during preclinical studies, it came out that the endocannabinoid system is involved in numerous physiologic processes, such as neuroendocrine axes, food consumption, brain reward and satisfaction mechanisms, memories storing and extinction, emotions and neurodevelopment regulation. Such discoveries have led researchers to suppose and investigate an alteration of this system in the physiopathology of some psychiatric disorders such as anxiety disorder, depression, eating disorders, addiction and schizophrenia. Results of such studies on animal models show a possible involvement of this system and were quickly followed by clinical studies which seem to confirm it. These findings might open new scenarios for understanding the pathogenesis of several psychiatric disorders and, at same time, they show new prospects for their treatment.

  8. Neurobiological Interactions Between Stress and the Endocannabinoid System

    PubMed Central

    Morena, Maria; Patel, Sachin; Bains, Jaideep S; Hill, Matthew N

    2016-01-01

    Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic–pituitary–adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress

  9. Neurobiological Interactions Between Stress and the Endocannabinoid System.

    PubMed

    Morena, Maria; Patel, Sachin; Bains, Jaideep S; Hill, Matthew N

    2016-01-01

    Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.

  10. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders.

    PubMed

    van der Stelt, Mario; Di Marzo, Vincenzo

    2003-11-07

    To date, N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol are the best studied endocannabinoids and are thought to act as retrograde messengers in the central nervous system (CNS). By activating presynaptic cannabinoid CB1 receptors, they can reduce glutamate release in dorsal and ventral striatum (nucleus accumbens) and alter synaptic plasticity, thereby modulating neurotransmission in the basal ganglia and in the mesolimbic reward system. In this review, we will focus on the role of the endocannabinoid system within these neuronal pathways and describe its effect on dopaminergic transmission and vice versa. The endocannabinoid system is unlikely to directly affect dopamine release, but can modify dopamine transmission trough trans-synaptic mechanisms, involving gamma-aminobutyric acid (GABA)-ergic and glutamatergic synapses, as well as by converging signal transduction cascades of the cannabinoid and dopamine receptors. The dopamine and endocannabinoid systems exert a mutual control on each other. Cannabinergic signalling may lead to release of dopamine, which can act via dopamine D1-like receptors as a negative feedback mechanism to counteract the effects of activation of the cannabinoid CB1 receptor. On the other hand, dopaminergic signalling via dopamine D2-like receptors may lead to up-regulation of cannabinergic signalling, which is likely to represent a negative feedback on dopaminergic signalling. The consequences of these interactions become evident in pathological conditions in which one of the two systems is likely to be malfunctioning. We will discuss neurological and psychiatric disorders such as Parkinson's and Huntington's disease, drug addiction and schizophrenia. Furthermore, the possible role of the endocannabinoid system in disorders not necessarily depending on the dopaminergic system, such as eating disorders and anxiety, will be described.

  11. The endocannabinoid system in guarding against fear, anxiety and stress.

    PubMed

    Lutz, Beat; Marsicano, Giovanni; Maldonado, Rafael; Hillard, Cecilia J

    2015-12-01

    The endocannabinoid (eCB) system has emerged as a central integrator linking the perception of external and internal stimuli to distinct neurophysiological and behavioural outcomes (such as fear reaction, anxiety and stress-coping), thus allowing an organism to adapt to its changing environment. eCB signalling seems to determine the value of fear-evoking stimuli and to tune appropriate behavioural responses, which are essential for the organism's long-term viability, homeostasis and stress resilience; and dysregulation of eCB signalling can lead to psychiatric disorders. An understanding of the underlying neural cell populations and cellular processes enables the development of therapeutic strategies to mitigate behavioural maladaptation.

  12. Endocannabinoid system overactivity and the metabolic syndrome: prospects for treatment.

    PubMed

    Perkins, Jennifer M; Davis, Stephen N

    2008-02-01

    The endocannabinoid system (ECS) plays a physiologic role in modulating energy balance, feeding behavior, lipoprotein metabolism, insulin sensitivity, and glucose homeostasis, which when dysregulated can all contribute to cardiometabolic risk. Evidence has suggested that the ECS is overactive in human obesity and in animal models of genetic and diet-induced obesity. ECS stimulation centrally and peripherally drives metabolic processes that mimic the metabolic syndrome. These findings have led to the development of potential novel therapeutic targets, including the drug rimonabant, a selective CB1 receptor antagonist, which has been shown to promote weight loss, reduce inflammation, improve dyslipidemia, and improve glucose homeostasis.

  13. The Endocannabinoid System as Pharmacological Target Derived from Its CNS Role in Energy Homeostasis and Reward. Applications in Eating Disorders and Addiction

    PubMed Central

    Viveros, Maria-Paz; Bermúdez-Silva, Francisco-Javier; Lopez-Rodriguez, Ana-Belén; Wagner, Edward J.

    2011-01-01

    The endocannabinoid system (ECS) has been implicated in many physiological functions, including the regulation of appetite, food intake and energy balance, a crucial involvement in brain reward systems and a role in psychophysiological homeostasis (anxiety and stress responses). We first introduce this important regulatory system and chronicle what is known concerning the signal transduction pathways activated upon the binding of endogenous cannabinoid ligands to the Gi/0-coupled CB1 cannabinoid receptor, as well as its interactions with other hormones and neuromodulators which can modify endocannabinoid signaling in the brain. Anorexia nervosa (AN) and bulimia nervosa (BN) are severe and disabling psychiatric disorders, characterized by profound eating and weight alterations and body image disturbances. Since endocannabinoids modulate eating behavior, it is plausible that endocannabinoid genes may contribute to the biological vulnerability to these diseases. We present and discuss data suggesting an impaired endocannabinoid signaling in these eating disorders, including association of endocannabinoid components gene polymorphisms and altered CB1-receptor expression in AN and BN. Then we discuss recent findings that may provide new avenues for the identification of therapeutic strategies based on the endocannabinod system. In relation with its implications as a reward-related system, the endocannabinoid system is not only a target for cannabis but it also shows interactions with other drugs of abuse. On the other hand, there may be also a possibility to point to the ECS as a potential target for treatment of drug-abuse and addiction. Within this framework we will focus on enzymatic machinery involved in endocannabinoid inactivation (notably fatty acid amide hydrolase or FAAH) as a particularly interesting potential target. Since a deregulated endocannabinoid system may be also related to depression, anxiety and pain symptomatology accompanying drug

  14. Kavalactones and the endocannabinoid system: the plant-derived yangonin is a novel CB₁ receptor ligand.

    PubMed

    Ligresti, Alessia; Villano, Rosaria; Allarà, Marco; Ujváry, István; Di Marzo, Vincenzo

    2012-08-01

    To investigate the possible interactions between kavalactone-based molecules and proteins of the endocannabinoid system and provide novel and synthetically accessible structural scaffolds for the design of cannabinoid receptor ligands sharing pharmacological properties with kavapyrones, a preliminary SAR analysis was performed on five commercially available natural kavalactones and nine kavalactone-analogues properly synthesized. These compounds were investigated for assessing their cannabinoid receptor binding affinity and capability of inhibiting the activity of the two major metabolic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Among the molecules tested, only yangonin exhibited affinity for the human recombinant CB₁ receptor with a K(i)=0.72 μM and selectivity vs. the CB₂ receptor (K(i)>10 μM). None of the compounds exhibited strong inhibitory effects on the two enzymes analyzed. The CB₁ receptor affinity of yangonin suggests that the endocannabinoid system might contribute to the complex human psychopharmacology of the traditional kava drink and the anxiolytic preparations obtained from the kava plant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats

    SciTech Connect

    Ito, Yuki; Tomizawa, Motohiro; Suzuki, Himiko; Okamura, Ai; Ohtani, Katsumi; Nunome, Mari; Noro, Yuki; Wang, Dong; Nakajima, Tamie; Kamijima, Michihiro

    2014-09-15

    Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9 weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.

  16. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract.

    PubMed

    Trautmann, Samantha M; Sharkey, Keith A

    2015-01-01

    Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.

  17. The endocannabinoid system: mechanisms behind metabolic homeostasis and imbalance.

    PubMed

    Woods, Stephen C

    2007-02-01

    Scientific interest in the endocannabinoid (EC) system developed as a result of the known effects of tetrahydrocannabinol, including an increased desire to consume food. Further investigation has led to the belief that the EC system plays a role in accumulation of intra-abdominal fat and worsening of cardiovascular disease (CVD) risk factors. The EC system has been identified as a neuromodulatory system that is normally inactive but can be overstimulated to cause and exacerbate numerous metabolic pathologies. EC agonists and receptors have been identified in the brain, liver, and peripheral adipose tissue, and the EC system is known to affect metabolism in these areas and others through neuromodulatory signals. Meal size, body weight, and numerous metabolic factors such as triglyceride and cholesterol levels, insulin resistance, and glucose intolerance can be affected via the EC system. Further research into the EC system is warranted to elucidate its role in metabolic homeostasis.

  18. Endocannabinoid system modulates relapse to methamphetamine seeking: possible mediation by the arachidonic acid cascade.

    PubMed

    Anggadiredja, Kusnandar; Nakamichi, Masanori; Hiranita, Takato; Tanaka, Hiroyuki; Shoyama, Yukihiro; Watanabe, Shigenori; Yamamoto, Tsuneyuki

    2004-08-01

    We clarified the modulating action of the endocannabinoid system, and its possible mediation by the arachidonic acid cascade, on the reinstatement of methamphetamine (METH)-seeking behavior, using the intravenous self-administration paradigm in rats. Following 12 days of self-administration of METH, the replacement of METH with saline resulted in a gradual decrease in lever press responses (extinction). Under extinction conditions, METH-priming or re-exposure to cues previously paired with METH infusion markedly increased the responses (reinstatement of drug-seeking). The cannabinoid CB1 receptor antagonist, SR141716A, blocked this behavior. Although the cannabinoid agonist, Delta8-tetrahydrocannabinol (THC), had no effects by itself, coadministration of the agonist and METH at small doses reinstated the drug-seeking behavior. THC attenuated the effects of the reinstatement-inducing dose of METH, but enhanced the effect of cues. Either given repeatedly during the extinction or singly, 24 h before the first METH-priming or cues challenge, THC suppressed the reinstatement. In another set of experiments, we found that diclofenac, a cyclooxygenase inhibitor, also attenuated the reinstatement induced by exposure to cues or drug-priming. These results suggest that the endocannabinoid system, through possible mediation by the arachidonic acid cascade, serves as a modulator of the reinstating effects of METH-priming and cues. Extending the current view on the treatment of drug dependence, these results indicate that endocannabinoid-activating substances as well as cyclooxygenase inhibitors may be promising as antirelapse agents.

  19. Role of the endocannabinoid system in abdominal obesity and the implications for cardiovascular risk.

    PubMed

    Rosenson, Robert S

    2009-01-01

    Several cardiometabolic factors present in obese and insulin-resistant individuals represent a continuum of increasing risk for the development of type 2 diabetes and cardiovascular disease. The importance of abdominal obesity as an independent risk factor is underscored by its association with adverse endocrine function. Recent evidence from animal and human studies has shown a role for the endocannabinoid system in maintaining energy balance and glucose and lipoprotein metabolism, with overactivity linked to aberrant glycemic and lipoprotein control, and a link to adiposity. Modulation of this system through endocannabinoid-receptor blockade has resulted in an improvement in a number of important risk factors in clinical trials, including visceral and subcutaneous abdominal adipose tissue, glucose tolerance, dyslipidemia and measures of inflammation. These findings may have significant implications for the management of patients at risk of developing cardiovascular and metabolic disease; however, the occurrence of psychiatric adverse events with rimonabant may preclude further development of centrally active endocannabinoid receptor antagonists for the treatment of cardiometabolic disorders. Future research is needed to explore the role of selective peripheral CB(1) receptor antagonists in the treatment of patients at high cardiometabolic risk.

  20. From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

    PubMed

    Youssef, F F; Irving, A J

    2012-06-01

    Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the 'holy grail' of endocannabinoid research.

  1. The endocannabinoid system: a new pharmacological target for obesity treatment?

    PubMed

    Hu, Jia; Zhu, Chao; Huang, Mao

    2009-06-01

    Being a great threaten for human health, obesity has become a pandemic chronic disease. There have been several therapeutic treatments for this social health issue, including diet and exercise therapy, medication and surgery, among which the diet is still the most common way. However, none of these therapeutic measures available is ideal, making it necessary to find an effective medical treatment. The endocannabinoid system, which is well known for its contributions in certain mental processes such as relaxation, amelioration of pain and anxiety, and sedation initiation, has been recently reported to play an essential role in regulating appetite and metabolism to maintain energy balance, leading to the belief that endocannabinoid system is closely related to obesity. This new discovery deepens our understanding of obesity, and provides us with a new direction for clinical obesity treatment. Rimonabant is an antagonist for CB1, and has entered the market in some countries. However, although effective as an anti-obesity drug, rimonabant also causes obviously adverse side-effects, thus is being doubted and denied for medical usage.

  2. Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility.

    PubMed

    du Plessis, Stefan S; Agarwal, Ashok; Syriac, Arun

    2015-11-01

    Marijuana has the highest consumption rate among all of the illicit drugs used in the USA, and its popularity as both a recreational and medicinal drug is increasing especially among men of reproductive age. Male factor infertility is on the increase, and the exposure to the cannabinoid compounds released by marijuana could be a contributing cause. The endocannabinoid system (ECS) is deeply involved in the complex regulation of male reproduction through the endogenous release of endocannabinoids and binding to cannabinoid receptors. Disturbing the delicate balance of the ECS due to marijuana use can negatively impact reproductive potential. Various in vivo and in vitro studies have reported on the empirical role that marijuana plays in disrupting the hypothalamus-pituitary-gonadal axis, spermatogenesis, and sperm function such as motility, capacitation, and the acrosome reaction. In this review, we highlight the latest evidence regarding the effect of marijuana use on male fertility and also provide a detailed insight into the ECS and its significance in the male reproductive system.

  3. Modulation of cellular redox homeostasis by the endocannabinoid system

    PubMed Central

    2016-01-01

    The endocannabinoid system (ECS) and reactive oxygen species (ROS) constitute two key cellular signalling systems that participate in the modulation of diverse cellular functions. Importantly, growing evidence suggests that cross-talk between these two prominent signalling systems acts to modulate functionality of the ECS as well as redox homeostasis in different cell types. Herein, we review and discuss evidence pertaining to ECS-induced regulation of ROS generating and scavenging mechanisms, as well as highlighting emerging work that supports redox modulation of ECS function. Functionally, the studies outlined reveal that interactions between the ECS and ROS signalling systems can be both stimulatory and inhibitory in nature, depending on cell stimulus, the source of ROS species and cell context. Importantly, such cross-talk may act to maintain cell function, whereas abnormalities in either system may propagate and undermine the stability of both systems, thereby contributing to various pathologies associated with their dysregulation. PMID:27248801

  4. The endocannabinoid system: a new approach to control cardiovascular disease.

    PubMed

    Cannon, Christopher P

    2005-01-01

    The endocannabinoid (EC) system consists of 2 types of G-protein-coupled cannabinoid receptors--cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2)--and their natural ligands. The EC system plays a key role in the regulation of food intake and fat accumulation, as well as glucose and lipid metabolism. When overactivated, the EC system triggers dyslipidemia, thrombotic and inflammatory states, and insulin resistance. Blocking CB1 receptors centrally and peripherally in adipose tissue can help normalize an overactivated EC system. CB1 blockade helps regulate food intake and adipose tissue metabolism, contributing to improved insulin sensitivity and other features of the metabolic syndrome. Visceral adipose tissue is most closely associated with the metabolic syndrome, which is a constellation of conditions that place people at high risk for coronary artery disease. Targeting the EC system represents a new approach to treating visceral obesity and reducing cardiovascular risk factors.

  5. Role of the endocannabinoid system in the mechanisms involved in the LPS-induced preterm labor.

    PubMed

    Bariani, María Victoria; Domínguez Rubio, Ana Paula; Cella, Maximiliano; Burdet, Juliana; Franchi, Ana María; Aisemberg, Julieta

    2015-12-01

    Prematurity is the leading cause of perinatal morbidity and mortality worldwide. There is a strong causal relationship between infection and preterm births. Intrauterine infection elicits an immune response involving the release of inflammatory mediators like cytokines and prostaglandins (PG) that trigger uterine contractions and parturition events. Anandamide (AEA) is an endogenous ligand for the cannabinoid receptors CB1 and CB2. Similarly to PG, endocannabinoids are implicated in different aspects of reproduction, such as maintenance of pregnancy and parturition. Little is known about the involvement of endocannabinoids on the onset of labor in an infectious milieu. Here, using a mouse model of preterm labor induced by lipopolysaccharide (LPS), we explored changes on the expression of components of endocannabinoid system (ECS). We have also determined whether AEA and CB antagonists alter PG production that induces labor. We observed an increase in uterine N-acylphosphatidylethanolamine-specific phospholipase D expression (NAPE-PLD, the enzyme that synthesizes AEA) upon LPS treatment. Activity of catabolic enzyme fatty acid amide hydrolase (FAAH) did not change significantly. In addition, we also found that LPS modulated uterine cannabinoid receptors expression by downregulating Cb2 mRNA levels and upregulating CB1 protein expression. Furthermore, LPS and AEA induced PGF2a augmentation, and this was reversed by antagonizing CB1 receptor. Collectively, our results suggest that ECS may be involved in the mechanism by which infection causes preterm birth. © 2015 Society for Reproduction and Fertility.

  6. Dynamic changes to the endocannabinoid system in models of chronic pain

    PubMed Central

    Rani Sagar, Devi; Burston, James J.; Woodhams, Stephen G.; Chapman, Victoria

    2012-01-01

    The analgesic effects of cannabinoid ligands, mediated by CB1 receptors are well established. However, the side-effect profile of CB1 receptor ligands has necessitated the search for alternative cannabinoid-based approaches to analgesia. Herein, we review the current literature describing the impact of chronic pain states on the key components of the endocannabinoid receptor system, in terms of regionally restricted changes in receptor expression and levels of key metabolic enzymes that influence the local levels of the endocannabinoids. The evidence that spinal CB2 receptors have a novel role in the modulation of nociceptive processing in models of neuropathic pain, as well as in models of cancer pain and arthritis is discussed. Recent advances in our understanding of the spinal location of the key enzymes that regulate the levels of the endocannabinoid 2-AG are discussed alongside the outcomes of recent studies of the effects of inhibiting the catabolism of 2-AG in models of pain. The complexities of the enzymes capable of metabolizing both anandamide (AEA) and 2-AG have become increasingly apparent. More recently, it has come to light that some of the metabolites of AEA and 2-AG generated by cyclooxygenase-2, lipoxygenases and cytochrome P450 are biologically active and can either exacerbate or inhibit nociceptive signalling. PMID:23108548

  7. Opposing actions of endocannabinoids on cholangiocarcinoma growth is via the differential activation of Notch signaling

    SciTech Connect

    Frampton, Gabriel; Coufal, Monique; Li, Huang; Ramirez, Jonathan; DeMorrow, Sharon

    2010-05-15

    The endocannabinoids anandamide (AEA) and 2-arachidonylglycerol (2-AG) have opposing effects on cholangiocarcinoma growth. Implicated in cancer, Notch signaling requires the {gamma}-secretase complex for activation. The aims of this study were to determine if the opposing effects of endocannabinoids depend on the differential activation of the Notch receptors and to demonstrate that the differential activation of these receptors are due to presenilin 1 containing- and presenilin 2 containing-{gamma}-secretase complexes. Mz-ChA-1 cells were treated with AEA or 2-AG. Notch receptor expression, activation, and nuclear translocation were determined. Specific roles for Notch 1 and 2 on cannabinoid-induced effects were determined by transient transfection of Notch 1 or 2 shRNA vectors before stimulation with AEA or 2-AG. Expression of presenilin 1 and 2 was determined after AEA or 2-AG treatment, and the involvement of presenilin 1 and 2 in the cannabinoid-induced effects was demonstrated in cell lines with low presenilin 1 or 2 expression. Antiproliferative effects of AEA required increased Notch 1 mRNA, activation, and nuclear translocation, whereas the growth-promoting effects induced by 2-AG required increased Notch 2 mRNA expression, activation, and nuclear translocation. AEA increased presenilin 1 expression and recruitment into the {gamma}-secretase complex, whereas 2-AG increased expression and recruitment of presenilin 2. The development of novel therapeutic strategies aimed at modulating the endocannabinoid system or mimicking the mode of action of AEA on Notch signaling pathways would prove beneficial for cholangiocarcinoma management.

  8. The endocannabinoid system as a link between homoeostatic and hedonic pathways involved in energy balance regulation.

    PubMed

    Di Marzo, V; Ligresti, A; Cristino, L

    2009-06-01

    The endocannabinoid system (ECS) and, in particular, cannabinoid CB(1) receptors, their endogenous agonists (the endocannabinoids anandamide and 2-arachidonoylglycerol) and enzymes for the biosynthesis and degradation of the latter mediators are emerging as key players in the control of all aspects of food intake and energy balance. The ECS is involved in stimulating both the homoeostatic (that is, the sensing of deficient energy balance and gastrointestinal load) and the hedonic (that is, the sensing of the salience and the incentive/motivational value of nutrients) aspects of food intake. The orexigenic effects of endocannabinoids are exerted in the brain by CB(1)-mediated stimulatory and inhibitory effects on hypothalamic orexigenic and anorectic neuropeptides, respectively; by facilitatory actions on dopamine release in the nucleus accumbens shell; and by regulating the activity of sensory and vagal fibres in brainstem-duodenum neural connections. In turn, the levels of anandamide and 2-arachidonoylglycerol and/or CB(1) receptors in the brain are under the control of leptin, ghrelin and glucocorticoids in the hypothalamus, under that of dopamine in the limbic forebrain and under that of cholecystokinin and ghrelin in the brainstem. These bi-directional communications between the ECS and other key players in energy balance ensure local mediators such as the endocannabinoids to act in a way coordinated in both 'space' and 'time' to enhance food intake, particularly after a few hours of food deprivation. Alterations of such communications are, however, also among the underlying causes of overactivity of the ECS in hyperphagia and obesity, a phenomenon that provided the rationale for the development of anti-obesity drugs from CB(1) receptor antagonists.

  9. The endocannabinoid system--back to the scene of cardiometabolic risk factors control?

    PubMed

    Martins, C J M; Genelhu, V; Di Marzo, V; Francischetti, E A

    2014-07-01

    This review examines the impact of the endocannabinoid signaling system on metabolic and cardiovascular health and the new therapeutic strategies that selectively target dysfunctional endocannabinoid action in peripheral tissues, without causing the undesirable central nervous system effects that occurred with the first-generation of CB1 receptor blockers. We first review the components of the endocannabinoid system and the enzymes that synthesize and degrade the endocannabinoids, the critical role of the system in the homeostasis of energy balance, and its hedonic aspects related to the incentive and motivational value of food. Second, we describe the central and peripheral actions of the endocannabinoid system and its interactions with other biological modulators, such as ghrelin and leptin. Third, we summarize data from human clinical trials with the CB1 inverse agonist rimonabant, showing that the drug, although effective in increasing weight loss with accompanying improvements in the metabolic profile of the participants in the RIO (Rimonabant In Obesity) trials, was withdrawn from the market because of the risk of serious adverse events. Finally, we describe: 1) the development of new selective peripheral blockers that interrupt endocannabinoid action selectively in peripheral tissues and that have been suggested as an alternative approach to treat the metabolic consequences of obesity and related diseases, without undesirable central nervous system effects, and 2) the potential for inhibition of enzymes of synthesis, as well as the possible role of endocannabinoid congeners, with opposing effects as compared to CB1 receptor agonists, in the control of metabolic disorders.

  10. Modulation of the Serotonin System by Endocannabinoid Signaling

    PubMed Central

    Haj-Dahmane, Samir; Shen, Roh-Yu

    2011-01-01

    The cannabinoid CB1 receptors and their endogenous agonists, endocannabinoids (eCBs), are ubiquitously distributed throughout the central nervous system (CNS), where they play a key role in the regulation of neuronal excitability. As such, CB signaling has been implicated in the regulation of a myriad of physiological functions ranging from feeding homoeostasis to emotional and motivational processes. Ample evidence from behavioral studies also suggests that eCBs are important regulators of stress responses and a deficit in eCB signaling contributes to stress-related disorders such as anxiety and depression. The eCB-induced modulation of stress-related behaviors appears to be mediated, at least in part, through the regulation of the serotoninergic system. In this article, we review the role of eCB signaling in the regulation of the serotoninergic system with special emphasis on the cellular mechanisms by which cannabinoid CB1 receptors modulate the excitability of dorsal raphe serotonin neurons. PMID:21354188

  11. Prenatal cannabis exposure - The "first hit" to the endocannabinoid system.

    PubMed

    Richardson, Kimberlei A; Hester, Allison K; McLemore, Gabrielle L

    As more states and countries legalize medical and/or adult recreational marijuana use, the incidences of prenatal cannabis exposure (PCE) will likely increase. While young people increasingly view marijuana as innocuous, marijuana preparations have been growing in potency in recent years, potentially creating global clinical, public health, and workforce concerns. Unlike fetal alcohol spectrum disorder, there is no phenotypic syndrome associated with PCE. There is also no preponderance of evidence that PCE causes lifelong cognitive, behavioral, or functional abnormalities, and/or susceptibility to subsequent addiction. However, there is compelling circumstantial evidence, based on the principles of teratology and fetal malprogramming, suggesting that pregnant women should refrain from smoking marijuana. The usage of marijuana during pregnancy perturbs the fetal endogenous cannabinoid signaling system (ECSS), which is present and active from the early embryonic stage, modulating neurodevelopment and continuing this role into adulthood. The ECSS is present in virtually every brain structure and organ system, and there is also evidence that this system is important in the regulation of cardiovascular processes. Endocannabinoids (eCBs) undergird a broad spectrum of processes, including the early stages of fetal neurodevelopment and uterine implantation. Delta-9-tetrahydrocannabinol (THC), the psychoactive chemical in cannabis, enters maternal circulation, and readily crosses the placental membrane. THC binds to CB receptors of the fetal ECSS, altering neurodevelopment and possibly rewiring ECSS circuitry. In this review, we discuss the Double-Hit Hypothesis as it relates to PCE. We contend that PCE, similar to a neurodevelopmental teratogen, delivers the first hit to the ECSS, which is compromised in such a way that a second hit (i.e., postnatal stressors) will precipitate the emergence of a specific phenotype. In summary, we conclude that perturbations of the

  12. Role of the endocannabinoid system in depression and suicide.

    PubMed

    Vinod, K Yaragudri; Hungund, Basalingappa L

    2006-10-01

    Depression is one of the most prevalent forms of neuropsychiatric disorder and is a major cause of suicide worldwide. The prefrontal cortex is a crucial brain region that is thought to be involved in the regulation of mood, aggression and/or impulsivity and decision making, which are altered in suicidality. Evidence of the role of the endocannabinoid (EC) system in the neurobiology of neuropsychiatric disorders is beginning to emerge. The behavioral effects of ECs are believed to be mediated through the central cannabinoid CB1 receptor. Alterations in the levels of ECs, and in the density and coupling efficacy of CB1 receptors, have been reported in the prefrontal cortex of depressed and alcoholic suicide victims. These findings support our hypothesis that altered EC function contributes to the pathophysiological aspects of suicidal behavior. Here, we provide a brief overview of the role of the EC system in alcoholism, depression and suicide, and discuss possible therapeutic interventions and directions for future research.

  13. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system.

    PubMed

    Cravatt, Benjamin F; Lichtman, Aron H

    2003-08-01

    The medicinal properties of exogenous cannabinoids have been recognized for centuries and can largely be attributed to the activation in the nervous system of a single G-protein-coupled receptor, CB1. However, the beneficial properties of cannabinoids, which include relief of pain and spasticity, are counterbalanced by adverse effects such as cognitive and motor dysfunction. The recent discoveries of anandamide, a natural lipid ligand for CB1, and an enzyme, fatty acid amide hydrolase (FAAH), that terminates anandamide signaling have inspired pharmacological strategies to augment endogenous cannabinoid ('endocannabinoid') activity with FAAH inhibitors, which might exhibit superior selectivity in their elicited behavioral effects compared with direct CB1 agonists.

  14. Modulation of 3,4-methylenedioxymethamphetamine effects by endocannabinoid system.

    PubMed

    Valverde, Olga; Rodríguez-Árias, Marta

    2013-01-01

    The amphetamine derivative 3, 4 Methylenedioxymethanphetamine (MDMA) is a powerful central nervous system stimulant that displays numerous pharmacological effects, including neurotoxicity. MDMA, or ecstasy, acts by inducing the release of different neurotransmitters depending on the animal species and, in particular, it produces the release of serotonin and dopamine. MDMA induces rewarding and reinforcing effects in rodents, primates and humans, and is currently consumed as an illicit psychostimulant among young people. One of the most reported side effects is the hyperthermic effect and the neurotoxicity on central serotonergic and dopaminergic neurons, depending on the species of animal. It seems that MDMA may also produce neurotoxic effects in humans. To date, the most consistent findings associated to MDMA consumption in humans relate to cognitive deficits in heavy users. MDMA when consumed as an illicit psychostimulant is commonly co-used with other abusers, being frequently associated with cannabinoids. The interaction between MDMA and cannabis effects is complex. Cannabis derivatives act on endocannabinoid system. Thus, at cellular levels, cannabinoids acting through CB1 cannabinoid receptors display opposite effects to those induced by MDMA, and they have been reported to develop neuroprotective actions, including the blockage of MDMA induced neurotoxicity, in laboratory animals. However, cannabis use is a recognized risk factor in the presentation and development of neuropsychiatric disorders, and also contributes to the development of psychological problems and cognitive failures observed in MDMA users. This paper represents a brief overview of the pharmacological interaction between MDMA and cannabis derivatives acting in the endocannabinoid system. We have evaluated recent findings in the literature of the most representative pharmacological effects displayed by both types of drugs. We analyze both, the synergic and opposite effects produced by these

  15. Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine

    PubMed Central

    Nagy-Grócz, Gábor; Zádor, Ferenc; Dvorácskó, Szabolcs; Bohár, Zsuzsanna; Benyhe, Sándor; Tömböly, Csaba; Párdutz, Árpád; Vécsei, László

    2017-01-01

    Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system—which has a crucial role in the pathomechanisms of migraine—will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder. PMID:28758944

  16. Obesity, the Endocannabinoid System, and Bias Arising from Pharmaceutical Sponsorship

    PubMed Central

    McPartland, John M.

    2009-01-01

    Background Previous research has shown that academic physicians conflicted by funding from the pharmaceutical industry have corrupted evidence based medicine and helped enlarge the market for drugs. Physicians made pharmaceutical-friendly statements, engaged in disease mongering, and signed biased review articles ghost-authored by corporate employees. This paper tested the hypothesis that bias affects review articles regarding rimonabant, an anti-obesity drug that blocks the central cannabinoid receptor. Methods/Principal Findings A MEDLINE search was performed for rimonabant review articles, limited to articles authored by USA physicians who served as consultants for the company that manufactures rimonabant. Extracted articles were examined for industry-friendly bias, identified by three methods: analysis with a validated instrument for monitoring bias in continuing medical education (CME); analysis for bias defined as statements that ran contrary to external evidence; and a tally of misrepresentations about the endocannabinoid system. Eight review articles were identified, but only three disclosed authors' financial conflicts of interest, despite easily accessible information to the contrary. The Takhar CME bias instrument demonstrated statistically significant bias in all the review articles. Biased statements that were nearly identical reappeared in the articles, including disease mongering, exaggerating rimonabant's efficacy and safety, lack of criticisms regarding rimonabant clinical trials, and speculations about surrogate markers stated as facts. Distinctive and identical misrepresentations regarding the endocannabinoid system also reappeared in articles by different authors. Conclusions The findings are characteristic of bias that arises from financial conflicts of interest, and suggestive of ghostwriting by a common author. Resolutions for this scenario are proposed. PMID:19333392

  17. The endocannabinoid system: a promising novel mechanistic pathway in the cardiometabolic syndrome.

    PubMed

    Al-Jaghbeer, Eshraq; Khraisat, Ahmad; Singh, Sant P

    2008-01-01

    The endocannabinoid system (ECS) is a neuroendocrine system that modulates several cardiometabolic processes. An overactive ECS is implicated as a significant contributor to the cardiometabolic syndrome and obesity, in addition to a large number of other physiologic processes. Endocannabinoid receptors have been detected centrally and peripherally, regulating appetite, food intake, metabolism, and storage. ECS blockade is thought to be a promising new pharmacologic modality of improving the unfavorable metabolic risk profile in patients with the cardiometabolic syndrome and obesity.

  18. The endocannabinoid system: an emotional buffer in the modulation of memory function.

    PubMed

    Morena, Maria; Campolongo, Patrizia

    2014-07-01

    Extensive evidence indicates that endocannabinoids modulate cognitive processes in animal models and human subjects. However, the results of endocannabinoid system manipulations on cognition have been contradictory. As for anxiety behavior, a duality has indeed emerged with regard to cannabinoid effects on memory for emotional experiences. Here we summarize findings describing cannabinoid effects on memory acquisition, consolidation, retrieval and extinction. Additionally, we review findings showing how the endocannabinoid system modulates memory function differentially, depending on the level of stress and arousal associated with the experimental context. Based on the evidence reviewed here, we propose that the endocannabinoid system is an emotional buffer that moderates the effects of environmental context and stress on cognitive processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Terpenes and lipids of the endocannabinoid and transient-receptor-potential-channel biosignaling systems.

    PubMed

    Janero, David R; Makriyannis, Alexandros

    2014-11-19

    Endocananbnoid-system G-protein coupled receptors (GPCRs) and transient receptor potential (TRP) cation channels are critical components of cellular biosignaling networks. These plasma-membrane proteins are pleiotropic in their ability to interact with and engage structurally diverse ligands. The endocannabinoid and TRP signaling systems overlap in their recognition properties with respect to select naturally occurring plant-derived ligands that belong to the terpene and lipid chemical classes, the overlap establishing a physiological connectivity between these two ubiquitous cell-signaling systems. Identification and pharmacological profiling of phytochemicals engaged by cannabinoid GPCRs and/or TRP channels has inspired the synthesis of novel designer ligands that interact with cannabinoid receptors and/or TRP channels as xenobiotics. Functional interplay between the endocannabinoid and TRP-channel signaling systems is responsible for the antinocifensive action of some synthetic cananbinoids (WIN55,212-2 and AM1241), vasorelaxation by the endocannabinoid N-arachidonylethanolamide (anandamide), and the pain-relief afforded by the synthetic anandamide analogue N-arachidonoylaminophenol (AM404), the active metabolite of the widely used nonprescription analgesic and antipyretic acetaminophen (paracetamol). The biological actions of some plant-derived cannabinoid-receptor (e.g., Δ(9)-tetrahydrocannabinol) or TRP-channel (e.g,, menthol) ligands either carry abuse potential themselves or promote the use of other addictive substances, suggesting the therapeutic potential for modulating these signaling systems for abuse-related disorders. The pleiotropic nature of and therapeutically relevant interactions between cananbinergic and TRP-channel signaling suggest the possibility of dual-acting ligands as drugs.

  20. Multiple roles for the endocannabinoid system during the earliest stages of life: pre- and postnatal development.

    PubMed

    Fride, E

    2008-05-01

    The endocannabinoid system, including its receptors (CB(1) and CB(2)), endogenous ligands ('endocannabinoids'), synthesising and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. In addition, the endocannabinoids, notably 2-arachidonyl glycerol, are also present in maternal milk. During three distinct developmental stages (i.e. embryonic implantation, prenatal brain development and postnatal suckling), the endocannabinoid system appears to play an essential role for development and survival. Thus, during early pregnancy, successful embryonic passage through the oviduct and implantation into the uterus both require critical enzymatic control of optimal anandamide levels at the appropriate times and sites. During foetal life, the cannabinoid CB(1) receptor plays a major role in brain development, regulating neural progenitor differentiation into neurones and glia and guiding axonal migration and synaptogenesis. Postnatally, CB(1) receptor blockade interferes with the initiation of milk suckling in mouse pups, by inducing oral motor weakness, which exposes a critical role for CB(1) receptors in the initiation of milk suckling by neonates, possibly by interfering with innervation of the tongue muscles. Manipulating the endocannabinoid system by pre- and/or postnatal administration of cannabinoids or maternal marijuana consumption, has significant, yet subtle effects on the offspring. Thus, alterations in the dopamine, GABA and endocannabinoid systems have been reported while enhanced drug seeking behaviour and impaired executive (prefrontal cortical) function have also been observed. The relatively mild nature of the disruptive effects of prenatal cannabinoids may be understood in the framework of the intricate timing requirements and frequently biphasic effects of the (endo)cannabinoids. In conclusion, the endocannabinoid system plays several key roles

  1. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction.

    PubMed

    Montecucco, Fabrizio; Di Marzo, Vincenzo

    2012-06-01

    Starting from the well-documented effects of marijuana smoking on heart rate and blood pressure, the cardiovascular effects of Δ⁹-tetrahydrocannabinol (THC, the main psychotropic ingredient of Cannabis) and endocannabinoids [THC endogenous counterparts that activate cannabinoid receptor type 1 (CB₁) and 2 (CB₂)] have been thoroughly investigated. These studies were mostly aimed at establishing the molecular bases of the hypotensive actions of THC, endocannabinoids and related molecules, but also evaluated their therapeutic potential in cardiac injury protection, metabolic cardiovascular risk factors and atherosclerotic plaque vulnerability. The results of these investigations, reviewed here, also served to highlight some of the most peculiar aspects of endocannabinoid signaling, such as redundancy in endocannabinoid targets and the often dualistic role of CB₁ and CB₂ receptors during pathological conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The endocannabinoid system links gut microbiota to adipogenesis.

    PubMed

    Muccioli, Giulio G; Naslain, Damien; Bäckhed, Fredrik; Reigstad, Christopher S; Lambert, Didier M; Delzenne, Nathalie M; Cani, Patrice D

    2010-07-01

    Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB(1) agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity.

  3. The endocannabinoid system links gut microbiota to adipogenesis

    PubMed Central

    Muccioli, Giulio G; Naslain, Damien; Bäckhed, Fredrik; Reigstad, Christopher S; Lambert, Didier M; Delzenne, Nathalie M; Cani, Patrice D

    2010-01-01

    Obesity is characterised by altered gut microbiota, low-grade inflammation and increased endocannabinoid (eCB) system tone; however, a clear connection between gut microbiota and eCB signalling has yet to be confirmed. Here, we report that gut microbiota modulate the intestinal eCB system tone, which in turn regulates gut permeability and plasma lipopolysaccharide (LPS) levels. The impact of the increased plasma LPS levels and eCB system tone found in obesity on adipose tissue metabolism (e.g. differentiation and lipogenesis) remains unknown. By interfering with the eCB system using CB1 agonist and antagonist in lean and obese mouse models, we found that the eCB system controls gut permeability and adipogenesis. We also show that LPS acts as a master switch to control adipose tissue metabolism both in vivo and ex vivo by blocking cannabinoid-driven adipogenesis. These data indicate that gut microbiota determine adipose tissue physiology through LPS-eCB system regulatory loops and may have critical functions in adipose tissue plasticity during obesity. PMID:20664638

  4. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders

    PubMed Central

    Coleman, Jonathan R. I.; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L.; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Silverman, Wendy K.; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H.; Eley, Thalia C.

