Venlet, Jeroen; Piers, Sebastiaan R D; Kapel, Gijsbert F L; de Riva, Marta; Pauli, Philippe F G; van der Geest, Rob J; Zeppenfeld, Katja
2017-08-01
Low endocardial unipolar voltage (UV) at sites with normal bipolar voltage (BV) may indicate epicardial scar. Currently applied UV cutoff values are based on studies that lacked epicardial fat information. This study aimed to define endocardial UV cutoff values using computed tomography-derived fat information and to analyze their clinical value for right ventricular substrate delineation. Thirty-three patients (50±14 years; 79% men) underwent combined endocardial-epicardial right ventricular electroanatomical mapping and ablation of right ventricular scar-related ventricular tachycardia with computed tomographic image integration, including computed tomography-derived fat thickness. Of 6889 endocardial-epicardial mapping point pairs, 547 (8%) pairs with distance <10 mm and fat thickness <1.0 mm were analyzed for voltage and abnormal (fragmented/late potential) electrogram characteristics. At sites with endocardial BV >1.50 mV, the optimal endocardial UV cutoff for identification of epicardial BV <1.50 mV was 3.9 mV (area under the curve, 0.75; sensitivity, 60%; specificity, 79%) and cutoff for identification of abnormal epicardial electrogram was 3.7 mV (area under the curve, 0.88; sensitivity, 100%; specificity, 67%). The majority of abnormal electrograms (130 of 151) were associated with transmural scar. Eighty-six percent of abnormal epicardial electrograms had corresponding endocardial sites with BV <1.50 mV, and the remaining could be identified by corresponding low endocardial UV <3.7 mV. For identification of epicardial right ventricular scar, an endocardial UV cutoff value of 3.9 mV is more accurate than previously reported cutoff values. Although the majority of epicardial abnormal electrograms are associated with transmural scar with low endocardial BV, the additional use of endocardial UV at normal BV sites improves the diagnostic accuracy resulting in identification of all epicardial abnormal electrograms at sites with <1.0 mm fat. © 2017 American Heart Association, Inc.
Samanta, Rahul; Kumar, Saurabh; Chik, William; Qian, Pierre; Barry, Michael A; Al Raisi, Sara; Bhaskaran, Abhishek; Farraha, Melad; Nadri, Fazlur; Kizana, Eddy; Thiagalingam, Aravinda; Kovoor, Pramesh; Pouliopoulos, Jim
2017-10-01
Recent studies have demonstrated that intramyocardial adipose tissue (IMAT) may contribute to ventricular electrophysiological remodeling in patients with chronic myocardial infarction. Using an ovine model of myocardial infarction, we aimed to determine the influence of IMAT on scar tissue identification during endocardial contact mapping and optimal voltage-based mapping criteria for defining IMAT dense regions. In 7 sheep, left ventricular endocardial and transmural mapping was performed 84 weeks (15-111 weeks) post-myocardial infarction. Spearman rank correlation coefficient was used to assess the relationship between endocardial contact electrogram amplitude and histological composition of myocardium. Receiver operator characteristic curves were used to derive optimal electrogram thresholds for IMAT delineation during endocardial mapping and to describe the use of endocardial mapping for delineation of IMAT dense regions within scar. Endocardial electrogram amplitude correlated significantly with IMAT (unipolar r =-0.48±0.12, P <0.001; bipolar r =-0.45±0.22, P =0.04) but not collagen (unipolar r =-0.36±0.24, P =0.13; bipolar r =-0.43±0.31, P =0.16). IMAT dense regions of myocardium reliably identified using endocardial mapping with thresholds of <3.7 and <0.6 mV, respectively, for unipolar, bipolar, and combined modalities (single modality area under the curve=0.80, P <0.001; combined modality area under the curve=0.84, P <0.001). Unipolar mapping using optimal thresholding remained significantly reliable (area under the curve=0.76, P <0.001) during mapping of IMAT, confined to putative scar border zones (bipolar amplitude, 0.5-1.5 mV). These novel findings enhance our understanding of the confounding influence of IMAT on endocardial scar mapping. Combined bipolar and unipolar voltage mapping using optimal thresholds may be useful for delineating IMAT dense regions of myocardium, in postinfarct cardiomyopathy. © 2017 American Heart Association, Inc.
Letsas, Konstantinos P; Efremidis, Michael; Vlachos, Konstantinos; Georgopoulos, Stamatis; Karamichalakis, Nikolaos; Asvestas, Dimitrios; Valkanas, Kosmas; Korantzopoulos, Panagiotis; Liu, Tong; Sideris, Antonios
2017-05-02
Epicardial structural abnormalities at the right ventricular outflow tract (RVOT) may provide the arrhythmia substrate in Brugada syndrome (BrS). Electroanatomical endocardial unipolar voltage mapping is an emerging tool that accurately identifies epicardial abnormalities in different clinical settings. This study investigated whether endocardial unipolar voltage mapping of the RVOT detects electroanatomical abnormalities in patients with BrS. Ten asymptomatic patients (8 males, 34.5 ± 11.2 years) with spontaneous type 1 ECG pattern of BrS and negative late gadolinium enhancement-cardiac magnetic resonance imaging (LGE-c-MRI) underwent high-density endocardial electroanatomical mapping (>800 points). Using a cut-off of 1 mV and 4 mV for normal bipolar and unipolar voltage, respectively, derived from 20 control patients without structural heart disease established by LGE-c-MRI, the extend of low-voltage areas within the RVOT was estimated using a specific calculation software. The mean RVOT area presenting low-voltage bipolar signals in BrS patients was 3.4 ± 1.7 cm2 (range 1.5-7 cm2). A significantly greater area of abnormal unipolar signals was identified (12.6 ± 4.6 cm2 [range 7-22 cm2], P: 0.001). Both bipolar and unipolar electroanatomical abnormalities were mainly located at the free wall of the RVOT. The mean RVOT activation time was significantly prolonged in BrS patients compared to control population (86.4 ± 16.5 vs. 63.4 ± 9.7 ms, P < 0.001). Isochronal mapping demonstrated lines of conduction slowing within the RVOT in 8/10 BrS patients. Wide areas of endocardial unipolar voltage abnormalities that possibly reflect epicardial structural abnormalities are identified at the RVOT of BrS patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Scanavacca, Maurício Ibrahim; Sternick, Eduardo Back; Pisani, Cristiano; Lara, Sissy; Hardy, Carina; d'Ávila, André; Correa, Frederico Soares; Darrieux, Francisco; Hachul, Denise; Marcial, Miguel Barbero; Sosa, Eduardo A
2015-02-01
Epicardial mapping and ablation of accessory pathways through a subxiphoid approach can be an alternative when endocardial or epicardial transvenous mapping has failed. We reviewed acute and long-term follow-up of 21 patients (14 males) referred for percutaneous epicardial accessory pathway ablation. There was a median of 2 previous failed procedures. All patients were highly symptomatic, 8 had atrial fibrillation (3 with cardiac arrest) and 13 had frequent symptomatic episodes of atrioventricular reentrant tachycardia. Six patients (28.5%) had a successful epicardial ablation. Five patients (23.8%) underwent a successful repeated endocardial mapping, and ablation after epicardial mapping yielded no early activation site. Epicardial mapping was helpful in guiding endocardial ablation in 2 patients (9.5%), showing that the earliest activation was simultaneous at the epicardium and endocardium. Four patients (19%) underwent successful open-chest surgery after failing epicardial/endocardial ablation. Two patients (9.5%) remained controlled under antiarrhythmic drugs after unsuccessful endocardial/epicardial ablation. Two patients had a coronary sinus diverticulum and one a right atrium to right ventricle diverticulum. Three patients acquired postablation coronary sinus stenosis. There was no major complication related to pericardial access. Percutaneous epicardial approach is an alternative when conventional endocardial or transvenous epicardial ablation fails in the elimination of the accessory pathway. A new attempt by endocardial approach was successful in a significant number of patients. Open-chest surgery may be required in symptomatic cases refractory to endocardial-epicardial approach. © 2014 American Heart Association, Inc.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778
Schade, Anja; Nentwich, Karin; Costello-Boerrigter, Lisa C; Halbfass, Philipp; Mueller, Patrick; Roos, Markus; Barth, Sebastian; Krug, Joachim; Szoelloesi, Geza-Atilla; Lapp, Harald; Deneke, Thomas
2016-05-01
Focal impulses (FI) and rotors are sources associated with the initiation and maintenance of atrial fibrillation (AF). Their ablation results in a lower recurrence rate. The aim of this study was to characterize for the first time the spatial relationship between such sources and atrial low voltage zones (LVZ) representing fibrosis. Twenty-five consecutive patients undergoing their first ablation for persistent AF were included. Voltage mapping of both atria was done during AF. Endocardial mapping of FI and rotors (sources) was performed using a basket catheter and displayed using RhythmView(TM) (Topera Inc.) before ablation. Spatial relationship of LVZ and sources was analyzed. LVZs covered 13 ± 12% of right atrial (RA) endocardial surface and 33 ± 25% of left atrial (LA) endocardial surface. The median number of sources was 1 [1-3] in RA and 3 [1-4] in LA. Of LA sources, 18 (30%) were definitely not associated with LVZs or pulmonary vein (PV) antra. Of RA sources, 32 (84%) were remote from LVZ. During ablation of such sources substantial cycle length (CL) prolongation or AF conversion occurred in 11/23 patients (48%). Altogether, 8/11 (73%) of these pertinent sources were located remotely from LVZ and PV antra. There is a wide discrepancy in distribution of LVZ areas and sites of identified rotors. Site and incidence of FIRM sources appear to be unpredictable with atrial substrate mapping. Further prospective, randomized studies are necessary to elucidate the impact of additional ablation of such sources in patients with persistent or longstanding persistent AF. © 2016 Wiley Periodicals, Inc.
Porras, Antonio R; Piella, Gemma; Berruezo, Antonio; Hoogendoorn, Corne; Andreu, David; Fernandez-Armenta, Juan; Sitges, Marta; Frangi, Alejandro F
2013-05-01
Scar presence and its characteristics play a fundamental role in several cardiac pathologies. To accurately define the extent and location of the scar is essential for a successful ventricular tachycardia ablation procedure. Nowadays, a set of widely accepted electrical voltage thresholds applied to local electrograms recorded are used intraoperatively to locate the scar. Information about cardiac mechanics could be considered to characterize tissues with different viability properties. We propose a novel method to estimate endocardial motion from data obtained with an electroanatomical mapping system together with the endocardial geometry segmented from preoperative 3-D magnetic resonance images, using a statistical atlas constructed with bilinear models. The method was validated using synthetic data generated from ultrasound images of nine volunteers and was then applied to seven ventricular tachycardia patients. Maximum bipolar voltages, commonly used to intraoperatively locate scar tissue, were compared to endocardial wall displacement and strain for all the patients. The results show that the proposed method allows endocardial motion and strain estimation and that areas with low-voltage electrograms also present low strain values.
Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Haïssaguerre, Michel; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Sanders, Prashanthan; Kistler, Peter; Kalman, Jonathan M
2017-08-01
Evidence for epicardial-endocardial breakthrough (EEB) is derived from mapping inferences in patients with atrial fibrillation who may also have focal activations. The purpose of this study was to investigate whether EEB could be discerned during stable right atrial (RA) macroreentry using high-density high-spatial resolution 3-dimensional mapping. Macroreentry was diagnosed using 3-dimensional mapping and entrainment. Bipolar maps were reviewed for EEB defined as (1) presence of focal endocardial activation with radial spread unaccounted for by an endocardial wavefront and (2) present with the same timing on every tachycardia cycle. The EEB site was always in proximity to a line of endocardial conduction slowing or block. Distance and conduction velocity from the line of block to the EEB site was calculated. Electrograms at EEB sites were individually analyzed for morphology and to confirm direction of activation. Entrainment was performed at EEB sites. Twenty-six patients were studied. Fourteen examples of EEB were seen: 11 at the posterior RA (4 at the superior portion of the posterior wall and 7 at the inferior section) and 1 each at the cavotricuspid isthmus postablation, RA septum, and inferolateral RA. The mean area of the EEB site was 0.6 ± 0.2 cm 2 . A mean of 79.5% ± 18.6% of unipolar electrograms at the EEB site demonstrated an rS morphology. The mean distance and conduction velocity from the line of endocardial block to the EEB site at the posterior RA was 13.6 ± 2.3 mm and 59.3 ± 12.3 cm/s, respectively. In 4 patients, entrainment demonstrated that EEB sites were within the circuit and in 1 of these patients critical to arrhythmia maintenance. Activation maps during tachycardia and coronary sinus pacing demonstrated EEB at the same anatomic site. EEB sites were demonstrated in stable atrial macroreentry supported by systematic entrainment confirmation and demonstration of the same phenomenon during pacing. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Martinelli, L; Goggi, C; Graffigna, A; Salerno, J A; Chimienti, M; Klersy, C; Viganò, M
1987-01-01
The purpose of this report is to present a 5 year experience in electrophysiologically guided surgical treatment of post-infarction ventricular tachycardia (VT) in a consecutive series of 39 patients. In every case the arrhythmia was not responsive to pluripharmacological therapy. The diagnostic steps included preoperative endocardial, intraoperative epi- and endocardial mapping, automatically carried out when possible. Surgical techniques were: classic Guiraudon's encircling endocardial ventriculotomy (EEV), partial EEV, endocardial resection (ER), cryoablation or combined procedures. The hospital mortality was of 4 patients (10%). During the follow-up period (1-68 mo), 4 patients (11%) died of cardiac non-VT related causes. Among the survivors, 90% are in sinus rhythm. The authors consider electrophysiologically guided surgery a safe and reliable method for the treatment of post-infarction VT and suggest more extensive indications. They stress the importance of automatic mapping in pleomorphic and non-sustained VT, and the necessity of tailoring the surgical technique to the characteristics of each case.
Ventricular tachycardia in post-myocardial infarction patients. Results of surgical therapy.
Viganò, M; Martinelli, L; Salerno, J A; Minzioni, G; Chimienti, M; Graffigna, A; Goggi, C; Klersy, C; Montemartini, C
1986-05-01
This report addresses the problems related to surgical treatment of post-infarction ventricular tachycardia (VT) and is based on a 5 year experience of 36 consecutive patients. In every case the arrhythmia was unresponsive to pharmacological therapy. All patients were operated on after the completion of a diagnostic protocol including preoperative endocardial, intra-operative epi-endocardial mapping, the latter performed automatically when possible. Surgical techniques were: classical Guiraudon's encircling endocardial ventriculotomy (EEV); partial EEV, endocardial resection (ER); cryoablation or a combination of these procedures. The in-hospital mortality (30 days) was 8.3% (3 patients). During the follow-up period (1-68 months), 3 patients (9%) died of cardiac but not VT related causes. Of the survivors, 92% are VT-free. We consider electrophysiologically guided surgery a safe and reliable method for the treatment of post-infarction VT and suggest its more extensive use. We stress the importance of automatic mapping in pleomorphic and non-sustained VT, and the necessity of tailoring the surgical technique to the characteristics of each case.
Martinez-Mateu, Laura; Romero, Lucia; Ferrer-Albero, Ana; Sebastian, Rafael; Rodríguez Matas, José F; Jalife, José; Berenfeld, Omer; Saiz, Javier
2018-03-01
Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35-94% of the simulation time, depending on the basket's position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures.
Romero, Lucia; Rodríguez Matas, José F.; Berenfeld, Omer; Saiz, Javier
2018-01-01
Anatomically based procedures to ablate atrial fibrillation (AF) are often successful in terminating paroxysmal AF. However, the ability to terminate persistent AF remains disappointing. New mechanistic approaches use multiple-electrode basket catheter mapping to localize and target AF drivers in the form of rotors but significant concerns remain about their accuracy. We aimed to evaluate how electrode-endocardium distance, far-field sources and inter-electrode distance affect the accuracy of localizing rotors. Sustained rotor activation of the atria was simulated numerically and mapped using a virtual basket catheter with varying electrode densities placed at different positions within the atrial cavity. Unipolar electrograms were calculated on the entire endocardial surface and at each of the electrodes. Rotors were tracked on the interpolated basket phase maps and compared with the respective atrial voltage and endocardial phase maps, which served as references. Rotor detection by the basket maps varied between 35–94% of the simulation time, depending on the basket’s position and the electrode-to-endocardial wall distance. However, two different types of phantom rotors appeared also on the basket maps. The first type was due to the far-field sources and the second type was due to interpolation between the electrodes; increasing electrode density decreased the incidence of the second but not the first type of phantom rotors. In the simulations study, basket catheter-based phase mapping detected rotors even when the basket was not in full contact with the endocardial wall, but always generated a number of phantom rotors in the presence of only a single real rotor, which would be the desired ablation target. Phantom rotors may mislead and contribute to failure in AF ablation procedures. PMID:29505583
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.
2016-03-01
Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.
Okada, Jun-Ichi; Washio, Takumi; Nakagawa, Machiko; Watanabe, Masahiro; Kadooka, Yoshimasa; Kariya, Taro; Yamashita, Hiroshi; Yamada, Yoko; Momomura, Shin-Ichi; Nagai, Ryozo; Hisada, Toshiaki; Sugiura, Seiryo
2018-01-01
Background: Cardiac resynchronization therapy is an effective device therapy for heart failure patients with conduction block. However, a problem with this invasive technique is the nearly 30% of non-responders. A number of studies have reported a functional line of block of cardiac excitation propagation in responders. However, this can only be detected using non-contact endocardial mapping. Further, although the line of block is considered a sign of responders to therapy, the mechanism remains unclear. Methods: Herein, we created two patient-specific heart models with conduction block and simulated the propagation of excitation based on a cellmodel of electrophysiology. In one model with a relatively narrow QRS width (176 ms), we modeled the Purkinje network using a thin endocardial layer with rapid conduction. To reproduce a wider QRS complex (200 ms) in the second model, we eliminated the Purkinje network, and we simulated the endocardial mapping by solving the inverse problem according to the actual mapping system. Results: We successfully observed the line of block using non-contact mapping in the model without the rapid propagation of excitation through the Purkinje network, although the excitation in the wall propagated smoothly. This model of slow conduction also reproduced the characteristic properties of the line of block, including dense isochronal lines and fractionated local electrocardiograms. Further, simulation of ventricular pacing from the lateral wall shifted the location of the line of block. By contrast, in the model with the Purkinje network, propagation of excitation in the endocardial map faithfully followed the actual propagation in the wall, without showing the line of block. Finally, switching the mode of propagation between the two models completely reversed these findings. Conclusions: Our simulation data suggest that the absence of rapid propagation of excitation through the Purkinje network is the major cause of the functional line of block recorded by non-contact endocardial mapping. The line of block can be used to identify responders as these patients loose rapid propagation through the Purkinje network.
NASA Astrophysics Data System (ADS)
Lai, Dakun; Sun, Jian; Li, Yigang; He, Bin
2013-06-01
As radio frequency (RF) catheter ablation becomes increasingly prevalent in the management of ventricular arrhythmia in patients, an accurate and rapid determination of the arrhythmogenic site is of important clinical interest. The aim of this study was to test the hypothesis that the inversely reconstructed ventricular endocardial current density distribution from body surface potential maps (BSPMs) can localize the regions critical for maintenance of a ventricular ectopic activity. Patients with isolated and monomorphic premature ventricular contractions (PVCs) were investigated by noninvasive BSPMs and subsequent invasive catheter mapping and ablation. Equivalent current density (CD) reconstruction (CDR) during symptomatic PVCs was obtained on the endocardial ventricular surface in six patients (four men, two women, years 23-77), and the origin of the spontaneous ectopic activity was localized at the location of the maximum CD value. Compared with the last (successful) ablation site (LAS), the mean and standard deviation of localization error of the CDR approach were 13.8 and 1.3 mm, respectively. In comparison, the distance between the LASs and the estimated locations of an equivalent single moving dipole in the heart was 25.5 ± 5.5 mm. The obtained CD distribution of activated sources extending from the catheter ablation site also showed a high consistency with the invasively recorded electroanatomical maps. The noninvasively reconstructed endocardial CD distribution is suitable to predict a region of interest containing or close to arrhythmia source, which may have the potential to guide RF catheter ablation.
Santangeli, Pasquale; Zado, Erica S; Supple, Gregory E; Haqqani, Haris M; Garcia, Fermin C; Tschabrunn, Cory M; Callans, David J; Lin, David; Dixit, Sanjay; Hutchinson, Mathew D; Riley, Michael P; Marchlinski, Francis E
2015-12-01
Catheter ablation of ventricular tachycardia (VT) in arrhythmogenic right ventricular cardiomyopathy improves short-term VT-free survival. We sought to determine the long-term outcomes of VT control and need for antiarrhythmic drug therapy after endocardial (ENDO) and adjuvant epicardial (EPI) substrate modification in patients with arrhythmogenic right ventricular cardiomyopathy. We examined 62 consecutive patients with Task Force criteria for arrhythmogenic right ventricular cardiomyopathy referred for VT ablation with a minimum follow-up of 1 year. Catheter ablation was guided by activation/entrainment mapping for tolerated VT and pacemapping/targeting of abnormal substrate for unmappable VT. Adjuvant EPI ablation was performed when recurrent VT or persistent inducibility after ENDO-only ablation. Endocardial plus adjuvant EPI ablation was performed in 39 (63%) patients, including 13 who crossed over to ENDO-EPI after VT recurrence during follow-up, after ENDO-only ablation. Before ablation, 54 of 62 patients failed a mean of 2.4 antiarrhythmic drugs, including amiodarone in 29 (47%) patients. During follow-up of 56±44 months after the last ablation, VT-free survival was 71% with only a single VT episode in additional 9 patients (15%). At last follow-up, 39 (64%) patients were only on β-blockers or no treatment, 21 were on class 1 or 3 antiarrhythmic drugs (11 for atrial arrhythmias), and 2 were on amiodarone as a bridge to heart transplantation. The long-term outcome after ENDO and adjuvant EPI substrate ablation of VT in arrhythmogenic right ventricular cardiomyopathy is good. Most patients have complete VT control without amiodarone therapy and limited need for antiarrhythmic drugs. © 2015 American Heart Association, Inc.
Yokokawa, Miki; Jung, Dae Yon; Joseph, Kim K; Hero, Alfred O; Morady, Fred; Bogun, Frank
2014-11-01
Twelve-lead electrocardiogram (ECG) criteria for epicardial ventricular tachycardia (VT) origins have been described. In patients with structural heart disease, the ability to predict an epicardial origin based on QRS morphology is limited and has been investigated only for limited regions in the heart. The purpose of this study was to determine whether a computerized algorithm is able to accurately differentiate epicardial vs endocardial origins of ventricular arrhythmias. Endocardial and epicardial pace-mapping were performed in 43 patients at 3277 sites. The 12-lead ECGs were digitized and analyzed using a mixture of gaussian model (MoG) to assess whether the algorithm was able to identify an epicardial vs endocardial origin of the paced rhythm. The MoG computerized algorithm was compared to algorithms published in prior reports. The computerized algorithm correctly differentiated epicardial vs endocardial pacing sites for 80% of the sites compared to an accuracy of 42% to 66% of other described criteria. The accuracy was higher in patients without structural heart disease than in those with structural heart disease (94% vs 80%, P = .0004) and for right bundle branch block (82%) compared to left bundle branch block morphologies (79%, P = .001). Validation studies showed the accuracy for VT exit sites to be 84%. A computerized algorithm was able to accurately differentiate the majority of epicardial vs endocardial pace-mapping sites. The algorithm is not region specific and performed best in patients without structural heart disease and with VTs having a right bundle branch block morphology. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Hansen, Brian J; Zhao, Jichao; Csepe, Thomas A; Moore, Brandon T; Li, Ning; Jayne, Laura A; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A; Simonetti, Orlando P; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L; Weiss, Raul; Hummel, John D; Fedorov, Vadim V
2015-09-14
The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Yamada, Takumi; Maddox, William R; McElderry, H Thomas; Doppalapudi, Harish; Plumb, Vance J; Kay, G Neal
2015-04-01
Idiopathic ventricular arrhythmias (VAs) originating from the left ventricular outflow tract (LVOT) sometimes require catheter ablation from the endocardial and epicardial sides for their elimination, suggesting the presence of intramural VA foci. This study investigated the efficacy of sequential and simultaneous unipolar radiofrequency catheter ablation from the endocardial and epicardial sides in treating intramural LVOT VAs. Fourteen consecutive LVOT VAs, which required sequential or simultaneous irrigated unipolar radiofrequency ablation from the endocardial and epicardial sides for their elimination, were studied. The first ablation was performed at the site with the earliest local ventricular activation and best pace map on the endocardial or epicardial side. When the first ablation was unsuccessful, the second ablation was delivered on the other surface. If this sequential unipolar ablation failed, simultaneous unipolar ablation from both sides was performed. The first ablation was performed on the epicardial side in 9 VAs and endocardial side in 5 VAs. The intramural LVOT VAs were successfully eliminated by the sequential (n=9) or simultaneous (n=5) unipolar catheter ablation. Simultaneous ablation was most likely to be required for the elimination of the VAs when the distance between the endocardial and epicardial ablation sites was >8 mm and the earliest local ventricular activation time relative to the QRS onset during the VAs of <-30 ms was recorded at those ablation sites. LVOT VAs originating from intramural foci could usually be eliminated by sequential unipolar radiofrequency ablation and sometimes required simultaneous ablation from both the endocardial and epicardial sides. © 2015 American Heart Association, Inc.
Validation of electromechanical wave imaging in a canine model during pacing and sinus rhythm.
Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E
2016-11-01
Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium after electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. The objectives of this study were to investigate the relationship between the electromechanical and the electrical activation of the left ventricular (LV) endocardial surface during epicardial and endocardial pacing and during sinus rhythm as well as to map the distribution of electromechanical delays. In this study, 6 canines were investigated. Two external electrodes were sutured onto the epicardial surface of the LV. A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing and during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter, respectively. The mean correlation coefficient between electromechanical and electrical activation was 0.81 for epicardial anterior pacing, 0.79 for epicardial lateral pacing, 0.69 for endocardial pacing, and 0.56 for sinus rhythm. The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Luther, Vishal; Linton, Nick W F; Jamil-Copley, Shahnaz; Koa-Wing, Michael; Lim, Phang Boon; Qureshi, Norman; Ng, Fu Siong; Hayat, Sajad; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa
2016-06-01
Post-infarct ventricular tachycardia is associated with channels of surviving myocardium within scar characterized by fractionated and low-amplitude signals usually occurring late during sinus rhythm. Conventional automated algorithms for 3-dimensional electro-anatomic mapping cannot differentiate the delayed local signal of conduction within the scar from the initial far-field signal generated by surrounding healthy tissue. Ripple mapping displays every deflection of an electrogram, thereby providing fully informative activation sequences. We prospectively used CARTO-based ripple maps to identify conducting channels as a target for ablation. High-density bipolar left ventricular endocardial electrograms were collected using CARTO3v4 in sinus rhythm or ventricular pacing and reviewed for ripple mapping conducting channel identification. Fifteen consecutive patients (median age 68 years, left ventricular ejection fraction 30%) were studied (6 month preprocedural implantable cardioverter defibrillator therapies: median 19 ATP events [Q1-Q3=4-93] and 1 shock [Q1-Q3=0-3]). Scar (<1.5 mV) occupied a median 29% of the total surface area (median 540 points collected within scar). A median of 2 ripple mapping conducting channels were seen within each scar (length 60 mm; initial component 0.44 mV; delayed component 0.20 mV; conduction 55 cm/s). Ablation was performed along all identified ripple mapping conducting channels (median 18 lesions) and any presumed interconnected late-activating sites (median 6 lesions; Q1-Q3=2-12). The diastolic isthmus in ventricular tachycardia was mapped in 3 patients and colocated within the ripple mapping conducting channels identified. Ventricular tachycardia was noninducible in 85% of patients post ablation, and 71% remain free of ventricular tachycardia recurrence at 6-month median follow-up. Ripple mapping can be used to identify conduction channels within scar to guide functional substrate ablation. © 2016 American Heart Association, Inc.
Bogun, Frank; Taj, Majid; Ting, Michael; Kim, Hyungjin Myra; Reich, Stephen; Good, Eric; Jongnarangsin, Krit; Chugh, Aman; Pelosi, Frank; Oral, Hakan; Morady, Fred
2008-03-01
Pace mapping has been used to identify the site of origin of focal ventricular arrhythmias. The spatial resolution of pace mapping has not been adequately quantified using currently available three-dimensional mapping systems. The purpose of this study was to determine the spatial resolution of pace mapping in patients with idiopathic ventricular tachycardia or premature ventricular contractions originating in the right ventricular outflow tract. In 16 patients with idiopathic ventricular tachycardia/ectopy from the right ventricular outflow tract, comparisons and classifications of pace maps were performed by two observers (good pace map: match >10/12 leads; inadequate pace map: match < or =10/12 leads) and a customized MATLAB 6.0 program (assessing correlation coefficient and normalized root mean square of the difference (nRMSd) between test and template signals). With an electroanatomic mapping system, the correlation coefficient of each pace map was correlated with the distance between the pacing site and the effective ablation site. The endocardial area within the 10-ms activation isochrone was measured. The ablation procedure was effective in all patients. Sites with good pace maps had a higher correlation coefficient and lower nRMSd than sites with inadequate pace maps (correlation coefficient: 0.96 +/- 0.03 vs 0.76 +/- 0.18, P <.0001; nRMSd: 0.41 +/- 0.16 vs 0.89 +/- 0.39, P <.0001). Using receiver operating characteristic curves, appropriate cutoff values were >0.94 for correlation coefficient (sensitivity 81%, specificity 89%) and < or =0.54 for nRMSd (sensitivity 76%, specificity 80%). Good pace maps were located a mean of 7.3 +/- 5.0 mm from the effective ablation site and had a mean activation time of -24 +/- 7 ms. However, in 3 (18%) of 16 patients, the best pace map was inadequate at the effective ablation site, with an endocardial activation time at these sites of -25 +/- 12 ms. Pace maps with correlation coefficient > or =0.94 were confined to an area of 1.8 +/- 0.6 cm2. The 10-ms isochrone measured 1.2 +/- 0.7 cm2. The spatial resolution of a good pace map for targeting ventricular tachycardia/ectopy is 1.8 cm2 in the right ventricular outflow tract and therefore is inferior to the spatial resolution of activation mapping as assessed by isochronal activation. In approximately 20% of patients, pace mapping is unreliable in identifying the site of origin, possibly due a deeper site of origin and preferential conduction via fibers connecting the focus to the endocardial surface.
Miyamoto, Koji; Noda, Takashi; Satomi, Kazuhiro; Wada, Mitsuru; Nakajima, Ikutaro; Ishibashi, Kohei; Okamura, Hideo; Noguchi, Teruo; Anzai, Toshihisa; Yasuda, Satoshi; Ogawa, Hisao; Shimizu, Wataru; Aiba, Takeshi; Kamakura, Shiro; Kusano, Kengo
2016-08-01
Patients with ischemic and non-ischemic cardiomyopathy often have substrate for ventricular tachycardia (VT) in the endocardium (ENDO), epicardium (EPI), and/or intramural. Although it has been reported that the ENDO unipolar (UNI) voltage map is useful in detecting EPI substrate, its feasibility to detect intramural scarring and its usefulness in radiofrequency catheter ablation (RFCA) remain unclear. To assess the relationship between the left ventricle (LV) ENDO UNI voltage map and the LV EPI bipolar (BIP) voltage map, and to determine the usefulness of the ENDO UNI voltage map to guide RFCA for VT in patients with cardiomyopathy undergoing combined ENDO- and EPI RFCA. Eleven patients with VT undergoing detailed ENDO and EPI electroanatomical mapping of the LV were included (mean age 59 ± 11 years, 9 men). We assessed the value of the LV ENDO UNI voltage map in identifying EPI and/or intramural substrate in these 11 patients with non-ischemic or ischemic cardiomyopathy. The underlying heart disease was dilated cardiomyopathy in 4 patients, cardiac sarcoidosis in 3, hypertrophic cardiomyopathy in 2, and ischemic heart disease in 2 patients. The mean LV ejection fraction was 24 ± 7 %. The low voltage zone (LVZ) was defined as <1.5 mV for LV ENDO BIP electrograms (EGMs), <8.3 mV for LV ENDO UNI EGMs, and <1.0 mV for LV EPI BIP EGMs. The surface area of each LVZ was measured. We also measured the LVZ of the spatial overlap between ENDO UNI and EPI BIP voltage maps using the transparency mode on CARTO software. We performed RFCA at the ENDO and EPI based on activation and/or substrate maps, targeting the LVZ and/or abnormal EGMs. The LVZ was present in the LV ENDO BIP voltage map in 10 of 11 patients (42 ± 33 cm(2)), and in the LV ENDO UNI voltage map in 10 of 11 patients (72 ± 45 cm(2)). The LVZ was present in the EPI BIP voltage map in 9 of 11 patients (70 ± 61 cm(2)), and the LVZ in the ENDO UNI voltage map was also seen in all 9 patients. The location of the LVZ in the EPI BIP map matched that in 45 ± 28 % of ENDO UNI voltage maps. The LVZ in the ENDO UNI voltage map was larger than that in the EPI BIP voltage map in 6 of 11 patients, and RFCA failed in 5 of these 6 patients. In the remaining 5 patients with a smaller LVZ in the ENDO UNI voltage map compared with the EPI BIP voltage map or no LVZ both at ENDO UNI and EPI BIP voltage map, VT was successfully eliminated in 4 of 5 patients. The LV ENDO UNI voltage map is useful in detecting EPI substrate in patients with cardiomyopathy. A larger LVZ in the ENDO UNI voltage map compared to that in the EPI BIP voltage map may indicate the presence of intramural substrate, which leads to difficulty in eliminating VT, even with combined ENDO- and EPI RFCA.
Characterization of the Left-Sided Substrate in Arrhythmogenic Right Ventricular Cardiomyopathy.
Berte, Benjamin; Denis, Arnaud; Amraoui, Sana; Yamashita, Seigo; Komatsu, Yuki; Pillois, Xavier; Sacher, Frédéric; Mahida, Saagar; Wielandts, Jean-Yves; Sellal, Jean-Marc; Frontera, Antonio; Al Jefairi, Nora; Derval, Nicolas; Montaudon, Michel; Laurent, François; Hocini, Mélèze; Haïssaguerre, Michel; Jaïs, Pierre; Cochet, Hubert
2015-12-01
The correlates of left ventricular (LV) substrate in arrhythmogenic right ventricular (RV) cardiomyopathy are largely unknown. Thirty-two patients with arrhythmogenic RV cardiomyopathy (47±14 years; 6 women) were included. RV and LV dysplasia were defined from multidetector computed tomography and cardiac magnetic resonance imaging. Arrhythmias were characterized as right-sided or left-sided on 12-lead ECG recordings at baseline and during isoproterenol testing. In 14 patients, the imaging substrate was compared with voltage mapping and local abnormal ventricular activity. Imaging abnormalities were found in 32 (100%) and 21 (66%) patients on the RV and LV, respectively, intramyocardial fat on multidetector computed tomography being the most sensitive feature. LV involvement related to none of the Task Force criteria. Right-sided arrhythmias were more frequent than left-sided arrhythmias (P=0.003) although the latter were more frequent in case of LV involvement (P=0.02). The agreement between low voltage and fat on multidetector computed tomography was high on the RV when using either endocardial unipolar or epicardial bipolar data (κ=0.82 and κ=0.78, respectively) but lower on the LV (κ=0.54 for epicardial bipolar). LV local abnormal ventricular activity was found in all patients with LV involvement, and none of the others. The density of local abnormal ventricular activity within fat areas was similar between the RV and LV (P=0.57). LV substrate is frequent in arrhythmogenic RV cardiomyopathy, but poorly identified by current diagnostic strategies. Left-sided arrhythmias are more frequent in case of LV involvement. LV fat hosts the same density of local abnormal ventricular activity as RV fat, but is less efficiently detected by voltage mapping. These results support the need for alternative diagnostic strategies to identify LV dysplasia. © 2015 American Heart Association, Inc.
Ribo, Tang; Jianzeng, Dong; Xiaohui, Liu; Meisheng, Shang; Ronghui, Yu; Deyong, Long; Xin, Du; Junping, Kang; Jiahui, Wu; Man, Ning; Caihua, Sang; Chenxi, Jiang; Rong, Bai; Songnan, Li; Yan, Yao; Songnan, Wen; Changsheng, Ma
2015-08-01
To explore if CHA2DS2 VASc score can predict substrate for persistent atrial fibrillation ( AF) and outcome post catheter ablation of AF. From January 2011 to December 2012,116 patients underwent catheter ablation of persistent AF in our department and were enrolled in this study. CHA2DS2VASc score was calculated as follows: two points were assigned for a history of stroke or transient ischemic attack and age ≥ 75 and 1 point each was assigned for age ≥ 65, a history of hypertension, diabetes,recent cardiac failure, vessel disease, female. Left atrial geometry ( LA) was reconstructed with a 3.5 mm tip ablation catheter with fill-in threshold 10 in CARTO system. The mapping catheter was stabled at each endocardial location for at least 3 seconds for recording. The electrogram recordings at each endocardial location were analyzed with a custom software embedded in the CARTO mapping system. Interval confidence level (ICL) was used to characterize complex fractionated atrial electrograms (CFAEs) . As the default setting of the software, ICL more than or equal to 7 was considered sites with a highly repetitive CFAEs complex. CFAEs index was defined as the fraction of area of ICL more than or equal to 7 to the left atrial surface. The CFAEs index and outcome of catheter ablation among different CHA2DS2VASc groups were compared. Of the 116 patients, CHA2DS2VASc was 0 in 33 patients, 1 in 31 patients and ≥ 2 in 52 patients. Left atrial surface ((121.2 ± 18.9) cm2, (133.6 ± 23.8) cm2, (133.9 ± 16.1) cm2, P = 0.008), left atrial volume ((103.6 ± 24.8) ml, (118.3 ± 27.8) ml, (120.9 ± 20.9) ml, P = 0.005) and CFAEs index (44.6% ± 22.4%, 54.2% ± 22.2%, 58.7% ± 23.1%, P = 0.023) increased in proportion with increasing CHA2DS2VASc. ICLmax, ICLmin and CFAEs spatial distribution were similar among the three groups. During the mean follow-up of (13 ± 8) months, the recurrence rate were 36.4%, 35.5%, 55.8% among the three groups (P = 0.025). A high CHA2DS2VASc score is associated with extensive AF substrate and higher recurrence rate post catheter ablation of persistent AF.
de Paola, A A; Balbão, C E; Castiglioni, M L; Barbieri, A; Mendonça, A; Netto, O S; Guiguer Júnior, N; Vattimo, A C; Souza, I A; Portugal, O P
1993-06-01
To localize the site of the origin of sustained ventricular tachycardia in chronic chagasic cardiomyopathy patients refractory to antiarrhythmic therapy by radionuclide angiography techniques. Five patients underwent radionuclide angiography by intravenous administration of 25mCi 99mTc. The images were obtained in sinus rhythm and during sustained ventricular tachycardia induced in the electrophysiologic laboratory for endocardial mapping. Amplitude and phase images were obtained resulting in a contraction wave synchronic to ventricular dispolarization. All patients had haemodynamic stability during the arrhythmia. One patient had incessant ventricular tachycardia. Mean ejection fraction was 0.38. In 4 patients the site of the origin of ventricular tachycardia was posterior and in one it was localized in the interventricular septum. There was identity in the site of the origin of ventricular tachycardia obtained by endocardial mapping or radionuclide angiography in all patients. The therapy was chemical ablation in 3 patients, surgical aneurysmectomy in one and pharmacologic therapy in the last patient. The site of the origin of ventricular tachycardia can be estimated by analyzing the contraction wave obtained by radionuclide angiography techniques in patients with hemodynamic stable sustained ventricular tachycardia.
KRUMMEN, DAVID E.; HAYASE, JUSTIN; VAMPOLA, STEPHEN P.; HO, GORDON; SCHRICKER, AMIR A.; LALANI, GAUTAM G.; BAYKANER, TINA; COE, TAYLOR M.; CLOPTON, PAUL; RAPPEL, WOUTER-JAN; OMENS, JEFFREY H.; NARAYAN, SANJIV M.
2016-01-01
Introduction Recent work has suggested a role for organized sources in sustaining ventricular fibrillation (VF). We assessed whether ablation of rotor substrate could modulate VF inducibility in canines, and used this proof-of-concept as a foundation to suppress antiarrhythmic drug-refractory clinical VF in a patient with structural heart disease. Methods and Results In 9 dogs, we introduced 64-electrode basket catheters into one or both ventricles, used rapid pacing at a recorded induction threshold to initiate VF, and then defibrillated after 18±8 seconds. Endocardial rotor sites were identified from basket recordings using phase mapping, and ablation was performed at nonrotor (sham) locations (7 ± 2 minutes) and then at rotor sites (8 ± 2 minutes, P = 0.10 vs. sham); the induction threshold was remeasured after each. Sham ablation did not alter canine VF induction threshold (preablation 150 ± 16 milliseconds, postablation 144 ± 16 milliseconds, P = 0.54). However, rotor site ablation rendered VF noninducible in 6/9 animals (P = 0.041), and increased VF induction threshold in the remaining 3. Clinical proof-of-concept was performed in a patient with repetitive ICD shocks due to VF refractory to antiarrhythmic drugs. Following biventricular basket insertion, VF was induced and then defibrillated. Mapping identified 4 rotors localized at borderzone tissue, and rotor site ablation (6.3 ± 1.5 minutes/site) rendered VF noninducible. The VF burden fell from 7 ICD shocks in 8 months preablation to zero ICD therapies at 1 year, without antiarrhythmic medications. Conclusions Targeted rotor substrate ablation suppressed VF in an experimental model and a patient with refractory VF. Further studies are warranted on the efficacy of VF source modulation. PMID:26179310
Vatasescu, Radu; Shalganov, Tchavdar; Kardos, Attila; Jalabadze, Khatuna; Paprika, Dora; Gyorgy, Margit; Szili-Torok, Tamas
2006-10-01
Inappropriate sinus tachycardia (IST) is a rare disorder amenable to catheter ablation when refractory to medical therapy. Radiofrequency (RF) catheter modification/ablation of the sinus node (SN) is the usual approach, although it can be complicated by right phrenic nerve paralysis. We describe a patient with IST, who had symptomatic recurrences despite previous acutely successful RF SN modifications, including the use of electroanatomical mapping/navigation system. We decided to try transvenous cryothermal modification of the SN. We used 2 min applications at -85 degrees C at sites of the earliest atrial activation guided by activation mapping during isoprenaline infusion. Every application was preceded by high output stimulation to reveal phrenic nerve proximity. During the last application, heart rate slowly and persistently fell below 85 bpm despite isoprenaline infusion, but right diaphragmatic paralysis developed. At 6 months follow-up, the patient was asymptomatic and the diaphragmatic paralysis had partially resolved. This is the first report, we believe, of successful SN modification for IST by endocardial cryoablation, although this case also demonstrates the considerable risk of right phrenic nerve paralysis even with this ablation energy.
Arrhythmogenic Mechanisms in a Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia
Cerrone, Marina; Noujaim, Sami F.; Tolkacheva, Elena G.; Talkachou, Arkadzi; O’Connell, Ryan; Berenfeld, Omer; Anumonwo, Justus; Pandit, Sandeep V.; Vikstrom, Karen; Napolitano, Carlo; Priori, Silvia G.; Jalife, José
2008-01-01
Catecholaminergic polymorphic ventricular tachycardia (VT) is a lethal familial disease characterized by bidirectional VT, polymorphic VT, and ventricular fibrillation. Catecholaminergic polymorphic VT is caused by enhanced Ca2+ release through defective ryanodine receptor (RyR2) channels. We used epicardial and endocardial optical mapping, chemical subendocardial ablation with Lugol’s solution, and patch clamping in a knockin (RyR2/RyR2R4496C) mouse model to investigate the arrhythmogenic mechanisms in catecholaminergic polymorphic VT. In isolated hearts, spontaneous ventricular arrhythmias occurred in 54% of 13 RyR2/RyR2R4496C and in 9% of 11 wild-type (P=0.03) littermates perfused with Ca2+ and isoproterenol; 66% of 12 RyR2/RyR2R4496C and 20% of 10 wild-type hearts perfused with caffeine and epinephrine showed arrhythmias (P=0.04). Epicardial mapping showed that monomorphic VT, bidirectional VT, and polymorphic VT manifested as concentric epicardial breakthrough patterns, suggesting a focal origin in the His–Purkinje networks of either or both ventricles. Monomorphic VT was clearly unifocal, whereas bidirectional VT was bifocal. Polymorphic VT was initially multifocal but eventually became reentrant and degenerated into ventricular fibrillation. Endocardial mapping confirmed the Purkinje fiber origin of the focal arrhythmias. Chemical ablation of the right ventricular endocardial cavity with Lugol’s solution induced complete right bundle branch block and converted the bidirectional VT into monomorphic VT in 4 anesthetized RyR2/RyR2R4496C mice. Under current clamp, single Purkinje cells from RyR2/RyR2R4496C mouse hearts generated delayed afterdepolarization–induced triggered activity at lower frequencies and level of adrenergic stimulation than wild-type. Overall, the data demonstrate that the His–Purkinje system is an important source of focal arrhythmias in catecholaminergic polymorphic VT. PMID:17872467
Differences in transient outward currents of feline endocardial and epicardial myocytes.
Furukawa, T; Myerburg, R J; Furukawa, N; Bassett, A L; Kimura, S
1990-11-01
Whole-cell voltage-clamp experiments were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to test the hypothesis that the differences in the amplitude of transient outward current (Ito) contribute to the difference in action potential configuration between endocardial and epicardial myocytes. In the control state, action potentials recorded from epicardial cells demonstrated a prominent notch between phases 1 and 2, and membrane current recordings displayed a prominent Ito, whereas in endocardial cells the notch in action potentials and Ito were small. External application of 4-aminopyridine (2 mM) reduced the amplitudes of notch and Ito in epicardial cells but not in endocardial cells. After application of 4-aminopyridine (2 mM) and caffeine (5 mM), the notch and Ito were abolished completely in both endocardial and epicardial cells. The first component of Ito (Ito1) was present in all epicardial cells studied (n = 20); it was absent in 12 of the 20 endocardial cells, and a small Ito1 was present in the remaining eight endocardial cells. The mean amplitude of Ito1 was significantly greater in epicardial than in endocardial cells. At a test voltage of +80 mV, the amplitude of Ito1 was 102.0 +/- 47.7 pA/pF in epicardial cells and 3.3 +/- 3.3 pA/pF in endocardial cells (p less than 0.01). The second component of Ito (Ito2) was present in all endocardial (n = 30) and epicardial (n = 30) cells studied. The amplitude of Ito2 was significantly greater in epicardial than in endocardial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Validation of Electromechanical Wave Imaging in a canine model during pacing and sinus rhythm
Grondin, Julien; Costet, Alexandre; Bunting, Ethan; Gambhir, Alok; Garan, Hasan; Wan, Elaine; Konofagou, Elisa E.
2016-01-01
Background Accurate determination of regional areas of arrhythmic triggers is of key interest to diagnose arrhythmias and optimize their treatment. Electromechanical wave imaging (EWI) is an ultrasound technique that can image the transient deformation in the myocardium following electrical activation and therefore has the potential to detect and characterize location of triggers of arrhythmias. Objectives The objectives of this study are to investigate the relationship between electromechanical and electrical activation of the left-ventricular (LV) endocardial surface during epicardial and endocardial pacing as well as during sinus rhythm and also to investigate the distribution of electromechanical delays. Methods In this study, six canines were investigated. Two external electrodes were sutured onto the epicardial surface of the left ventricle (LV). A 64-electrode basket catheter was inserted through the apex of the LV. Ultrasound channel data were acquired at 2000 frames/s during epicardial and endocardial pacing as well as during sinus rhythm. Electromechanical and electrical activation maps were synchronously obtained from the ultrasound data and the basket catheter respectively. Results The mean correlation coefficient between electromechanical and electrical activation was R=0.81 for epicardial anterior pacing, R=0.79 for epicardial lateral pacing, R=0.69 for endocardial pacing and R=0.56 for sinus rhythm. Conclusions The electromechanical activation sequence determined by EWI follows the electrical activation sequence and more specifically in the case of pacing. This finding is of key interest in the role that EWI can play in the detection of the anatomical source of arrhythmias and the planning of pacing therapies such as cardiovascular resynchronization therapy. PMID:27498277
Dosdall, Derek J; Tabereaux, Paul B; Kim, Jong J; Walcott, Gregory P; Rogers, Jack M; Killingsworth, Cheryl R; Huang, Jian; Robertson, Peter G; Smith, William M; Ideker, Raymond E
2008-08-01
Endocardial mapping has suggested that Purkinje fibers may play a role in the maintenance of long-duration ventricular fibrillation (LDVF). To determine the influence of Purkinje fibers on LDVF, we chemically ablated the Purkinje system with Lugol solution and recorded endocardial and transmural activation during LDVF. Dog hearts were isolated and perfused, and the ventricular endocardium was exposed and treated with Lugol solution (n = 6) or normal Tyrode solution as a control (n = 6). The left anterior papillary muscle endocardium was mapped with a 504-electrode (21 x 24) plaque with electrodes spaced 1 mm apart. Transmural activation was recorded with a six-electrode plunge needle on each side of the plaque. Ventricular fibrillation (VF) was induced, and perfusion was halted. LDVF spontaneously terminated sooner in Lugol-ablated hearts than in control hearts (4.9 +/- 1.5 vs. 9.2 +/- 3.2 min, P = 0.01). After termination of VF, both the control and Lugol hearts were typically excitable, but only short episodes of VF could be reinduced. Endocardial activation rates were similar during the first 2 min of LDVF for Lugol-ablated and control hearts but were significantly slower in Lugol hearts by 3 min. In control hearts, the endocardium activated more rapidly than the epicardium after 4 min of LDVF with wave fronts propagating most often from the endocardium to epicardium. No difference in transmural activation rate or wave front direction was observed in Lugol hearts. Ablation of the subendocardium hastens VF spontaneous termination and alters VF activation sequences, suggesting that Purkinje fibers are important in the maintenance of LDVF.
Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation.
Lozekoot, Pieter W J; de Jong, Monique M J; Gelsomino, Sandro; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; Kumar, N; Nijs, Jan; Czapla, Jens; Kwant, Paul; Bani, Daniele; Gensini, Gian Franco; Pison, Laurent; Crijns, Harry J G M; Maessen, Jos G; La Meir, Mark
2016-03-01
Data on epicardial contact force efficacy in dual epicardial-endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation's diameters, area, and volume. An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion's diameters, area, and volumes. Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial-endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary.
Taccardi, B; Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S
1987-01-01
An olive-shaped probe (25 X 12 mm) with 41 evenly distributed recording electrodes on its surface was introduced into the left ventricles of seven open-chest dogs via the left atrium. In two other dogs a cylindrical probe (40 X 3 mm) was used. Electrical stimuli were delivered at 66 endocardial, midwall, or epicardial sites in the left and right ventricular walls and the septum. Mechanical stimuli were also applied at various epicardial sites. On-line mapping of equipotential contour lines on the surface of the probe invariably revealed a clear-cut potential minimum on the electrode that faced the pacing site. Time of appearance of potential minimum was 3 to 5 msec after endocardial stimuli, 10 to 25 msec for midwall and epicardial pacing, and 30 msec or more for right ventricular stimulation. Simultaneous stimulation at two sites 1.2 cm apart gave rise to two separate minima on the maps. "Pseudoisochrones" derived from electrograms recorded by the new probe were slightly less accurate in indicating the site of origin of extrasystoles. We conclude that equipotential and "isochrone" contour maps recorded from an array of semidirect electrodes, regularly distributed on the surface of an intraventricular probe, provide information on the site of origin (location and intramural depth) of ectopic paced beats in a normal dog heart.
Teijeira-Fernandez, Elvis; Cochet, Hubert; Bourier, Felix; Takigawa, Masateru; Cheniti, Ghassen; Thompson, Nathaniel; Frontera, Antonio; Camaioni, Claudia; Massouille, Gregoire; Jalal, Zakaria; Derval, Nicolas; Iriart, Xavier; Denis, Arnaud; Hocini, Meleze; Haissaguerre, Michel; Jais, Pierre; Thambo, Jean-Benoit; Sacher, Frederic
2018-03-20
Voltage criteria for ventricular mapping have been obtained from small series of patients and prioritizing high specificity. The purpose of this study was to analyse the potential influence of contact force (CF) on voltage mapping and to define voltage cutoff values for right ventricular (RV) scar using the tetralogy of Fallot as a model of transmural RV scar and magnetic resonance imaging (MRI) as reference. Fourteen patients (age 32.6 ± 14.3 years; 5 female) with repaired tetralogy of Fallot underwent high-resolution cardiac MRI (1.25 × 1.25 × 2.5 mm). Scar, defined as pixels with intensity >50% maximum, was mapped over the RV geometry and merged within the CARTO system to RV endocardial voltage maps acquired using a 3.5-mm ablation catheter with CF technology (SmartTouch, Biosense Webster). In total, 2446 points were analyzed, 915 within scars and 1531 in healthy tissue according to MRI. CF correlated to unipolar (ρ = 0.186; P <.001) and bipolar voltage in healthy tissue (ρ = 0.245; P <.001) and in scar tissue. Receiver operating characteristic curve analysis excluding points with very low CF (<5g) identified optimal voltage cutoffs of 5.19 mV for unipolar voltage and 1.76 mV for bipolar voltage, yielding sensitivity/specificity of 0.89/0.85 and 0.9/0.9, respectively. CF is an important factor to be taken into account for voltage mapping. If good CF is applied, unipolar and bipolar voltage cutoffs of 5.19 mV and 1.76 mV are optimal for identifying RV scar on endocardial mapping with the SmartTouch catheter. Data on the diagnostic accuracy of different voltage cutoff values are provided. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Osadchii, O E
2012-08-01
Endocardial pacing instituted to treat symptomatic bradycardia may nevertheless promote tachyarrhythmia in some pacemaker-implanted patients. We sought to determine the contributing electrophysiological mechanisms. Left ventricular (LV) monophasic action potential duration (APD(90)) and effective refractory periods were determined in perfused guinea-pig hearts along with volume-conducted ECG recordings during epicardial and endocardial stimulations. Consistent with electrotonic modulation of repolarization, APD(90) at a given (either epicardial or endocardial) recording site tended to be longer while pacing from the ipsilateral LV site as compared to stimulations applied at the opposite side of ventricular wall. As a result, the intrinsic transmural repolarization gradient was amplified during endocardial pacing while being significantly reduced upon epicardial stimulations. The maximum slope of APD(90) restitution was greater upon endocardial than epicardial pacing. The excitability was found to recur at earlier repolarization time point at endocardium than epicardium, thereby contributing to increased endocardial critical intervals for re-excitation. Premature extrasystolic beats could have been elicited at shorter coupling stimulation intervals and propagated with greater transmural conduction delay upon endocardial than epicardial stimulations. Endocardial site exhibited lower ventricular fibrillation thresholds and greater inducibility of tachyarrhythmia upon extrasystolic stimulations as compared to epicardium. Arrhythmic susceptibility in guinea-pig heart is greater during endocardial than epicardial pacing because of greater transmural APD(90) dispersion, steeper electrical restitution slopes, greater critical intervals for LV re-excitation and slower transmural conduction of the earliest premature ectopic beats. Further studies are warranted to determine whether these effects may contribute to proarrhythmia in paced human patients. © 2012 The Author Acta Physiologica © 2012 Scandinavian Physiological Society.
Roujol, Sebastien; Basha, Tamer A; Tan, Alex; Khanna, Varun; Chan, Raymond H; Moghari, Mehdi H; Rayatzadeh, Hussein; Shaw, Jaime L; Josephson, Mark E; Nezafat, Reza
2013-05-01
Electroanatomical voltage mapping (EAVM) is commonly performed prior to catheter ablation of scar-related ventricular tachycardia (VT) to locate the arrhythmic substrate and to guide the ablation procedure. EAVM is used to locate the position of the ablation catheter and to provide a 3-D reconstruction of left-ventricular anatomy and scar. However, EAVM measurements only represent the endocardial scar with no transmural or epicardial information. Furthermore, EAVM is a time-consuming procedure, with a high operator dependence and has low sampling density, i.e., spatial resolution. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows noninvasive assessment of scar morphology that can depict 3-D scar architecture. Despite the potential use of LGE as a roadmap for VT ablation for identification of arrhythmogenic substrate, its utility has been very limited. To allow for identification of VT substrate, a correlation is needed between the substrates identified by EAVM as the gold standard and LGE-MRI scar characteristics. To do so, a system must be developed to fuse the datasets from these modalities. In this study, a registration pipeline for the fusion of LGE-MRI and EAVM data is presented. A novel surface registration algorithm is proposed, integrating the matching of global scar areas as an additional constraint in the registration process. A preparatory landmark registration is initially performed to expedite the convergence of the algorithm. Numerical simulations were performed to evaluate the accuracy of the registration in the presence of errors in identifying landmarks in EAVM or LGE-MRI datasets as well as additional errors due to respiratory or cardiac motion. Subsequently, the accuracy of the proposed fusion system was evaluated in a cohort of ten patients undergoing VT ablation where both EAVM and LGE-MRI data were available. Compared to landmark registration and surface registration, the presented method achieved significant improvement in registration error. The proposed data fusion system allows the fusion of EAVM and LGE-MRI data in VT ablation with registration errors less than 3.5 mm.
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.
Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548
Kumar, Saurabh; Fujii, Akira; Kapur, Sunil; Romero, Jorge; Mehta, Nishaki K; Tanigawa, Shinichi; Epstein, Laurence M; Koplan, Bruce A; Michaud, Gregory F; John, Roy M; Stevenson, William G; Tedrow, Usha B
2017-01-01
Catheter ablation can be lifesaving in ventricular tachycardia (VT) storm, but the underlying substrate in patients with storm is not well characterized. We sought to compare the clinical factors, substrate, and outcomes differences in patients with sustained monomorphic VT who present for catheter ablation with VT storm versus those with a nonstorm presentation. Consecutive ischemic (ICM; n = 554) or nonischemic cardiomyopathy patients (NICM; n = 369) with a storm versus nonstorm presentation were studied (ICM storm 186; NICM storm 101). In ICM, storm compared with nonstorm patients had significantly lower left ventricular (LV) ejection fraction (EF), greater number of antiarrhythmic drug (AAD) failures, slower VTs, greater number of scarred LV segments, higher incidence of anterior, septal, and apical endocardial LV scar (all P < 0.05). However, outcomes in follow-up were similar (12-month ventricular arrhythmia [VA]-free survival: 51% vs. 52%, P = 0.6; survival free of death/transplant 75% vs. 87%, P = 0.7). In addition to the above differences, NICM storm patients were also older; however, the extent and distribution of scar was similar except for a higher incidence of lateral endocardial scar in storm patients (P = 0.05). VA-free survival (36% vs. 47%, P = 0.004) and survival free of death/transplant, however, were worse in NICM storm than nonstorm patients (72% vs. 88%, P = 0.001). NICM storm patients had worse VA-free survival than ICM storm patients. There are differences in clinical factors and scar patterns in patients undergoing VT ablation who present with VT storm versus those with a nonstorm presentation. Clinical outcomes are worse in NICM storm patients. © 2016 Wiley Periodicals, Inc.
Riedlbauchová, Lucie; Janoušek, Jan; Veselka, Josef
2013-06-01
Alcohol septal ablation and surgical myectomy represent accepted therapeutic options for treatment of symptomatic patients with hypertrophic obstructive cardiomyopathy. Long-term experience with radiofrequency ablation of arrhythmogenic substrates raised a question if this technique might be effective for left ventricular outflow tract (LVOT) gradient reduction. We report on a 63-year-old patient with recurrence of symptoms 1 year after alcohol septal ablation (ASA) leading originally to a significant reduction of both symptoms and gradient. Due to a new increase of gradient in the LVOT up to 200 mm Hg with corresponding worsening of symptoms and due to refusal of surgical myectomy by the patient, endocardial radiofrequency ablation of the septal hypertrophy (ERASH) was indicated. Radiofrequency ablation was performed in the LVOT using irrigated-tip ablation catheter; the target site was identified using intracardiac echocardiography and electroanatomical CARTO mapping. ERASH caused an immediate gradient reduction due to hypokinesis of the ablated septum. At 2-month follow-up exam, significant clinical improvement was observed, together with persistent gradient reduction assessed with Doppler echocardiography. Echocardiography and magnetic resonance revealed persistent septal hypokinesis and slight thinning of the ablated region. Septal ablation using radiofrequency energy may be a promising alternative or adjunct to the treatment of hypertrophic obstructive cardiomyopathy. Intracardiac echocardiography and electroanatomical CARTO mapping enable exact lesion placement and preservation of atrioventricular conduction.