    2016-01-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re‐emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre‐ and post‐treatment and during the follow‐up period in the full sample and a subset with fear‐based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow‐up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear‐based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:27346075

  5. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders.

    PubMed

    Lester, Kathryn J; Coleman, Jonathan R I; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Silverman, Wendy K; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H; Eley, Thalia C

    2017-03-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow-up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear-based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  6. Endocannabinoids in liver disease.

    PubMed

    Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George

    2011-01-01

    Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and it is present in both brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases and contributes to the underlying pathologies. In patients with cirrhosis of various etiologies, the activation of vascular and cardiac CB(1) receptors by macrophage-derived and platelet-derived endocannabinoids contributes to the vasodilated state and cardiomyopathy, which can be reversed by CB(1) blockade. In mouse models of liver fibrosis, the activation of CB(1) receptors on hepatic stellate cells is fibrogenic, and CB(1) blockade slows the progression of fibrosis. Fatty liver induced by a high-fat diet or chronic alcohol feeding depends on the activation of peripheral receptors, including hepatic CB(1) receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB(1) blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB(1) antagonists.

  7. Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines.

    PubMed

    Gastón, Repossi; María Eugenia, Pasqualini; Das, Undurti N; Eynard, Aldo R

    2017-01-01

    Evidence suggests that quantity and quality of dietary polyunsaturated fatty acids (PUFAs) play a role in the development of cancer. However, the mechanisms involved in this interaction(s) are not clear. Endocannabinoids are lipid metabolites known to have growth modulatory actions. We studied the effect of supplementation with PUFAs ω-6 and ω-3 (essential fatty acids, EFAs), saturated and monounsaturated fatty acids (non-EFAs) on the growth of tumor cells and modifications in their endocannabinoid content. Cell cultures of human glioblastoma (T98G) and breast cancer (MCF7) were supplemented with 50 or 100 mmol EFAs and non-EFAs for 72 h. Cell proliferation was then determined by MTT, anandamide (AEA) levels by HPLC, total fatty acids profiles by GLC, CB1 receptor expression by WB and FAAH activity by spectrophotometric method. Fatty acids profile reflected the incorporation of the lipids supplemented in each assay. Arachidonic acid (EFA ω-6) supplementation increased AEA levels and inhibited the growth of T98G, whereas palmitic acid (non-EFA) enhanced their proliferation. In breast cancer (MCF7) cells, eicosapentaenoic acid (EFA ω-3) reduced and oleic acid (non-EFA) enhanced their proliferation. CB1 expression was higher in T98G and no differences were observed in FAAH activity. The growth of tumor cells can be differentially modulated by fatty acids and, at least in part, can be attributed to their ability to act on the components of the endocannabinoid system. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  8. The endocannabinoid system as a target for novel anxiolytic drugs.

    PubMed

    Patel, Sachin; Hill, Mathew N; Cheer, Joseph F; Wotjak, Carsten T; Holmes, Andrew

    2017-05-01

    The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential 'druggable' targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders. Published by Elsevier Ltd.

  9. The endocannabinoid system in obesity and type 2 diabetes.

    PubMed

    Di Marzo, V

    2008-08-01

    Endocannabinoids (ECs) are defined as endogenous agonists of cannabinoid receptors type 1 and 2 (CB1 and CB2). ECs, EC anabolic and catabolic enzymes and cannabinoid receptors constitute the EC signalling system. This system participates in the control of lipid and glucose metabolism at several levels, with the possible endpoint of the accumulation of energy as fat. Following unbalanced energy intake, however, the EC system becomes dysregulated, and in most cases overactive, in several organs participating in energy homeostasis, particularly, in intra-abdominal adipose tissue. This dysregulation might contribute to excessive visceral fat accumulation and reduced adiponectin release from this tissue, and to the onset of several cardiometabolic risk factors that are associated with obesity and type 2 diabetes. This phenomenon might form the basis of the mechanism of action of CB1 antagonists/inverse agonists, recently developed by several pharmaceutical companies as adjuvants to lifestyle modification for weight reduction, glycaemic control and dyslipidaemia in obese and type 2 diabetes patients. It also helps to explain why some of the beneficial actions of these new therapeutics appear to be partly independent from weight loss.

  10. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system.

    PubMed

    McPartland, John M; Guy, Geoffrey W; Di Marzo, Vincenzo

    2014-01-01

    The "classic" endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the "eCB deficiency syndrome" as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system--ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as "complementary and alternative medicine" also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances--alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.

  11. [The endocannabinoid system: a new paradigm in the metabolic syndrome treatment].

    PubMed

    de Godoy-Matos, Amélio F; Guedes, Erika Paniago; de Souza, Luciana Lopes; Valério, Cynthia Melissa

    2006-04-01

    Energetic balance is a fundamental homeostasis mechanism, which contributes to the species' survival. The endocannabinoid system is a new and important component among such mechanisms. Its receptors and endogenous agonists are expressed in central nervous system (CNS) and at various peripheral organs, establishing a CNS-periphery net communication. A relevant aspect is its expression in the adipose tissue, where it regulates lipogenesis and increases the expression of influent genes on lipids and carbohydrate metabolism. Interestingly, it seems to be upregulated in human and animal obesity, although it is activated on demand and rapidly deactivated. Its activation increases food intake and promotes weight gain, contributing to Metabolic Syndrome (MS). Rimonabant is a specific antagonist to the main endocannabinoid receptor (CB1). In animal models of obesity and MS, as well as in humans, Rimonabant has demonstrated to be a useful tool in controlling weight and metabolic aspects. Indeed, some new human trials suggest a possible role for this substance in controlling cardiovascular risk factors related to MS.

  12. Care and Feeding of the Endocannabinoid System: A Systematic Review of Potential Clinical Interventions that Upregulate the Endocannabinoid System

    PubMed Central

    McPartland, John M.; Guy, Geoffrey W.; Di Marzo, Vincenzo

    2014-01-01

    Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions. PMID:24622769

  13. Presence and regulation of the endocannabinoid system in human dendritic cells.

    PubMed

    Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo

    2002-08-01

    Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.

  14. Increasing Endocannabinoid Levels in the Ventral Pallidum Restore Aberrant Dopamine Neuron Activity in the Subchronic PCP Rodent Model of Schizophrenia

    PubMed Central

    Chen, Li; Lodge, Daniel J

    2015-01-01

    Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511

  15. The endocannabinoid system as a target for obesity treatment.

    PubMed

    Aronne, Louis J; Pagotto, Uberto; Foster, Gary D; Davis, Stephen N

    2008-01-01

    Overweight and obesity are major factors contributing to the development of type 2 diabetes mellitus (DM) and cardiovascular disease (CVD). In addition to the many physical and metabolic consequences of obesity, there are also mental health consequences, in particular, the risk for depression. Depression can lead to poor self-care, poor treatment compliance, and possible increased morbidity and mortality from such illnesses as type 2 DM and CVD. Lifestyle modification for the treatment of overweight and obesity is rarely successful over the long term, and use of surgery is limited by eligibility criteria; therefore, researchers and clinicians continue to explore pharmacotherapy, with intense efforts being directed toward the development of agents that, optimally, will reduce weight and simultaneously reduce or eliminate modifiable cardiovascular and metabolic risk factors. Among the promising new agents are the CB(1) receptor antagonists. These agents target receptors of the endocannabinoid system, a neuromodulatory system recently found to influence energy balance, eating behavior, and metabolic homeostasis via central and peripheral mechanisms. In animal and clinical studies, antagonism of CB(1) receptors has resulted in meaningful weight loss and improvement of lipid and glycemic profiles. Thus, these agents may provide a rational and effective approach for the management of not only overweight and obesity but also their metabolic and cardiovascular sequelae.

  16. The Role of the Endocannabinoid System in the Brain-Gut Axis.

    PubMed

    Sharkey, Keith A; Wiley, John W

    2016-08-01

    The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.

  17. Mitochondria: a possible nexus for the regulation of energy homeostasis by the endocannabinoid system?

    PubMed

    Lipina, Christopher; Irving, Andrew J; Hundal, Harinder S

    2014-07-01

    The endocannabinoid system (ECS) regulates numerous cellular and physiological processes through the activation of receptors targeted by endogenously produced ligands called endocannabinoids. Importantly, this signaling system is known to play an important role in modulating energy balance and glucose homeostasis. For example, current evidence indicates that the ECS becomes overactive during obesity whereby its central and peripheral stimulation drives metabolic processes that mimic the metabolic syndrome. Herein, we examine the role of the ECS in modulating the function of mitochondria, which play a pivotal role in maintaining cellular and systemic energy homeostasis, in large part due to their ability to tightly coordinate glucose and lipid utilization. Because of this, mitochondrial dysfunction is often associated with peripheral insulin resistance and glucose intolerance as well as the manifestation of excess lipid accumulation in the obese state. This review aims to highlight the different ways through which the ECS may impact upon mitochondrial abundance and/or oxidative capacity and, where possible, relate these findings to obesity-induced perturbations in metabolic function. Furthermore, we explore the potential implications of these findings in terms of the pathogenesis of metabolic disorders and how these may be used to strategically develop therapies targeting the ECS.

  18. Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

    PubMed

    Wohlman, Irene M; Composto, Gabriella M; Heck, Diane E; Heindel, Ned D; Lacey, C Jeffrey; Guillon, Christophe D; Casillas, Robert P; Croutch, Claire R; Gerecke, Donald R; Laskin, Debra L; Joseph, Laurie B; Laskin, Jeffrey D

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction

    PubMed Central

    Hutch, Chelsea; Hillard, Cecilia J.; Jia, Cuihong; Hegg, Colleen C.

    2015-01-01

    Endocannabinoids modulate a diverse array of functions including progenitor cell proliferation in the central nervous system, and odorant detection and food intake in the mammalian central olfactory system and larval Xenopus laevis peripheral olfactory system. However, the presence and role of endocannabinoids in the peripheral olfactory epithelium has not been examined in mammals. We found the presence of cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptor protein and mRNA in the olfactory epithelium. Using either immunohistochemistry or calcium imaging we localized CB1 receptors on neurons, glia like sustentacular cells, microvillous cells and progenitor-like basal cells. To examine the role of endocannabinoids, CB1 and CB2 receptor deficient (CB1−/−/CB2−/−) mice were used. The endocannabinoid 2-arachidonylglycerol (2-AG) was present at high levels in both C57BL/6 wildtype and CB1−/−/CB2−/− mice. 2-AG synthetic and degradative enzymes are expressed in wildtype mice. A small but significant decrease in basal cell and olfactory sensory neuron numbers was observed in CB1−/−/CB2−/− mice compared to wildtype mice. The decrease in olfactory sensory neurons did not translate to impairment in olfactory-mediated behaviors assessed by the buried food test and habituation/dishabituation test. Collectively, these data indicate the presence of an endocannabinoid system in the mouse olfactory epithelium. However, unlike in tadpoles, endocannabinoids do not modulate olfaction. Further investigation on the role of endocannabinoids in progenitor cell function in the olfactory epithelium is warranted. PMID:26037800

  20. Endocannabinoids in the central nervous system: from neuronal networks to behavior.

    PubMed

    Fride, Ester

    2005-12-01

    Retrograde synaptic signaling influences both short-term and long-term plasticity of the brain, in both excitatory and inhibitory synapses. During the last few years it has become apparent that the endogenous ligands for the cannabinoid CB1 receptor, the "endocannabinoids", fulfill an essential role in the brain as retrograde synaptic messengers, in a number of structures including the hippocampus, cerebellum and the limbic and mesocortical systems. This seminal discovery provides a cellular basis for the well known ubiquitous role of the endocannabinoids and their receptors (together, the "ECBR" system) in virtually all brain functions studied. This review will relate the anatomical distribution of the endocannabinoids and their CB1 receptors to functions of the ECBR system, as much as possible in light of the endocannabinoids as retrograde synaptic messengers. Functional implications of the high rates of co-localization with cholecystokinin (CCK), will also be considered. The most obvious function to be profoundly affected by the retrograde synaptic role of the endocannabinoids is memory. However, additional functions and dysfunctions such as reward and addiction, motor coordination, pain perception, feeding and appetite, coping with stress, schizophrenia and epilepsy will also be reviewed. Finally, the widespread presence of the ECBR system in the brain also lends a scientific basis for the development of cannabinoid-based medicines. The same ubiquity of the ECBR system however, should also be taken into consideration with respect to possible adverse side effects and addictive potential of such pharmaceutical developments.

  1. Crosstalk between endocannabinoid and immune systems: a potential dysregulation in depression?

    PubMed

    Boorman, Emily; Zajkowska, Zuzanna; Ahmed, Rumsha; Pariante, Carmine M; Zunszain, Patricia A

    2016-05-01

    The endocannabinoid (eCB) system, an endogenous lipid signaling system, appears to be dysregulated in depression. The role of endocannabinoids (eCBs) as potent immunomodulators, together with the accumulating support for a chronic low-grade inflammatory profile in depression, suggests a compelling hypothesis for a fundamental impairment in their intercommunication, in depression. We aim to review previous literature on individual associations between the immune and eCB systems and depression. It will focus on peripheral and central mechanisms of crosstalk between the eCB and immune systems. A potential dysregulation in this crosstalk will be discussed in the context of depression. Investigations largely report a hypoactivity of the eCB system and increased inflammatory markers in individuals with depression. Findings depict a multifaceted communication whereby immunocompetent and eCB-related cells can both influence the suppression and enhancement of the other's activity in both the periphery and central nervous system. A dysregulation of the eCB system, as seen in depression, appears to be associated with central and peripheral concentrations of inflammatory agents implicated in the pathophysiology of this illness. The eCB and immune systems have been individually associated with and implicated in pathogenic mechanisms of depression. Both systems tightly regulate the other's activity. As such, a dysregulation in this crosstalk has potential to influence the onset and maintenance of this neuropsychiatric illness. However, few studies have investigated both systems and depression conjointly. This review highlights the demand to consider joint eCB-immune interactions in the pathoetiology of depression.

  2. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: potential implications for the treatment of obesity.

    PubMed

    Heyman, E; Gamelin, F-X; Aucouturier, J; Di Marzo, V

    2012-12-01

    The results of recent studies add the endocannabinoid system, and more specifically CB1 receptor signalling, to the complex mechanisms that negatively modulate insulin sensitivity and substrate oxidation in skeletal muscle. CB1 receptors might become overactive in the skeletal muscle during obesity due to increased levels of endocannabinoids. However, quite surprisingly, one of the most studied endocannabinoids, anandamide, when administered in a sufficient dose, was shown to improve muscle glucose uptake and activate some key molecules of insulin signalling and mitochondrial biogenesis. This is probably because anandamide is only a partial agonist at CB1 receptors and interacts with other receptors (PPARγ, TRPV1), which may trigger positive metabolic effects. This putative beneficial role of anandamide is worth considering because increased plasma anandamide levels were recently reported after intense exercise. Whether the endocannabinoid system is involved in the positive exercise effects on mitochondrial biogenesis and glucose fatty acid oxidation remains to be confirmed. Noteworthy, when exercise becomes chronic, a decrease in CB1 receptor expression in obese metabolically deregulated tissues occurs. It is then tempting to hypothesize that physical activity would represent a complementary alternative approach for the clinical management of endocannabinoid system deregulation in obesity, without the side effects occurring with CB1 receptor antagonists. © 2012 The Authors. obesity reviews © 2012 International Association for the Study of Obesity.

  3. Evidence for an endocannabinoid system in the central nervous system of the leech Hirudo medicinalis.

    PubMed

    Matias, I; Bisogno, T; Melck, D; Vandenbulcke, F; Verger-Bocquet, M; De Petrocellis, L; Sergheraert, C; Breton, C; Di Marzo, V; Salzet, M

    2001-03-05

    In invertebrates, like Hydra and sea urchins, evidence for a functional cannabinoid system was described. The partial characterization of a putative CB1 cannabinoid receptor in the leech Hirudo medicinalis led us to investigate the presence of a complete endogenous cannabinoid system in this organism. By using gas chromatography-mass spectrometry, we demonstrate the presence of the endocannabinoids anandamide (N-arachidonoylethanolamine, 21.5+/-0.7 pmol/g) and 2-arachidonoyl-glycerol (147.4+/-42.7 pmol/g), and of the biosynthetic precursor of anandamide, N-arachidonylphosphatidyl-ethanolamine (16.5+/-3.3 pmol/g), in the leech central nervous system (CNS). Anandamide-related molecules such as N-palmitoylethanolamine (32.4+/-1.6 pmol/g) and N-linolenoylethanolamine (5.8 pmol/g) were also detected. We also found an anandamide amidase activity in the leech CNS cytosolic fraction with a maximal activity at pH 7 and little sensitivity to typical fatty acid amide hydrolase (FAAH) inhibitors. Using an antiserum directed against the amidase signature sequence, we focused on the identification and the localization of the leech amidase. Firstly, leech nervous system protein extract was subjected to Western blot analysis, which showed three immunoreactive bands at ca. approximately 42, approximately 46 and approximately 66 kDa. The former and latter bands were very faint and were also detected in whole homogenates from the coelenterate Hydra vulgaris, where the presence of CB1-like receptors, endocannabinoids and a FAAH-like activity was reported previously. Secondly, amidase immunocytochemical detection revealed numerous immunoreactive neurons in the CNS of three species of leeches. In addition, we observed that leech amidase-like immunoreactivity matches to a certain extent with CB1-like immunoreactivity. Finally, we also found that stimulation by anandamide of this receptor leads, as in mammals, to inhibition of cAMP formation, although this effect appeared to be occurring

  4. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids.

    PubMed

    2016-04-01

    The above article from European Journal of Neuroscience, published online on 4 February 2014 in Wiley Online Library (http://onlinelibrary.wiley.com/doi/10.1111/ejn.12475/full), has been retracted by agreement between the Editors-in-Chief, Paul Bolam and John Foxe, the authors and John Wiley & Sons Ltd. The retraction has been agreed as the above article has been found to overlap substantially with the article 'Chiou, L.-C., Hu, S. S.-J., and Ho, Y.-C. (2013), Targeting the cannabinoid system for pain relief? Acta Anaesthesiologica Taiwanica, Volume 51, Issue 4: 161 - 170. doi: 10.1016/j.aat.2013.10.004', which was submitted after the European Journal of Neuroscience article but was published first. Reference Hu, S.S.-J., Ho, Y.-C. & Chiou, L.-C. (2014) No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids.

  5. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    PubMed Central

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  6. Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle.

    PubMed

    Silvestri, Cristoforo; Ligresti, Alessia; Di Marzo, Vincenzo

    2011-09-01

    The endocannabinoid system (ECS) is composed of lipid signalling ligands, their G-protein coupled receptors and the enzymes involved in ligand generation and metabolism. Increasingly, the ECS is emerging as a critical agent of energy metabolism regulation through its ability to modulate caloric intake centrally as well as nutrient transport, cellular metabolism and energy storage peripherally. Visceral obesity has been associated with an upregulation of ECS activity in several systems and inhibition of the ECS, either pharmacologically or genetically, results in decreased energy intake and increased metabolic output. This review aims to summarize the recent advances that have been made regarding our understanding of the role the ECS plays in crucial peripheral systems pertaining to energy homeostasis: adipose tissues, the liver and skeletal muscle.

  7. Endocannabinoids in nervous system health and disease: the big picture in a nutshell.

    PubMed

    Skaper, Stephen D; Di Marzo, Vincenzo

    2012-12-05

    The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related 'phytocannabinoid' compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the 'endocannabinoids' and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness.

  8. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice.

    PubMed

    Ferreira-Vieira, Talita H; Bastos, Cristiane P; Pereira, Grace S; Moreira, Fabricio A; Massensini, André R

    2014-01-01

    It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.

  9. An endocannabinoid signaling system modulates anxiety-like behavior in male Syrian hamsters.

    PubMed

    Moise, Anna M; Eisenstein, Sarah A; Astarita, Giuseppe; Piomelli, Daniele; Hohmann, Andrea G

    2008-10-01

    An endocannabinoid signaling system has not been identified in hamsters. We examined the existence of an endocannabinoid signaling system in Syrian hamsters using neuroanatomical, biochemical, and behavioral pharmacological approaches. The distribution of cannabinoid receptors was mapped, and membrane fatty-acid amide hydrolase (FAAH) activity and levels of fatty-acid amides were measured in hamster brain. The impact of cannabinoid CB1 receptor blockade and inhibition of FAAH was evaluated in the elevated plus maze, rota-rod test, and models of unconditioned and conditioned social defeat. A characteristic heterogeneous distribution of cannabinoid receptors was detected in hamster brain using [3H]CP55,940 binding and autoradiography. The FAAH inhibitor URB597 inhibited FAAH activity (IC50 = 12.8 nM) and elevated levels of fatty-acid amides (N-palmitoyl ethanolamine and N-oleoyl ethanolamine) in hamster brain. Anandamide levels were not reliably altered. The cannabinoid agonist WIN55,212-2 (1- 10 mg/kg i.p.) induced CB1-mediated motor ataxia. Blockade of CB1 with rimonabant (5 mg/kg i.p.) induced anxiogenic-like behavior in the elevated plus maze. URB597 (0.1-0.3 mg/kg i.p.) induced CB1-mediated anxiolytic-like effects in the elevated plus maze, similar to the benzodiazepine diazepam (2 mg/kg i.p.). Diazepam (2-6 mg/kg i.p.) suppressed the expression, but not the acquisition, of conditioned defeat. By contrast, neither URB597 (0.3-3.0 mg/kg i.p.) nor rimonabant (5 mg/kg i.p.) altered unconditioned or conditioned social defeat or rota-rod performance. Endocannabinoids engage functional CB1 receptors in hamster brain to suppress anxiety-like behavior and undergo enzymatic hydrolysis catalyzed by FAAH. Our results further suggest that neither unconditioned nor conditioned social defeat in the Syrian hamster is dependent upon cannabinoid CB1 receptor activation.

  10. Study the Effect of Endocannabinoid System on Rat Behavior in Elevated Plus-Maze

    PubMed Central

    Komaki, Alireza; Hashemi-Firouzi, Nasrin; Shojaei, Shiva; Souri, Zobin; Heidari, Somayeh; Shahidi, Siamak

    2015-01-01

    Introduction: Previous studies have shown that cannabinoidergic system is involved in anxiety. However, there are controversial reports in the experimental studies. The aim of this study is to evaluate the effect of pharmacological stimulation or blocking of CB1 receptors and inhibition of endocannabinoid degradation in anxiety like behavior in elevated plus-maze (EPM) test in rat. The EPM is one of the most widely used animal models of anxiety. Methods: Male Wistar rats were randomly allocated to ten groups. Different groups of animals intraperitoneally received Win-55212 (0.3, 1 and 5 mg/kg) as CB1 receptor agonist, AM-251 (0.3, 1 and 5 mg/kg) as CB1 receptor antagonist, URB-597 (0.03, 0.1 and 0.3 mg/kg) as endocannabinoid breakdown inhibitor or saline (as control group) 30 min before submitting into EPM test. Results: The results showed that compared to the control group, Win-55212 (1 and 5 mg/kg) and URB-597 (0.1 and 0.3 mg/kg) significantly increased both of the time and percentage of entries into open arms. AM-251 (1 and 5 mg/kg) significantly decreased the time and percentage of entries into open arms in the EPM test. These substances have no effects on the total distance covered by animals and number of closed arm entries. Discussion: It is concluded that activation of cannabinoid receptor exert anxiolytic effect while blocking of cannabinoid receptor resulted in anxiety behavior. The locomotor activity was not significantly changed by cannabinoid system. It is suggested that potentiation of cannabinoid system may be therapeutic strategy for the anxiety behavior. PMID:26904171

  11. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Overactivation of the endocannabinoid system alters the antilipolytic action of insulin in mouse adipose tissue.

    PubMed

    Muller, Tania; Demizieux, Laurent; Troy-Fioramonti, Stéphanie; Gresti, Joseph; Pais de Barros, Jean-Paul; Berger, Hélène; Vergès, Bruno; Degrace, Pascal

    2017-07-01

    Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R(-/-) mice after acute anandamide administration or inhibition of endocannabinoid degradation by JZL195. Additional experiments were conducted on rat AT explants to evaluate the direct consequences of ECS activation on glycerol release and signaling pathways. Treatments stimulated glycerol release in mice fasted for 6 h and injected with glucose but not in 24-h fasted mice or in CB1R(-/-), suggesting that the effect was dependent on plasma insulin levels and mediated by CB1R. We concomitantly observed that Akt cascade activity was decreased, indicating an alteration of the antilipolytic action of insulin. Similar results were obtained with tissue explants exposed to anandamide, thus identifying CB1R of AT as a major target. This study indicates the existence of a functional interaction between CB1R and lipolysis regulation in AT. Further investigation is needed to test if the elevation of ECS tone encountered in obesity is associated with excess fat mobilization contributing to ectopic fat deposition and related metabolic disorders. Copyright © 2017 the American Physiological Society.

  13. Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory

    ERIC Educational Resources Information Center

    Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto

    2010-01-01

    The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…

  14. The role of the endocannabinoid system in eating disorders: neurochemical and behavioural preclinical evidence.

    PubMed

    Scherma, Maria; Fattore, Liana; Castelli, Maria Paola; Fratta, Walter; Fadda, Paola

    2014-01-01

    The endocannabinoid system has long been known as a modulator of several physiological functions, among which the homeostatic and hedonic aspects of eating. CB1 receptors are widely expressed in brain regions that control food intake, reward and energy balance. Animal and human studies indicate that CB1 receptor agonists possess orexigenic effects enhancing appetite and increasing the rewarding value of food. Conversely, CB1 antagonists have been shown to inhibit the intake of food. Eating disorders include a range of chronic and disabling related pathological illnesses that are characterized by aberrant patterns of feeding behaviour and weight regulation, and by abnormal attitudes and perceptions toward body shape image. The psychological and biological factors underlying eating disorders are complex and not yet completely understood. However in the last decades, converging evidence have led to hypothesise a link between defects in the endocannabinoid system and eating disorders, including obesity. Here we review the neurochemical and behavioural preclinical evidence supporting the role of the endocannabinoid system in eating disorders to offer the reader an update regarding the state of the art. Despite the recent withdrawal from the market of rimonabant for treating obesity and overweight individuals with metabolic complications due to its psychiatric side effects, preclinical findings support the rationale for the clinical development of drug which modulate the endocannabinoid system in the treatment of eating disorders.

  15. Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory

    ERIC Educational Resources Information Center

    Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto

    2010-01-01

    The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…

  16. The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

    PubMed

    Bermudez-Silva, F J; Viveros, M P; McPartland, J M; Rodriguez de Fonseca, F

    2010-06-01

    The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.

  17. Pharmacological modulation of the endocannabinoid system in a viral model of multiple sclerosis.

    PubMed

    Mestre, Leyre; Correa, Fernando; Arévalo-Martín, Angel; Molina-Holgado, Eduardo; Valenti, Marta; Ortar, Giorgio; Di Marzo, Vincenzo; Guaza, Carmen

    2005-03-01

    Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains and serves as a relevant infection model for human multiple sclerosis (MS). Cannabinoids have been shown to exert beneficial effects on animal models of MS and evidence suggests that the endocannabinoid system plays a role in the tonic control of spasticity. In this study we show that OMDM1 [(R)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine] and OMDM2 [(S)-N-oleoyl-(1'-hydroxybenzyl)-2'-ethanolamine], two selective inhibitors of the putative endocannabinoid transporter and hence of endocannabinoid inactivation, provide an effective therapy for Theiler murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). Treatment of TMEV-infected mice with OMDM1 and OMDM2 enhanced anandamide levels in the spinal cord and ameliorated motor symptoms. This was associated with a down-regulation of inflammatory responses in the spinal cord. In addition we show that OMDM1 and OMDM2 down-regulate macrophage function by (i) decreasing the surface expression of major histocompatibility complex (MHC) class II molecules, (ii) inhibiting nitric oxide synthase-2 (NOS-2) expression and (iii) reducing the production of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-12 (IL-12p40). Taken together, these results point to the manipulation of the endocannabinoid system as a possible strategy to develop future MS therapeutic drugs.

  18. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone.

    PubMed

    Miller, Melissa R; Mannowetz, Nadja; Iavarone, Anthony T; Safavi, Rojin; Gracheva, Elena O; Smith, James F; Hill, Rose Z; Bautista, Diana M; Kirichok, Yuriy; Lishko, Polina V

    2016-04-29

    Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme α/β hydrolase domain-containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization.

  19. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone

    PubMed Central

    Miller, Melissa R.; Mannowetz, Nadja; Iavarone, Anthony T.; Safavi, Rojin; Gracheva, Elena O.; Smith, James F.; Hill, Rose Z.; Bautista, Diana M.; Kirichok, Yuriy; Lishko, Polina V.

    2017-01-01

    Steroids regulate cell proliferation, tissue development, and cell signaling via two pathways: a nuclear receptor mechanism and genome-independent signaling. Sperm activation, egg maturation, and steroid-induced anesthesia are executed via the latter pathway, the key components of which remain unknown. Here, we present characterization of the human sperm progesterone receptor that is conveyed by the orphan enzyme α/β hydrolase domain–containing protein 2 (ABHD2). We show that ABHD2 is highly expressed in spermatozoa, binds progesterone, and acts as a progesterone-dependent lipid hydrolase by depleting the endocannabinoid 2-arachidonoylglycerol (2AG) from plasma membrane. The 2AG inhibits the sperm calcium channel (CatSper), and its removal leads to calcium influx via CatSper and ensures sperm activation. This study reveals that progesterone-activated endocannabinoid depletion by ABHD2 is a general mechanism by which progesterone exerts its genome-independent action and primes sperm for fertilization. PMID:26989199

  20. Regulation of brain reward by the endocannabinoid system: a critical review of behavioral studies in animals.

    PubMed

    Vlachou, S; Panagis, G

    2014-01-01

    The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and heroin, as well as natural rewards, such as food, water and sucrose, although the conditions under which cannabinoids exert their rewarding effects may be more limited. The purpose of the present review is to briefly describe and evaluate the behavioral and pharmacological research concerning the major components of the endocannabinoid system and reward processes. Special emphasis is placed on data received from four procedures used to test the effects of the endocannabinoid system on brain reward in animals; namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the drug-discrimination procedure. The effects of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonists, antagonists and endocannabinoid modulators in these procedures are examined. Further, the involvement of CB1 and CB2 receptors, as well the fatty acid amid hydrolase (FAAH) enzyme in reward processes is investigated through presentation of respective genetic ablation studies in mice. We suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. Further research will provide us with a better understanding of these processes and, thus, could lead to the development of potential therapeutic compounds for the treatment of reward-related disorders.

  1. Non-psychotropic analgesic drugs from the endocannabinoid system: "magic bullet" or "multiple-target" strategies?

    PubMed

    Starowicz, Katarzyna; Di Marzo, Vincenzo

    2013-09-15

    The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. The discovery of the cannabinoid receptors and of their endogenous ligands, the endocannabinoids, which, unlike THC, play a pro-homeostatic function in a tissue- and time-selective manner, offered the opportunity to develop new analgesics from synthetic inhibitors of endocannabinoid inactivation. The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics. © 2013 Elsevier B.V. All rights reserved.

  2. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is

  3. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    PubMed Central

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  4. Involvement of the endocannabinoid system in reward processing in the human brain.

    PubMed

    van Hell, Hendrika H; Jager, Gerry; Bossong, Matthijs G; Brouwer, Annelies; Jansma, J Martijn; Zuurman, Lineke; van Gerven, Joop; Kahn, René S; Ramsey, Nick F

    2012-02-01

    Disturbed reward processing in humans has been associated with a number of disorders, such as depression, addiction, and attention-deficit hyperactivity disorder. The endocannabinoid (eCB) system has been implicated in reward processing in animals, but in humans, the relation between eCB functioning and reward is less clear. The current study uses functional magnetic resonance imaging (fMRI) to investigate the role of the eCB system in reward processing in humans by examining the effect of the eCB agonist Δ(9)-tetrahydrocannabinol (THC) on reward-related brain activity. Eleven healthy males participated in a randomized placebo-controlled pharmacological fMRI study with administration of THC to challenge the eCB system. We compared anticipatory and feedback-related brain activity after placebo and THC, using a monetary incentive delay task. In this task, subjects are notified before each trial whether a correct response is rewarded ("reward trial") or not ("neutral trial"). Subjects showed faster reaction times during reward trials compared to neutral trials, and this effect was not altered by THC. THC induced a widespread attenuation of the brain response to feedback in reward trials but not in neutral trials. Anticipatory brain activity was not affected. These results suggest a role for the eCB system in the appreciation of rewards. The involvement of the eCB system in feedback processing may be relevant for disorders in which appreciation of natural rewards may be affected such as addiction.

  5. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels.

    PubMed

    Brellenthin, Angelique G; Crombie, Kevin M; Hillard, Cecilia J; Koltyn, Kelli F

    2017-08-01

    Acute aerobic exercise improves mood and activates the endocannabinoid (eCB) system in physically active individuals; however, both mood and eCB responses to exercise may vary based on habitual levels of physical activity. This study aimed to examine eCB and mood responses to prescribed and preferred exercises among individuals with low, moderate, and high levels of physical activity. Thirty-six healthy adults (21 ± 4 yr) were recruited from low (≤60 min moderate-vigorous physical activity [MVPA] per week), moderate (150-299 min MVPA per week), and high (≥300 MVPA per week) physical activity groups. Participants performed both prescribed (approximately 70%-75% max) and preferred (i.e., self-selected) aerobic exercise on separate days. Mood states and eCB concentrations were assessed before and after exercise conditions. Both preferred and prescribed exercise resulted in significant increases (P < 0.01) in circulating eCB (N-arachidonoylethanolamine [AEA] and 2-arachidonoylglycerol); however, increases in AEA (P < 0.05) were larger in the prescribed condition. Likewise, both preferred and prescribed exercise elicited positive mood improvements compared with preexercise values, but changes in state anxiety, total mood disturbance, and confusion were greater in the preferred condition (P < 0.05). Changes in 2-arachidonoylglycerol concentrations were found to negatively correlate with changes in depression, tension, and total mood disturbance in the preferred condition (P < 0.05), and changes in AEA were positively associated with changes in vigor in the prescribed condition (P < 0.05). There were no significant group differences for mood or eCB outcomes. These results indicate that eCB and mood responses to exercise do not differ significantly between samples with varying physical activity levels. This study also demonstrates that in addition to prescribed exercise, preferred exercise activates the eCB system, and this activation may contribute to positive mood

  6. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    PubMed

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  7. In vivo neurochemical effects induced by changes in endocannabinoid neurotransmission.

    PubMed

    Degroot, Aldemar; Nomikos, George G

    2007-02-01

    Neurotropic effects of endo- and exo-cannabinoids are largely caused by their effects on classical neurotransmitter signaling. Pharmacological and molecular tools have been used to selectively target the endocannabinoid system. Endocannabinoids mostly act as retrograde messengers and, upon release from postsynaptic neurons, they modulate neurotransmitter release by activating presynaptic cannabinoid receptors. Generally, increased and decreased endocannabinoid neurotransmission results in decreases and increases in neurotransmitter release, respectively. However, net effects are often pleiotropic, probably owing to the level of regional endogenous tone, transsynaptic mechanisms and cumulative actions. Changes in classical neurotransmitter function can, in turn, modulate endocannabinoid signaling. Importantly, the endocannabinoid system can be altered in response to physiological and pathogenic events and targeted for therapeutic intervention.

  8. Does modulation of the endocannabinoid system have potential therapeutic utility in cerebellar ataxia?

    PubMed Central

    2016-01-01

    Abstract Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and typically associated with deficiency in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered. PMID:26970080

  9. Endocannabinoid system: An overview of its potential in current medical practice.

    PubMed

    Mouslech, Zadalla; Valla, Vasiliki

    2009-01-01

    The endocannabinoid system (ECS) is a lipid signalling system, comprising of the endogenous cannabis-like ligands (endocannabinoids) anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which derive from arachidonic acid. These bind to a family of G-protein-coupled receptors, called CB1 and CB2. The cannabinoid receptor 1 (CB1R) is distributed in brain areas associated with motor control, emotional responses, motivated behaviour and energy homeostasis. In the periphery, the same receptor is expressed in the adipose tissue, pancreas, liver, GI tract, skeletal muscles, heart and the reproduction system. The CB2R is mainly expressed in the immune system regulating its functions. Endocannabinoids are synthesized and released upon demand in a receptor-dependent way. They act as retrograde signalling messengers in GABAergic and glutamatergic synapses and as modulators of postsynaptic transmission, interacting with other neurotransmitters. Endocannabinoids are transported into cells by a specific uptake system and degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS is involved in various pathophysiological conditions in central and peripheral tissues. It is implicated in the hormonal regulation of food intake, cardiovascular, gastrointestinal, immune, behavioral, antiproliferative and mammalian reproduction functions. Recent advances have correlated the ECS with drug addiction and alcoholism. The growing number of preclinical and clinical data on ECS modulators is bound to result in novel therapeutic approaches for a number of diseases currently treated inadequately. The ECS dysregulation has been correlated to obesity and metabolic syndrome pathogenesis. Rimonabant is the first CB1 blocker launched to treat cardiometabolic risk factors in obese and overweight patients. Phase III clinical trials showed the drug's ability to regulate intra-abdominal fat tissue levels, lipidemic, glycemic and inflammatory parameters. However

  10. Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats.

    PubMed

    Viana, Thércia G; Hott, Sara C; Resstel, Leonardo B; Aguiar, Daniele C; Moreira, Fabrício A

    2015-05-01

    Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli. The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks. All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry. The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG. The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.

  11. The chemistry of endocannabinoids.

    PubMed

    Kogan, N M; Mechoulam, R

    2006-01-01

    Over the last two decades a new biochemical/physiological system, now known as the endocannabinoid system, was discovered. Two receptors, cannabinoid receptor type 1 (CB1 receptor) and cannabinoid receptor type 2 (CB2 receptor), have been well characterized and numerous additional ones are in various stages of characterization. Two major endogenous ligands, anandamide and 2-arachidonoyl glycerol (2-AG), have been identified and an enormous amount of research has been reported on them. A few additional endocannabinoids have been identified, but at present our understanding of their physiological roles is limited. The biosynthesis and degradation of the endocannabinoids have been explored, but considerable gaps exist in our knowledge of these processes. In view of the plethora of physiological roles of the endocannabinoid system, numerous academic and industrial labs are making a considerable effort to develop novel drugs, both agonists and antagonists to the endocannabinoid receptors. In the present review, we shall try to give an overview of the chemistry of the endocannabinoids as well as of some synthetic molecules that affect the endocannabinoid system.

  12. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems.

    PubMed

    Edwards, Alexander; Abizaid, Alfonso

    2016-07-01

    Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed.

  13. The endocannabinoid system as a target for the treatment of visceral obesity and metabolic syndrome.

    PubMed

    Kyrou, Ioannis; Valsamakis, George; Tsigos, Constantine

    2006-11-01

    The endogenous cannabinoid system is a novel, remarkably elaborate physiological signaling system, comprising the recently identified endogenous cannabinoid ligands, their corresponding selective receptors, and the machinery of proteins and enzymes that is involved in their biosynthesis, release, transport, and degradation. This system extends widely in both the central nervous system (CNS) and the periphery and exhibits a variety of actions implicated in vital functions (e.g., behavioral, antinociceptive, neuroprotective, immunosuppressive, cardiovascular, and metabolic). Particular interest has been focused on the apparent participation of endocannabinoids in metabolic homeostasis by modulating the activity of CNS circuits that control food intake and energy expenditure, the neuroendocrine response of the stress system, and the metabolic functions of crucial peripheral tissues, such as the adipose tissue, the gastrointestinal tract, the liver, and the skeletal muscles. These effects are predominantly CB(1) receptor mediated and, thus, selective antagonists of this receptor subtype are being vigorously investigated as potential therapeutic agents for the treatment of various metabolic derangements (e.g., obesity, insulin resistance, dyslipidemia, and metabolic syndrome). The first selective CB(1) receptor antagonist, rimonabant, has already successfully completed phase III clinical trials as adjunctive obesity treatment, with significant improvements in several associated metabolic and cardiovascular risk factors that led to the recent approval of its clinical use by the Food and Drug Administration.

  14. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity.

    PubMed

    Fitzgibbon, Marie; Finn, David P; Roche, Michelle

    2015-09-05

    Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.

  15. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity

    PubMed Central

    Fitzgibbon, Marie; Finn, David P.

    2016-01-01

    Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction. PMID:26342110

  16. New insights on the role of the endocannabinoid system in the regulation of energy balance.

    PubMed

    Gatta-Cherifi, B; Cota, D

    2016-02-01

    Within the past 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, as it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories. An overactive endocannabinoid cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders. However, because of the psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as antiobesity treatment were removed from the European market in late 2008. Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders. These aspects will be especially highlighted in this review.

  17. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications

    PubMed Central

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing. PMID:26881099

  18. The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications.

    PubMed

    Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent

    2016-01-01

    Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.

  19. An Endocannabinoid Signaling System Modulates Anxiety-like Behavior in Male Syrian Hamsters

    PubMed Central

    Moise, Anna M.; Eisenstein, Sarah A.; Astarita, Giuseppe; Piomelli, Daniele; Hohmann, Andrea G.

    2009-01-01

    Rationale An endocannabinoid signaling system has not been identified in hamsters. Objective We examined the existence of an endocannabinioid signaling system in Syrian hamsters using neuroanatomical, biochemical and behavioral pharmacological approaches. Method The distribution of cannabinoid receptors was mapped and membrane fatty-acid amide hydrolase (FAAH) activity and levels of fatty-acid amides were measured in hamster brain. The impact of cannabinoid CB1 receptor blockade and inhibition of FAAH was evaluated in the elevated plus maze, rota-rod test and models of unconditioned and conditioned social defeat. Results A characteristic heterogeneous distribution of cannabinoid receptors was detected in hamster brain using [3H]CP55,940 binding and autoradiography. The FAAH inhibitor URB597 inhibited FAAH activity (IC50 = 12.8 nM) and elevated levels of fatty-acid amides (N-palmitoyl ethanolamine (PEA) and N-oleoyl ethanolamine (OEA)) in hamster brain. Anandamide levels were not reliably altered. The cannabinoid agonist WIN55,212-2 (1– 10 mg/kg i.p.) induced CB1-mediated motor ataxia. Blockade of CB1 with rimonabant (5 mg/kg i.p.) induced anxiogenic-like behavior in the elevated plus maze. URB597 (0.1–0.3 mg/kg i.p.) induced CB1-mediated anxiolytic-like effects in elevated plus maze, similar to the benzodiazepine diazepam (2 mg/kg i.p.). Diazepam (2–6 mg/kg i.p.) suppressed the expression, but not the acquisition, of conditioned defeat. By contrast, neither URB597 (0.3–3.0 mg/kg i.p.) nor rimonabant (5 mg/kg i.p.) altered unconditioned or conditioned social defeat or rota-rod performance. Conclusions Endocannabinoids engage functional CB1 receptors in hamster brain to suppress anxiety-like behavior and undergo enzymatic hydrolysis catalyzed by FAAH. Our results further suggest that neither unconditioned nor conditioned social defeat in the Syrian hamster is dependent upon cannabinoid CB1 receptor activation. PMID:18545985

  20. Moderate-vigorous physical activity across body mass index in females: moderating effect of endocannabinoids and temperament.

    PubMed

    Fernández-Aranda, Fernando; Sauchelli, Sarah; Pastor, Antoni; Gonzalez, Marcela L; de la Torre, Rafael; Granero, Roser; Jiménez-Murcia, Susana; Baños, Rosa; Botella, Cristina; Fernández-Real, Jose M; Fernández-García, Jose C; Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Roser; Tinahones, Francisco J; Arcelus, Jon; Fagundo, Ana B; Agüera, Zaida; Miró, Jordi; Casanueva, Felipe F

    2014-01-01

    Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI) however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1) examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA), temperament traits and plasma endocannabinoid concentrations; and 2) explore the association and interaction between MVPA, temperament, endocannabinoids and BMI. Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls). The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA. Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG) were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = -0.13, p = .039) and high MVPA levels were associated with elevated anandamide (AEA) levels (b = 0.16, p = .049) and N-oleylethanolamide (OEA) levels (b = 0.22, p = .004), as well as high Novelty seeking (b = 0.18, p<.001) and low Harm avoidance (b = -0.16, p<.001). Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity.

  1. Moderate-Vigorous Physical Activity across Body Mass Index in Females: Moderating Effect of Endocannabinoids and Temperament

    PubMed Central

    Fernández-Aranda, Fernando; Sauchelli, Sarah; Pastor, Antoni; Gonzalez, Marcela L.; de la Torre, Rafael; Granero, Roser; Jiménez-Murcia, Susana; Baños, Rosa; Botella, Cristina; Fernández-Real, Jose M.; Fernández-García, Jose C.; Frühbeck, Gema; Gómez-Ambrosi, Javier; Rodríguez, Roser; Tinahones, Francisco J.; Arcelus, Jon; Fagundo, Ana B.; Agüera, Zaida; Miró, Jordi; Casanueva, Felipe F.

    2014-01-01

    Background Endocannabinoids and temperament traits have been linked to both physical activity and body mass index (BMI) however no study has explored how these factors interact in females. The aims of this cross-sectional study were to 1) examine differences among distinct BMI groups on daytime physical activity and time spent in moderate-vigorous physical activity (MVPA), temperament traits and plasma endocannabinoid concentrations; and 2) explore the association and interaction between MVPA, temperament, endocannabinoids and BMI. Methods Physical activity was measured with the wrist-worn accelerometer Actiwatch AW7, in a sample of 189 female participants (43 morbid obese, 30 obese, and 116 healthy-weight controls). The Temperament and Character Inventory-Revised questionnaire was used to assess personality traits. BMI was calculated by bioelectrical impedance analysis via the TANITA digital scale. Blood analyses were conducted to measure levels of endocannabinoids and endocannabinoid-related compounds. Path-analysis was performed to examine the association between predictive variables and MVPA. Results Obese groups showed lower MVPA and dysfunctional temperament traits compared to healthy-weight controls. Plasma concentrations of 2-arachidonoylglyceryl (2-AG) were greater in obese groups. Path-analysis identified a direct effect between greater MVPA and low BMI (b = −0.13, p = .039) and high MVPA levels were associated with elevated anandamide (AEA) levels (b = 0.16, p = .049) and N-oleylethanolamide (OEA) levels (b = 0.22, p = .004), as well as high Novelty seeking (b = 0.18, p<.001) and low Harm avoidance (b = −0.16, p<.001). Conclusions Obese individuals showed a distinct temperament profile and circulating endocannabinoids compared to controls. Temperament and endocannabinoids may act as moderators of the low MVPA in obesity. PMID:25101961

  2. The role of endocannabinoids system in fatty liver disease and therapeutic potentials.

    PubMed

    Alswat, Khalid A

    2013-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a major cause of liver morbidity and mortality with no proven effective therapy as of yet. Its prevalence is increasing globally in parallel with obesity and metabolic syndrome pandemic. The endocannabinoid (EC) system has been implicated in the pathogenesis of several diseases, including fatty liver diseases. This system refers to the cannabinoid receptors type 1 (CB1) and type 2 (CB2), with both their endogenous ligands and machinery dedicated to EC synthesis and degradation. There is accumulating evidence on the role CB1 as a key mediator of insulin resistance and liver lipogenesis in both animals and humans. On the other hand, CB2 receptors have been shown to promote inflammation with anti-fibrogenic properties. The pharmacological modulation of the EC system activity for the treatment of metabolic syndrome and NAFLD are promising yet premature. The initial limited success due to deleterious central nervous system side-effects are likely to be bypassed with the use of peripherally restricted drugs.

  3. Using the endocannabinoid system as a neuroprotective strategy in perinatal hypoxic-ischemic brain injury

    PubMed Central

    Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique

    2013-01-01

    One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720

  4. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system

    PubMed Central

    Sharkey, Keith A.; Darmani, Nissar A.; Parker, Linda A.

    2013-01-01

    Nausea and vomiting (emesis) are important elements in defensive or protective responses that animals use to avoid ingestion or digestion of potentially harmful substances. However, these neurally-mediated responses are at times manifested as symptoms of disease and they are frequently observed as side-effects of a variety of medications, notably those used to treat cancer. Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions. PMID:24184696

  5. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity.

    PubMed

    Blüher, Matthias; Engeli, Stefan; Klöting, Nora; Berndt, Janin; Fasshauer, Mathias; Bátkai, Sándor; Pacher, Pál; Schön, Michael R; Jordan, Jens; Stumvoll, Michael

    2006-11-01

    The endocannabinoid system has been suspected to contribute to the association of visceral fat accumulation with metabolic diseases. We determined whether circulating endocannabinoids are related to visceral adipose tissue mass in lean, subcutaneous obese, and visceral obese subjects (10 men and 10 women in each group). We further measured expression of the cannabinoid type 1 (CB(1)) receptor and fatty acid amide hydrolase (FAAH) genes in paired samples of subcutaneous and visceral adipose tissue in all 60 subjects. Circulating 2-arachidonoyl glycerol (2-AG) was significantly correlated with body fat (r = 0.45, P = 0.03), visceral fat mass (r = 0.44, P = 0.003), and fasting plasma insulin concentrations (r = 0.41, P = 0.001) but negatively correlated to glucose infusion rate during clamp (r = 0.39, P = 0.009). In visceral adipose tissue, CB(1) mRNA expression was negatively correlated with visceral fat mass (r = 0.32, P = 0.01), fasting insulin (r = 0.48, P < 0.001), and circulating 2-AG (r = 0.5, P < 0.001), whereas FAAH gene expression was negatively correlated with visceral fat mass (r = 0.39, P = 0.01) and circulating 2-AG (r = 0.77, P < 0.001). Our findings suggest that abdominal fat accumulation is a critical correlate of the dysregulation of the peripheral endocannabinoid system in human obesity. Thus, the endocannabinoid system may represent a primary target for the treatment of abdominal obesity and associated metabolic changes.

  6. Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract.

    PubMed

    El-Alfy, Abir T; Joseph, Sharon; Brahmbhatt, Akshar; Akati, Setor; Abourashed, Ehab A

    2016-12-01

    Nutmeg [Myristica fragrans Houtt. (Myristicaceae)] has a long-standing reputation of psychoactivity. Anecdotal reports of nutmeg use as a cheap marijuana substitute, coupled to previous studies reporting a cannabimimetic-like action, suggest that nutmeg may interact with the endocannabinoid system. The study evaluates nutmeg fractions for binding capacity with various CNS receptors and their potential interaction with the endocannabinoid system. Dichloromethane (DF) and ethyl acetate (EF) fractions were prepared from the methanol extract of powdered whole nutmeg. The HPLC-profiled fractions were assayed by the NIMH Psychoactive Drug Screening Program (PDSP) in a panel of CNS targets at a 10 μg/mL concentration. The fractions were also screened for fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) inhibition, initially at a concentration of 500 μg/mL, then by concentration-dependent inhibition studies. None of the tested fractions showed significant binding to CNS receptors included in the PDSP panel. However, both fractions exerted significant inhibition of the FAAH and MAGL enzymes. The DF fraction inhibited FAAH and MAGL enzymes at IC50 values of 21.06 ± 3.16 and 15.34 ± 1.61 μg/mL, respectively. Similarly, the EF fraction demonstrated FAAH and MAGL inhibition with IC50 values of 15.42 ± 3.09 and 11.37 ± 6.15 μg/mL, respectively. The study provides the first piece of evidence that nutmeg interacts with the endocannabinoid system via inhibition of the endocannabinoid catabolizing enzymes. This mechanism provides insight into reported cannabis-like action as well as expands the potential therapeutic utility of nutmeg.

  7. Perturbations of the endocannabinoid system in mantle cell lymphoma: correlations to clinical and pathological features

    PubMed Central

    Wasik, Agata M.; Nygren, Lina; Almestrand, Stefan; Zong, Fang; Flygare, Jenny; Wennerholm, Stefanie Baumgartner; Saft, Leonie; Andersson, Patrik; Kimby, Eva; Wahlin, Björn E.; Christensson, Birger; Sander, Birgitta

    2014-01-01

    The cannabinoid receptors are upregulated in many types of cancers, including mantle cell lymphoma (MCL) and have been suggested to constitute novel therapeutic targets. The expression pattern of the key members of the endocannabinoid system was analyzed in a well-characterized MCL patient cohort and correlated to biological features. 107 tumor tissues were analyzed for the mRNA levels of cannabinoid receptors 1 and 2 (CNR1 and CNR2) and the two main enzymes regulating the endocannabinoid anandamide levels in tissue: NAPEPLD and FAAH (participating in synthesis and degradation, respectively). NAPEPLD, CNR1 and CNR2 were overexpressed while FAAH expression was reduced in MCL compared to non-malignant B-cells. Both low CNR1 and high FAAH levels correlated with lymphocytosis (p=0.016 and p=0.022, respectively) and with leukocytosis (p=0.0018 and p=0.047). Weak to moderate CNR1 levels were a feature of SOX11 negative MCL (p=0.006). Both high CNR2 and high FAAH levels correlated to anemia (p=0.0006 and p=0.038, respectively). In conclusion, the relative expression of the anandamide synthesizing and metabolizing enzymes in MCL is heavily perturbed. This finding, together with high expression of cannabinoid receptors, could favor enhanced anandamide signaling and suggest that targeting the endocannabinoid system might be considered as part of lymphoma therapy. PMID:25594062

  8. Mechanism of platelet activation induced by endocannabinoids in blood and plasma.

    PubMed

    Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang

    2014-01-01

    Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that

  9. Tapping into the endocannabinoid system to ameliorate acute inflammatory flares and associated pain in mouse knee joints.

    PubMed

    Krustev, Eugene; Reid, Allison; McDougall, Jason J

    2014-09-27

    During the progression of rheumatoid arthritis (RA), there are frequent but intermittent flares in which the joint becomes acutely inflamed and painful. Although a number of drug therapies are currently used to treat RA, their effectiveness is variable and side effects are common. Endocannabinoids have the potential to ameliorate joint pain and inflammation, but these beneficial effects are limited by their rapid degradation. One enzyme responsible for endocannabinoid breakdown is fatty acid amide hydrolase (FAAH). The present study examined whether URB597, a potent and selective FAAH inhibitor, could alter inflammation and pain in a mouse model of acute synovitis. Acute joint inflammation was induced in male C57BL/6 mice by intra-articular injection of 2% kaolin/2% carrageenan. After 24 hr, articular leukocyte kinetics and blood flow were used as measures of inflammation, while hindlimb weight bearing and von Frey hair algesiometry were used as measures of joint pain. The effects of local URB597 administration were then determined in the presence or absence of either the cannabinoid (CB)1 receptor antagonist AM251, or the CB2 receptor antagonist AM630. URB597 decreased leukocyte rolling and adhesion, as well as inflammation-induced hyperaemia. However, these effects were only apparent at low doses and the effects of URB597 were absent at higher doses. In addition to the anti-inflammatory effects of URB597, fatty acid amide hydrolase (FAAH) inhibition improved both hindlimb weight bearing and von Frey hair withdrawal thresholds. The anti-inflammatory effects of URB597 on leukocyte rolling and vascular perfusion were blocked by both CB1 and CB2 antagonism, while the effect on leukocyte adherence was independent of cannabinoid receptor activation. The analgesic effects of URB597 were CB1 mediated. These results suggest that the endocannabinoid system of the joint can be harnessed to decrease acute inflammatory reactions and the concomitant pain associated with these

  10. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.

    PubMed

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2016-02-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach.

  11. Understanding metabolic homeostasis and imbalance: what is the role of the endocannabinoid system?

    PubMed

    Kunos, George

    2007-09-01

    Endogenous endocannabinoids (ECs) (anandamide and 2-arachidonoyl glycerol) are part of the leptin-regulated neural circuitry involved in appetite regulation. One of the sites of the orexigenic action of ECs involves activation of cannabinoid-1 (CB1) receptors in the lateral hypothalamus, from which neurons involved in mediating food reward project into the limbic system. In animal models of obesity, pharmacologic blockade or genetic ablation of CB1 receptors causes a transient reduction in food intake accompanied by sustained weight loss, reduced adiposity, and reversal of hormonal/metabolic changes, such as elevated levels of plasma leptin, insulin, glucose, and triglyceride, and reduced levels of plasma adiponectin (Acrp30). However, the beneficial effects of CB1 blockade on weight and metabolism cannot be explained by appetite suppression alone. Animal studies suggest that CB1 blockade exerts a direct peripheral as well as a central effect on fat metabolism. CB1 receptor blockade with rimonabant has been shown to not only reduce weight and adiposity but also to directly modulate fat metabolism at peripheral sites in skeletal muscle, adipose tissue, and the liver. Preclinical animal studies suggest that CB1 blockade acts on adipocytes to increase Acrp30 expression, on hepatocytes to decrease de novo lipogenesis and increase fatty acid oxidation, and on skeletal muscle to reduce blood glucose and insulin levels. Extrapolating from animal studies to the clinic, CB1 receptor blockade offers a promising strategy not only for reducing weight and abdominal adiposity but also for preventing and reversing its metabolic consequences.

  12. Endocannabinoid signaling system and brain reward: emphasis on dopamine.

    PubMed

    Gardner, Eliot L

    2005-06-01

    The brain's reward circuitry consists of an "in series" circuit of dopaminergic (DA) neurons in the ventral tegmental area (VTA), nucleus accumbens (Acb), and that portion of the medial forebrain bundle (MFB) which links the VTA and Acb. Drugs which enhance brain reward (and have derivative addictive potential) have common actions on this core DA reward system and on animal behaviors relating to its function. Such drugs enhance electrical brain-stimulation reward in this reward system; enhance neural firing and DA tone within it; produce conditioned place preference (CPP), a behavioral model of incentive motivation; are self-administered; and trigger reinstatement of drug-seeking behavior in animals extinguished from drug self-administration. Cannabinoids were long considered different from other reward-enhancing drugs in reward efficacy and in underlying neurobiological substrates activated. However, it is now clear that cannabinoids activate these brain reward processes and reward-related behaviors in similar fashion to other reward-enhancing drugs. This brief review discusses the roles that endogenous cannabinoids (especially activation of the CB1 receptor) may play within the core reward system, and concludes that while cannabinoids activate the reward pathways in a manner consistent with other reward-enhancing drugs, the neural mechanisms by which this occurs may differ.

  13. Endocannabinoids in nervous system health and disease: the big picture in a nutshell

    PubMed Central

    Skaper, Stephen D.; Di Marzo, Vincenzo

    2012-01-01

    The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related ‘phytocannabinoid’ compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the ‘endocannabinoids’ and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness. PMID:23108539

  14. Comparison of protective effect of ascorbic acid on redox and endocannabinoid systems interactions in in vitro cultured human skin fibroblasts exposed to UV radiation and hydrogen peroxide.

    PubMed

    Gęgotek, Agnieszka; Bielawska, Katarzyna; Biernacki, Michał; Zaręba, Ilona; Surażyński, Arkadiusz; Skrzydlewska, Elżbieta

    2017-03-11

    The mechanisms of biological activity of commonly used natural compounds are constantly examined. Therefore, the aim of this study was to compare ascorbic acid efficacy in counteracting the consequences of UV and hydrogen peroxide treatment on lipid mediators and their regulative action on antioxidant abilities. Skin fibroblasts exposed to UVA and UVB irradiation, treated with hydrogen peroxide and ascorbic acid. The redox system was estimated through reactive oxygen species (ROS) generation (electron spin resonance spectrometer) and antioxidants level/activity (HPLC/spectrometry) which activity was evaluated by the level of phospholipid metabolites: 4-hydroxynonenal, malondialdehyde, 8-isoprostanes and endocannabinoids (GC/LC-MS) in the human skin fibroblasts. Protein and DNA oxidative modifications were also determined (LC). The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), its activators and inhibitors as well as pro/anti-apoptotic proteins and endocannabinoid receptors was examined (Western blot) and collagen metabolism was evaluated by collagen biosynthesis and prolidase activity (spectrometry). UVA and UVB irradiation and hydrogen peroxide treatment enhanced activity of xanthine and NADPH oxidases resulting in ROS generation as well as diminution of antioxidant phospholipid protection (glutathione peroxidase-glutathione-vitamin E), what led to increased lipid peroxidation and decreased endocannabinoids level. Dysregulation of cannabinoid receptors expression and environment of transcription factor Nrf2 caused apoptosis induction. Ascorbic acid partially prevented ROS generation, antioxidant capacity diminution and endocannabinoid systems disturbances but only slightly protected macromolecules such as phospholipid, protein and DNA against oxidative modifications. However, ascorbic acid significantly prevented decrease in collagen type I biosynthesis. Ascorbic acid in similar degree prevents UV (UVA and UVB) and hydrogen peroxide

  15. Glucose metabolism: focus on gut microbiota, the endocannabinoid system and beyond.

    PubMed

    Cani, P D; Geurts, L; Matamoros, S; Plovier, H; Duparc, T

    2014-09-01

    The gut microbiota is now considered as a key factor in the regulation of numerous metabolic pathways. Growing evidence suggests that cross-talk between gut bacteria and host is achieved through specific metabolites (such as short-chain fatty acids) and molecular patterns of microbial membranes (lipopolysaccharides) that activate host cell receptors (such as toll-like receptors and G-protein-coupled receptors). The endocannabinoid (eCB) system is an important target in the context of obesity, type 2 diabetes (T2D) and inflammation. It has been demonstrated that eCB system activity is involved in the control of glucose and energy metabolism, and can be tuned up or down by specific gut microbes (for example, Akkermansia muciniphila). Numerous studies have also shown that the composition of the gut microbiota differs between obese and/or T2D individuals and those who are lean and non-diabetic. Although some shared taxa are often cited, there is still no clear consensus on the precise microbial composition that triggers metabolic disorders, and causality between specific microbes and the development of such diseases is yet to be proven in humans. Nevertheless, gastric bypass is most likely the most efficient procedure for reducing body weight and treating T2D. Interestingly, several reports have shown that the gut microbiota is profoundly affected by the procedure. It has been suggested that the consistent postoperative increase in certain bacterial groups such as Proteobacteria, Bacteroidetes and Verrucomicrobia (A. muciniphila) may explain its beneficial impact in gnotobiotic mice. Taken together, these data suggest that specific gut microbes modulate important host biological systems that contribute to the control of energy homoeostasis, glucose metabolism and inflammation in obesity and T2D.

  16. Alterations in the hippocampal endocannabinoid system in diet-induced obese mice.

    PubMed

    Massa, Federico; Mancini, Giacomo; Schmidt, Helmut; Steindel, Frauke; Mackie, Ken; Angioni, Carlo; Oliet, Stéphane H R; Geisslinger, Gerd; Lutz, Beat

    2010-05-05

    The endocannabinoid (eCB) system plays central roles in the regulation of food intake and energy expenditure. Its alteration in activity contributes to the development and maintenance of obesity. Stimulation of the cannabinoid receptor type 1 (CB(1) receptor) increases feeding, enhances reward aspects of eating, and promotes lipogenesis, whereas its blockade decreases appetite, sustains weight loss, increases insulin sensitivity, and alleviates dysregulation of lipid metabolism. The hypothesis has been put forward that the eCB system is overactive in obesity. Hippocampal circuits are not directly involved in the neuronal control of food intake and appetite, but they play important roles in hedonic aspects of eating. We investigated the possibility whether or not diet-induced obesity (DIO) alters the functioning of the hippocampal eCB system. We found that levels of the two eCBs, 2-arachidonoyl glycerol (2-AG) and anandamide, were increased in the hippocampus from DIO mice, with a concomitant increase of the 2-AG synthesizing enzyme diacylglycerol lipase-alpha and increased CB(1) receptor immunoreactivity in CA1 and CA3 regions, whereas CB(1) receptor agonist-induced [(35)S]GTPgammaS binding was unchanged. eCB-mediated synaptic plasticity was changed in the CA1 region, as depolarization-induced suppression of inhibition and long-term depression of inhibitory synapses were enhanced. Functionality of CB(1) receptors in GABAergic neurons was furthermore revealed, as mice specifically lacking CB(1) receptors on this neuronal population were partly resistant to DIO. Our results show that DIO-induced changes in the eCB system affect not only tissues directly involved in the metabolic regulation but also brain regions mediating hedonic aspects of eating and influencing cognitive processes.

  17. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    PubMed Central

    Guasti, Leonardo; Richardson, Denise; Jhaveri, Maulik; Eldeeb, Khalil; Barrett, David; Elphick, Maurice R; Alexander, Stephen PH; Kendall, David; Michael, Gregory J; Chapman, Victoria

    2009-01-01

    Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs) are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG), and the related compound N-palmitoylethanolamine (PEA), in neuropathic spinal cord. Selective spinal nerve ligation (SNL) in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days) significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P < 0.001). Minocycline treatment also significantly attenuated OX-42 immunoreactivity, a marker of activated microglia, in the ipsilateral (P < 0.001) and contralateral (P < 0.01) spinal cord of SNL rats, compared to vehicle controls. Minocycline treatment significantly (P < 0.01) decreased levels of 2-AG and significantly (P < 0.01) increased levels of PEA in the ipsilateral spinal cord of SNL rats, compared to the contralateral spinal cord. Thus, activation of microglia affects spinal levels of endocannabinoids and related compounds in neuropathic pain states. PMID:19570201

  18. Endocannabinoids: some like it fat (and sweet too).

    PubMed

    Matias, I; Cristino, L; Di Marzo, V

    2008-05-01

    There is growing interest in the commercialisation of the CB(1) receptor antagonist Rimonabant in Europe for the treatment of obesity and the metabolic syndrome. Clinical trials have shown that CB(1) receptor blockers are able to reduce not only food intake but also abdominal adiposity and its metabolic sequelae. Accordingly, CB(1) receptors, and tissue concentrations of endocannabinoids sufficient to activate them, are present in all brain and peripheral organs involved in the control of energy balance, including the hypothalamus, nucleus accumbens, pancreas, adipose tissue, skeletal muscle and liver. At the central level, the endocannabinoid system seems to play a dual role in the regulation of food intake by hedonic and homeostatic energy regulation. At the peripheral level, the endocannabinoid system seems to behave as a system that reduces energy expenditure and directs energy balance towards energy storage into fat. The emerging role of the endocannabinoid system in energy balance at both central and peripheral levels will be discussed in this review.

  19. Interleukin-1β causes anxiety by interacting with the endocannabinoid system.

    PubMed

    Rossi, Silvia; Sacchetti, Lucia; Napolitano, Francesco; De Chiara, Valentina; Motta, Caterina; Studer, Valeria; Musella, Alessandra; Barbieri, Francesca; Bari, Monica; Bernardi, Giorgio; Maccarrone, Mauro; Usiello, Alessandro; Centonze, Diego

    2012-10-03

    Interleukin-1β (IL-1β) is involved in mood alterations associated with inflammatory illnesses and with stress. The synaptic basis of IL-1β-induced emotional disturbances is still unknown. To address the possible involvement of the endocannabinoid system in IL-1β-induced anxiety, we performed behavioral and neurophysiological studies in mice exposed to stress or to intracerebroventricular injections of this inflammatory cytokine or of its antagonist. We found that a single intracerebroventricular injection of IL-1β caused anxiety in mice, and abrogated the sensitivity of cannabinoid CB1 receptors (CB1Rs) controlling GABA synapses in the striatum. Identical behavioral and synaptic results were obtained following social defeat stress, and intracerebroventricular injection of IL-1 receptor antagonist reverted both effects. IL-1β-mediated inhibition of CB1R function was secondary to altered cholesterol composition within membrane lipid rafts, and required intact function of the transient receptor potential vanilloid 1 (TRPV1) channel, another element of the endocannabinoid system. Membrane lipid raft disruption and inhibition of cholesterol synthesis, in fact, abrogated IL-1β-CB1R coupling, and TRPV1-/- mice were indeed insensitive to the synaptic and behavioral effects of both IL-1β and stress. On the other hand, cholesterol enrichment of striatal slices mimicked the synaptic effects of IL-1β on CB1Rs only in control mice, while the same treatment was ineffective in slices prepared from TRPV1-/- mice. The present investigation identifies a previously unrecognized interaction between a major proinflammatory cytokine and the endocannabinoid system in the pathophysiology of anxiety.

  20. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    PubMed

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1(hi) macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1(-/-) or CB2(-/-) mice have fewer CX3CR1(hi) Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4(+) cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4(+) T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  1. Cannabinoid drugs and enhancement of endocannabinoid responses: strategies for a wide array of disease states.

    PubMed

    Karanian, David A; Bahr, Ben A

    2006-09-01

    The endogenous cannabinoid system has revealed potential avenues to treat many disease states. Medicinal indications of cannabinoid drugs including compounds that result in enhanced endocannabinoid responses (EER) have expanded markedly in recent years. The wide range of indications covers chemotherapy complications, tumor growth, addiction, pain, multiple sclerosis, glaucoma, inflammation, eating disorders, age-related neurodegenerative disorders, as well as epileptic seizures, traumatic brain injury, cerebral ischemia, and other excitotoxic insults. Indeed, a great effort has led to the discovery of agents that selectively activate the cannabinoid system or that enhance the endogenous pathways of cannabinergic signaling. The endocannabinoid system is comprised of three primary components: (i) cannabinoid receptors, (ii) endocannabinoid transport system, and (iii) hydrolysis enzymes that break down the endogenous ligands. Two known endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are lipid molecules that are greatly elevated in response to a variety of pathological events. This increase in endocannabinoid levels is suggested to be part of an on-demand compensatory response. Furthermore, activation of signaling pathways mediated by the endogenous cannabinoid system promotes repair and cell survival. Similar cell maintenance effects are elicited by EER through inhibitors of the endocannabinoid deactivation processes (i.e., internalization and hydrolysis). The therapeutic potential of the endocannabinoid system has yet to be fully determined, and the number of medical maladies that may be treated will likely continue to grow. This review will underline studies that demonstrate medicinal applications for agents that influence the endocannabinoid system.

  2. Sapap3 deletion anomalously activates short-term endocannabinoid-mediated synaptic plasticity

    PubMed Central

    Chen, Meng; Wan, Yehong; Ade, Kristen; Ting, Jonathan; Feng, Guoping; Calakos, Nicole

    2011-01-01

    Retrograde synaptic signaling by endocannabinoids is a widespread mechanism for activity-dependent inhibition of synaptic strength in the brain. Although prevalent, the conditions for eliciting endocannabinoid (eCB)-mediated synaptic depression vary among brain circuits. As yet, relatively little is known about the molecular mechanisms underlying this variation, although the initial signaling events are likely dictated by postsynaptic proteins. SAPAPs are a family of postsynaptic proteins unique to excitatory synapses. Using Sapap3 knock-out (KO) mice, we find that, in the absence of SAPAP3, striatal medium spiny neuron (MSN) excitatory synapses exhibit eCB-mediated synaptic depression under conditions that do not normally activate this process. The anomalous synaptic plasticity requires type 5 metabotropic glutamate receptors (mGluR5), which are dysregulated in Sapap3 KO MSNs. Both surface expression and activity of mGluR5 are increased in Sapap3 KO MSNs, suggesting that enhanced mGluR5 activity may drive the anomalous synaptic plasticity. In direct support of this possibility, we find that, in wildtype (WT) MSNs, pharmacological enhancement of mGluR5 by a positive allosteric modulator is sufficient to reproduce the increased synaptic depression seen in Sapap3 KO MSNs. The same pharmacologic treatment, however, fails to elicit further depression in KO MSNs. Under conditions that are sufficient to engage eCB-mediated synaptic depression in WT MSNs, Sapap3 deletion does not alter the magnitude of the response. These results identify a role for SAPAP3 in the regulation of postsynaptic mGluRs and eCB-mediated synaptic plasticity. SAPAPs, through their effect on mGluR activity, may serve as regulatory molecules gating the threshold for inducing eCB-mediated synaptic plasticity. PMID:21715621

  3. Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.

    PubMed

    La Porta, Carmen; Bura, S Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael

    2015-10-01

    In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.

  4. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias.

    PubMed

    Schroeder, Friedhelm; McIntosh, Avery L; Martin, Gregory G; Huang, Huan; Landrock, Danilo; Chung, Sarah; Landrock, Kerstin K; Dangott, Lawrence J; Li, Shengrong; Kaczocha, Martin; Murphy, Eric J; Atshaves, Barbara P; Kier, Ann B

    2016-06-01

    The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.

  5. Differences in the Endocannabinoid System of Sperm from Fertile and Infertile Men

    PubMed Central

    Di Tommaso, Monia; Pucci, Mariangela; Battista, Natalia; Paro, Rita; Simon, Luke; Lutton, Deborah; Maccarrone, Mauro

    2012-01-01

    Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS), mainly through the action of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) at cannabinoid (CB1, CB2) and vanilloid (TRPV1) receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS), mRNA (through quantitative RT-PCR), protein (through Western Blotting and ELISA) expression, and functionality (through activity and binding assays) of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG), as well as of their binding receptors CB1, CB2 and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB1 and CB2 receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems. PMID:23082196

  6. Toward a translational approach to targeting the endocannabinoid system in posttraumatic stress disorder: A critical review of preclinical research

    PubMed Central

    Papini, Santiago; Sullivan, Gregory M.; Hien, Denise A.; Shvil, Erel; Neria, Yuval

    2015-01-01

    Despite the lack of clinical research, marijuana and synthetic cannabinoids have been approved to treat posttraumatic stress disorder (PTSD) in several states in the United States. This review critically examines preclinical research on the endocannabinoid system (ECS) in order to evaluate three key questions that are relevant to PTSD: (1) Does ECS dysfunction impact fear extinction? (2) Can stress-related symptoms be prevented by ECS modulation? (3) Is the ECS a potential target for enhancing PTSD treatment? Disruption of the ECS impaired fear extinction in rodents, and ECS abnormalities have been observed in PTSD. Targeting fear memories via the ECS had mixed results in rodents, whereas augmented cannabinoid receptor activation typically facilitated extinction. However, the translational value of these findings is limited by the paucity and inconsistency of human research. Further investigation is necessary to determine whether incorporating cannabinoids in treatment would benefit individuals with PTSD, with cautious attention to risks. PMID:25448242

  7. Endocannabinoid Signaling Regulates Sleep Stability

    PubMed Central

    Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992

  8. Endocannabinoid Signaling Regulates Sleep Stability.

    PubMed

    Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M

    2016-01-01

    The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.

  9. The endocannabinoid system of the skin in health and disease: novel perspectives and therapeutic opportunities

    PubMed Central

    Bíró, Tamás; Tóth, Balázs I.; Haskó, György; Paus, Ralf; Pacher, Pál

    2009-01-01

    The newly discovered endocannabinoid system (ECS; comprising the endogenous lipid mediators endocannabinoids present in virtually all tissues, their G-protein-coupled cannabinoid receptors, biosynthetic pathways and metabolizing enzymes) has been implicated in multiple regulatory functions both in health and disease. Recent studies have intriguingly suggested the existence of a functional ECS in the skin and implicated it in various biological processes (e.g. proliferation, growth, differentiation, apoptosis and cytokine, mediator or hormone production of various cell types of the skin and appendages, such as the hair follicle and sebaceous gland). It seems that the main physiological function of the cutaneous ECS is to constitutively control the proper and well-balanced proliferation, differentiation and survival, as well as immune competence and/or tolerance, of skin cells. The disruption of this delicate balance might facilitate the development of multiple pathological conditions and diseases of the skin (e.g. acne, seborrhea, allergic dermatitis, itch and pain, psoriasis, hair growth disorders, systemic sclerosis and cancer). PMID:19608284

  10. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain.

    PubMed

    Toguri, James T; Caldwell, Meggie; Kelly, Melanie E M

    2016-01-01

    The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain.

  11. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain

    PubMed Central

    Toguri, James T.; Caldwell, Meggie; Kelly, Melanie E. M.

    2016-01-01

    The endocannabinoid system (ECS) has emerged as an important regulator of both physiological and pathological processes. Notably, this endogenous system plays a key role in the modulation of pain and inflammation in a number of tissues. The components of the ECS, including endocannabinoids, their cognate enzymes and cannabinoid receptors, are localized in the eye, and evidence indicates that ECS modulation plays a role in ocular disease states. Of these diseases, ocular inflammation presents a significant medical problem, given that current clinical treatments can be ineffective or are associated with intolerable side-effects. Furthermore, a prominent comorbidity of ocular inflammation is pain, including neuropathic pain, for which therapeutic options remain limited. Recent evidence supports the use of drugs targeting the ECS for the treatment of ocular inflammation and pain in animal models; however, the potential for therapeutic use of cannabinoid drugs in the eye has not been thoroughly investigated at this time. This review will highlight evidence from experimental studies identifying components of the ocular ECS and discuss the functional role of the ECS during different ocular inflammatory disease states, including uveitis and corneal keratitis. Candidate ECS targeted therapies will be discussed, drawing on experimental results obtained from both ocular and non-ocular tissue(s), together with their potential application for the treatment of ocular inflammation and pain. PMID:27695415

  12. Role of the endocannabinoid system in vertebrates: Emphasis on the zebrafish model.

    PubMed

    Oltrabella, Francesca; Melgoza, Adam; Nguyen, Brian; Guo, Su

    2017-05-01

    The endocannabinoid system (eCBs), named after the plant Cannabis sativa, comprises cannabinoid receptors, endogenous ligands known as "endocannabinoids", and enzymes involved in the biosynthesis and degradation of these ligands, as well as putative transporters for these ligands. ECBs proteins and small molecules have been detected in early embryonic stages of many vertebrate models. As a result, cannabinoid receptors and endogenous as well as exogenous cannabinoids influence development and behavior in many vertebrate species. Understanding the precise mechanisms of action for the eCBs will provide an invaluable guide towards elucidation of vertebrate development and will also help delineate how developmental exposure to marijuana might impact health and cognitive/executive functioning in adulthood. Here we review the developmental roles of the eCBs in vertebrates, focusing our attention on the zebrafish model. Since little is known regarding the eCBs in zebrafish, we provide new data on the expression profiles of eCBs genes during development and in adult tissue types of this model organism. We also highlight exciting areas for future investigations, including the synaptic regulation of eCBs, its role in reward and addiction, and in nervous system development and plasticity. © 2017 Japanese Society of Developmental Biologists.