Luani, Blerim; Zrenner, Bernhard; Basho, Maksim; Genz, Conrad; Rauwolf, Thomas; Tanev, Ivan; Schmeisser, Alexander; Braun-Dullaeus, Rüdiger C
2018-01-01
Stochastic damage of the ionizing radiation to both patients and medical staff is a drawback of fluoroscopic guidance during catheter ablation of cardiac arrhythmias. Therefore, emerging zero-fluoroscopy catheter-guidance techniques are of great interest. We investigated, in a prospective pilot study, the feasibility and safety of the cryothermal (CA) slow-pathway ablation in patients with symptomatic atrioventricular-nodal-re-entry-tachycardia (AVNRT) using solely intracardiac echocardiography (ICE) for endovascular and endocardial catheter visualization. Twenty-five consecutive patients (mean age 55.6 ± 12.0 years, 17 female) with ECG-documentation or symptoms suggesting AVNRT underwent an electrophysiology study (EPS) in our laboratory utilizing ICE for catheter navigation. Supraventricular tachycardia was inducible in 23 (92%) patients; AVNRT was confirmed by appropriate stimulation maneuvers in 20 (80%) patients. All EPS in the AVNRT subgroup could be accomplished without need for fluoroscopy, relying solely on ICE-guidance. CA guided by anatomical location and slow-pathway potentials was successful in all patients, median cryo-mappings = 6 (IQR:3-10), median cryo-ablations = 2 (IQR:1-3). Fluoroscopy was used to facilitate the trans-septal puncture and localization of the ablation substrate in the remaining 3 patients (one focal atrial tachycardia and two atrioventricular-re-entry-tachycardias). Mean EPS duration in the AVNRT subgroup was 99.8 ± 39.6 minutes, ICE guided catheter placement 11.9 ± 5.8 minutes, time needed for diagnostic evaluation 27.1 ± 10.8 minutes, and cryo-application duration 26.3 ± 30.8 minutes. ICE-guided zero-fluoroscopy CA in AVNRT patients is feasible and safe. Real-time visualization of the true endovascular borders and cardiac structures allow for safe catheter navigation during the ICE-guided EPS and might be an alternative to visualization technologies using geometry reconstructions. © 2017 Wiley Periodicals, Inc.
Barrett, J A; Lynch, V D; Balkon, J; Wolf, P S
1986-06-01
The ability to continuously monitor the delicate balance between blood flow and oxygen consumption would be a great asset in the study of myocardial ischemia. The present study was performed, in anesthetized dogs, to validate the use of encased polargraphic oxygen electrodes in the study of myocardial ischemia. Polargraphic oxygen electrodes were placed in the area to be rendered ischemic at fixed tissue depths of 3 mm (epicardium) and 9 mm (endocardium). Endocardial and epicardial oxygen tensions as well as the ratio of endocardial to epicardial oxygen tension and left circumflex coronary flow were monitored. Ischemia was induced by decreasing left circumflex coronary flow by 50%. Upon completion of a 20-min poststenotic period, endocardial pO2, endocardial/epicardial ratio, and coronary flow were significantly decreased (59 +/- 7, 52 +/- 7, and 55 +/- 4%, respectively) whereas epicardial pO2 was slightly decreased. Nitroglycerin (10 micrograms/kg, i.v.) markedly increased endocardial pO2 and endocardial/epicardial ratio above poststenotic control (13 +/- 5 mmHg and 64 +/- 10%, respectively) whereas epicardial pO2 was not significantly decreased. The increases in endocardial pO2 occurred at a point where coronary flow and mean arterial pressure were not significantly changed. Conversely, dipyridamole (125 micrograms/kg, i.v.) significantly increased coronary flow (26 +/- 2 ml/min/100 g) although it did not appreciably alter endocardial or epicardial pO2. It is concluded that encased polargraphic oxygen electrodes provide a quantitative method for determination of oxygen tension in the ischemic myocardium.
Graham, Adam J; Providenica, Rui; Honarbakhsh, Shohreh; Srinivasan, Neil; Sawhney, Vinit; Hunter, Ross; Lambiase, Pier
2018-04-01
Cardiac resynchronization using a left ventricular (LV) epicardial lead placed in the coronary sinus is now routinely used in the management of heart failure patients. LV endocardial pacing is an alternative when this is not feasible, with outcomes data sparse. To review the available evidence on the efficacy and safety of endocardial LV pacing via meta-analysis. EMBASE, MEDLINE, and COCHRANE databases with the search term "endocardial biventricular pacing" or "endocardial cardiac resynchronization" or "left ventricular endocardial" or "endocardial left ventricular." Comparisons of pre-and post-QRS width, LV ejection fraction (LVEF), and New York Heart Association (NYHA) functional classification was performed, and mean differences (and respective 95% confidence interval [CI]) applied as a measurement of treatment effect. Fifteen studies, including 362 patients, were selected. During a mean follow-up of 40 ± 24.5 months, death occurred in 72 patients (11 per 100 patient-years). Significant improvements in LVEF (mean difference 7.9%, 95% CI 5-10%, P < 0.0001; I 2 = 73%), QRS width (mean difference: -41% 95% -75 to -7%; P < 0.0001; I 2 = 94%), and NYHA class (mean difference: -1.06, 95% CI -1.2 to -0.9, P < 0.0001; I 2 = 60%), (all P < 0.0001) occurred. Stroke rate was 3.3-4.2 per 100 patient-years, which is higher than equivalent heart failure trial populations and recent meta-analysis that included small case series. LV endocardial lead implantation is a potentially efficacious alternative to CS lead placement, but preliminary data suggest a potentially higher risk of stroke during follow-up when compared to the expected incidence of stroke in similar cohorts of patients. © 2018 Wiley Periodicals, Inc.
Sawhney, Vinit; Domenichini, Giulia; Gamble, James; Furniss, Guy; Panagopoulos, Dimitrios; Lambiase, Pier; Rajappan, Kim; Chow, Anthony; Lowe, Martin; Sporton, Simon; Earley, Mark J; Dhinoja, Mehul; Campbell, Niall; Hunter, Ross J; Haywood, Guy; Betts, Tim R; Schilling, Richard J
2018-06-01
Endocardial left ventricular (LV) pacing is a viable alternative in patients with failed coronary sinus (CS) lead implantation. However, long-term thrombo-embolic risk remains unknown. Much of the data have come from a small number of centres. We examined the safety and efficacy of endocardial LV pacing to determine the long-term thrombo-embolic risk. Registries from four UK centres were combined to include 68 patients with endocardial leads with a mean follow-up of 20 months. These were compared to a matched 1:2 control group with conventional CS leads. Medical records were reviewed, and patients contacted for follow-up. Ischaemic stroke occurred in four patients (6%) in the endocardial arm providing an annual event rate (AER) of 3.6% over a 20 month follow-up; compared to 9 patients (6.6%) amongst controls with an AER of 3.4% over a 23-month follow-up. Regression analyses showed a significant association between sub-therapeutic international normalized ratio and stroke (P = 0.0001) in the endocardial arm. There was no association between lead material and mode of delivery (transatrial/transventricular) and stroke. Mortality rate was 12 and 15 per 100 patient years in the endocardial and control arm respectively with end-stage heart failure being the commonest cause. Endocardial LV lead in heart failure patients has a good success rate at 1.6 year follow-up. However, it is associated with a thrombo-embolic risk (which is not different from conventional CS leads) attributable to sub-therapeutic anticoagulation. Randomized control trials and studies on non-vitamin K antagonist oral anticoagulants are required to ascertain the potential of widespread clinical application of this therapeutic modality.
Caldwell, J H; Martin, G V; Link, J M; Krohn, K A; Bassingthwaighte, J B
1990-01-01
Imaging 123I-labeled iodophenylpentadecanoic acid (IPPA) uptake and clearance from the myocardium following exercise has been advocated as a means of detecting myocardial ischemia because fatty acid deposition is enhanced and clearance prolonged in regions of low flow. However, normal regional myocardial blood flows are markedly heterogeneous, and it is not known how this heterogeneity affects regional metabolism or substrate uptake and thus image interpretation. In five instrumented dogs running at near maximal workload on a treadmill, 131I-labeled IPPA and 15-micron 46Sc microspheres were injected into the left atrium after 30 sec of circumflex coronary artery occlusion. Microsphere and IPPA activity were determined in 250 mapped pieces of myocardium of approximately 400 mg. Myocardial blood flows (from microspheres) ranged from 0.05 to 7.6 ml/min/g. Deposition of IPPA was proportional to regional flows (r = 0.83) with an average retention of 25%. The mean endocardial-epicardial ratio for IPPA (0.90 +/- 0.43) was similar to that for microspheres (0.94 +/- 0.47; p = 0.08). Thus, initial IPPA deposition during treadmill exercise increases in proportion to regional myocardial blood flow over a range of flows from very low to five times normal.
Tissue Motion and Assembly During Early Cardiovascular Morphogenesis
NASA Astrophysics Data System (ADS)
Rongish, Brenda
2010-03-01
Conventional dogma in the field of cardiovascular developmental biology suggests that cardiac precursor cells migrate to the embryonic midline to form a tubular heart. These progenitors are believed to move relative to their extracellular matrix (ECM); responding to stimulatory and inhibitory cues in their environment. The tubular heart that is formed by 30 hours post fertilization is comprised of two concentric layers: the muscular myocardium and the endothelial-like endocardium, which are separated by a thick layer of ECM believed to be secreted predominantly by the myocardial cells. Here we describe the origin and motility of fluorescently tagged endocardial precursors in transgenic (Tie1-YFP) quail embryos (R. Lansford, Caltech) using epifluorescence time-lapse imaging. To visualize the environment of migrating endocardial progenitors, we labeled two ECM components, fibronectin and fibrillin-2, via in vivo microinjection of fluorochrome-conjugated monoclonal antibodies. Dynamic imaging was performed at stages encompassing tubular heart assembly and early looping. We established the motion of endocardial precursor cells and presumptive cardiac ECM fibrils using both object tracking and particle image velocimetry (image cross correlation). We determined the relative importance of directed cell autonomous motility versus passive tissue movements in endocardial morphogenesis. The data show presumptive endocardial cells and cardiac ECM fibrils are swept passively into the anterior and posterior poles of the elongating tubular heart. These quantitative data indicate the contribution of cell autonomous motility displayed by endocardial precursors is limited. Thus, tissue motion drives most of the cell displacements during endocardial morphogenesis.
The mechanism of endocardial lead-induced tricuspid regurgitation.
Khoshbin, Espeed; Abdelbar, Abdelrahman; Allen, Stuart; Hasan, Ragheb
2013-04-09
Using this case report we attempt to define the mechanism of endocardial lead-induced tricuspid regurgitation (TR) in particular the direct effect of endocardial pacing leads on the competence of the tricuspid valve. We recommend a high index of suspicion and an early diagnostic strategy in order to reduce long-term morbidity which is associated with this condition and the need for a potentially avoidable surgery.
The mechanism of endocardial lead-induced tricuspid regurgitation
Khoshbin, Espeed; Abdelbar, Abdelrahman; Allen, Stuart; Hasan, Ragheb
2013-01-01
Using this case report we attempt to define the mechanism of endocardial lead-induced tricuspid regurgitation (TR) in particular the direct effect of endocardial pacing leads on the competence of the tricuspid valve. We recommend a high index of suspicion and an early diagnostic strategy in order to reduce long-term morbidity which is associated with this condition and the need for a potentially avoidable surgery. PMID:23576646
A critical role for the EphA3 receptor tyrosine kinase in heart development.
Stephen, Lesley J; Fawkes, Amy L; Verhoeve, Adam; Lemke, Greg; Brown, Arthur
2007-02-01
Eph proteins are receptor tyrosine kinases that control changes in cell shape and migration during development. We now describe a critical role for EphA3 receptor signaling in heart development as revealed by the phenotype of EphA3 null mice. During heart development mesenchymal outgrowths, the atrioventricular endocardial cushions, form in the atrioventricular canal. This morphogenetic event requires endocardial cushion cells to undergo an epithelial to mesenchymal transformation (EMT), and results in the formation of the atrioventricular valves and membranous portions of the atrial and ventricular septa. We show that EphA3 knockouts have significant defects in the development of their atrial septa and atrioventricular endocardial cushions, and that these cardiac abnormalities lead to the death of approximately 75% of homozygous EphA3(-/-) mutants. We demonstrate that EphA3 and its ligand, ephrin-A1, are expressed in adjacent cells in the developing endocardial cushions. We further demonstrate that EphA3(-/-) atrioventricular endocardial cushions are hypoplastic compared to wildtype and that EphA3(-/-) endocardial cushion explants give rise to fewer migrating mesenchymal cells than wildtype explants. Thus our results indicate that EphA3 plays a crucial role in the development and morphogenesis of the cells that give rise to the atrioventricular valves and septa.
Mavroudis, Constantine D; Cook, Thomas; Jacobs, Jeffrey P; Mavroudis, Constantine
2016-12-01
A 9-year-old boy who was born with bicuspid aortic stenosis underwent two unsuccessful aortic valvuloplasty interventions, and by 2 years of age he developed restrictive cardiomyopathy caused by left ventricular endocardial fibroelastosis and diastolic dysfunction. The attending cardiologist referred the patient to a high-volume, high-profile congenital cardiac surgical programme 1000 miles away that has a team with considerable experience with left ventricular endocardial fibroelastosis resection and a reputation of achieving good results. Owing to problems with insurance coverage, the parents sought other options for the care of their child in their home state. Dr George Miller is a well-respected local congenital and paediatric cardiac surgeon with considerable experience with the Ross operation as well as with right ventricular endocardial fibroelastosis resection. When talking with Dr Miller, he implied that there is little difference between right ventricular endocardial fibroelastosis and left ventricular endocardial fibroelastosis resection, and stated that he would perform the operation with low mortality based on his overall experience. Dr Miller stated that the local institution could provide an equivalent surgical procedure with comparable outcomes, without the patient and family having to travel out of state. A fundamental dilemma that often arises in clinical surgical practice concerns the conduct of assessing and performing new procedures, especially in rare cases, for which the collective global experience is scant. Although Dr Miller has performed right ventricular endocardial fibroelastosis resection, this procedure differs from left ventricular endocardial fibroelastosis resection, and he cannot be sure that he will indeed be able to perform the procedure better than the high-volume surgeon. This ethical situation is best understood in terms of the principles of respect for patient autonomy, beneficence, non-maleficence, and justice. The tension between the imperatives of beneficence and the obligation to respect the autonomy of the patient by acting only with the patient's best interest in mind is discussed.
Hansen, Brian J.; Zhao, Jichao; Csepe, Thomas A.; Moore, Brandon T.; Li, Ning; Jayne, Laura A.; Kalyanasundaram, Anuradha; Lim, Praise; Bratasz, Anna; Powell, Kimerly A.; Simonetti, Orlando P.; Higgins, Robert S.D.; Kilic, Ahmet; Mohler, Peter J.; Janssen, Paul M.L.; Weiss, Raul; Hummel, John D.; Fedorov, Vadim V.
2015-01-01
Aims The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial–epicardial (Endo–Epi) mapping coupled with high-resolution 3D structural imaging. Methods and results Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43–72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo–Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7–6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30–100 µM) perfusion. Dual-sided sub-Endo–sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or ‘breakthrough’ patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. Conclusions Integrated 3D structural–functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles. PMID:26059724
Canine left ventricle electromechanical behavior under different pacing modes.
Vo Thang, Thanh-Thuy; Thibault, Bernard; Finnerty, Vincent; Pelletier-Galarneau, Matthieu; Khairy, Paul; Grégoire, Jean; Harel, François
2012-10-01
Cardiac resynchronization therapy may improve survival and quality of life in patients suffering from heart failure with left ventricular (LV) contraction dyssynchrony. While several studies have investigated electrical or mechanical determinants of synchronous contraction, few have focused on activation contraction coupling at a macroscopic level. The objective of the study was to characterize LV electromechanical behavior and response to pacing in a heart failure model. We analyzed data from 3D electroanatomic non-contact mapping and blood pool SPECT for 12 dogs with right ventricular (RV) tachycardia pacing-induced dilated cardiomyopathy. Surfaces generated by the two modalities were registered. Electrical signals were analyzed, and endocardial wall displacement curves were portrayed. Rapid pacing decreased the mean LV ejection fraction (LVEF) to 20.9 % and prolonged the QRS duration to 79 ± 10 ms (normal range: 40-50 ms). QRS duration remained unchanged with biventricular pacing (88.5 ms), while single site pacing further prolonged the QRS duration (113.3 ms for RV pacing and 111.6 ms for LV pacing). No trend was observed in LV systolic function. Activation duration time was significantly increased with all pacing modes compared to baseline. Finally, electromechanical delay, as defined by the delay between electrical activation and mechanical response, was increased by single site pacing (172.9 ms for RV pacing and 174.6 ms for LV pacing) but not by biventricular pacing (162.4 ms). Combined temporal and spatial coregistration electroanatomic maps and baseline gated blood pool SPECT imaging allowed us to quantify activation duration time, electromechanical delay, and LVEF for different pacing modes. Even if pacing modes did not significantly modify LVEF or activation duration, they produced alterations in electromechanical delay, with biventricular pacing significantly decreasing the electromechanical delay as measured by surface tracings and endocardial non-contact mapping.
Unipolar atrial electrogram morphology from an epicardial and endocardial perspective.
van der Does, Lisette J M E; Knops, Paul; Teuwen, Christophe P; Serban, Corina; Starreveld, Roeliene; Lanters, Eva A H; Mouws, Elisabeth M J P; Kik, Charles; Bogers, Ad J J C; de Groot, Natasja M S
2018-02-22
Endo-epicardial asynchrony (EEA) and the interplay between the endocardial and epicardial layers could be important in the pathophysiology of atrial arrhythmias. The morphologic differences between epicardial and endocardial atrial electrograms have not yet been described, and electrogram morphology may hold information about the presence of EEA. The purpose of this study was to directly compare epicardial to endocardial unipolar electrogram morphology during sinus rhythm (SR) and to evaluate whether EEA contributes to electrogram fractionation by correlating fractionation to spatial activation patterns. In 26 patients undergoing cardiac surgery, unipolar electrograms were simultaneously recorded from the epicardium and endocardium at the inferior, middle, and superior right atrial (RA) free wall during SR. Potentials were analyzed for epi-endocardial differences in local activation time, voltage, RS ratio, and fractionation. The surrounding and opposite electrograms of fractionated deflections were evaluated for corresponding local activation times in order to determine whether fractionation originated from EEA. The superior RA was predisposed to delayed activation, EEA, and fractionation. Both epicardial and endocardial electrograms demonstrated an S-predominance. Fractionation was mostly similar between the 2 sides; however, incidentally deflections up to 4 mV on 1 side could be absent on the other side. Remote activation was responsible for most fractionated deflections (95%) in SR, of which 4% could be attributed to EEA. Local epi-endocardial differences in electrogram fractionation occur occasionally during SR but will likely increase during arrhythmias due to increasing EEA and (functional) conduction disorders. Electrogram fractionation can originate from EEA, and this study demonstrated that unipolar electrogram fractionation can potentially identify EEA. Copyright © 2018 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Solomon, A J; Moubarak, J B; Drood, J M; Tracy, C M; Karasik, P E
1999-10-01
Defibrillator generator changes are frequently performed on patients with an implantable cardioverter defibrillator in an abdominal pocket. These patients usually have epicardial patches or older endocardial lead systems. At the time of a defibrillator generator change defibrillation may be unsuccessful as a result of lead failure. We tested the hypothesis that an active can defibrillator implanted in the abdominal pocket could replace a non-functioning endocardial lead or epicardial patch. An abdominal defibrillator generator change was performed in 10 patients, (mean age = 67 +/- 13 years, nine men). Initially, a defibrillation threshold (DFT) was obtained using a passive defibrillator and the chronic endocardial or epicardial lead system. DFTs were then performed using an active can emulator and one chronic lead to simulate endocardial or epicardial lead failure. We tested 30 lead configurations (nine endocardial and 21 epicardial). Although a DFT of 7.3 +/- 4.2 joules was obtained with the intact chronic lead system, the active can emulator and one endocardial or epicardial lead still yielded an acceptable DFT of 19.9 +/- 6.1 joules. In addition, a successful implant (DFT < or = 24 joules) could have been accomplished in 28 of 30 (93%) lead configurations. An active can defibrillator in an abdominal pocket may allow for a successful generator change in patients with defibrillator lead malfunction. This would be simpler than abandoning the abdominal implant and moving to a new pectoral device and lead or tunnelling a new endocardial electrode. However, loss of defibrillation capability with a particular complex lead may be a warning of impending loss of other functions (eg. sensing and/or pacing).
Kosmidou, Ioanna; Houde-Walter, Haley; Foley, Lori; Michaud, Gregory
2013-04-01
Lesion transmurality is critical to procedural success in radiofrequency catheter ablation. We sought to determine whether loss of pace capture (PC) with high-output unipolar and/or bipolar pacing predicts the formation of uniform transmural lesions. Ten juvenile swine were anaesthetized and prepped under sterile conditions. Seventy-seven isolated radiofrequency applications (RFAs) using a 3.5 mm tip-irrigated catheter were available for analysis. Pace capture was assessed before and after RFA at 10 mA/2 ms and catheter stability verified with a three-dimensional mapping system. Pace capture was defined as 1 : 1 or intermittent local capture per paced beat. Myocardial contact and catheter orientation were assessed using intracardiac echo. Endocardial and epicardial lesion areas were measured after sacrifice using 2,3,5-triphenyltetrazolium chloride staining. A uniform transmural lesion was defined as an epicardial-to-endocardial surface ratio (epi/endo) ≥ 76%. Seventy-four per cent of lesions were transmural and 55.8% of lesions had an epi/endo ratio ≥ 76%. In all, 79.2% of lesions associated with loss of bipolar PC were uniform whereas 20.8% of lesions with loss of bipolar PC were non-uniform (P = 0.006). Loss of bipolar PC was associated with higher mean epicardial/endocardial ratio compared with lesions with persistent PC (P = 0.019). Echocardiographic evidence of optimal catheter contact during RFA improved the predictive accuracy of uniform lesion formation when loss of bipolar PC was noted after RFA. Loss of bipolar PC after RFA is associated with the formation of uniform lesions in atrial tissue. Optimal catheter contact further improves the predictive accuracy associated with loss of PC.
Acquired tricuspid valve stenosis associated with two ventricular endocardial pacing leads in a dog.
Tompkins, Emily; Dulake, Michelle I; Ghaffari, Shadie; Nakamura, Reid K
2015-01-01
Acquired tricuspid valve stenosis (TVS) is a rare complication of endocardial pacing lead implantation in humans that has only been described once previously in the veterinary literature in a dog with excessive lead redundancy. A 12 yr old terrier presented with right-sided congestive heart failure 6 mo after implantation of a second ventricular endocardial pacing lead. The second lead was placed due to malfunction of the first lead, which demonstrated abnormally low impedance. Transthoracic echocardiography identified hyperechoic tissue associated with the pacing leads as they crossed the tricuspid valve annulus as well as a stenotic tricuspid inflow pattern via spectral Doppler interrogation. Medical management was ultimately unsuccessful and the dog was euthanized 6 wk after TVS was diagnosed. The authors report the first canine case of acquired TVS associated with two ventricular endocardial pacing leads.
A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes.
Pandit, S V; Clark, R B; Giles, W R; Demir, S S
2001-01-01
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle. PMID:11720973
de Paola, A A; Mendonça, A; Balbão, C E; Tavora, M Z; da Silva, R M; Hara, V M; Guiguer Júnior, N; Vattimo, A C; Souza, I A; Portugal, O P
1993-10-01
A 8-year-old female patient with refractory incessant atrial tachycardia, very symptomatic and with left ventricular ejection fraction of 0.25. Electrophysiological study and endocardial mapping localized the site of the origin of atrial tachycardia in the superior right atrium. In this site 2 applications of radiofrequency current (25V, 20 and 50 seconds) resulted in termination of the atrial tachycardia. She was discharged off antiarrhythmic drugs and after 2 months ejection fraction was 0.52. She was completely asymptomatic 6 months after ablation procedure.
2012-01-01
Background Valvulogenesis and septation in the developing heart depend on the formation and remodeling of endocardial cushions in the atrioventricular canal (AVC) and outflow tract (OFT). These cushions are invaded by a subpopulation of endocardial cells that undergo an epithelial-mesenchymal transition in response to paracrine and autocrine transforming growth factor β (TGFβ) signals. We previously demonstrated that the RNA binding protein muscleblind-like 1 (MBNL1) is expressed specifically in the cushion endocardium, and knockdown of MBNL1 in stage 14 embryonic chicken AVC explants enhances TGFβ-dependent endocardial cell invasion. Results In this study, we demonstrate that the effect of MBNL1 knockdown on invasion remains dependent on TGFβ3 after it is no longer required to induce basal levels of invasion. TGFβ3, but not TGFβ2, levels are elevated in medium conditioned by MBNL1-depleted AVC explants. TGFβ3 is elevated even when the myocardium is removed, indicating that MBNL1 modulates autocrine TGFβ3 production in the endocardium. More TGFβ3-positive cells are observed in the endocardial monolayer following MBNL1 knockdown. Addition of exogenous TGFβ3 to AVC explants recapitulates the effects of MBNL1 knockdown. Time course experiments demonstrate that knockdown of MBNL1 induces precocious TGFβ3 secretion, and early exposure to excess TGFβ3 induces precocious invasion. MBNL1 expression precedes TGFβ3 in the AVC endocardium, consistent with a role in preventing precocious autocrine TGFβ3 signaling. The stimulatory effects of MBNL1 knockdown on invasion are lost in stage 16 AVC explants. Knockdown of MBNL1 in OFT explants similarly enhances cell invasion, but not activation. TGFβ is necessary and sufficient to mediate this effect. Conclusions Taken together, these data support a model in which MBNL1 negatively regulates cell invasion in the endocardial cushions by restricting the magnitude and timing of endocardial-derived TGFβ3 production. PMID:22866814
Ultrastructure of myocardial widened Z bands and endocardial cells in two teleostean species.
Leknes, I L
1981-01-01
Widened myocardial Z bands and endocardial cells are described in two teleostean species Cichlasoma meeki and Corydoras aeneus. Widened Z bands containing mainly amorphous and electron-dense material were seen in a number of myocardial cells. Further, similar material may occur in large amounts beneath the sarcolemma and at intercellular junctions. Occasionally, we observed continuity between the latter material and that in expanded Z bands. In C. meeki the ventricular endocardial layer consists of two structurally different cell types, whereas in C. aeneus only one cell type was seen. The functional aspects of widened Z bands are discussed.
Nayak, Alok Ranjan; Panfilov, A V; Pandit, Rahul
2017-02-01
We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.
Dawood, Faten A; Rahmat, Rahmita W; Kadiman, Suhaini B; Abdullah, Lili N; Zamrin, Mohd D
2014-01-01
This paper presents a hybrid method to extract endocardial contour of the right ventricular (RV) in 4-slices from 3D echocardiography dataset. The overall framework comprises four processing phases. In Phase I, the region of interest (ROI) is identified by estimating the cavity boundary. Speckle noise reduction and contrast enhancement were implemented in Phase II as preprocessing tasks. In Phase III, the RV cavity region was segmented by generating intensity threshold which was used for once for all frames. Finally, Phase IV is proposed to extract the RV endocardial contour in a complete cardiac cycle using a combination of shape-based contour detection and improved radial search algorithm. The proposed method was applied to 16 datasets of 3D echocardiography encompassing the RV in long-axis view. The accuracy of experimental results obtained by the proposed method was evaluated qualitatively and quantitatively. It has been done by comparing the segmentation results of RV cavity based on endocardial contour extraction with the ground truth. The comparative analysis results show that the proposed method performs efficiently in all datasets with overall performance of 95% and the root mean square distances (RMSD) measure in terms of mean ± SD was found to be 2.21 ± 0.35 mm for RV endocardial contours.
Sarmah, Swapnalee; Marrs, James A.
2014-01-01
BACKGROUND Fetal alcohol spectrum disorder (FASD) describes a range of birth defects including various congenital heart defects (CHDs). Mechanisms of FASD-associated CHDs are not understood. Whether alcohol interferes with a single critical event or with multiple events in heart formation is not known. RESULTS Our zebrafish embryo experiments showed that ethanol interrupts different cardiac regulatory networks and perturbed multiple steps of cardiogenesis (specification, myocardial migration, looping, chamber morphogenesis and endocardial cushion formation). Ethanol exposure during gastrulation until cardiac specification or during myocardial midline migration did not produce severe or persistent heart development defects. However, exposure comprising gastrulation until myocardial precursor midline fusion or during heart patterning stages produced aberrant heart looping and defective endocardial cushions. Continuous exposure during entire cardiogenesis produced complex cardiac defects leading to severely defective myocardium, endocardium, and endocardial cushions. Supplementation of retinoic acid with ethanol partially rescued early heart developmental defects, but the endocardial cushions did not form correctly. In contrast, supplementation of folic acid rescued normal heart development, including the endocardial cushions. CONCLUSIONS Our results indicate that ethanol exposure interrupted divergent cardiac morphogenesis events causing heart defects. Folic acid supplementation was effective in preventing a wide spectrum of ethanol-induced heart developmental defects. PMID:23832875
NASA Astrophysics Data System (ADS)
Nayak, Alok Ranjan; Panfilov, A. V.; Pandit, Rahul
2017-02-01
We present systematic numerical studies of the possible effects of the coupling of human endocardial and Purkinje cells at cellular and two-dimensional tissue levels. We find that the autorhythmic-activity frequency of the Purkinje cell in a composite decreases with an increase in the coupling strength; this can even eliminate the autorhythmicity. We observe a delay between the beginning of the action potentials of endocardial and Purkinje cells in a composite; such a delay increases as we decrease the diffusive coupling, and eventually a failure of transmission occurs. An increase in the diffusive coupling decreases the slope of the action-potential-duration-restitution curve of an endocardial cell in a composite. By using a minimal model for the Purkinje network, in which we have a two-dimensional, bilayer tissue, with a layer of Purkinje cells on top of a layer of endocardial cells, we can stabilize spiral-wave turbulence; however, for a sparse distribution of Purkinje-ventricular junctions, at which these two layers are coupled, we can also obtain additional focal activity and many complex transient regimes. We also present additional effects resulting from the coupling of Purkinje and endocardial layers and discuss the relation of our results to the studies performed in anatomically accurate models of the Purkinje network.
Abdelwahid, E; Rice, D; Pelliniemi, L J; Jokinen, E
2001-07-01
The bone morphogenetic proteins BMP-2 and BMP-4 and the homeobox gene MSX-2 are required for normal development of many embryonic tissues. To elucidate their possible roles during the remodeling of the tubular heart into a fully septated four-chambered heart, we have localized the mRNA of Bmp-2, Bmp-4, Msx-2 and apoptotic cells in the developing mouse heart from embryonic day (E)11 to E17. mRNA was localized by in situ hybridization, and apoptotic cells by TUNEL (TDT-mediated dUTP-biotin nick end-labeling) as well as by transmission electron microscopy. By analyzing adjacent serial sections, we demonstrated that the expression of Msx-2 and Bmp-2 strikingly overlapped in the atrioventricular canal myocardium, in the atrioventricular junctional myocardium, and in the maturing myocardium of the atrioventricular valves. Bmp-4 was expressed in the outflow tract myocardium and in the endocardial cushion of the outflow tract ridges from E12 to E14. Msx-2 appeared in the mesenchyme of the atrioventricular endocardial cushion from E11 to E14, while Bmp-2 and Bmp-4 were detected between E11 and E14. Apoptotic cells were also detected in the mesenchyme of the endocardial cushion between E12 and E14. Our results suggest that BMP-2 and MSX-2 are tightly linked to the formation of the atrioventricular junction and valves and that BMP-4 is involved in the development of the outflow tract myocardium and of the endocardial cushion. In addition, BMP-2, BMP-4 and MSX-2 and apoptosis seem to be associated with differentiation of the endocardial cushion.
Usefulness of Epicardial Area in the Short Axis to Identify Elevated Left Ventricular Mass in Men.
Fitzpatrick, Jesse K; Cohen, Beth E; Rosenblatt, Andrew; Shaw, Richard E; Schiller, Nelson B
2018-06-15
Left ventricular (LV) hypertrophy is strongly associated with increased cardiovascular morbidity and mortality. The 2-dimensional LV mass algorithms suffer from measurement variability that can lead to misclassification of patients with LV hypertrophy as normal, or vice versa. Among the 4 echocardiographic measurements required by the 2-dimensional LV mass algorithms, epicardial and endocardial area have the lowest interobserver variation and could be used to corroborate LV mass calculations. We sought cut-off values that are able to discriminate between elevated and normal LV mass based on endocardial or epicardial area alone. Using data from 664 men enrolled in the Mind Your Heart Study, we calculated the correlation of LV mass index with epicardial area and endocardial area. We then used receiver operator characteristic curves to identify epicardial and endocardial area cut-points that could discriminate subjects with normal LV mass and LV hypertrophy. LV mass index was more strongly correlated with epicardial area compared with endocardial area, r = 0.70 versus r = 0.27, respectively. Epicardial area had a significantly higher area under the receiver operator characteristic curve (p <0.001) compared with endocardial area, 0.90 (95% confidence interval 0.86 to 0.93) versus 0.63 (95% confidence interval 0.57 to 0.71). An epicardial area cut-point of ≥38.0 cm 2 corresponded to a sensitivity of 95.0% and specificity of 54.4% for detecting LV hypertrophy. In conclusion, epicardial area showed promise as a method of rapid screening for LV hypertrophy and could be used to validate formal LV mass calculations. Copyright © 2018 Elsevier Inc. All rights reserved.
klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis
Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien
2016-01-01
The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222
NASA Technical Reports Server (NTRS)
Rubin, D. N.; Yazbek, N.; Garcia, M. J.; Stewart, W. J.; Thomas, J. D.
2000-01-01
Harmonic imaging is a new ultrasonographic technique that is designed to improve image quality by exploiting the spontaneous generation of higher frequencies as ultrasound propagates through tissue. We studied 51 difficult-to-image patients with blinded side-by-side cineloop evaluation of endocardial border definition by harmonic versus fundamental imaging. In addition, quantitative intensities from cavity versus wall were compared for harmonic versus fundamental imaging. Harmonic imaging improved left ventricular endocardial border delineation over fundamental imaging (superior: harmonic = 71.1%, fundamental = 18.7%; similar: 10.2%; P <.001). Quantitative analysis of 100 wall/cavity combinations demonstrated brighter wall segments and more strikingly darker cavities during harmonic imaging (cavity intensity on a 0 to 255 scale: fundamental = 15.6 +/- 8.6; harmonic = 6.0 +/- 5.3; P <.0001), which led to enhanced contrast between the wall and cavity (1.89 versus 1.19, P <.0001). Harmonic imaging reduces side-lobe artifacts, resulting in a darker cavity and brighter walls, thereby improving image contrast and endocardial delineation.
Martini, Bortolo; Trevisi, Nicola; Martini, Nicolò; Zhang, Li
2015-01-01
A 43-year-old woman presented to the emergency room with a sustained ventricular tachycardia (VT). ECG showed a QRS in left bundle branch block morphology with inferior axis. Echocardiography, ventricular angiography, and cardiac magnetic resonance imaging (CMRI) revealed a normal right ventricle and a left ventricular diverticulum. Electrophysiology studies with epicardial voltage mapping identified a large fibrotic area in the inferolateral layer of the right ventricular wall and a small area of fibrotic tissue at the anterior right ventricular outflow tract. VT ablation was successfully performed with combined epicardial and endocardial approaches.
Martini, Bortolo; Trevisi, Nicola; Martini, Nicolò; Zhang, Li
2015-01-01
A 43-year-old woman presented to the emergency room with a sustained ventricular tachycardia (VT). ECG showed a QRS in left bundle branch block morphology with inferior axis. Echocardiography, ventricular angiography, and cardiac magnetic resonance imaging (CMRI) revealed a normal right ventricle and a left ventricular diverticulum. Electrophysiology studies with epicardial voltage mapping identified a large fibrotic area in the inferolateral layer of the right ventricular wall and a small area of fibrotic tissue at the anterior right ventricular outflow tract. VT ablation was successfully performed with combined epicardial and endocardial approaches. PMID:26509086
Di Biase, Luigi; Santangeli, Pasquale; Astudillo, Vladimir; Conti, Sergio; Mohanty, Prasant; Mohanty, Sanghamitra; Sanchez, Javier E; Horton, Rodney; Thomas, Barbara; Burkhardt, J David; Natale, Andrea
2010-08-01
Remote magnetic navigation (RMN) has been reported as a feasible and safe mapping and ablation system for treatment of ventricular arrhythmias (VAs). However, the reported success rates have been limited with the 4- and 8-mm catheter tips. This study sought to report the results in a large series of consecutive patients undergoing radiofrequency (RF) catheter ablation of VAs using the RMN with the 3.5-mm magnetic open-irrigated-tip catheter (OIC). A total of 110 consecutive patients with a clinical history of left VA were included in the study. In all cases, an OIC was utilized for mapping and ablation. When ablation with the RMN catheters failed, a manual OIC was used to eliminate the VA. Postablation pacing maneuvers and isoproterenol were used to verify the inducibility of the VAs. Outcomes were compared with those of a group of 92 consecutive patients undergoing manual ablation by the same operator. Mapping and ablation with the magnetic OIC were performed in all 110 patients with VA. Ischemic cardiomyopathy was present in 33 (30%), nonischemic in 14 (13%), and in 63 (57%) patients no structural heart disease was present. Endocardial mapping was performed in all patients, whereas both endocardial and epicardial mapping were performed in 36 (33%) patients. Compared with manual ablation, RMN was associated with a longer procedural time (2.9 +/- 1.2 hours vs. 3.3 +/- 1.1 hours, P = 0.004) and RF time (24 +/- 12 minutes vs. 33 +/- 18 minutes, P = 0.005), whereas fluoroscopic time was significantly shorter (35 +/- 22 minutes vs. 26 +/- 14 minutes, P = 0.033). During the procedures, crossover to manual ablation was required in 15 patients (14%). At 11.7 +/- 2.1 months of follow-up in the study group and 18.7 +/- 3.7 months in the manual ablation group, 85% and 86% (P = 0.817) of patients, respectively, were free of VA. This large series of consecutive patients demonstrates that OIC ablation using RMN is effective for the treatment of left VAs. Copyright 2010 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Ma, Chi; Varghese, Tomy
2012-04-01
Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.
Torres, Jose Luis; Shah, Bindi K; Greenberg, Richard M; Deger, Florin Titus; Gerstenfeld, Edward P
2010-10-01
We hypothesized that in patients with left ventricular dysfunction undergoing implant of a biventricular ICD, the local dominant frequency during early induced ventricular fibrillation would be higher at an epicardial left ventricular position compared to an endocardial right ventricular position. Patients undergoing implant of a biventricular ICD were studied. During ventricular fibrillation induction, bipolar electrograms were recorded from leads at an epicardial left ventricular position and an endocardial right ventricular position. Overlapping 2-s fast Fourier transforms were obtained for 6 s of ventricular fibrillation. The dominant frequency and organizational index were compared. Thirty-four patients (20 men, age 64 ± 11 years) underwent 57 inductions of ventricular fibrillation. Eighteen patients had non-ischemic dilated cardiomyopathy and 16 had ischemic dilated cardiomyopathy. The dominant frequency was higher at a lateral epicardial left ventricular position than an apical endocardial right ventricular position in 18 patients with non-ischemic dilated cardiomyopathy (LV epicardial 5.34 ± 0.37 Hz, RV endocardial 5.09 ± 0.41 Hz, p < 0.001), but not in 16 patients with ischemic dilated cardiomyopathy (LV epicardial 4.99 ± 0.57 Hz, RV epicardial 4.87 ± 0.65 Hz, p = 0.094). In patients with non-ischemic dilated cardiomyopathy, there is a dominant frequency gradient during early ventricular fibrillation induced at ICD testing from the lateral left ventricular epicardium to the apical right ventricular endocardium.
Ford, Stephanie M; McPheeters, Matthew T; Wang, Yves T; Ma, Pei; Gu, Shi; Strainic, James; Snyder, Christopher; Rollins, Andrew M; Watanabe, Michiko; Jenkins, Michael W
2017-01-01
Background The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. Methods Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180bpm, well above intrinsic rate 60–110bpm) at stage 13 of development (3–4 wks human) for 5 min. Pacing fatigued the heart and led to at least 1 hr of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping – 4–5 wks human) or stage 35 (4 chambered heart – 8 wks human). Results All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-hrs post pacing (p-value < 0.01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (p<0.05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. Conclusion The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs. PMID:28211263
The use of echocardiography in Wolff-Parkinson-White syndrome.
Cai, Qiangjun; Shuraih, Mossaab; Nagueh, Sherif F
2012-04-01
Endocardial mapping and radiofrequency catheter ablation are well established modalities for the diagnosis and treatment of patients with Wolff-Parkinson-White (WPW) syndrome associated with tachyarrhythmias. However, the electrophysiologic techniques are invasive, require radiation exposure, and lack spatial resolution of cardiac structures. A variety of echocardiographic techniques have been investigated as a non-invasive alternative for accessory pathway localization. Conventional M-mode echocardiography can detect the fine premature wall motion abnormalities associated with WPW syndrome. However, it is unable to identify the exact site of accessory pathway with sufficient accuracy. 2D, 2D-guided M-mode, and 2D phase analysis techniques are limited by image quality and endocardial border definition. Various modalities of tissue Doppler echocardiography significantly increase the accuracy of left-sided accessory pathway localization to 80-90% even in patients with poor acoustic window. However, right-sided pathways remain a diagnostic challenge. Strain echocardiography by speckle tracking has recently been evaluated and appears promising. Different cardiac abnormalities have been detected by echocardiography in WPW patients. Patients with WPW syndrome and tachyarrhythmias have impaired systolic and diastolic function which improves after radiofrequency ablation. Echocardiography is useful in identifying patient with accessory pathway-associated left ventricular dyssynchrony and dysfunction who may benefit from ablation therapy. Transesophageal and intracardiac echocardiography have been used to guide ablation procedure. Ablation-related complications detected by routine echocardiography are infrequent, rarely clinically relevant, and of limited value.
Infectious endocarditis in pacemaker endocardial leads: report of three cases.
Cruz-Cruz, F; Espinola-Zavaleta, N; Hernández Lara, J; Iturralde-Torres, P; González-Hermosillo, J A; Romero-Cárdenas, A; Keirns, C; Vargas-Barrón, J
1999-01-01
Three cases of endocarditis affecting endocardial leads of permanent pacemakers are presented with a review of the literature. Vegetations were identified using transesophageal echocardiography. Infection of pacemaker leads is far less common than infection at the site of the pulse generator with greater morbidity and mortality and generally requiring surgical removal of both electrodes and power source. The most frequent infective agents are stahylococcus varieties.
[Contrast agent improves diagnostic value of dobutamine stress echocardiography].
Uehara, H; Yamamoto, T; Hirano, Y; Ozasa, Y; Yamada, S; Ikawa, H; Ishikawa, K
2001-03-01
Suboptimal endocardial definition reduces the diagnostic value of stress echocardiography for coronary artery disease, but intravenous infusion of a left ventricular contrast agent (Albunex) may enhance endocardial border delineation and improve the diagnostic value of dobutamine stress echocardiography. Fifty-six patients, 38 with myocardial infarction, 16 with angina pectoris and two normal subjects, were enrolled in this study. Dobutamine was infused in scalar doses of 5 to 40 micrograms/kg/min. Intravenous infusion of Albunex (0.15 ml/kg) was administered at rest and during peak dobutamine stress during monitoring of the apical four-chamber view. The left ventricle in the apical four-chamber view was divided into six segments and an endocardial delineation score of 0 to 3 (none to excellent visualization) was given to each segment. Endocardial delineation score was increased after Albunex infusion from 2.0 to 2.3 in the basal-septal, 2.0 to 2.4 in the mid-septal, 1.1 to 1.8 in the apical-septal, 0.7 to 1.2 in the apical-lateral, 0.9 to 1.6 in the mid-lateral, and 1.2 to 1.9 in the basal-lateral segments during peak dobutamine administration. Endocardial border resolution in the lateral wall showed greater improvement than in the septal wall after Albunex infusion. Diagnostic values in the left anterior descending artery territory failed to improve with Albunex infusion (sensitivity 82% to 89%, specificity 94% to 89%, and accuracy 86% to 89%), whereas a higher diagnostic accuracy was noted in the left circumflex artery territory with Albunex compared to without Albunex (sensitivity 63% to 81%, specificity 88% to 98%, and accuracy 80% to 93%, p < 0.05). Contrast agent improves the diagnostic accuracy of dobutamine stress echocardiography in the left circumflex artery territory.
MacGrogan, Donal; D'Amato, Gaetano; Travisano, Stanislao; Martinez-Poveda, Beatriz; Luxán, Guillermo; Del Monte-Nieto, Gonzalo; Papoutsi, Tania; Sbroggio, Mauro; Bou, Vanesa; Gomez-Del Arco, Pablo; Gómez, Manuel Jose; Zhou, Bin; Redondo, Juan Miguel; Jiménez-Borreguero, Luis J; de la Pompa, José Luis
2016-05-13
The Notch signaling pathway is crucial for primitive cardiac valve formation by epithelial-mesenchymal transition, and NOTCH1 mutations cause bicuspid aortic valve; however, the temporal requirement for the various Notch ligands and receptors during valve ontogeny is poorly understood. The aim of this study is to determine the functional specificity of Notch in valve development. Using cardiac-specific conditional targeted mutant mice, we find that endothelial/endocardial deletion of Mib1-Dll4-Notch1 signaling, possibly favored by Manic-Fringe, is specifically required for cardiac epithelial-mesenchymal transition. Mice lacking endocardial Jag1, Notch1, or RBPJ displayed enlarged valve cusps, bicuspid aortic valve, and septal defects, indicating that endocardial Jag1 to Notch1 signaling is required for post-epithelial-mesenchymal transition valvulogenesis. Valve dysmorphology was associated with increased mesenchyme proliferation, indicating that Jag1-Notch1 signaling restricts mesenchyme cell proliferation non-cell autonomously. Gene profiling revealed upregulated Bmp signaling in Jag1-mutant valves, providing a molecular basis for the hyperproliferative phenotype. Significantly, the negative regulator of mesenchyme proliferation, Hbegf, was markedly reduced in Jag1-mutant valves. Hbegf expression in embryonic endocardial cells could be readily activated through a RBPJ-binding site, identifying Hbegf as an endocardial Notch target. Accordingly, addition of soluble heparin-binding EGF-like growth factor to Jag1-mutant outflow tract explant cultures rescued the hyperproliferative phenotype. During cardiac valve formation, Dll4-Notch1 signaling leads to epithelial-mesenchymal transition and cushion formation. Jag1-Notch1 signaling subsequently restrains Bmp-mediated valve mesenchyme proliferation by sustaining Hbegf-EGF receptor signaling. Our studies identify a mechanism of signaling cross talk during valve morphogenesis involved in the origin of congenital heart defects associated with reduced NOTCH function. © 2016 American Heart Association, Inc.
Mattei, E; Calcagnini, G; Triventi, M; Delogu, A; Del Guercio, M; Angeloni, A; Bartolini, P
2013-01-01
The time-varying gradient fields generated during Magnetic Resonance Imaging (MRI) procedures have the potential to induce electrical current on implanted endocardial leads. Whether this current can result in undesired cardiac stimulation is unknown. This paper presents an optically coupled system with the potential to quantitatively measure the currents induced by the gradient fields into endocardial leads during MRI procedures. Our system is based on a microcontroller that works as analog-to-digital (A/D) converter and sends the current signal acquired from the lead to an optical high-speed light-emitting-diode transmitter. Plastic fiber guides the light outside the MRI chamber, to a photodiode receiver and then to an acquisition board connected to a PC. The preliminary characterization of the performances of the system is also presented.
Iida, Midori; Inamura, Noboru; Takeuchi, Makoto
2006-01-01
Newborn case of maternal anti-SSA antibody-induced congenital complete heart block (CCHB) accompanying cardiomyopathy is presented. Unexpectedly, she died of ventricular tachycardia, not bradycardia, 6 days after birth. Autopsy revealed left ventricular cardiomyopathy with endocardial fibroelastosis. Thus, when evaluating fetal cardiac performance in cases of maternal anti-SSA antibody-induced CCHB, it is necessary to pay attention to myocardial attributes such as endocardial hyperplasia.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L; Iaizzo, Paul A; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-06-11
Computational modelling plays an important role in right ventricular (RV) haemodynamic analysis. However, current approaches employ smoothed ventricular anatomies. The aim of this study is to characterise RV haemodynamics including detailed endocardial structures like trabeculae, moderator band and papillary muscles (PMs). Four paired detailed and smoothed RV endocardium models (two male and two female) were reconstructed from ex-vivo human hearts high-resolution magnetic resonance images (MRI). Detailed models include structures with ≥1 mm 2 cross-sectional area. Haemodynamic characterisation was done by computational fluid dynamics (CFD) simulations with steady and transient inflows, using high performance computing (HPC). The differences between the flows in smoothed and detailed models were assessed using Q-criterion for vorticity quantification, the pressure drop between inlet and outlet, and the wall shear stress (WSS). Results demonstrated that detailed endocardial structures increase the degree of intra-ventricular pressure drop, decrease the WSS and disrupt the dominant vortex creating secondary small vortices. Increasingly turbulent blood flow was observed in the detailed RVs. Female RVs were less trabeculated and presented lower pressure drops than the males. In conclusion, neglecting endocardial structures in RV haemodynamic models may lead to inaccurate conclusions about the pressures, stresses, and blood flow behaviour in the cavity. This article is protected by copyright. All rights reserved.
Zhang, Li; Wu, Wei-Chun; Ma, Hong; Wang, Hao
2016-11-15
Layer-specific strain allows the assessment of the function of every layer of myocardium. To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS). A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD. 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS 1 (SS≤22), 26 in group SS 2 (SS 23-32) and 28 in group SS 3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05). Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Klos, Matthew; Calvo, David; Yamazaki, Masatoshi; Zlochiver, Sharon; Mironov, Sergey; Cabrera, José-Angel; Sanchez-Quintana, Damian; Jalife, José; Berenfeld, Omer; Kalifa, Jérôme
2009-01-01
Background The posterior left atrium (PLA) and pulmonary veins (PVs) have been shown to be critical for atrial fibrillation (AF) initiation. However, the detailed mechanisms of reentry and AF initiation by PV impulses are poorly understood. We hypothesized that PV impulses trigger reentry and AF by undergoing wavebreaks as a result of sink-to-source mismatch at specific PV-PLA transitions along the septopulmonary bundle, where there are changes in thickness and fiber direction. Methods and Results In 7 Langendorff-perfused sheep hearts AF was initiated by a burst of 6 pulses (CL 80 to 150ms) delivered to the left inferior or right superior PV ostium 100 to 150 ms after the sinus impulse in the presence of 0.5 μmol/L acetylcholine. The exposed septal-PLA endocardial area was mapped with high spatio-temporal resolution (DI-4-ANEPPS, 1000-fr/s) during AF initiation. Isochronal maps for each paced beat preceding AF onset were constructed to localize areas of conduction delay and block. Phase movies allowed the determination of the wavebreak sites at the onset of AF. Thereafter, the PLA myocardial wall thickness was quantified by echocardiography, and the fiber direction in the optical field of view was determined after peeling off the endocardium. Finally, isochrone, phase and conduction velocity maps were superimposed on the corresponding anatomic pictures for each of the 28 episodes of AF initiation. The longest delays of the paced PV impulses, as well as the first wavebreak, occurred at those boundaries along the septopulmonary bundle that showed sharp changes in fiber direction and the largest and most abrupt increase in myocardial thickness. Conclusion Waves propagating from the PVs into the PLA originating from a simulated PV tachycardia triggered reentry and vagally mediated AF by breaking at boundaries along the septopulmonary bundle where abrupt changes in thickness and fiber direction resulted in sink-to-source mismatch and low safety for propagation. PMID:19609369
The value of the 12-lead electrocardiogram in localizing the scar in non-ischaemic cardiomyopathy.
Oloriz, Teresa; Wellens, Hein J J; Santagostino, Giulia; Trevisi, Nicola; Silberbauer, John; Peretto, Giovanni; Maccabelli, Giuseppe; Della Bella, Paolo
2016-12-01
Patients with non-ischaemic cardiomyopathy (NICM) and ventricular tachycardia can be categorized as anteroseptal (AS) or inferolateral (IL) scar sub-types based on imaging and voltage mapping studies. The aim of this study was to correlate the baseline electrocardiogram (ECG) with endo-epicardial voltage maps created during ablation procedures and identify the ECG characteristics that may help to distinguish the scar as AS or IL. We assessed 108 baseline ECGs; 72 patients fulfilled criteria for dilated cardiomyopathy whereas 36 showed minimal structural abnormalities. Based on the unipolar low-voltage distribution, the scar pattern was classified as predominantly AS (n = 59) or IL (n = 49). Three ECG criteria (PR interval < 170 ms or QRS voltage in inferior leads <0.6 mV or a lateral q wave) resulted in 92% sensitivity and 90% specificity for predicting an IL pattern in patients with preserved ejection fraction (EF). The four-step algorithm for dilated cardiomyopathy included a paced ventricular rhythm or PR > 230 ms or QRS > 170 ms or an r ≤ 0.3 mV in V3 having 92 and 81% of sensitivity and specificity, respectively, in predicting AS scar pattern. A significant negative correlation was found between the extension of the endocardial unipolar low voltage area and left ventricular EF (r s = -0.719, P < 0.001). The extent of endocardial AS unipolar low voltage was correlated with PR interval and QRS duration (r s = 0.583 and r s = 0.680, P < 0.001, respectively) and the IL epicardial unipolar low voltage with the mean voltage of the limb leads (r s = -0.639, P < 0.001). Baseline ECG features are well correlated with the distribution of unipolar voltage abnormalities in NICM and may help to predict the location of scar in this population. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Regional cardiac wall motion from gated myocardial perfusion SPECT studies
NASA Astrophysics Data System (ADS)
Smith, M. F.; Brigger, P.; Ferrand, S. K.; Dilsizian, V.; Bacharach, S. L.
1999-06-01
A method for estimating regional epicardial and endocardial wall motion from gated myocardial perfusion SPECT studies has been developed. The method uses epicardial and endocardial boundaries determined from four long-axis slices at each gate of the cardiac cycle. The epicardial and endocardial wall position at each time gate is computed with respect to stationary reference ellipsoids, and wall motion is measured along lines normal to these ellipsoids. An initial quantitative evaluation of the method was made using the beating heart from the dynamic mathematical cardiac torso (MCAT) phantom, with and without a 1.5-cm FWHM Gaussian blurring filter. Epicardial wall motion was generally well-estimated within a fraction of a 3.56-mm voxel, although apical motion was overestimated with the Gaussian filter. Endocardial wall motion was underestimated by about two voxels with and without the Gaussian filter. The MCAT heart phantom was modified to model hypokinetic and dyskinetic wall motion. The wall motion analysis method enabled this abnormal motion to be differentiated from normal motion. Regional cardiac wall motion also was analyzed for /sup 201/Tl patient studies. Estimated wall motion was consistent with a nuclear medicine physician's visual assessment of motion from gated long-axis slices for male and female study examples. Additional research is required for a comprehensive evaluation of the applicability of the method to patient studies with normal and abnormal wall motion.
Miyauchi, Mizuho; Qu, Zhilin; Miyauchi, Yasushi; Zhou, Sheng-Mei; Pak, Hui; Mandel, William J; Fishbein, Michael C; Chen, Peng-Sheng; Karagueuzian, Hrayr S
2005-06-01
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg.kg(-1).day(-1) sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 +/- 10 ms in all MI dogs (n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs (n = 6), control (non-MI) dogs (n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine (n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant (P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened (P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.
Neuzil, Petr; Cerny, Stepan; Kralovec, Stepan; Svanidze, Oleg; Bohuslavek, Jan; Plasil, Petr; Jehlicka, Pavel; Holy, Frantisek; Petru, Jan; Kuenzler, Richard; Sediva, Lucie
2013-06-01
CardioARM, a highly flexible "snakelike" medical robotic system (Medrobotics, Raynham, MA), has been developed to allow physicians to view, access, and perform complex procedures intrapericardially on the beating heart through a single-access port. Transthoracic epicardial catheter mapping and ablation has emerged as a strategy to treat arrhythmias, particularly ventricular arrhythmias, originating from the epicardial surface. The aim of our investigation was to determine whether the CardioARM could be used to diagnose and treat ventricular tachycardia (VT) of epicardial origin. Animal and clinical studies of the CardioARM flexible robot were performed in hybrid surgical-electrophysiology settings. In a porcine model study, single-port pericardial access, navigation, mapping, and ablation were performed in nine animals. The device was then used in a small, single-center feasibility clinical study. Three patients, all with drug-refractory VT and multiple failed endocardial ablation attempts, underwent epicardial mapping with the flexible robot. In all nine animals, navigation, mapping, and ablation were successful without hemodynamic compromise. In the human study, all three patients demonstrated a favorable safety profile, with no major adverse events through a 30-day follow-up. Two cases achieved technical success, in which an electroanatomic map of the epicardial ventricle surface was created; in the third case, blood obscured visualization. These results, although based on a limited number of experimental animals and patients, show promise and suggest that further clinical investigation on the use of the flexible robot in patients requiring epicardial mapping of VT is warranted.
The cardiac ultrastructure of Chimaera monstrosa L. (Elasmobranchii: Holocephali).
Berge, P I
1979-09-03
The ultrastructure of the heart in Chimaera monstrosa L. is described. The endocardial and the epicardial cells are similar in the three cardiac regions. Myocardial cells show small variations. The myofibred, 4--6 microns thick, contains one or a few myofibrils. Each myosin filament is surrounded by six actin filaments. The sarcomere banding pattern includes the Z-, A-, I-, M-, N-, and H-band. End-to-end attachments between myofibres are composed of alternating desmosomes and fasciae adhaerentes. Desmosomes and nexuses occur between longitudinally oriented cell surfaces. The sarcoplasmic reticulum is poorly developed but well defined. Peripheral coupling-like structures are common, T-tubules are absent. Membrane bound dense bodies occur in all regions. Areas with ribosomes and single myosin filaments are often seen. The epicardial cells have a regular hexagonal surface and are much thicker than the endocardial cells. Numerous short and few longer cytoplasmic extensions face the pericardial cavity. The flat endocardial cells contain a large nucleus and small amounts of cytoplasm.
Endocardial Energy Harvesting by Electromagnetic Induction.
Zurbuchen, Adrian; Haeberlin, Andreas; Bereuter, Lukas; Pfenniger, Alois; Bosshard, Simon; Kernen, Micha; Philipp Heinisch, Paul; Fuhrer, Juerg; Vogel, Rolf
2018-02-01
cardiac pacemakers require regular medical follow-ups to ensure proper functioning. However, device replacements due to battery depletion are common and account for ∼25% of all implantation procedures. Furthermore, conventional pacemakers require pacemaker leads which are prone to fractures, dislocations or isolation defects. The ensuing surgical interventions increase risks for the patients and costs that need to be avoided. in this study, we present a method to harvest energy from endocardial heart motions. We developed a novel generator, which converts the heart's mechanical into electrical energy by electromagnetic induction. A mathematical model has been introduced to identify design parameters strongly related to the energy conversion efficiency of heart motions and fit the geometrical constraints for a miniaturized transcatheter deployable device. The implemented final design was tested on the bench and in vivo. the mathematical model proved an accurate method to estimate the harvested energy. For three previously recorded heart motions, the model predicted a mean output power of 14.5, 41.9, and 16.9 μW. During an animal experiment, the implanted device harvested a mean output power of 0.78 and 1.7 μW at a heart rate of 84 and 160 bpm, respectively. harvesting kinetic energy from endocardial motions seems feasible. Implanted at an energetically favorable location, such systems might become a welcome alternative to extend the lifetime of cardiac implantable electronic device. the presented endocardial energy harvesting concept has the potential to turn pacemakers into battery- and leadless systems and thereby eliminate two major drawbacks of contemporary systems.
Endocardial fibrosarcoma in a reticulated python (Python reticularis).
Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn
2010-11-01
A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.
Left Atrial Appendage Closure for Stroke Prevention: Devices, Techniques, and Efficacy.