  13. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: possible involvement of the endocannabinoid system

    PubMed Central

    Seillier, Alexandre; Giuffrida, Andrea

    2015-01-01

    Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a “social” cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an “empty” cage, and spent more time exploring a “novel” cage (i.e. new stimulus rat) versus a “familiar” cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003 – 0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation. PMID:26706691

  14. Disruption of social cognition in the sub-chronic PCP rat model of schizophrenia: Possible involvement of the endocannabinoid system.

    PubMed

    Seillier, Alexandre; Giuffrida, Andrea

    2016-02-01

    Previous studies have shown that social withdrawal in the phencyclidine (PCP) rat model of schizophrenia results from deficient endocannabinoid-induced activation of CB1 receptors. To understand the underlying cognitive mechanisms of the social deficit in PCP-treated rats, we examined the impact of pharmacological manipulation of the endocannabinoid system on sociability (i.e. social approach) and social novelty preference (which relies on social recognition). Control rats showed a clear preference for a "social" cage (i.e. unfamiliar stimulus rat placed under a wire mesh cage) versus an "empty" cage, and spent more time exploring a "novel" cage (i.e. new stimulus rat) versus a "familiar" cage. In contrast, rats receiving PCP (5 mg/kg, b.i.d. for 7 days, followed by a 7 day-washout period) showed intact sociability, but lacked social novelty preference. This PCP-induced deficit was due to increased activity at CB1 receptors as it was reversed by systemic administration of the CB1 antagonist AM251 (1 mg/kg). In agreement with this hypothesis, the cannabinoid agonist CP55,940 (0.003-0.03 mg/kg) dose-dependently suppressed social novelty preference in control animals without affecting sociability. Taken together, these data suggest that PCP-treated rats have a deficit in social cognition, possibly induced by increased stimulation of CB1 receptors. This deficit, however, is distinct from the social withdrawal previously observed in these animals, as the latter is due to deficient, rather than increased, CB1 stimulation.

  15. Endocannabinoids and the Endocrine System in Health and Disease.

    PubMed

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  16. Endocannabinoids and liver disease. IV. Endocannabinoid involvement in obesity and hepatic steatosis.

    PubMed

    Kunos, George; Osei-Hyiaman, Douglas

    2008-05-01

    Endocannabinoids are endogenous lipid mediators that interact with the same receptors as plant-derived cannabinoids to produce similar biological effects. The well-known appetitive effect of smoking marijuana has prompted inquiries into the possible role of endocannabinoids in the control of food intake and body weight. This brief review surveys recent evidence that endocannabinoids and their receptors are involved at multiple levels in the control of energy homeostasis. Endocannabinoids are orexigenic mediators and are part of the leptin-regulated central neural circuitry that controls energy intake. In addition, they act at multiple peripheral sites including adipose tissue, liver, and skeletal muscle to promote lipogenesis and limit fat elimination. Their complex actions could be viewed as anabolic, increasing energy intake and storage and decreasing energy expenditure, as components of an evolutionarily conserved system that has insured survival under conditions of starvation. In the era of plentiful food and limited physical activity, pharmacological inhibition of endocannabinoid activity offers benefits in the treatment of obesity and its hormonal/metabolic consequences.

  17. Endocannabinoid signaling in reward and addiction

    PubMed Central

    Parsons, Loren H.; Hurd, Yasmin L.

    2015-01-01

    Brain endocannabinoid signaling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated endocannabinoid signaling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired endocannabinoid signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states, and craving that propel addiction. Understanding the contributions of endocannabinoid disruptions to behavioral and physiological traits provides insight into the endocannabinoid influence on addiction vulnerability. PMID:26373473

  18. The evolution and comparative neurobiology of endocannabinoid signalling

    PubMed Central

    Elphick, Maurice R.

    2012-01-01

    CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids. PMID:23108540

  19. Lifelong imbalanced LA/ALA intake impairs emotional and cognitive behavior via changes in brain endocannabinoid system.

    PubMed

    Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela

    2017-02-01

    Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Role of the endocannabinoid system in energy balance regulation and obesity.

    PubMed

    Cota, Daniela

    2008-01-01

    The endogenous cannabinoid system (ECS) is a neuromodulatory system recently recognized to have a role in the regulation of various aspects of eating behavior and energy balance through central and peripheral mechanisms. In the central nervous system, cannabinoid type 1 receptors and their endogenous ligands, the endocannabinoids, are involved in modulating food intake and motivation to consume palatable food. Moreover, the ECS is present in peripheral organs, such as liver, white adipose tissue, muscle, and pancreas, where it seems to be involved in the regulation of lipid and glucose homeostasis. Dysregulation of the ECS has been associated with the development of obesity and its sequelae, such as dyslipidemia and diabetes. Conversely, recent clinical trials have shown that cannabinoid type 1 receptor blockade may ameliorate these metabolic abnormalities. Although further investigation is needed to better define the actual mechanisms of action, pharmacologic approaches targeting the ECS may provide a novel, effective option for the management of obesity, type 2 diabetes and cardiovascular disease.

  1. Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis.

    PubMed

    Murillo-Rodríguez, Eric; Machado, Sergio; Rocha, Nuno Barbosa; Budde, Henning; Yuan, Ti-Fei; Arias-Carrión, Oscar

    2016-12-17

    The endocannabinoid system comprises receptors (CB1 and CB2 cannabinoid receptors), enzymes (Fatty Acid Amide Hydrolase [FAAH], which synthesizes the endocannabinoid anandamide), as well as the anandamide membrane transporter (AMT). Importantly, previous experiments have demonstrated that the endocannabinoid system modulates multiple neurobiological functions, including sleep. For instance, SR141716A (the CB1 cannabinoid receptor antagonist) as well as URB597 (the FAAH inhibitor) increase waking in rats whereas VDM-11 (the blocker of the AMT) enhances sleep in rodents. However, no further evidence is available regarding the neurobiological role of the endocannabinoid system in the homeostatic control of sleep. Therefore, the aim of the current experiment was to test if SR141716A, URB597 or VDM-11 would modulate the sleep rebound after sleep deprivation. Thus, these compounds were systemically injected (5, 10, 20mg/kg; ip; separately each one) into rats after prolonged waking. We found that SR141716A and URB597 blocked in dose-dependent fashion the sleep rebound whereas animals treated with VDM-11 displayed sleep rebound during the recovery period. Complementary, injection after sleep deprivation of either SR141716A or URB597 enhanced dose-dependently the extracellular levels of dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT), as well as adenosine (AD) while VDM-11 caused a decline in contents of these molecules. These findings suggest that SR141716A or URB597 behave as a potent stimulants since they suppressed the sleep recovery period after prolonged waking. It can be concluded that elements of the endocannabinoid system, such as the CB1 cannabinoid receptor, FAAH and AMT, modulate the sleep homeostasis after prolonged waking.

  2. Role of the endocannabinoid system in brain functions relevant for schizophrenia: an overview of human challenge studies with cannabis or ∆9-tetrahydrocannabinol (THC).

    PubMed

    Bossong, Matthijs G; Jansma, J Martijn; Bhattacharyya, Sagnik; Ramsey, Nick F

    2014-07-03

    Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms.

  3. Psychopharmacology of the endocannabinoids: far beyond anandamide.

    PubMed

    Pamplona, F A; Takahashi, R N

    2012-01-01

    The study of endocannabinoid pharmacology has proceeded from the discovery of Δ9-tetrahydrocannabinol, the main psychoactive compound in Cannabis sativa, to the identification of an endogenous endocannabinoid system that is essential for physiological modulation of neuronal functions. We have not yet achieved a complete understanding of the various roles of the endocannabinoids, but this is one of the fastest-growing fields in psychopharmacology. This review starts with a brief historical description of the discovery of the endocannabinoids and then focuses on recent pharmacological advances and recently discovered endocannabinoid mechanisms of action (e.g. functional selectivity, allosterism, and receptor trafficking). Finally, we will discuss the contention that the existence of evidence-based therapeutic applications for cannabinoids and the wide range of physiological functions affected by endocannabinoids suggests that the careful study of the endocannabinoid system may lead to the development of novel therapeutic drugs with higher societal acceptability and lower side effects profiles.

  4. Endocannabinoid Modulation of Dopaminergic Motor Circuits

    PubMed Central

    Morera-Herreras, Teresa; Miguelez, Cristina; Aristieta, Asier; Ruiz-Ortega, José Ángel; Ugedo, Luisa

    2012-01-01

    There is substantial evidence supporting a role for the endocannabinoid system as a modulator of the dopaminergic activity in the basal ganglia, a forebrain system that integrates cortical information to coordinate motor activity regulating signals. In fact, the administration of plant-derived, synthetic or endogenous cannabinoids produces several effects on motor function. These effects are mediated primarily through the CB1 receptors that are densely located in the dopamine-enriched basal ganglia networks, suggesting that the motor effects of endocannabinoids are due, at least in part, to modulation of dopaminergic transmission. On the other hand, there are profound changes in CB1 receptor cannabinoid signaling in the basal ganglia circuits after dopamine depletion (as happens in Parkinson’s disease) and following l-DOPA replacement therapy. Therefore, it has been suggested that endocannabinoid system modulation may constitute an important component in new therapeutic approaches to the treatment of motor disturbances. In this article we will review studies supporting the endocannabinoid modulation of dopaminergic motor circuits. PMID:22701427

  5. Potential Therapeutical Contributions of the Endocannabinoid System towards Aging and Alzheimer’s Disease

    PubMed Central

    Bonnet, Amandine E; Marchalant, Yannick

    2015-01-01

    Aging can lead to decline in cognition, notably due to neurodegenerative processes overwhelming the brain over time. As people live longer, numerous concerns are rightfully raised toward long-term slowly incapacitating diseases with no cure, such as Alzheimer’s disease. Since the early 2000’s, the role of neuroinflammation has been scrutinized for its potential role in the development of diverse neurodegenerative diseases notably because of its slow onset and chronic nature in aging. Despite the lack of success yet, treatment of chronic neuroinflammation could help alleviate process implicated in neurodegenerative disease. A growing number of studies including our own have aimed at the endocannabinoid system and unfolded unique effects of this system on neuroinflammation, neurogenesis and hallmarks of Alzheimer’s disease and made it a reasonable target in the context of normal and pathological brain aging. PMID:26425394

  6. Endocannabinoids in cerebrovascular regulation

    PubMed Central

    Ruisanchez, Éva; Leszl-Ishiguro, Miriam; Sándor, Péter; Pacher, Pál

    2016-01-01

    The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation. PMID:26825517

  7. Endocannabinoids in cerebrovascular regulation.

    PubMed

    Benyó, Zoltán; Ruisanchez, Éva; Leszl-Ishiguro, Miriam; Sándor, Péter; Pacher, Pál

    2016-04-01

    The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All major cell types involved in cerebrovascular control pathways (i.e., smooth muscle, endothelium, neurons, astrocytes, pericytes, microglia, and leukocytes) are capable of synthesizing endocannabinoids and/or express some or several of their target proteins [i.e., the cannabinoid 1 and 2 (CB1 and CB2) receptors and the transient receptor potential vanilloid type 1 ion channel]. Therefore, the endocannabinoid system may importantly modulate the regulation of cerebral circulation under physiological and pathophysiological conditions in a very complex manner. Experimental data accumulated since the late 1990s indicate that the direct effect of cannabinoids on cerebral vessels is vasodilation mediated, at least in part, by CB1 receptors. Cannabinoid-induced cerebrovascular relaxation involves both a direct inhibition of smooth muscle contractility and a release of vasodilator mediator(s) from the endothelium. However, under stress conditions (e.g., in conscious restrained animals or during hypoxia and hypercapnia), cannabinoid receptor activation was shown to induce a reduction of the cerebral blood flow, probably via inhibition of the electrical and/or metabolic activity of neurons. Finally, in certain cerebrovascular pathologies (e.g., subarachnoid hemorrhage, as well as traumatic and ischemic brain injury), activation of CB2 (and probably yet unidentified non-CB1/non-CB2) receptors appear to improve the blood perfusion of the brain via attenuating vascular inflammation.

  8. The role of endocannabinoids in pregnancy.

    PubMed

    Chan, Hsiu-Wen; McKirdy, Natalie C; Peiris, Hassendrini N; Rice, Gregory E; Mitchell, Murray D

    2013-09-01

    Endocannabinoids are a family of lipid signalling molecules. As with prostaglandins (PGs), endocannabinoids are derived from polyunsaturated fatty acids and affect cell function via receptor-mediated mechanisms. They also bind to PG receptors, although at a lower affinity. The endocannabinoid network is regulated in pregnancy from embryo development to labour onset. Even small changes in endocannabinoid exposure can retard embryo development and affect implantation success. There is now compelling evidence that aberrant expression of factors involved in the endocannabinoid pathway in the placenta and circulating lymphocytes results in spontaneous miscarriage and poor pregnancy outcomes. It is likely that competition between endocannabinoids, PGs and other similar lipids ultimately determines how phospholipid/fatty acid substrates are metabolised and, thus, the balance between the uterotonic and tocolytic activities. We, therefore, hypothesise that endocannabinoid profiles may be used as a biomarker to predict and/or identify spontaneous labour onset.

  9. Endocannabinoids and obesity.

    PubMed

    Chen, Guoxun; Pang, Zhen

    2013-01-01

    A safe and effective antiobesity drug is needed to combat the global obesity epidemic. The discovery of cannabinoids from medicinal herbs has revealed the endocannabinoid system (ECS) in animals and humans, which regulates various physiological activities such as feeding, thermogenesis, and body weight (BW). Although cannabinoid receptors 1 (CB1) antagonists have shown antiobesity efficacies in animal models and in the clinic, they failed to establish as a treatment due to their psychological side effects. Recent studies indicate that CB1 in various peripheral tissues may mediate some of the therapeutic effects of CB1 antagonists, such as improved lipid and glucose homeostasis. It rationalizes the development of compounds with limited brain penetration, for minimizing the side effects while retaining the therapeutic efficacies. A survey of the literature has revealed some controversies about how the ECS affects obesity. This review summarizes the research progresses and discusses some future perspectives.

  10. Impact of Embedded Endocannabinoids and Their Oxygenation by Lipoxygenase on Membrane Properties

    PubMed Central

    2012-01-01

    N-Arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol are the best characterized endocannabinoids. Their biological activity is subjected to metabolic control whereby a dynamic equilibrium among biosynthetic, catabolic, and oxidative pathways drives their intracellular concentrations. In particular, lipoxygenases can generate hydroperoxy derivatives of endocannabinoids, endowed with distinct activities within cells. The in vivo interaction between lipoxygenases and endocannabinoids is likely to occur within cell membranes; thus, we sought to ascertain whether a prototypical enzyme like soybean (Glycine max) 15-lipoxygenase-1 is able to oxygenate endocannabinoids embedded in synthetic vesicles and how these substances could affect the binding ability of the enzyme to different lipid bilayers. We show that (i) embedded endocannabinoids increase membrane fluidity; (ii) 15-lipoxygenase-1 preferentially binds to endocannabinoid-containing bilayers; and that (iii) 15-lipoxygenase-1 oxidizes embedded endocannabinoids and thus reduces fluidity and local hydration of membrane lipids. Together, the present findings reveal further complexity in the regulation of endocannabinoid signaling within the central nervous system, disclosing novel control by oxidative pathways. PMID:22860207

  11. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes.

    PubMed

    Jourdan, Tony; Godlewski, Grzegorz; Cinar, Resat; Bertola, Adeline; Szanda, Gergő; Liu, Jie; Tam, Joseph; Han, Tiffany; Mukhopadhyay, Bani; Skarulis, Monica C; Ju, Cynthia; Aouadi, Myriam; Czech, Michael P; Kunos, George

    2013-09-01

    Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM.

  12. The challenge of treating obesity: the endocannabinoid system as a potential target.

    PubMed

    Isoldi, Kathy Keenan; Aronne, Louis J

    2008-05-01

    Obesity and cardiometabolic risk, or the metabolic syndrome, continue to be major public health concerns. To date, treatment with lifestyle and pharmacotherapy interventions has resulted in limited efficacy in reversing the upward trend in this present-day health crisis. Research reveals that a modest 5% to 10% weight loss results in substantial improvement in health. While obtaining modest weight loss is often achievable, maintaining lost weight is challenging. Research has recently improved our understanding of several endogenous pathways that influence body weight regulation and disease risk. The endocannabinoid system has been found to regulate appetite and energy expenditure, as well as lipid and glucose metabolism. Interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development is an area of interest and research. This article reviews the mechanisms by which the endocannabinoid system is believed to influence body weight regulation and cardiometabolic risk factors, as well as the results of clinical trials investigating the safety and efficacy of a selective cannabinoid-1 receptor antagonist (rimonabant). Clinical trials investigating rimonabant treatment resulted in substantial reductions in body weight and markers for cardiometabolic risk in study participants. However, increases in adverse events were reported in the drug-treated group. Data regarding long-term benefit and adverse events from rimonabant treatment are being collected in several ongoing clinical trials. Rimonabant is currently available in 42 countries, but has not received United States Food and Drug Administration approval. Food and nutrition professionals play a pivotal role in tackling the current obesity crisis; it is essential that they understand the many physiological mechanisms regulating body weight. Emerging research data reveals pathways that influence appetite and energy metabolism, and this knowledge may form the foundation

  13. Interaction between Lysophosphatidic Acid, Prostaglandins and the Endocannabinoid System during the Window of Implantation in the Rat Uterus

    PubMed Central

    Sordelli, Micaela S.; Beltrame, Jimena S.; Cella, Maximiliano; Gervasi, María Gracia; Perez Martinez, Silvina; Burdet, Juliana; Zotta, Elsa; Franchi, Ana M.; Ribeiro, María Laura

    2012-01-01

    Bioactive lipid molecules as lysophosphatidic acid (LPA), prostaglandins (PG) and endocannabinoids are important mediators of embryo implantation. Based on previous published data we became interested in studying the interaction between these three groups of lipid derivatives in the rat uterus during the window of implantation. Thus, we adopted a pharmacological approach in vitro using LPA, DGPP (a selective antagonist of LPA3, an LPA receptor), endocannabinoids’ receptor selective antagonists (AM251 and AM630) and non selective (indomethacin) and selective (NS-398) inhibitors of cyclooxygenase-1 and 2 enzymes. Cyclooxygenase isoforms participate in prostaglandins’ synthesis. The incubation of the uterus from rats pregnant on day 5 of gestation (implantation window) with LPA augmented the activity and the expression of fatty acid amide hydrolase, the main enzyme involved in the degradation of endocannabinoids in the rodent uteri, suggesting that LPA decreased endocannabinoids’ levels during embryo implantation. It has been reported that high endocannabinoids are deleterious for implantation. Also, LPA increased PGE2 production and cyclooxygenase-2 expression. The incubation of LPA with indomethacin or NS-398 reversed the increment in PGE2 production, suggesting that cyclooxygenase-2 was the isoform involved in LPA effect. PGs are important mediators of decidualization and vascularization at the implantation sites. All these effects were mediated by LPA3, as the incubation with DGPP completely reversed LPA stimulatory actions. Besides, we also observed that endocannabinoids mediated the stimulatory effect of LPA on cyclooxygenase-2 derived PGE2 production, as the incubation of LPA with AM251 or AM630 completely reversed LPA effect. Also, LPA augmented via LPA3 decidualization and vascularization markers. Overall, the results presented here demonstrate the participation of LPA3 in the process of implantation through the interaction with other groups of lipid

  14. Endocannabinoids in the Gut

    PubMed Central

    DiPatrizio, Nicholas V.

    2016-01-01

    Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies’ own “cannabis-like molecules” and associated receptors and metabolic machinery – collectively called the endocannabinoid system – enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important – and at times surprising – role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota. PMID:27413788

  15. Sativex(®) (tetrahydrocannabinol + cannabidiol), an endocannabinoid system modulator: basic features and main clinical data.

    PubMed

    Vermersch, Patrick

    2011-04-01

    Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator. Randomized, controlled clinical trials of Sativex as add-on therapy provide conclusive evidence of its efficacy in the treatment of more than 1500 patients with multiple sclerosis (MS)-related resistant spasticity. The primary end point in clinical trials was the mean change from baseline in the 0-10 numerical rating scale (NRS) spasticity score. The first pivotal clinical trial included 189 patients treated for 6 weeks with Sativex (n = 124) or placebo (n = 65). At study end, there was a significant reduction from baseline in patient-recorded NRS spasticity scores with Sativex compared with placebo (-1.18 vs -0.63; p = 0.048). In the second pivotal trial, 337 patients with MS-related resistant spasticity received Sativex (n = 167) or placebo (n = 170) over a 15-week period. In the per-protocol analysis (79% of the patient population), mean baseline NRS spasticity score was reduced significantly in patients receiving Sativex compared with placebo: -1.3 versus -0.8 points (p = 0.035). The third pivotal clinical trial, evaluating the sustained efficacy of Sativex, had a two-phase study design: in phase A (n = 572), 47% of patients were initial responders (improvement ≥ 20%) after 4 weeks of single-blind Sativex treatment who then entered phase B, a randomized, double-blind, 12-week placebo comparison. At the end of phase B, the change in NRS spasticity score improved by a further 0.04 units in initial responders treated with Sativex, but decreased by 0.81 units in placebo recipients (p = 0.0002). Significant improvements in quality-of-life measures from baseline to week 16 were also observed in patients receiving Sativex. The most common treatment-related adverse events with Sativex were mild-to moderate and transient episodes of dizziness

  16. [The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans].

    PubMed

    Komorowski, Jan; Stepień, Henryk

    2007-01-01

    The endocannabinoid system has been recently recognized as an important modulatory system in the function of brain, endocrine, and immune tissues. It appears to play a very important regulatory role in the secretion of hormones related to reproductive functions and response to stress. The important elements of this system are: endocannabinoid receptors (types CB1 and CB2), their endogenous ligands (N-arachidonoylethanolamide, 2-arachidonoyl glycerol), enzymes involved in their synthesis and degradation, as well as cannabinoid antagonists. In humans this system also controls energy homeostasis and mainly influences the function of the food intake centers of the central nervous system and gastrointestinal tract activity. The endocannabinoid system regulates not only the central and peripheral mechanisms of food intake, but also lipids synthesis and turnover in the liver and adipose tissue as well as glucose metabolism in muscle cells. Rimonabant, a new and selective central and peripheral cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factor (metabolic syndrome) in obese patients by increasing HDL-cholesterol and adiponectin blood levels as well as decreasing LDL-cholesterol, leptin, and C-reactive protein (a proinflammatory marker) concentrations. It is therefore possible to speculate about a future clinical use of CB1 antagonists, as a means of improving gonadotrophin pulsatility and fertilization capacity as well as the prevention of cardiovasculary disease and type 2 diabetes mellitus. Drugs acting as agonists of CB1 receptors (Dronabinol, Dexanabinol) are currently proposed for evaluation as drugs to treat neurodegenerative disorders (Alzheimer's and Parkinson's diseases), epilepsy, anxiety, and stroke.

  17. Endocannabinoid signaling in midbrain dopamine neurons: more than physiology?

    PubMed

    Melis, M; Pistis, M

    2007-12-01

    Different classes of neurons in the CNS utilize endogenous cannabinoids as retrograde messengers to shape afferent activity in a short- and long-lasting fashion. Transient suppression of excitation and inhibition as well as long-term depression or potentiation in many brain regions require endocannabinoids to be released by the postsynaptic neurons and activate presynaptic CB1 receptors. Memory consolidation and/or extinction and habit forming have been suggested as the potential behavioral consequences of endocannabinoid-mediated synaptic modulation. HOWEVER, ENDOCANNABINOIDS HAVE A DUAL ROLE: beyond a physiological modulation of synaptic functions, they have been demonstrated to participate in the mechanisms of neuronal protection under circumstances involving excessive excitatory drive, glutamate excitotoxicity, hypoxia-ischemia, which are key features of several neurodegenerative disorders. In this framework, the recent discovery that the endocannabinoid 2-arachidonoyl-glycerol is released by midbrain dopaminergic neurons, under both physiological synaptic activity to modulate afferent inputs and pathological conditions such as ischemia, is particularly interesting for the possible implication of these molecules in brain functions and dysfunctions. Since dopamine dysfunctions underlie diverse neuropsychiatric disorders including schizophrenia, psychoses, and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Additionally, we will review the evidence of the involvement of the endocannabinoid system in the pathogenesis of Parkinson's disease, where neuroprotective actions of cannabinoid-acting compounds may prove beneficial.The modulation of the endocannabinoid system by pharmacological agents is a valuable target in protection of dopamine neurons against functional abnormalities as well as against their neurodegeneration.

  18. p21-activated kinase 1 restricts tonic endocannabinoid signaling in the hippocampus

    PubMed Central

    Xia, Shuting; Zhou, Zikai; Leung, Celeste; Zhu, Yuehua; Pan, Xingxiu; Qi, Junxia; Morena, Maria; Hill, Matthew N; Xie, Wei; Jia, Zhengping

    2016-01-01

    PAK1 inhibitors are known to markedly improve social and cognitive function in several animal models of brain disorders, including autism, but the underlying mechanisms remain elusive. We show here that disruption of PAK1 in mice suppresses inhibitory neurotransmission through an increase in tonic, but not phasic, secretion of endocannabinoids (eCB). Consistently, we found elevated levels of anandamide (AEA), but not 2-arachidonoylglycerol (2-AG) following PAK1 disruption. This increased tonic AEA signaling is mediated by reduced cyclooxygenase-2 (COX-2), and COX-2 inhibitors recapitulate the effect of PAK1 deletion on GABAergic transmission in a CB1 receptor-dependent manner. These results establish a novel signaling process whereby PAK1 upregulates COX-2, reduces AEA and restricts tonic eCB-mediated processes. Because PAK1 and eCB are both critically involved in many other organ systems in addition to the brain, our findings may provide a unified mechanism by which PAK1 regulates these systems and their dysfunctions including cancers, inflammations and allergies. DOI: http://dx.doi.org/10.7554/eLife.14653.001 PMID:27296803

  19. Endocannabinoids: Effectors of glucocorticoid signaling.

    PubMed

    Balsevich, Georgia; Petrie, Gavin N; Hill, Matthew N

    2017-10-01

    For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Functional role of the endocannabinoid system and AMPA/kainate receptors in 5-HT2A receptor-mediated wet dog shakes.

    PubMed

    Gorzalka, Boris B; Hill, Matthew N; Sun, Jane C

    2005-05-23

    These experiments sought to determine the influence of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and the endocannabinoid system in the functional expression of the serotonin (5-HT) type 2A receptor-mediated wet dog shake response. Male Long-Evans rats were pretreated with either 1 mg/kg i.p. of the 5-HT(2A/2C) receptor antagonist ketanserin; 1, 10 or 30 mg/kg i.p. of the AMPA/kainate antagonist 6,7-dinitroquinnoxaline-2,3-dione (DNQX); 1, 5 or 10 mg/kg i.p. of the endocannabinoid uptake inhibitor AM404; or 1, 5 or 10 mg/kg i.p. of the cannabinoid CB(1) receptor antagonist AM 251 prior to injection of the 5-HT(2A/2C) receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI, 1 mg/kg i.p.). Results demonstrated that 10 mg/kg of AM404 significantly reduced the expression of DOI-induced wet dog shakes, but lower doses were ineffective. Administration of AM251 did not induce wet dog shakes behavior when administered alone, but significantly potentiated DOI-induced wet dog shaking behavior at a dose of 10 mg/kg. Pretreatment with DNQX significantly reduced the expression of DOI-induced wet dog shakes at all doses tested. These data suggest that AMPA/kainate receptors play a role in the mediation of 5-HT(2A) receptor activity, whereas the endocannabinoid system may act as a regulatory buffer system during periods of elevated activity, but not under basal conditions.

  1. Arsenic decreases antinociceptive activity of paracetamol: possible involvement of serotonergic and endocannabinoid receptors.

    PubMed

    Vijayakaran, Karunakaran; Kesavan, Manickam; Kannan, Kandasamy; Sankar, Palanisamy; Tandan, Surendra Kumar; Sarkar, Souvendra Nath

    2014-09-01

    We assessed whether repeated arsenic exposure can decrease paracetamol-mediated antinociception by modulating serotonergic and endocannabinoid pathways. Rats were preexposed to elemental arsenic (4ppm) as sodium arsenite through drinking water for 28 days. Next day paracetamol's (400mg/kg, oral) antinociceptive activity was assessed through formalin-induced nociception. Serotonin content and gene expression of 5-HT1A, 5-HT2A and CB1 receptors were evaluated in brainstem and frontal cortex. Arsenic decreased paracetamol-mediated analgesia. Paracetamol, but not arsenic, increased serotonin content in these regions. Arsenic attenuated paracetamol-mediated increase in serotonin level. Paracetamol did not alter 5-HT1A expression, but caused down-regulation of 5-HT2A and up-regulation of CB1 receptors. Arsenic down-regulated these receptors. However, paracetamol-mediated down-regulation of 5-HT2A was more pronounced. Arsenic did not modify paracetamol's effect on 5-HT1A expression, but reduced paracetamol-mediated down-regulation of 5-HT2A and reversed up-regulation of CB1 receptors. Results suggest arsenic reduced paracetamol-induced analgesia possibly by interfering with pronociceptive 5-HT2A and antinociceptive CB1 receptors.

  2. Endocannabinoids: friends and foes of reproduction.

    PubMed

    Maccarrone, Mauro

    2009-11-01

    Endocannabinoids are fatty acid amides like anandamide (AEA), and monoacylglycerols like 2-arachidonoylglycerol, that bind to cannabinoid, vanilloid and peroxisome proliferator-activated receptors. Their biological actions are controlled through not yet fully characterized cellular mechanisms. These compounds, together with their related enzymes, that include key proteins for the synthesis and degradation of endocannabinoids, cannabinoid and non-cannabinoid receptors, and purported membrane transporter(s), form the "endocannabinoid system (ECS)". In the past few years AEA and related ECS elements have emerged as essential players in various aspects of human reproduction, both for males and females. Here, the key features of the ECS and the potential of its components to direct human fertility towards a positive or negative end will be reviewed. In particular, the involvement of AEA and related ECS elements in regulating embryo oviductal transport, blastocyst implantation and placental development (in females), and sperm survival, motility, capacitation and acrosome reaction (in males) will be addressed, as well as the role of endocannabinoids in sperm-oviduct interactions. Additionally, the possibility that blood AEA and its hydrolase FAAH may represent reliable diagnostic markers of natural and assisted reproduction in humans will be discussed, along with the therapeutic exploitation of ECS-oriented drugs as useful fertility enhancers.

  3. The biological networks in studying cell signal transduction complexity: The examples of sperm capacitation and of endocannabinoid system

    PubMed Central

    Bernabò, Nicola; Barboni, Barbara; Maccarrone, Mauro

    2014-01-01

    Cellular signal transduction is a complex phenomenon, which plays a central role in cell surviving and adaptation. The great amount of molecular data to date present in literature, together with the adoption of high throughput technologies, on the one hand, made available to scientists an enormous quantity of information, on the other hand, failed to provide a parallel increase in the understanding of biological events. In this context, a new discipline arose, the systems biology, aimed to manage the information with a computational modeling-based approach. In particular, the use of biological networks has allowed the making of huge progress in this field. Here we discuss two possible application of the use of biological networks to explore cell signaling: the study of the architecture of signaling systems that cooperate in determining the acquisition of a complex cellular function (as it is the case of the process of activation of spermatozoa) and the organization of a single specific signaling systems expressed by different cells in different tissues (i.e. the endocannabinoid system). In both the cases we have found that the networks follow a scale free and small world topology, likely due to the evolutionary advantage of robustness against random damages, fastness and specific of information processing, and easy navigability. PMID:25379139

  4. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I; Romero, Juan I; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA.

  5. Perinatal asphyxia results in altered expression of the hippocampal acylethanolamide/endocannabinoid signaling system associated to memory impairments in postweaned rats

    PubMed Central

    Blanco, Eduardo; Galeano, Pablo; Holubiec, Mariana I.; Romero, Juan I.; Logica, Tamara; Rivera, Patricia; Pavón, Francisco J.; Suarez, Juan; Capani, Francisco; Rodríguez de Fonseca, Fernando

    2015-01-01

    Perinatal asphyxia (PA) is an obstetric complication that strongly affects the CNS. The endocannabinoid system (ECS) is a lipid transmitter system involved in several physiological processes including synaptic plasticity, neurogenesis, memory, and mood. Endocannabinoids, and other acylethanolamides (AEs) without endocannabinoid activity, have recently received growing attention due to their potential neuroprotective functions in neurological disorders, including cerebral ischemia. In the present study, we aimed to analyze the changes produced by PA in the major metabolic enzymes and receptors of the ECS/AEs in the hippocampus using a rodent model of PA. To induce PA, we removed uterine horns from ready-to-deliver rats and immersed them into a water bath during 19 min. Animals delivered spontaneously or by cesarean section were employed as controls. At 1 month of age, cognitive functions were assessed and immunohistochemical procedures were carried out to determine the expression of NeuN and glial fibrillary acidic protein, enzymes responsible for synthesis (DAGLα and NAPE-PLD) and degradation (FAAH) of ECS/AEs and their receptors (CB1 and PPARα) in the hippocampus. Postweaned asphyctic rats showed impaired recognition and spatial reference memory that were accompanied by hippocampal astrogliosis and changes in the expression of enzymes and receptors. The most remarkable findings in asphyctic rats were a decrease in the expression of NAPE-PLD and PPARα in both hippocampal areas CA1 and CA3. In addition, postweaned cesarean delivery rats showed an increase in the immunolabeling for FAAH in the hippocampal CA3 area. Since, NAPE-PLD and PPARα are proteins that participate in the biochemical process of AEs, specially the neuroprotective oleoylethanolamide, these results suggest that PA dysregulates this system. These data encourage conducting future studies using AEs as potential neuroprotective compounds in animal models of PA. PMID:26578900

  6. The role of the endocannabinoid system in eating disorders: pharmacological implications.

    PubMed

    Marco, Eva M; Romero-Zerbo, Silvana Y; Viveros, María-Paz; Bermudez-Silva, Francisco J

    2012-09-01

    The endocannabinoid (eCB) system is a widespread intercellular signalling mechanism that plays a critical role in body homoeostasis. It is located in key points involved in food intake and energy expenditure, coordinating all the players involved in energy balance. As such, it has come to be seen as an interesting target for the management of diseases characterized by an imbalanced energy homoeostasis, such as obesity and eating disorders. The aetiology of eating disorders and the molecular systems involved are still largely a mystery. Research has focused on brain circuits where the eCB system plays an important role, such as those related to feeding behaviour and the rewarding properties of food. Accordingly, recent findings have suggested a deregulation of the eCB system in eating disorders. At present, cannabinoid agonists are safe and effective tools in the management of diseases in which weight gain is needed, for example cachexia in AIDS patients. However, studies on the potential therapeutic validity of cannabinoids in eating disorders are scarce and inconclusive. Taken together, all these considerations warrant more preclinical and clinical investigations in the role of the eCB system in eating disorders. Eventually, they may provide novel pharmacological approaches for the treatment of these diseases.

  7. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature

    PubMed Central

    Wills, Kiri L.; Parker, Linda A.

    2016-01-01

    Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions. PMID:27445822

  8. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature.

    PubMed

    Wills, Kiri L; Parker, Linda A

    2016-01-01

    Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.

  9. Circulating Endocannabinoid Concentrations and Sexual Arousal in Women

    PubMed Central

    Klein, Carolin; Hill, Matthew N.; Chang, Sabrina C.H.; Hillard, Cecilia J.; Gorzalka, Boris B.

    2013-01-01

    Introduction Several lines of evidence point to the potential role of the endocannabinoid system in female sexual functioning. These include results from studies describing the subjective effects of exogenous cannabinoids on sexual functioning in humans and the observable effects of exogenous cannabinoids on sexual functioning in other species, as well as results from studies investigating the location of cannabinoid receptors in the brain and periphery, and the effects of cannabinoid receptor activation on neurotransmitters implicated in sexual functioning. While these lines of research suggest a role for the endocannabinoid system in female sexual functioning, no studies investigating the relationship between concentrations of endogenous cannabinoids (i.e., arachidonoylethanolamide [AEA] and 2-arachidonoylglycerol [2-AG]) and sexual functioning have been conducted in any species. Aim To measure circulating endocannabinoid concentrations in relation to subjective and physiological indices of sexual arousal in women (n = 21). Methods Serum endocannabinoid (AEA and 2-AG) concentrations were measured immediately prior to, and immediately following, viewing of neutral (control) and erotic (experimental) film stimuli in a repeated measures design. Physiological sexual arousal was measured via vaginal photoplethysmography. Subjective sexual arousal was measured both continuously and non-continuously. Pearson’s correlations were used to investigate the relationships between endocannabinoid concentrations and sexual arousal. Main Outcome Measures Changes in AEA and 2-AG concentrations from pre- to post-film and in relation to physiological and subjective indices of sexual arousal. Results Results revealed a significant relationship between endocannabinoid concentrations and female sexual arousal, whereby increases in both physiological and subjective indices of sexual arousal were significantly associated with decreases in AEA, and increases in subjective indices of

  10. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys

    PubMed Central

    Bouskila, Joseph; Javadi, Pasha; Elkrief, Laurent; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The endocannabinoid (eCB) system is widely expressed in various parts of the central nervous system, including the retina. The localization of the key eCB receptors, particularly CB1R and CB2R, has been recently reported in rodent and primate retinas with striking interspecies differences. Little is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well-preserved among these species. However, expression of NAPE-PLD is circumscribed to the photoreceptor layer only in monkeys. In contrast, CB2R expression is variable across these species; in mice, CB2R is found in retinal neurons but not in glial cells; in tree shrews, CB2R is expressed in Müller cell processes of the outer retina and in retinal neurons of the inner retina; in monkeys, CB2R is restricted to Müller cells. Finally, the expression patterns of MAGL and DAGLα are differently expressed across species. Overall, these results provide evidence that the eCB system is differently expressed in the retina of these mammals and suggest a distinctive role of eCBs in visual processing. PMID:26977322

  11. A Comparative Analysis of the Endocannabinoid System in the Retina of Mice, Tree Shrews, and Monkeys.

    PubMed

    Bouskila, Joseph; Javadi, Pasha; Elkrief, Laurent; Casanova, Christian; Bouchard, Jean-François; Ptito, Maurice

    2016-01-01

    The endocannabinoid (eCB) system is widely expressed in various parts of the central nervous system, including the retina. The localization of the key eCB receptors, particularly CB1R and CB2R, has been recently reported in rodent and primate retinas with striking interspecies differences. Little is known about the distribution of the enzymes involved in the synthesis and degradation of these eCBs. We therefore examined the expression and localization of the main components of the eCB system in the retina of mice, tree shrews, and monkeys. We found that CB1R and FAAH distributions are well-preserved among these species. However, expression of NAPE-PLD is circumscribed to the photoreceptor layer only in monkeys. In contrast, CB2R expression is variable across these species; in mice, CB2R is found in retinal neurons but not in glial cells; in tree shrews, CB2R is expressed in Müller cell processes of the outer retina and in retinal neurons of the inner retina; in monkeys, CB2R is restricted to Müller cells. Finally, the expression patterns of MAGL and DAGLα are differently expressed across species. Overall, these results provide evidence that the eCB system is differently expressed in the retina of these mammals and suggest a distinctive role of eCBs in visual processing.

  12. Drug discovery strategies that focus on the endocannabinoid signaling system in psychiatric disease

    PubMed Central

    Wyrofsky, Ryan; McGonigle, Paul; Van Bockstaele, Elisabeth J.

    2015-01-01

    Introduction The endocannabinoid (eCB) system plays an important role in the control of mood, and its dysregulation has been implicated in several psychiatric disorders. Targeting the eCB system appears to represent an attractive and novel approach to the treatment of depression and other mood disorders. However, several failed clinical trials have diminished enthusiasm for the continued development of eCB-targeted therapeutics for psychiatric disorders, despite of the encouraging preclinical data and promising preliminary results obtained with the synthetic cannabinoid nabilone for treating post-traumatic stress disorder (PTSD). Areas covered This review describes the eCB system’s role in modulating cell signaling within the brain. There is a specific focus on eCB’s regulation of monoamine neurotransmission and the stress axis, as well as how dysfunction of this interaction can contribute to the development of psychiatric disorders. Additionally, the review provides discussion on compounds and drugs that target this system and might prove to be successful for the treatment of mood-related psychiatric disorders. Expert opinion The discovery of increasingly selective modulators of CB receptors should enable the identification of optimal therapeutic strategies. It should also maximize the likelihood of developing safe and effective treatments for debilitating psychiatric disorders. PMID:25488672

  13. The Role of the Endocannabinoid System and Genetic Variation in Adolescent Brain Development.

    PubMed

    Meyer, Heidi C; Lee, Francis S; Gee, Dylan G

    2017-07-07

    During adolescence, both rodent and human studies have revealed dynamic changes in the developmental trajectories of corticolimbic structures, which are known to contribute to the regulation of fear and anxiety-related behaviors. The endocannabinoid (eCB) system critically regulates stress responsivity and anxiety throughout the life span. Emerging evidence suggests that during adolescence, changes in eCB signaling contribute to the maturation of local and corticolimbic circuit populations of neurons, such as mediating the balance between excitatory and inhibitory neurotransmission within the prefrontal cortex. This function of the eCB system facilitates efficient communication within and between brain regions and serves a central role in establishing complex and adaptive cognitive and behavioral processing. Although these peri-adolescent changes in eCB signaling promote brain development and plasticity, they also render this period a particularly sensitive one for environmental perturbations to these normative fluctuations in eCB signaling, such as stress, potentially leading to altered developmental trajectories of neural circuits governing emotional behaviors. In this review, we focus on the role of eCB signaling on the regulation of stress and anxiety-related behaviors both during and after adolescence. Moreover, we discuss the functional implications of human genetic variation in the eCB system for the risk for anxiety and consequences of stress across development and into adulthood.Neuropsychopharmacology advance online publication, 2 August 2017; doi:10.1038/npp.2017.143.

  14. Modulation of the Endocannabinoid System: Vulnerability Factor and New Treatment Target for Stimulant Addiction

    PubMed Central

    Olière, Stéphanie; Jolette-Riopel, Antoine; Potvin, Stéphane; Jutras-Aswad, Didier

    2013-01-01

    Cannabis is one of the most widely used illicit substance among users of stimulants such as cocaine and amphetamines. Interestingly, increasing recent evidence points toward the involvement of the endocannabinoid system (ECBS) in the neurobiological processes related to stimulant addiction. This article presents an up-to-date review with deep insights into the pivotal role of the ECBS in the neurobiology of stimulant addiction and the effects of its modulation on addictive behaviors. This article aims to: (1) review the role of cannabis use and ECBS modulation in the neurobiological substrates of psychostimulant addiction and (2) evaluate the potential of cannabinoid-based pharmacological strategies to treat stimulant addiction. A growing number of studies support a critical role of the ECBS and its modulation by synthetic or natural cannabinoids in various neurobiological and behavioral aspects of stimulants addiction. Thus, cannabinoids modulate brain reward systems closely involved in stimulants addiction, and provide further evidence that the cannabinoid system could be explored as a potential drug discovery target for treating addiction across different classes of stimulants. PMID:24069004

  15. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

    PubMed

    Pertwee, Roger G

    2012-12-05

    Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.

  16. Spontaneous involution of pediatric low-grade gliomas: high expression of cannabinoid receptor 1 (CNR1) at the time of diagnosis may indicate involvement of the endocannabinoid system.

    PubMed

    Sredni, Simone Treiger; Huang, Chiang-Ching; Suzuki, Mario; Pundy, Tatiana; Chou, Pauline; Tomita, Tadanori

    2016-11-01

    Pediatric low-grade gliomas (P-LGG) consist of a mixed group of brain tumors that correspond to the majority of CNS tumors in children. Notably, they may exhibit spontaneous involution after subtotal surgical removal (STR). In this study, we investigated molecular indicators of spontaneous involution in P-LGG. We performed an integrated molecular analysis including high throughput gene expression (GE), microRNA (miRNA) expression data of primary, untreated tumors from patients with P-LGG who underwent STR at our institution, with at least 10 years follow-up. We identified a set of protein-coding genes and miRNAs significantly differentially expressed in P-LGG that presented spontaneous involution (involution-I) or without progression (stable-S) after STR alone. The cannabinoid receptor 1 (CNR1 or CB1) gene (FC = 2.374; p value = 0.007) was at the top of the list and predicted to be regulated by hsa-miR-29b-3p (FC = -2.353, p value = 0.0001). CNR1 also showed a trend to be higher expressed in S/I by immunohistochemistry. The P-LGG, which remained stable or that presented spontaneous involution after STR, showed significantly higher CNR1 expression at the time of diagnosis. We hypothesize that high expression levels of CNR1 provide tumor susceptibility to the antitumor effects of circulating endocannabinoids like anandamide, resulting in tumor involution. This corroborates with reports suggesting that CNR1 agonists and activators of the endocannabinoid system may represent therapeutic opportunities for children with LGG. We also suggest that CNR1 may be a prognostic marker for P-LGG. This is the first time spontaneous involution of P-LGG has been suggested to be induced by endocannabinoids.

  17. Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition.

    PubMed

    van Hell, Hendrika H; Bossong, Matthijs G; Jager, Gerry; Kahn, René S; Ramsey, Nick F

    2011-03-01

    Various lines of (pre)clinical research indicate that cannabinoid agents carry the potential for therapeutic application to reduce symptoms in several psychiatric disorders. However, direct testing of the involvement of cannabinoid brain systems in psychiatric syndromes is essential for further development. In the Pharmacological Imaging of the Cannabinoid System (PhICS) study, the involvement of the endocannabinoid system in cognitive brain function is assessed by comparing acute effects of the cannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function between healthy controls and groups of psychiatric patients showing cognitive dysfunction. This article describes the objectives and methods of the PhICS study and presents preliminary results of the administration procedure on subjective and neurophysiological parameters. Core elements in the methodology of PhICS are the administration method (THC is administered by inhalation using a vaporizing device) and a comprehensive use of pharmacological magnetic resonance imaging (phMRI) combining several types of MRI scans including functional MRI (fMRI), Arterial Spin Labeling (ASL) to measure brain perfusion, and resting-state fMRI. Additional methods like neuropsychological testing further specify the exact role of the endocannabinoid system in regulating cognition. Preliminary results presented in this paper indicate robust behavioral and subjective effects of THC. In addition, fMRI paradigms demonstrate activation of expected networks of brain regions in the cognitive domains of interest. The presented administration and assessment protocol provides a basis for further research on the involvement of the endocannabionoid systems in behavior and in psychopathology, which in turn may lead to development of therapeutic opportunities of cannabinoid ligands. Copyright © 2011 John Wiley & Sons, Ltd.

  18. The endocannabinoid system modulates the valence of the emotion associated to food ingestion.

    PubMed

    Méndez-Díaz, Mónica; Rueda-Orozco, Pavel Ernesto; Ruiz-Contreras, Alejandra Evelyn; Prospéro-García, Oscar

    2012-07-01

    Endocannabinoids (eCBs) are mediators of the homeostatic and hedonic systems that modulate food ingestion. Hence, eCBs, by regulating the hedonic system, may be modulating the valence of the emotion associated to food ingestion (positive: pleasant or negative: unpleasant). Our first goal was to demonstrate that palatable food induces conditioned place preference (CPP), hence a positive-valence emotion. Additionally, we analyzed if this CPP is blocked by AM251, inducing a negative valence emotion, meaning avoiding the otherwise pursued compartment. The second goal was to demonstrate that CPP induced by regular food would be strengthened by the simultaneous administration of anandamide or oleamide, and if such, CPP is blocked by AM251. Finally, we tested the capacity of eCBs (without food) to induce CPP. Our results indicate that rats readily developed CPP to palatable food, which was blocked by AM251. The CPP induced by regular food was strengthened by eCBs and blocked by AM251. Finally, oleamide, unlike anandamide, induced CPP. These results showed that eCBs mediate the positive valence (CPP) of the emotion associated to food ingestion. It was also observed that the blockade of the CB1 receptor causes a loss of correlation between food and CPP (negative valence: avoidance). These data further support the role of eCBs as regulators of the hedonic value of food.

  19. Endocannabinoid system in sexual motivational processes: Is it a novel therapeutic horizon?

    PubMed

    Androvicova, Renata; Horacek, Jiri; Stark, Tibor; Drago, Filippo; Micale, Vincenzo

    2017-01-01

    The endocannabinoid system (ECS), which is composed of the cannabinoid receptors types 1 and 2 (CB1 and CB2) for marijuana's psychoactive ingredient Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the endogenous ligands (AEA and 2-AG) and the enzymatic systems involved in their biosynthesis and degradation, recently emerged as important modulator of emotional and non-emotional behaviors. For centuries, in addition to its recreational actions, several contradictory claims regarding the effects of Cannabis use in sexual functioning and behavior (e.g. aphrodisiac vs anti-aphrodisiac) of both sexes have been accumulated. The identification of Δ(9)-THC and later on, the discovery of the ECS have opened a potential therapeutic target for sexual dysfunctions, given the partial efficacy of current pharmacological treatment. In agreement with the bidirectional modulation induced by cannabinoids on several behavioral responses, the endogenous cannabinoid AEA elicited biphasic effects on sexual behavior as well. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of several aspects of sexuality in preclinical and human studies, highlighting their therapeutic potential.

  20. Modulation of neuropathic-pain-related behaviour by the spinal endocannabinoid/endovanilloid system

    PubMed Central

    Starowicz, Katarzyna; Przewlocka, Barbara

    2012-01-01

    Neuropathic pain refers to chronic pain that results from injury to the nervous system. The mechanisms involved in neuropathic pain are complex and involve both peripheral and central phenomena. Although numerous pharmacological agents are available for the treatment of neuropathic pain, definitive drug therapy has remained elusive. Recent drug discovery efforts have identified an original neurobiological approach to the pathophysiology of neuropathic pain. The development of innovative pharmacological strategies has led to the identification of new promising pharmacological targets, including glutamate antagonists, microglia inhibitors and, interestingly, endogenous ligands of cannabinoids and the transient receptor potential vanilloid type 1 (TRPV1). Endocannabinoids (ECs), endovanilloids and the enzymes that regulate their metabolism represent promising pharmacological targets for the development of a successful pain treatment. This review is an update of the relationship between cannabinoid receptors (CB1) and TRPV1 channels and their possible implications for neuropathic pain. The data are focused on endogenous spinal mechanisms of pain control by anandamide, and the current and emerging pharmacotherapeutic approaches that benefit from the pharmacological modulation of spinal EC and/or endovanilloid systems under chronic pain conditions will be discussed. PMID:23108547

  1. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion.

    PubMed

    Quartu, Marina; Poddighe, Laura; Melis, Tiziana; Serra, Maria Pina; Boi, Marianna; Lisai, Sara; Carta, Gianfranca; Murru, Elisabetta; Muredda, Laura; Collu, Maria; Banni, Sebastiano

    2017-01-19

    The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and

  2. Endocannabinoids regulate growth and survival of human eccrine sweat gland-derived epithelial cells.

    PubMed

    Czifra, Gabriella; Szöllősi, Attila G; Tóth, Balázs I; Demaude, Julien; Bouez, Charbel; Breton, Lionel; Bíró, Tamás

    2012-08-01

    The functional existence of the emerging endocannabinoid system (ECS), one of the new neuroendocrine players in cutaneous biology, is recently described in the human skin. In this study, using human eccrine sweat gland-derived immortalized NCL-SG3 model cells and a wide array of cellular and molecular assays, we investigated the effects of prototypic endocannabinoids (anandamide, 2-arachidonoylglycerol) on cellular functions. We show here that both endocannabinoids dose-dependently suppressed proliferation, induced apoptosis, altered expressions of various cytoskeleton proteins (e.g., cytokeratins), and upregulated lipid synthesis. Interestingly, as revealed by specific agonists and antagonists as well as by RNA interference, neither the metabotropic cannabinoid receptors (CB) nor the "ionotropic" CB transient receptor potential ion channels, expressed by these cells, mediated the cellular actions of the endocannabinoids. However, the endocannabinoids selectively activated the mitogen-activated protein kinase signaling pathway. Finally, other elements of the ECS (i.e., enzymes involved in the synthesis and degradation of endocannabinoids) were also identified on NCL-SG3 cells. These results collectively suggest that cannabinoids exert a profound regulatory role in the biology of the appendage. Therefore, from a therapeutic point of view, upregulation of endocannabinoid levels might help to manage certain sweat gland-derived disorders (e.g., tumors) characterized by unwanted growth.

  3. THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the sub-chronic PCP model of schizophrenia

    PubMed Central

    Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J

    2017-01-01

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the CSF levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared to THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. PMID:26510449

  4. The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings

    PubMed Central

    Mallat, A; Teixeira-Clerc, F; Deveaux, V; Manin, S; Lotersztajn, S

    2011-01-01

    Chronic liver diseases represent a major health problem due to cirrhosis and its complications. During the last decade, endocannabinoids and their receptors have emerged as major regulators of several pathophysiological aspects associated with chronic liver disease progression. Hence, hepatic cannabinoid receptor 2 (CB2) receptors display beneficial effects on alcoholic fatty liver, hepatic inflammation, liver injury, regeneration and fibrosis. Cannabinoid receptor 1 (CB1) receptors have been implicated in the pathogenesis of several lesions such as alcoholic and metabolic steatosis, liver fibrogenesis, or circulatory failure associated with cirrhosis. Although the development of CB1 antagonists has recently been suspended due to the high incidence of central side effects, preliminary preclinical data obtained with peripherally restricted CB1 antagonists give real hopes in the development of active CB1 molecules devoid of central adverse effects. CB2-selective molecules may also offer novel perspectives for the treatment of liver diseases, and their clinical development is clearly awaited. Whether combined treatment with a peripherally restricted CB1 antagonist and a CB2 agonist might result in an increased therapeutic potential will warrant further investigation. LINKED ARTICLES This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21457226

  5. Role of the endocannabinoid system in MDMA intracerebral self-administration in rats

    PubMed Central

    Braida, Daniela; Sala, Mariaelvina

    2002-01-01

    I.c.v. self-administration of MDMA (0.01–2 μg per infusion), alone and in combination with CP 55,940 (0.4 μg infusion−1), was studied on an operant responding procedure. On the basis of individual preference for one of two levers, developed during training, rats were allowed to self-administer vehicle from the preferred lever and MDMA from the other. Pressings on the MDMA associated-lever, except for the maximal unit dose, progressively increased. The combination of CP 55,940 with MDMA (1 μg infusion−1) reduced the number of drug-associated lever pressings compared to the single drugs. Pre-treatment with SR 141716A (0.5 mg kg−1 i.p.), 15 min before each daily session, significantly increased MDMA self-administration. These findings suggest that MDMA self-administration is under endogenous tonic control by the endocannabinoid system. PMID:12163340

  6. Acylethanolamides and endocannabinoid signaling system in dorsal striatum of rats exposed to perinatal asphyxia.

    PubMed

    Holubiec, Mariana I; Romero, Juan I; Blanco, Eduardo; Tornatore, Tamara Logica; Suarez, Juan; Rodríguez de Fonseca, Fernando; Galeano, Pablo; Capani, Francisco

    2017-07-13

    Endocannabinoids (eCBs) and acylethanolamides (AEs) have lately received more attention due to their neuroprotective functions in neurological disorders. Here we analyze the alterations induced by perinatal asphyxia (PA) in the main metabolic enzymes and receptors of the eCBs/AEs in the dorsal striatum of rats. To induce PA, we used a model developed by Bjelke et al. (1991). Immunohistochemical techniques were carried out to determine the expression of neuronal and glial markers (NeuN and GFAP), eCBs/AEs synthesis and degradation enzymes (DAGLα, NAPE-PLD and FAAH) and their receptors (CB1 and PPARα). We found a decrease in NAPE-PLD and PPARα expression. Since NAPE-PLD and PPARα take part in the production and reception of biochemical actions of AEs, such as oleoylethanolamide, these results may suggest that PA plays a key role in the regulation of this system. These data agree with previous results obtained in the hippocampus and encourage us to develop further studies using AEs as potential neuroprotective compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Endocannabinoid system and psychiatry: in search of a neurobiological basis for detrimental and potential therapeutic effects.

    PubMed

    Marco, Eva M; García-Gutiérrez, María S; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.

  8. Endocannabinoid System and Psychiatry: In Search of a Neurobiological Basis for Detrimental and Potential Therapeutic Effects

    PubMed Central

    Marco, Eva M.; García-Gutiérrez, María S.; Bermúdez-Silva, Francisco-Javier; Moreira, Fabricio A.; Guimarães, Francisco; Manzanares, Jorge; Viveros, María-Paz

    2011-01-01

    Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation. PMID:22007164

  9. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use.

    PubMed

    Xie, S; Furjanic, M A; Ferrara, J J; McAndrew, N R; Ardino, E L; Ngondara, A; Bernstein, Y; Thomas, K J; Kim, E; Walker, J M; Nagar, S; Ward, S J; Raffa, R B

    2007-06-01

    There is considerable evidence that the endocannabinoid (endogenous cannabinoid) system plays a significant role in appetitive drive and associated behaviours. It is therefore reasonable to hypothesize that the attenuation of the activity of this system would have therapeutic benefit in treating disorders that might have a component of excess appetitive drive or over-activity of the endocannabinoid system, such as obesity, ethanol and other drug abuse, and a variety of central nervous system and other disorders. Towards this end, antagonists of cannabinoid receptors have been designed through rational drug discovery efforts. Devoid of the abuse concerns that confound and impede the use of cannabinoid receptor agonists for legitimate medical purposes, investigation of the use of cannabinoid receptor antagonists as possible pharmacotherapeutic agents is currently being actively investigated. The compound furthest along this pathway is rimonabant, a selective CB(1) (cannabinoid receptor subtype 1) antagonist, or inverse agonist, approved in the European Union and under regulatory review in the United States for the treatment of obesity. This article summarizes the basic science of the endocannabinoid system and the therapeutic potential of cannabinoid receptor antagonists, with emphasis on the treatment of obesity.

  10. Alternative targets within the endocannabinoid system for future treatment of gastrointestinal diseases

    PubMed Central

    Schicho, Rudolf; Storr, Martin

    2011-01-01

    Many beneficial effects of herbal and synthetic cannabinoids on gut motility and inflammation have been demonstrated, suggesting a vast potential for these compounds in the treatment of gastrointestinal disorders. These effects are based on the so-called ‘endocannabinoid system’ (ECS), a cooperating network of molecules that regulate the metabolism of the body’s own and of exogenously administered cannabinoids. The ECS in the gastrointestinal tract quickly responds to homeostatic disturbances by de novo synthesis of its components to maintain homeostasis, thereby offering many potential targets for pharmacological intervention. Of major therapeutic interest are nonpsychoactive cannabinoids or compounds that do not directly target cannabinoid receptors but still possess cannabinoid-like properties. Drugs that inhibit endocannabinoid degradation and raise the level of endocannabinoids are becoming increasingly promising alternative therapeutic tools to manipulate the ECS. PMID:21876860

  11. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders.

    PubMed

    Silvestri, Cristoforo; Di Marzo, Vincenzo

    2013-04-02

    Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeostasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake, endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge may help in the design of future therapies for the metabolic syndrome.

  12. Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3.

    PubMed

    Rodríguez-Cueto, Carmen; Hernández-Gálvez, Mariluz; Hillard, Cecilia J; Maciel, Patricia; García-García, Luis; Valdeolivas, Sara; Pozo, Miguel A; Ramos, José A; Gómez-Ruiz, María; Fernández-Ruiz, Javier

    2016-12-17

    Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  13. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice

    PubMed Central

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-01-01

    Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor

  14. Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice.

    PubMed

    Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo

    2015-06-01

    Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1 : AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA

  15. A Role for the Endocannabinoid System in the Increased Motivation for Cocaine in Extended Access Conditions

    PubMed Central

    Orio, Laura; Edwards, Scott; George, Olivier; Parsons, Loren H.; Koob, George F.

    2009-01-01

    Extended access to cocaine produces an increase in cocaine self-administration in rats that mimics aspects of compulsive drug intake in human addicts. While emerging evidence implicates the endogenous cannabinoid system in aspects of opioid and ethanol addiction, a role of the endocannabinoid system in cocaine addiction remains largely inconclusive. Here, we investigate the effects of systemic and intra-accumbal administration of the CB1 antagonist SR141716A (Rimonabant) on cocaine self-administration (0.5 mg/kg/infusion) under a progressive ratio (PR) schedule in rats with extended (long access, LgA; 6 h/day) or limited (short access, ShA; 1 h/day) access to cocaine. LgA rats, but not ShA rats showed an increase in cocaine intake as previously reported, and responding for cocaine by LgA rats was higher than in ShA rats under a PR schedule. Systemic SR141716A induced a dramatic dose-dependent decrease in the break-point for cocaine by LgA rats, whereas only the highest dose of the antagonist had a significant effect in the ShA group. Anandamide levels in the nucleus accumbens (NAc) shell were decreased in ShA rats but unchanged in LgA rats during cocaine self-administration. Both phosphorylated and total CB1 receptor protein expression were upregulated in LgA rats in the NAc and the amygdala compared to ShA and drug-naïve rats, 24 h after last cocaine session. Finally, intra-NAc infusions of SR141716A reduced cocaine break-points selectively in LgA animals. These results suggest that neuroadaptations in the endogenous cannabinoid system may be part of the neuroplasticity associated with the development of cocaine addiction. PMID:19369553

  16. Docosahexaenoic acid attenuates in endocannabinoid synthesis in RAW 264.7 macrophages activated with benzo(a)pyrene and lipopolysaccharide.

    PubMed

    Gdula-Argasińska, Joanna; Bystrowska, Beata

    2016-09-06

    Endocannabinoids are synthetized as a results of demand from membrane phospholipids. The formation and actions of these lipid mediators depend to a great extent on the prevalence of precursor fatty acid (FA), and can be influenced by diet or supplementation. The purpose of this study was to evaluate the interactive effects of lipopolysaccharide (LPS) and benzo(a)pyrene (BaP) in RAW 264.7 cells supplemented with docosahexaenoic acid (DHA). After LPS and/or BaP treatment in macrophages pre-incubated with DHA, a significant decrease in the amount of fatty acid was observed. The highest content of monounsaturated fatty acids was detected in RAW 264.7 cells co-treated with LPS and BaP. Significant interactions between LPS and BaP co-treatment in terms of endocannabinoid levels were observed in RAW 264.7 cells after DHA supplementation. The highest amount of endocannabinoids was detected in macrophages supplemented with DHA and co-treated with BaP and LPS: arachidonoyl ethanolamine AEA (5.9μg/mL), docosahexaenoyl ethanolamide DHEA (10.6μg/mL) and nervonoyl ethanolamide NEA (16.5μg/mL). The highest expression of cyclooxygenase (COX-2) and cannabinoid receptor 2 (CB2) was noted in macrophages supplemented with DHA and activated with LPS and BaP. Our data suggested a novel, CB2 receptor-dependent, environmental stress reaction in macrophages co-treated with LPS and BaP after supplementation with DHA. Despite the synergistic LPS and BaP action DHA potentiates the anti-inflammatory response in RAW 264.7 cells.

  17. The endocannabinoid system in renal cells: regulation of Na+ transport by CB1 receptors through distinct cell signalling pathways

    PubMed Central

    Sampaio, L S; Taveira Da Silva, R; Lima, D; Sampaio, C L C; Iannotti, F A; Mazzarella, E; Di Marzo, V; Vieyra, A; Reis, R A M; Einicker-Lamas, M

    2015-01-01

    Background and Purpose The function of the endocannabinoid system (ECS) in renal tissue is not completely understood. Kidney function is closely related to ion reabsorption in the proximal tubule, the nephron segment responsible for the re-absorption of 70–80% of the filtrate. We studied the effect of compounds modulating the activity of cannabinoid (CB) receptors on the active re-absorption of Na+ in LLC-PK1 cells. Experimental Approach Changes in Na+/K+-ATPase activity were assessed after treatment with WIN55,212-2 (WIN), a non-selective lipid agonist, and haemopressin (HP), an inverse peptide agonist at CB1 receptors. Pharmacological tools were used to investigate the signalling pathways involved in the modulation of Na+ transport. Key Results In addition to CB1 and CB2 receptors and TRPV1 channels, the mRNAs encoding for enzymes of the ECS were also expressed in LLC-PK1. WIN (10−7 M) and HP (10−6 M) altered Na+ re-absorption in LLC-PK1 in a dual manner. They both acutely (after 1 min) increased Na+/K+-ATPase activity in a TRPV1 antagonist-sensitive way. WIN's stimulating effect persisted for 30 min, and this effect was partially blocked by a CB1 antagonist or a PKC inhibitor. In contrast, HP inhibited Na+/K+-ATPase after 30 min incubation, and this effect was attenuated by a CB1 antagonist or a PKA inhibitor. Conclusion and Implications The ECS is expressed in LLC-PK1 cells. Both CB1 receptors and TRPV1 channels regulate Na+/K+-ATPase activity in these cells, and are modulated by lipid and peptide CB1 receptor ligands, which act via different signalling pathways. PMID:25537261

  18. Endocannabinoid involvement in endometriosis

    PubMed Central

    Dmitrieva, Natalia; Nagabukuro, Hiroshi; Resuehr, David; Zhang, Guohua; McAllister, Stacy L.; McGinty, Kristina A.; Mackie, Ken; Berkley, Karen J.

    2010-01-01

    Endometriosis is a disease common in women that is defined by abnormal extrauteral growths of uterine endometrial tissue and associated with severe pain. Partly because how the abnormal growths become associated with pain is poorly understood, the pain is difficult to alleviate without resorting to hormones or surgery, which often produce intolerable side effects or fail to help. Recent studies in a rat model and women showed that sensory and sympathetic nerve fibers sprout branches to innervate the abnormal growths. This situation, together with knowledge that the endocannabinoid system is involved in uterine function and dysfunction and that exogenous cannabinoids were once used to alleviate endometriosis-associated pain, suggests that the endocannabinoid system is involved in both endometriosis and its associated pain. Here, using a rat model, we found that CB1 cannabinoid receptors are expressed on both the somata and fibers of both the sensory and sympathetic neurons that innervate endometriosis’s abnormal growths. We further found that CB1 receptor agonists decrease, whereas CB1 receptor antagonists increase, endometriosis-associated hyperalgesia. Together these findings suggest that the endocannabinoid system contributes to mechanisms underlying both the peripheral innervation of the abnormal growths and the pain associated with endometriosis, thereby providing a novel approach for the development of badly-needed new treatments. PMID:20833475

  19. Endocannabinoids, sperm functions and energy metabolism.

    PubMed

    Rossato, Marco

    2008-04-16

    Cannabinoids, the main active components of marijuana, have been shown to exert different adverse effects on male reproduction both in vertebrates and invertebrates. The main effects of endocannabinoids, a particular group of endogenously produced cannabinoids, in sperm are the inhibition of motility, capacitation and acrosome reaction, all fundamental processes necessary for oocyte penetration, whose alteration leads to the inhibition of sperm fertilizing ability. These inhibitory effects are mediated by the direct action of endocannabinoids on sperm through the activation of the cannabinoid receptor subtype 1 that has been shown to be expressed in mature sperm. In many different cell types it has been demonstrated that endocannabinoids negatively influence mitochondrial activity. In the present paper it will be briefly reviewed the role of endocannabinoids, on sperm motility, capacitation and acrosome reaction with particular attention on the possible interference of endocannabinoids with sperm mitochondrial activity.

  20. Cat odour-induced anxiety--a study of the involvement of the endocannabinoid system.

    PubMed

    Sütt, Silva; Raud, Sirli; Areda, Tarmo; Reimets, Ain; Kõks, Sulev; Vasar, Eero

    2008-07-01

    Recent evidence suggests the involvement of the endocannabinoid (EC) system in the regulation of anxiety. The aim of present work was to study the role of the EC system in cat odour-induced anxiety in rats. Materials and methods Male Wistar rats were exposed to cat odour in home and motility cages. Exposure of rats to elevated zero-maze was used to determine changes in anxiety. Effect of rimonabant (0.3-3 mg/kg), antagonist of CB1 receptors, was studied on cat odour-induced alterations in exploratory behaviour. Real-time PCR was used to determine gene expression levels of EC-related genes in the brain. Anxiogenic-like action of cat odour was evident in the elevated zero-maze. Cat odour increased the expression of FAAH, the enzyme responsible for the degradation of anandamide, in the mesolimbic area. By contrast, in the amygdala and periaqueductal grey (PAG) levels of NAPE-PLD, the enzyme related to the synthesis of anandamide, and FAAH were remarkably decreased. Cat odour also decreased the expression of enzymes related to metabolism of 2-archidonoyl-glycerol in the amygdala and PAG. Pre-treatment of rats with rimonabant (0.3-3 mg/kg) reduced the exploratory behaviour of rats, but did not affect cat odour-induced changes. Exposure to cat odour induces anxiogenic-like effect on the behaviour in rats. Cat odour also causes moderate increase in expression of EC-related genes in the mesolimbic area, whereas significant down-regulation is established in the amygdala and PAG. Relation of predator odour-induced anxiety to the inhibition of the EC system in the amygdala and PAG is supported by behavioural studies where blockade of CB1 receptors by rimonabant induces anxiogenic-like action.

  1. Changes in the Brain Endocannabinoid System in Rat Models of Depression.

    PubMed

    Smaga, Irena; Jastrzębska, Joanna; Zaniewska, Magdalena; Bystrowska, Beata; Gawliński, Dawid; Faron-Górecka, Agata; Broniowska, Żaneta; Miszkiel, Joanna; Filip, Małgorzata

    2017-04-01

    A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).

  2. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach.

    PubMed

    Niaz, Kamal; Khan, Fazlullah; Maqbool, Faheem; Momtaz, Saeideh; Ismail Hassan, Fatima; Nobakht-Haghighi, Navid; Rahimifard, Mahban; Abdollahi, Mohammad

    2017-01-01

    Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis.

  3. Endo-cannabinoids system and the toxicity of cannabinoids with a biotechnological approach

    PubMed Central

    Niaz, Kamal; Khan, Fazlullah; Maqbool, Faheem; Momtaz, Saeideh; Ismail Hassan, Fatima; Nobakht-Haghighi, Navid; Rahimifard, Mahban; Abdollahi, Mohammad

    2017-01-01

    Cannabinoids have shown diverse and critical effects on the body systems, which alter the physiological functions. Synthetic cannabinoids are comparatively innovative misuse drugs with respect to their nature of synthesis. Synthetic cannabinoids therapy in healthy, chain smokers, and alcoholic individuals cause damage to the immune and nervous system, eventually leading to intoxication throughout the body. Relevant studies were retrieved using major electronic databases such as PubMed, EMBASE, Medline, Scopus, and Google Scholar. The extensive use of Cannabis Sativa L. (C. Sativa) and its derivatives/analogues such as the nonpsychoactive dimethyl heptyl homolog (CBG-DMH), and tetrahydrocannabivarin (THCV) amongst juveniles and adults have been enhanced in recent years. Cannabinoids play a crucial role in the induction of respiratory, reproductive, immune and carcinogenic effects; however, potential data about mutagenic and developmental effects are still insufficient. The possible toxicity associated with the prolong use of cannabinoids acts as a tumor promoter in animal models and humans. Particular synthetic cannabinoids and analogues have low affinity for CB1 or CB2 receptors, while some synthetic members like Δ9-THC have high affinity towards these receptors. Cannabinoids and their derivatives have a direct or indirect association with acute and long-term toxicity. To reduce/attenuate cannabinoids toxicity, pharmaceutical biotechnology and cloning methods have opened a new window to develop cannabinoids encoding the gene tetrahydrocannabinolic acid (THCA) synthase. Plant revolution and regeneration hindered genetic engineering in C. Sativa. The genetic culture suspension of C. Sativa can be transmuted by the use of Agrobacterium tumefaciens to overcome its toxicity. The main aim of the present review was to collect evidence of the endo-cannabinoid system (ECS), cannabinoids toxicity, and the potential biotechnological approach of cannabinoids synthesis. PMID

  4. The implication of CNR1 gene's polymorphisms in the modulation of endocannabinoid system effects.

    PubMed

    Dinu, I R; Popa, Simona; Bîcu, Mihaela; Moţa, E; Moţa, Maria

    2009-01-01

    The endocannabinoid system (ECS) represents one of the most important physiologic systems involved in organism homeostasis, having various implications upon individual behavior and metabolic phenotype. It is composed of cannabinoid receptors CB1 and CB2, and their genes (CNR1 and CNR2), their endogenous ligands and the enzymes which mediate endogenous ligands' biosynthesis and degradation. Anandamide and 2-arachidonoylglycerol are two endogenous agonists of the cannabinoid receptors. It is considered that ECS connects physical and emotional response to stress with appetite and energy balance, functioning like an after stress recovery system which remains inactive in repose physiologic conditions. It is involved in several physiologic processes like nociception, motor control, memory, learning, appetite, food intake and energy balance. This review analyzes the implication of 11 polymorphisms of CNR1 gene in the modulation of the ECS metabolic and central effects. A lot of studies show that rs12720071, rs1049353, rs806381, rs10485170, rs6454674, rs2023239 polymorphisms are associated with metabolic effects. From them rs12720071, rs104935, rs6454674, rs2023239 polymorphisms are also associated with central effects of ECS (substance addiction, impulsivity, resistance to antidepressive treatment). Other studies indicate that rs806368, rs1535255, (AAT)9,(AAT)12 and (AAT)n are correlated only with central effects (schizophrenia, substance addiction, impulsivity, Parkinson syndrome). The discovery of ECS and its signaling pathways opens a door towards the understanding of several important physiologic processes regarding appetite, food intake, metabolism, weight gain, motor control, memory, learning, drug addiction and nociception. The detailed analysis and validation of the ECS functioning can bring us very close to the discovery of new diagnosis and treatment methods for obesity, drugs abuse and numerous psychic diseases.

  5. Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons

    PubMed Central

    Talani, Giuseppe; Lovinger, David M.

    2015-01-01

    The basolateral amygdala (BLA) plays crucial roles in stimulus value coding, as well as drug and alcohol dependence. Ethanol alters synaptic transmission in the BLA, while endocannabinoids (eCBs) produce presynaptic depression at BLA synapses. Recent studies suggest interactions between ethanol and eCBs that have important consequences for alcohol drinking behavior. To determine how ethanol and eCBs interact in the BLA, we examined the physiology and pharmacology of GABAergic synapses onto BLA pyramidal neurons in neurons from young rats. Application of ethanol at concentrations relevant to intoxication increased, in both young and adult animals, the frequency of spontaneous and miniature GABAergic inhibitory postsynaptic currents, indicating a presynaptic site of ethanol action. The potentiation by ethanol was prevented by inhibition by adenylyl cyclase, and reduced by inhibition by protein kinase A. Activation of type 1 cannabinoid receptors (CB1) in the BLA inhibited GABAergic transmission via an apparent presynaptic mechanism, and prevented ethanol potentiation. Surprisingly, ethanol potentiation was also prevented by CB1 antagonists/inverse agonists. Brief depolarization of BLA pyramidal neurons suppressed GABAergic transmission (depolarization-induced suppression of inhibition [DSI]), an effect previously shown to be mediated by postsynaptic eCB release and presynaptic CB1 activation. A CB1-mediated suppression of GABAergic transmission was also produced by combined afferent stimulation at 0.1 Hz (LFS), and postsynaptic loading with the eCB arachidonoyl ethanolamide (AEA). Both DSI and LFS-induced synaptic depression were prevented by ethanol. Our findings indicate antagonistic interactions between ethanol and eCB/CB1 modulation at GABAergic BLA synapses that may contribute to eCB roles in ethanol seeking and drinking. PMID:26603632

  6. Cannabis and Endocannabinoid Signaling in Epilepsy.

    PubMed

    Katona, István

    2015-01-01

    The antiepileptic potential of Cannabis sativa preparations has been historically recognized. Recent changes in legal restrictions and new well-documented cases reporting remarkably strong beneficial effects have triggered an upsurge in exploiting medical marijuana in patients with refractory epilepsy. Parallel research efforts in the last decade have uncovered the fundamental role of the endogenous cannabinoid system in controlling neuronal network excitability raising hopes for cannabinoid-based therapeutic approaches. However, emerging data show that patient responsiveness varies substantially, and that cannabis administration may sometimes even exacerbate seizures. Qualitative and quantitative chemical variability in cannabis products and personal differences in the etiology of seizures, or in the pathological reorganization of epileptic networks, can all contribute to divergent patient responses. Thus, the consensus view in the neurologist community is that drugs modifying the activity of the endocannabinoid system should first be tested in clinical trials to establish efficacy, safety, dosing, and proper indication in specific forms of epilepsies. To support translation from anecdote-based practice to evidence-based therapy, the present review first introduces current preclinical and clinical efforts for cannabinoid- or endocannabinoid-based epilepsy treatments. Next, recent advances in our knowledge of how endocannabinoid signaling limits abnormal network activity as a central component of the synaptic circuit-breaker system will be reviewed to provide a framework for the underlying neurobiological mechanisms of the beneficial and adverse effects. Finally, accumulating evidence demonstrating robust synapse-specific pathophysiological plasticity of endocannabinoid signaling in epileptic networks will be summarized to gain better understanding of how and when pharmacological interventions may have therapeutic relevance.

  7. Endocannabinoids and synaptic function in the CNS.

    PubMed

    Hashimotodani, Yuki; Ohno-Shosaku, Takako; Kano, Masanobu

    2007-04-01

    Marijuana affects neural functions through the binding of its active component (Delta(9)-THC) to cannabinoid receptors in the CNS. Recent studies have elucidated that endogenous ligands for cannabinoid receptors, endocannabinoids, serve as retrograde messengers at central synapses. Endocannabinoids are produced on demand in activity-dependent manners and released from postsynaptic neurons. The released endocannabinoids travel backward across the synapse, activate presynaptic CB1 cannabinoid receptors, and modulate presynaptic functions. Retrograde endocannabinoid signaling is crucial for certain forms of short-term and long-term synaptic plasticity at excitatory or inhibitory synapses in many brain regions, and thereby contributes to various aspects of brain function including learning and memory. Molecular identities of the CB1 receptor and enzymes involved in production and degradation of endocannabinoids have been elucidated. Anatomical studies have demonstrated unique distributions of these molecules around synapses, which provide morphological bases for the roles of endocannabinoids as retrograde messengers. CB1-knockout mice exhibit various behavioral abnormalities and multiple defects in synaptic plasticity, supporting the notion that endocannabinoid signaling is involved in various aspects of neural function. In this review article, the authors describe molecular mechanisms of the endocannabinoid-mediated synaptic modulation and its possible physiological significance.