Iskandar, Sandia; Vacek, James; Lavu, Madhav; Lakkireddy, Dhanunjaya
2016-05-01
Left atrial appendage closure can be performed either surgically or percutaneously. Surgical approaches include direct suture, excision and suture, stapling, and clipping. Percutaneous approaches include endocardial, epicardial, and hybrid endocardial-epicardial techniques. Left atrial appendage anatomy is highly variable and complex; therefore, preprocedural imaging is crucial to determine device selection and sizing, which contribute to procedural success and reduction of complications. Currently, the WATCHMAN is the only device that is approved for left atrial appendage closure in the United States. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Guludec, D.; Bourguignon, M.; Sebag, C.
1987-01-01
Accuracy of Fourier phase mapping of radionuclide gated biventriculograms in detecting the origin of abnormal ventricular activation was studied during ventricular tachycardia or preexcitation. Group I included six patients suffering from clinical recurrent VT; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right ventricular pacing, and induced sustained VT-Group II included seven patients with Wolff-Parkinson-White syndrome and recurrent paroxysmal tachycardia; 3 gated blood pool studies were acquired for each patient: during sinus rhythm, right atrial pacing and orthodromic reciprocating tachycardia. Each acquisition lasted 5 min, in 30 degrees-40 degrees left anterior oblique projection. In Groupmore » I, the Fourier phase mapping was consistent with QRS morphology and axis during VT (5/6), except in one patient with LV aneurysm and LBBB electrical pattern during VT. Origin of VT on phase mapping was located in the right ventricle (n = 2) or in left ventricle (n = 4), at the border of wall motion abnormalities each time they existed (5/6). In Group II, the phase advance correlated with the location of the accessory pathway determined by ECG and endocardial mapping (n = 6) and per-operative epicardial mapping (n = 1). Discrimination between anterior and posterior localization of paraseptal pathways and location of intermittent preexcitation was not possible. We conclude that Fourier phase mapping is an accurate method for locating the origin of VT and determining its etiology. It can help locate the site of ventricular preexcitation in patients with only one accessory pathway; its accuracy in locating multiple accessory pathways remains unknown.« less
Armour, J Andrew; Richer, Louis-Philippe; Pagé, Pierre; Vinet, Alain; Kus, Teresa; Vermeulen, Michel; Nadeau, Réginald; Cardinal, René
2005-03-31
We sought to determine the sites of origin of atrial tachyarrhythmias induced by activating mediastinal nerves, as well as the response of such arrhythmias to autonomic modulation. Under general anaesthesia, atrioventricular block was induced after thoracotomy in 19 canines. Brief trains of 5 electrical stimuli were delivered to right-sided mediastinal nerves during the atrial refractory period. Unipolar electrograms were recorded from 191 right and left atrial epicardial sites under several conditions, i.e. (i) with intact nervous systems and following (ii) acute decentralization of the intrathoracic nervous system or administration of (iii) atropine, (iv) timolol, (v) hexamethonium. Concomitant right atrial endocardial mapping was performed in 7 of these dogs. Mediastinal nerve stimulation consistently initiated bradycardia followed by atrial tachyarrhythmias. In the initial tachyarrhythmia beats, early epicardial breakthroughs were identified in the right atrial free wall (28/50 episodes) or Bachmann bundle region (22/50), which corresponded to endocardial sites of origin associated with the right atrial subsidiary pacemaker complex, i.e. the crista terminalis and dorsal locations including the right atrial aspect of the interatrial septum. Neuronally induced responses were eliminated by atropine, modified by timolol and unaffected by acute neuronal decentralization. After hexamethonium, responses to extra-pericardial but not intra-pericardial nerve stimulation were eliminated. It is concluded that concomitant activation of cholinergic and adrenergic efferent intrinsic cardiac neurons induced by right-sided efferent neuronal stimulation initiates atrial tachyarrhythmias that originate from foci anatomically related to the right atrial pacemaker complex and tissues underlying major atrial ganglionated plexuses.
Ellis-van Creveld syndrome: prenatal diagnosis, molecular analysis and genetic counseling.
Chen, Chih-Ping; Su, Yi-Ning; Hsu, Chin-Yuan; Chern, Schu-Rern; Tsai, Fuu-Jen; Wu, Pei-Chen; Chen, Po-Tsang; Wang, Wayseen
2010-12-01
To present the perinatal findings and molecular genetic analysis of two siblings with Ellis-van Creveld (EvC) syndrome. A 33-year-old woman, gravida 3, para 1, was referred for genetic counseling at 18 gestational weeks because of recurrent fetal skeletal dysplasia. Two years previously, she had delivered a 1,316-g dead male baby at 28 gestational weeks with a karyotype of 46,XY, postaxial polydactyly of the hands, thoracic narrowness, endocardial cushion defects, transposition of the great arteries, shortening of the long bones, malposition of the toes, and hypoplastic nails. During this pregnancy, prenatal ultrasound at 18 gestational weeks revealed shortening of the long bones (equivalent to 15 weeks), postaxial polydactyly of both hands, thoracic narrowness, and endocardial cushion defects. The pregnancy was subsequently terminated, and a 236-g female fetus was delivered with a karyotype of 46,XX, postaxial polydactyly of the hands, thoracic dysplasia, endocardial cushion defects, shortening of the long bones, and malposition of the toes and hypoplastic nails. The phenotype of each of the two siblings was consistent with EVC syndrome. Molecular analysis of the EVC and EVC2 genes revealed heterozygous mutations in the EVC2 gene. A heterozygous deletion mutation of a 26-bp deletion of c.871-2_894del26 encompassing the junction between intron 7 and exon 8 of the EVC2 gene was found in the mother and two siblings, and a heterozygous nonsense mutation of c.1195C >T, p.R399X in exon 10 of the EVC2 gene was found in the father and two siblings. Prenatal sonographic identification of endocardial cushion defects in association with shortening of the long bones should alert clinicians to the possibility of EvC syndrome and prompt a careful search of hexadactyly of the hands. Molecular analysis of the EVC and EVC2 genes is helpful in genetic counseling in cases with prenatally detected postaxial polydactyly, thoracic narrowness, short limbs and endocardial cushion defects. Copyright © 2010 Taiwan Association of Obstetric & Gynecology. Published by Elsevier B.V. All rights reserved.
Results of endocardial radiofrequency ablation of atrial fibrillation during mitral valve surgery.
Demirkilic, U; Bolcal, C; Gunay, C; Doganci, S; Temizkan, V; Kuralay, E; Tatar, H
2006-08-01
The aim of the study is to evaluate the efficacy of thermocontrolled endocardial radiofrequency (RF) ablation for the patients with mitral valve disorder and associated chronic atrial fibrillation during mitral valve replacement operation. Between February 2002 and January 2004, 43 patients with mitral valve disease and associated chronic atrial fibrillation underwent mitral valve replacement and thermocontrolled endocardial RF ablation with Cobra RF system flexible probe at Gulhane Military Academy of Medicine, Department of Cardiovascular Surgery. Eighteen of the patients (41.8%) were males, while the remaining 25 (58.2%) were females. The average age of the patients was 44+/-14.21 (18-66) years. Functional capacity of the patients was class II in 15 (34. 9%), class III in 24 (55.8%), class IV in 4 (9.3%) according to the NYHA classification. At the preoperative period all of the patients were evaluated routinely by twelve-lead ECG, chest film and transthoracic echocardiography (TTE). For the patients over 40 years of age, we performed additional coronary angiography to delineate any coronary lesions. The patients were evaluated at months 1, 3, 6 and annually by twelve-lead ECG, TTE and holter monitoring after discharge. There were not any complications related to the performed technique. No operative and hospital mortality were recorded. At the follow-up period for 35 of 43 patients (81.4%) sinus rhythm was restored. The mean follow-up time was 24.3+/-11.2 (12-35) months. Endocardial RF ablation especially during mitral valve surgery is a simple technique to be performed. Early and midterm results of the cohort are satisfying.
Valentine, Page C.; Gallea, Leslie B.
2015-11-10
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary (SBNMS) region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Mapped substrate types are defined on the basis of sediment grain-size composition, surface morphology, sediment layering, the mobility or immobility of substrate surfaces, and water depth range. This map series is intended to portray the major geological elements (substrates, topographic features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.
Valdigem, Bruno Pereira; da Silva, Nilton José Carneiro; Dietrich, Cristiano Oliveira; Moreira, Dalmo; Sasdelli, Roberto; Pinto, Ibraim M; Cirenza, Claudio; de Paola, Angelo Amato Vincenzo
2010-11-01
As damage to coronary arteries is a potential complication of epicardial RF catheter ablation (EPRFCA), the procedure must be associated with coronary angiography. Chronic Chagasic cardiomiopathy (CCC) is a disease where epicardial VT are common. Eletroanatomic mapping merged with computed totmography (CT) scan data is a useful tool for mapping the endocardium, and its accuracy in guiding ablation on the epicardium was not adequately evaluated so far. Compare electronatomic map merged with Heart CT to fluoroscopy for epicardial ablation of CCC. Describe the distribution of the scars on CCC. We performed epicardial and endocardial mapping and ablation using CARTO XP V8 on eight patients and merged the map with coronary arteries CT scan using at least three landmarks. To compare the 3D image obtained with CARTO MERGE and the 2D fluoroscopic image obtained during the ablation procedure, we used computer graphic software (Inkscape™) in order to prove that the images were equivalent and to compare the distance between the catheter tip on fluoroscopy to catheter tip on 3D EA map. EPRFCA was successfully performed in all patients and they did not present recurrence for at least 3-month follow-up. The mean difference between the tip of the catheter on fluoroscopy and on the 3D model was 6.03 ± 2.09 mm. Scars were present in the epicardium and endocardium and most of patients presented with posterior wall scars and RV scar. The combination of electroanatomic map and CT coronary artery scan data is feasible and can be an important tool for EPRFCA in patients with CCC and VT.
X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface
NASA Technical Reports Server (NTRS)
Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah
2005-01-01
With environmental regulations limiting the use of volatile organic compounds, low-vapor pressure solvents have replaced traditional degreasing solvents for bond substrate preparation. When used to clean and prepare porous bond substrates such as phenolic composites, low vapor pressure solvents can penetrate deep into substrate pore networks and remain there for extended periods. Trapped solvents can interact with applied adhesives either prior to or during cure, potentially compromising bond properties. Currently, methods for characterizing solvent time-depth profiles in bond substrates are limited to bulk gravimetric or sectioning techniques. While sectioning techniques such as microtome allow construction of solvent depth profiles, their depth resolution and reliability are limited by substrate type. Sectioning techniques are particularly limited near the adhesive-substrate interface where depth resolution is further limited by adhesive-substrate hardness and, in the case of a partially cured adhesive, mechanical properties differences. Additionally, sectioning techniques cannot provide information about lateral solvent diffusion. Cross-section component mapping is an alternative method for measuring solvent migration in porous substrates that eliminates the issues associated with sectioning techniques. With cross-section mapping, the solvent-wiped substrate is sectioned perpendicular rather than parallel to the wiped surface, and the sectioned surface is analyzed for the solvent or solvent components of interest using a two-dimensional mapping or imaging technique. Solvent mapping can be performed using either direct or indirect methods. With a direct method, one or more solvent components are mapped using red or Raman spectroscopy together with a moveable sample stage and/or focal plane array detector. With an indirect method, an elemental "tag" not present in the substrate is added to the solvent before the substrate is wiped. Following cross sectioning, the tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.
Pedrizzetti, Gianni; Arvidsson, Per M; Töger, Johannes; Borgquist, Rasmus; Domenichini, Federico; Arheden, Håkan; Heiberg, Einar
2017-07-26
Intraventricular pressure gradients or hemodynamic forces, which are their global measure integrated over the left ventricular volume, have a fundamental importance in ventricular function. They may help revealing a sub-optimal cardiac function that is not evident in terms of tissue motion, which is naturally heterogeneous and variable, and can influence cardiac adaptation. However, hemodynamic forces are not utilized in clinical cardiology due to the unavailability of simple non-invasive measurement tools. Hemodynamic forces depend on the intraventricular flow; nevertheless, most of them are imputable to the dynamics of the endocardial flow boundary and to the exchange of momentum across the mitral and aortic orifices. In this study, we introduce a simplified model based on first principles of fluid dynamics that allows estimating hemodynamic forces without knowing the velocity field inside the LV. The model is validated with 3D phase-contrast MRI (known as 4D flow MRI) in 15 subjects, (5 healthy and 10 patients) using the endocardial surface reconstructed from the three standard long-axis projections. Results demonstrate that the model provides consistent estimates for the base-apex component (mean correlation coefficient r=0.77 for instantaneous values and r=0.88 for root mean square) and good estimates of the inferolateral-anteroseptal component (r=0.50 and 0.84, respectively). The present method represents a potential integration to the existing ones quantifying endocardial deformation in MRI and echocardiography to add a physics-based estimation of the corresponding hemodynamic forces. These could help the clinician to early detect sub-clinical diseases and differentiate between different cardiac dysfunctional states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Junbo; Yue, Yunyun; Zhao, Qingshun
2016-02-01
Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.
Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.
2012-01-01
Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685
Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A
2008-02-12
The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.
Klein, L S; Shih, H T; Hackett, F K; Zipes, D P; Miles, W M
1992-05-01
Radiofrequency energy has been used safely and successfully to eliminate accessory pathways in patients with the Wolff-Parkinson-White syndrome and the substrate for atrioventricular nodal reentrant tachycardia. However, this form of ablation has had only limited success in eliminating ventricular tachycardia in patients with structural heart disease. In contrast, direct-current catheter ablation has been used successfully to eliminate ventricular tachycardia in patients with and without structural heart disease. The purpose of this study was to test whether radiofrequency energy can safely and effectively ablate ventricular tachycardia in patients without structural heart disease. Sixteen patients (nine women and seven men; mean age, 38 years; range, 18-55 years) without structural heart disease who had ventricular tachycardia underwent radiofrequency catheter ablation to eliminate the ventricular tachycardia. Two patients presented with syncope, nine with presyncope, and five with palpitations only. Mean duration of symptoms was 6.7 years (range, 0.5-20 years). Radiofrequency catheter ablation successfully eliminated ventricular tachycardia in 15 of 16 patients (94%). Sites of ventricular tachycardia origin included the high right ventricular outflow tract (12 patients), the right ventricular septum near the tricuspid valve (three patients), and the left ventricular septum (one patient). The only ablation failure was in a patient whose ventricular tachycardia arose from a region near the His bundle. An accurate pace map, early local endocardial activation, and firm catheter contact with endocardium were associated with successful ablation. Radiofrequency ablation did not cause arrhythmias, produced minimal cardiac enzyme rise, and resulted in no detectable change in cardiac function by Doppler echocardiography. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease is effective and safe and may be considered as early therapy in these patients.
Real-time 3D visualization of cellular rearrangements during cardiac valve formation
Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke
2016-01-01
During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. PMID:27302398
Barba-J, Leiner; Escalante-Ramírez, Boris; Vallejo Venegas, Enrique; Arámbula Cosío, Fernando
2018-05-01
Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.
Real-time 3D visualization of cellular rearrangements during cardiac valve formation.
Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R
2016-06-15
During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.
Ishizu, Tomoko; Seo, Yoshihiro; Igarashi, Miyako; Sekiguchi, Yukio; Machino-Ohtsuka, Tomoko; Ogawa, Kojiro; Kuroki, Kenji; Yamamoto, Masahiro; Nogami, Akihiko; Kawakami, Yasushi; Aonuma, Kazutaka
2016-06-01
We have developed a noninvasive isochrone activation imaging (AI) system with 3-dimensional (3D) speckle tracking echocardiography (STE), which allows visualization of the wavefront image of mechanical propagation of the accessory pathway (ACP) in Wolff-Parkinson-White syndrome. Patients with manifest Wolff-Parkinson-White syndrome were imaged in 3D-STE AI mode, which quantified the time from QRS onset to regional endocardial deformation. In 2 patients with left- and right-side ACP, we confirmed that intraoperative contact endocardial electric mapping and the 3D-STE AI system showed comparable images pre- and postablation. In normal heart assessment by 3D-echo AI, the earliest activation sites were found at the attachment of the papillary muscles in the left ventricle and midseptum in the right ventricle, and none showed earliest activation at the peri-atrioventricular valve annuli. An analyzer who was unaware of the clinical information assessed 39 ACP locations in 38 Wolff-Parkinson-White syndrome patients using 3D-STE. All showed abnormal perimitral or tricuspid annular activations, and the location of 34 ACP (87%) showed agreement with the successful ablation sites within a 2-o'clock range. Especially for left free wall ACP, 17/18 (94%) showed consistency with the ablation site within a 2 o'clock range. Among 15 ACP at the ventricular septum, 9 (60%) showed early local activation in both right and left sides of the septum. Isochrone AI with 3D-STE may be a promising noninvasive imaging tool to assess cardiac synchronized activation in normal hearts and detect abnormal breakthrough of mechanical activation from both atrioventricular annuli in Wolff-Parkinson-White syndrome. © 2016 American Heart Association, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botvinick, E.H.; Frais, M.A.; Shosa, D.W.
1982-08-01
The ability of scintigraphic phase image analysis to characterize patterns of abnormal ventricular activation was investigated. The pattern of phase distribution and sequential phase changes over both right and left ventricular regions of interest were evaluated in 16 patients with normal electrical activation and wall motion and compared with those in 8 patients with an artificial pacemaker and 4 patients with sinus rhythm with the Wolff-Parkinson-White syndrome and delta waves. Normally, the site of earliest phase angle was seen at the base of the interventricular septum, with sequential change affecting the body of the septum and the cardiac apex andmore » then spreading laterally to involve the body of both ventricles. The site of earliest phase angle was located at the apex of the right ventricle in seven patients with a right ventricular endocardial pacemaker and on the lateral left ventricular wall in one patient with a left ventricular epicardial pacemaker. In each case the site corresponded exactly to the position of the pacing electrode as seen on posteroanterior and left lateral chest X-ray films, and sequential phase changes spread from the initial focus to affect both ventricles. In each of the patients with the Wolff-Parkinson-White syndrome, the site of earliest ventricular phase angle was located, and it corresponded exactly to the site of the bypass tract as determined by endocardial mapping. In this way, four bypass pathways, two posterior left paraseptal, one left lateral and one right lateral, were correctly localized scintigraphically. On the basis of the sequence of mechanical contraction, phase image analysis provides an accurate noninvasive method of detecting abnormal foci of ventricular activation.« less
Chik, William W B; Barry, M A; Malchano, Zach; Wylie, Bryan; Pouliopoulos, Jim; Huang, Kaimin; Lu, Juntang; Thavapalachandran, Sujitha; Robinson, David; Saadat, Vahid; Thomas, Stuart P; Ross, David L; Kovoor, Pramesh; Thiagalingam, Aravinda
2012-01-01
Radiofrequency (RF) ablation utilizing direct endocardial visualization (DEV) requires a "virtual electrode" to deliver RF energy while preserving visualization. This study aimed to: (1) examine the virtual electrode RF ablation efficacy; (2) determine the optimal power and duration settings; and (3) evaluate the utility of virtual electrode unipolar electrograms. The DEV catheter lesions were compared to lesions formed using a 3.5 mm open irrigated tip catheter within the right atria of 12 sheep. Generator power settings for DEV were titrated from 12W, 14W and 16W for 20, 30 and 40 seconds duration with 25 mL/min saline irrigation. Standard irrigated tip catheter settings of 30W, 50°C for 30 seconds and 30 mL/min were used. The DEV lesions were significantly greater in surface area and both major and minor axes compared to irrigated tip lesions (surface area 19.43 ± 9.09 vs 10.88 ± 4.72 mm, P<0.01) with no difference in transmurality (93/94 vs 46/47) or depth (1.86 ± 0.75 vs 1.85 ± 0.57 mm). Absolute electrogram amplitude reduction was greater for DEV lesions (1.89 ± 1.31 vs 1.49 ± 0.78 mV, P = 0.04), but no difference in percentage reduction. Pre-ablation pacing thresholds were not different between DEV (0.79 ± 0.36 mA) and irrigated tip (0.73 ± 0.25 mA) lesions. There were no complications noted during ablation with either catheter. Virtual electrode ablation consistently created wider lesions at lower power compared to irrigated tip ablation. Virtual electrode electrograms showed a comparable pacing and sensing efficacy in detecting local myocardial electrophysiological changes. © 2011 Wiley Periodicals, Inc.
Sahakian, A V; Peterson, M S; Shkurovich, S; Hamer, M; Votapka, T; Ji, T; Swiryn, S
2001-03-01
While the recording of extracellular monophasic action potentials (MAPs) from single epicardial or endocardial sites has been performed for over a century, we are unaware of any previous successful attempt to record MAPs simultaneously from a large number of sites in vivo. We report here the design and validation of an array of MAP electrodes which records both depolarization and repolarization simultaneously at up to 16 epicardial sites in a square array on the heart in vivo. The array consists of 16 sintered Ag-AgCl electrodes mounted in a common housing with individual suspensions allowing each electrode to exert a controlled pressure on the epicardial surface. The electrodes are arranged in a square array, with each quadrant of four having an additional recessed sintered Ag-AgCl reference electrode at its center. A saline-soaked sponge establishes ionic contact between the reference electrodes and the tissue. The array was tested on six anesthetized open-chested pigs. Simultaneous diagnostic-quality MAP recordings were obtained from up to 13 out of 16 ventricular sites. Ventricular MAPs had amplitudes of 10-40 mV with uniform morphologies and stable baselines for up to 30 min. MAP duration at 90% repolarization was measured and shown to vary as expected with cycle length during sustained pacing. The relationship between MAP duration and effective refractory period was also confirmed. The ability of the array to detect local differences in repolarization was tested in two ways. Placement of the array straddling the atrioventricular (AV) junction yielded simultaneous atrial or ventricular recordings at corresponding sites during 1:1 and 2:1 AV conduction. Localized ischemia via constriction of a coronary artery branch resulted in shortening of the repolarization phase at the ischemic, but not the nonischemic, sites. In conclusion, these results indicate that the simultaneous multichannel MAP electrode array is a viable method for in vivo epicardial repolarization mapping. The array has the potential to be expanded to increase the number of sites and spatial resolution.
Whisenant, Thomas C.; Ho, David T.; Benz, Ryan W.; Rogers, Jeffrey S.; Kaake, Robyn M.; Gordon, Elizabeth A.; Huang, Lan; Baldi, Pierre; Bardwell, Lee
2010-01-01
In order to fully understand protein kinase networks, new methods are needed to identify regulators and substrates of kinases, especially for weakly expressed proteins. Here we have developed a hybrid computational search algorithm that combines machine learning and expert knowledge to identify kinase docking sites, and used this algorithm to search the human genome for novel MAP kinase substrates and regulators focused on the JNK family of MAP kinases. Predictions were tested by peptide array followed by rigorous biochemical verification with in vitro binding and kinase assays on wild-type and mutant proteins. Using this procedure, we found new ‘D-site’ class docking sites in previously known JNK substrates (hnRNP-K, PPM1J/PP2Czeta), as well as new JNK-interacting proteins (MLL4, NEIL1). Finally, we identified new D-site-dependent MAPK substrates, including the hedgehog-regulated transcription factors Gli1 and Gli3, suggesting that a direct connection between MAP kinase and hedgehog signaling may occur at the level of these key regulators. These results demonstrate that a genome-wide search for MAP kinase docking sites can be used to find new docking sites and substrates. PMID:20865152
Tabereaux, Paul B; Walcott, Greg P; Rogers, Jack M; Kim, Jong; Dosdall, Derek J; Robertson, Peter G; Killingsworth, Cheryl R; Smith, William M; Ideker, Raymond E
2007-09-04
The roles of Purkinje fibers (PFs) and focal wave fronts, if any, in the maintenance of ventricular fibrillation (VF) are unknown. If PFs are involved in VF maintenance, it should be possible to map wave fronts propagating from PFs into the working ventricular myocardium during VF. If wave fronts ever arise focally during VF, it should be possible to map them appearing de novo. Six canine hearts were isolated, and the left main coronary artery was cannulated and perfused. The left ventricular cavity was exposed, which allowed direct endocardial mapping of the anterior papillary muscle insertion. Nonperfused VF was induced, and 6 segments of data, each 5 seconds long, were analyzed during 10 minutes of VF. During 36 segments of data that were analyzed, 1018 PF or focal wave fronts of activation were identified. In 534 wave fronts, activation was mapped propagating from working ventricular myocardium to PF. In 142 wave fronts, activation was mapped propagating from PF to working ventricular myocardium. In 342 wave fronts, activation was mapped arising focally. More than 1 of these 3 patterns could occur in the same wave front. PFs are highly active throughout the first 10 minutes of VF. In addition to retrograde propagation from the working ventricular myocardium to PFs, antegrade propagation occurs from PFs to working ventricular myocardium, which suggests PFs are important in VF maintenance. Prior plunge needle recordings in dogs indicate activation propagates from the endocardium toward the epicardium after 1 minute of VF, which suggests that focal sites on the endocardium may represent foci and not breakthrough. If so, in addition to reentry, abnormal automaticity or triggered activity may also occur during VF.
NASA Astrophysics Data System (ADS)
Neves, Bárbara M.; Du Preez, Cherisse; Edinger, Evan
2014-01-01
Efforts to locate and map deep-water coral and sponge habitats are essential for the effective management and conservation of these vulnerable marine ecosystems. Here we test the applicability of a simple multibeam sonar classification method developed for fjord environments to map the distribution of shelf-depth substrates and gorgonian coral- and sponge-dominated biotopes. The studied area is a shelf-depth feature Learmonth Bank, northern British Columbia, Canada and the method was applied aiming to map primarily non-reef forming coral and sponge biotopes. Aside from producing high-resolution maps (5 m2 raster grid), biotope-substrate associations were also investigated. A multibeam sonar survey yielded bathymetry, acoustic backscatter strength and slope. From benthic video transects recorded by remotely operated vehicles (ROVs) six primary substrate types and twelve biotope categories were identified, defined by the primary sediment and dominant biological structure, respectively. Substrate and biotope maps were produced using a supervised classification mostly based on the inter-quartile range of the acoustic variables for each substrate type and biotope. Twenty-five percent of the video observations were randomly reserved for testing the classification accuracy. The dominant biotope-defining corals were red tree coral Primnoa pacifica and small styasterids, of which Stylaster parageus was common. Demosponges and hexactinellid sponges were frequently observed but no sponge reefs were observed. The substrate classification readily distinguished fine sediment, Sand and Bedrock from the other substrate types, but had greater difficulty distinguishing Bedrock from Boulders and Cobble. The biotope classification accurately identified Gardens (dense aggregations of sponges and corals) and Primnoa-dominated biotopes (67% accuracy), but most other biotopes had lower accuracies. There was a significant correspondence between Learmonth's biotopes and substrate types, with many biotopes strongly associated with only a single substrate type. This strong correspondence allowed substrate types to function as a surrogate for helping to map biotope distributions. Our results add new information on the distribution of corals and sponges at Learmonth Bank, which can be used to guide management at this location.
Jin, Xuanyi; Ma, Chunyan; Wang, Yonghuai; Yang, Jun
2017-12-12
Loeffler endocarditis is a rare comprehensive cardiac manifestation caused by eosinophilic cell infiltrations and is present in 50%-60% of patients with hypereosinophilic syndrome (HES). Left ventricle (LV) endocardial systolic dysfunction is a major cause of morbidity and mortality in HES and Loeffler endocarditis. We present a case of Loeffler endocarditis, whose left ventricular (LV) systolic dysfunction and endocardial systolic dysfunction were first neglected by conventional transthoracic echocardiography (TTE), but were later pointed out by layer-specific longitudinal strain analysis. With timely initial therapeutic management, the patient's outcome was remarkable. Thus, we strongly recommend strain analysis as a necessary supplementary test of conventional TTE in all patients with Loeffler endocarditis.
[The complex origin of ventricular tachycardia after the total correction of tetralogy of Fallot].
Ressia, L; Graffigna, A; Salerno-Uriarte, J A; Viganò, M
1993-09-01
Two patients underwent surgical treatment of ventricular tachycardia after repair of tetralogy of Fallot. Both patients had right bundle branch block, moderate pulmonary valve incompetence and right ventricular dilatation, and were refractory to electrophysiologically guided drug therapy. Both patients underwent intraoperative epicardial mapping, which located the arrhythmogenic focus on the right ventricular outflow tract, on the border of the previous ventriculotomy. In one patient removal of the previous scar and endocardial cryoablation was successful in ablating the arrhythmia. In the other, the same procedure was only temporarily effective. VT recurred and was subsequently identified at the superior border of the closed ventricular septal defect. It was ablated by means of transcatheter radiofrequency. While VT from foci located on the right ventricular free wall can be easily detected and ablated, septal origin of VT requires extensive preoperative and intraoperative electrophysiological evaluation and may necessitate combined surgical and transcatheter procedures.
Phelps, Aimee L.; Ghatnekar, Angela V.; Barth, Jeremy L.; Norris, Russell A.; Wessels, Andy
2013-01-01
Cartilage Link Protein 1 (Crtl1) is an extracellular matrix (ECM) protein that stabilizes the interaction between hyaluronan and versican and is expressed in endocardial and endocardially-derived cells in the developing heart, including cells in the atrioventricular (AV) and outflow tract (OFT) cushions. Previous investigations into the transcriptional regulation of the Crtl1 gene have shown that Sox9 regulates Crtl1 expression in both cartilage and the AV valves. The cardiac transcription factor Mef2c is involved in the regulation of gene expression in cardiac and skeletal muscle cell lineages. In this study we have investigated the potential role of Mef2c in the regulation of ECM production in the endocardial and mesenchymal cell lineages of the developing heart. We demonstrate that the Crtl1 5′ flanking region contains two highly conserved Mef2 binding sites and that Mef2c is able to bind to these sites in vivo during cardiovascular development. Additionally, we show that Crtl1 transcription is dependent on Mef2c expression in fetal mitral valve interstitial cells (VICs). Combined, these findings highlight a new role for Mef2c in cardiac development and the regulation of cardiac extracellular matrix protein expression. PMID:23468913
NASA Astrophysics Data System (ADS)
Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei
2013-03-01
An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.
Sacco, Federica; Paun, Bruno; Lehmkuhl, Oriol; Iles, Tinen L.; Iaizzo, Paul A.; Houzeaux, Guillaume; Vázquez, Mariano; Butakoff, Constantine; Aguado-Sierra, Jazmin
2018-01-01
The aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models. PMID:29760665
NASA Astrophysics Data System (ADS)
Connolly, Adam; Robson, Matthew D.; Schneider, Jürgen; Burton, Rebecca; Plank, Gernot; Bishop, Martin J.
2017-09-01
Novel low-energy defibrillation therapies are thought to be driven by virtual-electrodes (VEs), due to the interaction of applied monophasic electric shocks with fine-scale anatomical structures within the heart. Significant inter-species differences in the cardiac (micro)-anatomy exist, however, particularly with respect to the degree of endocardial trabeculations, which may underlie important differences in response to low-energy defibrillation protocols. Understanding the interaction of monophasic electric fields with the specific human micro-anatomy is therefore imperative in facilitating the translation and optimisation of these promising experimental therapies to the clinic. In this study, we sought to investigate how electric fields from implanted devices interact with the highly trabeculated human endocardial surface to better understand shock success in order to help optimise future clinical protocols. A bi-ventricular human computational model was constructed from high resolution (350 μm) ex-vivo MR data, including anatomically accurate endocardial structures. Monophasic shocks were applied between a basal right ventricular catheter and an exterior ground. Shocks of varying strengths were applied with both anodal [positive right ventricle (RV) electrode] and cathodal (negative RV electrode) polarities at different states of tissue refractoriness and during induced arrhythmias. Anodal shocks induced isolated positive VEs at the distal side of "detached" trabeculations, which rapidly spread into hyperpolarised tissue on the surrounding endocardial surfaces following the shock. Anodal shocks thus depolarised more tissue 10 ms after the shock than cathodal shocks where the propagation of activation from VEs induced on the proximal side of "detached" trabeculations was prevented due to refractory endocardium. Anodal shocks increased arrhythmia complexity more than cathodal shocks during failed anti-arrhythmia shocks. In conclusion, multiple detached trabeculations in the human ventricle interact with anodal stimuli to induce multiple secondary sources from VEs, facilitating more rapid shock-induced ventricular excitation compared to cathodal shocks. Such a mechanism may help explain inter-species differences in response to shocks and help to develop novel defibrillation strategies.
Sieniewicz, Benjamin J; Behar, Jonathan M; Sohal, Manav; Gould, Justin; Claridge, Simon; Porter, Bradley; Niederer, Steve; Gamble, James H P; Betts, Tim R; Jais, Pierre; Derval, Nicolas; Spragg, David D; Steendijk, Paul; van Gelder, Berry M; Bracke, Frank A; Rinaldi, Christopher A
2018-04-23
The optimal site for biventricular endocardial (BIVENDO) pacing remains undefined. Acute haemodynamic response (AHR) is reproducible marker of left ventricular (LV) contractility, best expressed as the change in the maximum rate of LV pressure (LV-dp/dtmax), from a baseline state. We examined the relationship between factors known to impact LV contractility, whilst delivering BIVENDO pacing at a variety of LV endocardial (LVENDO) locations. We compiled a registry of acute LVENDO pacing studies from five international centres: Johns Hopkins-USA, Bordeaux-France, Eindhoven-The Netherlands, Oxford-United Kingdom, and Guys and St Thomas' NHS Foundation Trust, London-UK. In all, 104 patients incorporating 687 endocardial and 93 epicardial pacing locations were studied. Mean age was 66 ± 11 years, mean left ventricular ejection fraction 24.6 ± 7.7% and mean QRS duration of 163 ± 30 ms. In all, 50% were ischaemic [ischaemic cardiomyopathy (ICM)]. Scarred segments were associated with worse haemodynamics (dp/dtmax; 890 mmHg/s vs. 982 mmHg/s, P < 0.01). Delivering BiVENDO pacing in areas of electrical latency was associated with greater improvements in AHR (P < 0.01). Stimulating late activating tissue (LVLED >50%) achieved greater increases in AHR than non-late activating tissue (LVLED < 50%) (8.6 ± 9.6% vs. 16.1 ± 16.2%, P = 0.002). However, the LVENDO pacing location with the latest Q-LV, was associated with the optimal AHR in just 62% of cases. Identifying viable LVENDO tissue which displays late electrical activation is crucial to identifying the optimal BiVENDO pacing site. Stimulating late activating tissue (LVLED >50%) yields greater improvements in AHR however, the optimal location is frequently not the site of latest activation.
Hara, Yukio; Ike, Asako; Tanida, Riyo; Okada, Muneyoshi; Yamawaki, Hideyuki
2009-12-01
The mouse heart is expected to have characteristic contractile properties. However, basic information on the function of the mouse heart has not been accumulated sufficiently. In this study, the involvement of cyclooxygenase (COX)-2 in carbachol (CCh)-induced inotropic response was investigated in mouse isolated left atrium. Influences of CCh and their mechanisms of action on developed tension elicited by electrical stimulation were examined pharmacologically. The presence of COX-2 in atrium was examined by Western blotting and immunohistochemical analysis. CCh (3 microM for 15 min) produced a biphasic inotropic response: a transient decrease in contractile force followed by a late increase. Atropine suppressed the biphasic inotropic response to CCh. A muscarinic M(3) receptor antagonist, 4-diphenyl-acetoxy-N-methlpiperidine, inhibited the late positive inotropic action. Blockade of prostaglandin (PG) E(2) or F(2alpha) receptor by 6-isopropoxy-9-oxoxanthene-2-carboxylic acid (AH6809) or 9alpha, 15R-dihydroxy-11beta-fluoro-15-(2,3-dihydro-1H-inden-2-yl)-16,17,18,19,20-pentanor-prosta 5Z, 13E-dien-1-oic acid (AL8810), respectively, significantly suppressed the positive inotropic response to CCh. A nonselective COX inhibitor, indomethacin, and a selective COX-2 inhibitor, N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) inhibited the positive response. A COX-1 inhibitor, valeroyl salicylate, did not affect the positive response. The positive response was almost completely abolished in the endocardial endothelium-deprived atria. Existence of COX-2 in endocardial endothelium was confirmed by Western blotting and immunohistochemical analysis. The present study indicated that the CCh-induced positive inotropic response was mediated by PGs, possibly PGE(2) and PGF(2alpha), released in part from endocardial endothelium. Furthermore, for the first time, we demonstrated that the production of PGs depended in part on COX-2 in endocardial endothelium through the muscarinic M(3) receptor stimulation.
Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa
2016-01-01
Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n = 6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias. PMID:27782003
Costet, Alexandre; Wan, Elaine; Bunting, Ethan; Grondin, Julien; Garan, Hasan; Konofagou, Elisa
2016-11-21
Characterization and mapping of arrhythmias is currently performed through invasive insertion and manipulation of cardiac catheters. Electromechanical wave imaging (EWI) is a non-invasive ultrasound-based imaging technique, which tracks the electromechanical activation that immediately follows electrical activation. Electrical and electromechanical activations were previously found to be linearly correlated in the left ventricle, but the relationship has not yet been investigated in the three other chambers of the heart. The objective of this study was to investigate the relationship between electrical and electromechanical activations and validate EWI in all four chambers of the heart with conventional 3D electroanatomical mapping. Six (n = 6) normal adult canines were used in this study. The electrical activation sequence was mapped in all four chambers of the heart, both endocardially and epicardially using the St Jude's EnSite 3D mapping system (St. Jude Medical, Secaucus, NJ). EWI acquisitions were performed in all four chambers during normal sinus rhythm, and during pacing in the left ventricle. Isochrones of the electromechanical activation were generated from standard echocardiographic imaging views. Electrical and electromechanical activation maps were co-registered and compared, and electrical and electromechanical activation times were plotted against each other and linear regression was performed for each pair of activation maps. Electromechanical and electrical activations were found to be directly correlated with slopes of the correlation ranging from 0.77 to 1.83, electromechanical delays between 9 and 58 ms and R 2 values from 0.71 to 0.92. The linear correlation between electrical and electromechanical activations and the agreement between the activation maps indicate that the electromechanical activation follows the pattern of propagation of the electrical activation. This suggests that EWI may be used as a novel non-invasive method to accurately characterize and localize sources of arrhythmias.
... Philadelphia, PA: Elsevier; 2016:chap 426. Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK. Atrioventricular septal defect. In: Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK, eds. Kirklin/Barratt- ...
Construction of a cardiac conduction system subject to extracellular stimulation.
Clements, Clyde; Vigmond, Edward
2005-01-01
Proper electrical excitation of the heart is dependent on the specialized conduction system that coordinates the electrical activity from the atria to the ventricles. This paper describes the construction of a conduction system as a branching network of Purkinje fibers on the endocardial surface. Endocardial surfaces were extracted from an FEM model of the ventricles and transformed to 2D. A Purkinje network was drawn on top and the inverse transform performed. The underlying mathematics utilized one dimensional cubic Hermite finite elements. Compared to linear elements, the cubic Hermite solution was found to have a much smaller RMS error. Furthermore, this method has the advantage of enforcing current conservation at bifurcation and unification points, and allows for discrete coupling resistances.
NASA Astrophysics Data System (ADS)
Singh-Moon, Rajinder P.; Zaryab, Mohammad; Hendon, Christine P.
2017-02-01
Electroanatomical mapping (EAM) is an invaluable tool for guiding cardiac radiofrequency ablation (RFA) therapy. The principle roles of EAM is the identification of candidate ablation sites by detecting regions of abnormal electrogram activity and lesion validation subsequent to RF energy delivery. However, incomplete lesions may present interim electrical inactivity similar to effective treatment in the acute setting, despite efforts to reveal them with pacing or drugs, such as adenosine. Studies report that the misidentification and recovery of such lesions is a leading cause of arrhythmia recurrence and repeat procedures. In previous work, we demonstrated spectroscopic characterization of cardiac tissues using a fiber optic-integrated RF ablation catheter. In this work, we introduce OSAM (optical spectroscopic anatomical mapping), the application of this spectroscopic technique to obtain 2-dimensional biodistribution maps. We demonstrate its diagnostic potential as an auxiliary method for lesion validation in treated swine preparations. Endocardial lesion sets were created on fresh swine cardiac samples using a commercial RFA system. An optically-integrated catheter console fabricated in-house was used for measurement of tissue optical spectra between 600-1000nm. Three dimensional, Spatio-spectral datasets were generated by raster scanning of the optical catheter across the treated sample surface in the presence of whole blood. Tissue optical parameters were recovered at each spatial position using an inverse Monte Carlo method. OSAM biodistribution maps showed stark correspondence with gross examination of tetrazolium chloride stained tissue specimens. Specifically, we demonstrate the ability of OSAM to readily distinguish between shallow and deeper lesions, a limitation faced by current EAM techniques. These results showcase the OSAMs potential for lesion validation strategies for the treatment of cardiac arrhythmias.
Lin, Yenn-Jiang; Lo, Men-Tzung; Chang, Shih-Lin; Lo, Li-Wei; Hu, Yu-Feng; Chao, Tze-Fan; Chung, Fa-Po; Liao, Jo-Nan; Lin, Chin-Yu; Kuo, Huan-Yu; Chang, Yi-Chung; Lin, Chen; Tuan, Ta-Chuan; Vincent Young, Hsu-Wen; Suenari, Kazuyoshi; Dan Do, Van Buu; Raharjo, Suunu Budhi; Huang, Norden E; Chen, Shih-Ann
2016-11-01
This prospective study compared the efficacy of atrial substrate modification guided by a nonlinear phase mapping technique with that of conventional substrate ablation. The optimal ablation strategy for persistent atrial fibrillation (AF) was unknown. In phase 1 study, we applied a cellular automation technique to simulate the electrical wave propagation to improve the phase mapping algorithm, involving analysis of high-similarity electrogram regions. In addition, we defined rotors and focal AF sources, using the physical parameters of the divergence and curvature forces. In phase 2 study, we enrolled 68 patients with persistent AF undergoing substrate modification into 2 groups, group-1 (n = 34) underwent similarity index (SI) and phase mapping techniques; group-2 (n = 34) received complex fractionated atrial electrogram ablation with commercially available software. Group-1 received real-time waveform similarity measurements in which a phase mapping algorithm was applied to localize the sources. We evaluated the single-procedure freedom from AF. In group-1, we identified an average of 2.6 ± 0.89 SI regions per chamber. These regions involved rotors and focal sources in 65% and 77% of patients in group-1, respectively. Group-1 patients had shorter ablation procedure times, higher termination rates, and significant reduction in AF recurrence compared to group-2 and a trend toward benefit for all atrial arrhythmias. Multivariate analysis showed that substrate mapping using nonlinear similarity and phase mapping was the independent predictor of freedom from AF recurrence (hazard ratio: 0.26; 95% confidence interval: 0.09 to 0.74; p = 0.01). Our study showed that for persistent AF ablation, a specified substrate modification guided by nonlinear phase mapping could eliminate localized re-entry and non-pulmonary focal sources after pulmonary vein isolation. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Electrophysiological determinants of hypokalaemia-induced arrhythmogenicity in the guinea-pig heart.
Osadchii, O E; Olesen, S P
2009-12-01
Hypokalaemia is an independent risk factor contributing to arrhythmic death in cardiac patients. In the present study, we explored the mechanisms of hypokalaemia-induced tachyarrhythmias by measuring ventricular refractoriness, spatial repolarization gradients, and ventricular conduction time in isolated, perfused guinea-pig heart preparations. Epicardial and endocardial monophasic action potentials from distinct left ventricular (LV) and right ventricular (RV) recording sites were monitored simultaneously with volume-conducted electrocardiogram (ECG) during steady-state pacing and following a premature extrastimulus application at progressively reducing coupling stimulation intervals in normokalaemic and hypokalaemic conditions. Hypokalaemic perfusion (2.5 mm K(+) for 30 min) markedly increased the inducibility of tachyarrhythmias by programmed ventricular stimulation and rapid pacing, prolonged ventricular repolarization and shortened LV epicardial and endocardial effective refractory periods, thereby increasing the critical interval for LV re-excitation. Hypokalaemia increased the RV-to-LV transepicardial repolarization gradients but had no effect on transmural dispersion of APD(90) and refractoriness across the LV wall. As determined by local activation time recordings, the LV-to-RV transepicardial conduction and the LV transmural (epicardial-to-endocardial) conduction were slowed in hypokalaemic heart preparations. This change was attributed to depressed diastolic excitability as evidenced by increased ventricular pacing thresholds. These findings suggest that hypokalaemia-induced arrhythmogenicity is attributed to shortened LV refractoriness, increased critical intervals for LV re-excitation, amplified RV-to-LV transepicardial repolarization gradients and slowed ventricular conduction in the guinea-pig heart.
Kim, Young-Seop; Kim, Myoung-Jin; Koo, Tae-Hee; Kim, Jun-Dae; Koun, Soonil; Ham, Hyung Jin; Lee, You Mie; Rhee, Myungchull; Yeo, Sang-Yeob; Huh, Tae-Lin
2012-06-22
During vertebrate heart valve formation, Wnt/β-catenin signaling induces BMP signals in atrioventricular canal (AVC) myocardial cells and underlying AVC endocardial cells then undergo endothelial-mesenchymal transdifferentiation (EMT) by receiving this BMP signals. Histone deacetylases (HDACs) have been implicated in numerous developmental processes by regulating gene expression. However, their specific roles in controlling heart valve development are largely unexplored. To investigate the role of HDACs in vertebrate heart valve formation, we treated zebrafish embryos with trichostatin A (TSA), an inhibitor of class I and II HDACs, from 36 to 48 h post-fertilization (hpf) during which heart looping and valve formation occur. Following TSA treatment, abnormal linear heart tube development was observed. In these embryos, expression of AVC myocardial bmp4 and AVC endocardial notch1b genes was markedly reduced with subsequent failure of EMT in the AVC endocardial cells. However, LiCl-mediated activation of Wnt/β-catenin signaling was able to rescue defective heart tube formation, bmp4 and notch1b expression, and EMT in the AVC region. Taken together, our results demonstrated that HDAC activity plays a pivotal role in vertebrate heart tube formation by activating Wnt/β-catenin signaling which induces bmp4 expression in AVC myocardial cells. Copyright © 2012 Elsevier Inc. All rights reserved.
Briggs, Laura E.; Kakarla, Jayant; Wessels, Andy
2012-01-01
Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD). AVSDs are congenital malformations in which the atria are permitted to communicate due to defective septation between the inferior margin of the septum primum and the atrial surface of the common atrioventricular valve. The clinical presentation of AVSDs is variable and depends on both the size and/or type of defect; less severe defects may be asymptomatic while the most severe defect, if untreated, results in infantile heart failure. For many years, maldevelopment of the endocardial cushions was thought to be the sole etiology of AVSDs. More recent work, however, has demonstrated that perturbation of DMP development also results in AVSD. Here, we discuss in detail the formation of the DMP, its contribution to cardiac septation and describe the morphological features as well as potential etiologies of ASDs and AVSDs. PMID:22709652
Current topics in surgery for multiple ventricular septal defects.
Yoshimura, Naoki; Fukahara, Kazuaki; Yamashita, Akio; Doki, Yoshinori; Takeuchi, Katsunori; Higuma, Tomonori; Senda, Kazutaka; Toge, Masayoshi; Matsuo, Tatsuro; Nagura, Saori; Aoki, Masaya; Sakata, Kimimasa; Sakai, Mari
2016-04-01
In this review article, we describe several topics, including the sandwich technique, the transatrial re-endocardialization technique, the limited apical left ventriculotomy approach and device closure. The sandwich technique was introduced for the closure of muscular ventricular septal defects (VSD) by sandwiching the septum between two felt patches placed in the left and right ventricle. This technique requires neither the transection of muscular trabeculae nor ventriculotomy. Although the sandwich technique has resulted in the improvement of surgical outcomes, cases of postoperative cardiac dysfunction have been reported. Multiple smaller VSDs have been closed with transatrial re-endocardialization. Septal dysfunction may be avoided through this technique, in which the septal trabeculae are approximated in two layers of superficial, endocardial running sutures. Recently, a number of reports have recommended a limited apical left ventriculotomy approach. With this technique, a much shorter incision of around 1 cm at the apex of the left ventricle may be sufficient for achieving the complete closure of apical muscular VSDs. The transcatheter or perventricular device closure of muscular VSDs has increasingly been performed with good results. Although favorable early and mid-term results of device closure have been reported, this method is not always safer or less invasive than surgical closure. Long-term evaluations should be performed to determine whether the right and left ventricular functions are affected by treatment with relatively large devices in the heart.
Luo, Qingzhi; Jin, Qi; Zhang, Ning; Han, Yanxin; Wang, Yilong; Huang, Shangwei; Lin, Changjian; Ling, Tianyou; Chen, Kang; Pan, Wenqi; Wu, Liqun
2017-04-13
The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts. Ventricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode. In the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest. A global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.
Funabashi, Nobusada; Takaoka, Hiroyuki; Ozawa, Koya; Kamata, Tomoko; Uehara, Masae; Komuro, Issei; Kobayashi, Yoshio
2018-05-30
To achieve further risk stratification in hypertrophic cardiomyopathy (HCM) patients, we localized and quantified layer-specific LVM fibrosis on MRI in HCM patients using regional layer-specific peak longitudinal strain (PLS) and peak circumferential strain (PCS) in LV myocardium (LVM) on speckle tracking transthoracic echocardiography (TTE). A total of 18 HCM patients (14 males; 58 ± 17 years) underwent 1.5T-MRI and TTE. PLS and PCS in each layer of the LVM (endocardium, epicardium, and whole-layer myocardium) were calculated for 17 AHA-defined lesions. MRI assessment showed that fibrosis was classified as endocardial, epicardial, or whole-layer (= either or both of these). Regional PLS was smaller in fibrotic endocardial lesions than in non-fibrotic endocardial lesions (P = 0.004). To detect LV endocardial lesions with fibrosis, ROC curves of regional PLS revealed an area under the curve (AUC) of 0.609 and a best cut-off point of 13.5%, with sensitivity of 65.3% and specificity of 54.3%. Regional PLS was also smaller in fibrotic epicardial lesions than in non-fibrotic epicardial lesions (P < 0.001). To detect LV epicardial lesions with fibrosis, ROC curves of PLS revealed an AUC of 0.684 and a best cut-off point of 9.5%, with sensitivity of 73.5% and specificity of 55.5%. Using whole-layer myocardium analysis, PLS was smaller in fibrotic lesions than in non-fibrotic lesions (P < 0.001). To detect whole-layer LV lesions with fibrosis, ROC curves of regional PLS revealed an AUC of 0.674 and a best cut-off point of 12.5%, with sensitivity of 79.0% and specificity of 50.7%. There were no significant differences in PCS of LV myocardium (endocardium, epicardium, and whole-layer) between fibrotic and non-fibrotic lesions. Quantitative regional PLS but not PCS in LV endocardium, epicardium, and whole-layer myocardium provides useful non-invasive information for layer-specific localization of fibrosis in HCM patients.
Fosness, Ryan L.
2014-01-01
This report presents the methods used to develop georeferenced portable document format maps and geospatial data that describe spawning locations and physical habitat characteristics (including egg mat locations, bathymetry, surficial sediment facies, and streamflow velocity) within the substrate enhancement pilot project study area. The results are presented as two maps illustrating the physical habitat characteristics along with proposed habitat enhancement areas, aerial imagery, and hydrography. The results of this study will assist researchers, policy makers, and management agencies in deciding the spatial location and extent of the substrate enhancement pilot project.
Transvenous right ventricular pacing in a patient with tricuspid mechanical prosthesis.
Sierra, Juan; Rubio, José
2008-07-09
We report a patient in whom permanent endocardial pacing was accomplished by passage of the electrode through a mechanical tricuspid valve. Echocardiography study showed a minimal tricuspid regurgitation.
Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Sunaga, Akihiro; Tsujimura, Takuya; Matsuda, Yasuhiro; Ohashi, Takuya; Uematsu, Masaaki
2018-05-01
An elevated left atrial pressure has been reported to play an important role in the development of atrial remodelling in atrial fibrillation (AF) patients. The study aimed at elucidating the association between the diastolic early transmitral flow velocity/mitral annular velocity (E/e', a non-invasive surrogate of left atrial pressure) and left atrial low-voltage-area existence, and the prognostic impact of the E/e' on procedural outcomes in patients undergoing AF ablation. Total of 215 consecutive patients were divided into 3 groups based on the estimated left atrial pressure: normal (E/e' < 8.0, n = 58), undetermined (E/e' = 8.0-14.0, n = 114), and elevated (E/e' > 14.0, n = 43). Left atrial endocardial voltage mapping was performed following pulmonary vein isolation. Patients with a high E/e' more frequently had low-voltage areas (E/e' < 8.0, 31%, E/e' = 8.0-14.0, 35%; E/e' > 14.0, 67%; P = 0.0001). After adjusting for other correlates, a high E/e' was an independent predictor of low-voltage-area existence (HR = 1.11, 95% CI = 1.02-1.21, P = 0.017). During a mean follow-up period of 12 ± 6 months, recurrent atrial tachyarrhythmias occurred in 22 (10%) patients after multiple (1.4 ± 0.5) procedures. Patients with an E/e' > 14 had more frequent recurrent atrial tachyarrhythmias after multiple ablation procedures than those with an E/e' ≤ 14 (23% vs. 7%, P = 0.001). A high E/e' obtained by pre-ablation echocardiography was associated with a left atrial arrhythmogenic substrate in patients undergoing AF ablation. Furthermore, a high E/e' predicted poor procedural outcomes after pulmonary vein isolation.
Evaluation of left ventricular function by bedside ultrasound in acute toxic myocarditis.
Brown, Cara; Budhram, Gavin
2013-10-01
Myocarditis can be difficult to diagnose in the Emergency Department (ED) due to the lack of classic symptoms and the wide variation in presentations. Poor cardiac contractility is a common finding in myocarditis and can be evaluated by bedside ultrasound. To demonstrate the utility of fractional shortening measurements as an estimation of left ventricular function during bedside cardiac ultrasound evaluation in the ED. A 54-year-old man presented to the ED complaining of 3 days of chest tightness, palpitations, and dyspnea, as well as persistent abdominal pain and vomiting. An electrocardiogram (ECG) showed sinus tachycardia with presumably new ST-segment elevation and signs of an incomplete right bundle branch block. A bedside echocardiogram was performed by the emergency physician that showed poor left ventricular function by endocardial fractional shortening measurements. On further questioning, the patient revealed that for the past 2 weeks he had been regularly huffing a commercially available compressed air duster. Based on these history and examination findings, the patient was given a presumptive diagnosis of toxic myocarditis. A follow-up echocardiogram approximately 7 weeks later demonstrated resolution of the left ventricular systolic dysfunction and his ECG findings normalized. Cardiac ultrasound findings of severely reduced global function measured by endocardial fractional shortening were seen in this patient and supported the diagnosis of myocarditis. Endocardial fractional shortening is a useful means of easily evaluating and documenting left ventricular function and can be performed at the bedside in the ED. Copyright © 2013 Elsevier Inc. All rights reserved.
Thavendiranathan, Paaladinesh; Dickerson, Jennifer A.; Scandling, Debbie; Balasubramanian, Vijay; Pennell, Michael L.; Hinton, Alice; Raman, Subha V.; Simonetti, Orlando P.
2013-01-01
Purpose To compare exercise stress cardiac magnetic resonance (cardiac MR) to echocardiography in healthy volunteers with respect to adequacy of endocardial visualization and confidence of stress study interpretation. Materials and Methods 28 healthy volunteers (aged 28 ± 11 years, 15 males) underwent exercise stress echo and cardiac MR one week apart assigned randomly to one test first. Stress cardiac MR was performed using an MRI-compatible treadmill; stress echo was performed as per routine protocol. Cardiac MR and echo images were independently reviewed and scored for adequacy of endocardial visualization and confidence in interpretation of the stress study. Results Heart rate at the time of imaging was similar between the studies. Average time from cessation of exercise to start of imaging (21 vs. 31 seconds, p<0.001) and time to acquire stress images (20 vs. 51 seconds, p<0.001) was shorter for cardiac MR. The number of myocardial segments adequately visualized was significantly higher by cardiac MR at rest (99.8% versus 96.4%, p=0.002) and stress (99.8% versus 94.1%, p=0.001). The proportion of subjects in whom there was high confidence in the interpretation was higher for cardiac MR than echo (96% vs 60%, p=0.005). Conclusion Exercise stress cardiac MR to assess peak exercise wall motion is feasible and can be performed at least as rapidly as stress echo. PMID:24123562
Outcomes of cardiac pacing in adult patients after a Fontan operation.
Egbe, Alexander C; Huntley, Geoffery D; Connolly, Heidi M; Ammash, Naser M; Deshmukh, Abhishek J; Khan, Arooj R; Said, Sameh M; Akintoye, Emmanuel; Warnes, Carole A; Kapa, Suraj
2017-12-01
Cardiac pacing can be challenging after a Fontan operation, and limited data exist regarding pacing in adult Fontan patients. The objectives of our study were to determine risk factors for pacing and occurrence of device-related complications (DRCs) and pacemaker reinterventions. We performed a retrospective review of Fontan patients from 1994 through 2014. We defined DRCs as lead failure, lead recall, cardiac perforation, lead thrombus/vegetation, or device-related infection, and cardiovascular adverse events (CAEs) as venous thrombosis, stroke, death, or heart transplant. Pacemaker reintervention was defined as lead failure or recall. Of 439 patients, 166 (38%) had pacemakers implanted (79 during childhood; 87, adulthood); 114 patients (69%) received epicardial leads initially, and 52 (31%), endocardial leads. Pacing was initially atrial in 52 patients (31%); ventricular, 30 (18%); or dual chamber, 84 (51%). There were 37 reinterventions (1.9% per year) and 48 DRCs (2.4% per year). Pacemaker implantation during childhood was a risk factor for DRCs (hazard ratio, 2.01 [CI, 1.22-5.63]; P = .03). There were 70 CAEs (venous thrombosis, 5; stroke, 11; transplant, 8; and death, 46), yielding a rate of 3.5% per year. DRCs, CAEs, and reintervention rates were comparable for patients with epicardial or endocardial leads. More than one-third of adult Fontan patients referred to Mayo Clinic had pacemaker implantation. Epicardial leads were associated with high rate of pacemaker reinterventions but similar DRC rates in comparison to endocardial leads. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterization of fatty acid amide hydrolase activity by a fluorescence-based assay.
Dato, Florian M; Maaßen, Andreas; Goldfuß, Bernd; Pietsch, Markus
2018-04-01
Fatty acid amide hydrolase (FAAH) is involved in many human diseases, particularly cancer, pain and inflammation as well as neurological, metabolic and cardiovascular disorders. Therefore, FAAH is an attractive target for the development of low-molecular-weight inhibitors as therapeutics, which requires robust assays that can be used for high-throughput screening (HTS) of compound libraries. Here, we report the development of a fluorometric assay based on FAAH's ability to effectively hydrolyze medium-chain fatty acid amides, introducing N-decanoyl-substituted 5-amino-2-methoxypyridine (D-MAP) as new amide substrate. D-MAP is cleaved by FAAH with an 8-fold larger specificity constant than the previously reported octanoyl-analog Oc-MAP (V max /K m of 1.09 and 0.134 mL min -1 mg -1 , respectively), with both MAP derivatives possessing superior substrate properties and much increased aqueous solubility compared to the respective p-nitroaniline compounds D-pNA and Oc-pNA. The new assay with D-MAP as substrate is highly sensitive using a lower enzyme concentration (1 μg mL -1 ) than literature-reported fluorimetric FAAH assays. In addition, D-MAP was validated in comparison to the substrate Oc-MAP for the characterization of FAAH inhibitors by means of the reference compounds URB597 and TC-F2 and was shown to be highly suitable for HTS in both kinetic and endpoint assays (Z' factors of 0.81 and 0.78, respectively). Copyright © 2018 Elsevier Inc. All rights reserved.
Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
Kelly, D; Mackenzie, L; Hunter, P; Smaill, B; Saint, D A
2006-07-01
1. Mechanoelectric feedback (MEF) in the heart is the process by which mechanical forces on the myocardium can change its electrical properties. Mechanoelectric feedback has been demonstrated in many animal models, ranging from isolated cells, through isolated hearts to whole animals. In humans, MEF has been demonstrated directly in both the atria and the ventricles. It seems likely that MEF provides either the trigger or the substrate for some types of clinically important arrhythmias. 2. Mechanoelectric feedback may arise because of the presence of stretch-sensitive (or mechano-sensitive) ion channels in the cell membrane of the cardiac myocytes. Two types have been demonstrated: (i) a non-specific cation channel (stretch-activated channel (SAC); conductance of approximately 25 pS); and (ii) a potassium channel with a conductance of approximately 100 pS. The gene coding for the SAC has not yet been identified. The gene for the potassium channel is likely to be TREK, a member of the tandem pore potassium channel gene family. We have recorded stretch-sensitive potassium channels in rat isolated myocytes that have the properties of TREK channels expressed in heterologous systems. 3. It has been shown that TREK mRNA is expressed heterogeneously in the rat ventricular wall, with 17-fold more expression in endocardial compared with epicardial cells. This difference is reflected in the TREK currents recorded from endocardial and epicardial cells using whole-cell patch-clamp techniques, although the difference in current density was less pronounced (approximately threefold). Consistent with this, we show here that when the ventricle is stretched by inflation of an intraventricular balloon in a Langendorff perfused rat isolated heart, action potential shortening was more pronounced in the endocardium (30% shortening at 40 mmHg) compared with that in the epicardium (10% shortening at the same pressure). 4. Computer models of the mechanics of the (pig) heart show pronounced spatial variations in strain in the myocardium with large transmural differences (in the left ventricle in particular) and also large differences between the base and apex of the ventricle. 5. The importance of MEF and the non-homogeneous gene expression and strain distribution for arrhythmias is discussed.
California State Waters Map Series: offshore of Salt Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Salt Point map area include unconsolidated continental shelf sediments, mixed continental shelf substrate, and hard continental shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Fort Ross, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-12-03
Potential marine benthic habitat types in the Offshore of Fort Ross map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky shelf outcrops and rubble are considered the primary habitat type for rockfish and lingcod, both of which are recreationally and commercially important species.
California State Waters Map Series—Offshore of Bodega Head, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Erdey, Mercedes D.; Greene, H. Gary; Cochrane, Guy R.; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Watt, Janet T.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chin, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-08-06
Potential marine benthic habitats in the Offshore of Bodega Head map area include unconsolidated continental-shelf sediments, mixed continental-shelf substrate, and hard continental-shelf substrate. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species.
Mapping protease substrates using a biotinylated phage substrate library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholle, M. D.; Kriplani, U.; Pabon, A.
We describe a bacteriophage M13 substrate library encoding the AviTag (BirA substrate) and combinatorial heptamer peptides displayed at the N terminus of the mature form of capsid protein III. Phages are biotinylated efficiently (> or = 50%) when grown in E. coli cells coexpressing BirA, and such viral particles can be immobilized on a streptavidin-coated support and released by protease cleavage within the combinatorial peptide. We have used this library to map the specificity of human Factor Xa and a neuropeptidase, neurolysin (EC3.4.24.16). Validation by analysis of isolated peptide substrates has revealed that neurolysin recognizes the motif hydrophobic-X-Pro-Arg-hydrophobic, where Arg-hydrophobicmore » is the scissile bond.« less
Bmp2 and Notch cooperate to pattern the embryonic endocardium.
Papoutsi, T; Luna-Zurita, L; Prados, B; Zaffran, S; de la Pompa, J L
2018-05-31
Signaling interactions between myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects. © 2018. Published by The Company of Biologists Ltd.
Evaluation of wireless stimulation of the endocardium, WiSE, technology for treatment heart failure.
Seifert, M; Butter, C
2016-06-01
There are several unsolved limitations in delivering cardiac resynchronization therapy. 30-40% of patients fail to have any clinical benefit after 6 months caused by different reasons. Endocardial stimulation rather than conventional epicardial pacing has been shown to: be more physiologically, improve electrical stimulation of the left ventricular, give less dispersion of repolarisation and result in better resynchronization. The Wireless Cardiac Stimulation in Left Ventricle, WiCS-LV, system provides an option for wireless, left ventricular endocardial pacing triggered from a conventional right ventricular pacing spike from a co-implant. Expert commentary: The feasibility of the WiCS-LV system has been successfully demonstrated in a population of failed cardiac resynchronization patients, either failed implantation procedure of a conventional system, non-responder to conventional therapy or upgrade from pacemaker or defibrillator, where a conventional system was not an option. WiCS-LV is innovative technology with promising safety, performance and preliminary efficacy.
On the precision of automated activation time estimation
NASA Technical Reports Server (NTRS)
Kaplan, D. T.; Smith, J. M.; Rosenbaum, D. S.; Cohen, R. J.
1988-01-01
We examined how the assignment of local activation times in epicardial and endocardial electrograms is affected by sampling rate, ambient signal-to-noise ratio, and sinx/x waveform interpolation. Algorithms used for the estimation of fiducial point locations included dV/dtmax, and a matched filter detection algorithm. Test signals included epicardial and endocardial electrograms overlying both normal and infarcted regions of dog myocardium. Signal-to-noise levels were adjusted by combining known data sets with white noise "colored" to match the spectral characteristics of experimentally recorded noise. For typical signal-to-noise ratios and sampling rates, the template-matching algorithm provided the greatest precision in reproducibly estimating fiducial point location, and sinx/x interpolation allowed for an additional significant improvement. With few restrictions, combining these two techniques may allow for use of digitization rates below the Nyquist rate without significant loss of precision.
King County Nearshore Habitat Mapping Data Report: Picnic Point to Shilshole Bay Marina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodruff, Dana L.; Farley, Paul J.; Borde, Amy B.
2000-12-31
The objective of this study is to provide accurate, georeferenced maps of benthic habitats to assist in the siting of a new wastewater treatment plant outfall and the assessment of habitats of endangered, threatened, and economically important species. The mapping was conducted in the fall of 1999 using two complementary techniques: side-scan sonar and underwater videography. Products derived from these techniques include geographic information system (GIS) compatible polygon data of substrate type and vegetation cover, including eelgrass and kelp. Additional GIS overlays include underwater video track line data of total macroalgae, selected macroalgal species, fish, and macroinvertebrates. The combined toolsmore » of geo-referenced side-scan sonar and underwater video is a powerful technique for assessing and mapping of nearshore habitat in Puget Sound. Side-scan sonar offers the ability to map eelgrass with high spatial accuracy and resolution, and provides information on patch size, shape, and coverage. It also provides information on substrate change and location of specific targets (e.g., piers, docks, pilings, large boulders, debris piles). The addition of underwater video is a complementary tool providing both groundtruthing for the sonar and additional information on macro fauna and flora. As a groundtruthing technique, the video was able to confirm differences between substrate types, as well as detect subtle spatial changes in substrate. It also verified information related to eelgrass, including the density classification categories and the type of substrate associated with eelgrass, which could not be determined easily with side- scan sonar. Video is also a powerful tool for mapping the location of macroalgae, (including kelp and Ulva), fish and macroinvertebrates. The ability to geo-locate these resources in their functional habitat provides an added layer of information and analytical potential.« less
An Evaluation of Substrates for Tactile Maps and Diagrams: Scanning Speed and Users' Preferences
ERIC Educational Resources Information Center
Jehoel, Sandra; Ungar, Simon; McCallum, Don; Rowell, Jonathan
2005-01-01
This study evaluated the relative suitability of a range of base materials for producing tactile maps and diagrams via a new ink-jet process. The visually impaired and sighted participants tactilely scanned arrays of symbols that were printed on seven substrate materials, including paper, plastic, and aluminum. In general, the rougher substrates…
Erem, Burak; Coll-Font, Jaume; Orellana, Ramon Martinez; Štóvíček, Petr; Brooks, Dana H.
2014-01-01
Cardiac electrical imaging from body surface potential measurements is increasingly being seen as a technology with the potential for use in the clinic, for example for pre-procedure planning or during-treatment guidance for ventricular arrhythmia ablation procedures. However several important impediments to widespread adoption of this technology remain to be effectively overcome. Here we address two of these impediments: the difficulty of reconstructing electric potentials on the inner (endocardial) as well as outer (epicardial) surfaces of the ventricles, and the need for full anatomical imaging of the subject’s thorax to build an accurate subject-specific geometry. We introduce two new features in our reconstruction algorithm: a non-linear low-order dynamic parameterization derived from the measured body surface signals, and a technique to jointly regularize both surfaces. With these methodological innovations in combination, it is possible to reconstruct endocardial activation from clinically acquired measurements with an imprecise thorax geometry. In particular we test the method using body surface potentials acquired from three subjects during clinical procedures where the subjects’ hearts were paced on their endocardia using a catheter device. Our geometric models were constructed using a set of CT scans limited in axial extent to the immediate region near the heart. The catheter system provides a reference location to which we compare our results. We compare our estimates of pacing site localization, in terms of both accuracy and stability, to those reported in a recent clinical publication [1], where a full set of CT scans were available and only epicardial potentials were reconstructed. PMID:24595345
Automatic generation of endocardial surface meshes with 1-to-1 correspondence from cine-MR images
NASA Astrophysics Data System (ADS)
Su, Yi; Teo, S.-K.; Lim, C. W.; Zhong, L.; Tan, R. S.
2015-03-01
In this work, we develop an automatic method to generate a set of 4D 1-to-1 corresponding surface meshes of the left ventricle (LV) endocardial surface which are motion registered over the whole cardiac cycle. These 4D meshes have 1- to-1 point correspondence over the entire set, and is suitable for advanced computational processing, such as shape analysis, motion analysis and finite element modelling. The inputs to the method are the set of 3D LV endocardial surface meshes of the different frames/phases of the cardiac cycle. Each of these meshes is reconstructed independently from border-delineated MR images and they have no correspondence in terms of number of vertices/points and mesh connectivity. To generate point correspondence, the first frame of the LV mesh model is used as a template to be matched to the shape of the meshes in the subsequent phases. There are two stages in the mesh correspondence process: (1) a coarse matching phase, and (2) a fine matching phase. In the coarse matching phase, an initial rough matching between the template and the target is achieved using a radial basis function (RBF) morphing process. The feature points on the template and target meshes are automatically identified using a 16-segment nomenclature of the LV. In the fine matching phase, a progressive mesh projection process is used to conform the rough estimate to fit the exact shape of the target. In addition, an optimization-based smoothing process is used to achieve superior mesh quality and continuous point motion.
Mind the model: effect of instrumentation on inducibility of atrial fibrillation in a sheep model.
Willems, Rik; Holemans, Patricia; Ector, Hugo; Sipido, Karin R; Van de Werf, Frans; Heidbüchel, Hein
2002-01-01
Atrial electrical remodeling, shortening of the atrial effective refractory period (AERP) underlying atrial fibrillation (AF) has been described in different animal models. However, there remains some controversy regarding the time course of this electrical remodeling and the need for secondary factors in the development of AF. We investigated the effect of instrumentation on the inducibility of AF. We hypothesized that epicardial instrumentation could be a confounding factor that accelerates the development of AF. Thirty sheep were rapidly atrially paced at 600 beats/min for 15 weeks: 15 were endocardially instrumented and paced (endo), and 15 were both endocardially and epicardially instrumented. Six of these animals were endocardially paced (sham) and 9 were epicardially paced (epi). The underlying rhythm was determined at regular intervals, and electrophysiologic study was performed. AF developed significantly faster in the epi group. After 3 weeks of pacing, the cumulative incidence of sustained AF (>1 hour) already was 70% in this group versus only 14% and 20% in the endo and sham groups, respectively. After 15 weeks of pacing, this difference was no longer evident. Baseline AERP and minimal AERP, reached before the development of AF, were not significantly different in the three groups. Epicardial instrumentation (epi and sham) increased baseline left and right atrial pressures, but only epicardial stimulation (epi) led to early development of AF. In this sheep model of AF, the experimental setup is a major determinant of the inducibility of AF. Not epicardial instrumentation per se but epicardial stimulation accelerated the development of AF. Different animal models
Patel, Mehul B; Worley, Seth J
2013-04-01
Limitations imposed by the coronary sinus venous anatomy triggered the transseptal approach for endocardial LV lead placement. The alignment of the interatrial septum (IAS) and its neighborhood anatomy does not favor transseptal puncture from the pre-pectoral area. Locating and advancing a pre-pectoral LV lead delivery catheter (PDC) through an opening created in the IAS via femoral transseptal puncture (FTP) is time consuming and technically difficult. We describe a method where the PDC is snare coupled to the femoral transseptal apparatus (FTA). When the FTA is advanced into the left atrium (LA) the coupled PDC follows. The catheter of a 25-mm loop snare kit is replaced with the PDC (SelectSite®). The snare loop is positioned in the right common iliac vein from the pre-pectoral access. The PDC is coupled to the FTA by advancing the transseptal apparatus through the open snare loop. After conventional FTP, the FTA is withdrawn back into the right atrium (RA) over an extra support wire positioned in the LA. The PDC with open snare loop is pulled over the FTA up to the RA. The PDC is advanced to close the snare loop on the extra support wire immediately distal to the tip of the dilator close to the puncture site. The PDC is deflected to align with the FTA. The snare coupled catheters are gently advanced across the IAS into the LA. The PDC is released from the FTA by advancing the snare and opening the loop; the snare is then removed from the PDC. The PDC is deflected and advanced into the left ventricle (LV). After positioning the 4.1 Fr lumen less LV lead, the PDC is sliced and removed. The PDC snare coupled to the FTA was advanced into the LA in all five patients, however, access was lost during catheter manipulation in the one right-sided case. Endocardial LV lead was successfully positioned in all five patients. Snare coupling the pre-pectoral SelectSite® catheter to the FTA is technically simple, reliable and a safe method for transseptal endocardial LV lead placement for left pre-pectoral implantation.
Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM
Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian
2013-01-01
Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412
Demystifying rotors and their place in clinical translation of atrial fibrillation mechanisms.
Nattel, Stanley; Xiong, Feng; Aguilar, Martin
2017-09-01
Treatment of atrial fibrillation (AF), the most common arrhythmia in clinical practice, remains challenging. Improved understanding of underlying mechanisms is needed to improve therapy. Functional re-entry is central to AF maintenance. The first detailed, quantitative theory of functional re-entry, the 'leading circle' model, was developed 40 years ago. Subsequently, an alternative paradigm based on 'spiral waves' has evolved. Spiral-wave generators, or 'rotors', have been identified using advanced mapping methods in experimental and clinical AF. A central tool in the analysis of spiral-wave rotors is the phase transformation, allowing for easier visualization of rotors and tracking of 'phase singularity' points at the rotor tip. In contrast to leading circle theory, which is expressed in terms familiar to (and easily understood by) cardiologists, the ideas needed to understand rotors are much more theoretical and harder for clinicians to apply. In this Review, we summarize the basic notions of phase mapping and spiral-wave rotors, and the ways in which rotor sources might be involved in AF maintenance. We discuss competing observations about the role of spatially confined rotors, short-lived rotors clustered at the edge of fibrotic zones, endocardial-epicardial interactive breeder properties and transmural re-entry, as well as studies underway to resolve them. We conclude with consideration of the clinical relevance of the issues discussed and their potential implications for the management of patients with AF.
A Look Inside HIV Resistance through Retroviral Protease Interaction Maps
Kontijevskis, Aleksejs; Prusis, Peteris; Petrovska, Ramona; Yahorava, Sviatlana; Mutulis, Felikss; Mutule, Ilze; Komorowski, Jan; Wikberg, Jarl E. S
2007-01-01
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases. PMID:17352531
NASA Astrophysics Data System (ADS)
Qin, Xulei; Cong, Zhibin; Fei, Baowei
2013-11-01
An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.
Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick
2014-01-01
Background There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Methods and Results Data was collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data was available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs 76%, p=0.002) and loss of capture (46% vs 27%, p<0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs 71%, p=0.02) and an EGM reduction (71% vs 40%, p< 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. Conclusions VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. PMID:24946895
Bourke, Tara; Buch, Eric; Mathuria, Nilesh; Michowitz, Yoav; Yu, Ricky; Mandapati, Ravi; Shivkumar, Kalyanam; Tung, Roderick
2014-11-01
There is a paucity of data on biophysical parameters during radiofrequency ablation of scar-mediated ventricular tachycardia (VT). Data were collected from consecutive patients undergoing VT ablation with open-irrigation. Complete data were available for 372 lesions in 21 patients. The frequency of biophysical parameter changes were: >10Ω reduction (80%), bipolar EGM reduction (69%), while loss of capture was uncommon (32%). Unipolar injury current was seen in 72% of radiofrequency applications. Both EGM reduction and impedance drop were seen in 57% and a change in all 3 parameters was seen in only 20% of lesions. Late potentials were eliminated in 33%, reduced/modified in 56%, and remained after ablation in 11%. Epicardial lesions exhibited an impedance drop (90% vs. 76%, P = 0.002) and loss of capture (46% vs. 27%, P < 0.001) more frequently than endocardial lesions. Lesions delivered manually exhibited a >10Ω impedance drop (83% vs. 71%, P = 0.02) and an EGM reduction (71% vs. 40%, P < 0.001) more frequently than lesions applied using magnetic navigation, although loss of capture, elimination of LPs, and a change in all 3 parameters were similarly observed. VT ablation is inefficient as the majority of radiofrequency lesions do not achieve more than one targeted biophysical parameter. Only one-third of RF applications targeted at LPs result in complete elimination. Epicardial ablation within scar may be more effective than endocardial lesions, and lesions applied manually may be more effective than lesions applied using magnetic navigation. New technologies directed at identifying and optimizing ablation effectiveness in scar are clinically warranted. © 2014 Wiley Periodicals, Inc.
van Stralen, Marijn; Bosch, Johan G; Voormolen, Marco M; van Burken, Gerard; Krenning, Boudewijn J; van Geuns, Robert-Jan M; Lancée, Charles T; de Jong, Nico; Reiber, Johan H C
2005-10-01
We propose a semiautomatic endocardial border detection method for three-dimensional (3D) time series of cardiac ultrasound (US) data based on pattern matching and dynamic programming, operating on two-dimensional (2D) slices of the 3D plus time data, for the estimation of full cycle left ventricular volume, with minimal user interaction. The presented method is generally applicable to 3D US data and evaluated on data acquired with the Fast Rotating Ultrasound (FRU-) Transducer, developed by Erasmus Medical Center (Rotterdam, the Netherlands), a conventional phased-array transducer, rotating at very high speed around its image axis. The detection is based on endocardial edge pattern matching using dynamic programming, which is constrained by a 3D plus time shape model. It is applied to an automatically selected subset of 2D images of the original data set, for typically 10 equidistant rotation angles and 16 cardiac phases (160 images). Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastole and end-systole volumes. Initialization requires the drawing of four contours per patient manually. We evaluated this method on 14 patients against MRI end-diastolic (ED) and end-systolic (ES) volumes. The semiautomatic border detection approach shows good correlations with MRI ED/ES volumes (r = 0.938) and low interobserver variability (y = 1.005x - 16.7, r = 0.943) over full-cycle volume estimations. It shows a high consistency in tracking the user-defined initial borders over space and time. We show that the ease of the acquisition using the FRU-transducer and the semiautomatic endocardial border detection method together can provide a way to quickly estimate the left ventricular volume over the full cardiac cycle using little user interaction.
Wessels, Andy; van den Hoff, Maurice J. B.; Adamo, Richard F.; Phelps, Aimee L.; Lockhart, Marie M.; Sauls, Kimberly; Briggs, Laura E.; Norris, Russell A.; van Wijk, Bram; Perez-Pomares, Jose M.; Dettman, Robert W.; Burch, John B. E.
2012-01-01
The importance of the epicardium for myocardial and valvuloseptal development has been well established; perturbation of epicardial development results in cardiac abnormalities, including thinning of the ventricular myocardial wall and malformations of the atrioventricular valvuloseptal complex. To determine the spatiotemporal contribution of epicardially derived cells to the developing fibroblast population in the heart we have used a mWt1/IRES/GFP-Cre mouse to trace the fate of EPDCs from embryonic day (ED)10 until birth. EPDCs begin to populate the compact ventricular myocardium around ED12. The migration of epicardially-derived fibroblasts toward the interface between compact and trabecular myocardium is completed around ED14. Remarkably, epicardially-derived fibroblasts do not migrate into the trabecular myocardium until after ED17. Migration of EPDCs into the atrioventricular cushion mesenchyme commences around ED12. As development progresses, the number of EPDCs increases significantly, specifically in the leaflets which derive from the lateral atrioventricular cushions. In these developing leaflets the epicardially-derived fibroblasts eventually largely replace the endocardially-derived cells. Importantly, the contribution of EPDCs to the leaflets derived from the major AV cushions is very limited. The differential contribution of EPDCs to the various leaflets of the atrioventricular valves provides a new paradigm in valve development and could lead to new insights into the pathogenesis of abnormalities that preferentially affect individual components of this region of the heart. The notion that there is a significant difference in the contribution of epicardially and endocardially derived cells to the individual leaflets of the atrioventricular valves has also important pragmatic consequences for the use of endocardial and epicardial cre-mouse models in studies of heart development. PMID:22546693
Dark blood late enhancement imaging.
Kellman, Peter; Xue, Hui; Olivieri, Laura J; Cross, Russell R; Grant, Elena K; Fontana, Marianna; Ugander, Martin; Moon, James C; Hansen, Michael S
2016-11-07
Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border. Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles.
Endocardial Hippo signaling regulates myocardial growth and cardiogenesis.
Artap, Stanley; Manderfield, Lauren J; Smith, Cheryl L; Poleshko, Andrey; Aghajanian, Haig; See, Kelvin; Li, Li; Jain, Rajan; Epstein, Jonathan A
2018-08-01
The Hippo signaling pathway has been implicated in control of cell and organ size, proliferation, and endothelial-mesenchymal transformation. This pathway impacts upon two partially redundant transcription cofactors, Yap and Taz, that interact with other factors, including members of the Tead family, to affect expression of downstream genes. Yap and Taz have been shown to regulate, in a cell-autonomous manner, myocardial proliferation, myocardial hypertrophy, regenerative potential, and overall size of the heart. Here, we show that Yap and Taz also play an instructive, non-cell-autonomous role in the endocardium of the developing heart to regulate myocardial growth through release of the paracrine factor, neuregulin. Without endocardial Yap and Taz, myocardial growth is impaired causing early post-natal lethality. Thus, the Hippo signaling pathway regulates cell size via both cell-autonomous and non-cell-autonomous mechanisms. Furthermore, these data suggest that Hippo may regulate organ size via a sensing and paracrine function in endothelial cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
[Pathomorphologic and ultrastructural characteristics of endocardial Cysticercus cellulosae].
Grozdev, L J; Kaftandziev, D; Roganovic, D; Colanceski, V
1980-01-01
A case is presented of a solitary endocardial cysticercus of cellulose discovered at a biopsy in the left auricula of the heart, got by a 36-year old patient at the operation who had a mitral and aortal defect caused by a reumatic endocarditis. The cisticercus is implanted on the surface of an intact endothelium and the fibroelastic structure of the superficial part of the endocardium is preserved. Inflammation of the endocardium and the myocardium is presented by a perivascular infiltrates eosinophile granulocytes, plasms cells and lymphocytes, suggesting an allergic nature of inflammation. In histological preparates stained by selective methods of fungus according to Gridley and Crocott on the wall of the membrane of the cyst polymorphal Yeast-like elements are discovered at a size of 2-12 mil. mic. which ultrastructurally show degenerative forms of membranous structures suspected as immature primitive proglotids. In this paper, the objective difficulties are pointed out at the microscopic diagnosis of the cisticercus in the pathological material.
Pucéat, Michel
2013-04-01
The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. Copyright © 2012 Elsevier B.V. All rights reserved.
Lee, Sanghwa; Sohn, Yuri; Kim, Chinkyo; Lee, Dong Ryeol; Lee, Hyun-Hwi
2009-05-27
Reciprocal space mapping with a two-dimensional (2D) area detector in a grazing incidence geometry was applied to determine crystallographic orientations of GaN nanostructures epitaxially grown on a sapphire substrate. By using both unprojected and projected reciprocal space mapping with a proper coordinate transformation, the crystallographic orientations of GaN nanostructures with respect to that of a substrate were unambiguously determined. In particular, the legs of multipods in the wurtzite phase were found to preferentially nucleate on the sides of tetrahedral cores in the zinc blende phase.
Landscape units of Puerto Rico: influence of climate, substrate, and topography
William A. Gould; Michael E. Jimenez; Gary Potts; Maya Quinones
2008-01-01
The landscape units map of Puerto Rico represents climatic, substrate, and topographic variation by integrating six climatic zones (Ewel and Whitmore 1973), six distinct substrates (Bawiec 2001, USGS 2005), five topographic positions or landforms (Martinuzzi et al. 2007), and prominent lakes and rivers (USGS 2005). Substrates were a simplified set of Bawiecâs (2001)...
Bathymetry and selected perspective views of 6 reef and coastal areas in Northern Lake Michigan
Barnes, Peter; Fleisher, Guy; Gardner, James V.; Lee, Kristen
2003-01-01
We apply state of the art laser technology and derivative imagery to map the detailed morphology and of principal lake trout spawning sites on reefs in Northern Lake Michigan and to provide a geologic interpretation. We sought to identify the presence of ideal spawning substrate: shallow, "clean" gravel/cobble substrate, adjacent to deeper water. This study is a pilot collaborative effort with the US Army Corps of Engineers SHOALS (Scanning Hydrographic Operational Airborne Lidar Survey) program. The high-definition maps are integrated with known and developing data on fisheries, as well as limited substrate sedimentologic information and underlying Paleozoic carbonate rocks.
Inadvertent positioning of pacemaker leads in the pericardium.
Berenji, Kambeez; Nerheim, Pamela; Olshansky, Brian
2003-10-01
A patient had a dual chamber pacemaker with endocardial leads implanted chronically. The lead position on chest X ray and the ECG pattern indicated lead malposition, but a CT scan and transesophageal echocardiography were nondiagnostic. Venography indicated that both leads were in the mediastinal and pericardial space.
NASA Astrophysics Data System (ADS)
Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi
2014-03-01
Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume index (LV-ESVI). This improved to 91.9% with inclusion of the RMS-P2PD biomarker and was congruent with improvements in both sensitivity for classifying patients and specificity for identifying asymptomatic controls from 82.6% up to 95.7%. RMS-P2PD, when contrasted against a collective normal reference, is a promising biomarker to investigate further in its utility for identifying quantitative signs of pathological endocardial function which may boost standard image makers as precursors of declining cardiac performance.
NASA Astrophysics Data System (ADS)
Reeves, Jodi Lynn
Microstructural barriers to supercurrent occur on many length scales in all high temperature oxide superconductors. Eliminating microstructural barriers is key to making these potentially valuable materials more favorable for commercial applications. In silver-sheathed Bi2Sr2CaCu 2Ox (Bi-2212) tapes and multifilaments, the principal barriers on the scale of 10--100's of micrometers are bubbling, porosity, second phase particles, and poorly aligned grains. In state-of-the-art YBa2 Cu3Ox (YBCO) coated conductors, supercurrent barriers on the 0.1--100mum scale are grain boundaries. This thesis work clarifies the role of grain boundaries in the nickel substrate of RABiTS (Rolling Assisted Biaxially Textured Substrate) coated conductors. Plan-view SEM imaging, focused ion beam cutting, magneto-optical imaging and grain orientation mapping were used to determine barriers to supercurrent. Experiments showed enhanced magnetic flux penetration, and hence reduced Jc, in the YBCO above nearly all nickel grain boundaries with misorientation angles (theta) greater than 5°, independent of the rotation axis. Monochromatic backscattered electron Kikuchi pattern percolation maps imply there is a fully connected current path through the YBCO microstructure within the chosen tolerance angle criterion of the map. However, it is the grain boundary map that displays the constrictions of the current path. Therefore, grain boundary maps are better tools for illustrating supercurrent barriers than percolation maps. Grain boundary maps and grain orientation maps were used to investigate how the texture of the substrate was transferred to the buffer layers and to the superconductor. Most grasp boundaries in the nickel were replicated in the buffer and superconductor layers with the same misorientation angle. Anisotropic growth and/or surface energy minimization may be responsible for the improvement in c-axis alignment in the YBCO over the buffer layer. However, the YBCO mosaic spread did not eliminate high angle grain boundaries, since >5° boundaries were still seen in YBCO grain boundary maps. The results of this study on microstructural current barriers show that Jc improvements in RABiTS-type coated conductors require eliminating theta > 5° boundaries in the nickel substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venteris, Erik R.; May, Cassandra
2014-04-23
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locationsmore » did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.« less
Venteris, Erik R.; May, Cassandra J.
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat. PMID:24759834
Venteris, Erik R; May, Cassandra J
2014-01-01
Because bottom substrate composition is an important control on the temporal and spatial location of the aquatic community, accurate maps of benthic habitats of inland lakes and reservoirs provide valuable information to managers, recreational users, and scientists. Therefore, we collected vertical, split-beam sonar data (roughness [E1], hardness [E2], and bathymetry) and sediment samples to make such maps. Statistical calibration between sonar parameters and sediment classes was problematic because the E1:E2 ratios for soft (muck and clay) sediments overlapped a lower and narrower range for hard (gravel) substrates. Thus, we used indicator kriging (IK) to map the probability that unsampled locations did not contain coarse sediments. To overcome the calibration issue we tested proxies for the natural processes and anthropogenic history of the reservoir as potential predictive variables. Of these, a geologic map proved to be the most useful. The central alluvial valley and mudflats contained mainly muck and organic-rich clays. The surrounding glacial till and shale bedrock uplands contained mainly poorly sorted gravels. Anomalies in the sonar data suggested that the organic-rich sediments also contained trapped gases, presenting additional interpretive issues for the mapping. We extended the capability of inexpensive split-beam sonar units through the incorporation of historic geologic maps and other records as well as validation with dredge samples. Through the integration of information from multiple data sets, were able to objectively identify bottom substrate and provide reservoir users with an accurate map of available benthic habitat.
Electromechanical Wave Imaging of biologically and electrically paced canine hearts in vivo
Costet, Alexandre; Provost, Jean; Gambhir, Alok; Bobkov, Yevgeniy; Danilo, Peter; Boink, Gerard J.J.; Rosen, Michael R.; Konofagou, Elisa
2014-01-01
Ultrasound-based, Electromechanical Wave (EW) Imaging (EWI) can directly and entirely noninvasively map the transmural electromechanical activation in all four cardiac chambers in vivo. In this study, we assessed EWI repeatability and reproducibility, as well as its capability in localizing electronic and, for the first time, biological pacemakers in closed-chest, conscious canines. Electromechanical activation was obtained in six conscious animals during normal sinus rhythm (NSR), and idioventricular rhythms occurring in dogs in heart block instrumented with electronic and biological pacemakers (EPM and BPM respectively). After AV node ablation, dogs were implanted with an EPM in the right ventricular (RV) endocardial apex (n=4) and two additionally received a BPM at the left ventricular (LV) epicardial base (n=2). EWI was performed transthoracically during NSR, BPM, and EPM pacing, in conscious dogs, using an unfocused transmit sequence at 2000 frames/second. During NSR, the EW originated at the right atrium (RA), propagated to the left atrium (LA) and emerged from multiple sources in both ventricles. During EPM, the EW originated at the RV apex and propagated throughout both ventricles. During BPM, the EW originated from the LV basal lateral wall and subsequently propagated throughout the ventricles. EWI differentiated BPM from EPM and NSR and identified the distinct pacing origins. Isochrone comparison demonstrated that EWI was repeatable and reliable. These findings thus indicate the EWI potential to serve as a simple, noninvasive and direct imaging technology for mapping and characterizing arrhythmias as well as the treatments thereof. PMID:24239363
Yue-Chun, Li; Jia-Feng, Lin; Jia-Xuan, Lin
2015-10-01
Electrocardiographic characteristics can be useful in differentiating between right ventricular outflow tract (RVOT) and aortic sinus cusp (ASC) ventricular arrhythmias. Ventricular arrhythmias originating from ASC, however, show preferential conduction to RVOT that may render the algorithms of electrocardiographic characteristics less reliable. Even though there are few reports describing ventricular arrhythmias with ASC origins and endocardial breakout sites of RVOT, progressive dynamic changes in QRS morphology of the ventricular arrhythmias during ablation obtained were rare.This case report describes a patient with symptomatic premature ventricular contractions of left ASC origin presenting an electrocardiogram (ECG) characteristic of right ventricular outflow tract before ablation. Pacing at right ventricular outflow tract reproduced an excellent pace map. When radiofrequency catheter ablation was applied to the right ventricular outflow tract, the QRS morphology of premature ventricular contractions progressively changed from ECG characteristics of right ventricular outflow tract origin to ECG characteristics of left ASC origin.Successful radiofrequency catheter ablation was achieved at the site of the earliest ventricular activation in the left ASC. The distance between the successful ablation site of the left ASC and the site with an excellent pace map of the RVOT was 20 mm.The ndings could be strong evidence for a preferential conduction via the myocardial bers from the ASC origin to the breakout site in the right ventricular outflow tract. This case demonstrates that ventricular arrhythmias with a single origin and exit shift may exhibit QRS morphology changes.
Verduyn, S C; Vos, M A; Leunissen, H D; van Opstal, J M; Wellens, H J
1999-02-01
In the anesthetized dog with complete chronic AV block (CAVB), we evaluated and compared the acute electrophysiologic effects of dronedarone i.v. (Dron, 2 times 2.5 mg/kg/10 min) and amiodarone i.v. (Amio, 2 times 5 mg/kg/10 min). This canine model with a high sensitivity for acquired torsade de pointes (TdP) provides an ideal substrate to evaluate ventricular repolarization abnormalities. Six ECG leads and two endocardial monophasic action potential (MAP) recordings in the left and right ventricle (LV and RV) were simultaneously recorded to measure QT time, action-potential duration (APD), interventricular dispersion (deltaAPD = LV(APD) - RV(APD)), early afterdepolarizations (EADs), ectopic beats (EBs), and TdP. Measurements were made at the spontaneous idioventricular rhythm (IVR) and 1,000-ms steady-state pacing. To investigate its short-term, antiarrhythmic properties, Dron was given after almokalant (0.12 mg/kg)-induced TdP. Furthermore, in another set of experiments, oral Dron (20 mg/kg, b.i.d) was given for 3 weeks to conscious CAVB dogs. Dron, i.v., shortened ventricular repolarization (QT, 435 +/- 60 to 360 +/- 55; LV(APD) 395 +/- 75 to 335 +/- 60 ms; p < 0.05), whereas IVR and ventricular effective refractory period (VERP, 225 +/- 30 to 230 +/- 30 ms) remained similar. Therefore the VERP/QT ratio increased (0.55 +/- 0.04 to 0.61 +/- 0.03; p < 0.05). Similar results were obtained with Amio, i.v.. Almokalant-induced TdP was characterized by an increased repolarization duration, deltaAPD, and EADs. Dron, i.v., suppressed the EADs, EBs, and TdP by a reduction and homogenization of repolarization (LV(APD), 505 +/- 110 to 455 +/- 80 ms, and deltaAPD, 110 +/- 55 to 65 +/- 40 ms). Long-term oral Dron increased the PP interval, CL-IVR, and QT(c) time. In contrast to oral treatment, Dron i.v. shortens ventricular repolarization parameters, resulting in suppression of EAD-dependent acquired TdP. The increased VERP/QT ratio after Dron i.v. may indicate an important second antiarrhythmic property.
3D virtual human atria: A computational platform for studying clinical atrial fibrillation
Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui
2011-01-01
Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria – 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to the mechanisms of the normal rhythm and AF arrhythmogenesis are investigated and discussed. The 3D model of the atria itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and arrhythmogenesis. Results of such simulations can be directly compared with experimental electrophysiological and endocardial mapping data, as well as clinical ECG recordings. More importantly, the virtual human atria can provide validated means for directly dissecting 3D excitation propagation processes within the atrial walls from an in vivo whole heart, which are beyond the current technical capabilities of experimental or clinical set-ups. PMID:21762716
Pathik, Bhupesh; Lee, Geoffrey; Sacher, Frédéric; Jaïs, Pierre; Massoullié, Grégoire; Derval, Nicolas; Bates, Matthew G; Lipton, Jonathan; Joseph, Stephen; Morton, Joseph; Sparks, Paul; Kistler, Peter; Kalman, Jonathan M
2017-09-01
Using high-resolution 3-dimensional (3D) mapping, the aim of this study was to further characterize right atrial macro-re-entrant tachycardias and answer unresolved questions in the understanding of this arrhythmia. Despite advances in understanding of the mechanisms of right atrial macro-re-entrant tachycardias, many questions lack definitive answers. The advent of high-resolution 3D mapping provides an opportunity to gain further insights into the nature of these common circuits. A total of 25 patients with right atrial macro-re-entrant tachycardia were studied. High-resolution 3D mapping (Rhythmia mapping system, Boston Scientific, Natick, Massachusetts) was performed. Regional voltage and conduction velocity were determined. Maps were analyzed to characterize wave front propagation patterns in all atrial regions. The relationship between substrate and conduction was evaluated. A total of 42 right atrial macro-re-entrant circuits were observed. The most common location of the posterior line of block was the posteromedial right atrium (73%). This line of block continued superiorly into the superior vena cava, taking an oblique course to finish on the anterior superior vena cava aspect in 73%. Conduction delay at the crista terminalis was less common (23%). Conduction slowing or block was seen at the limbus of the fossa ovalis (73%) and Eustachian ridge (77%). Highly variable and localized areas of slow conduction were also observed in the inferior septum (45%), superior septum (27%), anterosuperior right atrium (23%), and lateral right atrium (23%). Localized conduction slowing was seen in the cavotricuspid isthmus in 50% of patients, but there was no generalized conduction slowing in this isthmus. The voltage in regions of slow conduction was significantly lower compared with areas of normal conduction velocity (p < 0.001). Conduction channels were observed in 55% of patients. High-resolution 3D mapping has provided new insights into the nature of right atrial macro-re-entrant tachycardias. Variable regions of abnormal atrial substrate were associated with conduction slowing and block. Individual variation in propagation patterns was observed in association with this variable substrate. (Mapping of Atrial Arrhythmias Using High Spatial Resolution Mapping Catheters and the Rhythmia Mapping System; ACTRN12615000544572). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Ben-Zikri, Yehuda K.; Cahill, Nathan; Schwarz, Karl Q.; Linte, Cristian A.
2015-03-01
Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and "on-the-fly" computer-assisted assessment of ejection fraction for cardiac function monitoring.Two-dimensional (2D) ultrasound (US) has been the clinical standard for over two decades for monitoring and assessing cardiac function and providing support via intra-operative visualization and guidance for minimally invasive cardiac interventions. Developments in three-dimensional (3D) image acquisition and transducer design and technology have revolutionized echocardiography imaging enabling both real-time 3D trans-esophageal and intra-cardiac image acquisition. However, in most cases the clinicians do not access the entire 3D image volume when analyzing the data, rather they focus on several key views that render the cardiac anatomy of interest during the US imaging exam. This approach enables image acquisition at a much higher spatial and temporal resolution. Two such common approaches are the bi-plane and tri-plane data acquisition protocols; as their name states, the former comprises two orthogonal image views, while the latter depicts the cardiac anatomy based on three co-axially intersecting views spaced at 600 to one another. Since cardiac anatomy is continuously changing, the intra-operative anatomy depicted using real-time US imaging also needs to be updated by tracking the key features of interest and endocardial left ventricle (LV) boundaries. Therefore, rapid automatic feature tracking in US images is critical for three reasons: 1) to perform cardiac function assessment; 2) to identify location of surgical targets for accurate tool to target navigation and on-target instrument positioning; and 3) to enable pre- to intra-op image registration as a means to fuse pre-op CT or MR images used during planning with intra-operative images for enhanced guidance. In this paper we utilize monogenic filtering, graph-cut based segmentation and robust spline smoothing in a combined work flow to process the acquired tri-plane TEE time series US images and demonstrate robust and accurate tracking of the LV endocardial features. We reconstruct the endocardial LV geometry using the tri-plane contours and spline interpolation, and assess the accuracy of the proposed work flow against gold-standard results from the GE Echopac PC clinical software according to quantitative clinical LV characterization parameters, such as the length, circumference, area and volume. Our proposed combined work flow leads to consistent, rapid and automated identification of the LV endocardium, suitable for intra-operative applications and on-the- y" computer-assisted assessment of ejection fraction for cardiac function monitoring.
Iwasaki, Yu-Ki; Yamashita, Takeshi; Sekiguchi, Akiko; Hayami, Noriyuki; Shimizu, Wataru
2016-06-01
Hypertension is one of the independent risk factors for atrial fibrillation (AF). Pulmonary veins (PVs) play an important role as the substrate for AF and triggers of AF. The purpose of this study was to determine the structural remodelling of the PVs and its effect on promoting AF in hypertensive (HT) rat hearts. Eighteen-week-old Dahl salt-sensitive HT rats and their controls were used for histological and immunohistological analyses, and electrophysiological studies were performed in Langendorff perfused hearts. Masson-trichrome staining revealed that hypertension significantly increased the fibrosis in the PVs, particularly in subendocardial and perivascular areas, compared with that in control rats, however, at this early stage of hypertension, left atrial fibrosis was not prominent. In the HT rat hearts with PVs, electrical stimulation significantly increased the number of repetitive atrial firing and atrial tachycardia inducibility, which significantly diminished after the excision of the PVs. An immunofluorescent analysis revealed that HT rats had PV specific endocardial smooth muscle actin (αSMA)-positive cells with remarkable proliferation of platelet-derived growth factor (PDGF)-C and vascular endothelial growth factor (VEGF), which was lacking in the left atrial structures of the control and the HT rats. Pretreatment with imatinib, a PDGF receptor activity blocker, in HT rats reduced the αSMA-positive cell proliferation and fibrosis in the PVs and also induced a significant reduction in VEGF expression. Also, the drug pretreatment effectively prevented repetitive atrial firing promotion without affecting the blood pressure. PV preferential fibrosis might play an important role in the arrhythmogenic substrate of AF in HT rat hearts. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer
NASA Astrophysics Data System (ADS)
Holt, Nicholas; Zhou, Wenchao
2018-03-01
Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.
Terahertz Mapping of Microstructure and Thickness Variations
NASA Technical Reports Server (NTRS)
Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.
2010-01-01
A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.
Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos
Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.
2013-01-01
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprowles, Amy; Robinson, Dan; Wu Yimi
2005-08-15
The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis tomore » define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli.« less
NASA Astrophysics Data System (ADS)
Marsden, A. J.; Phillips, M.; Wilson, N. R.
2013-06-01
At a single atom thick, it is challenging to distinguish graphene from its substrate using conventional techniques. In this paper we show that friction force microscopy (FFM) is a simple and quick technique for identifying graphene on a range of samples, from growth substrates to rough insulators. We show that FFM is particularly effective for characterizing graphene grown on copper where it can correlate the graphene growth to the three-dimensional surface topography. Atomic lattice stick-slip friction is readily resolved and enables the crystallographic orientation of the graphene to be mapped nondestructively, reproducibly and at high resolution. We expect FFM to be similarly effective for studying graphene growth on other metal/locally crystalline substrates, including SiC, and for studying growth of other two-dimensional materials such as molybdenum disulfide and hexagonal boron nitride.
NASA Astrophysics Data System (ADS)
Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.
2015-01-01
Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.
A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks
Riel-Mehan, Megan M; Shokat, Kevan M
2014-01-01
SUMMARY Despite the continuing progress made towards mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe, and report that the dialdehyde based probes possesses a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we develop a crosslinking scheme based on a kinase activity-based probe, and this new cross-linker provides an increase in efficiency and substrate specificity, including in the context of cell lysate. PMID:24746561
Redundant roles of Sox17 and Sox18 in early cardiovascular development of mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Youhei; Hara, Kenshiro; Kanai-Azuma, Masami
Sox7, -17 and -18 constitute the Sox subgroup F (SoxF) of HMG box transcription factor genes, which all are co-expressed in developing vascular endothelial cells in mice. Here we characterized cardiovascular phenotypes of Sox17/Sox18-double and Sox17-single null embryos during early-somite stages. Whole-mount PECAM staining demonstrated the aberrant heart looping, enlarged cardinal vein and mild defects in anterior dorsal aorta formation in Sox17 single-null embryos. The Sox17/Sox18 double-null embryos showed more severe defects in formation of anterior dorsal aorta and head/cervical microvasculature, and in some cases, aberrant differentiation of endocardial cells and defective fusion of the endocardial tube. However, the posteriormore » dorsal aorta and allantoic microvasculature was properly formed in all of the Sox17/Sox18 double-null embryos. The anomalies in both anterior dorsal aorta and head/cervical vasculature corresponded with the weak Sox7 expression sites. This suggests the region-specific redundant activities of three SoxF members along the anteroposterior axis of embryonic vascular network.« less
Iwamoto, Ryo; Mine, Naoki; Kawaguchi, Taichiro; Minami, Seigo; Saeki, Kazuko; Mekada, Eisuke
2010-07-01
HB-EGF, a member of the EGF family of growth factors, plays an important role in cardiac valve development by suppressing mesenchymal cell proliferation. Here, we show that HB-EGF must interact with heparan sulfate proteoglycans (HSPGs) to properly function in this process. In developing valves, HB-EGF is synthesized in endocardial cells but accumulates in the mesenchyme by interacting with HSPGs. Disrupting the interaction between HB-EGF and HSPGs in an ex vivo model of endocardial cushion explants resulted in increased mesenchymal cell proliferation. Moreover, homozygous knock-in mice (HB(Delta)(hb/)(Delta)(hb)) expressing a mutant HB-EGF that cannot bind to HSPGs developed enlarged cardiac valves with hyperproliferation of mesenchymal cells; this resulted in a phenotype that resembled that of Hbegf-null mice. Interestingly, although Hbegf-null mice had abnormal heart chambers and lung alveoli, HB(Delta)(hb/)(Delta)(hb) mice did not exhibit these defects. These results indicate that interactions with HSPGs are essential for the function of HB-EGF, especially in cardiac valve development, in which HB-EGF suppresses mesenchymal cell proliferation.
Retrospective study of congenital heart defects in 151 dogs.
Tidholm, A
1997-03-01
The case records of 151 dogs diagnosed with congenital heart disease were reviewed retrospectively. The most common defect was aortic stenosis, accounting for 35 per cent of all cases, followed by pulmonic stenosis (20 per cent), ventricular septal defect (12 per cent), patent ductus arteriosus (11 per cent), mitral valve dysplasia (8 per cent), tricuspid valve dysplasia (7 per cent), endocardial fibroelastosis (1.9 per cent) and tetralogy of Fallot (0.6 per cent). Fifty-one breeds were represented, with golden retrievers, German shepherd dogs and boxers predominating. No overall sex predilection was obvious. Seventy-five per cent of the dogs were asymptomatic at presentation. The defects most often associated with presenting symptoms, such as dyspnoea, syncope, ascites, failure to grow and depression, were mitral valve dysplasia, atrial septal defect, tricuspid valve dysplasia and endocardial fibroelastosis. The latter presented with the most severe signs of heart failure. In some cases of aortic stenosis and pulmonic stenosis, where the defect could not be accurately visualised with two-dimensional echocardiography, Doppler echocardiographic examination was needed for definitive diagnosis.
2017-01-01
Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo. PMID:29183943
Metal Ir coatings on endocardial electrode tips, obtained by MOCVD
NASA Astrophysics Data System (ADS)
Vikulova, Evgeniia S.; Kal'nyi, Danila B.; Shubin, Yury V.; Kokovkin, Vasily V.; Morozova, Natalya B.; Hassan, Aseel; Basova, Tamara V.
2017-12-01
The present work demonstrates the application of the Metal-Organic Chemical Vapor Deposition technique to fabricate metal iridium coatings onto the pole tips of endocardial electrodes. Using iridium (III) acetylacetonate as a volatile precursor, the target coatings were successfully applied to the working surface of cathodes and anodes of pacemaker electrodes in the flow type reactor in hydrogen atmosphere at deposition temperature of 550 °C. The coating samples were characterized by means of XRD, SEM, Raman- and XPS-spectroscopies. The formation of non-textured coatings with fractal-like morphology and 7-24 nm crystallite size has been realized. The electrochemical properties of the coatings were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The charge storage capacity values of the electrochemically activated samples were 17.0-115 mC cm-2 and 14.4-76.5 mC cm-2 for measurements carried out in 0.1 M sulfuric acid and in phosphate buffer saline solutions, respectively. A comparison of some characteristics of the samples obtained with commercially available cathode of pacemaker electrodes is also presented.
Zghaib, Tarek; Keramati, Ali; Chrispin, Jonathan; Huang, Dong; Balouch, Muhammad A; Ciuffo, Luisa; Berger, Ronald D; Marine, Joseph E; Ashikaga, Hiroshi; Calkins, Hugh; Nazarian, Saman; Spragg, David D
2018-01-01
Bipolar voltage mapping, as part of atrial fibrillation (AF) ablation, is traditionally performed in a point-by-point (PBP) approach using single-tip ablation catheters. Alternative techniques for fibrosis-delineation include fast-anatomical mapping (FAM) with multi-electrode circular catheters, and late gadolinium-enhanced magnetic-resonance imaging (LGE-MRI). The correlation between PBP, FAM, and LGE-MRI fibrosis assessment is unknown. In this study, we examined AF substrate using different modalities (PBP, FAM, and LGE-MRI mapping) in patients presenting for an AF ablation. LGE-MRI was performed pre-ablation in 26 patients (73% males, age 63±8years). Local image-intensity ratio (IIR) was used to normalize myocardial intensities. PBP- and FAM-voltage maps were acquired, in sinus rhythm, prior to ablation and co-registered to LGE-MRI. Mean bipolar voltage for all 19,087 FAM voltage points was 0.88±1.27mV and average IIR was 1.08±0.18. In an adjusted mixed-effects model, each unit increase in local IIR was associated with 57% decrease in bipolar voltage (p<0.0001). IIR of >0.74 corresponded to bipolar voltage <0.5 mV. A total of 1554 PBP-mapping points were matched to the nearest FAM-point. In an adjusted mixed-effects model, log-FAM bipolar voltage was significantly associated with log-PBP bipolar voltage (ß=0.36, p<0.0001). At low-voltages, FAM-mapping distribution was shifted to the left compared to PBP-mapping; at intermediate voltages, FAM and PBP voltages were overlapping; and at high voltages, FAM exceeded PBP-voltages. LGE-MRI, FAM and PBP-mapping show good correlation in delineating electro-anatomical AF substrate. Each approach has fundamental technical characteristics, the awareness of which allows proper assessment of atrial fibrosis.
Lee, Lik Chuan; Zhihong, Zhang; Hinson, Andrew; Guccione, Julius M.
2013-01-01
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship. PMID:23608998
Platts, David G; Diab, Sara; Dunster, Kimble R; Shekar, Kiran; Burstow, Darryl J; Sim, Beatrice; Tunbridge, Matthew; McDonald, Charles; Chemonges, Saul; Chan, Jonathan; Fraser, John F
2015-03-01
Transthoracic echocardiography (TTE) during extra corporeal membrane oxygenation (ECMO) is important but can be technically challenging. Contrast-specific TTE can improve imaging in suboptimal studies. These contrast microspheres are hydrodynamically labile structures. This study assessed the feasibility of contrast echocardiography (CE) during venovenous (VV) ECMO in a validated ovine model. Twenty-four sheep were commenced on VV ECMO. Parasternal long-axis (Plax) and short-axis (Psax) views were obtained pre- and postcontrast while on VV ECMO. Endocardial definition scores (EDS) per segment were graded: 1 = good, 2 = suboptimal 3 = not seen. Endocardial border definition score index (EBDSI) was calculated for each view. Endocardial length (EL) in the Plax view for the left ventricle (LV) and right ventricle (RV) was measured. Summation EDS data for the LV and RV for unenhanced TTE (UE) versus CE TTE imaging: EDS 1 = 289 versus 346, EDS 2 = 38 versus 10, EDS 3 = 33 versus 4, respectively. Wilcoxon matched-pairs rank-sign tests showed a significant ranking difference (improvement) pre- and postcontrast for the LV (P < 0.0001), RV (P < 0.0001) and combined ventricular data (P < 0.0001). EBDSI for CE TTE was significantly lower than UE TTE for the LV (1.05 ± 0.17 vs. 1.22 ± 0.38, P = 0.0004) and RV (1.06 ± 0.22 vs. 1.42 ± 0.47, P = 0.0.0006) respectively. Visualized EL was significantly longer in CE versus UE for both the LV (58.6 ± 11.0 mm vs. 47.4 ± 11.7 mm, P < 0.0001) and the RV (52.3 ± 8.6 mm vs. 36.0 ± 13.1 mm, P < 0.0001), respectively. Despite exposure to destructive hydrodynamic forces, CE is a feasible technique in an ovine ECMO model. CE results in significantly improved EDS and increased EL. © 2014, Wiley Periodicals, Inc.
Tibayan, Frederick A; Lai, David T M; Timek, Tomasz A; Dagum, Paul; Liang, David; Zasio, Mary K; Daughters, George T; Miller, D Craig; Ingels, Neil B
2003-05-01
Functional mitral regurgitation (FMR) is increasingly recognized as a left ventricular (LV) disease. Dilated cardiomyopathy (DCM) is commonly accompanied by FMR and reduction of LV torsion. Therapeutic targets for DCM include LV size reduction, altered LV shape, elimination of MR, and increasing LV torsion. It was hypothesized that, in addition to increasing LV size, DCM with FMR would alter normal LV shape and reduce and alter the direction of principal strains across the LV wall. This hypothesis was tested by measuring changes in epicardial and endocardial 2-D principal strains and regional radii of curvature accompanying tachycardia-induced cardiomyopathy in ovine hearts. Radio-opaque marker arrays were implanted into the left ventricle of eight sheep, including one subepicardial triangle and one subendocardial triangle in the anterior wall of the left ventricle. At one week postoperatively, biplane videofluoroscopy was used to determine marker dynamics. Rapid ventricular pacing was then instituted until FMR and signs of heart failure developed, and fluoroscopy was repeated. Circumferential LV radii of curvature were determined from marker triplets. DCM changed the normal epicardial oval LV cross-section to a more circular configuration. The endocardium maintained its normal circular shape as the left ventricle dilated. Deformations of the triangles from end-diastole to end-systole were determined, and the magnitude and direction of 2-D principal strains calculated. DCM was associated with decreased magnitude of both epicardial (-0.095 +/- 0.055 versus -0.040 +/- 0.032, p = 0.006) and endocardial (-0.117 +/- 0.047 versus -0.073 +/- 0.037, p = 0.023) principal strains. DCM reduced the angle of epicardial but not endocardial principal strain. DCM with FMR is associated with LV dilation, circularization of the normally oval equatorial circumferential LV epicardium, transmural reduction in principal strain, and decrease in angle of principal epicardial strain. These changes contribute to a reduction in the net torsional moment and may guide the development of reverse remodeling procedures for the dilated, failing ventricle with FMR.
DeSimone, Christopher V; Friedman, Paul A; Noheria, Amit; Patel, Nikhil A; DeSimone, Daniel C; Bdeir, Sami; Aakre, Christopher A; Vaidya, Vaibhav R; Slusser, Joshua P; Hodge, David O; Ackerman, Michael J; Rabinstein, Alejandro A; Asirvatham, Samuel J
2013-09-24
A patent foramen ovale (PFO) may permit arterial embolization of thrombi that accumulate on the leads of cardiac implantable electronic devices in the right-sided cardiac chambers. We sought to determine whether a PFO increases the risk of stroke/transient ischemic attack (TIA) in patients with endocardial leads. We retrospectively evaluated all patients who had endocardial leads implanted between January 1, 2000, and October 25, 2010, at Mayo Clinic Rochester. Echocardiography was used to establish definite PFO and non-PFO cohorts. The primary end point of stroke/TIA consistent with a cardioembolic etiology and the secondary end point of mortality during postimplantation follow-up were compared in PFO versus non-PFO patients with the use of Cox proportional hazards models. We analyzed 6075 patients (364 with PFO) followed for a mean 4.7 ± 3.1 years. The primary end point of stroke/TIA was met in 30/364 (8.2%) PFO versus 117/5711 (2.0%) non-PFO patients (hazard ratio, 3.49; 95% confidence interval, 2.33-5.25; P<0.0001). The association of PFO with stroke/TIA remained significant after multivariable adjustment for age, sex, history of stroke/TIA, atrial fibrillation, and baseline aspirin/warfarin use (hazard ratio, 3.30; 95% confidence interval, 2.19-4.96; P<0.0001). There was no significant difference in all-cause mortality between PFO and non-PFO patients (hazard ratio, 0.91; 95% confidence interval, 0.77-1.07; P=0.25). In patients with endocardial leads, the presence of a PFO on routine echocardiography is associated with a substantially increased risk of embolic stroke/TIA. This finding suggests a role of screening for PFOs in patients who require cardiac implantable electronic devices; if a PFO is detected, PFO closure, anticoagulation, or nonvascular lead placement may be considered.
Choi, Young Joon; Constantino, Jason; Vedula, Vijay; Trayanova, Natalia; Mittal, Rajat
2015-01-01
A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications. PMID:26442254
Johnsrude, Christopher
2015-01-01
Recognition of the potential for phrenic nerve injury (PNI) often prompts less aggressive attempts at catheter ablation of multiple forms of tachycardia or abandoning ablation altogether. Some novel techniques to avoid PNI during catheter ablation have been described. Five patients (age: 13-57 years, three females) with ectopic atrial tachycardia originating from the right atrial free wall (RAFW) near the phrenic nerve underwent electrophysiology study with three-dimensional mapping and endocardial cryoablation. Upstream phrenic pacing was performed after cryoadherence was achieved, and cryoablation of ectopic foci was performed during close observation for occurrence of PNI and tachycardia elimination. Cryoablation acutely eliminated five of six atrial tachycardias originating close to the phrenic nerve. Transient PNI during cryothermy occurred in two patients, and resolved within 3 minutes. Patients were observed overnight on telemetry, with no early recurrences of targeted atrial tachycardias and no evidence of PNI. At last follow-up of 1-39 months, four patients were arrhythmia free on no medications. Catheter cryoablation during simultaneous upstream phrenic nerve pacing can lead to safe and effective elimination of focal atrial tachycardias originating from the RAFW close to the phrenic nerve. ©2014 Wiley Periodicals, Inc.
Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bierwirth, P.N.; Lee, T.J.; Burne, R.V.
1993-03-01
A major problem for mapping shallow water zones by the analysis of remotely sensed data is that contrast effects due to water depth obscure and distort the special nature of the substrate. This paper outlines a new method which unmixes the exponential influence of depth in each pixel by employing a mathematical constraint. This leaves a multispectral residual which represents relative substrate reflectance. Input to the process are the raw multispectral data and water attenuation coefficients derived by the co-analysis of known bathymetry and remotely sensed data. Outputs are substrate-reflectance images corresponding to the input bands and a greyscale depthmore » image. The method has been applied in the analysis of Landsat TM data at Hamelin Pool in Shark Bay, Western Australia. Algorithm derived substrate reflectance images for Landsat TM bands 1, 2, and 3 combined in color represent the optimum enhancement for mapping or classifying substrate types. As a result, this color image successfully delineated features, which were obscured in the raw data, such as the distributions of sea-grasses, microbial mats, and sandy area. 19 refs.« less
Subsite mapping of enzymes. Depolymerase computer modelling.
Allen, J D; Thoma, J A
1976-01-01
We have developed a depolymerase computer model that uses a minimization routine. The model is designed so that, given experimental bond-cleavage frequencies for oligomeric substrates and experimental Michaelis parameters as a function of substrate chain length, the optimum subsite map is generated. The minimized sum of the weighted-squared residuals of the experimental and calculated data is used as a criterion of the goodness-of-fit for the optimized subsite map. The application of the minimization procedure to subsite mapping is explored through the use of simulated data. A procedure is developed whereby the minimization model can be used to determine the number of subsites in the enzymic binding region and to locate the position of the catalytic amino acids among these subsites. The degree of propagation of experimental variance into the subsite-binding energies is estimated. The question of whether hydrolytic rate coefficients are constant or a function of the number of filled subsites is examined. PMID:999629
Joslin, A C; Green, R; German, J B; Lange, M C
2014-09-01
Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.
A bronchogenic cyst of the right ventricular endocardium.
Weinrich, Malte; Lausberg, Henning F; Pahl, Stefan; Schäfers, Hans-Joachim
2005-02-01
In a 73-year-old male patient with a history of prostate cancer, a right ventricular endoluminal tumor was diagnosed by echocardiography. An endocardial papillary fibroelastoma or myxoma appeared possible; a malignant tumor could not be ruled out. The tumor was resected using extracorporeal circulation and cardioplegic arrest. Histopathology study revealed a bronchogenic cyst with ciliated epithelium.
MacAulay, Kevin
2002-01-01
An Ibizan hound cross was referred with a 1-year history of syncope and exercise intolerance. An electrocardiogram showed bradycardia and no P waves; atrial standstill was diagnosed. A permanent artificial endocardial pacemaker was implanted. The lead dislodged and was reimplanted into the right ventricular apex. Capture was once again achieved. PMID:12395764
Solution structural ensembles of substrate-free cytochrome P450(cam).
Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C
2012-04-24
Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.
Smith, Joseph P; Smith, Frank C; Booksh, Karl S
2017-08-21
The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe 2 O 3 ) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.
Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.; DeLonay, Aaron J.
2008-01-01
This report is a repository of reach-scale maps of hydraulic and substrate characteristics generated for the habitat-use portion of an interdisciplinary sturgeon research project on the Lower Missouri River (from Gavins Point Dam to the junction with the Mississippi River). The maps were derived from hydroacoustic data sets that were collected for the purpose of assessing physical aquatic habitat in the vicinity of locations of adult shovelnose sturgeon (Scaphirhynchus platorynchus) and pallid sturgeon (S. albus). Hydroacoustic data sets were collected at the reach scale (mean reach length, 2.4 kilometers) in order to include the immediate vicinity of a targeted sturgeon location as well as the full range of habitat available at the bend and crossover scale. Reaches typically were surveyed on the day following the relocation of a telemetered sturgeon and at a discharge within 10 percent of the discharge on the sturgeon relocation date in order to characterize as closely as possible the channel morphology and flow-field conditions at the time that the sturgeon was present. One hundred fifty-three reaches were mapped during April–September in the years 2005 through 2007, with the majority of data collection occurring in the months of May and June (coinciding with the period of sturgeon migration and spawning in the Lower Missouri River). Interpolated maps (grid cell size, 5 meters) depict depth, generalized substrate, and depth-averaged velocity. Side-scan sonar imagery is also available for a subset of reaches. Collectively, the maps represent more than 20 percent of the length of the Lower Missouri River.
Sommer, Philipp; Kircher, Simon; Rolf, Sascha; John, Silke; Arya, Arash; Dinov, Borislav; Richter, Sergio; Bollmann, Andreas; Hindricks, Gerhard
2016-03-01
There remains a lack of consensus regarding the ideal ablation strategy for atrial fibrillation (AF), particularly in patients with persistent or longstanding persistent AF. Given increasing evidence from clinical imaging studies that rotors sustain AF, rotor elimination may be a desirable procedural endpoint. However, there is no description to date of the clinical outcomes using rotor elimination during ablation as the procedural endpoint. Moreover, a series of studies question whether procedural AF termination is a desirable endpoint for ablation after many forms of AF ablation. We report a single-center experience of rotor elimination during AF ablation using Focal Impulse and Rotor Mapping (FIRM), describing 20 consecutive patients with case descriptions of 3 patients with recurrent longstanding persistent AF after prior ablation. In all cases, endocardial mapping using a 64-electrode basket catheter was performed to identify rotors, which were eliminated using radiofrequency catheter ablation. After it was verified that all identified rotors were eliminated, standard ablation consisting of PV isolation was performed. Notably, persistent AF terminated in only 1/20 (5%) patients. However, after a follow-up of 6 months, single-procedure freedom from AF was 80% (16/20 patients) with only 1 patient on antiarrhythmic drugs. All three patients in the highlighted series are AF free despite the lack of acute procedural AF termination. Patients with persistent AF including those with unsuccessful prior ablation can be treated successfully by rotor targeted ablation, using the elimination of all rotors rather than acute AF termination as the procedural endpoint. © 2015 Wiley Periodicals, Inc.
Electrophysiological characteristics of the Marshall bundle in humans
Han, Seongwook; Joung, Boyoung; Scanavacca, Mauricio; Sosa, Eduardo; Chen, Peng-Sheng; Hwang, Chun
2010-01-01
BACKGROUND Marshall bundles (MBs) are the muscle bundles within the ligament of Marshall. OBJECTIVE This trial sought to the electrophysiological characteristics of the MB and the anatomical connections between MB and left atrium (LA) in patients with persistent atrial fibrillation (AF). METHODS We enrolled 72 patients (male:female 59:13, age 59.9 ± 9.4 years) who underwent MB mapping and ablation for AF. MB mapping was done via an endocardial or epicardial approach during sinus rhythm and AF. RESULTS Recordings were successful in 64 of 72 patients (89%). A single connection was noted in 11 of 64 patients between the MB and the coronary sinus (CS) muscle sleeves. The MB recordings showed distinct MB potentials with a proximal-to-distal activation pattern during sinus rhythm. During AF, organized passive activations and dissociated slow MB ectopic activities were commonly observed in this type of connection. Double connections to both CS and LA around left pulmonary veins were noted in 23 of 64 patients (36%). After the ablation of the distal connection, MB recording showed typical double potentials as in single connection. Multiple connections were noted in 30 of 64 patients (47%). During sinus rhythm, the earliest activation was in the middle of the MB. The activation patterns were irregular and variable in each patient. During AF, rapid and fractionated complex activations were noted in all patients of this group. CONCLUSION We documented 3 different types of MB–LA connections. Rapid and fractionated activations were most commonly observed in the MB that had multiple LA connections. PMID:20188860
Spectrally based mapping of riverbed composition
Legleiter, Carl; Stegman, Tobin K.; Overstreet, Brandon T.
2016-01-01
Remote sensing methods provide an efficient means of characterizing fluvial systems. This study evaluated the potential to map riverbed composition based on in situ and/or remote measurements of reflectance. Field spectra and substrate photos from the Snake River, Wyoming, USA, were used to identify different sediment facies and degrees of algal development and to quantify their optical characteristics. We hypothesized that accounting for the effects of depth and water column attenuation to isolate the reflectance of the streambed would enhance distinctions among bottom types and facilitate substrate classification. A bottom reflectance retrieval algorithm adapted from coastal research yielded realistic spectra for the 450 to 700 nm range; but bottom reflectance-based substrate classifications, generated using a random forest technique, were no more accurate than classifications derived from above-water field spectra. Additional hypothesis testing indicated that a combination of reflectance magnitude (brightness) and indices of spectral shape provided the most accurate riverbed classifications. Convolving field spectra to the response functions of a multispectral satellite and a hyperspectral imaging system did not reduce classification accuracies, implying that high spectral resolution was not essential. Supervised classifications of algal density produced from hyperspectral data and an inferred bottom reflectance image were not highly accurate, but unsupervised classification of the bottom reflectance image revealed distinct spectrally based clusters, suggesting that such an image could provide additional river information. We attribute the failure of bottom reflectance retrieval to yield more reliable substrate maps to a latent correlation between depth and bottom type. Accounting for the effects of depth might have eliminated a key distinction among substrates and thus reduced discriminatory power. Although further, more systematic study across a broader range of fluvial environments is needed to substantiate our initial results, this case study suggests that bed composition in shallow, clear-flowing rivers potentially could be mapped remotely.
Al-Mohaissen, Maha A; Chan, Kwan Leung
2012-03-01
Endocardial lead-induced tricuspid regurgitation has not been well recognized, either clinically or echocardiographically, and yet it is likely a preventable iatrogenic disease. In severe cases, it can lead to right ventricular failure and require tricuspid valve surgery. This complication will become increasingly important, because the numbers of permanent pacemakers and implantable cardioverter-defibrillators are expected to increase because of the aging population and the expanding capabilities of these devices. Published studies are largely retrospective, and serial studies to assess the time course of the development of tricuspid regurgitation are lacking. The mechanisms and severity of tricuspid regurgitation may not be well evaluated by two-dimensional echocardiography. Real-time three-dimensional echocardiography appears to be a promising technique to evaluate the mechanism of tricuspid regurgitation and may allow the early detection of patients who will develop severe lead-induced tricuspid regurgitation. A better understanding of the mechanism of lead-induced tricuspid regurgitation will be essential to the development of preventive strategies, which can then be tested in future clinical trials. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Cell Migration During Heart Regeneration in Zebrafish
Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko
2018-01-01
Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, preexisting cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. PMID:27085002
Kingella kingae: Carriage, Transmission, and Disease
2015-01-01
SUMMARY Kingella kingae is a common etiology of pediatric bacteremia and the leading agent of osteomyelitis and septic arthritis in children aged 6 to 36 months. This Gram-negative bacterium is carried asymptomatically in the oropharynx and disseminates by close interpersonal contact. The colonized epithelium is the source of bloodstream invasion and dissemination to distant sites, and certain clones show significant association with bacteremia, osteoarthritis, or endocarditis. Kingella kingae produces an RTX (repeat-in-toxin) toxin with broad-spectrum cytotoxicity that probably facilitates mucosal colonization and persistence of the organism in the bloodstream and deep body tissues. With the exception of patients with endocardial involvement, children with K. kingae diseases often show only mild symptoms and signs, necessitating clinical acumen. The isolation of K. kingae on routine solid media is suboptimal, and detection of the bacterium is significantly improved by inoculating exudates into blood culture bottles and the use of PCR-based assays. The organism is generally susceptible to antibiotics that are administered to young patients with joint and bone infections. β-Lactamase production is clonal, and the local prevalence of β-lactamase-producing strains is variable. If adequately and promptly treated, invasive K. kingae infections with no endocardial involvement usually run a benign clinical course. PMID:25567222
Neuroanatomical Substrates of Social Cognition Dysfunction in Autism
ERIC Educational Resources Information Center
Pelphrey, Kevin; Adolphs, Ralph; Morris, James P.
2004-01-01
In this review article, we summarize recent progress toward understanding the neural structures and circuitry underlying dysfunctional social cognition in autism. We review selected studies from the growing literature that has used the functional neuroimaging techniques of cognitive neuroscience to map out the neuroanatomical substrates of social…
Processing RoxAnn sonar data to improve its categorization of lake bed surficial sediments
Cholwek, Gary; Bonde, John; Li, Xing; Richards, Carl; Yin, Karen
2000-01-01
To categorize spawning and nursery habitat for lake trout in Minnesota's near shore waters of Lake Superior, data was collected with a single beam echo sounder coupled with a RoxAnn bottom classification sensor. Test areas representative of different bottom surficial substrates were sampled. The collected data consisted of acoustic signals which showed both depth and substrate type. The location of the signals was tagged in real-time with a DGPS. All data was imported into a GIS database. To better interpret the output signal from the RoxAnn, several pattern classifiers were developed by multivariate statistical method. From the data a detailed and accurate map of lake bed bathymetry and surficial substrate types was produced. This map will be of great value to fishery and other natural resource managers.
Scanning Probe Platform | Materials Science | NREL
level; this image obtained using a scanning tunneling microscope shows gray and white clusters of produce high-resolution color images or maps like this one obtained using scanning tunneling luminescence gray clusters. Gold substrate: (Left) STM image reveals the terraces of the H2 flamed substrate. (Right
Mapping the band structure of a surface phononic crystal
NASA Astrophysics Data System (ADS)
Maznev, A. A.; Wright, O. B.; Matsuda, O.
2011-01-01
We map the band structure of surface acoustic modes of a periodic array of copper lines embedded in a SiO2 film on a silicon substrate by means of the laser-induced transient grating technique. A detailed map of the lowest sheet of the ω(k) surface and partial maps of two higher-order sheets are obtained. We discuss the topology of the ω(k) surface and explain how it arises from the Rayleigh and Sezawa modes of the film/substrate system. In the vicinity of the bandgap formed at the Brillouin zone boundary, the first and second dispersion sheets take the form of a saddle and a bowl, respectively, in agreement with a weak perturbation model. The shape of the third dispersion sheet, however, appears to defy expectations based on the perturbation approach. In particular, it contains minima located off the symmetry directions, which implies the existence of zero group velocity modes with an obliquely directed wavevector.
Piorkowski, Christopher; Breithardt, Ole-A; Razavi, Hedi; Nabutovsky, Yelena; Rosenberg, Stuart P; Markovitz, Craig D; Arya, Arash; Rolf, Sascha; John, Silke; Kosiuk, Jedrzej; Olson, Eric; Eitel, Charlotte; Huo, Yan; Döring, Michael; Richter, Sergio; Ryu, Kyungmoo; Gaspar, Thomas; Prinzen, Frits W; Hindricks, Gerhard; Sommer, Philipp
2017-10-01
In times of evolving cardiac resynchronization therapy, intra-procedural characterization of left ventricular (LV) mechanical activation patterns is desired but technically challenging with currently available technologies. In patients with normal systolic function, we evaluated the feasibility of characterizing LV wall motion using a novel sensor-based, real-time tracking technology. Ten patients underwent simultaneous motion and electrical mapping of the LV endocardium during sinus rhythm using electroanatomical mapping and navigational systems (EnSite™ NavX™ and MediGuide™, SJM). Epicardial motion data were also collected simultaneously at corresponding locations from accessible coronary sinus branches. Displacements at each mapping point and times of electrical and mechanical activation were combined over each of the six standard LV wall segments. Mechanical activation timing was compared with that from electrical activation and preoperative 2D speckle tracking echocardiography (echo). MediGuide-based displacement data were further analysed to estimate LV chamber volumes that were compared with echo and magnetic resonance imaging (MRI). The lateral and septal walls exhibited the largest (12.5 [11.6-15.0] mm) and smallest (10.2 [9.0-11.3] mm) displacement, respectively. Radial displacement was significantly larger endocardially than epicardially (endo: 6.7 [5.0-9.1] mm; epi: 3.8 [2.4-5.6] mm), while longitudinal displacement was significantly larger epicardially (endo: 8.0 [5.0-10.6] mm; epi: 10.3 [7.4-13.8] mm). Most often, the anteroseptal/anterior and lateral walls showed the earliest and latest mechanical activations, respectively. 9/10 patients had concordant or adjacent wall segments of latest mechanical and electrical activation, and 6/10 patients had concordant or adjacent wall segments of latest mechanical activation as measured by MediGuide and echo. MediGuide's LV chamber volumes were significantly correlated with MRI (R2= 0.73, P < 0.01) and echo (R2= 0.75, P < 0.001). The feasibility of mapping-guided intra-procedural characterization of LV wall motion was established. http://www.clinicaltrials.gov; Unique identifier: CT01629160. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia
NASA Astrophysics Data System (ADS)
Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul
2015-06-01
Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.
NASA Astrophysics Data System (ADS)
Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.
2017-01-01
Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates.
Sinjab, Faris; Sicilia, Giovanna; Shipp, Dustin W; Marlow, Maria; Notingher, Ioan
2017-12-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering.
Label-Free Raman Hyperspectral Imaging of Single Cells Cultured on Polymer Substrates
Sicilia, Giovanna; Shipp, Dustin W.; Marlow, Maria; Notingher, Ioan
2017-01-01
While Raman hyperspectral imaging has been widely used for label-free mapping of biomolecules in cells, these measurements require the cells to be cultured on weakly Raman scattering substrates. However, many applications in biological sciences and engineering require the cells to be cultured on polymer substrates that often generate large Raman scattering signals. Here, we discuss the theoretical limits of the signal-to-noise ratio in the Raman spectra of cells in the presence of polymer signals and how optical aberrations may affect these measurements. We show that Raman spectra of cells cultured on polymer substrates can be obtained using automatic subtraction of the polymer signals and demonstrate the capabilities of these methods in two important applications: tissue engineering and in vitro toxicology screening of drugs. Apart from their scientific and technological importance, these applications are examples of the two most common measurement configurations: (1) cells cultured on an optically thick polymer substrate measured using an immersion/dipping objective; and (2) cells cultured on a transparent polymer substrate and measured using an inverted optical microscope. In these examples, we show that Raman hyperspectral data sets with sufficient quality can be successfully acquired to map the distribution of common biomolecules in cells, such as nucleic acids, proteins, and lipids, as well as detecting the early stages of apoptosis. We also discuss strategies for further improvements that could expand the application of Raman hyperspectral imaging on polymer substrates even further in biomedical sciences and engineering. PMID:28828895
This presentation describes a technique for mapping distributions of the nonindigenous Japanese eelgrass Zostera japonica in estuarine ecosystems of the Pacific Northwest. The relatively broad distribution of this intertidal plant, often on very soft substrate, makes classical g...
Clark, Kendal W; Zhang, X-G; Vlassiouk, Ivan V; He, Guowei; Feenstra, Randall M; Li, An-Ping
2013-09-24
All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.
Bethke, Gerit; Unthan, Tino; Uhrig, Joachim F.; Pöschl, Yvonne; Gust, Andrea A.; Scheel, Dierk; Lee, Justin
2009-01-01
Mitogen-activated protein kinase (MAPK)–mediated responses are in part regulated by the repertoire of MAPK substrates, which is still poorly elucidated in plants. Here, the in vivo enzyme–substrate interaction of the Arabidopsis thaliana MAP kinase, MPK6, with an ethylene response factor (ERF104) is shown by fluorescence resonance energy transfer. The interaction was rapidly lost in response to flagellin-derived flg22 peptide. This complex disruption requires not only MPK6 activity, which also affects ERF104 stability via phosphorylation, but also ethylene signaling. The latter points to a novel role of ethylene in substrate release, presumably allowing the liberated ERF104 to access target genes. Microarray data show enrichment of GCC motifs in the promoters of ERF104–up-regulated genes, many of which are stress related. ERF104 is a vital regulator of basal immunity, as altered expression in both erf104 and overexpressors led to more growth inhibition by flg22 and enhanced susceptibility to a non-adapted bacterial pathogen. PMID:19416906
3D virtual human atria: A computational platform for studying clinical atrial fibrillation.
Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui
2011-10-01
Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi-scale electrical phenomena during atrial conduction and AF arrhythmogenesis. Results of such simulations can be directly compared with electrophysiological and endocardial mapping data, as well as clinical ECG recordings. The virtual human atria can provide in-depth insights into 3D excitation propagation processes within atrial walls of a whole heart in vivo, which is beyond the current technical capabilities of experimental or clinical set-ups. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Soo Young; Singh-Moon, Rajinder P.; Hendon, Christine P.
2018-02-01
Pulmonary vein (PV) isolation is a critical procedure for the treatment and termination of atrial fibrillation (AF). The success of such treatment depends on the extent of tissue damage, where partial lesions can allow abnormal electrical conduction and risk relapse of AF. Proper evaluation of lesion delivery and ablation line continuity remains challenging with current techniques and in part limit procedural efficacy. A tool for direct visualization of endo-myocardial lesions in vivo could potentially reduce ambiguity in treatment location and extent and improve the overall fidelity of lesion sets. In this work, we introduce a method for wide-field visualization of myocardial tissue including the discernment of ablated and non-ablated regions using an endoscopic multispectral imaging system (EMIS). The system was designed to fit the working channel of most commercial sheathes (<4 Fr) and supported quadruple-wavelength reflectance imaging through a flexible fiber-bundle. A total of 50 endocardial lesions were created and imaged on nine swine hearts, ex vivo in addition to 15 lesions on human LA samples near PV regions. A pixel-wise linear discriminant analysis algorithm was developed to classify regions of ablation treatment based on calibrated EMI maps. Results show good agreement of treatment severity and spatial extent compared to post-hoc tissue vital staining.
NASA Astrophysics Data System (ADS)
Faber, Tracy L.; Garcia, Ernest V.; Lalush, David S.; Segars, W. Paul; Tsui, Benjamin M.
2001-05-01
The spline-based Mathematical Cardiac Torso (MCAT) phantom is a realistic software simulation designed to simulate single photon emission computed tomographic (SPECT) data. It incorporates a heart model of known size and shape; thus, it is invaluable for measuring accuracy of acquisition, reconstruction, and post-processing routines. New functionality has been added by replacing the standard heart model with left ventricular (LV) epicaridal and endocardial surface points detected from actual patient SPECT perfusion studies. LV surfaces detected from standard post-processing quantitation programs are converted through interpolation in space and time into new B-spline models. Perfusion abnormalities are added to the model based on results of standard perfusion quantification. The new LV is translated and rotated to fit within existing atria and right ventricular models, which are scaled based on the size of the LV. Simulations were created for five different patients with myocardial infractions who had undergone SPECT perfusion imaging. Shape, size, and motion of the resulting activity map were compared visually to the original SPECT images. In all cases, size, shape and motion of simulated LVs matched well with the original images. Thus, realistic simulations with known physiologic and functional parameters can be created for evaluating efficacy of processing algorithms.
Electromechanical wave imaging of biologically and electrically paced canine hearts in vivo.
Costet, Alexandre; Provost, Jean; Gambhir, Alok; Bobkov, Yevgeniy; Danilo, Peter; Boink, Gerard J J; Rosen, Michael R; Konofagou, Elisa E
2014-01-01
Electromechanical wave imaging (EWI) has been show capable of directly and entirely non-invasively mapping the trans mural electromechanical activation in all four cardiac chambers in vivo. In this study, we assessed EWI repeatability and reproducibility, as well as its capability of localizing electronic and, for the first time, biological pacing locations in closed-chest, conscious canines. Electromechanical activation was obtained in six conscious animals during normal sinus rhythm (NSR) and idioventricular rhythms occurring in dogs with complete heart block instrumented with electronic and biologic pacemakers (EPM and BPM respectively). After atrioventricular node ablation, dogs were implanted with an EPM in the right ventricular (RV) endocardial apex (n = 4) and two additionally received a BPM at the left ventricular (LV) epicardial base (n = 2). EWI was performed trans thoracically during NSR, BPM and EPM pacing, in conscious dogs, using an unfocused transmit sequence at 2000 frames/s. During NSR, the EW originated at the right atrium (RA), propagated to the left atrium (LA) and emerged from multiple sources in both ventricles. During EPM, the EW originated at the RV apex and propagated throughout both ventricles. During BPM, the EW originated from the LV basal lateral wall and subsequently propagated throughout the ventricles. EWI differentiated BPM from EPM and NSR and identified the distinct pacing origins. Isochrone comparison indicated that EWI was repeatable and reliable. These findings thus indicate the potential for EWI to serve as a simple, non-invasive and direct imaging technology for mapping and characterizing arrhythmias as well as the treatments thereof. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Lanters, Eva A H; van Marion, Denise M S; Kik, Charles; Steen, Herman; Bogers, Ad J J C; Allessie, Maurits A; Brundel, Bianca J J M; de Groot, Natasja M S
2015-11-05
Atrial fibrillation is a progressive arrhythmia, the exact mechanism underlying the progressive nature of recurrent AF episodes is still unknown. Recently, it was found that key players of the protein quality control system of the cardiomyocyte, i.e. Heat Shock Proteins, protect against atrial fibrillation progression by attenuating atrial electrical and structural remodeling (electropathology). HALT & REVERSE aims to investigate the correlation between electropathology, as defined by endo- or epicardial mapping, Heat Shock Protein levels and development or recurrence of atrial fibrillation following pulmonary vein isolation, or electrical cardioversion or cardiothoracic surgery. This study is a prospective observational study. Three separate study groups are defined: (1) cardiothoracic surgery, (2) pulmonary vein isolation and (3) electrical cardioversion. An intra-operative high-resolution epicardial (group 1) or endocardial (group 2) mapping procedure of the atria is performed to study atrial electropathology. Blood samples for Heat Shock Protein determination are obtained at baseline and during the follow-up period at 3 months (group 2), 6 months (groups 1 and 2) and 1 year (group 1 and 2). Tissue samples of the right and left atrial appendages in patients in group 1 are analysed for Heat Shock Protein levels and for tissue characteristics. Early post procedural atrial fibrillation is detected by continuous rhythm monitoring, whereas late post procedural atrial fibrillation is documented by either electrocardiogram or 24-h Holter registration. HALT & REVERSE aims to identify the correlation between Heat Shock Protein levels and degree of electropathology. The study outcome will contribute to novel diagnostic tools for the early recognition of clinical atrial fibrillation. Rotterdam Medical Ethical Committee MEC-2014-393, Dutch Trial Registration NTR4658.
van Dam, Peter M; Boyle, Noel G; Laks, Michael M; Tung, Roderick
2016-12-01
The precise localization of the site of origin of a premature ventricular contraction (PVC) prior to ablation can facilitate the planning and execution of the electrophysiological procedure. In clinical practice, the targeted ablation site is estimated from the standard 12-lead ECG. The accuracy of this qualitative estimation has limitations, particularly in the localization of PVCs originating from the papillary muscles. Clinical available electrocardiographic imaging (ECGi) techniques that incorporate patient-specific anatomy may improve the localization of these PVCs, but require body surface maps with greater specificity for the epicardium. The purpose of this report is to demonstrate that a novel cardiac isochrone positioning system (CIPS) program can accurately detect the specific location of the PVC on the papillary muscle using only a 12-lead ECG. Cardiac isochrone positioning system uses three components: (i) endocardial and epicardial cardiac anatomy and torso geometry derived from MRI, (ii) the patient-specific electrode positions derived from an MRI model registered 3D image, and (iii) the 12-lead ECG. CIPS localizes the PVC origin by matching the anatomical isochrone vector with the ECG vector. The predicted PVC origin was compared with the site of successful ablation or stimulation. Three patients who underwent electrophysiological mapping and ablation of PVCs originating from the papillary muscles were studied. CIPS localized the PVC origin for all three patients to the correct papillary muscle and specifically to the base, mid, or apical region. A simplified form of ECGi utilizing only 12 standard electrocardiographic leads may facilitate accurate localization of the origin of papillary muscle PVCs. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Electrocardiographic characteristics of left ventricular outflow tract tachycardia.
Hachiya, H; Aonuma, K; Yamauchi, Y; Harada, T; Igawa, M; Nogami, A; Iesaka, Y; Hiroe, M; Marumo, F
2000-11-01
Catheter ablation of idiopathic left ventricular outflow tract tachycardia (LVOT-VT) is rare because a safe ablation technique at this site has not been described, and serious complications may occur. This study compared the QRS morphology of LVOT-VT with that of idiopathic right ventricular outflow tract tachycardia. A comparison was made between the electrocardiographic characteristics of LVOT-VT originating from the supravalvular region of a coronary cusp (Supra-Ao group) with those of LVOT-VT originating from the infravalvular endocardial region of a coronary cusp of the aortic valve within the LV (Infra-Ao group). After precise mapping of the right ventricle, left ventricle, pulmonary artery, coronary cusps, and proximal portion of the anterior interventricular vein, there were 17 patients in whom VT was thought to be located at the LVOT by both activation and pace mapping. They were divided between a Supra-Ao group (n = 8), and an Infra-Ao group (n = 9). Analysis of the 12-lead electrocardiogram (ECG) revealed an S wave in lead I in all 17 patients. A precordial R wave transition was also observed at V1 or V2 in 16 patients (94%). In 7 of 8 patients (88%) with Supra-Ao LVOT-VT, no S wave was observed in either V5 or V6. In contrast, an Rs pattern was observed in both V5 and V6, or in V6 only, in 100% of the patients with Infra-Ao LVOT-VT. A LVOT-VT should be suspected when the ECG shows an S wave in lead I and an R/S ratio greater than 1 in lead V1 or V2, versus a coronary cusp location if there is no S wave in either lead V5 or V6.
Measurement of myocardial native T1 in cardiovascular diseases and norm in 1291 subjects.
Liu, Joanna M; Liu, Alexander; Leal, Joana; McMillan, Fiona; Francis, Jane; Greiser, Andreas; Rider, Oliver J; Myerson, Saul; Neubauer, Stefan; Ferreira, Vanessa M; Piechnik, Stefan K
2017-09-28
Native T1-mapping provides quantitative myocardial tissue characterization for cardiovascular diseases (CVD), without the need for gadolinium. However, its translation into clinical practice is hindered by differences between techniques and the lack of established reference values. We provide typical myocardial T1-ranges for 18 commonly encountered CVDs using a single T1-mapping technique - Shortened Look-Locker Inversion Recovery (ShMOLLI), also used in the large UK Biobank and Hypertrophic Cardiomyopathy Registry study. We analyzed 1291 subjects who underwent CMR (1.5-Tesla, MAGNETOM-Avanto, Siemens Healthcare, Erlangen, Germany) between 2009 and 2016, who had a single CVD diagnosis, with mid-ventricular T1-map assessment. A region of interest (ROI) was placed on native T1-maps in the "most-affected myocardium", characterized by the presence of late gadolinium enhancement (LGE), or regional wall motion abnormalities (RWMA) on cines. Another ROI was placed in the "reference myocardium" as far as possible from LGE/RWMA, and in the septum if no focal abnormality was present. To further define normality, we included native T1 of healthy subjects from an existing dataset after sub-endocardial pixel-erosions. Native T1 of patients with normal CMR (938 ± 21 ms) was similar compared to healthy subjects (941 ± 23 ms). Across all patient groups (57 ± 19 yrs., 65% males), focally affected myocardium had significantly different T1 value compared to reference myocardium (all p < 0.001). In the affected myocardium, cardiac amyloidosis (1119 ± 61 ms) had the highest native T1 compared to normal and all other CVDs, while iron-overload (795 ± 58 ms) and Anderson-Fabry disease (863 ± 23 ms) had the lowest native reference T1 (all p < 0.001). Future studies designed to detect the large T1 differences between affected and reference myocardium are estimated to require small sample-sizes (n < 50). However, studies designed to detect the small T1 differences between reference myocardium in CVDs and healthy controls can require several thousand of subjects. We provide typical T1-ranges for common clinical cardiac conditions in the largest cohort to-date, using ShMOLLI T1-mapping at 1.5 T. Sample-size calculations from this study may be useful for the design of future studies and trials that use T1-mapping as an endpoint.
Bed texture mapping in large rivers using recreational-grade sidescan sonar
Hamill, Daniel; Wheaton, Joseph M.; Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.
2017-01-01
The size-distribution and spatial organization of bed sediment, or bed ‘texture’, is a fundamental attribute of natural channels and is one important component of the physical habitat of aquatic ecosystems. ‘Recreational-grade’ sidescan sonar systems now offer the possibility of imaging, and subsequently quantifying bed texture at high resolution with minimal cost, or logistical effort. We are investigating the possibility of using sidescan sonar sensors on commercially available ‘fishfinders’ for within-channel bed-sediment characterization of mixed sand-gravel riverbeds in a debris-fan dominated canyon river. We analyzed repeat substrate mapping of data collected before and after the November 2014 High Flow Experiment on the Colorado River in lower Marble Canyon, Arizona. The mapping analysis resulted in sufficient spatial coverage (e.g. reach) and resolutions (e.g. centrimetric) to inform studies of the effects of changing bed substrates on salmonid spawning on large rivers. From this preliminary study, we argue that the approach could become a tractable and cost-effective tool for aquatic scientists to rapidly obtain bed texture maps without specialized knowledge of hydroacoustics. Bed texture maps can be used as a physical input for models relating ecosystem responses to hydrologic management.
A constraint optimization based virtual network mapping method
NASA Astrophysics Data System (ADS)
Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen
2013-03-01
Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.
Complex Networks in Psychological Models
NASA Astrophysics Data System (ADS)
Wedemann, R. S.; Carvalho, L. S. A. V. D.; Donangelo, R.
We develop schematic, self-organizing, neural-network models to describe mechanisms associated with mental processes, by a neurocomputational substrate. These models are examples of real world complex networks with interesting general topological structures. Considering dopaminergic signal-to-noise neuronal modulation in the central nervous system, we propose neural network models to explain development of cortical map structure and dynamics of memory access, and unify different mental processes into a single neurocomputational substrate. Based on our neural network models, neurotic behavior may be understood as an associative memory process in the brain, and the linguistic, symbolic associative process involved in psychoanalytic working-through can be mapped onto a corresponding process of reconfiguration of the neural network. The models are illustrated through computer simulations, where we varied dopaminergic modulation and observed the self-organizing emergent patterns at the resulting semantic map, interpreting them as different manifestations of mental functioning, from psychotic through to normal and neurotic behavior, and creativity.
NASA Astrophysics Data System (ADS)
Manzi, Lucio; Barrow, Andrew S.; Scott, Daniel; Layfield, Robert; Wright, Timothy G.; Moses, John E.; Oldham, Neil J.
2016-11-01
Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation.
Luther, Vishal; Qureshi, Norman; Lim, Phang Boon; Koa-Wing, Michael; Jamil-Copley, Shahnaz; Ng, Fu Siong; Whinnett, Zachary; Davies, D Wyn; Peters, Nicholas S; Kanagaratnam, Prapa; Linton, Nick
2018-03-01
Postablation reentrant ATs depend upon conducting isthmuses bordered by scar. Bipolar voltage maps highlight scar as sites of low voltage, but the voltage amplitude of an electrogram depends upon the myocardial activation sequence. Furthermore, a voltage threshold that defines atrial scar is unknown. We used Ripple Mapping (RM) to test whether these isthmuses were anatomically fixed between different activation vectors and atrial rates. We studied post-AF ablation ATs where >1 rhythm was mapped. Multipolar catheters were used with CARTO Confidense for high-density mapping. RM visualized the pattern of activation, and the voltage threshold below which no activation was seen. Isthmuses were characterized at this threshold between maps for each patient. Ten patients were studied (Map 1 was AT1; Map 2: sinus 1/10, LA paced 2/10, AT2 with reverse CS activation 3/10; AT2 CL difference 50 ± 30 ms). Point density was similar between maps (Map 1: 2,589 ± 1,330; Map 2: 2,214 ± 1,384; P = 0.31). RM activation threshold was 0.16 ± 0.08 mV. Thirty-one isthmuses were identified in Map 1 (median 3 per map; width 27 ± 15 mm; 7 anterior; 6 roof; 8 mitral; 9 septal; 1 posterior). Importantly, 7 of 31 (23%) isthmuses were unexpectedly identified within regions without prior ablation. AT1 was treated following ablation of 11/31 (35%) isthmuses. Of the remaining 20 isthmuses, 14 of 16 isthmuses (88%) were consistent between the two maps (four were inadequately mapped). Wavefront collision caused variation in low voltage distribution in 2 of 16 (12%). The distribution of isthmuses and nonconducting tissue within the ablated left atrium, as defined by RM, appear concordant between rhythms. This could guide a substrate ablative approach. © 2018 Wiley Periodicals, Inc.
Venous obstruction in permanent pacemaker patients: an isotopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauletti, M.; Di Ricco, G.; Solfanelli, S.
1981-01-01
Isotope venography was used to study the venous circulation proximal to the superior vena cava in two groups of pacemaker patients, one with a single endocavitary electrode and the other with multiple pacing catheters. A control group of patients without pacemakers was also studied. Numerous abnormalities were found, especially in the group with multiple electrodes. These findings suggest that venous obstruction is a common complication of endocardial pacing.
Linear lesions in heart tissue using diffused laser radiation
NASA Astrophysics Data System (ADS)
Fried, Nathaniel M.; Lardo, Albert C.; Berger, Ronald D.; Calkins, Hugh; Halperin, Henry R.
2000-05-01
Transmural, continuous, and linear lesions may be necessary for successful catheter ablation of cardiac arrythmias such as atrial fibrillation. Laser ablation was studied as an alternative to radiofrequency ablation, which is noted to produce superficial and discontinuous lesions as well as tissue charring and vaporization. Samples of canine myocardium were placed in a saline bath and irradiated with an 1.06- micrometer Nd:YAG laser operated in either pulsed or continuous mode. For pulsed mode, the laser pulse duration was 10 s with 10 s cooling between pulses. Laser radiation was delivered radially through diffusing optical fiber tips oriented parallel to the endocardial surface. In CW mode, transmural (6-mm-deep), linear (16-mm-long), and continuous lesions were produced using a laser power of 30 W and an irradiation time of 180 s. Peak tissue temperatures measured 51 plus or minus 1 degree Celsius at the endocardial surface, 61 plus or minus 6 degrees Celsius in the mid-myocardium, and 55 plus or minus 6 degree Celsius at the epicardial surface. There was no evidence of tissue charring or vaporization. Pulsed laser irradiation produced comparable lesion depths to CW irradiation with more uniform heating of the subsurface myocardium, but at the expense of longer operation times. Further in vivo study of laser ablation is warranted for possible clinical applications.
Cell migration during heart regeneration in zebrafish.
Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko
2016-07-01
Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Ahuja, Suchit; Dogra, Deepika; Stainier, Didier Y R; Reischauer, Sven
2016-04-01
The atrioventricular canal (AVC) connects the atrial and ventricular chambers of the heart and its formation is critical for the development of the cardiac valves, chamber septation and formation of the cardiac conduction system. Consequently, problems in AVC formation can lead to congenital defects ranging from cardiac arrhythmia to incomplete cardiac septation. While our knowledge about early heart tube formation is relatively comprehensive, much remains to be investigated about the genes that regulate AVC formation. Here we identify a new role for the basic helix-loop-helix factor Id4 in zebrafish AVC valve development and function. id4 is first expressed in the AVC endocardium and later becomes more highly expressed in the atrial chamber. TALEN induced inactivation of id4 causes retrograde blood flow at the AV canal under heat induced stress conditions, indicating defects in AV valve function. At the molecular level, we found that id4 inactivation causes misexpression of several genes important for AVC and AV valve formation including bmp4 and spp1. We further show that id4 appears to control the number of endocardial cells that contribute to the AV valves by regulating Wnt signaling in the developing AVC endocardium. Copyright © 2016 Elsevier Inc. All rights reserved.
Wnt/β-catenin signaling enables developmental transitions during valvulogenesis
Bosada, Fernanda M.; Devasthali, Vidusha; Jones, Kimberly A.; Stankunas, Kryn
2016-01-01
Heart valve development proceeds through coordinated steps by which endocardial cushions (ECs) form thin, elongated and stratified valves. Wnt signaling and its canonical effector β-catenin are proposed to contribute to endocardial-to-mesenchymal transformation (EMT) through postnatal steps of valvulogenesis. However, genetic redundancy and lethality have made it challenging to define specific roles of the canonical Wnt pathway at different stages of valve formation. We developed a transgenic mouse system that provides spatiotemporal inhibition of Wnt/β-catenin signaling by chemically inducible overexpression of Dkk1. Unexpectedly, this approach indicates canonical Wnt signaling is required for EMT in the proximal outflow tract (pOFT) but not atrioventricular canal (AVC) cushions. Furthermore, Wnt indirectly promotes pOFT EMT through its earlier activity in neighboring myocardial cells or their progenitors. Subsequently, Wnt/β-catenin signaling is activated in cushion mesenchymal cells where it supports FGF-driven expansion of ECs and then AVC valve extracellular matrix patterning. Mice lacking Axin2, a negative Wnt regulator, have larger valves, suggesting that accumulating Axin2 in maturing valves represents negative feedback that restrains tissue overgrowth rather than simply reporting Wnt activity. Disruption of these Wnt/β-catenin signaling roles that enable developmental transitions during valvulogenesis could account for common congenital valve defects. PMID:26893350
Curran, Amy; Chang, Ing-Feng; Chang, Chia-Lun; Garg, Shilpi; Miguel, Rodriguez Milla; Barron, Yoshimi D; Li, Ying; Romanowsky, Shawn; Cushman, John C; Gribskov, Michael; Harmon, Alice C; Harper, Jeffrey F
2011-01-01
The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca(2+)-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with K(M) ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.
Curran, Amy; Chang, Ing-Feng; Chang, Chia-Lun; Garg, Shilpi; Miguel, Rodriguez Milla; Barron, Yoshimi D.; Li, Ying; Romanowsky, Shawn; Cushman, John C.; Gribskov, Michael; Harmon, Alice C.; Harper, Jeffrey F.
2011-01-01
The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs). While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16, and 34). Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ∼70 μM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites). Of these, 74 (27%) were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies. PMID:22645532
Asciutto, Eliana K; Pochapsky, Thomas C
2018-04-27
Cytochrome P450 cam (CYP101A1) catalyzes the stereospecific 5-exo hydroxylation of d-camphor by molecular oxygen. Previously, residual dipolar couplings measured for backbone amide 1 H- 15 N correlations in both substrate-free and bound forms of CYP101A1 were used as restraints in soft annealing molecular dynamic simulations in order to identify average conformations of the enzyme with and without substrate bound. Multiple substrate-dependent conformational changes remote from the enzyme active site were identified, and site-directed mutagenesis and activity assays confirmed the importance of these changes in substrate recognition. The current work makes use of perturbation response scanning (PRS) and umbrella sampling molecular dynamic of the residual dipolar coupling-derived CYP101A1 structures to probe the roles of remote structural features in enforcing the regio- and stereospecific nature of the hydroxylation reaction catalyzed by CYP101A1. An improper dihedral angle Ψ was defined and used to maintain substrate orientation in the CYP101A1 active site, and it was observed that different values of Ψ result in different PRS response maps. Umbrella sampling methods show that the free energy of the system is sensitive to Ψ, and bound substrate forms an important mechanical link in the transmission of mechanical coupling through the enzyme structure. Finally, a qualitative approach to interpreting PRS maps in terms of the roles of secondary structural features is proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Photo-crystallization in a-Se layer structures: Effects of film-substrate interface-rigidity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindberg, G. P.; Gross, N.; Weinstein, B. A.
Amorphous selenium (a-Se) films deposited on rigid substrates can undergo photo-induced crystallization (PC) even at temperatures (T) well below the glass transition, T{sub g} ∼ 313 K. Substrate-generated shear strain is known to promote the PC process. In the present work, we explore the influence of different substrates (Si and glass), and different film-layer-substrate combinations, on the PC in a variety of a-Se films and film-structures. The intermediate layers (indium tin oxide and polyimide) are chosen to promote conductivity and/or to be a buffer against interface strain in structures of interest for digital imaging applications. The PC characteristics in these samples are evaluatedmore » and compared using optical microscopy, atomic-force microscopy, Raman mapping, and T-dependent Raman spectroscopy. Both the presence of a soft intermediate layer, and the thermal softening that occurs for T increasing through T{sub g}, inhibit the tendency for the onset of PC. The extensive PC mapping results in the wide range of samples studied here, as well as the suppression of PC near T{sub g} in this array of samples, strongly support the generality of this behavior. As a consequence, one may expect that the stability of a-Se films against PC can be enhanced by decreasing the rigidity of the film-substrate interface. In this regard, advanced film structures that employ flexible substrates, soft intermediate layers, and/or are designed to be operated near T{sub g} should be explored.« less
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, Tuan
1994-01-01
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ji-Hwan; Lu, Ping; Hoffman, Jason
2016-12-19
We construct the elemental distribution and lattice strain maps from the measured atomic column positions in a (LaNiO3)(4)/(LaMnO3)(2) superlattice over a large field of view. The correlation between the distribution of B-cations and the lattice parameter in the form of Vegard's law is validated using atomic resolution energy dispersive x-ray spectroscopy (EDS). The maps show negligible Mn intermixing in the LaNiO3 layer, while Ni intermixing in the LaMnO3 layer improves away from the substrate interface to 9.5 atomic% from the 8th period onwards, indicating that the superlattice interfacial sharpness is established as the distance from the substrate increases. The mapsmore » allow an observation of the compositional defects of the B-sites, which is not possible by Z-contrast alone. Thus, this study demonstrates a promising approach for atomic scale correlative study of lattice strain and composition, and a method for the calibration of atomic resolution EDS maps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2015-08-15
The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for themore » (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.« less
Grain size mapping in shallow rivers using spectral information: a lab spectroradiometry perspective
NASA Astrophysics Data System (ADS)
Niroumand-Jadidi, Milad; Vitti, Alfonso
2017-10-01
Every individual attribute of a riverine environment defines the overall spectral signature to be observed by an optical sensor. The spectral characteristic of riverbed is influenced not only by the type but also the roughness of substrates. Motivated by this assumption, potential of optical imagery for mapping grain size of shallow rivers (< 1 m deep) is examined in this research. The previous studies concerned with grain size mapping are all built upon the texture analysis of exposed bed material using very high resolution (i.e. cm resolution) imagery. However, the application of texturebased techniques is limited to very low altitude sensors (e.g. UAVs) to ensure the sufficient spatial resolution. Moreover, these techniques are applicable only in the presence of exposed substrates along the river channel. To address these drawbacks, this study examines the effectiveness of spectral information to make distinction among grain sizes for submerged substrates. Spectroscopic experiments are performed in controlled condition of a hydraulic lab. The spectra are collected over a water flume in a range of water depths and bottoms with several grain sizes. A spectral convolution is performed to match the spectra to WorldView-2 spectral bands. The material type of substrates is considered the same for all the experiments with only variable roughness/size of grains. The spectra observed over dry beds revealed that the brightness/reflectance increases with the grain size across all the spectral bands. Based on this finding, the above-water spectra over a river channel are simulated considering different grain sizes in the bottom. A water column correction method is then used to retrieve the bottom reflectances. Then the inferred bottom reflectances are clustered to segregate among grain sizes. The results indicate high potential of the spectral approach for clustering grain sizes (overall accuracy of 92%) which opens up some horizons for mapping this valuable attribute of rivers using remotely sensed data.
NASA Astrophysics Data System (ADS)
Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2015-09-01
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).
Balakrishnan, N; Alexander, K; Keene, B; Kolluru, S; Fauls, M L; Rawdon, I; Breitschwerdt, E B
2016-09-01
Infective endocarditis, an inflammation of the endocardial surface due to invasion by an infectious agent, is more common in middle sized to large breed dogs. We herein report a case of mitral valve endocarditis in a 9-year-old male-castrated Weimaraner caused by an Actinomyces canis-like bacterium, not previously reported in association with infection in dogs. Copyright © 2016 Elsevier B.V. All rights reserved.
Parasitic meningoencephalitis in nurse sharks (Ginglymostoma cirratum).
Credille, K M; Johnson, L K; Reimschuessel, R
1993-07-01
Based on microscopic examination of the brains of seven wild-caught nurse sharks (Ginglymostoma cirratum), we observed a severe meningoencephalitis associated with numerous parasitic granulomas. The parasites were larval nematodes with morphological characteristics of the Superfamily Dracunculoidea. Although meningeal larval aggregates were associated with chronic inflammation, additional parasitic nodules found on the endocardial surface and perimandibular region did not provoke an inflammatory response. Neither the route of infection nor life cycle were determined.
Description of ecological subregions: sections of the conterminous United States
W.H. McNab; D.T. Cleland; J.A. Freeouf; J.E. Keys; G.J. Nowacki; C.A. Carpenter
2007-01-01
Preliminary descriptions are presented for the 190 section ecological units delineated on the U.S. Department of Agriculture Forest Service 2007 map âEcological Subregions: Sections and Subsections of the Conterminous United States.â Brief descriptions of the section map units provide an abstract primarily of the climate, physiography, and geologic substrate that...
Raman-based system for DNA sequencing-mapping and other separations
Vo-Dinh, T.
1994-04-26
DNA sequencing and mapping are performed by using a Raman spectrometer with a surface enhanced Raman scattering (SERS) substrate to enhance the Raman signal. A SERS label is attached to a DNA fragment and then analyzed with the Raman spectrometer to identify the DNA fragment according to characteristics of the Raman spectrum generated. 11 figures.
Weimer, Annika K.; Stoppin-Mellet, Virginie; Kosetsu, Ken; Cedeño, Cesyen; Jaquinod, Michel; Njo, Maria; De Milde, Liesbeth; Tompa, Peter; Inzé, Dirk; Beeckman, Tom; Vantard, Marylin
2017-01-01
Aurora kinases are key effectors of mitosis. Plant Auroras are functionally divided into two clades. The alpha Auroras (Aurora1 and Aurora2) associate with the spindle and the cell plate and are implicated in controlling formative divisions throughout plant development. The beta Aurora (Aurora3) localizes to centromeres and likely functions in chromosome separation. In contrast to the wealth of data available on the role of Aurora in other kingdoms, knowledge on their function in plants is merely emerging. This is exemplified by the fact that only histone H3 and the plant homolog of TPX2 have been identified as Aurora substrates in plants. Here we provide biochemical, genetic, and cell biological evidence that the microtubule-bundling protein MAP65-1—a member of the MAP65/Ase1/PRC1 protein family, implicated in central spindle formation and cytokinesis in animals, yeasts, and plants—is a genuine substrate of alpha Aurora kinases. MAP65-1 interacts with Aurora1 in vivo and is phosphorylated on two residues at its unfolded tail domain. Its overexpression and down-regulation antagonistically affect the alpha Aurora double mutant phenotypes. Phospho-mutant analysis shows that Aurora contributes to the microtubule bundling capacity of MAP65-1 in concert with other mitotic kinases. PMID:27879390
Reconstruction of biological pathways and metabolic networks from in silico labeled metabolites.
Hadadi, Noushin; Hafner, Jasmin; Soh, Keng Cher; Hatzimanikatis, Vassily
2017-01-01
Reaction atom mappings track the positional changes of all of the atoms between the substrates and the products as they undergo the biochemical transformation. However, information on atom transitions in the context of metabolic pathways is not widely available in the literature. The understanding of metabolic pathways at the atomic level is of great importance as it can deconvolute the overlapping catabolic/anabolic pathways resulting in the observed metabolic phenotype. The automated identification of atom transitions within a metabolic network is a very challenging task since the degree of complexity of metabolic networks dramatically increases when we transit from metabolite-level studies to atom-level studies. Despite being studied extensively in various approaches, the field of atom mapping of metabolic networks is lacking an automated approach, which (i) accounts for the information of reaction mechanism for atom mapping and (ii) is extendable from individual atom-mapped reactions to atom-mapped reaction networks. Hereby, we introduce a computational framework, iAM.NICE (in silico Atom Mapped Network Integrated Computational Explorer), for the systematic atom-level reconstruction of metabolic networks from in silico labelled substrates. iAM.NICE is to our knowledge the first automated atom-mapping algorithm that is based on the underlying enzymatic biotransformation mechanisms, and its application goes beyond individual reactions and it can be used for the reconstruction of atom-mapped metabolic networks. We illustrate the applicability of our method through the reconstruction of atom-mapped reactions of the KEGG database and we provide an example of an atom-level representation of the core metabolic network of E. coli. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Open-Source Programming for Automated Generation of Graphene Raman Spectral Maps
NASA Astrophysics Data System (ADS)
Vendola, P.; Blades, M.; Pierre, W.; Jedlicka, S.; Rotkin, S. V.
Raman microscopy is a useful tool for studying the structural characteristics of graphene deposited onto substrates. However, extracting useful information from the Raman spectra requires data processing and 2D map generation. An existing home-built confocal Raman microscope was optimized for graphene samples and programmed to automatically generate Raman spectral maps across a specified area. In particular, an open source data collection scheme was generated to allow the efficient collection and analysis of the Raman spectral data for future use. NSF ECCS-1509786.
In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images
NASA Astrophysics Data System (ADS)
Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.
2009-04-01
Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was validated quantitatively by comparing it with the CO values measured from the volume flow in the pulmonary artery. Relative bias varied between 0 and -17%, where the nominal accuracy of the flow meter is in the order of 10%. Assuming the CO measurements from the flow probe as a gold standard, excellent correlation (r = 0.99) was observed with the CO estimates obtained from image segmentation.
Oregon OCS seafloor mapping: Selected lease blocks relevant to renewable energy
Cochrane, Guy R.; Hemery, Lenaïg G.; Henkel, Sarah K.
2017-05-23
In 2014 the U.S. Geological Survey (USGS) and the Bureau of Ocean Energy Management (BOEM) entered into Intra-agency agreement M13PG00037 to map an area of the Oregon Outer Continental Shelf (OCS) off of Coos Bay, Oregon, under consideration for development of a floating wind energy farm. The BOEM requires seafloor mapping and site characterization studies in order to evaluate the impact of seafloor and sub-seafloor conditions on the installation, operation, and structural integrity of proposed renewable energy projects, as well as to assess the potential effects of construction and operations on archaeological resources. The mission of the USGS is to provide geologic, topographic, and hydrologic information that contributes to the wise management of the Nation's natural resources and that promotes the health, safety, and well being of the people. This information consists of maps, databases, and descriptions and analyses of the water, energy, and mineral resources, land surface, underlying geologic structure, and dynamic processes of the earth.For the Oregon OCS study, the USGS acquired multibeam echo sounder and seafloor video data surrounding the proposed development site, which is 95 km2 in area and 15 miles offshore from Coos Bay. The development site had been surveyed by Solmar Hydro Inc. in 2013 under a contract with WindFloat Pacific. The USGS subsequently produced a bathymetry digital elevation model and a backscatter intensity grid that were merged with existing data collected by the contractor. The merged grids were published along with visual observations of benthic geo-habitat from the video data in an associated USGS data release (Cochrane and others, 2015).This report includes the results of analysis of the video data conducted by Oregon State University and the geo-habitat interpretation of the multibeam echo sounder (MBES) data conducted by the USGS. MBES data was published in Cochrane and others (2015). Interpretive data associated with this publication is published in Cochrane (2017). All the data is provided as geographic information system (GIS) files that contain both Esri ArcGIS geotiffs or shapefiles. For those who do not own the full suite of Esri GIS and mapping software, the data can be read using Esri ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed August 29, 2016). Web services, which consist of standard implementations of ArcGIS representational state transfer (REST) Service and Open Geospatial Consortium (OGC) GIS web map service (WMS), also are available for all published GIS data. Web services were created using an ArcGIS service definition file, resulting in data layers that are symbolized as shown on the associated report figures. Both the ArcGIS REST Service and OGC WMS Service include all the individual GIS layers. Data layers are bundled together in a map-area web service; however, each layer can be symbolized and accessed individually after the web service is ingested into a desktop application or web map. Web services enable users to download and view data, as well as to easily add data to their own workflows, using any browser-enabled, standalone or mobile device.Though the surficial substrate is dominated by combinations of mud and sand substrate, a diverse assortment of geomorphologic features are related to geologic processes—one anticlinal ridge where bedrock is exposed, a slump and associated scarps, and pockmarks. Pockmarks are seen in the form of fields of small pockmarks, a lineation of large pockmarks with methanogenic carbonates, and areas of large pockmarks that have merged into larger variously shaped depressions. The slump appears to have originated at the pockmark lineation. Video-supervised numerical analysis of the MBES backscatter intensity data and vector ruggedness derived from the MBES bathymetry data was used to produce a substrate model called a seafloor character raster for the study area. The seafloor character raster consists of three substrate classes: soft-flat areas, hard-flat areas, and hard-rugged areas. A Coastal and Marine Ecological Classification Standard (CMECS) geoform and substrate map was also produced using depth, slope, and benthic position index classes to delineate geoform boundaries. Seven geoforms were identified in this process, including ridges, slump scars, slump deposits, basins, and pockmarks.Statistical analysis of the video data for correlations between substrate, depth, and invertebrate assemblages resulted in the identification of seven biomes: three hard-bottom biomes and four softbottom biomes. A similar analysis of vertebrate observations produces a similar set of biomes. The biome between-group dissimilarity was very high or high. Invertebrates alone represent most of the structure of the whole benthic community into different assemblages. A biotope map was generated using the seafloor character raster and the substrate and depth values of the biomes. Hard substrate biotopes were small in size and were located primarily on the ridge and in pockmarks along the pockmark lineation. The soft-bottom bitopes consisted of large contiguous areas delimited by isobaths.
van der Does, Lisette J M E; Yaksh, Ameeta; Kik, Charles; Knops, Paul; Lanters, Eva A H; Teuwen, Christophe P; Oei, Frans B S; van de Woestijne, Pieter C; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S
2016-06-01
The heterogeneous presentation and progression of atrial fibrillation (AF) implicate the existence of different pathophysiological processes. Individualized diagnosis and therapy of the arrhythmogenic substrate underlying AF may be required to improve treatment outcomes. Therefore, this single-center study aims to identify the arrhythmogenic areas underlying AF by intra-operative, high-resolution, multi-site epicardial mapping in 600 patients with different heart diseases. Participants are divided into 12 groups according to the underlying heart diseases and presence of prior AF episodes. Mapping is performed with a 192-electrode array for 5-10 s during sinus rhythm and (induced) AF of the entire atrial surface. Local activation times are converted into activation and wave maps from which various electrophysiological parameters are derived. Postoperative cardiac rhythm registrations and a 5-year follow-up will show the incidence of postoperative and persistent AF. This project provides the first step in the development of a tool for individual AF diagnosis and treatment.
Hamill, Daniel; Buscombe, Daniel; Wheaton, Joseph M
2018-01-01
Side scan sonar in low-cost 'fishfinder' systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar.
Nearshore substrate and morphology offshore of the Elwha River, Washington
Warrick, J.A.; Cochrane, G.R.; Sagy, Y.; Gelfenbaum, G.
2008-01-01
The planned removal of two dams on the Elwha River, Washington, will likely increase river sediment flux to the coast, which may alter coastal habitats through sedimentation and turbidity. It is therefore important to characterize the current habitat conditions near the river mouth, so that future changes can be identified. Here we provide combined sonar and video mapping results of approximately 20 km2 of seafloor offshore of the Elwha River collected with the purpose to characterize nearshore substrate type and distribution prior to dam removal. These combined data suggest that the nearshore of the western delta and Freshwater Bay are dominated by coarse sediment (sand, gravel, cobble, and boulders) and bedrock outcrops; no fine-grained sediment (mud or silt) was identified within the survey limits. The substrate is generally coarser in Freshwater Bay and on the western flank of the delta, where boulders and bedrock outcrops occur, than directly offshore and east of the river mouth. High variation in substrate was observed within much of the study area, however, and distinct boulder fields, gravel beds and sand waves were observed with spatial scales of 10-100 m. Gravel beds and sand waves suggest that sediment transport is active in the study area, presumably in response to tidal currents and waves. Both historic (1912) and recent (1989-2004) distributions of Bull Kelp (Nereocystis sp.) beds were preferentially located along the boulder and bedrock substrates of Freshwater Bay. Although kelp has also been mapped in areas dominated by gravel and sand substrate, it typically has smaller canopy areas and lower temporal persistence in these regions.
DeSimone, Christopher V.; Gaba, Prakriti; Tri, Jason; Syed, Faisal; Noheria, Amit; Asirvatham, Samuel J.
2016-01-01
The three-dimensional morphology of the left atrial appendage provides the substrate for thrombus generation, and is a harbinger for embolic material due to its direct connection to the left-sided circulation. Appreciating the development of the appendage from mesodermal layer to its adult form provides the basis to improve exclusion from the atrial circulation, and thereby can lead to a significant reduction in stroke risk. This process also provides insight into the role of the left atrial appendage as an endocrine organ, its involvement in fluid homeostasis, and its connection to the autonomic nervous system. Knowledge of the surrounding structural arrangement is critical to identify landmarks from both an endocardial and epicardial perspective to improve targeted device placement. Furthermore, correlation of the left atrial appendage body, neck, and ostium to the surrounding anatomy can also improve both procedural efficacy and safety. In addition, a working knowledge of the regional anatomy adds a prudent degree of awareness for procedural complications, and allows for early identification and timely intervention as these situations arise. A detailed understanding of the left atrial appendage embryology, histology, and gross anatomy is imperative to identify the correct device and approach for each individual patient. In addition, this increased awareness can identify areas that are in need of further innovation, and thus provide the ability to adapt and refine existing technologies to overcome pitfalls currently facing catheter-based approaches. PMID:27087889
Havranek, Stepan; Palecek, Tomas; Kovarnik, Tomas; Vitkova, Ivana; Psenicka, Miroslav; Linhart, Ales; Wichterle, Dan
2015-03-10
Left dominant arrhythmogenic cardiomyopathy (LDAC) is a rare condition characterised by progressive fibrofatty replacement of the myocardium of the left ventricle (LV) in combination with ventricular arrhythmias of LV origin. A thirty-five-year-old male was referred for evaluation of recurrent sustained monomorphic ventricular tachycardia (VT) of 200 bpm and right bundle branch block (RBBB) morphology. Cardiac magnetic resonance imaging showed late gadolinium enhancement distributed circumferentially in the epicardial layer of the LV free wall myocardium including the rightward portion of the interventricular septum (IVS). The clinical RBBB VT was reproduced during the EP study. Ablation at an LV septum site with absence of abnormal electrograms and a suboptimum pacemap rendered the VT of clinical morphology noninducible. Three other VTs, all of left bundle branch block (LBBB) pattern, were induced by programmed electrical stimulation. The regions corresponding to abnormal electrograms were identified and ablated at the mid-to-apical RV septum and the anteroseptal portion of the right ventricular outflow tract. No abnormalities were found at the RV free wall including the inferolateral peritricuspid annulus region. Histological examination confirmed the presence of abnormal fibrous and adipose tissue with myocyte reduction in endomyocardial samples taken from both the left and right aspects of the IVS. LDAC rarely manifests with sustained monomorphic ventricular tachycardia. In this case, several VTs of both RBBB and LBBB morphology were amenable to endocardial radiofrequency catheter ablation.
Tokunaga, Chiho; Tsukada, Toru; Sakamoto, Hiroaki; Naruse, Yoshihisa; Yoshida, Kentaro; Sekiguchi, Yukio; Imai, Akito; Aonuma, Kazutaka; Hiramatsu, Yuji
2016-01-01
Electrical storm is a rare but critical complication following revascularization in patients with ischemic heart disease. We report the case of a 67-year-old man who developed drug refractory intractable electrical storm after emergent coronary artery bypass grafting for ischemic cardiomyopathy. The electrical storm was successfully eliminated by percutaneous endocardial radiofrequency catheter ablation targeting the abnormal Purkinje-related triggering ventricular premature contractions in a low-voltage zone. © 2015 Wiley Periodicals, Inc.