  8. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges.

    PubMed

    Grant, Igor; Cahn, B Rael

    2005-01-01

    The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control.

  9. Cannabis and endocannabinoid modulators: Therapeutic promises and challenges

    PubMed Central

    Grant, Igor; Cahn, B. Rael

    2008-01-01

    The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control. PMID:18806886

  10. Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency.

    PubMed

    Cristino, Luigia; Luongo, Livio; Imperatore, Roberta; Boccella, Serena; Becker, Thorsten; Morello, Giovanna; Piscitelli, Fabiana; Busetto, Giuseppe; Maione, Sabatino; Di Marzo, Vincenzo

    2016-01-01

    Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.

  11. A Putative ‘Pre-Nervous’ Endocannabinoid System in Early Echinoderm Development

    PubMed Central

    Buznikov, G.A.; Nikitina, L.A.; Bezuglov, V.V.; Francisco, M.E.Y.; Boysen, G.; Obispo-Peak, I.N.; Peterson, R.E.; Weiss, E.R.; Schuel, H.; Temple, B.R.S; Morrow, A.L.; Lauder, J.M.

    2010-01-01

    Embryos and larvae of sea urchins (Lytechinus variegatus, Strongylocentrotus droebachiensis, Strongylocentrotus purpuratus, Dendraster excentricus), and starfish (Pisaster ochraceus) were investigated for the presence of a functional endocannabinoid system. Anandamide (arachidonoyl ethanolamide, AEA), was measured in early L. variegatus embryos by liquid chromatography/mass spectrometry. AEA showed a strong developmental dynamic, increasing more than 5-fold between the 8–16 cell and mid-blastula 2 stage. ‘Perturb-and-rescue’ experiments in different sea urchin species and starfish showed that AEA blocked transition of embryos from the blastula to the gastrula stage, but had no effect on cleavage divisions, even at high doses. The non-selective cannabinoid receptor agonist, CP55940, had similar effects, but unlike AEA, also blocked cleavage divisions. CB1 antagonists, AEA transport inhibitors, and the cation channel transient membrane potential receptor V1 (TrpV1) agonist, arachidonoyl vanillic acid (arvanil), as well as arachidonoyl serotonin and dopamine (AA-5-HT, AA-DA) acted as rescue substances, partially or totally preventing abnormal embryonic phenotypes elicited by AEA or CP55940. Radioligand binding of [3H]CP55940 to membrane preparations from embryos/larvae failed to show significant binding, consistent with the lack of CB receptor orthologs in the sea urchin genome. However, when binding was conducted on whole cell lysates, a small amount of [3H]CP55940 binding was observed at the pluteus stage that was displaced by the CB2 antagonist, SR144528. Since AEA is known to bind with high affinity to TrpV1 and to certain G-protein-coupled receptors (GPCRs), the ability of arvanil, AA-5-HT and AA-DA to rescue embryos from AEA teratogenesis suggests that in sea urchins AEA and other endocannabinoids may utilize both Trp and GPCR orthologs. This possibility was explored using bioinformatic and phylogenetic tools to identify candidate orthologs in the S

  12. Investigations of the endocannabinoid system in adipose tissue: effects of obesity/ weight loss and treatment options.

    PubMed

    Bennetzen, Marianne Faurholt

    2011-04-01

    Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and

  13. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression

    PubMed Central

    Schaich, Chris L.; Grabenauer, Megan; Thomas, Brian F.; Shaltout, Hossam A.; Gallagher, Patricia E.; Howlett, Allyn C.; Diz, Debra I.

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P < 0.01), while Sprague-Dawley rats had intermediate content (1.85 ± 0.27 ng/mg tissue). Microinjection of the CB1receptor antagonist SR141716A (36 pmol) into the NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS. PMID:27375489

  14. Endocannabinoid system and proopiomelanocortin gene expression in peripartal bovine liver in response to prepartal plane of nutrition.

    PubMed

    Khan, M J; Graugnard, D E; Loor, J J

    2012-10-01

    Endocannabinoids are fatty acid amides (FAE; oleoylethanolamide and anandamide) which have orexigenic, anorexigenic or anti-inflammatory properties. We examined mRNA expression via qPCR of endocannabinoid receptors (CNR1 and CNR2), enzymes that synthesize FAE (HRASLS5 and N-acyl phosphatidylethanolamine phospholipase D), enzymes that degrade FAE [fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA) and monoglyceride lipase (MGLL)], and the hormone precursor proopiomelanocortin (POMC) in liver at -14, 7, 14 and 30 days around parturition from cows fed with a control (CON; NE(L) = 1.34 Mcal/kg) or moderate-energy (OVER; NE(L) = 1.62 Mcal/kg) diet during the dry period. Expression of CNR2 and POMC was greater at 7 days in cows fed with OVER because of a decrease in expression between -14 and 7 days in cows fed with CON. Cows fed with CON had an increase in expression of FAAH, HRASLS5, NAA, MGLL and POMC between 7 and 14 days; for FAAH and HRASLS5, such response led to greater expression at 14 days vs. cows fed with OVER. Cows fed with OVER vs. CON had a approximately twofold increase in expression of MGLL between -14 and 7 days followed by a gradual decrease through 30 days at which point expression was still greater in OVER vs. CON. FAAH, MGLL and HRASLS5 were the most abundant genes measured. Expression of the hepatic endocannabinoid system and POMC was altered by plane of dietary energy prepartum particularly during the first 2-week postpartum. Such responses may play a role in the physiological adaptations to the onset of lactation, including energy balance and feed intake.

  15. PUFA-derived endocannabinoids: an overview.

    PubMed

    Cascio, Maria Grazia

    2013-11-01

    Following on from the discovery of cannabinoid receptors, of their endogenous agonists (endocannabinoids) and of the biosynthetic and metabolic enzymes of the endocannabinoids, significant progress has been made towards the understanding of the role of the endocannabinoid system in both physiological and pathological conditions. Endocannabinoids are mainly n-6 long-chain PUFA (LCPUFA) derivatives that are synthesised by neuronal cells and inactivated via a two-step process that begins with their transport from the extracellular to the intracellular space and culminates in their intracellular degradation by hydrolysis or oxidation. Although the enzymes responsible for the biosynthesis and metabolism of endocannabinoids have been well characterised, the processes involved in their cellular uptake are still a subject of debate. Moreover, little is yet known about the roles of endocannabinoids derived from n-3 LCPUFA such as EPA and DHA. Here, I provide an overview of what is currently known about the mechanisms for the biosynthesis and inactivation of endocannabinoids, together with a brief analysis of the involvement of the endocannabinoids in both food intake and obesity. Owing to limited space, recent reviews will be often cited instead of original papers.

  16. The endocannabinoid system and Post Traumatic Stress Disorder (PTSD): From preclinical findings to innovative therapeutic approaches in clinical settings.

    PubMed

    Berardi, Andrea; Schelling, Gustav; Campolongo, Patrizia

    2016-09-01

    Post-Traumatic Stress Disorder (PTSD) is a psychiatric chronic disease developing in individuals after the experience of an intense and life-threatening traumatic event. The post-traumatic symptomatology encompasses alterations in memory processes, mood, anxiety and arousal. There is now consensus in considering the disease as an aberrant adaptation to traumatic stress. Pharmacological research, aimed at the discovery of new potential effective treatments, has lately directed its attention towards the "so-called" cognitive enhancers. This class of substances, by modulating cognitive processes involved in the development and/or persistence of the post-traumatic symptomatology, could be of great help in improving the outcome of psychotherapies and patients' prognosis. In this perspective, drugs acting on the endocannabinoid system are receiving great attention due to their dual ability to modulate memory processes on one hand, and to reduce anxiety and depression on the other. The purpose of the present review is to offer a thorough overview of both animal and human studies investigating the effects of cannabinoids on memory processes. First, we will briefly describe the characteristics of the endocannabinoid system and the most commonly used animal models of learning and memory. Then, studies investigating cannabinoid modulatory influences on memory consolidation, retrieval and extinction will be separately presented, and the potential benefits associated with each approach will be discussed. In the final section, we will review literature data reporting beneficial effects of cannabinoid drugs in PTSD patients.

  17. Cocaine-Induced Behavioral Sensitization Is Associated With Changes in the Expression of Endocannabinoid and Glutamatergic Signaling Systems in the Mouse Prefrontal Cortex

    PubMed Central

    Blanco, Eduardo; Pavón, Francisco J.; Palomino, Ana; Luque-Rojas, María Jesús; Serrano, Antonia; Rivera, Patricia; Bilbao, Ainhoa; Alen, Francisco; Vida, Margarita; Suárez, Juan

    2015-01-01

    Background: Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. Methods: We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. Results: Although acute cocaine (10mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic

  18. Endocannabinoids shape accumbal encoding of cue-motivated behavior via CB1 receptor activation in the ventral tegmentum

    PubMed Central

    Oleson, Erik B.; Beckert, Michael V.; Morra, Joshua T.; Lansink, Carien S.; Cachope, Roger; Abdullah, Rehab A.; Loriaux, Amy L.; Schetters, Dustin; Pattij, Tommy; Roitman, Mitchell F.; Lichtman, Aron H.; Cheer, Joseph F.

    2012-01-01

    SUMMARY Transient increases in nucleus accumbens (NAc) dopamine concentration are observed when animals are presented with motivationally salient stimuli and are theorized to energize reward seeking. They arise from high frequency firing of dopamine neurons in the ventral tegmental area (VTA), which also results in the release of endocannabinoids from dopamine cell bodies. In this context, endocannabinoids are thought to regulate reward seeking by modulating dopamine signaling, although a direct link has never been demonstrated. To test this, we pharmacologically manipulated endocannabinoid neurotransmission in the VTA while measuring transient changes in dopamine concentration in the NAc during reward seeking. Disrupting endocannabinoid signaling dramatically reduced, whereas augmenting levels of the endocannabinoid 2-arachidonoylglycerol (2AG) increased, cue-evoked dopamine concentrations and reward seeking. These data suggest that 2AG in the VTA regulates reward seeking by sculpting ethologically relevant patterns of dopamine release during reward-directed behavior. PMID:22284189

  19. Dietary conjugated linoleic acid supplementation alters the expression of genes involved in the endocannabinoid system in the bovine endometrium and increases plasma progesterone concentrations.

    PubMed

    Abolghasemi, A; Dirandeh, E; Ansari Pirsaraei, Z; Shohreh, B

    2016-10-01

    Endocannabinoids are derived from phospholipids and reduce fertility by interfering with implantation. Identification of changes in the expression of genes of the endocannabinoid system as a result of dietary inclusion of conjugated linoleic acid (CLA) is critical to the advancement of our understanding of the nutritional regulation of uterine function. An experiment was conducted on transition cows to evaluate the expression of key endocannabinoid genes in bovine endometrium in response to dietary supplementation with CLA. A total of 16 cows were randomly assigned to two treatments: (1) control (75 g/day palm oil) and (2) CLA (75 g/day CLA) from 21 days prepartum to Day 42 postpartum. Cows underwent uterine biopsy on days 21 and 42 postpartum. The abundance of mRNA encoding endocannabinoid receptor (CNR2), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA), and monoglyceride lipase (MGLL) was measured by real-time PCR. Results reported that relative levels of mRNA encoding CNR2 and NAPEPLD were decreased (P < 0.05) compared with control cows between Days 21 and 42 postpartum. Relative levels of mRNA coding for NAAA and MGLL were not different (P > 0.05) in the same situation. Mean plasma progesterone concentrations were higher in CLA-fed cows compared with control cows at Day 42 postpartum (3.51 and 1.42 ng/mL, respectively, P < 0.05). In conclusion, we suggest that the beneficial effects of a diet enriched with CLA are the result of a decrease in relative gene expression of the endocannabinoid receptor (CNR2) and enzymes that synthesize fatty acid amides (NAPEPLD) and of an increase in the expression of PTGS2 that in turn can oxidate endocannabinoids and consequently resulted in increased plasma progesterone concentrations during early lactation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Dose-Specific Effects of Di-Isononyl Phthalate on the Endocannabinoid System and on Liver of Female Zebrafish.

    PubMed

    Forner-Piquer, Isabel; Maradonna, Francesca; Gioacchini, Giorgia; Santangeli, Stefania; Allarà, Marco; Piscitelli, Fabiana; Habibi, Hamid R; Di Marzo, Vincenzo; Carnevali, Oliana

    2017-10-01

    Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism. Hence, the aim of our study was to investigate the effects of DiNP on the ECS in zebrafish liver and brain and on hepatic lipid storage. To do so, adult female zebrafish were exposed to three concentrations (0.42 µg/L, 4.2 µg/L, and 42 µg/L) of DiNP via water for 3 weeks. Afterwards, we investigated transcript levels for genes involved in the ECS of the brain and liver as well as liver histology and image analysis, Fourier-transform infrared spectroscopy imaging, and measurement of endocannabinoid levels. Our results demonstrate that DiNP upregulates orexigenic signals and causes hepatosteatosis together with deregulation of the peripheral ECS and lipid metabolism. A decrease in the levels of ECS components at the central level was observed after exposure to the highest DiNP concentration tested. These findings suggest that replacement of DEHP with DiNP should be considered with caution because of observed adverse DiNP effects on aquatic organisms. Copyright © 2017 Endocrine Society.

  1. Hub and switches: endocannabinoid signalling in midbrain dopamine neurons.

    PubMed

    Melis, Miriam; Pistis, Marco

    2012-12-05

    The last decade has provided a wealth of experimental data on the role played by lipids belonging to the endocannabinoid family in several facets of physiopathology of dopamine neurons. We currently suggest that these molecules, being intimately connected with diverse metabolic and signalling pathways, might differently affect various functions of dopamine neurons through activation not only of surface receptors, but also of nuclear receptors. It is now emerging how dopamine neurons can regulate their constituent biomolecules to compensate for changes in either internal functions or external conditions. Consequently, dopamine neurons use these lipid molecules as metabolic and homeostatic signal detectors, which can dynamically impact cell function and fitness. Because dysfunctions of the dopamine system underlie diverse neuropsychiatric disorders, including schizophrenia and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Particularly, because dopamine neurons are critical in controlling incentive-motivated behaviours, the involvement of endocannabinoid molecules in fine-tuning dopamine cell activity opened new avenues in both understanding and treating drug addiction. Here, we review recent advances that have shed new light on the understanding of differential roles of endocannabinoids and their cognate molecules in the regulation of the reward circuit, and discuss their anti-addicting properties, particularly with a focus on their potential engagement in the prevention of relapse.

  2. To Act or Not to Act: Endocannabinoid/Dopamine Interactions in Decision-Making

    PubMed Central

    Hernandez, Giovanni; Cheer, Joseph F.

    2015-01-01

    Decision-making is an ethologically adaptive construct that is impaired in multiple psychiatric disorders. Activity within the mesocorticolimbic dopamine system has been traditionally associated with decision-making. The endocannabinoid system through its actions on inhibitory and excitatory synapses modulates dopamine activity and decision-making. The aim of this brief review is to present a synopsis of available data obtained when the endocannabinoid system is manipulated and dopamine activity recorded. To this end, we review research using different behavioral paradigms to provide further insight into how this ubiquitous signaling system biases dopamine-related behaviors to regulate decision-making. PMID:26733830

  3. Critical role of the endocannabinoid system in the regulation of food intake and energy metabolism, with phylogenetic, developmental, and pathophysiological implications.

    PubMed

    Viveros, M P; de Fonseca, F Rodriguez; Bermudez-Silva, F J; McPartland, J M

    2008-09-01

    The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS has deep phylogenetic roots and regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways (e.g., ghrelin, leptin, orexin, adiponectin, endogenous opioids, and corticotropin-releasing hormone). Obesity leads to excessive endocannabinoid production by adipocytes, which drives CB(1) in a feed-forward dysfunction. Phylogenetic research suggests the genes for endocannabinoid enzymes, especially DAGLalpha and NAPE-PLD, may harbor mildly deleterious alleles that express disease-related phenotypes. Several CB(1) inverse agonists have been developed for the treatment of obesity, including rimonabant, taranabant, and surinabant. These drugs are efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors. However, given the myriad beneficial roles of the ECS, it should be no surprise that systemic CB(1) blockade induces various adverse effects. Alternatives to systemic blockade include CB(1) partial agonists, pleiotropic drugs, peripherally restricted antagonists, allosteric antagonists, and endocannabinoid ligand modulation. The ECS offers several discrete targets for the management of obesity and its associated cardiometabolic sequelae.

  4. Endocannabinoids and cannabinoid receptor genetics.

    PubMed

    Onaivi, Emmanuel S; Leonard, Claire M; Ishiguro, Hiroki; Zhang, Ping Wu; Lin, Zhicheng; Akinshola, Babatunde E; Uhl, George R

    2002-04-01

    This review presents the remarkable advances that have been achieved in marijuana (cannabinoid) research, with the discovery of specific receptors and the existence of naturally occurring cannabis-like substances in the human body and brain. The last decade has seen more rapid progress in marijuana research than any time in the thousands of years that marijuana has been used by humans, particularly in cannabinoid genomics. The cDNA and genomic sequences encoding G protein-coupled cannabinoid receptors (Cnrs) from several species have now been cloned. Endogenous cannabinoids (endocannabinoids), synthetic and hydrolyzing enzymes and transporters that define neurochemically-specific cannabinoid brain pathways have been identified. Endocannabinoid lipid signaling molecules alter activity at G protein-coupled receptors (GPCR) and possibly at anandamide-gated ion channels, such as vanilloid receptors. Availability of increasingly-specific CB1 and CB2 Cnr antagonists and of CB1 and CB2 Cnr knockout mice have increased our understanding of these cannabinoid systems and provides tantalizing evidence for even more G protein-coupled Cnrs. Initial studies of the Cnr gene structure, regulation and polymorphisms whet our appetite for more information about these interesting genes, their variants and roles in vulnerabilities to addictions and other neuropsychiatric disorders. Behavioral studies of cannabinoids document the complex interactions between rewarding and aversive effects of these drugs. Pursuing cannabinoid-related molecular, pharmacological and behavioral leads will add greatly to our understanding of endogenous brain neuromodulator systems, abused substances and potential therapeutics. This review of CB1 and CB2 Cnr genes in human and animal brain and their neurobiological effects provide a basis for many of these studies. Therefore, understanding the physiological cannabinoid control system in the human body and brain will contribute to elucidating this natural

  5. Endocannabinoid Signaling in Autism.

    PubMed

    Chakrabarti, Bhismadev; Persico, Antonio; Battista, Natalia; Maccarrone, Mauro

    2015-10-01

    Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the "endocannabinoid (eCB) system", a rather complex ensemble of lipid signals ("endocannabinoids"), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD.

  6. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    PubMed Central

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems. PMID:26839710

  7. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE PAGES

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  8. Fatty acid amidohydrolase in human neocortex-activity in epileptic and non-epileptic brain tissue and inhibition by putative endocannabinoids.

    PubMed

    Steffens, Marc; Schulze-Bonhage, Andreas; Surges, Rainer; Feuerstein, Thomas J

    2005-09-02

    Increased levels of the endocannabinoid anandamide (AEA) have been observed in connection with neuronal disorders like epilepsy. In order to investigate whether an impaired enzymatic AEA hydrolysis contributes to this phenomenon, the present study determined the activity of fatty acid amidohydrolase (FAAH) in epileptic and non-epileptic human neocortical brain tissue. Additionally, we investigated whether other putative endocannabinoids (2-arachidonylglycerol (2-AG), noladin ether, virodhamine) may also interact with FAAH. AEA hydrolysis was measured by the formation of the product [(3)H]-ethanolamine after separation from the substrate using activated charcoal. FAAH activity was found to be similar in epileptic and non-epileptic human neocortex (0.29 and 0.37 nmol ethanolamine/mg protein/min, respectively). FAAH activity was about 55% higher in rat neocortex. While in human, neocortex noladin ether did not influence AEA hydrolysis, FAAH activity was concentration-dependently inhibited by AEA, 2-AG and virodhamine (IC(50) values 3.3, 3.5 and 13.8 microM, respectively). Our results suggest that, in the course of epilepsy, increased AEA levels are likely due to enhanced formation and not due to decreased hydrolysis. To further increase endocannabinoid activity, the application of FAAH inhibitors might be therapeutically useful in the treatment of neuronal hyperexcitability. Whereas noladin ether did not interact with AEA hydrolysis, this compound, 2-AG and virodhamine may share common enzymatic inactivation mechanisms in human neocortex.

  9. Opposing local effects of endocannabinoids on the activity of noradrenergic neurons and release of noradrenaline: relevance for their role in depression and in the actions of CB(1) receptor antagonists.

    PubMed

    Kirilly, E; Hunyady, L; Bagdy, G

    2013-01-01

    There is strong evidence that endocannabinoids modulate signaling of serotonin and noradrenaline, which play key roles in the pathophysiology and treatment of anxiety and depression. Most pharmacological and genetic, human and rodent studies suggest that the presence of under-functioning endocannabinoid type-1 (CB(1)) receptors is associated with increased anxiety and elevated extracellular serotonin concentration. In contrast, noradrenaline is presumably implicated in the mediation of depression-type symptoms of CB(1) receptor antagonists. Evidence shows that most CB(1) receptors located on axons and terminals of GABA-ergic, serotonergic or glutamatergic neurons stimulate the activity of noradrenergic neurons. In contrast, those located on noradrenergic axons and terminals inhibit noradrenaline release efficiently. In this latter process, excitatory ionotropic or G protein-coupled receptors, such as the NMDA, alpha1 and beta1 adrenergic receptors, activate local endocannabinoid synthesis at postsynaptic sites and stimulate retrograde endocannabinoid neurotransmission acting on CB(1) receptors of noradrenergic terminals. The underlying mechanisms include calcium signal generation, which activates enzymes that increase the synthesis of both anandamide and 2-arachidonoylglycerol, while G(q/11) protein activation also increases the formation of 2-arachidonoylglycerol from diacylglycerol during the signaling process. In addition, other non-CB(1) receptor endocannabinoid targets such as CB(2), transient receptor potential vanilloid subtype, peroxisome proliferator-activated receptor-alpha and possibly GPR55 can also mediate some of the endocannabinoid effects. In conclusion, both neuronal activation and neurotransmitter release depend on the in situ synthesized endocannabinoids and thus, local endocannabinoid concentrations in different brain areas may be crucial in the net effect, namely in the regulation of neurons located postsynaptically to the noradrenergic synapse.

  10. Endocannabinoid modulation in the olfactory epithelium.

    PubMed

    Breunig, Esther; Czesnik, Dirk; Piscitelli, Fabiana; Di Marzo, Vincenzo; Manzini, Ivan; Schild, Detlev

    2010-01-01

    Appetite, food intake, and energy balance are closely linked to the endocannabinoid system in the central nervous system. Now, endocannabinoid modulation has been discovered in the peripheral olfactory system of larval Xenopus laevis. The endocannabinoid 2-AG has been shown to influence odorant-detection thresholds according to the hunger state of the animal. Hungry animals have increased 2-AG levels due to enhanced synthesis of 2-AG in sustentacular supporting cells. This renders olfactory receptor neurons, exhibiting CB1 receptors, more sensitive at detecting lower odorant concentrations, which probably helps the animal to locate food. Since taste and vision are also influenced by endocannabinoids, this kind of modulation might boost sensory inputs of food in hungry animals.

  11. Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation

    PubMed Central

    Hermanson, Daniel J.; Hartley, Nolan D.; Gamble-George, Joyonna; Brown, Naoko; Shonesy, Brian C.; Kingsley, Phillip J.; Colbran, Roger J.; Reese, Jeffrey

    2013-01-01

    Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Here we utilized medicinal chemistry and in vivo analytical and behavioral pharmacological approaches to demonstrate a key role for COX-2 in the regulation of endocannabinoid (eCB) levels in vivo. A novel pharmacological strategy involving “substrate-selective” inhibition of COX-2 was used to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2reducedanxiety-like behaviors in mice via increasede CB signaling. These data elucidate a key role for COX-2 in the regulation of eCB signaling and suggest substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential. PMID:23912944

  12. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system.

    PubMed

    Campos, Alline C; Ortega, Zaira; Palazuelos, Javier; Fogaça, Manoela V; Aguiar, Daniele C; Díaz-Alonso, Javier; Ortega-Gutiérrez, Silvia; Vázquez-Villa, Henar; Moreira, Fabricio A; Guzmán, Manuel; Galve-Roperh, Ismael; Guimarães, Francisco S

    2013-07-01

    Cannabidiol (CBD), the main non-psychotomimetic component of the plant Cannabis sativa, exerts therapeutically promising effects on human mental health such as inhibition of psychosis, anxiety and depression. However, the mechanistic bases of CBD action are unclear. Here we investigate the potential involvement of hippocampal neurogenesis in the anxiolytic effect of CBD in mice subjected to 14 d chronic unpredictable stress (CUS). Repeated administration of CBD (30 mg/kg i.p., 2 h after each daily stressor) increased hippocampal progenitor proliferation and neurogenesis in wild-type mice. Ganciclovir administration to GFAP-thymidine kinase (GFAP-TK) transgenic mice, which express thymidine kinase in adult neural progenitor cells, abrogated CBD-induced hippocampal neurogenesis. CBD administration prevented the anxiogenic effect of CUS in wild type but not in GFAP-TK mice as evidenced in the novelty suppressed feeding test and the elevated plus maze. This anxiolytic effect of CBD involved the participation of the CB1 cannabinoid receptor, as CBD administration increased hippocampal anandamide levels and administration of the CB1-selective antagonist AM251 prevented CBD actions. Studies conducted with hippocampal progenitor cells in culture showed that CBD promotes progenitor proliferation and cell cycle progression and mimics the proliferative effect of CB1 and CB2 cannabinoid receptor activation. Moreover, antagonists of these two receptors or endocannabinoid depletion by fatty acid amide hydrolase overexpression prevented CBD-induced cell proliferation. These findings support that the anxiolytic effect of chronic CBD administration in stressed mice depends on its proneurogenic action in the adult hippocampus by facilitating endocannabinoid-mediated signalling.

  13. Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats.

    PubMed

    Rueda-Orozco, Pavel E; Montes-Rodriguez, Corinne J; Soria-Gomez, Edgar; Méndez-Díaz, Mónica; Prospéro-García, Oscar

    2008-07-01

    The dorsolateral striatum (DLS) has been implicated in the learning of habits and procedural memories. Extinction of this kind of memories has been poorly studied. The DLS expresses high levels of the cannabinergic receptor one (CB1), and, lately, it has been suggested that the activation of CB1 in this structure is indispensable for long-term depression (LTD) development. We performed experiments in a T-maze and evaluated the effects of intrastriatal and intrahipocampal administration of the CB1 antagonist AM251 on extinction and on c-Fos expression. We also administered anandamide to evaluate if an artificial increase of endocannabinoids facilitates extinction. Our results indicate clearly a dose-response blockade of extinction induced by AM251 injected into the striatum but a facilitation of extinction when administered into the hippocampus. Anandamide did not induce any observable changes. AM251 effects were accompanied by an increase in c-Fos immunoreactivity in the DLS and its decrease in the hippocampal region, suggesting that the activation of CB1 in the striatum is necessary for the extinction of procedural memories. These findings could be important in some neurological conditions, such as obsessive-compulsive disorder in which striatal activity seems to be abnormal.

  14. Surfing the (endo)cannabinoids wave.

    PubMed

    Finazzi Agrò, Alessandro; Maccarrone, Mauro

    2013-05-01

    The discovery of the receptors for the most active compound of cannabis/marihuana opened the chase for the intrinsic, physiological ligands, which are collectively termed endocannabinoids. In just a few years, it has become difficult even for the followers of this field to keep up with the endocannabinoids literature, thus we thought it useful to offer the reader at least a compass to navigate such a mare magnum.

  15. Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity.

    PubMed

    Gamelin, François-Xavier; Aucouturier, Julien; Iannotti, Fabio Arturo; Piscitelli, Fabiana; Mazzarella, Enrico; Aveta, Teresa; Leriche, Melissa; Dupont, Erwan; Cieniewski-Bernard, Caroline; Montel, Valérie; Bastide, Bruno; Di Marzo, Vincenzo; Heyman, Elsa

    2016-06-01

    The endocannabinoid system is dysregulated during obesity in tissues involved in the control of food intake and energy metabolism. We examined the effect of chronic exercise on the tissue levels of endocannabinoids (eCBs) and on the expression of genes coding for cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) (Cnr1 and Cnr2, respectively) in the subcutaneous (SAT) and visceral adipose tissues and in the soleus and extensor digitorim longus (EDL) muscles, in rats fed with standard or high-fat diet. Twenty-eight male Wistar rats were placed on high-fat diet or standard diet (HFD and Ctl groups, respectively) during 12 weeks whereafter half of each group was submitted to an exercise training period of 12 weeks (HFD + training and Ctl + training). Tissue levels of eCBs were measured by LC-MS while expressions of genes coding for CB1 and CB2 receptors were investigated by qPCR. High-fat diet induced an increase in anandamide (AEA) levels in soleus and EDL (p < 0.02). In soleus of the HFD group, these changes were accompanied by elevated Cnr1 messenger RNA (mRNA) levels (p < 0.05). In EDL, exercise training allowed to reduce significantly this diet-induced AEA increase (p < 0.005). 2-Arachidonoylglycerol (2-AG) levels were decreased and increased by high-fat diet in SAT and EDL, respectively (p < 0.04), but not affected by exercise training. Unlike the HFD + training group, 2-AG levels in soleus were also decreased in the HFD group compared to Ctl (p < 0.04). The levels of eCBs and Cnr1 expression are altered in a tissue-specific manner following a high-fat diet, and chronic exercise reverses some of these alterations.

  16. Corticosteroid-endocannabinoid loop supports decrease of fear-conditioned response in rats.

    PubMed

    Bitencourt, R M; Pamplona, F A; Takahashi, R N

    2014-07-01

    The endocannabinoid (eCB) and glucocorticoid systems contribute to the modulation of emotional states. Noteworthy, glucocorticoid hormones are released by adrenal glands during stressful events and endocannabinoids are released in the brain during fear-conditioned responses. Since it was already suggested that glucocorticoids may trigger the release of endocannabinoids in the brain, our objective was to investigate whether the interaction between these neuromodulatory systems contributes to the decrease of conditioned freezing behavior over successive 9-min exposures to the conditioning context. Present results suggest a bidirectional interdependence between glucocorticoid and endocannabinoid systems. CB1 receptors blockade prevents glucocorticoid-induced facilitation of conditioned freezing decrease and inhibition of glucocorticoid synthesis renders boosting of endocannabinoid signaling innocuous, while preserving the efficacy of direct CB1 receptors activation by an exogenous cannabinoid agonist. This suggests that CB1 receptors are somehow "downstream" to glucocorticoid release, which in its turn, is reduced by CB1 activation, contributing to the persistent reduction of conditioned freezing responses.

  17. Activation of Both CB1 and CB2 Endocannabinoid Receptors Is Critical for Masculinization of the Developing Medial Amygdala and Juvenile Social Play Behavior

    PubMed Central

    Falvo, David J; Whitaker, Allison R

    2017-01-01

    Abstract Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology. PMID:28144625

  18. Region-dependent changes in endocannabinoid transmission in the brain of morphine-dependent rats.

    PubMed

    González, Sara; Schmid, Patricia C; Fernández-Ruiz, Javier; Krebsbach, Randy; Schmid, Harald H O; Ramos, José A

    2003-06-01

    It has been suggested recently that the endocannabinoid system might be a component of the brain reward circuitry and thus play a role not only in cannabinoid tolerance/dependence, but also in dependence/withdrawal to other drugs of abuse. Here we have examined the changes in endocannabinoid ligands and their receptors in different brain regions, with particular attention to those areas related to reinforcement processes, during dependence on the powerful addictive drug, morphine. Thus, we analysed the brain contents of N-arachidonoylethanolamine (anandamide, AEA), the first discovered endocannabinoid, in rats subjected to daily injections of increasing doses of morphine, according to a schedule designed to render the animals opiate-dependent. Although evidence of physical dependence was assured by the appearance of somatic and neurovegetative responses in these animals after an acute challenge with naloxone, there were no changes in the contents of this endocannabinoid in any of the brain regions analysed. By contrast, we observed a significant decrease in the specific binding for CB(1) receptors in the midbrain and the cerebral cortex of morphine-dependent rats, with no changes in the other regions. The decrease in the cerebral cortex was, however, accompanied by a rise in the activation of signalling mechanisms by CB(1) receptor agonists, as revealed by WIN-55,212-2-stimulated [(35)S]GTPgammaS binding, whereas a reduction in this parameter was measured in the brainstem of morphine-dependent rats. In summary, the present data are indicative of the existence of an alteration of the endocannabinoid transmission during morphine dependence in rats, although the changes observed were region-dependent and affected exclusively CB(1) receptors with no changes in endocannabinoid levels. Because the changes occurred in regions of the midbrain, the cerebral cortex and the brainstem, which have been implicated in drug dependence, our data suggest that pharmacological

  19. Endocannabinoids, FOXO and the metabolic syndrome: redox, function and tipping point--the view from two systems.

    PubMed

    Nunn, Alistair V W; Guy, Geoffrey W; Bell, Jimmy D

    2010-08-01

    The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets--ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOXO has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOXO may interact at many points; one of which

  20. Endocannabinoids and Metabolic Disorders.

    PubMed

    Gatta-Cherifi, Blandine; Cota, Daniela

    2015-01-01

    The endocannabinoid system (ECS) is known to exert regulatory control on essentially every aspect related to the search for, and the intake, metabolism and storage of calories, and consequently it represents a potential pharmacotherapeutic target for obesity, diabetes and eating disorders. While the clinical use of the first generation of cannabinoid type 1 (CB(1)) receptor blockers has been halted due to the psychiatric side effects that their use occasioned, recent research in animals and humans has provided new knowledge on the mechanisms of actions of the ECS in the regulation of eating behavior, energy balance, and metabolism. In this review, we discuss these recent advances and how they may allow targeting the ECS in a more specific and selective manner for the future development of therapies against obesity, metabolic syndrome, and eating disorders.

  1. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes.

    PubMed

    Jourdan, T; Godlewski, G; Kunos, G

    2016-06-01

    Visceral obesity is a major risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D) with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1 R) system, as indicated by the therapeutic effects of CB1 R antagonists. Similar beneficial effects of CB1 R antagonists with limited brain penetrance indicate the important role of CB1 R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance.

  2. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes

    PubMed Central

    Jourdan, T.; Godlewski, G.; Kunos, G.

    2016-01-01

    Visceral obesity is amajor risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D)with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1R) system, as indicated by the therapeutic effects of CB1R antagonists. Similar beneficial effects of CB1R antagonists with limited brain penetrance indicate the important role of CB1R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance. PMID:26880114

  3. Endocannabinoid signaling as a synaptic circuit breaker in neurological disease.

    PubMed

    Katona, István; Freund, Tamás F

    2008-09-01

    Cannabis sativa is one of the oldest herbal plants in the history of medicine. It was used in various therapeutic applications from pain to epilepsy, but its psychotropic effect has reduced its usage in recent medical practice. However, renewed interest has been fueled by major discoveries revealing that cannabis-derived compounds act through a signaling pathway in the human body. Here we review recent advances showing that endocannabinoid signaling is a key regulator of synaptic communication throughout the central nervous system. Its underlying molecular architecture is highly conserved in synapses from the spinal cord to the neocortex, and as a negative feed-back signal, it provides protection against excess presynaptic activity. The endocannabinoid signaling machinery operates on demand in a synapse-specific manner; therefore, its modulation offers new therapeutic opportunities for the selective control of deleterious neuronal activity in several neurological disorders.

  4. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells

    PubMed Central

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling

    2017-01-01

    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases. PMID:28220060

  5. A Pulsed Electromagnetic Field Protects against Glutamate-Induced Excitotoxicity by Modulating the Endocannabinoid System in HT22 Cells.

    PubMed

    Li, Xin; Xu, Haoxiang; Lei, Tao; Yang, Yuefan; Jing, Da; Dai, Shuhui; Luo, Peng; Xu, Qiaoling

    2017-01-01

    Glutamate-induced excitotoxicity is common in the pathogenesis of many neurological diseases. A pulsed electromagnetic field (PEMF) exerts therapeutic effects on the nervous system, but its specific mechanism associated with excitotoxicity is still unknown. We investigated the role of PEMF exposure in regulating glutamate-induced excitotoxicity through the endocannabinoid (eCB) system. PEMF exposure improved viability of HT22 cells after excitotoxicity and reduced lactate dehydrogenase release and cell death. An eCB receptor 1 (CB1R) specific inhibitor suppressed the protective effects of PEMF exposure, even though changes in CB1R expression were not observed. Elevation of N-arachidonylethanolamide (AEA) and 2-arachidonylglycerol (2-AG) following PEMF exposure indicated that the neuroprotective effects of PEMF were related to modulation of the eCB metabolic system. Furthermore, CB1R/ERK signaling was shown to be an important downstream pathway of PEMF in regulating excitotoxicity. These results suggest that PEMF exposure leads to neuroprotective effects against excitotoxicity by facilitating the eCB/CB1R/ERK signaling pathway. Therefore, PEMF may be a potential physical therapeutic technique for preventing and treating neurological diseases.

  6. Lack of association of genetic variants in genes of the endocannabinoid system with anorexia nervosa

    PubMed Central

    Müller, Timo Dirk; Reichwald, Kathrin; Brönner, Günter; Kirschner, Jeanette; Nguyen, Thuy Trang; Scherag, André; Herzog, Wolfgang; Herpertz-Dahlmann, Beate; Lichtner, Peter; Meitinger, Thomas; Platzer, Matthias; Schäfer, Helmut; Hebebrand, Johannes; Hinney, Anke

    2008-01-01

    Background Several lines of evidence indicate that the central cannabinoid receptor 1 (CNR1) as well as the major endocannabinoid degrading enzymes fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA) and monoglyceride lipase (MGLL) are implicated in mediating the orexigenic effects of cannabinoids. The aim of this study was to analyse whether nucleotide sequence variations in the CNR1, FAAH, NAAA and MGLL genes are associated with anorexia nervosa (AN). Methods We analysed the association of a previously described (AAT)n repeat in the 3' flanking region of CNR1 as well as a total of 15 single nucleotide polymorphisms (SNPs) representative of regions with restricted haplotype diversity in CNR1, FAAH, NAAA or MGLL in up to 91 German AN trios (patient with AN and both biological parents) using the transmission-disequilibrium-test (TDT). One SNP was additionally analysed in an independent case-control study comprising 113 patients with AN and 178 normal weight controls. Genotyping was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, ARMS-PCR or using 3730xl capillary sequencers. Results The TDT revealed no evidence for association for any of the SNPs or the (AAT)n repeat with AN (all two-sided uncorrected p-values > 0.05). The lowest p-value of 0.11 was detected for the A-allele of the CNR1 SNP rs1049353 for which the transmission rate was 59% (95% confidence interval 47%...70%). Further genotyping of rs1049353 in 113 additional independent patients with AN and 178 normal weight controls could not substantiate the initial trend for association (p = 1.00). Conclusion As we found no evidence for an association of genetic variation in CNR1, FAAH, NAAA and MGLL with AN, we conclude that genetic variations in these genes do not play a major role in the etiology of AN in our study groups. PMID:19014633

  7. Endocannabinoids drive the acquisition of an alternative phenotype in microglia.

    PubMed

    Mecha, M; Feliú, A; Carrillo-Salinas, F J; Rueda-Zubiaurre, A; Ortega-Gutiérrez, S; de Sola, R García; Guaza, C

    2015-10-01

    The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.