Butcher, Jonathan T; McQuinn, Tim C; Sedmera, David; Turner, Debi; Markwald, Roger R
2007-05-25
Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.
Just, Steffen; Berger, Ina M; Meder, Benjamin; Backs, Johannes; Keller, Andreas; Marquart, Sabine; Frese, Karen; Patzel, Eva; Rauch, Gerd-Jörg; Katus, Hugo A; Rottbauer, Wolfgang
2011-07-19
The molecular mechanisms that guide heart valve formation are not well understood. However, elucidation of the genetic basis of congenital heart disease is one of the prerequisites for the development of tissue-engineered heart valves. We isolated here a mutation in zebrafish, bungee (bng(jh177)), which selectively perturbs valve formation in the embryonic heart by abrogating endocardial Notch signaling in cardiac cushions. We found by positional cloning that the bng phenotype is caused by a missense mutation (Y849N) in zebrafish protein kinase D2 (pkd2). The bng mutation selectively impairs PKD2 kinase activity and hence Histone deacetylase 5 phosphorylation, nuclear export, and inactivation. As a result, the expression of Histone deacetylase 5 target genes Krüppel-like factor 2a and 4a, transcription factors known to be pivotal for heart valve formation and to act upstream of Notch signaling, is severely downregulated in bungee (bng) mutant embryos. Accordingly, the expression of Notch target genes, such as Hey1, Hey2, and HeyL, is severely decreased in bng mutant embryos. Remarkably, downregulation of Histone deacetylase 5 activity in homozygous bng mutant embryos can rescue the mutant phenotype and reconstitutes notch1b expression in atrioventricular endocardial cells. We demonstrate for the first time that proper heart valve formation critically depends on Protein kinase D2-Histone deacetylase 5-Krüppel-like factor signaling.
Saccheri, María Cristina; Cianciulli, Tomás Francisco; Morita, Luis Alberto; Méndez, Ricardo José; Beck, Martín Alejandro; Guerra, Juan Enrique; Cozzarin, Alberto; Puente, Luciana Jimena; Balletti, Lorena Romina; Lax, Jorge Alberto
2017-04-26
To explore regional systolic strain of midwall and endocardial segments using speckle tracking echocardiography in patients with apical hypertrophic cardiomyopathy (HCM). We prospectively assessed 20 patients (mean age 53 ± 16 years, range: 18-81 years, 10 were male), with apical HCM. We measured global longitudinal peak systolic strain (GLPSS) in the midwall and endocardium of the left ventricle. The diastolic thickness of the 4 apical segments was 16.25 ± 2.75 mm. All patients had a normal global systolic function with a fractional shortening of 50% ± 8%. In spite of supernormal left ventricular (LV) systolic function, midwall GLPSS was decreased in all patients, more in the apical (-7.3% ± -8.8%) than in basal segments (-15.5% ± -6.93%), while endocardial GLPPS was significantly greater and reached normal values (apical: -22.8% ± -7.8%, basal: -17.9% ± -7.5%). This study shows that two-dimensional strain was decreased mainly confined to the mesocardium, while endocardium myocardial deformation was preserved in HCM and allowed to identify subclinical LV dysfunction. This transmural heterogeneity in systolic strain had not been previously described in HCM and could be explained by the distribution of myofibrillar disarray in deep myocardial areas. The clinical application of this novel finding may help further understanding of the pathophysiology of HCM.
Saida, Yuuto; Tanaka, Ryou; Fukushima, Ryuji; Hira, Satoshi; Hoshi, Katsuichiro; Soda, Aiko; Iizuka, Tomoya; Ishikawa, Taisuke; Nishimura, Taiki; Yamane, Yoshihisa
2009-04-01
We examined whether right ventricle-pulmonary artery valved conduit (RPVC) implantation can overcome the disadvantages of current procedures for pulmonic stenosis (PS). We histologically evaluated the feasibility of RPVC using a homograft in PS model dogs. Eight dogs underwent pulmonary artery banding (PAB) and then 12 weeks later were assigned to PAB (n=4) or PAB+RPVC (n=4) groups. Dogs in the PAB group received no treatment throughout the experimental period, whereas the PAB+RPVC group underwent RPVC. At 1 year after PAB, hearts and conduits were explanted from euthanized dogs and histologically evaluated. The ratios (%) of myocardial fibrosis on right ventricle (RV) epicardial, median and endocardial layers were significantly lower in the PAB+RPVC, than in the PAB group. The ratio of myocardial fibrosis on left ventricular (LV) epicardial and endocardial layers were significantly lower in the PAB+RPVC, than in the PAB group. Neo-intimal thickness in the anastomosis areas of the Denacol and PAB+RPVC groups was 42.77 +/- 30.19 and 88.30 +/- 27.24 microm, respectively, with no significant differences between the groups. Calcification and neo- intima hypertrophy were not obvious in the valve area. Immunohistological staining showed that the internal surface of the anastomosis and intermediate areas were positive for endothelial cells. We concluded that RPVC using a bioprosthetic graft can apparently overcome the disadvantages of current procedures for pulmonic stenosis.
NASA Astrophysics Data System (ADS)
Rommerscheid, Jan; Theisen, Dirk; Schmuecker, G.; Brinkmann, Ralf; Broll, R.
2001-10-01
Background. Endocardial laser revascularization (ELR) is a new technique to treat patients with severe coronary artery disease (CAD) in a percutaneous approach. The results show a significant improvement of symptoms, but the mechanism of action is still unknown. One main theory is the angiogenesis for which Vascular Endothelial Growth Factor (VEGF) is the keypromotor. We investigated immunohistochemically the VEGF-expression after ELR in porcine hearts over a timeperiod of four weeks. Methods. ELR was performed with a single-pulse Thulium:YAG laser. 15 pigs were treated with ELR and the hearts were harvested at five timeperiods: directly (group I), 3 days (group II), 1 week (group III), 2 weeks (group IV) and 4 weeks (group V) after ELR. Each group consisted of three pigs. Immunohistochemically the VEGF-expression was assessed by staining with a polyclonal antibody against VEGF and cellcounting using an expression index (VEGF-EI) Results. A maximum of VEGF-expression was found three days (group II) after ELR with a VEGF-EI of 97%. At 1 week (group III) the VEGF-EI was similar high with 93%. Along the timecourse the index decreased to 22% at 4 weeks (groupV). Conclusions. Our findings show that ELR leads to an local upregulation of VEGF around the channels. The resulting angiogenesis could be the mechanism for the relief of angina.
Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G
2006-01-01
Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.
A Mutant Receptor Tyrosine Phosphatase, CD148, Causes Defects in Vascular Development
Takahashi, Takamune; Takahashi, Keiko; St. John, Patricia L.; Fleming, Paul A.; Tomemori, Takuya; Watanabe, Toshio; Abrahamson, Dale R.; Drake, Christopher J.; Shirasawa, Takuji; Daniel, Thomas O.
2003-01-01
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPη), participates in developmental vascularization. A mutant allele, CD148ΔCyGFP, was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions. PMID:12588999
Kornowski, R; Fuchs, S; Tio, F O; Pierre, A; Epstein, S E; Leon, M B
1999-12-01
Direct myocardial injection of therapeutic agents has been explored as a new method for myocardial revascularization. The integration of a 3D electromechanical mapping catheter with a retractable injection needle should allow for intramyocardial injection to identified sites, obviating the need for open heart surgery. This study assessed the procedural safety and performance characteristics of a novel guided catheter-based transendocardial injection system. The electromagnetic guidance system was coupled with a retrievable 27G needle for left ventricular endocardial injection. Using this system, we injected, transendocardially, methylene-blue (MB) dye tracer at a volume of 0.1 or 0.2 ml per injection in eight normal pigs. Animals were sacrificed acutely, at 1, 3, and 7 days (two animal in each time). Three animals served as controls. The injections were followed by coronary angiography and echocardiogram to assess possible ventricular or coronary perforation and wall motion abnormalities. CK-MB levels were measured up to 24 hr following the procedure. The animals were sacrificed at the assigned time for gross and histopathology evaluation. A total of 101 injections were made in all regions of the heart except the apex and the mitral valve. No animal died as a result of the mapping or injection procedures. Vital signs did not change relative to baseline after the mapping and injection procedures. CK-MB values did not increase over time and there was no evidence of sustained arrhythmia or hemodynamic compromise. There was no evidence of left ventricular or coronary perforation, global or regional wall motion abnormalities, or hemopericardium. On histologic evaluation, the estimated volume of tissue staining was greater than the volume of the injected MB dye due to dispersion of the injectate in the interstitial and intracellular fluid compartments. It is concluded that using this magnetic guidance catheter-based navigational system, it is feasible and safe to perform the transendocardial injection procedure. Thus, if it is determined that direct intramyocardial injection of drugs is a valid therapeutic strategy, this approach offers a clear advantage over surgically based transepicardial injection procedures. Cathet. Cardiovasc. Intervent. 48:447-453, 1999. Copyright 1999 Wiley-Liss, Inc.
Rao, Liyun; Ling, Yuesheng; He, Renjie; Gilbert, April L; Frangogiannis, Nikolaos G; Wang, Jianwen; Nagueh, Sherif F; Khoury, Dirar S
2008-02-01
Multiple imaging modalities are employed independent of one another while managing complex cardiac arrhythmias. To combine electrical, anatomical, and functional imaging in a single catheter system, we developed a balloon catheter that carried 64 electrodes on its surface and an intracardiac echocardiography (ICE) catheter through a central lumen. The catheter system was inserted, and the balloon was inflated inside the left ventricle (LV) of eight dogs with 6-wk-old infarction, created by occlusion in the left anterior descending coronary artery. Anatomy was constructed by ICE imaging (9 MHz) through the balloon. Single-beat noncontact mapping (NCM) was performed via the multielectrode array to reconstruct unipolar endocardial electrograms during sinus rhythm. Standard contact mapping (CM) of the endocardium was also carried out for reference. Myocardial infarction in anterior LV extending from the middle to apical regions was localized both by ICE and NCM and validated by CM and pathology. The overall difference in the activation times between NCM and CM was 3 +/- 1 ms. Unipolar voltage in infarcted middle anterior LV was smaller than the voltage in normal middle inferior LV both by NCM (11 +/- 4 vs. 16 +/- 3 mV; P = 0.002) and CM (11 +/- 3 vs. 20 +/- 4 mV; P < 0.001). Unipolar voltage was also inversely related to infarct transmurality, both by NCM (r = -0.87; P = 0.005) and CM (r = -0.94; P < 0.001). The infarct area by ICE (7.7 +/- 2.9 cm(2)) was in agreement with CM (bipolar voltage, <1 mV; and area, 7.6 +/- 3.3 cm(2); r = 0.80; P = 0.016). Meanwhile, the voltage threshold that depicted the infarct area by NCM was directly related to the smallest unipolar voltage reconstructed within the infarct (r = 0.96; P < 0.001). In conclusion, combining NCM and ICE imaging in a single catheter system is feasible. The preclinical development of such an integrated system and its evaluation in experimental myocardial infarction demonstrate capabilities for single-beat mapping at multiple sites as well as the online assessment of anatomy and myocardial function.
NASA Astrophysics Data System (ADS)
Diesing, Markus; Green, Sophie L.; Stephens, David; Lark, R. Murray; Stewart, Heather A.; Dove, Dayton
2014-08-01
Marine spatial planning and conservation need underpinning with sufficiently detailed and accurate seabed substrate and habitat maps. Although multibeam echosounders enable us to map the seabed with high resolution and spatial accuracy, there is still a lack of fit-for-purpose seabed maps. This is due to the high costs involved in carrying out systematic seabed mapping programmes and the fact that the development of validated, repeatable, quantitative and objective methods of swath acoustic data interpretation is still in its infancy. We compared a wide spectrum of approaches including manual interpretation, geostatistics, object-based image analysis and machine-learning to gain further insights into the accuracy and comparability of acoustic data interpretation approaches based on multibeam echosounder data (bathymetry, backscatter and derivatives) and seabed samples with the aim to derive seabed substrate maps. Sample data were split into a training and validation data set to allow us to carry out an accuracy assessment. Overall thematic classification accuracy ranged from 67% to 76% and Cohen's kappa varied between 0.34 and 0.52. However, these differences were not statistically significant at the 5% level. Misclassifications were mainly associated with uncommon classes, which were rarely sampled. Map outputs were between 68% and 87% identical. To improve classification accuracy in seabed mapping, we suggest that more studies on the effects of factors affecting the classification performance as well as comparative studies testing the performance of different approaches need to be carried out with a view to developing guidelines for selecting an appropriate method for a given dataset. In the meantime, classification accuracy might be improved by combining different techniques to hybrid approaches and multi-method ensembles.
Vernon, Stephen P.; Ceglio, Natale M.
2000-01-01
The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.
Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO2/Si: An Azimuthal RHEED Approach.
Lu, Zonghuan; Sun, Xin; Xiang, Yu; Washington, Morris A; Wang, Gwo-Ching; Lu, Toh-Ming
2017-07-12
The symmetry of graphene is usually determined by a low-energy electron diffraction (LEED) method when the graphene is on the conductive substrates, but LEED cannot handle graphene transferred to SiO 2 /Si substrates due to the charging effect. While transmission electron microscopy can generate electron diffraction on post-transferred graphene, this method is too localized. Herein, we employed an azimuthal reflection high-energy electron diffraction (RHEED) method to construct the reciprocal space mapping and determine the symmetry of wafer-size graphene both pre- and post-transfer. In this work, single-crystalline Cu(111) films were prepared on sapphire(0001) and spinel(111) substrates with sputtering. Then the graphene was epitaxially grown on single-crystalline Cu(111) films with a low pressure chemical vapor deposition. The reciprocal space mapping using azimuthal RHEED confirmed that the graphene grown on Cu(111) films was single-crystalline, no matter the form of the monolayer or multilayer structure. While the Cu(111) film grown on sapphire(0001) may occasionally consist of 60° in-plane rotational twinning, the reciprocal space mapping revealed that the in-plane orientation of graphene grown atop was not affected. The proposed method for checking the crystalline integrity of the post-transferred graphene sheets is an important step in the realization of the graphene as a platform to fabricate electronic and optoelectronic devices.
Kapur, Sunil; Kumar, Saurabh; John, Roy M; Stevenson, William G; Tedrow, Usha B; Koplan, Bruce A; Epstein, Laurence M; MacRae, Calum A; Michaud, Gregory F
2018-06-01
A commonly held notion is that patients with a family history of atrial fibrillation (AF) have worse atrial substrate and higher rates of arrhythmia recurrence following ablation. We sought to examine differences in atrial substrate and catheter ablation outcomes in patients with a 1st degree family member with paroxysmal or persistent AF (PeAF) compared to those without. A total of 256 consecutive patients undergoing their 1st ablation for AF (123 paroxysmal, 133 persistent) with >1 year follow up were included. The presence of one 1st-degree family relative was defined as a 'positive family history'. Clinical characteristics, electroanatomic map findings, ablation characteristics and outcomes were compared in patients with and without a positive family history of AF. Patients with paroxysmal fibrillation with a positive family history (n = 57; 46%) had similar clinical characteristics and arrhythmia recurrence after catheter ablation as those without. Of those that recurred, patients with a positive family history were more likely to have progressed to PeAF (P = 0.05). Patients with PeAF with a positive family history (n = 75; 56%) had similar clinical characteristics, electroanatomic mapping findings and ablation characteristics, but worse long term arrhythmia free survival (P = 0.04). The presence of a 1st-degree family member with AF does not impact the clinical outcomes of catheter ablation for paroxysmal AF. However, a positive family history is associated with worse arrhythmia free survival in patients with PeAF. This finding is not explained by differences in clinical characteristics, atrial substrate assessed by voltage maps or ablation characteristics.
[On the first studies of electrophysiology].
de Micheli, Alfredo
2011-01-01
A historical outline of the evolution of electrophysiology from the eighteenth century is shortly presented. Topics concerning the so called animal electricity starting from the observations on descharges of Torpedo fish until Bolognese Galvani's researches on the frogs are exposed. The points of view of their oppositionists also are examined. These ones, leaded by the physicist Alessandro Volta, professor in the University of Pavia, believed that electricity detected by galvanists was not inherent to animal but was due to the action of the metallic conductors present in the circuit: contact electricity. Only towards the middle of the nineteenth century the physicist Carlo Matteucci attained to demonstrate the existente of the real animal electricity in form of injury current. It was possible to determine that quantitatively thanks to the capillary electrometer built in 1872 by the French physicist Gabriel Lippmann. This instrument was used by the English physiologist Waller in order to obtain the primitive electrocardiographic tracings in humans (1887). At beginnings of the twentieth century, the Dutch professor Willem Einthoven, of the University of Leiden, introduced his string galvanometer which permitted to allow the modern electrocardiography. So it was possible to record the electrical potentials of myocardial cells, first in vitro, later in isolated and perfused heart, son after in dog's heart in situ and finally in human heart. Therefore now it is possible to effectuate endocardial and epicardial mappings, indispensable in order to diagnose and treat the cardiac arrhythmias.
2004-01-01
The nucleotide pyrophosphatases/phosphodiesterases NPP1 and NPP2/autotaxin are structurally related eukaryotic ecto-enzymes, but display a very different substrate specificity. NPP1 releases nucleoside 5′-monophosphates from various nucleotides, whereas NPP2 mainly functions as a lysophospholipase D. We have used a domain-swapping approach to map substrate-specifying determinants of NPP1 and NPP2. The catalytic domain of NPP1 fused to the N- and C-terminal domains of NPP2 was hyperactive as a nucleotide phosphodiesterase, but did not show any lysophospholipase D activity. In contrast, chimaeras of the catalytic domain of NPP2 and the N- and/or C-terminal domains of NPP1 were completely inactive. These data indicate that the catalytic domain as well as both extremities of NPP2 contain lysophospholipid-specifying sequences. Within the catalytic domain of NPP1 and NPP2, we have mapped residues close to the catalytic site that determine the activities towards nucleotides and lysophospholipids. We also show that the conserved Gly/Phe-Xaa-Gly-Xaa-Xaa-Gly (G/FXGXXG) motif near the catalytic site is required for metal binding, but is not involved in substrate-specification. Our data suggest that the distinct activities of NPP1 and NPP2 stem from multiple differences throughout the polypeptide chain. PMID:15096095
Using object-oriented analysis to design a multi-mission ground data system
NASA Technical Reports Server (NTRS)
Shames, Peter
1995-01-01
This paper describes an analytical approach and descriptive methodology that is adapted from Object-Oriented Analysis (OOA) techniques. The technique is described and then used to communicate key issues of system logical architecture. The essence of the approach is to limit the analysis to only service objects, with the idea of providing a direct mapping from the design to a client-server implementation. Key perspectives on the system, such as user interaction, data flow and management, service interfaces, hardware configuration, and system and data integrity are covered. A significant advantage of this service-oriented approach is that it permits mapping all of these different perspectives on the system onto a single common substrate. This services substrate is readily represented diagramatically, thus making details of the overall design much more accessible.
Deep-sea benthic habitats modeling and mapping in a NE Atlantic seamount (Galicia Bank)
NASA Astrophysics Data System (ADS)
Serrano, A.; González-Irusta, J. M.; Punzón, A.; García-Alegre, A.; Lourido, A.; Ríos, P.; Blanco, M.; Gómez-Ballesteros, M.; Druet, M.; Cristobo, J.; Cartes, J. E.
2017-08-01
This study presents the results of seafloor habitat identification and mapping of a NE Atlantic deep seamount. An ;assemble first, predict later; approach has been followed to identify and map the benthic habitats of the Galicia Bank (NW Iberian). Biotic patterns inferred from the survey data have been used to drive the definition of benthic assemblages using multivariate tools. Eight assemblages, four hard substrates and four sedimentary ones, have been described from a matrix of structural species. Distribution of these assemblages was correlated with environmental factors (multibeam and backscatter data) using binomial GAMs. Finally, the distribution model of each assemblage was applied to produce continuous maps and pooled in a final map with the distribution of the main benthic habitats. Depth and substrate type are key factors when determining soft bottom communities, whereas rocky habitat distribution is mainly explained by rock slope and orientation. Enrichment by northern water masses (LSW) arriving to GB and possible zooplankton biomass increase at vertical-steep walls by ;bottom trapping; can explain the higher diversity of habitat providing filter-feeders at slope rocky breaks. These results concerning vulnerable species and habitats, such as Lophelia and Madrepora communities and black and bamboo coral aggregations were the basis of the Spanish proposal of inclusion within the Natura 2000 network. The aim of the present study was to establish the scientific criteria needed for managing and protecting those environmental values.
Dewetting and spreading transitions for active matter on random pinning substrates.
Sándor, Cs; Libál, A; Reichhardt, C; Olson Reichhardt, C J
2017-05-28
We show that sterically interacting self-propelled disks in the presence of random pinning substrates exhibit transitions among a variety of different states. In particular, from a phase separated cluster state, the disks can spread out and homogeneously cover the substrate in what can be viewed as an example of an active matter wetting transition. We map the location of this transition as a function of activity, disk density, and substrate strength, and we also identify other phases including a cluster state, coexistence between a cluster and a labyrinth wetted phase, and a pinned liquid. Convenient measures of these phases include the cluster size, which dips at the wetting-dewetting transition, and the fraction of sixfold coordinated particles, which drops when dewetting occurs.
Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R
1994-11-04
Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.
NASA Astrophysics Data System (ADS)
Škarková, Pavlína; Novotný, Karel; Lubal, Přemysl; Jebavá, Alžběta; Pořízka, Pavel; Klus, Jakub; Farka, Zdeněk; Hrdlička, Aleš; Kaiser, Jozef
2017-05-01
In this study, the feasibility of Quantum dots (QDs) 2D distribution mapping on the substrate by Laser-Induced Breakdown Spectroscopy (LIBS) was examined. The major objective of this study was to describe phenomena occurring after applying aqueous solutions of QDs onto filtration paper. Especially, the influence of pH and presence of Cu2 + cations in QDs solutions on LIBS signal was investigated. Cadmium Telluride QDs (CdTe QDs) were prepared by formation of nanosized semiconductor particles in so called ;one-pot; synthesis. CdTe QDs were capped by glutathione or by 3-mercaptopropionic acid. The technique described in this work allows detection of QDs injected on the selected substrate - filtration paper. Results obtained from LIBS experiments were collated with a comparative method, fluorescence microscopy, which showed variations in the distribution of QDs on the substrate surface and possibilities for quenching. Due to the immediate signal response, relatively simple instrumentation and automatization possibility, LIBS offers promising and fast alternative to other techniques, as it is able to detect also nanoparticles with no visible luminescence.
Texture as a basis for acoustic classification of substrate in the nearshore region
NASA Astrophysics Data System (ADS)
Dennison, A.; Wattrus, N. J.
2016-12-01
Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.
Molecular beam epitaxy of InN nanowires on Si
NASA Astrophysics Data System (ADS)
Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Laskar, Masihhur R.; May, Brelon J.; Myers, Roberto C.
2015-10-01
We report on a systematic growth study of the nucleation process of InN nanowires on Si(1 1 1) substrates using plasma assisted molecular beam epitaxy (PAMBE). Samples are grown with various substrate temperatures and III/V ratios. Scanning electron microscopy, X-ray diffraction spectroscopy, energy dispersive X-ray spectroscopy, and photoluminescence are carried out to map out the variation in structural and optical properties versus growth conditions. Statistical averages of areal density, height, and radius are mapped as a function of substrate temperature and III/V ratio. Three different morphological phases are identified on the growth surface: InN, α-In and β-In. Based on SEM image analysis of samples grown at different conditions, the formation mechanism of these phases is proposed. Finally, the growth phase diagram of PAMBE grown InN on Si under N-rich condition is presented, and tapered versus non-tapered growth conditions are identified. It is found that high growth temperature and low III/V ratio plays a critical role in the growth of non-tapered InN nanowires.
NASA Astrophysics Data System (ADS)
Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.
2013-07-01
We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.
Visualizing the geology of lake trout spawning sites; northern Lake Michigan
Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen
2006-01-01
Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island Shoal, Gull Island Reef, and Dahlia Shoal are shown on sheet 2. Additional information, bathymetric data, imagery, and metadata are available online at http://geopubs.wr.usgs.gov/open-file/of03-120/.
Visualizing the geology of lake trout spawning sites, northern Lake Michigan
Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen
2004-01-01
Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island Shoal, Gull Island Reef, and Dahlia Shoal are shown on sheet 2. Additional information, bathymetric data, imagery, and metadata are available online at http://geopubs.wr.usgs.gov/open-file/of03-120/.
Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation
NASA Astrophysics Data System (ADS)
Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai
2016-11-01
Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.
Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation.
Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai
2016-11-30
Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD + -dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some "loose-binding" substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.
Buscombe, Daniel; Wheaton, Joseph M.
2018-01-01
Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar. PMID:29538449
Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming
2017-03-30
We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the In x Ga 1-x N/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E 2 (high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the In x Ga 1-x N/GaN MQWs active layer.
Direct mapping of electrical noise sources in molecular wire-based devices
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-01-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821
Direct mapping of electrical noise sources in molecular wire-based devices
NASA Astrophysics Data System (ADS)
Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun
2017-02-01
We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.
Crystal Structure of a UDP-glucose-specific Glycosyltransferase from a Mycobacterium Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fulton, Zara; McAlister, Adrian; Wilce, Matthew C.J.
2008-10-24
Glycosyltransferases (GTs) are a large and ubiquitous family of enzymes that specifically transfer sugar moieties to a range of substrates. Mycobacterium tuberculosis contains a large number of GTs, many of which are implicated in cell wall synthesis, yet the majority of these GTs remain poorly characterized. Here, we report the high resolution crystal structures of an essential GT (MAP2569c) from Mycobacterium avium subsp. paratuberculosis (a close homologue of Rv1208 from M. tuberculosis) in its apo- and ligand-bound forms. The structure adopted the GT-A fold and possessed the characteristic DXD motif that coordinated an Mn{sup 2+} ion. Atypical of most GTsmore » characterized to date, MAP2569c exhibited specificity toward the donor substrate, UDP-glucose. The structure of this ligated complex revealed an induced fit binding mechanism and provided a basis for this unique specificity. Collectively, the structural features suggested that MAP2569c may adopt a 'retaining' enzymatic mechanism, which has implications for the classification of other GTs in this large superfamily.« less
Li, Heng; Cheng, Hui-Yu; Chen, Wei-Liang; Huang, Yi-Hsin; Li, Chi-Kang; Chang, Chiao-Yun; Wu, Yuh-Renn; Lu, Tien-Chang; Chang, Yu-Ming
2017-01-01
We performed depth-resolved PL and Raman spectral mappings of a GaN-based LED structure grown on a patterned sapphire substrate (PSS). Our results showed that the Raman mapping in the PSS-GaN heterointerface and the PL mapping in the InxGa1−xN/GaN MQWs active layer are spatially correlated. Based on the 3D construction of E2(high) Raman peak intensity and frequency shift, V-shaped pits in the MQWs can be traced down to the dislocations originated in the cone tip area of PSS. Detail analysis of the PL peak distribution further revealed that the indium composition in the MQWs is related to the residual strain propagating from the PSS-GaN heterointerface toward the LED surface. Numerical simulation based on the indium composition distribution also led to a radiative recombination rate distribution that shows agreement with the experimental PL intensity distribution in the InxGa1−xN/GaN MQWs active layer. PMID:28358119
NASA Astrophysics Data System (ADS)
D'Elia, A.; Cibin, G.; Robbins, P. E.; Maggi, V.; Marcelli, A.
2017-11-01
We report on the development of a device designed to improve X-ray Powder Diffraction data acquisition through mapping coupled to a rotational motion of the sample. The device and procedures developed aim at overcoming the experimental issues that accompany the analysis of inhomogeneous samples, such as powders, dust or aerosols deposited on a flat substrate. Introducing the mapping of the substrate on which powders are deposited and at the same time the rotation, we may overcome drawbacks associated to inhomogeneous distributions such as ring-like patterns due to the coffee stain effect generated by the evaporation of a solution. Experimental data have been collected from powders of a NIST standard soil sample (11 μg) and from an airborne dust extracted from deep ice cores in Antarctica (9.6 μg). Both particulate samples have been deposited on polycarbonate membranes from ultra-dilute solutions. Data show that this approach makes possible to collect XRD patterns useful to identify mineral fractions present in these low density samples.
Response variance in functional maps: neural darwinism revisited.
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.
Response Variance in Functional Maps: Neural Darwinism Revisited
Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei
2013-01-01
The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population. PMID:23874733
NASA Astrophysics Data System (ADS)
Dahal, Lila Raj
Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.
Mobley, E M; Pan, T
1999-01-01
Substrate recognition and cleavage by the bacterial RNase P RNA requires two domains, a specificity domain, or S-domain, and a catalytic domain, or C-domain. The S-domain binds the T stem-loop region in a pre-tRNA substrate to confer specificity for tRNA substrates. In this work, the entire S-domain of the Bacillus subtilis RNase P RNA is replaced with an artificial substrate binding module. New RNA substrates are isolated by in vitro selection using two libraries containing random regions of 60 nt. At the end of the selection, the cleavage rates of the substrate library are approximately 0.7 min(-1)in 10 mM MgCl(2)at 37 degrees C, approximately 4-fold better than the cleavage of a pre-tRNA substrate by the wild-type RNase P RNA under the same conditions. The contribution of the S-domain replacement to the catalytic efficiency is from 6- to 22 000-fold. Chemical and nuclease mapping of two ribozyme-product complexes shows that this contribution correlates with direct interactions between the S-domain replacement and the selected substrate. These results demonstrate the feasibility of design and isolation of RNase P-based, matching ribozyme-substrate pairs without prior knowledge of the sequence or structure of the interactive modules in the ribozyme or substrate. PMID:10518624
Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.
Jankowsky, Eckhard; Harris, Michael E
2017-04-15
To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes. Copyright © 2017 Elsevier Inc. All rights reserved.
McDermott, Danielle; Olson Reichhardt, Cynthia J; Reichhardt, Charles
2016-10-19
Using computer simulations, we study a two-dimensional system of sterically interacting self-mobile run-and-tumble disk-shaped particles with an underlying periodic quasi-one-dimensional asymmetric substrate, and show that a rich variety of collective active ratchet behaviors arise as a function of particle density, activity, substrate period, and the maximum force exerted by the substrate. The net dc drift, or ratchet transport flux, is nonmonotonic since it increases with increased activity but is diminished by the onset of self-clustering of the active particles. Increasing the particle density decreases the ratchet transport flux for shallow substrates but increases the ratchet transport flux for deep substrates due to collective hopping events. At the highest particle densities, the ratchet motion is destroyed by a self-jamming effect. We show that it is possible to realize reversals of the direction of the net dc drift in the deep substrate limit when multiple rows of active particles can be confined in each substrate minimum, permitting emergent particle-like excitations to appear that experience an inverted effective substrate potential. We map out a phase diagram of the forward and reverse ratchet effects as a function of the particle density, activity, and substrate properties.
Postmortem analysis of encapsulation around long-term ventricular endocardial pacing leads.
Candinas, R; Duru, F; Schneider, J; Lüscher, T F; Stokes, K
1999-02-01
To analyze the site and thickness of encapsulation around ventricular endocardial pacing leads and the extent of tricuspid valve adhesion, from today's perspective, with implications for lead removal and sensor location. Gross cardiac postmortem analysis was performed in 11 cases (8 female and 3 male patients; mean age, 78+/-7 years). None of the patients had died because of pacemaker malfunction. The mean implant time was 61+/-60 months (range, 4 to 184). The observations ranged from encapsulation only at the tip of the pacing lead to complete encapsulation along the entire length of the pacing lead within the right ventricle. Substantial areas of adhesion at the tricuspid valve apparatus were noted in 7 of the 11 cases (64%). The firmly attached leads could be removed only by dissection, and in some cases, removal was possible only by damaging the associated structures. No specific optimal site for sensor placement could be identified along the ventricular portion of the pacing leads; however, the fibrotic response was relatively less prominent in the atrial chamber. Extensive encapsulation is present in most long-term pacemaker leads, which may complicate lead removal. The site and thickness of encapsulation seem to be highly variable. Tricuspid valve adhesion, which is usually underestimated, may be severe. In contrast to earlier reports, our study demonstrates that the extent of fibrotic encapsulation may not be related to the duration since lead implantation. Moreover, we noted no ideal encapsulation-free site for sensors on the ventricular portion of long-term pacing leads.
Teutsch, Christine; Kondo, Richard P; Dederko, Dorothy A; Chrast, Jacqueline; Chien, Kenneth R; Giles, Wayne R
2007-03-01
Regional differences in repolarizing K(+) current densities and expression levels of their molecular components are important for coordinating the pattern of electrical excitation and repolarization of the heart. The small size of hearts from mice may obscure these interventricular and/or transmural expression differences of K(+) channels. We have examined this possibility in adult mouse ventricle using a technology that provides very high spatial resolution of tissue collection. Conventional manual dissection and laser capture microdissection (LCM) were utilized to dissect tissue from distinct ventricular regions. RNA was isolated from epicardial, mid-myocardial and endocardial layers of both the right and left ventricles. Real-time RT-PCR was used to quantify the transcript expression in these different regions. LCM revealed significant interventricular and transmural gradients for both Kv4.2 and the alpha-subunit of KChIP2. The expression profile of a second K(+) channel transcript, Kir2.1, which is responsible for the inwardly rectifying K(+) current I(k1), showed no interventricular or transmural gradients and therefore served as a negative control. Our findings are in contrast to previous reports of a relatively uniform left ventricular transmural pattern of expression of Kv4.2, Kv4.3 and KChIP2 in adult mouse heart, which appear to be different than that in larger mammals. Specifically, our results demonstrate significant epi- to endocardial differences in the patterns of expression of both Kv4.2 and KChIP2.
Jules, Farah; Avedanian, Levon; Al-Khoury, Johny; Keita, Ramatoulaye; Normand, Alexandre; Bkaily, Ghassan; Jacques, Danielle
2015-07-01
In fetal human left ventricular endocardial endothelial cells (EECLs), both plasma membrane (PM) ET(A)R and ET(B)R were reported to mediate ET-1-induced increase of intracellular calcium [Ca](i); however, this effect was mediated by ET(A)R in right EECs (EECRs). In this study, we verified whether, as for the PM, nuclear membranes (NMs) ET-1 receptors activation in EECLs and EECRs induce an increase of nuclear calcium ([Ca](n)) and if this effect is mediated through the same receptor type as in PM. Using a plasmalemma-perforated technique and 3D confocal microscopy, our results showed that, as in PM intact cells, superfusion of nuclei of both cell types with cytosolic ET-1 induced a concentration-dependent sustained increase of [Ca](n). In EECRs, the ET(A)R antagonist prevented the effect of ET-1 on [Ca](n) without affecting EECLs. However, in both cell types, the effect of cytosolic ET-1 on [Ca](n) was prevented by the ETBR antagonist. In conclusion, both NMs' ET(A)R and ET(B)R mediated the effect of cytosolic ET-1 on [Ca](n) in EECRs. In contrast, only NMs' ET(B)R activation mediated the effect of cytosolic ET-1 in EECLs. Hence, the type of NMs' receptors mediating the effect of ET-1 on [Ca](n) are different from those of PM mediating the increase in [Ca](i).
Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station
NASA Technical Reports Server (NTRS)
Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott
2008-01-01
Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry
2017-01-01
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations. PMID:28094977
Crystallographic Mapping of Guided Nanowires by Second Harmonic Generation Polarimetry.
Neeman, Lior; Ben-Zvi, Regev; Rechav, Katya; Popovitz-Biro, Ronit; Oron, Dan; Joselevich, Ernesto
2017-02-08
The growth of horizontal nanowires (NWs) guided by epitaxial and graphoepitaxial relations with the substrate is becoming increasingly attractive owing to the possibility of controlling their position, direction, and crystallographic orientation. In guided NWs, as opposed to the extensively characterized vertically grown NWs, there is an increasing need for understanding the relation between structure and properties, specifically the role of the epitaxial relation with the substrate. Furthermore, the uniformity of crystallographic orientation along guided NWs and over the substrate has yet to be checked. Here we perform highly sensitive second harmonic generation (SHG) polarimetry of polar and nonpolar guided ZnO NWs grown on R-plane and M-plane sapphire. We optically map large areas on the substrate in a nondestructive way and find that the crystallographic orientations of the guided NWs are highly selective and specific for each growth direction with respect to the substrate lattice. In addition, we perform SHG polarimetry along individual NWs and find that the crystallographic orientation is preserved along the NW in both polar and nonpolar NWs. While polar NWs show highly uniform SHG along their axis, nonpolar NWs show a significant change in the local nonlinear susceptibility along a few micrometers, reflected in a reduction of 40% in the ratio of the SHG along different crystal axes. We suggest that these differences may be related to strain accumulation along the nonpolar wires. We find SHG polarimetry to be a powerful tool to study both selectivity and uniformity of crystallographic orientations of guided NWs with different epitaxial relations.
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Johnson, Bradley R.; Sundaram, S. K.
2006-12-01
Nanowire Formation in Arsenic Trisulfide Brian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract: Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment. Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Surface topography and chemistrymore » of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Thermodyamic properties (available from literature) of this system are also incorporated in this map. Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices. Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.« less
Kalbermatter, David; Chiu, Po-Lin; Jeckelmann, Jean-Marc; Ucurum, Zöhre; Walz, Thomas; Fotiadis, Dimitrios
2017-07-01
The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) is a structurally and functionally complex system that mediates sugar uptake in bacteria. Besides several soluble subunits, the glucose-specific PTS includes the integral membrane protein IICB that couples the transmembrane transport of glucose to its phosphorylation. Here, we used electron crystallography of sugar-embedded tubular crystals of the glucose-specific IIC transport domain from Escherichia coli (ecIIC glc ) to visualize the structure of the transporter in the presence and absence of its substrate. Using an in vivo transport assay and binding competition experiments, we first established that, while it transports d-glucose, ecIIC glc does not bind l-glucose. We then determined the projection structure of ecIIC glc from tubular crystals embedded in d- and l-glucose and found a subtle conformational change. From comparison of the ecIIC glc projection maps with crystal structures of other IIC transporters, we can deduce that the transporter adopts an inward-facing conformation, and that the maps in the presence and absence of the substrate reflect the transporter before and after release of the transported glucose into the cytoplasm. The transition associated with substrate release appears to require a subtle structural rearrangement in the region that includes hairpin 1. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Ziqi; Gudur, Madhu S R; Deng, Cheri X
2013-01-01
Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm(2)), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43 ± 1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96 ± 0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89 ± 0.01, n = 13) and change of APA (ROC AUC 0.79 ± 0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction.
Wu, Ziqi; Gudur, Madhu S. R.; Deng, Cheri X.
2013-01-01
Intra-procedural imaging is important for guiding cardiac arrhythmia ablation. It is difficult to obtain intra-procedural correlation of thermal lesion formation with action potential (AP) changes in the transmural plane during ablation. This study tested parametric ultrasound imaging for transmural imaging of lesion and AP changes in high intensity focused ultrasound (HIFU) ablation using coronary perfused canine ventricular wedge preparations (n = 13). The preparations were paced from epi/endocardial surfaces and subjected to HIFU application (3.5 MHz, 11 Hz pulse-repetition-frequency, 70% duty cycle, duration 4 s, 3500 W/cm2), during which simultaneous optical mapping (1 kframes/s) using di-4-ANEPPS and ultrasound imaging (30 MHz) of the same transmural surface of the wedge were performed. Spatiotemporally correlated AP measurements and ultrasound imaging allowed quantification of the reduction of AP amplitude (APA), shortening of AP duration at 50% repolarization, AP triangulation, decrease of optical AP rise, and change of conduction velocity along tissue depth direction within and surrounding HIFU lesions. The threshold of irreversible change in APA correlating to lesions was determined to be 43±1% with a receiver operating characteristic (ROC) area under curve (AUC) of 0.96±0.01 (n = 13). Ultrasound imaging parameters such as integrated backscatter, Rayleigh (α) and log-normal (σ) parameters, cumulative extrema of σ were tested, with the cumulative extrema of σ performing the best in detecting lesion (ROC AUC 0.89±0.01, n = 13) and change of APA (ROC AUC 0.79±0.03, n = 13). In conclusion, characteristic tissue and AP changes in HIFU ablation were identified and spatiotemporally correlated using optical mapping and ultrasound imaging. Parametric ultrasound imaging using cumulative extrema of σ can detect HIFU lesion and APA reduction. PMID:24349337
Mapping river bathymetry with a small footprint green LiDAR: Applications and challenges
Kinzel, Paul J.; Legleiter, Carl; Nelson, Jonathan M.
2013-01-01
that environmental conditions and postprocessing algorithms can influence the accuracy and utility of these surveys and must be given consideration. These factors can lead to mapping errors that can have a direct bearing on derivative analyses such as hydraulic modeling and habitat assessment. We discuss the water and substrate characteristics of the sites, compare the conventional and remotely sensed river-bed topographies, and investigate the laser waveforms reflected from submerged targets to provide an evaluation as to the suitability and accuracy of the EAARL system and associated processing algorithms for riverine mapping applications.
Slow adaptation of ventricular repolarization as a cause of arrhythmia?
Bueno-Orovio, A; Hanson, B M; Gill, J S; Taggart, P; Rodriguez, B
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Studying Cardiovascular and Respiratory Systems". Adaptation of the QT-interval to changes in heart rate reflects on the body-surface electrocardiogram the adaptation of action potential duration (APD) at the cellular level. The initial fast phase of APD adaptation has been shown to modulate the arrhythmia substrate. Whether the slow phase is potentially proarrhythmic remains unclear. To analyze in-vivo human data and use computer simulations to examine effects of the slow APD adaptation phase on dispersion of repolarization and reentry in the human ventricle. Electrograms were acquired from 10 left and 10 right ventricle (LV/RV) endocardial sites in 15 patients with normal ventricles during RV pacing. Activation-recovery intervals, as a surrogate for APD, were measured during a sustained increase in heart rate. Observed dynamics were studied using computer simulations of human tissue electrophysiology. Spatial heterogeneity of rate adaptation was observed in all patients. Inhomogeneity in slow APD adaptation time constants (Δτ(s)) was greater in LV than RV (Δτ(s)(LV) = 31.8 ± 13.2, Δτ(s)(RV) = 19.0 ± 12.8 s , P< 0.01). Simulations showed that altering local slow time constants of adaptation was sufficient to convert partial wavefront block to block with successful reentry. Using electrophysiological data acquired in-vivo in human and computer simulations, we identify heterogeneity in the slow phase of APD adaptation as an important component of arrhythmogenesis.
The MAP kinase substrate MKS1 is a regulator of plant defense responses
Andreasson, Erik; Jenkins, Thomas; Brodersen, Peter; Thorgrimsen, Stephan; Petersen, Nikolaj H T; Zhu, Shijiang; Qiu, Jin-Long; Micheelsen, Pernille; Rocher, Anne; Petersen, Morten; Newman, Mari-Anne; Bjørn Nielsen, Henrik; Hirt, Heribert; Somssich, Imre; Mattsson, Ole; Mundy, John
2005-01-01
Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used yeast two-hybrid screening to identify the MPK4 substrate MKS1. Analyses of transgenic plants and genome-wide transcript profiling indicated that MKS1 is required for full SA-dependent resistance in mpk4 mutants, and that overexpression of MKS1 in wild-type plants is sufficient to activate SA-dependent resistance, but does not interfere with induction of a defense gene by JA. Further yeast two-hybrid screening revealed that MKS1 interacts with the WRKY transcription factors WRKY25 and WRKY33. WRKY25 and WRKY33 were shown to be in vitro substrates of MPK4, and a wrky33 knockout mutant was found to exhibit increased expression of the SA-related defense gene PR1. MKS1 may therefore contribute to MPK4-regulated defense activation by coupling the kinase to specific WRKY transcription factors. PMID:15990873
Li, Guoliang; Cherqui, Charles; Bigelow, Nicholas W; Duscher, Gerd; Straney, Patrick J; Millstone, Jill E; Masiello, David J; Camden, Jon P
2015-05-13
Energy transfer from plasmonic nanoparticles to semiconductors can expand the available spectrum of solar energy-harvesting devices. Here, we spatially and spectrally resolve the interaction between single Ag nanocubes with insulating and semiconducting substrates using electron energy-loss spectroscopy, electrodynamics simulations, and extended plasmon hybridization theory. Our results illustrate a new way to characterize plasmon-semiconductor energy transfer at the nanoscale and bear impact upon the design of next-generation solar energy-harvesting devices.
Radical probing of spliceosome assembly.
Grewal, Charnpal S; Kent, Oliver A; MacMillan, Andrew M
2017-08-01
Here we describe the synthesis and use of a directed hydroxyl radical probe, tethered to a pre-mRNA substrate, to map the structure of this substrate during the spliceosome assembly process. These studies indicate an early organization and proximation of conserved pre-mRNA sequences during spliceosome assembly. This methodology may be adapted to the synthesis of a wide variety of modified RNAs for use as probes of RNA structure and RNA-protein interaction. Copyright © 2017 Elsevier Inc. All rights reserved.
Gibbs, Ann E.; Cochran, Susan A.; Logan, Joshua B.; Grossman, Eric E.
2007-01-01
A benthic-habitat classification map was created for the park using existing color aerial photography, Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) bathymetric data, georeferenced underwater video, and still photography. Individual habitat polygons were classified using five basic attributes: (1) major structure or substrate, (2) dominant structure, (3) major biologic cover on the substrate, (4) percentage of major biological cover, and (5) geographic zone. Additional information regarding geology, morphology, and coral species were also noted.
Crystalline silicon growth in nickel/a-silicon bilayer
NASA Astrophysics Data System (ADS)
Mohiddon, Md Ahamad; Naidu, K. Lakshun; Dalba, G.; Rocca, F.; Krishna, M. Ghanashyam
2013-02-01
The effect of substrate temperature on amorphous Silicon crystallization, mediated by metal impurity is reported. Bilayers of Ni(200nm)/Si(400nm) are deposited on fused silica substrate by electron beam evaporator at 200 and 500 °C. Raman mapping shows that, 2 to 5 micron size crystalline silicon clusters are distributed over the entire surface of the sample. X-ray diffraction and X-ray absorption spectroscopy studies demonstrate silicon crystallizes over the metal silicide seeds and grow with the annealing temperature.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
Regional mapping of soil parent material by machine learning based on point data
NASA Astrophysics Data System (ADS)
Lacoste, Marine; Lemercier, Blandine; Walter, Christian
2011-10-01
A machine learning system (MART) has been used to predict soil parent material (SPM) at the regional scale with a 50-m resolution. The use of point-specific soil observations as training data was tested as a replacement for the soil maps introduced in previous studies, with the aim of generating a more even distribution of training data over the study area and reducing information uncertainty. The 27,020-km 2 study area (Brittany, northwestern France) contains mainly metamorphic, igneous and sedimentary substrates. However, superficial deposits (aeolian loam, colluvial and alluvial deposits) very often represent the actual SPM and are typically under-represented in existing geological maps. In order to calibrate the predictive model, a total of 4920 point soil descriptions were used as training data along with 17 environmental predictors (terrain attributes derived from a 50-m DEM, as well as emissions of K, Th and U obtained by means of airborne gamma-ray spectrometry, geological variables at the 1:250,000 scale and land use maps obtained by remote sensing). Model predictions were then compared: i) during SPM model creation to point data not used in model calibration (internal validation), ii) to the entire point dataset (point validation), and iii) to existing detailed soil maps (external validation). The internal, point and external validation accuracy rates were 56%, 81% and 54%, respectively. Aeolian loam was one of the three most closely predicted substrates. Poor prediction results were associated with uncommon materials and areas with high geological complexity, i.e. areas where existing maps used for external validation were also imprecise. The resultant predictive map turned out to be more accurate than existing geological maps and moreover indicated surface deposits whose spatial coverage is consistent with actual knowledge of the area. This method proves quite useful in predicting SPM within areas where conventional mapping techniques might be too costly or lengthy or where soil maps are insufficient for use as training data. In addition, this method allows producing repeatable and interpretable results, whose accuracy can be assessed objectively.
Primary Mural Endocarditis Without Valvular Involvement.
Tahara, Mai; Nagai, Tomoo; Takase, Yoshiyuki; Takiguchi, Shunichi; Tanaka, Yoshiaki; Kunihara, Takashi; Arakawa, Junko; Nakaya, Kazuhiro; Hamabe, Akira; Gatate, Youdou; Kujiraoka, Takehiko; Tabata, Hirotsugu; Katsushika, Shuichi
2017-03-01
Primary mural endocarditis is an extremely rare infection in which nonvalvular endocardial involvement is seen without any cardiac structural abnormalities such as ventricular septal defects. The rapid and precise diagnosis of this disease remains challenging. We present 2 cases (67- and 47-year-old male patients) of pathologically confirmed primary mural endocarditis that could have been detected by initial transthoracic echocardiography in the emergency department. Transthoracic echocardiography and transesophageal echocardiography play critical roles in the early recognition and confirmation of primary mural endocarditis. © 2017 by the American Institute of Ultrasound in Medicine.
Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition
NASA Astrophysics Data System (ADS)
Mendoza, C. D.; Caldas, P. G.; Freire, F. L.; Maia da Costa, M. E. H.
2018-07-01
The integration of graphene into nanoelectronic devices is dependent on the availability of direct deposition processes, which can provide uniform, large-area and high-quality graphene on semiconductor substrates such as Ge or Si. In this work, we synthesised graphene directly on p-type Ge (1 0 0) substrates by chemical vapour deposition. The influence of the CH4:H2 flow ratio on the graphene growth was investigated. Raman Spectroscopy, Raman mapping, Scanning Electron Microscopy, Atomic Force Microscopy and Scanning Tunnelling Microscopy/Scanning Tunnelling Spectroscopy results showed that good quality and homogeneous monolayer graphene over a large area can be achieved on Ge substrates directly with optimal growth conditions.
NASA Astrophysics Data System (ADS)
Mulcan, Amanda
This thesis aims to facilitate the siting and implementation of Florida Atlantic University Southeast National Marine Renewable Energy Center (FAU SNMREC) ocean current energy (OCE) projects offshore southeastern Florida through the analysis of benthic anchoring conditions. Specifically, a suitability analysis considering all presently available biologic and geologic datasets within the legal framework of OCE policy and regulation was done. OCE related literature sources were consulted to assign suitability levels to each dataset, ArcGIS interpolations generated seafloor substrate maps, and existing submarine cable pathways were considered for OCE power cables. The finalized suitability map highlights the eastern study area as most suitable for OCE siting due to its abundance of sand/sediment substrate, existing underwater cable route access, and minimal biologic presence. Higher resolution datasets are necessary to locate specific OCE development locales, better understand their benthic conditions, and minimize potentially negative OCE environmental impacts.
Mapping pathological phenotypes in a mouse model of CDKL5 disorder.
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.
Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure
NASA Astrophysics Data System (ADS)
Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa
2017-12-01
We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.
2017-03-01
Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.
Photoacoustic characterization of radiofrequency ablation lesions
NASA Astrophysics Data System (ADS)
Bouchard, Richard; Dana, Nicholas; Di Biase, Luigi; Natale, Andrea; Emelianov, Stanislav
2012-02-01
Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue. The left ventricular free wall of fresh (i.e., never frozen) porcine hearts was harvested within 24 hours of the animals' sacrifice. A THERMOCOOLR Ablation System (Biosense Webster, Inc.) operating at 40 W for 30-60 s was used to induce lesions through the endocardial and epicardial walls of the cardiac samples. Following lesion creation, the ablated tissue samples were placed in 25 °C saline to allow for multi-wavelength PA imaging. Samples were imaged with a VevoR 2100 ultrasound system (VisualSonics, Inc.) using a modified 20-MHz array that could provide laser irradiation to the sample from a pulsed tunable laser (Newport Corp.) to allow for co-registered photoacoustic-ultrasound (PAUS) imaging. PA imaging was conducted from 750-1064 nm, with a surface fluence of approximately 15 mJ/cm2 maintained during imaging. In this preliminary study with PA imaging, the ablated region could be well visualized on the surface of the sample, with contrasts of 6-10 dB achieved at 750 nm. Although imaging penetration depth is a concern, PA imaging shows promise in being able to reliably visualize RF ablation lesions.
Prakosa, A.; Malamas, P.; Zhang, S.; Pashakhanloo, F.; Arevalo, H.; Herzka, D. A.; Lardo, A.; Halperin, H.; McVeigh, E.; Trayanova, N.; Vadakkumpadan, F.
2014-01-01
Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) clinical images. The goal of this study was to implement a processing pipeline for obtaining the interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison with alternative methods. The pipeline implemented here involves contouring the epi- and endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit functions method, and merging the interpolation results to obtain the ventricular reconstruction. Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. Reconstructions obtained from the Hi-res images were compared with the reconstructions computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular geometry reconstructions showed that the variational implicit functions approach performed better than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm activation maps and pseudo-ECGs) conducted using models based on the various reconstructions were compared. These electrophysiological simulations demonstrated that our implementation of the variational implicit functions-based method had the best accuracy. PMID:25148771
NASA Astrophysics Data System (ADS)
Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David
2017-03-01
Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.
NASA Astrophysics Data System (ADS)
Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander
2017-06-01
Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.
2016-03-01
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In0.4Ga0.6As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for the 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In x Ga1- x As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.
Trusel, Luke D.; Cochrane, Guy R.; Etherington, Lisa L.; Powell, Ross D.; Mayer, Larry A.
2010-01-01
Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes.
Ben-Shimon, Avraham; Niv, Masha Y.
2011-01-01
Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions. PMID:22125489
Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination.
Groves, Benjamin; Khakhar, Arjun; Nadel, Cory M; Gardner, Richard G; Seelig, Georg
2016-08-15
Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.
NASA Astrophysics Data System (ADS)
Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May
2011-10-01
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.
Nie, Bei; Yang, Min; Fu, Weiling; Liang, Zhiqing
2015-07-07
The surface invasive cleavage assay, because of its innate accuracy and ability for self-signal amplification, provides a potential route for the mapping of hundreds of thousands of human SNP sites. However, its performance on a high density DNA array has not yet been established, due to the unusual "hairpin" probe design on the microarray and the lack of chemical stability of commercially available substrates. Here we present an applicable method to implement a nanocrystalline diamond thin film as an alternative substrate for fabricating an addressable DNA array using maskless light-directed photochemistry, producing the most chemically stable and biocompatible system for genetic analysis and enzymatic reactions. The surface invasive cleavage reaction, followed by degenerated primer ligation and post-rolling circle amplification is consecutively performed on the addressable diamond DNA array, accurately mapping SNP sites from PCR-amplified human genomic target DNA. Furthermore, a specially-designed DNA array containing dual probes in the same pixel is fabricated by following a reverse light-directed DNA synthesis protocol. This essentially enables us to decipher thousands of SNP alleles in a single-pot reaction by the simple addition of enzyme, target and reaction buffers.
Marine benthic habitat mapping of the West Arm, Glacier Bay National Park and Preserve, Alaska
Hodson, Timothy O.; Cochrane, Guy R.; Powell, Ross D.
2013-01-01
Seafloor geology and potential benthic habitats were mapped in West Arm, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, groundtruthed observations, and geological interpretations. The West Arm of Glacier Bay is a recently deglaciated fjord system under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the recently developed Coastal and Marine Ecological Classification Standard (CMECS) by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Due to the high flux of glacially sourced fines, mud is the dominant substrate within the West Arm. Water-column characteristics are addressed using a combination of CTD and circulation model results. We also present sediment accumulation data derived from differential bathymetry. These data show the West Arm is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The results of these analyses serve as a test of the CMECS classification scheme and as a baseline for ongoing and future mapping efforts and correlations between seafloor substrate, benthic habitats, and glacimarine processes.
Nishida, Kunihiro; Qi, Xiao Yan; Wakili, Reza; Comtois, Philippe; Chartier, Denis; Harada, Masahide; Iwasaki, Yu-ki; Romeo, Philippe; Maguy, Ange; Dobrev, Dobromir; Michael, Georghia; Talajic, Mario; Nattel, Stanley
2011-01-18
Coronary artery disease predisposes to atrial fibrillation (AF), but the effects of chronic atrial ischemia/infarction on AF-related substrates are unknown. Regional right atrial myocardial infarction (MI) was created in 40 dogs by ligating an artery that supplies the right atrial free wall and not the ventricles; 35 sham dogs with the same artery isolated but not ligated were controls. Dogs were observed 8 days after MI and subjected to open-chest study, in vitro optical mapping, and/or cell isolation for patch-clamp and Ca(2+) imaging on day 8. Holter ECGs showed more spontaneous atrial ectopy in MI dogs (eg, 662±281 on day 7 versus 34±25 ectopic complexes per day at baseline; 52±21 versus 1±1 atrial tachycardia episodes per day). Triggered activity was increased in MI border zone cells, which had faster decay of caffeine-evoked Ca(2+) transients and enhanced (by ≈73%) Na(+)-Ca(2+) exchange current. Spontaneous Ca(2+) sparks (confocal microscopy) occurred under β-adrenergic stimulation in more MI dog cells (66±9%) than in control cells (29±4%; P<0.01). Burst pacing induced long-lasting AF in MI dogs (1146±259 versus 30±14 seconds in shams). Increased border zone conduction heterogeneity was confirmed by both bipolar electrode mapping in vivo and optical mapping. Optical mapping demonstrated stable border zone reentry in all 9 MI preparations but in none of 6 shams. Border zone tissue showed increased fibrous tissue content. Chronic atrial ischemia/infarction creates substrates for both spontaneous ectopy (Ca(2+)-release events, increased Na(+)-Ca(2+) exchange current) and sustained reentry (conduction abnormalities that anchor reentry). Thus, chronic atrial infarction in dogs promotes both AF triggers and the substrate for AF maintenance. These results provide novel insights into potential AF mechanisms in patients with coronary artery disease.
Chechlacz, Magdalena; Rotshtein, Pia; Humphreys, Glyn W
2014-11-01
Spatial working memory problems are frequently reported following brain damage within both left and right hemispheres but with the severity often being grater in individuals with right hemisphere lesions. Clinically, deficits in spatial working memory have also been noted in patients with visuospatial disorders such as unilateral neglect. Here, we examined neural substrates of short-term memory for spatial locations based on the Corsi Block tapping task and the relationship with the visuospatial deficits of neglect and extinction in a group of chronic neuropsychological patients. Principal Component Analysis (PCA) was used to distinguish shared and dissociate functional components. The neural substrates of spatial short-term memory deficits and the components identified by PCA were examined using whole brain voxel-based morphometry and tract-wise lesion deficits analyses. We found that bilateral lesions within occipital cortex (middle occipital gyrus) and right posterior parietal cortex, along with disconnection of the right parieto-temporal segment of arcuate fasciculus, were associated with low spatial memory span. A single component revealed by PCA accounted for over half of the variance and was linked to damage to right posterior brain regions (temporo-parietal junction, the inferior parietal lobule and middle temporal gyrus extending into middle occipital gyrus). We also found link to disconnections within several association pathways including the superior longitudinal fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. These results indicate that different visuospatial deficits converge into a single component mapped within posterior parietal areas and fronto-parietal white matter pathways. Furthermore, the data presented here fit with the role of posterior parietal cortex/temporo-parietal junction in maintaining a map of salient locations in space, with Corsi Block performance being impaired when the spatial map is damaged. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mapping Mesophotic Reefs Along the Brazilian Continental Margin
NASA Astrophysics Data System (ADS)
Bastos, A.; Moura, R.; Amado Filho, G.; Ferreira, L.; Boni, G.; Vedoato, F.; D'Agostini, D.; Lavagnino, A. C.; Leite, M. D.; Quaresma, V.