  8. Endocannabinoid signaling and food addiction.

    PubMed

    D'Addario, C; Micioni Di Bonaventura, M V; Pucci, M; Romano, A; Gaetani, S; Ciccocioppo, R; Cifani, C; Maccarrone, M

    2014-11-01

    Overeating, frequently linked to an increasing incidence of overweight and obesity, has become epidemic and one of the leading global health problems. To explain the development of this eating behavior, new hypotheses involve the concept that many people might be addicted to food by losing control over their ability to regulate food intake. Among the different neurotransmitter networks that partake in the reward circuitry within the brain, a large body of evidence supports the involvement of the endocannabinoid system. Indeed, its dysfunctions might contribute to food addiction, by regulating appetite and food preference through central and peripheral mechanisms. Here, we review and discuss the role of endocannabinoid signaling in the reward circuitry, and the possible therapeutic exploitation of strategies based on its fine regulation.

  9. The Endocannabinoid/Endovanilloid N-Arachidonoyl Dopamine (NADA) and Synthetic Cannabinoid WIN55,212-2 Abate the Inflammatory Activation of Human Endothelial Cells*

    PubMed Central

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-01-01

    Although cannabinoids, such as Δ9-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation. PMID:24644287

  10. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells.

    PubMed

    Wilhelmsen, Kevin; Khakpour, Samira; Tran, Alphonso; Sheehan, Kayla; Schumacher, Mark; Xu, Fengyun; Hellman, Judith

    2014-05-09

    Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.

  11. Metabolic Interplay between Astrocytes and Neurons Regulates Endocannabinoid Action

    PubMed Central

    Viader, Andreu; Blankman, Jacqueline L.; Zhong, Peng; Liu, Xiaojie; Schlosburg, Joel E.; Joslyn, Christopher M.; Liu, Qing-Song; Tomarchio, Aaron J.; Lichtman, Aron H.; Selley, Dana E.; Sim-Selley, Laura J.; Cravatt, Benjamin F.

    2015-01-01

    Summary The endocannabinoid 2-arachidonoylglycerol (2-AG) is a retrograde lipid messenger that modulates synaptic function, neurophysiology, and behavior. 2-AG signaling is terminated by enzymatic hydrolysis—a reaction that is principally performed by monoacylglycerol lipase (MAGL). MAGL is broadly expressed throughout the nervous system, and the contributions of different brain cell types to regulating 2-AG activity have remained unclear. Here, we genetically dissect the cellular anatomy of MAGL-mediated 2-AG metabolism in the brain and show that neurons and astrocytes coordinately regulate 2-AG content and endocannabinoid-dependent forms of synaptic plasticity and behavior. We also find that astrocytic MAGL is mainly responsible for converting 2-AG to neuroinflammatory prostaglandins via a mechanism that may involve transcellular shuttling of lipid substrates. Astrocytic-neuronal interplay thus provides distributed oversight of 2-AG metabolism and function, and, through doing so, protects the nervous system from excessive CB1 receptor activation and promotes endocannabinoid crosstalk with other lipid transmitter systems. PMID:26212325

  12. A Review of the Interactions between Alcohol and the Endocannabinoid System: Implications for Alcohol Dependence and Future Directions for Research

    PubMed Central

    Pava, Matthew J.; Woodward, John J.

    2012-01-01

    Over the past fifty years a significant body of evidence has been compiled suggesting an interaction between the endocannabinoid (EC) system and alcohol dependence. However, much of this work has been conducted only in the past two decades following the elucidation of the molecular constituents of the EC system that began with the serendipitous discovery of the cannabinoid 1 receptor (CB1). Since then, novel pharmacological and genetic tools have enabled researchers to manipulate select components of the EC system, to determine their contribution to the motivation to consume ethanol. From these preclinical studies, it is evident that CB1 contributes the motivational and reinforcing properties of ethanol, and chronic consumption of ethanol alters EC transmitter levels and CB1 expression in brain nuclei associated with addiction pathways. These results are augmented by in vitro and ex vivo studies showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the EC system. This report provides a current and comprehensive review of the literature regarding the interactions between ethanol and the EC system. We begin be reviewing the studies published prior to the discovery of the EC system that compared the behavioral and physiological effects of cannabinoids with ethanol in addition to cross-tolerance between these drugs. Next, a brief overview of the molecular constituents of the EC system is provided as context for the subsequent review of more recent studies examining the interaction of ethanol with the EC system. These results are compiled into a summary providing a scheme for the known changes to the components of the EC system in different stages of alcohol dependence. Finally, future directions for research are discussed. PMID:22459871

  13. Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity.

    PubMed

    Argueta, Donovan A; DiPatrizio, Nicholas V

    2017-03-15

    The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB1Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB1Rs with the peripherally-restricted neutral cannabinoid CB1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid

  14. Analysis of endocannabinoid signaling elements and related proteins in lymphocytes of patients with Dravet syndrome.

    PubMed

    Rubio, Marta; Valdeolivas, Sara; Piscitelli, Fabiana; Verde, Roberta; Satta, Valentina; Barroso, Eva; Montolio, Marisol; Aras, Luis Miguel; Di Marzo, Vincenzo; Sagredo, Onintza; Fernández-Ruiz, Javier

    2016-04-01

    Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders. We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well as endocannabinoid genes. Plasma endocannabinoid levels were also analyzed. There were no differences between DS patients and controls in most of the CBD targets analyzed, except an increase in the voltage-dependent calcium channel α-1h subunit. We also found that cannabinoid type-2 (CB 2) receptor gene expression was elevated in DS patients, with no changes in other endocannabinoid-related receptors and enzymes, as well as in plasma levels of endocannabinoids. Such elevation was paralleled by an increase in CD70, a marker of lymphocyte activation, and certain trends in inflammation-related proteins (e.g., peroxisome proliferator-activated receptor-γ receptors, cytokines). In conclusion, together with changes in the voltage-dependent calcium channel α-1h subunit, we found an upregulation of CB 2 receptors, associated with an activation of lymphocytes and changes in inflammation-related genes, in DS patients. Such changes were also reported in inflammatory disorders and may indirectly support the occurrence of a potential dysregulation of the endocannabinoid system in the brain.

  15. Developmental regulation of fear learning and anxiety behavior by endocannabinoids

    PubMed Central

    Lee, Tiffany T.-Y.; Hill, Matthew N.; Lee, Francis S.

    2015-01-01

    The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that endocannabinoid signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the endocannabinoid system and discuss clinical and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the endocannabinoid system in the central nervous system, and models of pharmacological augmentation of endocannabinoid signaling during development in the context of fear learning and anxiety. PMID:26419643

  16. Role of the nitric oxide pathway and the endocannabinoid system in neurogenic relaxation of corpus cavernosum from biliary cirrhotic rats

    PubMed Central

    Ghasemi, M; Sadeghipour, H; Shafaroodi, H; Nezami, B G; Gholipour, T; Hajrasouliha, A R; Tavakoli, S; Nobakht, M; Moore, K P; Mani, A R; Dehpour, A R

    2007-01-01

    Background and purpose: Relaxation of corpus cavernosum, which is mediated by nitric oxide (NO) released from non-adrenergic non-cholinergic (NANC) neurotransmission, is critical for inducing penile erection and can be affected by many pathophysiological conditions. However, the peripheral effect of liver cirrhosis on erectile function is as yet unknown. The aim of the present study was to investigate the effect of biliary cirrhosis on NANC-mediated relaxation of rat corpus cavernosum and the possible roles of endocannabinoid and nitric oxide systems in this model. Experimental approach: Cirrhosis was induced by bile duct ligation. Controls underwent sham operation. Four weeks later, strips of corpus cavernosum were mounted in a standard organ bath and NANC-mediated relaxations were obtained by applying electrical field stimulation. Key results: The NANC-mediated relaxation was enhanced in corporal strips from cirrhotic animals. Anandamide potentiated the relaxations in both groups. Either AM251 (CB1 antagonist) or capsazepine (vanilloid VR1 antagonist), but not AM630 (CB2 antagonist), prevented the enhanced relaxations of cirrhotic strips. Either the non-selective NOS inhibitor L-NAME or the selective neuronal NOS inhibitor L-NPA inhibited relaxations in both groups, but cirrhotic groups were more resistant to the inhibitory effects of these agents. Relaxations to sodium nitroprusside (NO donor) were similar in tissues from the two groups. Conclusions and implications: Cirrhosis potentiates the neurogenic relaxation of rat corpus cavernosum probably via the NO pathway and involving cannabinoid CB1 and vanilloid VR1 receptors. PMID:17486141

  17. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor

    PubMed Central

    Hayase, Tamaki

    2016-01-01

    Like various stressors, the addictive use of nicotine (NC) is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB) system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC) inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM). Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test) and depression-like (forced swimming test) behaviors, which were observed in mice treated with repeated (4 days) NC (subcutaneous 0.8 mg/kg) and/or IM (10 min), were blocked by the HDAC inhibitors sodium butyrate (SB) and valproic acid (VA). The cannabinoid type 1 (CB1) agonist ACPA (arachidonylcyclopropylamide; AC) also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR), which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor

  18. Putative Epigenetic Involvement of the Endocannabinoid System in Anxiety- and Depression-Related Behaviors Caused by Nicotine as a Stressor.

    PubMed

    Hayase, Tamaki

    2016-01-01

    Like various stressors, the addictive use of nicotine (NC) is associated with emotional symptoms such as anxiety and depression, although the underlying mechanisms have not yet been fully elucidated due to the complicated involvement of target neurotransmitter systems. In the elicitation of these emotional symptoms, the fundamental involvement of epigenetic mechanisms such as histone acetylation has recently been suggested. Furthermore, among the interacting neurotransmitter systems implicated in the effects of NC and stressors, the endocannabinoid (ECB) system is considered to contribute indispensably to anxiety and depression. In the present study, the epigenetic involvement of histone acetylation induced by histone deacetylase (HDAC) inhibitors was investigated in anxiety- and depression-related behavioral alterations caused by NC and/or immobilization stress (IM). Moreover, based on the contributing roles of the ECB system, the interacting influence of ECB ligands on the effects of HDAC inhibitors was evaluated in order to examine epigenetic therapeutic interventions. Anxiety-like (elevated plus-maze test) and depression-like (forced swimming test) behaviors, which were observed in mice treated with repeated (4 days) NC (subcutaneous 0.8 mg/kg) and/or IM (10 min), were blocked by the HDAC inhibitors sodium butyrate (SB) and valproic acid (VA). The cannabinoid type 1 (CB1) agonist ACPA (arachidonylcyclopropylamide; AC) also antagonized these behaviors. Conversely, the CB1 antagonist SR 141716A (SR), which counteracted the effects of AC, attenuated the anxiolytic-like effects of the HDAC inhibitors commonly in the NC and/or IM groups. SR also attenuated the antidepressant-like effects of the HDAC inhibitors, most notably in the IM group. From these results, the combined involvement of histone acetylation and ECB system was shown in anxiety- and depression-related behaviors. In the NC treatment groups, the limited influence of SR against the HDAC inhibitor

  19. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray.

    PubMed

    Mitchell, Vanessa A; Jeong, Hyo-Jin; Drew, Geoffrey M; Vaughan, Christopher W

    2011-08-01

    Cholecystokinin modulates pain and anxiety via its functions within brain regions such as the midbrain periaqueductal gray (PAG). The aim of this study was to examine the cellular actions of cholecystokinin on PAG neurons. Whole-cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of cholecystokinin and its effects on synaptic transmission. Sulfated cholecystokinin-(26-33) (CCK-S, 100-300 nM), but not non-sulfated cholecystokinin-(26-33) (CCK-NS, 100-300 nM) produced an inward current in a sub-population of opioid sensitive and insensitive PAG neurons, which did not reverse over a range of membrane potentials. The CCK-S-induced current was abolished by the CCK1 selective antagonist devazepide (100 nM), but not by the CCK2 selective antagonists CI988 (100 nM, 1 μM) and LY225910 (1 μM). CCK-S, but not CCK-NS produced a reduction in the amplitude of evoked GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) and an increase in the evoked IPSC paired-pulse ratio. By contrast, CCK-S had little effect on the rate and amplitude of TTX-resistant miniature IPSCs under basal conditions and when external K(+) was elevated. The CCK-S-induced inhibition of evoked IPSCs was abolished by the cannabinoid CB1 receptor antagonist AM251 (3 μM), the mGluR5 antagonist MPEP (10 μM) and the 1, 2-diacylglycerol lipase (DAGLα) inhibitor tetrahydrolipstatin (10 μM). In addition, CCK-S produced an increase in the rate of spontaneous non-NMDA-mediated, TTX-dependent excitatory postsynaptic currents (EPSCs). These results suggest that cholecystokinin produces direct neuronal depolarisation via CCK1 receptors and inhibits GABAergic synaptic transmission via action potential-dependent release of glutamate and mGluR5-induced endocannabinoid signaling. Thus, cholecystokinin has cellular actions within the PAG that can both oppose and reinforce opioid and cannabinoid modulation of pain and anxiety within this

  20. Endocannabinoids in the Retina: From Marijuana to Neuroprotection

    PubMed Central

    Yazulla, Stephen

    2008-01-01

    The active component of the marijuana plant Cannabis sativa, Δ9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the “cannabinergic” field to the retinal community. All of the fundamental work on cannabinoids has been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptation, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases. PMID:18725316

  1. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    SciTech Connect

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.; Medeiros, Daniel C.; Ferreira-Vieira, Talita H.; Doria, Juliana G.; Rodrigues, Flávia; Aguiar, Daniele C.; Pereira, Grace S.; Massessini, André R.; Ribeiro, Fabíola M.; Oliveira, Antonio Carlos P. de; Moraes, Marcio F.D.; Moreira, Fabricio A.

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide hydrolysis

  2. Impact of omega-6 polyunsaturated fatty acid supplementation and γ-aminobutyric acid on astrogliogenesis through the endocannabinoid system.

    PubMed

    Shinjyo, Noriko; Piscitelli, Fabiana; Verde, Roberta; Di Marzo, Vincenzo

    2013-07-01

    Neural stem cells express cannabinoid CB1 and CB2 receptors and the enzymes for the biosynthesis and metabolism of endocannabinoids (eCBs). Here we have studied the role of neural stem cell-derived eCBs as autonomous regulatory factors during differentiation. First, we examined the effect of an indirect eCB precursor linoleic acid (LA), a major dietary omega-6 fatty acid, on the eCB system in neural stem/progenitor cells (NSPCs) cultured in DMEM/F12 supplemented with N2 (N2/DF) as monolayer cells. LA upregulated eCB system-related genes and 2-arachidonoylglycerol (2-AG), but not anandamide (AEA), levels. Glial fibrillary acidic protein (GFAP) was significantly higher under LA-enriched conditions, and this effect was inhibited by the cannabinoid receptor type-1 (CB1) antagonist AM251. Second, the levels of AEA and 2-AG, as well as of the mRNA of eCB system-related genes, were measured in NSPCs after γ-aminobutyric acid (GABA) treatment. GABA upregulated AEA levels significantly in LA-enriched cultures and increased the mRNA expression of the 2-AG-degrading enzyme monoacylglycerol lipase. These effects of GABA were reproduced under culture conditions using neurobasal media supplemented with B27, which is commonly used for neurosphere culture. GABA stimulated astroglial differentiation in this medium as indicated by increased GFAP levels. This effect was abolished by AM251, suggesting the involvement of AEA and CB1 in GABA-induced astrogliogenesis. This study highlights the importance of eCB biosynthesis and CB1 signalling in the autonomous regulation of NSPCs and the influence of the eCB system on astrogliogenesis induced by nutritional factors or neurotransmitters, such as LA and GABA. Copyright © 2013 Wiley Periodicals, Inc.

  3. A new face of endocannabinoids in pharmacotherapy. Part I: protective role of endocannabinoids in hypertension and myocardial infarction.

    PubMed

    Zubrzycki, M; Liebold, A; Janecka, A; Zubrzycka, M

    2014-04-01

    Cannabinoids are compounds which were first isolated from the Cannabis sativa plant. For thousands of years they have been used for treatment of numerous diseases. Currently, synthetic cannabinoids and endocannabinoids are also known. Cannabinoid receptors, endocannabinoids and the enzymes that catalyze their synthesis and degradation constitute the endocannabinoid system which plays an important role in functioning of the cardiovascular system. The results obtained to date suggest the involvement of endocannabinoids in the pathology of many cardiovascular diseases, including myocardial infarction, hypertension and hypotension associated with hemorrhagic, endotoxic, and cardiogenic shock. Cardioprotective effect and dilation of coronary vessels induced by endocannabinoids deserve special attention. It cannot be excluded now that in the future our better understanding of cannabinoid system will allow to develop new strategies for treatment of cardiovascular diseases.

  4. Endocannabinoids and sleep.

    PubMed

    Prospéro-García, Oscar; Amancio-Belmont, Octavio; Becerril Meléndez, Alline L; Ruiz-Contreras, Alejandra E; Méndez-Díaz, Mónica

    2016-12-01

    Sleep is regulated by several brain structures, neurotransmitters and neuromodulators. Endocannabinoids (eCBs) are a group of lipids with modulatory activity in the brain and bind mainly to cannabinoid receptors CB1R and CB2R, thereby modulating several brain functions, (memory, mood, food intake, pain perception). Oleoylethanolamide and palmitoylethanolamide belong to the N-acylethanolamides (NAEs) family, another type of active endogenous lipids. They bind to the peroxisome proliferator-activated receptor α but not to CB1R, thereby modulating food satiety, inflammation and pain. Both eCBs and NAEs seem to be regulating the sleep-wake cycle. Our objective is to analyze the experimental evidence published in the literature and to discuss if eCBs and NAEs are actually sleep modulators. Studies suggested 1. eCBs and NAEs are under circadian control. 2. NAEs promote wake. 3. eCBs promote non-rapid-eye movement. 4. eCBs also promote rapid-eye-movement sleep by interacting with melanin-concentrating hormone neurons in the lateral hypothalamus. 5. The pharmacological blockade of the CB1R reduces sleep while increasing wake. 6. eCBs restore sleep in a model of insomnia in rats.

  5. Exposure to Allergen Causes Changes in NTS Neural Activities after Intratracheal Capsaicin Application, in Endocannabinoid Levels and in the Glia Morphology of NTS

    PubMed Central

    Spaziano, Giuseppe; Petrosino, Stefania; Matteis, Maria; Palazzo, Enza; Sullo, Nikol; de Novellis, Vito; Rossi, Francesco; Maione, Sabatino; D'Agostino, Bruno

    2015-01-01

    Allergen exposure may induce changes in the brainstem secondary neurons, with neural sensitization of the nucleus solitary tract (NTS), which in turn can be considered one of the causes of the airway hyperresponsiveness, a characteristic feature of asthma. We evaluated neurofunctional, morphological, and biochemical changes in the NTS of naive or sensitized rats. To evaluate the cell firing activity of NTS, in vivo electrophysiological experiments were performed before and after capsaicin challenge in sensitized or naive rats. Immunohistochemical studies, endocannabinoid, and palmitoylethanolamide quantification in the NTS were also performed. This study provides evidence that allergen sensitization in the NTS induced: (1) increase in the neural firing response to intratracheal capsaicin application, (2) increase of endocannabinoid anandamide and palmitoylethanolamide, a reduction of 2-arachidonoylglycerol levels in the NTS, (3) glial cell activation, and (4) prevention by a Group III metabotropic glutamate receptor activation of neural firing response to intratracheal application of capsaicin in both naïve and sensitized rats. Therefore, normalization of ovalbumin-induced NTS neural sensitization could open up the prospect of new treatments based on the recovery of specific brain nuclei function and for extensive studies on acute or long-term efficacy of selective mGlu ligand, in models of bronchial hyperreactivity. PMID:25866824

  6. Interactions between ethanol and the endocannabinoid system at GABAergic synapses on basolateral amygdala principal neurons.

    PubMed

    Talani, Giuseppe; Lovinger, David M

    2015-12-01

    The basolateral amygdala (BLA) plays crucial roles in stimulus value coding, as well as drug and alcohol dependence. Ethanol alters synaptic transmission in the BLA, while endocannabinoids (eCBs) produce presynaptic depression at BLA synapses. Recent studies suggest interactions between ethanol and eCBs that have important consequences for alcohol drinking behavior. To determine how ethanol and eCBs interact in the BLA, we examined the physiology and pharmacology of GABAergic synapses onto BLA pyramidal neurons in neurons from young rats. Application of ethanol at concentrations relevant to intoxication increased, in both young and adult animals, the frequency of spontaneous and miniature GABAergic inhibitory postsynaptic currents, indicating a presynaptic site of ethanol action. Ethanol did not potentiate sIPSCs during inhibition of adenylyl cyclase while still exerting its effect during inhibition of protein kinase A. Activation of type 1 cannabinoid receptors (CB1) in the BLA inhibited GABAergic transmission via an apparent presynaptic mechanism, and prevented ethanol potentiation. Surprisingly, ethanol potentiation was also prevented by CB1 antagonists/inverse agonists. Brief depolarization of BLA pyramidal neurons suppressed GABAergic transmission (depolarization-induced suppression of inhibition [DSI]), an effect previously shown to be mediated by postsynaptic eCB release and presynaptic CB1 activation. A CB1-mediated suppression of GABAergic transmission was also produced by combined afferent stimulation at 0.1 Hz (LFS), and postsynaptic loading with the eCB arachidonoyl ethanolamide (AEA). Both DSI and LFS-induced synaptic depression were prevented by ethanol. Our findings indicate antagonistic interactions between ethanol and eCB/CB1 modulation at GABAergic BLA synapses that may contribute to eCB roles in ethanol seeking and drinking.

  7. A diet containing a nonfat dry milk matrix significantly alters systemic endocannabinoids and oxylipins in diet-induced obese mice

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insuli...

  8. In vivo pharmacology of endocannabinoids and their metabolic inhibitors

    PubMed Central

    Giuffrida, Andrea; McMahon, Lance R.

    2009-01-01

    This review focuses on the behavioral pharmacology of endogenous cannabinoids (endocannabinoids) and indirect-acting cannabinoid agonists that elevate endocannabinoid tone by inhibiting the activity of metabolic enzymes. Similarities and differences between prototype cannabinoid agonists, endocannabinoids and inhibitors of endocannabinoid metabolism are discussed in the context of endocannabinoid pharmacokinetics in vivo. The distribution and function of cannabinoid and non-CB1/CB2 receptors are also covered, with emphasis on their role in disorders characterized by dopamine dysfunction, such as drug abuse and Parkinson’s disease. Finally, evidence is presented to suggest that FAAH inhibitors lack the abuse liability associated with CB1 agonists, although they may modify the addictive properties of other drugs, such as alcohol. PMID:19523530

  9. Truffles contain endocannabinoid metabolic enzymes and anandamide.

    PubMed

    Pacioni, Giovanni; Rapino, Cinzia; Zarivi, Osvaldo; Falconi, Anastasia; Leonardi, Marco; Battista, Natalia; Colafarina, Sabrina; Sergi, Manuel; Bonfigli, Antonella; Miranda, Michele; Barsacchi, Daniela; Maccarrone, Mauro

    2015-02-01

    Truffles are the fruiting body of fungi, members of the Ascomycota phylum endowed with major gastronomic and commercial value. The development and maturation of their reproductive structure are dependent on melanin synthesis. Since anandamide, a prominent member of the endocannabinoid system (ECS), is responsible for melanin synthesis in normal human epidermal melanocytes, we thought that ECS might be present also in truffles. Here, we show the expression, at the transcriptional and translational levels, of most ECS components in the black truffle Tuber melanosporum Vittad. at maturation stage VI. Indeed, by means of molecular biology and immunochemical techniques, we found that truffles contain the major metabolic enzymes of the ECS, while they do not express the most relevant endocannabinoid-binding receptors. In addition, we measured anandamide content in truffles, at different maturation stages (from III to VI), through liquid chromatography-mass spectrometric analysis, whereas the other relevant endocannabinoid 2-arachidonoylglycerol was below the detection limit. Overall, our unprecedented results suggest that anandamide and ECS metabolic enzymes have evolved earlier than endocannabinoid-binding receptors, and that anandamide might be an ancient attractant to truffle eaters, that are well-equipped with endocannabinoid-binding receptors.

  10. The endocannabinoid system in advanced liver cirrhosis: pathophysiological implication and future perspectives.

    PubMed

    Baldassarre, Maurizio; Giannone, Ferdinando A; Napoli, Lucia; Tovoli, Alessandra; Ricci, Carmen S; Tufoni, Manuel; Caraceni, Paolo

    2013-10-01

    Endogenous cannabinoids (EC) are ubiquitous lipid signalling molecules providing different central and peripheral effects that are mediated mostly by the specific receptors CB1 and CB2. The EC system is highly upregulated during chronic liver disease and consistent experimental and clinical findings indicate that it plays a role in the pathogenesis of liver fibrosis and fatty liver disease associated with obesity, alcohol abuse and hepatitis C. Furthermore, a considerable number of studies have shown that EC and their receptors contribute to the pathogenesis of the cardio-circulatory disturbances occurring in advanced cirrhosis, such as portal hypertension, hyperdynamic circulatory syndrome and cirrhotic cardiomyopathy. More recently, the EC system has been implicated in the development of ascites, hepatic encephalopathy and the inflammatory response related to bacterial infection. Rimonabant, a selective CB1 antagonist, was the first drug acting on the EC system approved for the treatment of obesity. Unfortunately, it has been withdrawn from the market because of its neuropsychiatric side effects. Compounds able to target selectively the peripheral CB1 receptors are under evaluation. In addition, molecules stimulating CB2 receptor or modulating the activity of enzymes implicated in EC metabolism are promising areas of pharmacological research. Liver cirrhosis and the related complications represent an important target for the clinical application of these compounds.

  11. Plasma Endocannabinoid Alterations in Individuals with Substance Use Disorder are Dependent on the "Mirror Effect" of Schizophrenia.

    PubMed

    Desfossés, Joëlle; Stip, Emmanuel; Bentaleb, Lahcen Ait; Lipp, Olivier; Chiasson, Jean-Pierre; Furtos, Alexandra; Venne, Karine; Kouassi, Edouard; Potvin, Stéphane

    2012-01-01

    Schizophrenia is a complex psychiatric disorder strongly associated with substance use disorders. Theoretically, schizophrenia and SUD may share endocannabinoid alterations in the brain reward system. The main endocannabinoids, anandamide, and 2-arachidonoylglycerol, are lipids which bind cannabinoid receptors. Oleoylethanolamide (OEA), a fatty-acid ethanolamide, binds peroxisome proliferator-activated receptors. The endocannabinoid system has been shown to be impaired in schizophrenia, and recently, our group has shown that schizophrenia patients with SUD have elevated peripheral levels of anandamide and OEA that do not normalize after 3-month treatment with quetiapine. Objective For comparative purposes, we aimed to measure endocannabinoids in non-psychosis substance abusers and non-abusing schizophrenia patients. Methods Using liquid chromatography and mass spectrometry, we measured plasma levels of anandamide and OEA in non-psychosis SUD patients, non-abusing schizophrenia patients, and healthy controls. In an open-label manner, all patients received 12-week treatment with quetiapine. Results Anandamide and OEA were reduced in substance abusers without schizophrenia, relative to healthy controls (p < 0.05). Both endocannabinoids were unchanged in non-abusing schizophrenia patients. After quetiapine, anandamide, and OEA levels remained significantly reduced the SUD group (p < 0.05). Discussion Taken together with results of our previous study performed in dual-diagnosis patients, our results suggest that peripheral anandamide and OEA levels are impaired in patients with SUD in opposite ways according to the presence or absence of schizophrenia. Endocannabinoid alterations did not change with treatment, suggesting that they are trait markers. Further studies are necessary to understand the role of endocannabinoids in substance abusers with and without schizophrenia and to examine therapeutic implications.

  12. Behavioural, biochemical and molecular changes induced by chronic crack-cocaine inhalation in mice: The role of dopaminergic and endocannabinoid systems in the prefrontal cortex.

    PubMed

    Areal, Lorena B; Rodrigues, Livia C M; Andrich, Filipe; Moraes, Livia S; Cicilini, Maria A; Mendonça, Josideia B; Pelição, Fabricio S; Nakamura-Palacios, Ester M; Martins-Silva, Cristina; Pires, Rita G W

    2015-09-01

    Crack-cocaine addiction has increasingly become a public health problem worldwide, especially in developing countries. However, no studies have focused on neurobiological mechanisms underlying the severe addiction produced by this drug, which seems to differ from powder cocaine in many aspects. This study investigated behavioural, biochemical and molecular changes in mice inhaling crack-cocaine, focusing on dopaminergic and endocannabinoid systems in the prefrontal cortex. Mice were submitted to two inhalation sessions of crack-cocaine a day (crack-cocaine group) during 11 days, meanwhile the control group had no access to the drug. We found that the crack-cocaine group exhibited hyperlocomotion and a peculiar jumping behaviour ("escape jumping"). Blood collected right after the last inhalation session revealed that the anhydroecgonine methyl ester (AEME), a specific metabolite of cocaine pyrolysis, was much more concentrated than cocaine itself in the crack-cocaine group. Most genes related to the endocannabinoid system, CB1 receptor and cannabinoid degradation enzymes were downregulated after 11-day crack-cocaine exposition. These changes may have decreased dopamine and its metabolites levels, which in turn may be related with the extreme upregulation of dopamine receptors and tyrosine hydroxylase observed in the prefrontal cortex of these animals. Our data suggest that after 11 days of crack-cocaine exposure, neuroadaptive changes towards downregulation of reinforcing mechanisms may have taken place as a result of neurochemical changes observed on dopaminergic and endocannabinoid systems. Successive changes like these have never been described in cocaine hydrochloride models before, probably because AEME is only produced by cocaine pyrolysis and this metabolite may underlie the more aggressive pattern of addiction induced by crack-cocaine.

  13. Insulin differentially modulates the peripheral endocannabinoid system in human subcutaneous abdominal adipose tissue from lean and obese individuals.

    PubMed

    Murdolo, G; Kempf, K; Hammarstedt, A; Herder, C; Smith, U; Jansson, P-A

    2007-09-01

    Human obesity has been associated with a dysregulation of the peripheral and adipose tissue (AT) endocannabinoid system (ES). The aim of this study was to elucidate the acute in vivo effects of insulin on gene expression of the cannabinoid type 1 (CB-1) and type 2 (CB-2) receptors, as well as of the fatty acid amide hydrolase (FAAH) in the sc abdominal adipose tissue (SCAAT). Nine lean (L) and 9 obese (OB), but otherwise healthy males were studied in the fasting state and during a euglycemic hyperinsulinemic clamp (40 mU/m2 * min(-1)). SCAAT biopsies were obtained at baseline and after 270 min of i.v. maintained hyperinsulinemia. The basal SCAAT gene expression pattern revealed an upregulation of the FAAH in the OB (p=0.03 vs L), whereas similar CB-1 and CB-2 mRNA levels were seen. Following hyperinsulinemia, the FAAH mRNA levels significantly increased approximately 2-fold in the L (p=0.01 vs baseline) but not in the OB. In contrast, insulin failed to significantly change both the adipose CB-1 and CB-2 gene expression. Finally, the FAAH gene expression positively correlated with the fasting serum insulin concentration (r 0.66; p=0.01), whereas an inverse association with the whole-body glucose disposal (r -0.58; p<0.05) was seen. Taken together, these first time observations demonstrate that the ES-related genes in the SCAAT differentially respond to hyperinsulinemia in lean/insulin-sensitive and in obese/insulin-resistant individuals. We suggest that insulin may play a key role in the obesity-linked dysregulation of the adipose ES at the gene level.

  14. The role of cannabinoid receptors and the endocannabinoid system in mantle cell lymphoma and other non-Hodgkin lymphomas.

    PubMed

    Wasik, Agata M; Christensson, Birger; Sander, Birgitta

    2011-11-01

    The initiating oncogenic event in mantle cell lymphoma (MCL) is the translocation of cyclin D1, t(11;14)(q13;q32). However, other genetic aberrations are necessary for an overt lymphoma to arise. Like other B cell lymphomas, MCL at some points during the oncogenesis is dependent on interactions with other cells and factors in the microenvironment. The G protein coupled receptors cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed at low levels on non-malignant lymphocytes and at higher levels in MCL and other lymphoma subtypes. In this review we give an overview of what is known on the role of the cannabinoid receptors and their ligands in lymphoma as compared to non-malignant T and B lymphocytes. In MCL cannabinoids mainly reduce cell proliferation and induce cell death. Importantly, our recent findings demonstrate that cannabinoids may induce either apoptosis or another type of programmed cell death, cytoplasmic vacuolation/paraptosis in MCL. The signalling to death has been partly characterized. Even though cannabinoid receptors seem to be expressed in many other types of B cell lymphoma, the functional role of cannabinoid receptor targeting is yet largely unknown. In non-malignant B and T lymphocytes, cannabinoid receptors are up-regulated in response to antigen receptor signalling or CD40. For T lymphocytes IL-4 has also a crucial role in transcriptional regulation of CB1. In lymphocytes, cannabinoid act in several ways - by affecting cell migration, cytokine response, at high doses inhibit cell proliferation and inducing cell death. The possible role for the endocannabinoid system in the immune microenvironment of lymphoma is discussed.

  15. Repeated forced swim stress differentially affects formalin-evoked nociceptive behaviour and the endocannabinoid system in stress normo-responsive and stress hyper-responsive rat strains.

    PubMed

    Jennings, Elaine M; Okine, Bright N; Olango, Weredeselam M; Roche, Michelle; Finn, David P

    2016-01-04

    Repeated exposure to a homotypic stressor such as forced swimming enhances nociceptive responding in rats. However, the influence of genetic background on this stress-induced hyperalgesia is poorly understood. The aim of the present study was to compare the effects of repeated forced swim stress on nociceptive responding in Sprague-Dawley (SD) rats versus the Wistar Kyoto (WKY) rat strain, a genetic background that is susceptible to stress, negative affect and hyperalgesia. Given the well-documented role of the endocannabinoid system in stress and pain, we investigated associated alterations in endocannabinoid signalling in the dorsal horn of the spinal cord and amygdala. In SD rats, repeated forced swim stress for 10 days was associated with enhanced late phase formalin-evoked nociceptive behaviour, compared with naive, non-stressed SD controls. In contrast, WKY rats exposed to 10 days of swim stress displayed reduced late phase formalin-evoked nociceptive behaviour. Swim stress increased levels of monoacylglycerol lipase (MAGL) mRNA in the ipsilateral side of the dorsal spinal cord of SD rats, an effect not observed in WKY rats. In the amygdala, swim stress reduced anandamide (AEA) levels in the contralateral amygdala of SD rats, but not WKY rats. Additional within-strain differences in levels of CB1 receptor and fatty acid amide hydrolase (FAAH) mRNA and levels of 2-arachidonylglycerol (2-AG) were observed between the ipsilateral and contralateral sides of the dorsal horn and/or amygdala. These data indicate that the effects of repeated stress on inflammatory pain-related behaviour are different in two rat strains that differ with respect to stress responsivity and affective state and implicate the endocannabinoid system in the spinal cord and amygdala in these differences.

  16. Mechanisms of CB1 receptor signaling: endocannabinoid modulation of synaptic strength.

    PubMed

    Mackie, K

    2006-04-01

    The CB1 cannabinoid receptor has attracted much recent interest because of the observation that CB1 receptor antagonists have efficacy in treating metabolic syndrome and obesity. CB1 receptors also mediate most of the psychotropic effects of Delta9-tetrahydrocannabinol (Delta9THC), the principal psychoactive component of cannabis. In addition, they are one component of an interesting and widespread paracrine signaling system, the endocannabinoid system. The endocannabinoid system is comprised of cannabinoid receptors, endogenous cannabinoids, and the metabolic pathways responsible for their synthesis and degradation. The details of the endocannabinoid system have been most thoroughly studied in the brain. Here it has been shown to be intimately involved in several forms of neuronal plasticity. That is, activation of CB1 receptors by endocannabinoids produces either short- or long-term changes in the efficacy of synaptic transmission. The behavioral consequences of these changes are many, but some of the most striking and relevant to the current symposium are those associated with endogenous reward and consumptive behavior.

  17. The endocannabinoid system and NGF are involved in the mechanism of action of resveratrol: a multi-target nutraceutical with therapeutic potential in neuropsychiatric disorders.

    PubMed

    Hassanzadeh, Parichehr; Arbabi, Elham; Atyabi, Fatemeh; Dinarvand, Rassoul

    2016-03-01

    Resveratrol is a polyphenolic compound with antioxidant, anti-inflammatory, and neuroprotective effects. It has also shown antidepressant-like effects in the behavioral studies; however, its mechanism(s) of action merit further evaluation. The interaction between the nerve growth factor (NGF) and endocannabinoid system (eCBs) and their contribution to the antidepressant or emotional activity prompted us to evaluate their implications in the mechanism of action of resveratrol. After single and 4-week intraperitoneal (i.p.) once-daily injections of resveratrol (40, 80, and 100 mg/kg), amitriptyline (2.5, 5, and 10 mg/kg), or clonazepam (10, 20, and 40 mg/kg) into male Wistar rats, eCB and NGF contents were quantified in the brain regions implicated in the modulation of emotions by isotope-dilution liquid chromatography/mass spectrometry and Bio-Rad protein assay, respectively. In the case of any significant alteration of brain eCB or NGF level, the effect of pre-treatment with cannabinoid CB1 or CB2 receptor antagonist (AM251 or SR144528) was investigated. Four-week treatment with resveratrol or amitriptyline resulted in a significant and sustained enhancement of NGF and eCB contents in dose-dependent and brain region-specific manner. Neither acute nor 4-week treatment with clonazepam affected brain eCB or NGF contents. Pre-treatment with AM251 (3 mg/kg), but not SR144528, prevented the enhancement of NGF protein levels. AM251 exhibited no effect by itself. Resveratrol like the classical antidepressant, amitriptyline, affects brain NGF and eCB signaling under the regulatory drive of CB1 receptors.

  18. Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats.

    PubMed

    Lim, James; Igarashi, Miki; Jung, Kwang-Mook; Butini, Stefania; Campiani, Giuseppe; Piomelli, Daniele

    2016-04-01

    Individuals who experience life-threatening psychological trauma are at risk of developing a series of chronic neuropsychiatric pathologies that include generalized anxiety, depression, and drug addiction. The endocannabinoid system has been implicated in the modulation of these responses by regulating the activity of the amygdala and the hypothalamic-pituitary-adrenal axis. However, the relevance of this signaling complex to the long-term consequences of traumatic events is unclear. Here we use an animal model of predatory stress-induced anxiety-like behavior to investigate the role of the endocannabinoid system in the development of persistent anxiety states. Our main finding is that rats exposed to the fox pheromone 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a life-threatening stimulus for rodents, display a marked and selective increase in the mobilization of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the amygdala. This effect lasts for at least 14 days after the stress has occurred. In addition, systemic or local pharmacological inhibition of monoacylglycerol lipase (MGL)-a lipid hydrolase that degrades 2-AG in presynaptic nerve terminals-elevates 2-AG levels and suppresses the anxiety-like behavior elicited by exposure to TMT. The results suggest that predator threat triggers long-term changes in 2-AG-mediated endocannabinoid signaling in the amygdala, and that pharmacological interventions targeting MGL might provide a therapeutic strategy for the treatment of chronic brain disorders initiated by trauma.

  19. Endocannabinoid Modulation of Predator Stress-Induced Long-Term Anxiety in Rats

    PubMed Central

    Lim, James; Igarashi, Miki; Jung, Kwang-Mook; Butini, Stefania; Campiani, Giuseppe; Piomelli, Daniele

    2016-01-01

    Individuals who experience life-threatening psychological trauma are at risk of developing a series of chronic neuropsychiatric pathologies that include generalized anxiety, depression, and drug addiction. The endocannabinoid system has been implicated in the modulation of these responses by regulating the activity of the amygdala and the hypothalamic–pituitary–adrenal axis. However, the relevance of this signaling complex to the long-term consequences of traumatic events is unclear. Here we use an animal model of predatory stress-induced anxiety-like behavior to investigate the role of the endocannabinoid system in the development of persistent anxiety states. Our main finding is that rats exposed to the fox pheromone 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), a life-threatening stimulus for rodents, display a marked and selective increase in the mobilization of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the amygdala. This effect lasts for at least 14 days after the stress has occurred. In addition, systemic or local pharmacological inhibition of monoacylglycerol lipase (MGL)—a lipid hydrolase that degrades 2-AG in presynaptic nerve terminals—elevates 2-AG levels and suppresses the anxiety-like behavior elicited by exposure to TMT. The results suggest that predator threat triggers long-term changes in 2-AG-mediated endocannabinoid signaling in the amygdala, and that pharmacological interventions targeting MGL might provide a therapeutic strategy for the treatment of chronic brain disorders initiated by trauma. PMID:26361059

  20. Endocannabinoid Signaling in Motivation, Reward, and Addiction: Influences on Mesocorticolimbic Dopamine Function.

    PubMed

    Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam

    2015-01-01

    Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.

  1. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture

    PubMed Central

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G. M.; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-01-01

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R−/− islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis. PMID:26494286

  2. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture.

    PubMed

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G M; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-11-10

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R(-/-) islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis.

  3. The Endocannabinoid System as a Target for Treatment of Breast Cancer

    DTIC Science & Technology

    2011-08-01

    WIN55,212-2, but not its stereoisomer WIN55,212-3 or the phytocannabinoids ∆9-tetrahydrocannabinol (THC) or cannabidiol (CBD), significantly enhanced...THC (the primary active psychoactive constituent present in marijuana), cannabidiol (CBD: a marijuana-derived cannabinoid that lacks psychomimetic...conducted to evaluate receptor-mediated growth inhibition by Win2, THC, cannabidiol (CBD) and nabilone in p53 wild-type MCF-7 breast tumor cell line at

  4. Individual differences and vulnerability to drug addiction: a focus on the endocannabinoid system.

    PubMed

    Sagheddu, Claudia; Melis, Miriam

    2015-01-01

    Vulnerability to drug addiction depends upon the interactions between the biological makeup of the individual, the environment, and age. These interactions are complex and difficult to tease apart. Since dopamine is involved in the rewarding effects of drugs of abuse, it is postulated that innate differences in mesocorticolimbic pathway can influence the response to drug exposure. In particular, higher and lower expression of dopamine D2 receptors in the ventral striatum (i.e. a marker of dopamine function) has been considered a putative protective and a risk factor, respectively, that can influence one's susceptibility to continued drug abuse as well as the transition to addiction. This phenomenon, which is phylogenetically preserved, appears to be a compensatory change to increased impulse activity of midbrain dopamine neurons. Hence, dopamine neuronal excitability plays a fundamental role in the diverse stages of the drug addiction cycle. In this review, a framework for the evidence that modulation of dopamine neuronal activity plays in the context of vulnerability to drug addiction will be presented. Furthermore, since endogenous cannabinoids serve as retrograde messengers to shape afferent neuronal activity in a short- and long-lasting fashion, their role in individual differences and vulnerability to drug addiction will be discussed.

  5. Involvement of the Endocannabinoid System in the Development and Treatment of Breast Cancer

    DTIC Science & Technology

    2013-02-01

    the involvement of members of the PPAR receptor system, known to be reactive to WIN55,212-2. TRPV1 is reported to be sensitive to some cannabinoids...currently used in the treatment of diabetes (O’Sullivan 2007). Additionally, we considered the cation channel vanilloid receptor 1 ( TRPV1 ) as a...PCR confirmed the expression of message for PPARγ and TRPV1 . Figure 2B/C indicates that the antagonist capsazapine ( TRPV1 ) and GW-9662 (PPARγ) did

  6. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities

    PubMed Central

    Pertwee, Roger G.

    2012-01-01

    Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’. PMID:23108552

  7. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signaling

    PubMed Central

    Alpár, Alán; Tortoriello, Giuseppe; Calvigioni, Daniela; Niphakis, Micah J; Milenkovic, Ivan; Bakker, Joanne; Cameron, Gary A; Hanics, János; Morris, Claudia V; Fuzik, János; Kovacs, Gabor G; Cravatt, Benjamin F; Parnavelas, John G; Andrews, William D; Hurd, Yasmin L; Keimpema, Erik; Harkany, Tibor

    2014-01-01

    Local environmental cues are indispensable for axonal growth and guidance during brain circuit formation. Here, we combine genetic and pharmacological tools, as well as systems neuroanatomy in human fetuses and mouse models, to study the role of endocannabinoid and Slit/Robo signaling in axonal growth. We show that excess 2-arachidonoylglycerol, an endocannabinoid affecting directional axonal growth, triggers corpus callosum enlargement due to errant CB1 cannabinoid receptor (CB1R)-containing corticofugal axon spreading. This phenotype mechanistically relies on the premature differentiation and end-feet proliferation of CB2R-expressing oligodendrocytes. We further show the dependence of both axonal Robo1 positioning and oligodendroglial Slit2 production on cell-type specific cannabinoid receptor activation. Accordingly, Robo1 and/or Slit2 manipulation limits endocannabinoid modulation of axon guidance. We conclude that endocannabinoids can configure focal Slit2/Robo1 signaling to modulate directional axonal growth, which may provide a basis for understanding impaired brain wiring associated with metabolic deficits and prenatal drug exposure. PMID:25030704

  8. Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans.

    PubMed

    Thieme, Ulrike; Schelling, Gustav; Hauer, Daniela; Greif, Robert; Dame, Torsten; Laubender, Ruediger Paul; Bernhard, Werner; Thieme, Detlef; Campolongo, Patrizia; Theiler, Lorenz

    2014-01-01

    The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review

    PubMed Central

    McPartland, John M; Duncan, Marnie; Di Marzo, Vincenzo; Pertwee, Roger G

    2015-01-01

    Based upon evidence that the therapeutic properties of Cannabis preparations are not solely dependent upon the presence of Δ9-tetrahydrocannabinol (THC), pharmacological studies have been recently carried out with other plant cannabinoids (phytocannabinoids), particularly cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV). Results from some of these studies have fostered the view that CBD and THCV modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. Here, we review in vitro and ex vivo mechanistic studies of CBD and THCV, and synthesize data from these studies in a meta-analysis. Synthesized data regarding mechanisms are then used to interpret results from recent pre-clinical animal studies and clinical trials. The evidence indicates that CBD and THCV are not rimonabant-like in their action and thus appear very unlikely to produce unwanted CNS effects. They exhibit markedly disparate pharmacological profiles particularly at CB1 receptors: CBD is a very low-affinity CB1 ligand that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant. These cannabinoids illustrate how in vitro mechanistic studies do not always predict in vivo pharmacology and underlie the necessity of testing compounds in vivo before drawing any conclusion on their functional activity at a given target. PMID:25257544

  10. Are cannabidiol and Δ(9) -tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review.

    PubMed

    McPartland, John M; Duncan, Marnie; Di Marzo, Vincenzo; Pertwee, Roger G

    2015-02-01

    Based upon evidence that the therapeutic properties of Cannabis preparations are not solely dependent upon the presence of Δ(9) -tetrahydrocannabinol (THC), pharmacological studies have been recently carried out with other plant cannabinoids (phytocannabinoids), particularly cannabidiol (CBD) and Δ(9) -tetrahydrocannabivarin (THCV). Results from some of these studies have fostered the view that CBD and THCV modulate the effects of THC via direct blockade of cannabinoid CB1 receptors, thus behaving like first-generation CB1 receptor inverse agonists, such as rimonabant. Here, we review in vitro and ex vivo mechanistic studies of CBD and THCV, and synthesize data from these studies in a meta-analysis. Synthesized data regarding mechanisms are then used to interpret results from recent pre-clinical animal studies and clinical trials. The evidence indicates that CBD and THCV are not rimonabant-like in their action and thus appear very unlikely to produce unwanted CNS effects. They exhibit markedly disparate pharmacological profiles particularly at CB1 receptors: CBD is a very low-affinity CB1 ligand that can nevertheless affect CB1 receptor activity in vivo in an indirect manner, while THCV is a high-affinity CB1 receptor ligand and potent antagonist in vitro and yet only occasionally produces effects in vivo resulting from CB1 receptor antagonism. THCV has also high affinity for CB2 receptors and signals as a partial agonist, differing from both CBD and rimonabant. These cannabinoids illustrate how in vitro mechanistic studies do not always predict in vivo pharmacology and underlie the necessity of testing compounds in vivo before drawing any conclusion on their functional activity at a given target.

  11. Endocannabinoids as Guardians of Metastasis

    PubMed Central

    Tegeder, Irmgard

    2016-01-01

    Endocannabinoids including anandamide and 2-arachidonoylglycerol are involved in cancer pathophysiology in several ways, including tumor growth and progression, peritumoral inflammation, nausea and cancer pain. Recently we showed that the endocannabinoid profiles are deranged during cancer to an extent that this manifests in alterations of plasma endocannabinoids in cancer patients, which was mimicked by similar changes in rodent models of local and metastatic cancer. The present topical review summarizes the complexity of endocannabinoid signaling in the context of tumor growth and metastasis. PMID:26875980

  12. Endocannabinoids: A Promising Impact for Traumatic Brain Injury.

    PubMed

    Schurman, Lesley D; Lichtman, Aron H

    2017-01-01

    The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG). Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms. Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology. Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1 and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling. TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system. As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology. Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology. Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor

  13. Endocannabinoids: A Promising Impact for Traumatic Brain Injury

    PubMed Central

    Schurman, Lesley D.; Lichtman, Aron H.

    2017-01-01

    The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG). Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms. Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology. Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1 and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling. TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system. As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology. Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology. Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor

  14. ENDOCANNABINOID INFLUENCE IN DRUG REINFORCEMENT, DEPENDENCE AND ADDICTION-RELATED BEHAVIORS

    PubMed Central

    Serrano, Antonia; Parsons, Loren H.

    2011-01-01

    The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed. PMID:21798285

  15. Cocaine-induced endocannabinoid release modulates behavioral and neurochemical sensitization in mice.

    PubMed

    Mereu, Maddalena; Tronci, Valeria; Chun, Lauren E; Thomas, Alexandra M; Green, Jennifer L; Katz, Jonathan L; Tanda, Gianluigi

    2015-01-01

    The endocannabinoid system has been implicated in the development of synaptic plasticity induced by several drugs abused by humans, including cocaine. However, there remains some debate about the involvement of cannabinoid receptors/ligands in cocaine-induced plasticity and corresponding behavioral actions. Here, we show that a single cocaine injection in Swiss-Webster mice produces behavioral and neurochemical alterations that are under the control of the endocannabinoid system. This plasticity may be the initial basis for changes in brain processes leading from recreational use of cocaine to its abuse and ultimately to dependence. Locomotor activity was monitored with photobeam cell detectors, and accumbens shell/core microdialysate dopamine levels were monitored by high-performance liquid chromatography with electrochemical detection. Development of single-trial cocaine-induced behavioral sensitization, measured as increased distance traveled in sensitized mice compared to control mice, was paralleled by a larger stimulation of extracellular dopamine levels in the core but not the shell of the nucleus accumbens. Both the behavioral and neurochemical effects were reversed by CB1 receptor blockade produced by rimonabant pre-treatments. Further, both behavioral and neurochemical cocaine sensitization were facilitated by pharmacological blockade of endocannabinoid metabolism, achieved by inhibiting the fatty acid amide hydrolase enzyme. In conclusion, our results suggest that a single unconditioned exposure to cocaine produces sensitization through neuronal alterations that require regionally specific release of endocannabinoids. Further, the present results suggest that endocannabinoids play a primary role from the earliest stage of cocaine use, mediating the inception of long-term brain-adaptive responses, shaping central pathways and likely increasing vulnerability to stimulant abuse disorders. Published 2013. This article is a U.S. Government work and is in the

  16. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity.

    PubMed

    Vilela, Luciano R; Gobira, Pedro H; Viana, Thercia G; Medeiros, Daniel C; Ferreira-Vieira, Talita H; Doria, Juliana G; Rodrigues, Flávia; Aguiar, Daniele C; Pereira, Grace S; Massessini, André R; Ribeiro, Fabíola M; de Oliveira, Antonio Carlos P; Moraes, Marcio F D; Moreira, Fabricio A

    2015-08-01

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The endocannabinoid system regulates synaptic transmission in nucleus accumbens by increasing DAGL-α expression following short-term morphine withdrawal.

    PubMed

    Wang, Xing-Qin; Ma, Jie; Cui, Wei; Yuan, Wei-Xin; Zhu, Gang; Yang, Qian; Heng, Li-Jun; Gao, Guo-Dong

    2016-04-01

    The endocannabinoid (eCB) system is involved in pathways that regulate drug addiction and eCB-mediated synaptic plasticity has been linked with addictive behaviours. Here, we investigated the molecular mechanisms underlying the changes in eCB-dependent synaptic plasticity in the nucleus accumbens core (NAcc) following short-term withdrawal from repeated morphine treatment. Conditioned place preference (CPP) was used to evaluate the rewarding effects of morphine in rats. Evoked inhibitory postsynaptic currents of medium spiny neurons in NAcc were measured using whole-cell patch-clamp recordings. Changes in depolarization-induced suppression of inhibition (DSI) in the NAcc were assessed to determine the effect of short-term morphine withdrawal on the eCB system. To identify the potential modulation mechanism of short-term morphine withdrawal on the eCB system, the expression of diacylglycerol lipase α (DGL-α) and monoacylglycerol lipase was detected by Western blot analysis. Repeated morphine administration for 7 days induced stable CPP. Compared with the saline group, the level of DSI in the NAcc was significantly increased in rats after short-term morphine withdrawal. Furthermore, this increase in DSI coincided with a significant increase in the expression of DGL-α. Short-term morphine withdrawal potentiates eCB modulation of inhibitory synaptic transmission in the NAcc. We also found that DGL-α expression was elevated after short-term morphine withdrawal, suggesting that the eCB 2-arachidonyl-glycerol but not anandamide mediates the increase in DSI. These findings provide useful insights into the mechanisms underlying eCB-mediated plasticity in the NAcc during drug addiction. This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc. © 2014 The British Pharmacological Society.

  18. DIFFERENTIAL EFFECTS OF SINGLE VERSUS REPEATED ALCOHOL WITHDRAWAL ON THE EXPRESSION OF ENDOCANNABINOID SYSTEM-RELATED GENES IN THE RAT AMYGDALA

    PubMed Central

    Serrano, Antonia; Rivera, Patricia; Pavon, Francisco J.; Decara, Juan; Suárez, Juan; de Fonseca, Fernando Rodriguez; Parsons, Loren H.

    2011-01-01

    Background Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity and affective control. Methods The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol-exposed rats were generated by maintenance on an ethanol liquid diet (10%): one group received continuous access to ethanol for 15 days, while the second group was given intermittent access to the ethanol diet (5 days/week for 3 weeks). Control subjects were maintained on an isocaloric ethanol-free liquid diet. To provide an initial profile of acute withdrawal amygdala tissue was harvested following either 6 or 24 hours of ethanol withdrawal. Results Acute ethanol withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (FAAH and MAGL, respectively) were evident, as were reductions in mRNA expression for CB1, CB2 and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent ethanol exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g. CB1, CB2, GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in

  19. Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents

    PubMed Central

    Wiley, Jenny L.; Walentiny, D. Matthew; Wright, M. Jerry; Beardsley, Patrick M.; Burston, James J.; Poklis, Justin L.; Lichtman, Aron H.; Vann, Robert E.

    2014-01-01

    The mechanism through which marijuana produces its psychoactive effects is Δ9- tetrahydrocannabinol (THC)-induced activation of cannabinoid CB1 receptors. These receptors are normally activated by endogenous lipids, including anandamide and 2-arachidonoyl glycerol (2-AG). A logical “first step” in determination of the role of these endocannabinoids in THC’s psychoactive effects is to investigate the degree to which pharmacologically induced increases in anandamide and/or 2-AG concentrations through exogenous administration and/or systemic administration of inhibitors of their metabolism, fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), respectively, share THC’s discriminative stimulus effects. To this end, adult male mice and rats were trained to discriminate THC (5.6 and 3 mg/kg, respectively). In Experiment 1, exogenous administration of anandamide or 2-AG did not substitute for THC in mice nor was substitution enhanced by co-administration of the FAAH or MAGL inhibitors, URB597 and N-arachidonyl maleimide (NAM), respectively. Significant decreases in responding may have prevented assessment of adequate endocannabinoid doses. In mice trained at higher baseline response rates (Experiment 2), the FAAH inhibitor PF3845 (10 mg/kg) enhanced anandamide substitution for THC without producing effects of its own. The MAGL inhibitor JZL184 increased brain levels of 2-AG in vitro and in vivo, increased THC-like responding without co-administration of 2-AG. In rats, neither URB597 nor JZL184 engendered significant THC-appropriate responding, but co-administration of these two enzyme inhibitors approached full substitution. The present results highlight the complex interplay between anandamide and 2-AG and suggest that endogenous increases of both endocannabinoids are most effective in elicitation of THC-like discriminative stimulus effects. PMID:24858366

  20. Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity

    PubMed Central

    Tabarin, Antoine; Clark, Samantha; Leste-Lasserre, Thierry; Marsicano, Giovanni; Piazza, Pier Vincenzo; Cota, Daniela

    2012-01-01

    Background The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss. Methodology/Principal Findings Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands. The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels. Conclusions

  1. Endocannabinoids in appetite control and the treatment of obesity.

    PubMed

    Kirkham, T C; Tucci, S A

    2006-06-01

    Research into the endocannabinoid 'system' has grown exponentially in recent years, with the discovery of cannabinoid receptors and their endogenous ligands, such as anandamide and 2-arachidonoylglycerol (2-AG). Important advances have been made in our understanding of endocannabinoid transduction mechanisms, their metabolic pathways, and of the biological processes in which they are implicated. A decade of endocannabinoid studies has promoted new insights into neural regulation and mammalian physiology that are as revolutionary as those arising from the discovery of the endogenous opioid peptides in the 1970s. Thus, endocannabinoids have been found to act as retrograde signals: released by postsynaptic neurons, they bind to presynaptic heteroceptors to modulate the release of inhibitory and excitatory neurotransmitters through multiple G-protein-coupled receptor (GPCR)-linked effector mechanisms. The metabolic pathways of anandamide and 2-AG have now been been characterised in great detail, and we can anticipate that these pathways -- together with endocannabinoid uptake mechanisms -- will complement cannabinoid receptors as targets for the pharmacological analysis of the physiological functions of these substances. Specific insights into the potential role of endocannabinoid-CB1 receptor systems in central appetite control, peripheral metabolism and body weight regulation herald the clinical application of CB1 receptor antagonists in the management of obesity and its associated disorders.

  2. Identification of an endocannabinoid system in the rat pars tuberalis-a possible interface in the hypothalamic-pituitary-adrenal system?

    PubMed

    Jafarpour, Arsalan; Dehghani, Faramarz; Korf, Horst-Werner

    2016-12-20

    Endocannabinoids (ECs) are ubiquitous endogenous lipid derivatives and play an important role in intercellular communication either in an autocrine/paracrine or in an endocrine fashion. Recently, an intrinsic EC system has been discovered in the hypophysial pars tuberalis (PT) of hamsters and humans. In hamsters, this EC system is under photoperiodic control and appears to influence the secretion of hormones such as prolactin from the adenohypophysis. We investigate the EC system in the PT of the rat, a frequently used species in endocrine research. By means of immunocytochemistry, enzymes involved in EC biosynthesis, e.g., N-arachidonoyl-phosphatidylethanolamine-phospholipase D (NAPE-PLD) and diacylglycerol lipase α (DAGLα) and enzymes involved in EC degradation, e.g., fatty acid amide hydrolase (FAAH) and cyclooxygenase-2 (COX-2), were demonstrated in PT cells of the rat. Immunoreactions (IR) for FAAH and for the cannabinoid receptor CB1 were observed in corticotrope cells of the rat adenohypophysis; these cells were identified by antibodies against proopiomelanocortin (POMC) or adrenocorticotrophic hormone (ACTH). In the outer zone of the median eminence, numerous nerve fibers and terminals displayed CB1 IR. The majority of these were also immunolabeled by an antibody against corticotropin-releasing factor (CRF). These results suggest that the EC system at the hypothalamo-hypophysial interface affects both the CRF-containing nerve fibers and the corticotrope cells in the adenohypophysis. Our data give rise to the hypothesis that, in addition to its well-known role in the reproductive axis, the PT might influence adrenal functions and, thus, the stress response and immune system.

  3. The effect of mifepristone (RU486) on the endocannabinoid system in human plasma and first-trimester trophoblast of women undergoing termination of pregnancy.

    PubMed

    Karasu, Tülay; Marczylo, Timothy H; Marczylo, Emma L; Taylor, Anthony H; Oloto, Emeka; Konje, Justin C

    2014-03-01

    High anandamide (AEA) concentrations are detrimental for implantation and early pregnancy. Progesterone, essential for pregnancy, may keep AEA levels low by increasing fatty acid amide hydrolase (FAAH) expression. Here the effect of RU486, a P4 antagonist used to initiate medical termination of pregnancy (MTOP), on plasma AEA concentrations and the endocannabinoid system (ECS) in trophoblasts was examined. Quantification of the endocannabinoid concentrations and expression of the ECS in trophoblast tissue of MTOP women and women undergoing surgical termination of pregnancy (STOP). A prospective study at the University Hospitals of Leicester National Health Service Trust. AEA, N-oleoylethanolamine (OEA), and N-palmitolylethanolamine (PEA) concentrations in trophoblast tissues and blood samples from 68 MTOP and 15 STOP were analyzed by ultra-high-performance liquid chromatography-tandem mass spectrometry. ECS expression was determined by immunohistochemistry, quantitative RT-PCR, and Western blotting. Concentrations of AEA, OEA, and PEA were significantly higher in MTOP than STOP trophoblasts (P = .0062, P = .016, and P = .0029, respectively), whereas no significant differences in plasma AEA, OEA, and PEA concentrations were observed even though plasma AEA and PEA concentrations were significantly (P = .005 and P = .025, respectively) increased the day after RU486 administration in women undergoing MTOP. Changes in the immunohistochemical densities of the AEA modifying enzymes N-acylphophatidylethanolamine-phospholipase D (NAPE-PLD) and FAAH, and the cannabinoid receptors (CB1 and CB2) were observed with increased NAPE-PLD, FAAH, and CB1 expression seen in the trophoblast of MTOP patients. Trophoblast after MTOP demonstrated high AEA concentrations with increased expression of NAPE-PLD, FAAH, and CB1.

  4. Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system

    PubMed Central

    Okine, Bright N; Norris, Leonie M; Woodhams, Stephen; Burston, James; Patel, Annie; Alexander, Stephen PH; Barrett, David A; Kendall, David A; Bennett, Andrew J; Chapman, Victoria

    2012-01-01

    BACKGROUND AND PURPOSE Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour. EXPERIMENTAL APPROACH Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg−1), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined. KEY RESULTS Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction. CONCLUSION AND IMPLICATIONS Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain. PMID:22595021

  5. Differential involvement of the endocannabinoid system in short- and long-term expression of incentive learning supported by nicotine in rats.

    PubMed

    Forget, Benoît; Barthélémy, Sandrine; Saurini, Françoise; Hamon, Michel; Thiébot, Marie-Hélène

    2006-11-01

    We previously reported that the CB1 cannabinoid receptor antagonist, rimonabant, impaired the acquisition and the short-term (24 h), but not long-term (3 weeks), expression of conditioned place preference (CPP) induced by nicotine in rats. To assess the time interval of efficacy of a single pretest injection of rimonabant to abolish nicotine-CPP, and the effects of chronic CB1 receptor blockade on long-term expression of nicotine-CPP. Wistar rats were conditioned to nicotine (0.06 mg/kg, subcutaneous) using an unbiased one-compartment procedure. Two test sessions were conducted 24 h (without injection) and 1, 2, or 3 weeks later. Rimonabant (3 mg/kg, intraperitoneal) or vehicle was administered daily between the two test sessions. In addition, the CB1-stimulated [(35)S]GTP-gamma-S binding was assessed in rats from the 3-week experiment. The capacity of a single injection of rimonabant (3 mg/kg, 30 min pretest) to block the expression of nicotine-CPP disappeared within 1 week after conditioning. Daily administrations of rimonabant for 6, 13, or 20 days post-acquisition did not impair nicotine-CPP but allowed an additional pretest injection of rimonabant to retain its capacity to abolish long-term expression of nicotine-CPP. The CB1 receptor-mediated G-protein signaling was not altered in various brain areas of rats given rimonabant for 3 weeks. The endocannabinoid system is essential to the expression of nicotine-CPP during less than 1 week after conditioning but not later. However, endocannabinoid-dependent mechanisms are critically involved in the development of the neuroadaptive changes responsible for the shift from CB1-dependent to CB1-independent expression of nicotine incentive learning.

  6. Role of PUFAs, the precursors of endocannabinoids, in human obesity and type 2 diabetes.

    PubMed

    Dain, Alejandro; Repossi, Gaston; Das, Undurti N; Eynard, Aldo Renato

    2010-06-01

    Polyunsaturated fatty acids (PUFAs) serve as precursors of the endocannabinoids (ECs) that are bioactive lipids molecules. Recent studies revealed that ECs participate in several physiological and pathological processes including obesity and type 2 diabetes mellitus. Here we review the experimental and clinical aspects of the role of endocannabinoids in obesity and type 2 diabetes mellitus and the modification of the endocannabinoids by exogenously administered PUFAs. Based on these evidences, we propose that the endocannabinoid system (ECS) can be modulated by exogenous manipulation of PUFAs that could help in the prevention and management of human diseases such as obesity, metabolic syndrome and type 2 diabetes mellitus.

  7. Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes.

    PubMed

    Di Marzo, Vincenzo; Piscitelli, Fabiana; Mechoulam, Raphael

    2011-01-01

    The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.

  8. Endocannabinoid signalling in innate and adaptive immunity

    PubMed Central

    Chiurchiù, Valerio; Battistini, Luca; Maccarrone, Mauro

    2015-01-01

    The immune system can be modulated and regulated not only by foreign antigens but also by other humoral factors and metabolic products, which are able to affect several quantitative and qualitative aspects of immunity. Among these, endocannabinoids are a group of bioactive lipids that might serve as secondary modulators, which when mobilized coincident with or shortly after first-line immune modulators, increase or decrease many immune functions. Most immune cells express these bioactive lipids, together with their set of receptors and of enzymes regulating their synthesis and degradation. In this review, a synopsis of the manifold immunomodulatory effects of endocannabinoids and their signalling in the different cell populations of innate and adaptive immunity is appointed, with a particular distinction between mice and human immune system compartments. PMID:25585882

  9. Endocannabinoids and energy homeostasis: an update.

    PubMed

    Cristino, Luigia; Becker, Thorsten; Di Marzo, Vincenzo

    2014-01-01

    The endocannabinoid system (ECS) is a widespread intercellular signaling system that plays a critical role in energy homeostasis, meant as the precise matching of caloric intake with energy expenditure which normally keeps body weight stable over time. Complex interactions between environmental and neurohormonal systems directly contribute to the balance of energy homeostasis. This review highlights established and more recent data on the brain circuits in which the ECS plays an important regulatory role, with focus on the hypothalamus, a region where numerous interacting systems regulating feeding, satiety, stress, and other motivational states coexist. Although not meant as an exhaustive review of the field, this article will discuss how endocannabinoid tone, in addition to reinforcing reward circuitries and modulating food intake and the salience of food, controls lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in the skeletal muscle and pancreas are also emerging and are briefly discussed. This review provides new perspectives into endocannabinoid control of the neurochemical causes and consequences of energy homeostasis imbalance, a knowledge that might lead to new potential treatments for obesity and related morbidities. © 2014 International Union of Biochemistry and Molecular Biology.

  10. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597

    PubMed Central

    Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea

    2016-01-01

    The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. PMID:27091613

  11. Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder

    PubMed Central

    2013-01-01

    Background Epilepsy is one of the most common chronic neurological disorders in dogs characterized by recurrent seizures. The endocannabinoid (EC) system plays a central role in suppressing pathologic neuronal excitability and in controlling the spread of activity in an epileptic network. Endocannabinoids are released on demand and their dysregulation has been described in several pathological conditions. Recurrent seizures may lead to an adverse reorganization of the EC system and impairment of its protective effect. In the current study, we tested the hypothesis that cerebrospinal fluid (CSF) concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2AG) are altered in epileptic dogs. Concentrations of AEA and total AG (sum of 2AG and 1AG) were measured in 40 dogs with idiopathic epilepsy and in 16 unaffected, healthy control dogs using liquid chromatography combined with tandem mass spectrometry. Results AEA and total AG were measured at 4.94 (3.18 – 9.17) pM and 1.43 (0.90 – 1.92) nM in epileptic dogs and at 3.19 (2.04 – 4.28) pM and 1.76 (1.08 – 2.69) nM in the control group, respectively (median, 25 – 75% percentiles in brackets). The AEA difference between epileptic and healthy dogs was statistically significant (p < 0.05). Values correlated with seizure severity and duration of seizure activity. Dogs with cluster seizures and/or status epilepticus and with seizure activity for more than six months displayed the highest EC concentrations. Conclusion In conclusion, we present the first endocannabinoid measurements in canine CSF and confirm the hypothesis that the EC system is altered in canine idiopathic epilepsy. PMID:24370333

  12. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex.

    PubMed

    Sticht, Martin A; Limebeer, Cheryl L; Rafla, Benjamin R; Abdullah, Rehab A; Poklis, Justin L; Ho, Winnie; Niphakis, Micah J; Cravatt, Benjamin F; Sharkey, Keith A; Lichtman, Aron H; Parker, Linda A

    2016-03-01

    Cannabinoid (CB) agonists suppress nausea in humans and animal models; yet, their underlying neural substrates remain largely unknown. Evidence suggests that the visceral insular cortex (VIC) plays a critical role in nausea. Given the expression of CB1 receptors and the presence of endocannabinoids in this brain region, we hypothesized that the VIC endocannabinoid system regulates nausea. In the present study, we assessed whether inhibiting the primary endocannabinoid hydrolytic enzymes in the VIC reduces acute lithium chloride (LiCl)-induced conditioned gaping, a rat model of nausea. We also quantified endocannabinoid levels during an episode of nausea, and assessed VIC neuronal activation using the marker, c-Fos. Local inhibition of monoacylglycerol lipase (MAGL), the main hydrolytic enzyme of 2-arachidonylglycerol (2-AG), reduced acute nausea through a CB1 receptor mechanism, whereas inhibition of fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of anandamide (AEA), was without effect. Levels of 2-AG were also selectively elevated in the VIC during an episode of nausea. Inhibition of MAGL robustly increased 2-AG in the VIC, while FAAH inhibition had no effect on AEA. Finally, we demonstrated that inhibition of MAGL reduced VIC Fos immunoreactivity in response to LiCl treatment. Taken together, these findings provide compelling evidence that acute nausea selectively increases 2-AG in the VIC, and suggests that 2-AG signaling within the VIC regulates nausea by reducing neuronal activity in this forebrain region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex

    PubMed Central

    Sticht, Martin A.; Limebeer, Cheryl L.; Rafla, Benjamin R.; Abdullah, Rehab A.; Poklis, Justin L.; Ho, Winnie; Niphakis, Micah J.; Cravatt, Benjamin F.; Sharkey, Keith A.; Lichtman, Aron H.; Parker, Linda A.

    2015-01-01

    Cannabinoid (CB) agonists suppress nausea in humans and animal models; yet, their underlying neural substrates remain largely unknown. Evidence suggests that the visceral insular cortex (VIC) plays a critical role in nausea. Given the expression of CB1 receptors and the presence of endocannabinoids in this brain region, we hypothesized that the VIC endocannabinoid system regulates nausea. In the present study, we assessed whether inhibiting the primary endocannabinoid hydrolytic enzymes in the VIC reduces acute lithium chloride (LiCl)-induced conditioned gaping, a rat model of nausea. We also quantified endocannabinoid levels during an episode of nausea, and assessed VIC neuronal activation using the marker, c-Fos. Local inhibition of monoacylglycerol lipase (MAGL), the main hydrolytic enzyme of 2-arachidonylglycerol (2-AG), reduced acute nausea through a CB1 receptor mechanism, whereas inhibition of fatty acid amide hydrolase (FAAH), the primary catabolic enzyme of anandamide (AEA), was without effect. Levels of 2-AG were also selectively elevated in the VIC during an episode of nausea. Inhibition of MAGL robustly increased 2-AG in the VIC, while FAAH inhibition had no effect on AEA. Finally, we demonstrated that inhibition of MAGL reduced VIC Fos immunoreactivity in response to LiCl treatment. Taken together, these findings provide compelling evidence that acute nausea selectively increases 2-AG in the VIC, and suggests that 2-AG signaling within the VIC regulates nausea by reducing neuronal activity in this forebrain region. PMID:26541329

  14. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor-flavor preferences in rats.

    PubMed

    Miner, Patricia; Abayev, Yana; Kandova, Ester; Gerges, Meri; Styler, Esther; Wapniak, Rachel; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J

    2008-09-01

    Rats learn to prefer a flavor mixed into a fructose-saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor-flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose-saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS-/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS-/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1, 1 or 3 mg/kg. Preference for CS+/s over CS-/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS-/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS-/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose-saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor-flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of learned flavor

  15. Role of systemic endocannabinoid CB-1 receptor antagonism in the acquisition and expression of fructose-conditioned flavor–flavor preferences in rats

    PubMed Central

    Miner, Patricia; Abayev, Yana; Kandova, Ester; Gerges, Meri; Styler, Esther; Wapniak, Rachel; Touzani, Khalid; Sclafani, Anthony; Bodnar, Richard J.

    2015-01-01

    Rats learn to prefer a flavor mixed into a fructose–saccharin solution over a different flavor mixed into a saccharin-only solution which is considered to be a form of flavor–flavor conditioning. Fructose-conditioned flavor preferences are impaired by systemic dopamine D1 and to a lesser degree, D2 receptor antagonism as well as by NMDA, but not opioid, receptor antagonism. Given the emerging role of the endocannabinoid system in mediating hedonically-driven food intake, the present study examined whether systemic administration of the inverse CB-1 receptor agonist, AM-251 would alter fructose-conditioned flavor preferences. In Experiment 1, food-restricted rats were trained over 10 sessions (30 min/day) to drink a fructose–saccharin solution mixed with one flavor (CS+/Fs) and a less-preferred saccharin-only solution mixed with another flavor (CS−/s). Subsequent two-bottle tests with the two flavors in saccharin (CS+/s, CS−/s) occurred 15 min following counterbalanced pairs of AM-251 doses of 0, 0.1,1 or 3 mg/kg. Preference for CS+/s over CS−/s following vehicle treatment (74%) was significantly reduced by the 0.1 (67%) and 1 (65%) AM-251 doses, whereas CS+/s, but not CS−/s intake was significantly reduced by the 1 and 3 mg/kg AM-251 doses. In Experiment 2, rats received systemic injections of AM-251 (1 mg/kg) or vehicle prior to the 10 CS+/Fs and CS−/s training sessions. In subsequent two-bottle tests (drug-free) the AM-251 and control groups displayed similar preferences for the CS+ flavor (66% vs. 69%). Experiment 3 demonstrated that AM-251 significantly decreased chow intake (24 h), and 1-h intakes of fructose–saccharin and saccharin-only solutions in ad libitum-fed rats. These data indicate that functional CB-1 receptor antagonism significantly reduces the expression, but not the acquisition of fructose-conditioned flavor–flavor preferences. The endogenous endocannabinoid system is therefore implicated in the maintenance of this form of

  16. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids.

    PubMed

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-05-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders.

  17. Fluoxetine Facilitates Fear Extinction Through Amygdala Endocannabinoids

    PubMed Central

    Gunduz-Cinar, Ozge; Flynn, Shaun; Brockway, Emma; Kaugars, Katherine; Baldi, Rita; Ramikie, Teniel S; Cinar, Resat; Kunos, George; Patel, Sachin; Holmes, Andrew

    2016-01-01

    Pharmacologically elevating brain endocannabinoids (eCBs) share anxiolytic and fear extinction-facilitating properties with classical therapeutics, including the selective serotonin reuptake inhibitor, fluoxetine. There are also known functional interactions between the eCB and serotonin systems and preliminary evidence that antidepressants cause alterations in brain eCBs. However, the potential role of eCBs in mediating the facilitatory effects of fluoxetine on fear extinction has not been established. Here, to test for a possible mechanistic contribution of eCBs to fluoxetine's proextinction effects, we integrated biochemical, electrophysiological, pharmacological, and behavioral techniques, using the extinction-impaired 129S1/Sv1mJ mouse strain. Chronic fluoxetine treatment produced a significant and selective increase in levels of anandamide in the BLA, and an associated decrease in activity of the anandamide-catabolizing enzyme, fatty acid amide hydrolase. Slice electrophysiological recordings showed that fluoxetine-induced increases in anandamide were associated with the amplification of eCB-mediated tonic constraint of inhibitory, but not excitatory, transmission in the BLA. Behaviorally, chronic fluoxetine facilitated extinction retrieval in a manner that was prevented by systemic or BLA-specific blockade of CB1 receptors. In contrast to fluoxetine, citalopram treatment did not increase BLA eCBs or facilitate extinction. Taken together, these findings reveal a novel, obligatory role for amygdala eCBs in the proextinction effects of a major pharmacotherapy for trauma- and stressor-related disorders and anxiety disorders. PMID:26514583

  18. Endocannabinoids mediate bidirectional striatal spike-timing-depend