2017-12-01
Submerged or drowned reefs constitute an important geological record of sea level variations, forming the substrate for the colonization of modern benthic mesophotic communities. Although mapping mesophotic reefs has increased in the last years, their spatial distribution is poorly known and the worldwide occurrence of this reef habitat maybe underestimated. The importance in recognizing the distribution of mesophotic reefs is that they can act as a refuge for corals during unsuitable environmental conditions and a repository for shallow water corals. Here we present the result of several acoustic surveys that mapped and discovered new mesophotic reefs along the Eastern and Equatorial Brazilian Continental Margin. Seabed mapping was carried out using multibeam and side scan sonars. Ground truthing was obtained using drop camera or scuba diving. Mesophotic reefs were mapped in water depths varying from 30 to 100m and under distinct oceanographic conditions, especially in terms of river load input and shelf width. Reefs showed distinct morphologies, from low relief banks and paleovalleys to shelf edge ridges. Extensive occurrence of low relief banks were mapped along the most important coralline complex province in the South Atlantic, the Abrolhos Shelf. These 30 to 40m deep banks, have no more than 3 meters in height and may represent fringing reefs formed during sea level stabilization. Paleovalleys mapped along the eastern margin showed the occurrence of coralgal ledges along the channel margins. Paleovalleys are usually deeper than 45m and are associated with outer shelf rhodolith beds. Shelf edge ridges (80 to 120m deep) were mapped along both margins and are related to red algal encrusting irregular surfaces that have more than 3m in height, forming a rigid substrate for coral growth. Along the Equatorial Margin, off the Amazon mouth, shelf edge patch reefs and rhodolith beds forming encrusting surfaces and shelf edge ridges were mapped in water depths greater than 100m. Thus, the occurrence of mesophotic reefs along the Brazilian Margin is influenced by transgressive morphological features, which could be used as a surrogate for mesophotic reef distribution. The extensive occurrence of rhodolith beds on the outer shelf characterizes most of these reefs.
Maffessanti, Francesco; Prinzen, Frits W; Conte, Giulio; Regoli, François; Caputo, Maria Luce; Suerder, Daniel; Moccetti, Tiziano; Faletra, Francesco; Krause, Rolf; Auricchio, Angelo
2018-01-01
This study sought to test the accuracy of strain measurements based on anatomo-electromechanical mapping (AEMM) measurements compared with magnetic resonance imaging (MRI) tagging, to evaluate the diagnostic value of AEMM-based strain measurements in the assessment of myocardial viability, and the additional value of AEMM over peak-to-peak local voltages. The in vivo identification of viable tissue, evaluation of mechanical contraction, and simultaneous left ventricular activation is currently achieved using multiple complementary techniques. In 33 patients, AEMM maps (NOGA XP, Biologic Delivery Systems, Division of Biosense Webster, a Johnson & Johnson Company, Irwindale, California) and MRI images (Siemens 3T, Siemens Healthcare, Erlangen, Germany) were obtained within 1 month. MRI tagging was used to determine circumferential strain (E cc ) and delayed enhancement to obtain local scar extent (%). Custom software was used to measure E cc and local area strain (LAS) from the motion field of the AEMM catheter tip. Intertechnique agreement for E cc was good (R 2 = 0.80), with nonsignificant bias (0.01 strain units) and narrow limits of agreement (-0.03 to 0.06). Scar segments showed lower absolute strain amplitudes compared with nonscar segments: E cc (median [first to third quartile]: nonscar -0.10 [-0.15 to -0.06] vs. scar -0.04 [-0.06 to -0.02]) and LAS (-0.20 [-0.27 to -0.14] vs. -0.09 [-0.14 to -0.06]). AEMM strains accurately discriminated between scar and nonscar segments, in particular LAS (area under the curve: 0.84, accuracy = 0.76), which was superior to peak-to-peak voltages (nonscar 9.5 [6.5 to 13.3] mV vs. scar 5.6 [3.4 to 8.3] mV; area under the curve: 0.75). Combination of LAS and peak-to-peak voltages resulted in 86% accuracy. An integrated AEMM approach can accurately determine local deformation and correlates with the scar extent. This approach has potential immediate application in the diagnosis, delivery of intracardiac therapies, and their intraprocedural evaluation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Heisel, A; Jung, J; Fries, R; Stopp, M; Sen, S; Schieffer, H; Ozbek, C
1997-01-01
The purpose of this study was to investigate the efficacy and safety of atrial cardioversion using an endocardial single lead system presently used for ventricular defibrillation. The study population consisted of 26 recipients of an ICD in combination with a conventional endocardial single lead system with the proximal spring electrode as anode in the SVC and the distal as cathode in the apex of the RV. Atrial tachyarrhythmias were induced by right atrial burst pacing. If the arrhythmia sustained > 1 minute, biphasic shocks synchronized with the R wave were delivered using the implanted device, beginning with an energy of 4 J. If 4 J failed to terminate the arrhythmia, energy was increased stepwise, if the first shock was successful, a step-down testing was performed after reinduction of atrial tachyarrhythmias. The mean atrial defibrillation threshold was 2.3 +/- 1.2 J (range, 0.5-5 J). A total of 154 shocks were delivered and no adverse effects were observed. The mean defibrillation threshold for atrial flutter was somewhat lower than that for AF (1.8 +/- 1 J vs 2.7 +/- 1.4 J, P = 0.08). There was no correlation between the atrial defibrillation threshold and a history of previously occurring atrial tachyarrhythmias, the kind of the underlying heart disease, a prescription of antiarrhythmic drugs, the dimension of the LA, the LVEF, or the ventricular DFT. Internal atrial cardioversion of short duration atrial tachyarrhythmias using a transvenous single lead system designed for ventricular defibrillation is feasible and safe at low energies, and may have important clinical applications.
Orloff, Elisabeth; Fournier, Pauline; Bouisset, Frédéric; Moine, Thomas; Cournot, Maxime; Elbaz, Meyer; Carrié, Didier; Galinier, Michel; Lairez, Olivier; Cognet, Thomas
2018-05-14
The aim of this study was to evaluate the value of multilayer strain analysis to the assessment of myocardial viability (MV) through the comparison of both speckle tracking echocardiography and single-photon emission computed tomography (SPECT) imaging. We also intended to determine which segmental longitudinal strain (LS) cutoff value would be optimal to discriminate viable myocardium. We included 47 patients (average age: 61 ± 11 years) referred to our cardiac imaging center for MV evaluation. All patients underwent transthoracic echocardiography with measures of LS, SPECT, and coronary angiography. In all, 799 segments were analyzed. We correlated myocardial tracer uptake by SPECT with sub-endocardial, sub-epicardial, and mid-segmental LS values with r = .514 P < .0001, r = .501 P < .0001, and r = .520 P < .0001, respectively. The measurements of each layer strain (sub-endocardial, sub-epicardial, and mid) had the same performance to predict MV viability as defined by SPECT with areas under curve of 0.819 [0.778-0.861, P < .0001], 0.809 [0.764-0.854, P < .0001], and 0.817 [0.773-0.860, P < .0001], respectively. The receiver-operating characteristic analysis yielded a cutoff value of -6.5% for mid-segmental LS with a sensitivity of 76% and specificity of 76% to predict segmental MV as defined by SPECT. Multilayer strain analysis does not evaluate MV with more accuracy than standard segmental LS analysis. © 2018 Wiley Periodicals, Inc.
Qian, Pierre; Barry, Michael Anthony; Nguyen, Trang; Ross, David; Kovoor, Pramesh; McEwan, Alistair; Thomas, Stuart; Thiagalingam, Aravinda
2015-07-01
Pulmonary vein isolation is an effective treatment for atrial fibrillation. Current endocardial ablation techniques require catheter contact for lesion formation. Inadequate or inconsistent catheter contact results in difficulty with achieving acute and long-term isolation and consequent atrial arrhythmia recurrence. Microwave energy produces radiant heating and therefore can be used for noncontact catheter ablation. We hypothesized that it is possible to design a microwave catheter to produce a circumferential transmural thermal lesion in an in vitro model of a pulmonary vein antrum. A monopole microwave catheter with a sideways firing axially symmetrical heating pattern was designed. Noncontact ablations were performed in a perfused pulmonary vein model constructed from microwave myocardial phantom embedded with a sheet of thermochromic liquid crystal to permit visualization and measurement of thermal lesions from color changes. 1200 J ablations were performed at 150 W for 80 seconds and 120 W for 100 seconds at high (0.8 L/min) and low (0.06 L/min) flow through the modeled pulmonary vein. Myocardial tissue was substituted for the phantom material and ablations repeated at 150 W for 180 seconds and stained with nitro-blue tetrazolium. The catheter was able to induce deep circumferential antral lesions in myocardial phantom and myocardial tissue. Higher power and shorter ablations delivering the same amount of microwave energy resulted in larger lesions with less surface sparing. A microwave catheter can be designed to produce a circumferential thermal lesion on noncontact ablation and may have possible applications for pulmonary vein isolation. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Jiang, Luan; Ling, Shan; Li, Qiang
2016-03-01
Cardiovascular diseases are becoming a leading cause of death all over the world. The cardiac function could be evaluated by global and regional parameters of left ventricle (LV) of the heart. The purpose of this study is to develop and evaluate a fully automated scheme for segmentation of LV in short axis cardiac cine MR images. Our fully automated method consists of three major steps, i.e., LV localization, LV segmentation at end-diastolic phase, and LV segmentation propagation to the other phases. First, the maximum intensity projection image along the time phases of the midventricular slice, located at the center of the image, was calculated to locate the region of interest of LV. Based on the mean intensity of the roughly segmented blood pool in the midventricular slice at each phase, end-diastolic (ED) and end-systolic (ES) phases were determined. Second, the endocardial and epicardial boundaries of LV of each slice at ED phase were synchronously delineated by use of a dual dynamic programming technique. The external costs of the endocardial and epicardial boundaries were defined with the gradient values obtained from the original and enhanced images, respectively. Finally, with the advantages of the continuity of the boundaries of LV across adjacent phases, we propagated the LV segmentation from the ED phase to the other phases by use of dual dynamic programming technique. The preliminary results on 9 clinical cardiac cine MR cases show that the proposed method can obtain accurate segmentation of LV based on subjective evaluation.
Arteyeva, Natalia V; Azarov, Jan E
2017-01-01
The changes in ventricular repolarization gradients lead to significant alterations of the electrocardiographic body surface T waves up to the T wave inversion. However, the contribution of a specific gradient remains to be elucidated. The objective of the present investigation was to study the role of the transmural repolarization gradient in the inversion of the body surface T wave with a mathematical model of the hypothermia-induced changes of ventricular repolarization. By means of mathematical simulation, we set the hypothermic action potential duration (APD) distribution on the rabbit ventricular epicardium as it was previously experimentally documented. Then the parameters of the body surface potential distribution were tested with the introduction of different scenarios of the endocardial and epicardial APD behavior in hypothermia resulting in the unchanged, reversed or enlarged transmural repolarization gradient. The reversal of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) caused the inversion of the T waves regardless of the direction of the transmural repolarization gradient. However, the most realistic body surface potentials were obtained when the endocardial APDs were not changed under hypothermia while the epicardial APDs prolonged. This produced the reversed and increased transmural repolarization gradient in absolute magnitude. The body surface potentials simulated under the unchanged transmural gradient were reduced in comparison to those simulated under the reversed transmural gradient. The simulations demonstrated that the transmural repolarization gradient did not play a crucial role in the cardiac electric field inversion under hypothermia, but its magnitude and direction contribute to the T wave amplitude. © 2016 Wiley Periodicals, Inc.
Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach
NASA Astrophysics Data System (ADS)
Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil
2016-04-01
In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.
Dofetilide promotes repolarization abnormalities in perfused Guinea-pig heart.
Osadchii, Oleg E
2012-12-01
Dofetilide is class III antiarrhythmic agent which prolongs cardiac action potential duration because of selective inhibition of I (Kr), the rapid component of the delayed rectifier K(+) current. Although clinical studies reported on proarrhythmic risk associated with dofetilide treatment, the contributing electrophysiological mechanisms remain poorly understood. This study was designed to determine if dofetilide-induced proarrhythmia may be attributed to abnormalities in ventricular repolarization and refractoriness. The monophasic action potential duration and effective refractory periods (ERP) were assessed at distinct epicardial and endocardial sites along with volume-conducted ECG recordings in isolated, perfused guinea-pig heart preparations. Dofetilide was found to produce the reverse rate-dependent prolongation of ventricular repolarization, increased the steepness of action potential duration rate adaptation, and amplified transepicardial variability in electrical restitution kinetics. Dofetilide also prolonged the T peak-to-end interval on ECG, and elicited a greater prolongation of endocardial than epicardial ERP, thereby increasing transmural dispersion of refractoriness. At epicardium, dofetilide prolonged action potential duration to a greater extent than ERP, thus extending the critical interval for ventricular re-excitation. This change was associated with triangulation of epicardial action potential because of greater dofetilide-induced prolonging effect at 90 % than 30 % repolarization. Premature ectopic beats and spontaneous short-lasting episodes of monomorphic ventricular tachycardia were observed in 44 % of dofetilide-treated heart preparations. Proarrhythmic potential of dofetilide in guinea-pig heart is attributed to steepened electrical restitution, increased transepicardial variability in electrical restitution kinetics, amplified transmural dispersion of refractoriness, increased critical interval for ventricular re-excitation, and triangulation of epicardial action potential.
Raman study of annealed two-dimensional heterostructure of graphene on hexagonal boron nitride
NASA Astrophysics Data System (ADS)
Souibgui, Mourad; Ajlani, Hosni; Cavanna, Antonnella; Oueslati, Meherzi; Meftah, Abdelaziz; Madouri, Ali
2017-12-01
In this paper, we investigate stacked 2D graphene layers on hexagonal boron nitride (h-BN). The graphene is obtained by high-quality chemical vapor deposition (CVD) and transferred to the h-BN substrate. We focus our attention on annealing effect at 1040 °C on single graphene layer (SGL) and bilayer graphene (BLG) on h-BN substrate using Raman spectroscopy. Our results show, before annealing, a twist angle θ = 0.63 ° between the SGL and the h-BN substrate and a twist angle 3 ° <θG1G2 < 8 ° between the two graphene layers of the BLG. After annealing, the analysis of the graphene G and 2D bands show a rotational reorientation of the graphene layer with respect to the h-BN substrate. Raman mapping also shows that the rotational reorientation is spatially dependent.
Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.
Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro
2017-09-01
The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nuclease footprint analyses of the interactions between RNase P ribozyme and a model mRNA substrate.
Trang, P; Hsu, A W; Liu, F
1999-01-01
RNase P ribozyme cleaves an RNA helix substrate which resembles the acceptor stem and T-stem structures of its natural tRNA substrate. By linking the ribozyme covalently to a sequence (guide sequence) complementary to a target RNA, the catalytic RNA can be converted into a sequence-specific ribozyme, M1GS RNA. We have previously shown that M1GS RNA can efficiently cleave the mRNA sequence encoding thymidine kinase (TK) of herpes simplex virus 1. In this study, a footprint procedure using different nucleases was carried out to map the regions of a M1GS ribozyme that potentially interact with the TK mRNA substrate. The ribozyme regions that are protected from nuclease degradation in the presence of the TK mRNA substrate include those that interact with the acceptor stem and T-stem, the 3' terminal CCA sequence and the cleavage site of a tRNA substrate. However, some of the protected regions (e.g. P13 and P14) are unique and not among those protected in the presence of a tRNA substrate. Identification of the regions that interact with a mRNA substrate will allow us to study how M1GS RNA recognizes a mRNA substrate and facilitate the development of mRNA-cleaving ribozymes for gene-targeting applications. PMID:10556315
Mapping atomic contact between pentacene and a Au surface using scanning tunneling spectroscopy.
Song, Young Jae; Lee, Kyuho; Kim, Seong Heon; Choi, Byoung-Young; Yu, Jaejun; Kuk, Young
2010-03-10
We mapped spatially varying intramolecular electronic structures on a pentacene-gold interface using scanning tunneling spectroscopy. Along with ab initio calculations based on density functional theory, we found that the directional nature of the d orbitals of Au atoms plays an important role in the interaction at the pentacene-gold contact. The gold-induced interface states are broadened and shifted by various pentacene-gold distances determined by the various registries of a pentacene molecule on a gold substrate.
Elliott, Caroline M.; Jacobson, Robert B.; Chojnacki, Kimberly A.
2006-01-01
Hydroacoustic tools were used to map depth, elevation, and substrate on DeSoto Lake in March 2006. DeSoto Lake, located on the DeSoto National Wildlife Refuge in Iowa and Nebraska, is one of the largest oxbow lakes of the Missouri River system. It is used by over 500,000 migratory birds each fall and spring and is also an important aquatic resource for anglers. Management concerns at the lake include the effects of erosion and sedimentation, aquatic vegetation establishment, shorebird habitat availability at different lake levels, and fish habitat structure. DeSoto Lake was cut off from the Missouri River in 1960, and the current mapping updates previous lower-resolution bathymetric maps created from lake surveys in 1967 and 1979. The new maps provide managers tools to assess aquatic habitats and provide a baseline for future monitoring of lake sedimentation and erosion.
Dudek, Hanna M.; de Gonzalo, Gonzalo; Torres Pazmiño, Daniel E.; Stępniak, Piotr; Wyrwicz, Lucjan S.; Rychlewski, Leszek; Fraaije, Marco W.
2011-01-01
Baeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) from Thermobifida fusca is the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope. PMID:21724896
NASA Astrophysics Data System (ADS)
Reed, Judd E.; Rumberger, John A.; Buithieu, Jean; Behrenbeck, Thomas; Breen, Jerome F.; Sheedy, Patrick F., II
1995-05-01
Following myocardial infarction, the size of the infarcted region and the systolic functioning of the noninfarcted region are commonly assessed by various cross- sectional imaging techniques. A series of images representing successive phases of the cardiac cycle can be acquired by several imaging modalities including electron beam computed tomography, magnetic resonance imaging, and echocardiography. For the assessment of patterns of ventricular contraction, images are commonly acquired of ventricular cross-sections normal to the 'long' axis of the heart and parallel to the mitral valve plane. The endocardial and epicardial surfaces of the myocardium are identified. Then the ventricle is divided into sectors and the volumes of blood and myocardium within each sector at multiple phases of the cardiac cycle are measured. Regional function parameters are derived from these measurements. This generally mandates the use of a polar or cylindrical coordinate system. Various algorithms have been used to select the origin of this coordinate system. These include the centroid of the endocardial surface, the epicardial surface, or of a polygon whose vertices lie midway between the epicardial and endocardial surfaces of the myocardium (centerline method). Another algorithm has been developed in our laboratory. This uses the centroid (or center of mass) of the myocardium exclusive of the ventricular cavity. Each of these choices for origin of coordinate system can be derived from the end- diastolic image or from the end-systolic image. Alternately, new coordinate systems can be selected for each phase of the cardiac cycle. These are referred to as 'floating' coordinate systems. A series of computer models have been developed in our laboratory to study the effects of each of these choices on the regional function parameters of normal ventricles and how these choices effect the quantification of regional abnormalities after myocardial infarction. The most sophisticated of these is an interactive program with a graphical user interface which facilitates the simulation of a wide variety of dynamic ventricular cross sections. Analysis of these simulations has led to a better understanding of how polar coordinate system placement influences the results of quantitative regional ventricular function assessment. It has also created new insight into how the appropriateness of the placement of such a polar coordinate systems can be objectively assessed. The validity of the conclusions drawn from the analysis of simulated ventricular shapes was validated through the analysis of outlines extracted from cine electron beam computed tomographic images. This was done using another interactive software tool developed specifically for this purpose. With this tool, the effects on regional function parameters of various choices for origin placement can be directly observed. This has proven to reinforce the conclusions drawn from the simulations and has led to the modification of the procedures used in our laboratory. Conclusions: The so-called floating coordinate systems are superior to fixed ones for quantification of regional left ventricular contraction in almost every respect. The use of regional ejection fractions with a coordinate system origin located at the centroid of the endocardial surface can lead to 180 degree errors in identifying the location of a myocardial infarction. This problem is less pronounced with midline and epicardium- based centroids and does not occur when the centroid of the myocardium is used. The quantified migration of myocardial mass across sector boundaries is a useful indicator of an inappropriate choice of coordinate system origin. When the centroid of the myocardium falls well within the ventricular cavity, as it usually does, it is a better location for the origin for regional analysis than any of the other centroids analyzed.
Powers, Jarrod; Brewer, Shannon K.; Long, James M.; Campbell, Thomas
2015-01-01
Side-scan sonar is a valuable tool for mapping habitat features in many aquatic systems suggesting it may also be useful for locating sedentary biota. The objective of this study was to determine if side-scan sonar could be used to identify freshwater mussel (unionid) beds and the required environmental conditions. We used side-scan sonar to develop a series of mussel-bed reference images by placing mussel shells within homogenous areas of fine and coarse substrates. We then used side-scan sonar to map a 32-km river reach during spring and summer. Using our mussel-bed reference images, several river locations were identified where mussel beds appeared to exist in the scanned images and we chose a subset of sites (n = 17) for field validation. The validation confirmed that ~60% of the sites had mussel beds and ~80% had some mussels or shells present. Water depth was significantly related to our ability to predict mussel-bed locations: predictive ability was greatest at depths of 1–2 m, but decreased in water >2-m deep. We determined side-scan sonar is an effective tool for preliminary assessments of mussel presence during times when they are located at or above the substrate surface and in relatively fine substrates excluding fine silt.
Mapping Strain Gradients in the FIB-Structured InGaN/GaN Multilayered Films with 3D X-ray Microbeam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Gao, Yanfei; Ice, Gene E
2010-01-01
This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less
Mapping strain gradients in the FIB-structured InGaN/GaN multilayered films with 3D x-ray microbeam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, R. I.; Gao, Y. F.; Ice, G. E.
2010-11-25
This research presents a combined experimental-modeling study of lattice rotations and deviatoric strain gradients induced by focused-ion beam (FIB) milling in nitride heterostructures. 3D X-ray polychromatic microdiffraction (PXM) is used to map the local lattice orientation distribution in FIB-structured areas. Results are discussed in connection with microphotoluminescence ({mu}-PL), fluorescent analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) data. It is demonstrated that FIB-milling causes both direct and indirect damage to the InGaN/GaN layers. In films subjected to direct ion beam impact, a narrow amorphidized top layer is formed. Near the milling area, FIB-induced stress relaxation and formation ofmore » complicated 3D strain fields are observed. The resulting lattice orientation changes are found to correlate with a decrease and/or loss of PL intensity, and agree well with finite element simulations of the three-dimensional strain fields near the relaxed trenches. Experimentally, it is found that the lattice surface normal has an in-plane rotation, which only appears in simulations when the GaN-substrate lattice mismatch annihilates the InGaN-substrate mismatch. This behavior further supports the notion that the film/substrate interface is incoherent.« less
ECOLOGICAL ASSESSMENT CALIBRATION OF WATER QUALITY IN ESTERO BAY MX964227
This project will produce a GIS database and habitat maps of benthic substrates and biological assemblages within the Estero Bay Aquatic Preserve. A biological approach for identifying ambient water quality conditions will be developed. This will increase awareness among resource...
NASA Astrophysics Data System (ADS)
Reshitnyk, Luba Yvanka
The ability to map nearshore habitat (i.e. submerged aquatic vegetation) is an integral component of marine conservation. The main goal of this thesis was to examine the ability of high resolution, multispectral satellite imagery and a single-beam acoustic ground discrimination system to map the location of marine habitats in Bag Harbour, found in the Gwaii Haanas National Marine Conservation Area Reserve. To meet this goal, two objectives were addressed: (1) Using the QTC View V sing-beam acoustic ground discrimination system, identify which frequency (50 kHz or 200 kHz) is best suited for mapping marine habitat; (2) evaluate the ability to map nearshore marine habitat using WorldView-2 high resolution, multispectral satellite imagery and compare the results of marine habitat maps derived from the acoustic and satellite datasets. Ground-truth data for both acoustic and satellite data were collected via towed underwater video camera on June 3rd and 4th, 2012. Acoustic data (50 and 200 kHz) were collected on June 23rd and 24 th, 2012, respectively. The results of this study are organized into two papers. The first paper focuses on objective 1 where the QTC View V single-beam acoustic ground discrimination system was used to map nearshore habitat at a site within the Gwaii Haanas National Marine Conservation Area using two survey frequencies -- 50 kHz and 200 kHz. The results show that the 200 kHz data outperformed the 50 kHz data set in both thematic and spatial accuracy. The 200 kHz dataset was able to identify two species of submerged aquatic vegetation, eelgrass ( Zostera marina) and a red algae (Chondrocanthus exasperatus ) while the 50 kHz dataset was only able to detect the distribution of eelgrass. The best overall accuracy achieved with the 200 kHz dataset was 86% for a habitat map with three classes (dense eelgrass, dense red algae and unvegetated substrate) compared to the 50 kHz habitat classification with two classes (dense eelgrass and unvegetated substrate) that had an overall accuracy of 70%. Neither dataset was capable if discerning the distribution of green algae (Ulva spp.) or brown algae (Fucus spp.), also present at the site. The second paper examines the benthic habitat maps created using WorldView-2 satellite imagery and the QTC View V single-beam acoustic ground discrimination system (AGDS) at 200 kHz (objective 2). Optical and acoustic remote sensing technologies both present unique capabilities of mapping nearshore habitat. Acoustic systems are able to map habitat in subtidal regions outside of the range of optical sensors while optical sensors such as WorldView-2 provide higher spatial and spectral resolution. The results of this study found that the WorldView-2 achieved the highest overall accuracy (75%) for mapping shallow (<3 m) benthic classes (green algae, brown algae, eelgrass and unvegetated substrate). The 200 kHz data were found to perform best in deeper (>3 m) regions and were able to detect the distribution of eelgrass, red algae and unvegetated substrate. A final habitat map was produced composed of these outputs to create a final, comprehensive habitat map of Bag Harbour. These results highlight the benefits and limitations of each remote sensing technology from a conservation management perspective. The main benefits of the WorldView-2 imagery stem from the high resolution (2 x 2 m) pixel resolution, with a single image covering many kilometers of coastline, and ability to discern habitats in the intertidal region that were undetectable by AGDS. However, the main limitation of this technology is the ability to acquire imagery under ideal conditions (low tide and calm seas). In contrast, the QTC View V system requires more hours spent collecting acoustic data in the field, is limited in the number of habitats it is able to detect and creates maps based on interpolated point data (compared to the continuous raster data of the WorldView-2 imagery). If, however, the objectives of the conservation management to create high resolution benthic habitat maps of subtidal habitats (e.g. eelgrass and benthic red algae) at a handful of sites (in contrast to continuous coastal coverage), the QTC View V system is more suitable. Whichever system is used ground-truth data are required to train and validate each dataset.
Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502
Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S
2015-01-01
Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.
Echocardiographic measurements of left ventricular mass by a non-geometric method
NASA Technical Reports Server (NTRS)
Parra, Beatriz; Buckey, Jay; Degraff, David; Gaffney, F. Andrew; Blomqvist, C. Gunnar
1987-01-01
The accuracy of a new nongeometric method for calculating left ventricular myocardial volumes from two-dimensional echocardiographic images was assessed in vitro using 20 formalin-fixed normal human hearts. Serial oblique short-axis images were acquired from one point at 5-deg intervals, for a total of 10-12 cross sections. Echocardiographic myocardial volumes were calculated as the difference between the volumes defined by the epi- and endocardial surfaces. Actual myocardial volumes were determined by water displacement. Volumes ranged from 80 to 174 ml (mean 130.8 ml). Linear regression analysis demonstrated excellent agreement between the echocardiographic and direct measurements.
[Reoperations in bradyarrhythmic forms of disorders of heart conductivity].
Amanov, A A; Guliamov, D S; Umarov, V M; Khan, N I; Asanov, R V
1990-06-01
Under analysis were causes of reoperations in bradyarrhythmic forms of disturbances of conductivity of the heart. 565 operations connected with electrocardiostimulation were performed on 276 patients. Reoperations in patients with the myocardial stimulation were made on 63 patients, with the endocardial stimulation--in 226 patients. Causes of reoperations were as follows: depletion of the source of ECS--31.5%; dislocation of the electrode--8.2%; damage of the electrode--15%, suppuration of the bed, decubitus of the stimulator--28.8%; competing rate--7.4%; break of the contact in the connecting system of the electrode and cardiostimulator--9.4%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleshin, A. N., E-mail: a.n.aleshin@mail.ru; Bugaev, A. S.; Ermakova, M. A.
2016-03-15
The crystallographic parameters of elements of a metamorphic high-electron-mobility transistor (MHEMT) heterostructure with In{sub 0.4}Ga{sub 0.6}As quantum well are determined using reciprocal space mapping. The heterostructure has been grown by molecular-beam epitaxy (MBE) on the vicinal surface of a GaAs substrate with a deviation angle of 2° from the (001) plane. The structure consists of a metamorphic step-graded buffer (composed of six layers, including an inverse step), a high-temperature buffer of constant composition, and active high-electron-mobility transistor (HEMT) layers. The InAs content in the metamorphic buffer layers varies from 0.1 to 0.48. Reciprocal space mapping has been performed for themore » 004 and 224 reflections (the latter in glancing exit geometry). Based on map processing, the lateral and vertical lattice parameters of In{sub x}Ga{sub 1–x}As ternary solid solutions of variable composition have been determined. The degree of layer lattice relaxation and the compressive stress are found within the linear elasticity theory. The high-temperature buffer layer of constant composition (on which active MHEMT layers are directly formed) is shown to have the highest (close to 100%) degree of relaxation in comparison with all other heterostructure layers and a minimum compressive stress.« less
Characterizing Protease Specificity: How Many Substrates Do We Need?
Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.
2015-01-01
Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682
Effects of surface topography on SERS response: Correlating nanoscopy with spectroscopy
NASA Astrophysics Data System (ADS)
Das, Sumit Kumar; Ghosh, Manash; Chowdhury, Joydeep
2018-05-01
This paper reports for the first time the hidden correlation between the topographical features of the bilayer Langmuir-Blodgett (LB) film substrates of stearic acid (SA) incubated in Au@Ag nanocolloids over various dipping times (DTs) with their corresponding SERS responses. The topographies of the as prepared substrates are investigated from the statistical considerations in terms of lateral correlation length, interface width, Hurst and Lyapnov exponents. The real space of the substrates are mapped directly from the FESEM and AFM images of the bilayer LB film of SA immersed in Au@Ag nanocolloids over various DTs ranging between 6 and 72 h. The SERS spectra of the Rhodamine 6G molecules adsorbed on the as prepared substrates have been reported. The statistical parameters of the substrates that exhibit maximum SERS efficacy have been suggested. The far field distributions in presence and in absence of Raman dipole together with spatial distribution of the near field from the hottest spot of the as prepared substrate have also been reported. To our knowledge, this is the first report that links nanoscopy with SERS spectroscopy from statistical considerations and is expected to open a new window towards the fabrication of more efficient and reproducible SERS active substrates in future endeavours.
NASA Astrophysics Data System (ADS)
Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Mustaciosu, Cosmin Catalin; Zamfirescu, Marian; Dinescu, Maria; Calin, Bogdan Stefanita; Popescu, Andrei; Chioibasu, Diana; Cristian, Dan; Paun, Irina Alexandra
2018-03-01
In this work, we demonstrate the efficiency of substrate-mediated electrical stimulation of micropatterned polypyrrole/polyurethane (PPy/PU) composites for enhancing the osteogenesis in osteoblast-like cells. The PPy/PU substrates were obtained by dispersing electrically conductive PPy nanograins within a mechanically resistant PU matrix. Spin-coated PPy/PU layers were micropatterned with predefined 3D geometries by ultrashort laser ablation. Then they were conformally coated by Matrix Assisted Pulsed Laser Evaporation, in order to restore their chemical and electrical integrity. The chemical structure of the laser-processed PPy/PU substrates was investigated by 2D and 3D mapping of the laser-processed areas, via Raman microspectroscopy. In vitro studies revealed that the micropatterned PPy/PU substrates facilitated the topological and electrical communication of the seeded osteoblasts. Specifically, we demonstrated the cells attachment on the predefined 3D micropatterns. More importantly, we found evidence about the cells mineralization inside the 3D micropatterns by investigating the calcium deposits by Energy-Dispersive X-Ray Spectroscopy (EDS) and Alizarin Red staining. We found that the substrate-mediated electrical stimulation of the PPy/PU substrates induced a twofold increase of the Ca deposits in the cultured cells.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved.
Ghatak, Arindam; Bharatham, Nagakumar; Shanbhag, Anirudh P.; Datta, Santanu; Venkatraman, Janani
2017-01-01
Short-chain dehydrogenase reductases (SDRs) have been utilized for catalyzing the reduction of many aromatic/aliphatic prochiral ketones to their respective alcohols. However, there is a paucity of data that elucidates their innate biological role and diverse substrate space. In this study, we executed an in-depth biochemical characterization and substrate space mapping (with 278 prochiral ketones) of an unannotated SDR (DHK) from Debaryomyces hansenii and compared it with structurally and functionally characterized SDR Synechococcus elongatus. PCC 7942 FabG to delineate its industrial significance. It was observed that DHK was significantly more efficient than FabG, reducing a diverse set of ketones albeit at higher conversion rates. Comparison of the FabG structure with a homology model of DHK and a docking of substrate to both structures revealed the presence of additional flexible loops near the substrate binding site of DHK. The comparative elasticity of the cofactor and substrate binding site of FabG and DHK was experimentally substantiated using differential scanning fluorimetry. It is postulated that the loop flexibility may account for the superior catalytic efficiency of DHK although the positioning of the catalytic triad is conserved. PMID:28107498
Robot Competence Development by Constructive Learning
NASA Astrophysics Data System (ADS)
Meng, Q.; Lee, M. H.; Hinde, C. J.
This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system’s adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.
Robot Competence Development by Constructive Learning
NASA Astrophysics Data System (ADS)
Meng, Q.; Lee, M. H.; Hinde, C. J.
This paper presents a constructive learning approach for developing sensor-motor mapping in autonomous systems. The system's adaptation to environment changes is discussed and three methods are proposed to deal with long term and short term changes. The proposed constructive learning allows autonomous systems to develop network topology and adjust network parameters. The approach is supported by findings from psychology and neuroscience especially during infants cognitive development at early stages. A growing radial basis function network is introduced as a computational substrate for sensory-motor mapping learning. Experiments are conducted on a robot eye/hand coordination testbed and results show the incremental development of sensory-motor mapping and its adaptation to changes such as in tool-use.
Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes.
He, Siyu; Li, Hongyuan; Gomes, Carmen L; Voronine, Dmitri V
2018-05-03
Optical detection and conformational mapping of aptamers are important for improving medical and biosensing technologies and for better understanding of biological processes at the molecular level. The authors investigate the vibrational signals of deoxyribonucleic acid aptamers specific to Listeria monocytogenes immobilized on gold substrates using tip-enhanced Raman scattering (TERS) spectroscopy and nanoscale imaging. The authors compare topographic and nano-optical signals and investigate the fluctuations of the position-dependent TERS spectra. They perform spatial TERS mapping with 3 nm step size and discuss the limitation of the resulting spatial resolution under the ambient conditions. TERS mapping provides information about the chemical composition and conformation of aptamers and paves the way to future label-free biosensing.
Single-well monitoring of protein-protein interaction and phosphorylation-dephosphorylation events.
Arcand, Mathieu; Roby, Philippe; Bossé, Roger; Lipari, Francesco; Padrós, Jaime; Beaudet, Lucille; Marcil, Alexandre; Dahan, Sophie
2010-04-20
We combined oxygen channeling assays with two distinct chemiluminescent beads to detect simultaneously protein phosphorylation and interaction events that are usually monitored separately. This novel method was tested in the ERK1/2 MAP kinase pathway. It was first used to directly monitor dissociation of MAP kinase ERK2 from MEK1 upon phosphorylation and to evaluate MAP kinase phosphatase (MKP) selectivity and mechanism of action. In addition, MEK1 and ERK2 were probed with an ATP competitor and an allosteric MEK1 inhibitor, which generated distinct phosphorylation-interaction patterns. Simultaneous monitoring of protein-protein interactions and substrate phosphorylation can provide significant mechanistic insight into enzyme activity and small molecule action.
Feasibility study for airborne fluorescence/reflectivity lidar bathymetry
NASA Astrophysics Data System (ADS)
Steinvall, Ove; Kautsky, Hans; Tulldahl, Michael; Wollner, Erika
2012-06-01
There is a demand from the authorities to have good maps of the coastal environment for their exploitation and preservation of the coastal areas. The goal for environmental mapping and monitoring is to differentiate between vegetation and non-vegetated bottoms and, if possible, to differentiate between species. Airborne lidar bathymetry is an interesting method for mapping shallow underwater habitats. In general, the maximum depth range for airborne laser exceeds the possible depth range for passive sensors. Today, operational lidar systems are able to capture the bottom (or vegetation) topography as well as estimations of the bottom reflectivity using e.g. reflected bottom pulse power. In this paper we study the possibilities and advantages for environmental mapping, if laser sensing would be further developed from single wavelength depth sounding systems to include multiple emission wavelengths and fluorescence receiver channels. Our results show that an airborne fluorescence lidar has several interesting features which might be useful in mapping underwater habitats. An example is the laser induced fluorescence giving rise to the emission spectrum which could be used for classification together with the elastic lidar signal. In the first part of our study, vegetation and substrate samples were collected and their spectral reflectance and fluorescence were subsequently measured in laboratory. A laser wavelength of 532 nm was used for excitation of the samples. The choice of 532 nm as excitation wavelength is motivated by the fact that this wavelength is commonly used in bathymetric laser scanners and that the excitation wavelengths are limited to the visual region as e.g. ultraviolet radiation is highly attenuated in water. The second part of our work consisted of theoretical performance calculations for a potential real system, and comparison of separability between species and substrate signatures using selected wavelength regions for fluorescence sensing.
Graf, Eva; Schmidt-Heydt, Markus; Geisen, Rolf
2012-07-16
Strains of the genus Alternaria are ubiquitously present and frequently found on fruits, vegetables and cereals. One of the most commonly found species from this genus is A. alternata which is able to produce the mycotoxin alternariol among others. To date only limited knowledge is available about the regulation of the biosynthesis of alternariol, especially under conditions relevant to food. Tomatoes are a typical substrate of A. alternata and have a high water activity. On the other hand cereals with moderate water activity are also frequently colonized by A. alternata. In the current analysis it was demonstrated that even minor changes in the osmotic status of the substrate affect the alternariol biosynthesis of strains from vegetables resulting in nearly complete inhibition. High osmolarity in the environment is usually transmitted to the transcriptional level of downstream regulated genes by the HOG signal cascade (high osmolarity glycerol cascade) which is a MAP kinase transduction pathway. The phosphorylation status of the A. alternata HOG (AaHOG) was determined. Various concentrations of NaCl induce the phosphorylation of AaHOG in a concentration, time and strain dependent manner. A strain with a genetically inactivated aahog gene was no longer able to produce alternariol indicating that the activity of the aahog gene is required for alternariol biosynthesis. Further experiments revealed that the biosynthesis of alternariol is important for the fungus to colonize tomato tissue. The tight water activity dependent regulation of alternariol biosynthesis ensures alternariol biosynthesis at conditions which indicate an optimal colonization substrate for the fungus. Copyright © 2012 Elsevier B.V. All rights reserved.
Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu
2016-07-01
Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD. Copyright © 2016 Elsevier B.V. All rights reserved.
Subsite mapping of enzymes. Application of the depolymerase computer model to two alpha-amylases.
Allen, J D; Thoma, J A
1976-01-01
In the preceding paper (Allen and Thoma, 1976) we developed a depolymerase computer model, which uses a minimization routine to establish a subsite map for a depolymerase. In the present paper we show how the model is applied to experimental data for two alpha-amylases. Michaelis parameters and bond-cleavage frequencies for substrates of chain lengths up to twelve glucosyl units have been reported for Bacillus amyloliquefaciens, and a subsite map has been proposed for this enzyme [Thoma et al. (1971) J. Biol. Chem. 246, 5621-5635]. By applying the computer model to the experimental data, we have arrived at a ten-subsite map. We find that a significant improvement in this map is achieved by allowing the hydrolytic rate coefficient to vary as a function of the number of occupied subsites comprising the enzyme-binding region. The bond-cleavage frequencies, the enzyme is found to have eight subsites. A partial subsite map is arrived at, but the entire binding region cannot be mapped because Michaelis parameters are complicated by transglycosylation reactions. The hydrolytic rate coefficients for this enzyme are not constant. PMID:999630
ALTERED PHOSPHORYLATION OF MAP KINASE AFTER ACUTE EXPOSURE TO PCB153.
Long-term potentiation (LTP) is a model of synaptic plasticity believed to encompass the physiological substrate of memory. The mitogen-activated protein kinase (ERK1/2) signalling cascade contributes to synaptic plasticity and to long-term memory formation. Learning and LTP st...
Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L
2002-02-01
The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).
Strain field mapping of dislocations in a Ge/Si heterostructure.
Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen
2013-01-01
Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.
Mapping Pathological Phenotypes in a Mouse Model of CDKL5 Disorder
Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L.; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T.
2014-01-01
Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder. PMID:24838000
Regional distribution of T-tubule density in left and right atria in dogs.
Arora, Rishi; Aistrup, Gary L; Supple, Stephen; Frank, Caleb; Singh, Jasleen; Tai, Shannon; Zhao, Anne; Chicos, Laura; Marszalec, William; Guo, Ang; Song, Long-Sheng; Wasserstrom, J Andrew
2017-02-01
The peculiarities of transverse tubule (T-tubule) morphology and distribution in the atrium-and how they contribute to excitation-contraction coupling-are just beginning to be understood. The objectives of this study were to determine T-tubule density in the intact, live right and left atria in a large animal and to determine intraregional differences in T-tubule organization within each atrium. Using confocal microscopy, T-tubules were imaged in both atria in intact, Langendorf-perfused normal dog hearts loaded with di-4-ANEPPS. T-tubules were imaged in large populations of myocytes from the endocardial surface of each atrium. Computerized data analysis was performed using a new MatLab (Mathworks, Natick, MA) routine, AutoTT. There was a large percentage of myocytes that had no T-tubules in both atria with a higher percentage in the right atrium (25.1%) than in the left atrium (12.5%) (P < .02). The density of transverse and longitudinal T-tubule elements was low in cells that did contain T-tubules, but there were no significant differences in density between the left atrial appendage, the pulmonary vein-posterior left atrium, the right atrial appendage, and the right atrial free wall. In contrast, there were significant differences in sarcomere spacing and cell width between different regions of the atria. There is a sparse T-tubule network in atrial myocytes throughout both dog atria, with significant numbers of myocytes in both atria-the right atrium more so than the left atrium-having no T-tubules at all. These regional differences in T-tubule distribution, along with differences in cell width and sarcomere spacing, may have implications for the emergence of substrate for atrial fibrillation. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V; Antzelevitch, Charles
2014-02-01
Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome and examines the effectiveness of quinidine, cilostazol, and milrinone to prevent hypothermia-induced arrhythmias. Transmembrane action potentials were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3-10 μmol/L) and verapamil (1 μmol/L) was used to pharmacologically model the genetic mutations responsible for ER syndrome. Acetylcholine (3 μmol/L) was used to simulate increased parasympathetic tone, which is known to promote ER. In controls, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J-wave area on the ECG and accentuated epicardial action potential notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial action potential notch, leading to loss of the action potential dome at some sites but not others, thus creating the substrate for development of phase 2 reentry and VT/VF. Addition of the transient outward current antagonist quinidine (5 μmol/L) or the phosphodiesterase III inhibitors cilostazol (10 μmol/L) or milrinone (5 μmol/L) diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase 2 reentry. Quinidine, cilostazol, and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities.
Gurabi, Zsolt; Koncz, István; Patocskai, Bence; Nesterenko, Vladislav V.; Antzelevitch, Charles
2014-01-01
Background Hypothermia has been reported to induce ventricular tachycardia and fibrillation (VT/VF) in patients with early repolarization (ER) pattern. This study examines the cellular mechanisms underlying VT/VF associated with hypothermia in an experimental model of ER syndrome (ERS) and examines the effectiveness of quinidine, cilostazol and milrinone to prevent hypothermia-induced arrhythmias. Method and Results Transmembrane action potentials (AP) were simultaneously recorded from 2 epicardial and 1 endocardial site of coronary-perfused canine left-ventricular wedge preparations, together with a pseudo-ECG. A combination of NS5806 (3–10 µM) and verapamil (1µM) was used to pharmacologically model the genetic mutations responsible for ERS. Acetylcholine (3µM) was used to simulate increased parasympathetic tone, which is known to promote ER. In control, lowering the temperature of the coronary perfusate to induce mild hypothermia (32°C-34°C) resulted in increased J wave area on the ECG and accentuated epicardial AP notch but no arrhythmic activity. In the setting of ER, hypothermia caused further accentuation of the epicardial AP notch, leading to loss of the AP dome at some sites but not others, thus creating the substrate for development of phase-2-reentry and VT/VF. Addition of the Ito antagonist quinidine (5 µM) or the phosphodiesterase III inhibitors cilostazol (10 µM) or milrinone (5 µM), diminished the ER manifestations and prevented the hypothermia-induced phase 2 reentry and VT/VF. Conclusions Hypothermia leads to VT/VF in the setting of ER by exaggerating repolarization abnormalities, leading to development of phase-2-reentry. Quinidine, cilostazol and milrinone suppress the hypothermia-induced VT/VF by reversing the repolarization abnormalities. PMID:24429494
Material properties of viral nanocages explored by atomic force microscopy.
van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L
2015-01-01
Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop of AFM, the force applied by the tip on the substrate during scanning can be controlled and monitored. By accurately controlling this scanning force, topographical maps of fragile substrates can be acquired to study the morphology of the substrate. In addition, mechanical properties of the substrate like stiffness and breaking point can be determined by using the force spectroscopy capability of AFM. Here we discuss basics of AFM operation and how this technique is used to determine the structure and mechanical properties of protein nanocages, in particular viral particles. Knowledge of morphology as well as mechanical properties is essential for understanding viral life cycles, including genome packaging, capsid maturation, and uncoating, but also contributes to the development of diagnostics, vaccines, imaging modalities, and targeted therapeutic devices based on viruslike particles.
Wojnar, P; Szymura, M; Zaleszczyk, W; Kłopotowski, L; Janik, E; Wiater, M; Baczewski, L T; Kret, S; Karczewski, G; Kossut, J; Wojtowicz, T
2013-09-13
The absence of luminescence in the near band edge energy region of Te-anion based semiconductor nanowires grown by gold catalyst assisted molecular beam epitaxy has strongly limited their applications in the field of photonics. In this paper, an enhancement of the near band edge emission intensity from ZnTe/ZnMgTe core/shell nanowires grown on Si substrates is reported. A special role of the use of Si substrates instead of GaAs substrates is emphasized, which results in an increase of the near band edge emission intensity by at least one order of magnitude accompanied by a simultaneous reduction of the defect related luminescence. A possible explanation of this effect relies on the presence of Ga-related deep level defects in structures grown on GaAs substrates, which are absent when Si substrates are used. Monochromatic mapping of the cathodoluminescence clearly confirms that the observed emission originates, indeed, from the ZnTe/ZnMgTe core/shell nanowires, whereas individual objects are studied by means of microphotoluminescence.
Peng, Dungeng; Satterlee, James D.; Ma, Li-Hua; Dallas, Jerry L.; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.
2011-01-01
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which secures host iron, shares many properties with mammalian HOs, but also exhibits some key differences. The crystal structure appears more compact and the crystal-undetected C-terminus interacts with substrate in solution. The unique nature of substrate-protein, specifically pyrrole-I/II-helix-2, peripheral interactions in NmHO are probed by 2D 1H NMR to reveal unique structural features controlling substrate orientation. The thermodynamics of substrate orientational isomerism are mapped for substrates with individual vinyl → methyl → hydrogen substitutions and with enzyme C-terminal deletions. NmHO exhibits significantly stronger orientational preference, reflecting much stronger and selective pyrrole-I/II interactions with the protein matrix, than in mammalian HOs. Thus, replacing bulky vinyls with hydrogens results in a 180° rotation of substrate about the α,γ-meso axis in the active site. A "collapse" of the substrate pocket as substrate size decreases is reflected in movement of helix-2 toward the substrate as indicated by significant and selective increased NOESY cross peak intensity, increase in steric Fe-CN tilt reflected in the orientation of the major magnetic axis, and decrease in steric constraints controlling the rate of aromatic ring reorientation. The active site of NmHO appears "stressed" for native protohemin and its "collapse" upon replacing vinyls by hydrogen leads to a factor ~102 increase in substrate affinity. Interaction of the C-terminus with the active site destabilizes the crystallographic protohemin orientation by ~0.7 kcal/mol, which is consistent with optimizing the His207-Asp27 H-bond. Implications of the active site "stress" for product release are discussed. PMID:21870860
Synthesizing cognition in neuromorphic electronic systems
Neftci, Emre; Binas, Jonathan; Rutishauser, Ueli; Chicca, Elisabetta; Indiveri, Giacomo; Douglas, Rodney J.
2013-01-01
The quest to implement intelligent processing in electronic neuromorphic systems lacks methods for achieving reliable behavioral dynamics on substrates of inherently imprecise and noisy neurons. Here we report a solution to this problem that involves first mapping an unreliable hardware layer of spiking silicon neurons into an abstract computational layer composed of generic reliable subnetworks of model neurons and then composing the target behavioral dynamics as a “soft state machine” running on these reliable subnets. In the first step, the neural networks of the abstract layer are realized on the hardware substrate by mapping the neuron circuit bias voltages to the model parameters. This mapping is obtained by an automatic method in which the electronic circuit biases are calibrated against the model parameters by a series of population activity measurements. The abstract computational layer is formed by configuring neural networks as generic soft winner-take-all subnetworks that provide reliable processing by virtue of their active gain, signal restoration, and multistability. The necessary states and transitions of the desired high-level behavior are then easily embedded in the computational layer by introducing only sparse connections between some neurons of the various subnets. We demonstrate this synthesis method for a neuromorphic sensory agent that performs real-time context-dependent classification of motion patterns observed by a silicon retina. PMID:23878215
Bathymetry and acoustic backscatter-outer mainland shelf, eastern Santa Barbara Channel, California
Dartnell, Peter; Finlayson, David P.; Ritchie, Andrew C.; Cochrane, Guy R.; Erdey, Mercedes D.
2012-01-01
In 2010 and 2011, scientists from the U.S. Geological Survey (USGS), Pacific Coastal and Marine Science Center (PCMSC), acquired bathymetry and acoustic-backscatter data from the outer shelf region of the eastern Santa Barbara Channel, California. These surveys were conducted in cooperation with the Bureau of Ocean Energy Management (BOEM). BOEM is interested in maps of hard-bottom substrates, particularly natural outcrops that support reef communities in areas near oil and gas extraction activity. The surveys were conducted using the USGS R/V Parke Snavely, outfitted with an interferometric sidescan sonar for swath mapping and real-time kinematic navigation equipment. This report provides the bathymetry and backscatter data acquired during these surveys in several formats, a summary of the mapping mission, maps of bathymetry and backscatter, and Federal Geographic Data Committee (FGDC) metadata.
California State Waters Map Series: offshore of Tomales Point, California
Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.
2015-01-01
Potential marine benthic habitats in the Offshore of Tomales Point map area range from unconsolidated continental-shelf sediment, to rocky continental-shelf substrate, to unconsolidated estuary sediments. Rocky-shelf outcrops and rubble are considered to be promising potential habitats for rockfish and lingcod, both of which are recreationally and commercially important species. Dynamic bedforms, such as the sand waves at the mouth of Tomales Bay, are considered potential foraging habitat for juvenile lingcod and possibly migratory fishes, as well as for forage fish such as Pacific sand lance.
Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M
2008-11-01
A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.
Auditory Spatial Attention Representations in the Human Cerebral Cortex
Kong, Lingqiang; Michalka, Samantha W.; Rosen, Maya L.; Sheremata, Summer L.; Swisher, Jascha D.; Shinn-Cunningham, Barbara G.; Somers, David C.
2014-01-01
Auditory spatial attention serves important functions in auditory source separation and selection. Although auditory spatial attention mechanisms have been generally investigated, the neural substrates encoding spatial information acted on by attention have not been identified in the human neocortex. We performed functional magnetic resonance imaging experiments to identify cortical regions that support auditory spatial attention and to test 2 hypotheses regarding the coding of auditory spatial attention: 1) auditory spatial attention might recruit the visuospatial maps of the intraparietal sulcus (IPS) to create multimodal spatial attention maps; 2) auditory spatial information might be encoded without explicit cortical maps. We mapped visuotopic IPS regions in individual subjects and measured auditory spatial attention effects within these regions of interest. Contrary to the multimodal map hypothesis, we observed that auditory spatial attentional modulations spared the visuotopic maps of IPS; the parietal regions activated by auditory attention lacked map structure. However, multivoxel pattern analysis revealed that the superior temporal gyrus and the supramarginal gyrus contained significant information about the direction of spatial attention. These findings support the hypothesis that auditory spatial information is coded without a cortical map representation. Our findings suggest that audiospatial and visuospatial attention utilize distinctly different spatial coding schemes. PMID:23180753
Ritter, Philippe; Delnoy, Peter Paul H M; Padeletti, Luigi; Lunati, Maurizio; Naegele, Herbert; Borri-Brunetto, Alberto; Silvestre, Jorge
2012-09-01
Non-response rate to cardiac resynchronization therapy (CRT) might be decreased by optimizing device programming. The Clinical Evaluation on Advanced Resynchronization (CLEAR) study aimed to assess the effects of CRT with automatically optimized atrioventricular (AV) and interventricular (VV) delays, based on a Peak Endocardial Acceleration (PEA) signal system. This multicentre, single-blind study randomized patients in a 1 : 1 ratio to CRT optimized either automatically by the PEA-based system, or according to centres' usual practices, mostly by echocardiography. Patients had heart failure (HF) New York Heart Association (NYHA) functional class III/IV, left ventricular ejection fraction (LVEF) <35%, QRS duration >150 or >120 ms with mechanical dyssynchrony. Follow-up was 1 year. The primary endpoint was the proportion of patients who improved their condition at 1 year, based on a composite of all-cause death, HF hospitalizations, NYHA class, and quality of life. In all, 268 patients in sinus rhythm (63% men; mean age: 73.1 ± 9.9 years; mean NYHA: 3.0 ± 0.3; mean LVEF: 27.1 ± 8.1%; and mean QRS duration: 160.1 ± 22.0 ms) were included and 238 patients were randomized, 123 to PEA and 115 to the control group. At 1 year, 76% of patients assigned to PEA were classified as improved, vs. 62% in the control group (P= 0.0285). The percentage of patients with improved NYHA class was significantly (P= 0.0020) higher in the PEA group than in controls. Fatal and non-fatal adverse events were evenly distributed between the groups. PEA-based optimization of CRT in HF patients significantly increased the proportion of patients who improved with therapy, mainly through improved NYHA class, after 1 year of follow-up.
Vogel, M; Stern, H; Bauer, R; Bühlmeyer, K
1992-04-01
Although left ventricular (LV) mass may be important to judge effects of left-sided cardiac obstruction or hypertension, reproducible noninvasively determined normal data in the pediatric age group are scarce. To validate cross-sectional echocardiographic LV mass determination, our data were compared with LV mass assessed by magnetic resonance imaging (MRI). MRI was considered to be a good reference method because there is usually no problem in defining endo- and epicardial borders with MRI. LV mass was assessed in 14 children aged 5.3 years (10 days to 14.7 years) with a mean body surface area of 0.78 m2 (range 0.25 to 1.61). With cross-sectional echocardiography the epicardial and endocardial volumes were calculated using a Simpsons rule algorithm in the apical 2- and 4-chamber view. The difference between epi- and endocardial volumes was multiplied by 1.05 to yield the mass. Mass was assessed with MRI using a multislice technique; the area of each myocardial slice was calculated and multiplied with the slice thickness, and the resultant slice volumes were added to obtain the myocardial volume. On cross-sectional echocardiography, the mass was 55 g (range 12 to 126) or 64 g/m2 (range 46 to 79); on MRI it was 60 g (range 33 to 87) or 69 g/m2 (range 46 to 89). Regression analysis yielded an r value of 0.98 with a standard error of the estimate of 5.7 g or a 10% difference. In older children, LV mass determined by MRI was bigger than the one derived by echocardiography. It is concluded that cross-sectional echocardiography can reliably assess LV myocardial mass in pediatric patients.
Ventricular stimulus site influences dynamic dispersion of repolarization in the intact human heart
Orini, Michele; Simon, Ron B.; Providência, Rui; Khan, Fakhar Z.; Segal, Oliver R.; Babu, Girish G.; Bradley, Richard; Rowland, Edward; Ahsan, Syed; Chow, Anthony W.; Lowe, Martin D.; Taggart, Peter
2016-01-01
The spatial variation in restitution properties in relation to varying stimulus site is poorly defined. This study aimed to investigate the effect of varying stimulus site on apicobasal and transmural activation time (AT), action potential duration (APD) and repolarization time (RT) during restitution studies in the intact human heart. Ten patients with structurally normal hearts, undergoing clinical electrophysiology studies, were enrolled. Decapolar catheters were placed apex to base in the endocardial right ventricle (RVendo) and left ventricle (LVendo), and an LV branch of the coronary sinus (LVepi) for transmural recording. S1–S2 restitution protocols were performed pacing RVendo apex, LVendo base, and LVepi base. Overall, 725 restitution curves were analyzed, 74% of slopes had a maximum slope of activation recovery interval (ARI) restitution (Smax) > 1 (P < 0.001); mean Smax = 1.76. APD was shorter in the LVepi compared with LVendo, regardless of pacing site (30-ms difference during RVendo pacing, 25-ms during LVendo, and 48-ms during LVepi; 50th quantile, P < 0.01). Basal LVepi pacing resulted in a significant transmural gradient of RT (77 ms, 50th quantile: P < 0.01), due to loss of negative transmural AT-APD coupling (mean slope 0.63 ± 0.3). No significant transmural gradient in RT was demonstrated during endocardial RV or LV pacing, with preserved negative transmural AT-APD coupling (mean slope −1.36 ± 1.9 and −0.71 ± 0.4, respectively). Steep ARI restitution slopes predominate in the normal ventricle and dynamic ARI; RT gradients exist that are modulated by the site of activation. Epicardial stimulation to initiate ventricular activation promotes significant transmural gradients of repolarization that could be proarrhythmic. PMID:27371682
Morgan, John M; Biffi, Mauro; Gellér, László; Leclercq, Christophe; Ruffa, Franco; Tung, Stanley; Defaye, Pascal; Yang, Zhongping; Gerritse, Bart; van Ginneken, Mireille; Yee, Raymond; Jais, Pierre
2016-07-14
The ALternate Site Cardiac ResYNChronization (ALSYNC) study evaluated the feasibility and safety of left ventricular endocardial pacing (LVEP) using a market-released pacing lead implanted via a single pectoral access by a novel atrial transseptal lead delivery system. ALSYNC was a prospective clinical investigation with a minimum of 12-month follow-up in 18 centres of cardiac resynchronization therapy (CRT)-indicated patients, who had failed or were unsuitable for conventional CRT. The ALSYNC system comprises the investigational lead delivery system and LVEP lead. Patients required warfarin therapy post-implant. The primary study objective was safety at 6-month follow-up, which was defined as freedom from complications related to the lead delivery system, implant procedure, or the lead ≥70%. The ALSYNC study enrolled 138 patients. The LVEP lead implant success rate was 89.4%. Freedom from complications meeting the definition of primary endpoint was 82.2% at 6 months (95% CI 75.6-88.8%). In the study, 14 transient ischaemic attacks (9 patients, 6.8%), 5 non-disabling strokes (5 patients, 3.8%), and 23 deaths (17.4%) were observed. No death was from a primary endpoint complication. At 6 months, the New York Heart Association class improved in 59% of patients, and 55% had LV end-systolic volume reduction of 15% or greater. Those patients enrolled after CRT non-response showed similar improvement with LVEP. The ALSYNC study demonstrates clinical feasibility, and provides an early indication of possible benefit and risk of LVEP. NCT01277783. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Feasibility of high-resolution quantitative perfusion analysis in patients with heart failure.
Sammut, Eva; Zarinabad, Niloufar; Wesolowski, Roman; Morton, Geraint; Chen, Zhong; Sohal, Manav; Carr-White, Gerry; Razavi, Reza; Chiribiri, Amedeo
2015-02-12
Cardiac magnetic resonance (CMR) is playing an expanding role in the assessment of patients with heart failure (HF). The assessment of myocardial perfusion status in HF can be challenging due to left ventricular (LV) remodelling and wall thinning, coexistent scar and respiratory artefacts. The aim of this study was to assess the feasibility of quantitative CMR myocardial perfusion analysis in patients with HF. A group of 58 patients with heart failure (HF; left ventricular ejection fraction, LVEF ≤ 50%) and 33 patients with normal LVEF (LVEF >50%), referred for suspected coronary artery disease, were studied. All subjects underwent quantitative first-pass stress perfusion imaging using adenosine according to standard acquisition protocols. The feasibility of quantitative perfusion analysis was then assessed using high-resolution, 3 T kt perfusion and voxel-wise Fermi deconvolution. 30/58 (52%) subjects in the HF group had underlying ischaemic aetiology. Perfusion abnormalities were seen amongst patients with ischaemic HF and patients with normal LV function. No regional perfusion defect was observed in the non-ischaemic HF group. Good agreement was found between visual and quantitative analysis across all groups. Absolute stress perfusion rate, myocardial perfusion reserve (MPR) and endocardial-epicardial MPR ratio identified areas with abnormal perfusion in the ischaemic HF group (p = 0.02; p = 0.04; p = 0.02, respectively). In the Normal LV group, MPR and endocardial-epicardial MPR ratio were able to distinguish between normal and abnormal segments (p = 0.04; p = 0.02 respectively). No significant differences of absolute stress perfusion rate or MPR were observed comparing visually normal segments amongst groups. Our results demonstrate the feasibility of high-resolution voxel-wise perfusion assessment in patients with HF.
Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S
2015-08-01
The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.
Long-term thresholds of nonsteroidal permanent pacing leads: a 5-year study.
Gumbrielle, T P; Bourke, J P; Sinkovic, M; Tynan, M; Kittpawong, P; Gold, R G
1996-05-01
The present commercial market supports many nonsteroidal endocardial pacing leads of differing construction. In order to compare the performance of these configurations, we studied the long-term pacing properties of three representative lead types by randomized clinical trial in 99 patients undergoing a first elective VVI implant. Thirty-one patients received sintered platinum leads, 36 activated pyrolytic carbon leads, and 32 vitreous carbon leads. All received generators capable of noninvasive threshold testing. Acute sensing parameters were R wave amplitude and ST segment elevation measured from the endocardial electrogram. Noninvasive voltage thresholds were measured at implantation, 2 days, 1, 3, and 6 months, and yearly thereafter for 5 years. There were no significant differences between leads in pacing or sensing capabilities at implantation. All three demonstrated similar increases in thresholds, peaking at 1 month, then falling to a plateau by 6 months and did not vary significantly thereafter. There were no significant differences in thresholds between leads during 5 years of follow-up. The lowest mean threshold at 5 years was 0.93 V at 0.5 ms. This study suggests that: (1) although these lead types all perform well, none offers any particular clinical advantage over another; (2) the degree of early threshold peaking precludes immediate postimplant output reduction, but later thresholds are sufficiently low to enable reductions in pacing output; (3) safe low energy pacing requires greater attention to the lead-generator combinations; (4) data obtained at subsequent annual follow-up provided no additional useful clinical information to that obtained at 1 year; and (5) in the absence of other differences, cost can be the deciding factor in lead selection.
Kurfirst, Vojtech; Mokrácek, Aleš; Canádyová, Júlia; Frána, Radim; Zeman, Petr
2017-07-01
Occlusion of the left atrial appendage (LAA) has become an integral and important part of the surgical treatment of atrial fibrillation. Different methods of surgical occlusion of the LAA have been associated with varying levels of short- and long-term success for closure. The purpose of this study was to evaluate long-term results of epicardial placement and endocardial occlusion in patients undergoing cardiac operative procedures. A total of 101 patients (average age 65.7 years) undergoing cardiac operative procedures with the epicardial AtriClip Exclusion System of the LAA were enrolled in the study. The AtriClip was placed via a sternotomy or a thoracotomy or from a thoracoscopic approach. Postoperative variables, such as thromboembolic events, clip stability and endocardial leakage around the device, were examined by transoesophageal echocardiography (TEE) and/or computed tomography. Perioperative clip implantation was achieved in 98% of patients. TEE and/or computed tomography conducted during the follow-up period, comprising 1873 patient-months with a mean duration of 18 ± 11 months, revealed no clip migration, no leakage around the device and no clot formation near the remnant cul-de-sac. During the follow-up period, 4 of the cardiac patients experienced transitory ischaemic attacks, whereas no patient experienced a cerebrovascular attack. The Epicardial AtriClip Exclusion System of the LAA appears to be a feasable and safe operative method with a high success rate. Long-term follow-up confirmed clip stability, complete occlussion of the LAA and absence of any atrial fibrilation-related thromboembolic events. These results need to be confirmed by a larger, multicentre study. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M.; Cai, Chen-Leng
2011-01-01
During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. PMID:21983003
Cai, Xiaoqiang; Nomura-Kitabayashi, Aya; Cai, Weibin; Yan, Jianyun; Christoffels, Vincent M; Cai, Chen-Leng
2011-12-15
During early embryogenesis, the formation of the cardiac atrioventricular canal (AVC) facilitates the transition of the heart from a linear tube into a chambered organ. However, the genetic pathways underlying this developmental process are poorly understood. The T-box transcription factor Tbx20 is expressed predominantly in the AVC of early heart tube. It was shown that Tbx20 activates Nmyc1 and suppresses Tbx2 expression to promote proliferation and specification of the atrial and ventricular chambers, yet it is not known if Tbx20 is involved in early AVC development. Here, we report that mice lacking Tbx20 in the AVC myocardium fail to form the AVC constriction, and the endocardial epithelial-mesenchymal transition (EMT) is severely perturbed. Tbx20 maintains expression of a variety of genes, including Bmp2, Tbx3 and Hand1 in the AVC myocardium. Intriguingly, we found Bmp2 downstream genes involved in the EMT initiation are also downregulated. In addition, re-expression of Bmp2 in the AVC myocardium substantially rescues the EMT defects resulting from the lack of Tbx20, suggesting Bmp2 is one of the key downstream targets of Tbx20 in AVC development. Our data support a complex signaling network with Tbx20 suppressing Tbx2 in the AVC myocardium but also indirectly promoting Tbx2 expression through Bmp2. The spatiotemporal expression of Tbx2 in the AVC appears to be balanced between these two opposing signals. Overall, our study provides genetic evidence that Tbx20 has essential roles in regulating AVC development that coordinate early cardiac chamber formation. Copyright © 2011 Elsevier Inc. All rights reserved.
Additive Prognostic Value of Left Ventricular Systolic Dysfunction in a Population-Based Cohort.
Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Yang, Wen-Yi; Herbots, Lieven; D'hooge, Jan; Haddad, Francois; Thijs, Lutgarde; Voigt, Jens-Uwe; Staessen, Jan A
2016-07-01
Techniques of 2-dimensional speckle tracking enable the measurement of myocardial deformation (strain) during systole. Recent clinical studies explored the prognostic role of left ventricular global longitudinal strain (GLS). However, there are few data on the association between cardiovascular outcome and GLS in the community. Therefore, we hypothesized that GLS contains additive prognostic information over and beyond traditional cardiovascular risk factors in a large, population-based cohort. We measured GLS by 2-dimensional speckle tracking in the apical 4-chamber view in 791 participants (mean age 50.9 years). We calculated multivariable adjusted hazard ratios for midwall, endocardial, and epicardial GLS, while accounting for family cluster and cardiovascular risk factors. Median follow-up was 7.9 years (5th to 95th percentile, 3.7-9.6). In continuous analysis, with adjustments applied for covariables, midwall, endocardial, and epicardial GLS were significant predictors of fatal and nonfatal cardiovascular (n=96; P<0.0001) and cardiac events (n=68; P≤0.001). In the sex-specific low quartile of midwall GLS (<18.8% in women and <17.4% in men), the risk was significantly higher than the average population risk for cardiovascular (128%, P<0.0001) and cardiac (94%, P=0.0007) events. We also noticed that the risk for cardiovascular events increased with increasing number of left ventricular abnormalities, such as low GLS, diastolic dysfunction, and hypertrophy (log-rank P<0.0001). Low GLS measured by 2-dimensional speckle tracking predicts future cardiovascular events independent of conventional risk factors. Left ventricular midwall strain represents a simple echocardiographic measure, which might be used for assessing cardiovascular risk in a population-based cohort. © 2016 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Vlassak, Irmien; Rubin, David N.; Odabashian, Jill A.; Garcia, Mario J.; King, Lisa M.; Lin, Steve S.; Drinko, Jeanne K.; Morehead, Annitta J.; Prior, David L.; Asher, Craig R.;
2002-01-01
BACKGROUND: Newer contrast agents as well as tissue harmonic imaging enhance left ventricular (LV) endocardial border delineation, and therefore, improve LV wall-motion analysis. Interpretation of dobutamine stress echocardiography is observer-dependent and requires experience. This study was performed to evaluate whether these new imaging modalities would improve endocardial visualization and enhance accuracy and efficiency of the inexperienced reader interpreting dobutamine stress echocardiography. METHODS AND RESULTS: Twenty-nine consecutive patients with known or suspected coronary artery disease underwent dobutamine stress echocardiography. Both fundamental (2.5 MHZ) and harmonic (1.7 and 3.5 MHZ) mode images were obtained in four standard views at rest and at peak stress during a standard dobutamine infusion stress protocol. Following the noncontrast images, Optison was administered intravenously in bolus (0.5-3.0 ml), and fundamental and harmonic images were obtained. The dobutamine echocardiography studies were reviewed by one experienced and one inexperienced echocardiographer. LV segments were graded for image quality and function. Time for interpretation also was recorded. Contrast with harmonic imaging improved the diagnostic concordance of the novice reader to the expert reader by 7.1%, 7.5%, and 12.6% (P < 0.001) as compared with harmonic imaging, fundamental imaging, and fundamental imaging with contrast, respectively. For the novice reader, reading time was reduced by 47%, 55%, and 58% (P < 0.005) as compared with the time needed for fundamental, fundamental contrast, and harmonic modes, respectively. With harmonic imaging, the image quality score was 4.6% higher (P < 0.001) than for fundamental imaging. Image quality scores were not significantly different for noncontrast and contrast images. CONCLUSION: Harmonic imaging with contrast significantly improves the accuracy and efficiency of the novice dobutamine stress echocardiography reader. The use of harmonic imaging reduces the frequency of nondiagnostic wall segments.
Hallaq, Haifa; Pinter, Emese; Enciso, Josephine; McGrath, James; Zeiss, Caroline; Brueckner, Martina; Madri, Joseph; Jacobs, Harris C; Wilson, Christine M; Vasavada, Hemaxi; Jiang, Xiaobing; Bogue, Clifford W
2004-10-01
The homeobox gene Hhex has recently been shown to be essential for normal liver, thyroid and forebrain development. Hhex(-/-) mice die by mid-gestation (E14.5) and the cause of their early demise remains unclear. Because Hhex is expressed in the developing blood islands at E7.0 in the endothelium of the developing vasculature and heart at E9.0-9.5, and in the ventral foregut endoderm at E8.5-9.0, it has been postulated to play a critical role in heart and vascular development. We show here, for the first time, that a null mutation of Hhex results in striking abnormalities of cardiac and vascular development which include: (1) defective vasculogenesis, (2) hypoplasia of the right ventricle, (3) overabundant endocardial cushions accompanied by ventricular septal defects, outflow tract abnormalities and atrio-ventricular (AV) valve dysplasia and (4) aberrant development of the compact myocardium. The dramatic enlargement of the endocardial cushions in the absence of Hhex is due to decreased apoptosis and dysregulated epithelial-mesenchymal transformation (EMT). Interestingly, vascular endothelial growth factor A (Vegfa) levels in the hearts of Hhex(-/-) mice were elevated as much as three-fold between E9.5 and E11.5, and treatment of cultured Hhex(-/-) AV explants with truncated soluble Vegfa receptor 1, sFlt-1, an inhibitor of Vegf signaling, completely abolished the excessive epithelial-mesenchymal transformation seen in the absence of Hhex. Therefore, Hhex expression in the ventral foregut endoderm and/or the endothelium is necessary for normal cardiovascular development in vivo, and one function of Hhex is to repress Vegfa levels during development.
Tovia-Brodie, Oholi; Belhassen, Bernard; Glick, Aharon; Shmilovich, Haim; Aviram, Galit; Rosso, Raphael; Michowitz, Yoav
2017-02-01
A new imaging software (CARTO® Segmentation Module, Biosense Webster) allows preprocedural 3-D reconstruction of all heart chambers based on cardiac CT. We describe our initial experience with the new module during ablation of ventricular arrhythmias. Eighteen consecutive patients with idiopathic ventricular arrhythmias or ischemic ventricular tachycardia (VT) were studied. In the latter group, a combined endocardial and epicardial ablation was performed. Of the 14 patients with idiopathic arrhythmias, 12 were ablated in the outflow tract (OT), 1 in the midseptal left ventricle, and 1 at the left posterior fascicular area; acute successful ablation was achieved in 11 (78.6%) patients. The procedure was discontinued due to close proximity of the arrhythmia origin to the coronary arteries (CA) in 2 patients. Acute successful uncomplicated ablation was achieved in all 4 patients with ischemic VT. During ablation in the coronary cusps commissures, the CARTO® Segmentation Module accurately defined the cusps anatomy. The precise anatomic location provided by the module assisted in successfully ablating when information from activation mapping was not optimal, by ablating at the opposite side of the cusps. In addition, by demonstrating the precise location of the CA, it allowed safe ablation of arrhythmias that originated in close proximity to the CA both in the OT area and the epicardium, eliminating the need for repeat angiography. The CARTO® Segmentation Module is useful for accurate definition of the exact anatomic location of ventricular arrhythmias and for safely ablating them especially in close proximity to the CA. © 2016 Wiley Periodicals, Inc.
Spatial Resolution Requirements for Accurate Identification of Drivers of Atrial Fibrillation
Roney, Caroline H.; Cantwell, Chris D.; Bayer, Jason D.; Qureshi, Norman A.; Lim, Phang Boon; Tweedy, Jennifer H.; Kanagaratnam, Prapa; Vigmond, Edward J.; Ng, Fu Siong
2017-01-01
Background— Recent studies have demonstrated conflicting mechanisms underlying atrial fibrillation (AF), with the spatial resolution of data often cited as a potential reason for the disagreement. The purpose of this study was to investigate whether the variation in spatial resolution of mapping may lead to misinterpretation of the underlying mechanism in persistent AF. Methods and Results— Simulations of rotors and focal sources were performed to estimate the minimum number of recording points required to correctly identify the underlying AF mechanism. The effects of different data types (action potentials and unipolar or bipolar electrograms) and rotor stability on resolution requirements were investigated. We also determined the ability of clinically used endocardial catheters to identify AF mechanisms using clinically recorded and simulated data. The spatial resolution required for correct identification of rotors and focal sources is a linear function of spatial wavelength (the distance between wavefronts) of the arrhythmia. Rotor localization errors are larger for electrogram data than for action potential data. Stationary rotors are more reliably identified compared with meandering trajectories, for any given spatial resolution. All clinical high-resolution multipolar catheters are of sufficient resolution to accurately detect and track rotors when placed over the rotor core although the low-resolution basket catheter is prone to false detections and may incorrectly identify rotors that are not present. Conclusions— The spatial resolution of AF data can significantly affect the interpretation of the underlying AF mechanism. Therefore, the interpretation of human AF data must be taken in the context of the spatial resolution of the recordings. PMID:28500175
X-ray probe of GaN thin films grown on InGaN compliant substrates
NASA Astrophysics Data System (ADS)
Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua
2013-04-01
GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.
Profilometry of thin films on rough substrates by Raman spectroscopy
Ledinský, Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbühler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf , Stefaan; Ballif , Christophe; Fejfar, Antonín
2016-01-01
Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2. PMID:27922033
Transcriptome-wide Analysis of Exosome Targets
Schneider, Claudia; Kudla, Grzegorz; Wlotzka, Wiebke; Tuck, Alex; Tollervey, David
2012-01-01
Summary The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. Here we apply in vivo RNA crosslinking (CRAC) to the nucleases (Rrp44, Rrp6), two structural subunits (Rrp41, Csl4) and a cofactor (Trf4) of the yeast exosome. Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of non-coding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome indicating that substrates follow multiple pathways to the nucleases. PMID:23000172
Structural basis of substrate discrimination and integrin binding by autotaxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos
2013-09-25
Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates.more » We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.« less
Stephens, David; Diesing, Markus
2014-01-01
Detailed seabed substrate maps are increasingly in demand for effective planning and management of marine ecosystems and resources. It has become common to use remotely sensed multibeam echosounder data in the form of bathymetry and acoustic backscatter in conjunction with ground-truth sampling data to inform the mapping of seabed substrates. Whilst, until recently, such data sets have typically been classified by expert interpretation, it is now obvious that more objective, faster and repeatable methods of seabed classification are required. This study compares the performances of a range of supervised classification techniques for predicting substrate type from multibeam echosounder data. The study area is located in the North Sea, off the north-east coast of England. A total of 258 ground-truth samples were classified into four substrate classes. Multibeam bathymetry and backscatter data, and a range of secondary features derived from these datasets were used in this study. Six supervised classification techniques were tested: Classification Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and Naive Bayes. Each classifier was trained multiple times using different input features, including i) the two primary features of bathymetry and backscatter, ii) a subset of the features chosen by a feature selection process and iii) all of the input features. The predictive performances of the models were validated using a separate test set of ground-truth samples. The statistical significance of model performances relative to a simple baseline model (Nearest Neighbour predictions on bathymetry and backscatter) were tested to assess the benefits of using more sophisticated approaches. The best performing models were tree based methods and Naive Bayes which achieved accuracies of around 0.8 and kappa coefficients of up to 0.5 on the test set. The models that used all input features didn't generally perform well, highlighting the need for some means of feature selection.
Graphene revisited: From orbital mapping to its impact as a substrate
NASA Astrophysics Data System (ADS)
Draxl, Claudia
Graphene, the material of the 21st century, is without doubt one of the best characterized solids. Despite the enormous amount of investigations and related publications, it still it offers a variety of exciting aspects to explore, in particular in view of its excitations. Combining density-functional theory with many-body perturbation theory, as implemented in the all-electron full-potential package exciting, provides a powerful framework for this purpose. (i) The first example concerns the question, whether we can ``see'' orbitals in an electron microscope. Indeed, transmission electron microscopy can be used for mapping atomic orbitals, as demonstrated recently by a first-principles approach. For defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom different kinds of images are to be expected, depending on the orbital character. (ii) Graphene/BN heterostructures absorb light over a broad frequency range, from the near-infrared to the ultraviolet region, exhibiting novel features induced by the stacking. Peculiar features of their excitations are inter-layer excitons that can be modulated upon layer patterning. By choosing the stacking arrangement, the electronic coupling between the individual components can be tuned to enhance light-matter interaction. (iii) As demonstrated for azobenzene monolayers, graphene as a substrate strongly impacts the photo-switching behavior of molecules. Despite the weak hybridization, the photo-absorption of the molecules is remarkably modulated. While substrate polarization reduces the band-gap of the adsorbate, enhanced dielectric screening weakens the attractive interaction between electrons and holes. Furthermore, excitations corresponding to intermolecular electron-hole pairs, which are dark in the isolated monolayers, are activated by the presence of the substrate. (iv) Finally, we ask how first- and second-order Raman spectra of graphene are affected by strain that may be induced by an underlying substrate. Support from the DFG and the FWF is appreciated.
NASA Astrophysics Data System (ADS)
Hamylton, S.; Andréfouët, S.; Spencer, T.
2012-10-01
Increasing the use of geomorphological map products in marine spatial planning has the potential to greatly enhance return on mapping investment as they are commonly two orders of magnitude cheaper to produce than biologically-focussed maps of benthic communities and shallow substrates. The efficacy of geomorphological maps derived from remotely sensed imagery as surrogates for habitat diversity is explored by comparing two map sets of the platform reefs and atolls of the Amirantes Archipelago (Seychelles), Western Indian Ocean. One mapping campaign utilised Compact Airborne Spectrographic Imagery (19 wavebands, 1 m spatial resolution) to classify 11 islands and associated reefs into 25 biological habitat classes while the other campaign used Landsat 7 + ETM imagery (7 bands, 30 m spatial resolution) to generate maps of 14 geomorphic classes. The maps were compared across a range of characteristics, including habitat richness (number of classes mapped), diversity (Shannon-Weiner statistic) and thematic content (Cramer's V statistic). Between maps, a strong relationship was revealed for habitat richness (R2 = 0.76), a moderate relationship for class diversity and evenness (R2 = 0.63) and a variable relationship for thematic content, dependent on site complexity (V range 0.43-0.93). Geomorphic maps emerged as robust predictors of the habitat richness in the Amirantes. Such maps therefore demonstrate high potential value for informing coastal management activities and conservation planning by drawing on information beyond their own thematic content and thus maximizing the return on mapping investment.
X-ray Reciprocal Space Mapping of Graded Al x Ga1 - x N Films and Nanowires.
Stanchu, Hryhorii V; Kuchuk, Andrian V; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Zytkiewicz, Zbigniew R; Belyaev, Alexander E; Salamo, Gregory J
2016-12-01
The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls. Finally, we demonstrate that the developed X-ray reciprocal space map model allows for reliable depth profiles of strain and Al composition determination in both Al x Ga1 - x N films and NWs.
USDA-ARS?s Scientific Manuscript database
Background: The catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys residues in the primary ...
Surface plasmon resonance sensing: from purified biomolecules to intact cells.
Su, Yu-Wen; Wang, Wei
2018-04-12
Surface plasmon resonance (SPR) has become a well-recognized label-free technique for measuring the binding kinetics between biomolecules since the invention of the first SPR-based immunosensor in 1980s. The most popular and traditional format for SPR analysis is to monitor the real-time optical signals when a solution containing ligand molecules is flowing over a sensor substrate functionalized with purified receptor molecules. In recent years, rapid development of several kinds of SPR imaging techniques have allowed for mapping the dynamic distribution of local mass density within single living cells with high spatial and temporal resolutions and reliable sensitivity. Such capability immediately enabled one to investigate the interaction between important biomolecules and intact cells in a label-free, quantitative, and single cell manner, leading to an exciting new trend of cell-based SPR bioanalysis. In this Trend Article, we first describe the principle and technical features of two types of SPR imaging techniques based on prism and objective, respectively. Then we survey the intact cell-based applications in both fundamental cell biology and drug discovery. We conclude the article with comments and perspectives on the future developments. Graphical abstract Recent developments in surface plasmon resonance (SPR) imaging techniques allow for label-free mapping the mass-distribution within single living cells, leading to great expansions in biomolecular interactions studies from homogeneous substrates functionalized with purified biomolecules to heterogeneous substrates containing individual living cells.
Seafloor mapping and benthic habitat GIS for southern California, volume III
Cochrane, Guy R.; Golden, Nadine E.; Dartnell, Pete; Schroeder, Donna M.; Finlayson, David P.
2007-01-01
From August 8-27, 2005, more than 75 km of the continental shelf (Fig. 1) in water depths of 20-70m southeast of Santa Barbara, were surveyed during the USGS cruise S-1-05-SC (http://walrus.wr.usgs.gov/infobank/s/s105sc/html/s-1-05-sc.meta.html). Both Interferometric sonar and 14 hours of both vertical and oblique georeferenced submarine digital video were collected to (1) obtain geophysical data (bathymetry and acoustic reflectance), (2) examine and record geologic characteristics of the sea floor, and (3) construct maps of seafloor geomorphology and habitat distribution. Substrate distribution is predicted using a modified version of Cochrane and Lafferty (2002) video-supervised statistical classification of sonar data that includes derivatives of bathymetry data. Specific details of the methods can be found in the meatadata of the bathymetry data file. Substrates observed are predominantly sand with some rock. Rocky substrates were restricted primarily to an east-west trending bathymetric high 2,000 m north of oil platforms. This is an updated report (version 2.0) from the earlier 2007-1271 (version 1.0) open-file report. This updated report re-releases the data files in UTM, zone 11, WGS84 coordinates. Also, the bathymetry data has been corrected for a vertical offset discovered in the earlier 2007-1271 (version 1.0) report.
Mapping Sargassum beds off, ChonBuri Province, Thailand, using ALOS AVNI2 image
NASA Astrophysics Data System (ADS)
Noiraksar, Thidarat; Komatsu, Teruhisa; Sawayama, Shuhei; Phauk, Sophany; Hayashizaki, Ken-ichi
2012-10-01
Sargassum species grow on rocks and dead corals and form dense seaweed beds. Sargassum beds play ecological roles such as CO2 uptake and O2 production through photosynthesis, spawning and nursery grounds of fish, feeding ground for sea urchins and abalones, and substrates for attached animals and plants on leaves and holdfasts. However, increasing human impacts and climate change decrease or degrade Sargassum beds in ASEAN countries. It is necessary to grasp present spatial distributions of this habitat. Thailand, especially its coastal zone along the Gulf of Thailand, is facing degradation of Sargassum beds due to increase in industries and population. JAXA launched non-commercial satellite, ALOS, providing multiband images with ultra-high spatial resolution optical sensors (10 m), AVNIR2. Unfortunately, ALOS has terminated its mission in April 2011. However, JAXA has archived ALOS AVNIR2 images over the world. They are still useful for mapping coastal ecosystems. We examined capability of remote sensing with ALOS AVNIR2 to map Sargassum beds in waters off Sattahip protected area as a natural park in Chon Buri Province, Thailand, threatened by degradation of water quality due to above-mentioned impacts. Ground truth data were obtained in February 2012 by using continual pictures taken by manta tow. Supervised classification could detect Sargassum beds off Sattahip at about 70% user accuracy. It is estimated that error is caused by mixel effect of bottom substrates in a pixel with 10 x 10 m. Our results indicate that ALOS AVNIR2 images are useful for mapping Sargassum beds in Southeast Asia.
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Mechanistic Comparison of "Nearly Missed" Versus "On-Target" Rotor Ablation.
Yamazaki, Masatoshi; Avula, Uma Mahesh R; Berenfeld, Omer; Kalifa, Jérôme
2015-08-01
This study used advanced optical mapping techniques to examine atrial fibrillation (AF) dynamics before and after 2 distinct electrogram-based ablation strategies: complex fractionated atrial electrograms (CFAEs) and DFmax/rotor ablation. Among the electrogram analytical features proposed to unravel the atrial regions that perpetuate AF, CFAEs, highest dominant frequency sites (DFmax), and, more recently, phase analysis-enabled rotor mapping have received the largest attention. Still, the mechanisms by which these approaches modulate AF dynamics and lead to AF termination are unknown. In Langendorff-perfused sheep hearts, AF was maintained by the continuous perfusion of acetylcholine and high-resolution endocardial-epicardial optical videos were recorded from the left atrial free wall and the posterior left atrium. Then, DFmax/rotor regions (n = 7), or CFAE regions harboring the highest wavebreak density (HWD) (n = 5), were targeted with a 4F ablation catheter (5 to 15 W, 30 to 60 s/point). Thereafter, we examined the changes in AF dynamics and whether AF terminated. DFmax/rotor point ablation resulted in a significant decrease in DFmax values. In 2 animals AF terminated, whereas in the remaining 5 animals the post-ablation DFmax domain remained in the vicinity of its pre-ablation location. However, after HWD/CFAEs density ablation, DFmax values did not change, AF did not terminate, and post-ablation DFmax domains relocated from the left atrial free wall to the pulmonary vein-posterior left atrium region. In another group of hearts (n = 12), we observed that upon a progressive increase in acetylcholine concentration-mimicking the acute electrophysiological changes occurring after ablation-3-dimensional rotors drifted from one atrial region to another along large gradients of myocardial thickness. "On-target" DFmax/rotor ablation leads to the annihilation of the fibrillation-driving rotor. This translates into large decreases in AF frequency or AF termination. In contrast, "nearly missed" HWD/CFAEs ablation spares the fibrillation-driving rotor, and set the stage for rotor drift along large myocardial thickness gradients. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Janusek, D; Svehlikova, J; Zelinka, J; Weigl, W; Zaczek, R; Opolski, G; Tysler, M; Maniewski, R
2018-05-08
The occurrence of T-wave alternans in electrocardiographic signals was recently linked to susceptibility to ventricular arrhythmias and sudden cardiac death. Thus, by detecting and comprehending the origins of T-wave alternans, it might be possible to prevent such events. Here, we simulated T-wave alternans in a computer-generated human heart model by modulating the action potential duration and amplitude during the first part of the repolarization phase. We hypothesized that changes in the intracardiac alternans patterns of action potential properties would differentially influence T-wave alternans measurements at the body surface. Specifically, changes were simulated globally in the whole left and right ventricles to simulate concordant T-wave alternans, and locally in selected regions to simulate discordant and regional discordant, hereinafter referred to as "regional", T-wave alternans. Body surface potential maps and 12-lead electrocardiographic signals were then computed. In depth discrimination, the influence of epicardial layers on T-wave alternans development was significantly higher than that of mid-myocardial cells. Meanwhile, spatial discrimination revealed that discordant and regional action potential property changes had a higher influence on T-wave alternans amplitude than concordant changes. Notably, varying T-wave alternans sources yielded distinct body surface potential map patterns for T-wave alternans amplitude, which can be used for location of regions within hearts exhibiting impaired repolarization. The highest ability for T-wave alternans detection was achieved in lead V1. Ultimately, we proposed new parameters Vector Magnitude Alternans and Vector Angle Alternans, with higher ability for T-wave alternans detection when using multi-lead electrocardiographic signals processing than for single leads. Finally, QT alternans was found to be associated with the process of T-wave alternans generation. The distributions of the body surface T-wave alternans amplitude have been shown to have unique patterns depending on the type of alternans (concordant, discordant or regional) and the location of the disturbance in the heart. The influence of epicardial cells on T-wave alternans development is significantly higher than that of mid-myocardial cells, among which the sub-endocardial layer exerted the highest influence. QT interval alternans is identified as a phenomenon that correlate with T-wave alternans.
Effect of substrate orientation on CdS homoepitaxy by molecular dynamics
Almeida, S.; Chavez, J. J.; Zhou, X. W.; ...
2016-02-10
CdS homoepitaxy growth was performed by molecular dynamics using different substrate orientations and structures in order to analyze the CdS crystallinity. As anticipated from thermodynamics of homoepitaxy, highly crystalline films with only point defects were obtained on substrates with rectangular surface geometries, including View the MathML source[112¯] zinc blende (ZB), [101¯0] wurtzite (WZ), [112¯0] WZ, [110][110] ZB, [010][010] ZB, and View the MathML source[1101110] ZB. In contrast, films grown on substrates with hexagonal surface geometries, corresponding to the [0001][0001] WZ and [111][111] ZB growth directions, showed structures with a large number of defects including; anti-sites, vacancies, stacking faults, twinning, andmore » polytypism. WZ and ZB transitions and grain boundaries are identified using a lattice identification algorithm and represented graphically in a structural map. A dislocation analysis was performed to detect, identify, and quantify linear defects within the atomistic data. Systematic simulations using different temperatures, deposition rates, and substrate polarities were perform to analyze the trends of dislocation densities on [0001][0001] WZ direction and showed persistent polytypism. As a result, the polytypism observed in the films grown on the substrates with hexagonal surface geometry is attributed to the similar formation energies of the WZ and ZB phases.« less
Molecular Interaction Map of the Mammalian Cell Cycle Control and DNA Repair Systems
Kohn, Kurt W.
1999-01-01
Eventually to understand the integrated function of the cell cycle regulatory network, we must organize the known interactions in the form of a diagram, map, and/or database. A diagram convention was designed capable of unambiguous representation of networks containing multiprotein complexes, protein modifications, and enzymes that are substrates of other enzymes. To facilitate linkage to a database, each molecular species is symbolically represented only once in each diagram. Molecular species can be located on the map by means of indexed grid coordinates. Each interaction is referenced to an annotation list where pertinent information and references can be found. Parts of the network are grouped into functional subsystems. The map shows how multiprotein complexes could assemble and function at gene promoter sites and at sites of DNA damage. It also portrays the richness of connections between the p53-Mdm2 subsystem and other parts of the network. PMID:10436023
Lee, Yoon Kyeung; Jang, Kyung-In; Ma, Yinji; Koh, Ahyeon; Chen, Hang; Jung, Han Na; Kim, Yerim; Kwak, Jean Won; Wang, Liang; Xue, Yeguang; Yang, Yiyuan; Tian, Wenlong; Jiang, Yu; Zhang, Yihui; Feng, Xue; Huang, Yonggang
2017-01-01
A collection of materials and device architectures are introduced for thin, stretchable arrays of ion sensors that mount on open cellular substrates to facilitate solution exchange for use in biointegrated electronics. The results include integration strategies and studies of fundamental characteristics in chemical sensing and mechanical response. The latter involves experimental measurements and theoretical simulations that establish important considerations in the design of low modulus, stretchable properties in cellular substrates, and in the realization of advanced capabilities in spatiotemporal mapping of chemicals' gradients. As the chemical composition of extracellular fluids contains valuable information related to biological function, the concepts introduced here have potential utility across a range of skin- and internal-organ-integrated electronics where soft mechanics, fluidic permeability, and advanced chemical sensing capabilities are key requirements. PMID:28989338
NASA Astrophysics Data System (ADS)
Okita, Koshi; Inaba, Katsuhiko; Yatabe, Zenji; Nakamura, Yusui
2018-06-01
ZnS is attractive as a material for low-cost light-emitting diodes. In this study, a non-polar ZnS layer was epitaxially grown on a sapphire substrate by inserting a ZnO buffer layer between ZnS and sapphire. The ZnS and ZnO layers were grown by a mist chemical vapor deposition system with a simple setup operated under atmospheric pressure. The sample was characterized by high-resolution X-ray diffraction measurements including 2θ/ω scans, rocking curves, and reciprocal space mapping. The results showed that an m-plane wurtzite ZnS layer grew epitaxially on an m-plane wurtzite ZnO buffer layer formed on the m-plane sapphire substrate to provide a ZnS/ZnO/sapphire structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gullberg, Grant, T; Huesman, Ronald, H; Reutter, Bryan, W
Problem: In the case of hypertrophy caused by pressure overload (hypertension) there is an increase in cardiac mass and modification cardiac metabolism. Aim: This study was designed to study the changes in glucose metabolism, ejection fraction, and deformation in the left ventricle with the progression of hypertrophy in spontaneous hypertensive rats (SHR). Methods: Dynamic PET data were acquired using the microPET II at UC Davis. Two rats were imaged at 10-week intervals for 18 months. Each time a dose of approximately 1- 1.5 mCi of F-18-FDG was injected into a normotensive Wistar Kyoto (WKY) rat and the same dose wasmore » injected into a SHR rat. Each rat was imaged using a gated dynamic acquisition for 80 minutes acquiring list mode data with cardiac gating of approximately 600-900 million total counts. For the analysis of glucose of metabolism, the list mode data were histogrammed into a dynamic sequence (42 frames over 80 mins). For each time frame, projection data of 1203 140x210 sinograms of 0.582 mm bins were formed by summing the last three gates before and one after the R-wave trigger to correspond to the diastolic phase of the cardiac cycle. Dynamic sequences of 128x128x83 matrices of 0.4x0.4x0.582 mm3 voxels in x, y, and z were reconstructed using an iterative MAP reconstruction which used a prior that penalized the high frequency components of the reconstruction using appropriate weighting between 26 nearest neighboring voxels. Time activity curves were generated from the dynamic reconstructed sequence for the blood and left ventricular tissue regions of interest which were fit to a 2-compartment model to obtain a least squares fit for the kinetic parameters. For the analysis of deformation, the list mode data were histogrammed into 8 gates of the cardiac cycle, each gate was the total sum of the later 60 mins of the 80 min acquisition. Images of 128x128x83 matrices for each gate were reconstructed using the same iterative MAP reconstruction used to reconstruct the dynamic sequence. The in-plane image dimensions were doubled to 256x256x83 in order to increase the resolution for the Warping analyses. These image data sets were then cropped to 128x128x83. The end-systolic image data sets were designated as the template images and the end-diastole image data sets were designated as the target images, thus providing an analysis of the diastolic relaxation and filling phases of the cardiac cycle. The template images were manually segmented to create surface definitions representing the epi- and endocardial surfaces. Finite element models of the left ventricles were created using the segmented surfaces and defining a transversely isotropic material with fiber angles varying from the epicardial surface to the endocardial surface. A Warping analyses was performed to obtain the LV strain tensor and fiber stretch distributions. Results: In one study, the average first principal Green-Lagrange strain, fiber stretch, ejection fraction, and metabolic rate of F-18-FDG was 0.22, 1.08, 80%, 0.1 for the WKY rat and 0.16, 1.06, 50%, 0.25 for the SHR rat, respectively. These same rats studied a year later presented with a metabolic rate of F-18-FDG of 0.11 and 0.25 for the WKY and SHR, respectively. A follow-up study the average strain (n=10) and ejection fraction (n=18) was 0.21, 72.7% for WKY and 0.17, 69.8% for the SHR, respectively. Conclusion: In the case of pressure overload there is an increased reliance on carbohydrate oxidation in an attempt to maintain contractile function.« less
Yamazoe, Shogo; Naya, Masayuki; Shiota, Megumi; Morikawa, Takayuki; Kubo, Akiko; Tani, Takeharu; Hishiki, Takako; Horiuchi, Tadashi; Suematsu, Makoto; Kajimura, Mayumi
2014-06-24
Although SERS spectroscopy, which is sensitive to molecular vibration states, offers label-free visualization of molecules, identification of molecules and their reliable large-area imaging remains to be developed. Limitation comes from difficulties in fabricating a SERS-active substrate with homogeneity over a large area. Here, we overcome this hurdle by utilizing a self-assembled nanostructure of boehmite that is easily achieved by a hydrothermal preparation of aluminum as a template for subsequent gold (Au) deposition. This approach brought about random arrays of Au-nanostructures with a diameter of ∼125 nm and a spacing of <10 nm, ideal for the hot-spots formation. The substrate, which we named "gold nanocoral" (GNC) after its coral reef-like shape, exhibited a small variability of signal intensities (coefficient value <11.2%) in detecting rhodamine 6G molecule when 121 spots were measured over an area of 10 × 10 mm(2), confirming high uniformity. The transparent nature of boehmite enabled us to conduct the measurement from the back-side of the substrate as efficiently as that from the front-side. We then conducted tissue imaging using the mouse ischemic brain adhered on the GNC substrate. Through nontargeted construction of two-dimensional-Raman-intensity map using differential bands from two metabolically distinct regions, that is, ischemic core and contralateral-control areas, we found that mapping using the adenine ring vibration band at 736 cm(-1) clearly demarcated ischemic core where high-energy adenine phosphonucleotides were degraded as judged by imaging mass spectrometry. Such a detection capability makes the GNC-based SERS technology especially promising for revealing acute energy derangement of tissues.
Fatal Lyme carditis and endodermal heterotopia of the atrioventricular node.
Cary, N. R.; Fox, B.; Wright, D. J.; Cutler, S. J.; Shapiro, L. M.; Grace, A. A.
1990-01-01
A fatal case of Lyme carditis occurring in a Suffolk farmworker is reported. Post-mortem examination of the heart showed pericarditis, focal myocarditis and prominent endocardial and interstitial fibrosis. The additional finding of endodermal heterotopia ('mesothelioma') of the atrioventricular node raises the possibility that this could also be related to Lyme infection and account for the relatively frequent occurrence of atrioventricular block in this condition. Lyme disease should always be considered in a case of atrioventricular block, particularly in a young patient from a rural area. The heart block tends to improve and therefore only temporary pacing may be required. Images Figure 1 Figure 2 Figure 3 PMID:2349186
Malformation of the canine mitral valve complex.
Litu, S K; Tilley, L P
1975-09-15
Twenty-nine dogs, including 13 Great Danes and 5 German Shepherd Dogs and averaging 7.3 months age, were diagnosed clinically and radiographically as having mitral regurgitation. Alterations of the mitral valve complex included enlarged anulus; short thick leaflets, with an occasional cleft; short and stout or long and thin chordae tendineae; upward malposition of atrophic or hypertrophic papillary muscles; insertion of one papillary muscle directly into one or both leaflets; and diffuse endocardial fibrosis, occasionally with jet lesions in te left atrium. Other cardiac anomalies included dysplasia of the tricuspid valve (5 dogs), patent ductus afteriosus (2 dogs), aortic stenosis (2 dogs), and ventricular septal defect (1 dog).
Cesko, I; Hajdú, J; Marton, T; Tóth-Pál, E; Papp, C; Papp, Z
1998-05-03
The atrioventricular septal defect is usually associated with trisomy 21 and it may be observed in the heterotaxia syndromes. Atrioventricular septal defect may be associated with 8p deletion. There are reported cases of familial atrioventricular septal defect. Atrioventicular septal defect is rarely associated with other chromosomal abnormalities. We are reporting three unusual cases of atrioventricular septal defect that were associated with trisomy 13, 18 and 22. This association may be due to effect of genetic loci on the 13, 18 and 22 chromosome which could play the role in the development and fusion of endocardial cushion and atrioventricular septal defect.
Errahmouni, A; Bun, S-S; Latcu, D G; Tazi-Mezalek, A; Saoudi, N
2017-11-01
A 12 year-old boy, with no history of cardiac disease, was referred to our department for evaluation of an incessant accelerated idioventricular rhythm (AIVR) complicated with severe left ventricular (LV) dysfunction and cardiogenic shock. Extensive diagnostic work-up failed to reveal any structural heart disease. During electrophysiological study, AIVR originated from the right ventricular endocardial anterior wall and was successfully ablated using remote magnetic navigation. LV function showed complete recovery four weeks after the procedure. This case highlights a life-threatening evolution of an arrhythmia generally presented as a benign entity in children. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Incremental value of contrast echocardiography in the evaluation of a cardiac thrombus.
Po, Jose Ricardo F; Tong, Matthew S; Grove, Erica L; Biederman, Robert W W
2017-02-01
A 52-year-old man presented with altered mental status and report of prior complaint of chest pain. On electrocardiography, anterolateral ST-segment elevations with Q-waves in the septal leads were seen. Initial echocardiography images demonstrated a thickened anteroseptum. Further imaging showed the presence of a well-attached laminated apical thrombus. Contrast echocardiography images showed that the thrombus had minimal attachment to the endocardial surface. CT head subsequently showed the presence of acute stroke. The case demonstrates the additional value of contrast echocardiography in the evaluation of cardiac masses despite the certainty in the diagnosis of a thrombus. © 2017, Wiley Periodicals, Inc.
Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan
Edsall, Thomas A.; Poe, Thomas P.; Nester, Robert T.; Brown, Charles L.
1989-01-01
Native stocks of lake trout Salvelinus namaycush were virtually or completely extirpated from the lower four Great Lakes by the early 1960s. The failure of early attempts to reestablish self-sustaining populations of lake trout was attributed partly to the practice of stocking hatcheryreared juveniles at locations and over substrates that had not been used in the past for spawning by native fish. Subsequent attempts to improve the selection of stocking locations were impeded by the lack of reliable information on the distribution of substrates on historical spawning grounds. Here we demonstrate the potential of side-scan sonar to substantially expand the data base needed to pinpoint the location of substrates where lake trout eggs, fry, or juveniles could be stocked to maximize survival and help ensure that survivors returning to spawn would encounter suitable substrates. We also describe the substrates and bathymetry of large areas on historical lake trout spawning grounds in the Fox Island Lake Trout Sanctuary in northern Lake Michigan. These areas could be used to support a contemporary self-sustaining lake trout population in the sanctuary and perhaps also in adjacent waters.
Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E.
2004-01-01
This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.
Active substrates improving sensitivity in biomedical fluorescence microscopy
NASA Astrophysics Data System (ADS)
Le Moal, E.; Leveque-Fort, S.; Fort, E.; Lacharme, J.-P.; Fontaine-Aupart, M.-P.; Ricolleau, C.
2005-08-01
Fluorescence is widely used as a spectroscopic tool or for biomedical imaging, in particular for DNA chips. In some cases, detection of very low molecular concentrations and precise localization of biomarkers are limited by the weakness of the fluorescence signal. We present a new method based on sample substrates that improve fluorescence detection sensitivity. These active substrates consist in glass slides covered with metal (gold or silver) and dielectric (alumina) films and can directly be used with common microscope set-up. Fluorescence enhancement affects both excitation and decay rates and is strongly dependant on the distance to the metal surface. Furthermore, fluorescence collection is improved since fluorophore emission lobes are advantageously modified close to a reflective surface. Finally, additional improvements are achieved by structuring the metallic layer. Substrates morphology was mapped by Atomic Force Microscopy (AFM). Substrates optical properties were studied using mono- and bi-photonic fluorescence microscopy with time resolution. An original set-up was implemented for spatial radiation pattern's measurement. Detection improvement was then tested on commercial devices. Several biomedical applications are presented. Enhancement by two orders of magnitude are achieved for DNA chips and signal-to-noise ratio is greatly increased for cells imaging.
Yang, Kisuk; Park, Esther; Lee, Jong Seung; Kim, Il-Sun; Hong, Kwonho; Park, Kook In; Cho, Seung-Woo; Yang, Hee Seok
2015-10-01
Biophysical cues provided by nanotopographical surfaces have been used as stimuli to guide neurite extension and regulate neural stem cell (NSC) differentiation. Here, we fabricated biodegradable polymer substrates with nanoscale topography for enhancing human NSC (hNSC) differentiation and guided neurite outgrowth. The substrate was constructed from biodegradable poly(lactic-co-glycolic acid) (PLGA) using solvent-assisted capillary force lithography. We found that precoating with 3,4-dihydroxy-l-phenylalanine (DOPA) facilitated the immobilization of poly-l-lysine and fibronectin on PLGA substrates via bio-inspired catechol chemistry. The DOPA-coated nanopatterned substrates directed cellular alignment along the patterned grooves by contact guidance, leading to enhanced focal adhesion, skeletal protein reorganization, and neuronal differentiation of hNSCs as indicated by highly extended neurites from cell bodies and increased expression of neuronal markers (Tuj1 and MAP2). The addition of nerve growth factor further enhanced neuronal differentiation of hNSCs, indicating a synergistic effect of biophysical and biochemical cues on NSC differentiation. These bio-inspired PLGA nanopatterned substrates could potentially be used as implantable biomaterials for improving the efficacy of hNSCs in treating neurodegenerative diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia
NASA Astrophysics Data System (ADS)
Putzig, N. E.; Mellon, M. T.
2005-12-01
Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.
Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study
de Lima, João L. M. P.; Abrantes, João R. C. B.; Silva, Valdemir P.; de Lima, M. Isabel P.; Montenegro, Abelardo A. A.
2014-01-01
Macropores and water flow in soils and substrates are complex and are related to topics like preferential flow, nonequilibrium flow, and dual-continuum. Hence, the quantification of the number of macropores and the determination of their geometry are expected to provide a better understanding on the effects of pores on the soil's physical and hydraulic properties. This exploratory study aimed at evaluating the potential of using infrared thermography for mapping macroporosity at the soil surface and estimating the number and size of such macropores. The presented technique was applied to a small scale study (laboratory soil flume). PMID:25371915
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.
2013-04-01
We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.
NASA Technical Reports Server (NTRS)
Ter-Pogossian, M. M.; Hoffman, E. J.; Weiss, E. S.; Coleman, R. E.; Phelps, M. E.; Welch, M. J.; Sobel, B. E.
1975-01-01
A positron emission transverse tomograph device was developed which provides transaxial sectional images of the distribution of positron-emitting radionuclides in the heart. The images provide a quantitative three-dimensional map of the distribution of activity unencumbered by the superimposition of activity originating from regions overlying and underlying the plane of interest. PETT is used primarily with the cyclotron-produced radionuclides oxygen-15, nitrogen-13 and carbon-11. Because of the participation of these atoms in metabolism, they can be used to label metabolic substrates and intermediary molecules incorporated in myocardial metabolism.
NASA Astrophysics Data System (ADS)
Lu, Xiangmeng; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro
2018-04-01
We fabricated a coupled multilayer cavity with a GaAs/Ge/GaAs sublattice reversal structure for terahertz emission application. Sublattice reversal in GaAs/Ge/GaAs was confirmed by comparing the anisotropic etching profile of an epitaxial sample with those of reference (113)A and (113)B GaAs substrates. The interfaces of GaAs/Ge/GaAs were evaluated at the atomic level by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping. Defect-free GaAs/Ge/GaAs heterostructures were observed in STEM images and the sublattice lattice was directly seen through atomic arrangements in EDX mapping. A GaAs/AlAs coupled multilayer cavity with a sublattice reversal structure was grown on the (113)B GaAs substrate after the confirmation of sublattice reversal. Smooth GaAs/AlAs interfaces were formed over the entire region of the coupled multilayer cavity structure both below and above the Ge layer. Two cavity modes with a frequency difference of 2.9 THz were clearly observed.
Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.
1996-01-01
In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.
Energy-aware virtual network embedding in flexi-grid networks.
Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng
2017-11-27
Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.
Bathymetry, substrate and circulation in Westcott Bay, San Juan Islands, Washington
Grossman, Eric E.; Stevens, Andrew W.; Curran, Chris; Smith, Collin; Schwartz, Andrew
2007-01-01
Nearshore bathymetry, substrate type, and circulation patterns in Westcott Bay, San Juan Islands, Washington, were mapped using two acoustic sonar systems, video and direct sampling of seafloor sediments. The goal of the project was to characterize nearshore habitat and conditions influencing eelgrass (Z. marina) where extensive loss has occurred since 1995. A principal hypothesis for the loss of eelgrass is a recent decrease in light availability for eelgrass growth due to increase in turbidity associated with either an increase in fine sedimentation or biological productivity within the bay. To explore sources for this fine sediment and turbidity, a dual-frequency Biosonics sonar operating at 200 and 430 kHz was used to map seafloor depth, morphology and vegetation along 69 linear kilometers of the bay. The higher frequency 430 kHz system also provided information on particulate concentrations in the water column. A boat-mounted 600 kHz RDI Acoustic Doppler Current Profiler (ADCP) was used to map current velocity and direction and water column backscatter intensity along another 29 km, with select measurements made to characterize variations in circulation with tides. An underwater video camera was deployed to ground-truth acoustic data. Seventy one sediment samples were collected to quantify sediment grain size distributions across Westcott Bay. Sediment samples were analyzed for grain size at the Western Coastal and Marine Geology Team sediment laboratory in Menlo Park, Calif. These data reveal that the seafloor near the entrance to Westcott Bay is rocky with a complex morphology and covered with dense and diverse benthic vegetation. Current velocities were also measured to be highest at the entrance and along a deep channel extending 1 km into the bay. The substrate is increasingly comprised of finer sediments with distance into Westcott Bay where current velocities are lower. This report describes the data collected and preliminary findings of USGS Cruise B-6-07-PS conducted between May 31, 2007 and June 5, 2007.
A Decade Remote Sensing River Bathymetry with the Experimental Advanced Airborne Research LiDAR
NASA Astrophysics Data System (ADS)
Kinzel, P. J.; Legleiter, C. J.; Nelson, J. M.; Skinner, K.
2012-12-01
Since 2002, the first generation of the Experimental Advanced Airborne Research LiDAR (EAARL-A) sensor has been deployed for mapping rivers and streams. We present and summarize the results of comparisons between ground truth surveys and bathymetry collected by the EAARL-A sensor in a suite of rivers across the United States. These comparisons include reaches on the Platte River (NE), Boise and Deadwood Rivers (ID), Blue and Colorado Rivers (CO), Klamath and Trinity Rivers (CA), and the Shenandoah River (VA). In addition to diverse channel morphologies (braided, single thread, and meandering) these rivers possess a variety of substrates (sand, gravel, and bedrock) and a wide range of optical characteristics which influence the attenuation and scattering of laser energy through the water column. Root mean square errors between ground truth elevations and those measured by the EAARL-A ranged from 0.15-m in rivers with relatively low turbidity and highly reflective sandy bottoms to over 0.5-m in turbid rivers with less reflective substrates. Mapping accuracy with the EAARL-A has proved challenging in pools where bottom returns are either absent in waveforms or are of such low intensity that they are treated as noise by waveform processing algorithms. Resolving bathymetry in shallow depths where near surface and bottom returns are typically convolved also presents difficulties for waveform processing routines. The results of these evaluations provide an empirical framework to discuss the capabilities and limitations of the EAARL-A sensor as well as previous generations of post-processing software for extracting bathymetry from complex waveforms. These experiences and field studies not only provide benchmarks for the evaluation of the next generation of bathymetric LiDARs for use in river mapping, but also highlight the importance of developing and standardizing more rigorous methods to characterize substrate reflectance and in-situ optical properties at study sites. They also point out the continued necessity of ground truth data for algorithm refinement and survey verification.
Ojeda, G.Y.; Gayes, P.T.; Van Dolah, R. F.; Schwab, W.C.
2004-01-01
Naturally occurring hard bottom areas provide the geological substrate that can support diverse assemblages of sessile benthic organisms, which in turn, attract many reef-dwelling fish species. Alternatively, defining the location and extent of bottom sand bodies is relevant for potential nourishment projects as well as to ensure that transient sediment does not affect reef habitats, particularly in sediment-starved continental margins. Furthermore, defining sediment transport pathways documents the effects these mobile bedforms have on proximal reef habitats. Thematic mapping of these substrates is therefore crucial in safeguarding critical habitats and offshore resources of coastal nations. This study presents the results of a spatially quantitative mapping approach based on classification of sidescan-sonar imagery. By using bottom video for image-to-ground control, digital image textural features for pattern recognition, and an artificial neural network for rapid, quantitative, multivariable decision-making, this approach resulted in recognition rates of hard bottom as high as 87%. The recognition of sand bottom was less successful (31%). This approach was applied to a large (686 km2), high-quality, 2-m resolution sidescan-sonar mosaic of the northern South Carolina inner continental shelf. Results of this analysis indicate that both surficial sand and hard bottoms of variable extent are present over the study area. In total, 59% of the imaged area was covered by hard bottom, while 41% was covered by sand. Qualitative spatial correlation between bottom type and bathymetry appears possible from comparison of our interpretive map and available bathymetry. Hard bottom areas tend to be located on flat, low-lying areas, and sandy bottoms tend to reside on areas of positive relief. Published bio-erosion rates were used to calculate the potential sediment input from the mapped hard bottom areas rendering sediment volumes that may be as high as 0.8 million m3/yr for this portion of the South Carolina coast. ?? 2003 Elsevier Ltd. All rights reserved.
Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.
2016-01-01
Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; ...
2017-11-21
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films withmore » a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.« less
NASA Astrophysics Data System (ADS)
Guerain, Mathieu; Grosseau-Poussard, Jean-Luc; Geandier, Guillaume; Panicaud, Benoit; Tamura, Nobumichi; Kunz, Martin; Dejoie, Catherine; Micha, Jean-Sebastien; Thiaudière, Dominique; Goudeau, Philippe
2017-11-01
In oxidizing environments, the protection of metals and alloys against further oxidation at high temperature is provided by the oxide film itself. This protection is efficient only if the formed film adheres well to the metal (substrate), i.e., without microcracks and spalls induced by thermomechanical stresses. In this study, the residual stresses at both macroscopic and microscopic scales in the oxide film adhering to the substrate and over the damaged areas have been rigorously determined on the same samples for both techniques. Ni-30Cr and Fe-47Cr alloys have been oxidized together at 900 and 1000 °C, respectively, to create films with a thickness of a few microns. A multi-scale approach was adopted: macroscopic stress was determined by conventional X-ray diffraction and Raman spectroscopy, while microscopic residual stress mappings were performed over different types of bucklings using Raman micro-spectroscopy and synchrotron micro-diffraction. A very good agreement is found at macro- and microscales between the residual stress values obtained with both techniques, giving confidence on the reliability of the measurements. In addition, relevant structural information at the interface between the metallic substrate and the oxide layer was collected by micro-diffraction, a non-destructive technique that allows mapping through the oxide layer, and both the grain size and the crystallographic orientation of the supporting polycrystalline metal located either under a buckling or not were measured.
3D Color Digital Elevation Map of AFM Sample
NASA Technical Reports Server (NTRS)
2008-01-01
This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM). The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate. A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit. The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil. The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer. The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Barker, Megan K; Rose, David R
2013-05-10
The enzyme “GluI” is key to the synthesis of critical glycoproteins in the cell. We have determined the structure of GluI, and modeled binding with its unique sugar substrate. The specificity of this interaction derives from a unique conformation of the substrate. Understanding the mechanism of the enzyme is of basic importance and relevant to potential development of antiviral inhibitors. Processing α-glucosidase I (GluI) is a key member of the eukaryotic N-glycosylation processing pathway, selectively catalyzing the first glycoprotein trimming step in the endoplasmic reticulum. Inhibition of GluI activity impacts the infectivity of enveloped viruses; however, despite interest in this protein from a structural, enzymatic, and therapeutic standpoint, little is known about its structure and enzymatic mechanism in catalysis of the unique glycan substrate Glc3Man9GlcNAc2. The first structural model of eukaryotic GluI is here presented at 2-Å resolution. Two catalytic residues are proposed, mutations of which result in catalytically inactive, properly folded protein. Using Autodocking methods with the known substrate and inhibitors as ligands, including a novel inhibitor characterized in this work, the active site of GluI was mapped. From these results, a model of substrate binding has been formulated, which is most likely conserved in mammalian GluI.
NASA Astrophysics Data System (ADS)
Murton, B. J.; Lusty, P.; Yeo, I. A.; Howarth, S.
2017-12-01
The seafloor hosts abundant mineral deposits critical for low-carbon economies and emerging technologies. These include ferromanganese crusts (FeMnC) that grow on seamounts. While the broad distribution of FeMnC is known, local controls on growth, composition and formation are not. Here, we describe a detailed study of a gyot in the NE Atlantic (Tropic Seamount) that explores the controls, from the surface to the seafloor, exerted on FeMnC growth from current energy, surface productivity, sediment distribution, seafloor morphology, substrate lithology, sediments mobility and thickness, and seamount subsidence. During cruise JC142 (2016), we mapped the seamount with EM120 multibeam, mapped the 400km2 summit with AUV multibeam, sidescan sonar, sub-bottom profiler and 361,644 photographs. During 28 ROV dives we drilled 58 core and collected 344 individual rock samples. We found FeMnC at all depths, with the thickest (<20cm) located at the greatest depths (3000-4000m). The thinnest are on the summit plateau, with the centre and southern edge having the thickest sediment. FeMnC pavements form many different terraces on the summit. Frequent undercuts expose a calcareous substrate. Elsewhere, cobbles and pebbles form the nucleolus for crusts up to 10cm thick, with growth into the sediment. Many substrates are found to comprise semi-consolidated sediment. The presence of thick crusts at the base of the seamount contradicts accepted understanding of FeMnC deposition just below the oxygen minimum zone (OMZ). In areas on the eastern and western spurs, between 2500m and 1000m, where current energy is greatest, sessile fauna are most abundant. Dense coral debris at these locations appears to inhibit crust formation and coral and sponge `gardens' are frequent on near vertical cliffs. The observation that crusts have grown downwards into and over soft sediment is enigmatic since present understanding requires hard substrates to be exposed to seawater for crusts to grow, and any burial would inhibit such growth. Plume tracking shows reduction to background within 1000m. Our study challenges the view that ferromanganese crusts form at the base of the OMZ and grow upwards on solid substrates. Instead, we see an interplay between crust precipitation, the morphological evolution of the seamount, its hydrography and substrates.
Compact, High Power, Multi-Spectral Mid-Infrared Semiconductor Laser Package
2001-10-01
depositions to map out effects due to stress in the films. Stress in the film will result in the substrate curvature. This curvature results in the...Lasers at 4.5 µm”, IEEE Photon. Technol. Lett., vol. 9, pp. 1573-1575, (1997). 58 18. A. N. Baranov, N. Bertru, Y. Cuminal , G. Boissier, C. Alibert, and
Minimally invasive surgery for atrial fibrillation
Suwalski, Piotr
2013-01-01
Atrial fibrillation (AF) remains the most common cardiac arrhythmia, affecting nearly 2% of the general population worldwide. Minimally invasive surgical ablation remains one of the most dynamically evolving fields of modern cardiac surgery. While there are more than a dozen issues driving this development, two seem to play the most important role: first, there is lack of evidence supporting percutaneous catheter based approach to treat patients with persistent and long-standing persistent AF. Paucity of this data offers surgical community unparalleled opportunity to challenge guidelines and change indications for surgical intervention. Large, multicenter prospective clinical studies are therefore of utmost importance, as well as honest, clear data reporting. Second, a collaborative methodology started a long-awaited debate on a Heart Team approach to AF, similar to the debate on coronary artery disease and transcatheter valves. Appropriate patient selection and tailored treatment options will most certainly result in better outcomes and patient satisfaction, coupled with appropriate use of always-limited institutional resources. The aim of this review, unlike other reviews of minimally invasive surgical ablation, is to present medical professionals with two distinctly different, approaches. The first one is purely surgical, Standalone surgical isolation of the pulmonary veins using bipolar energy source with concomitant amputation of the left atrial appendage—a method of choice in one of the most important clinical trials on AF—The Atrial Fibrillation Catheter Ablation Versus Surgical Ablation Treatment (FAST) Trial. The second one represents the most complex approach to this problem: a multidisciplinary, combined effort of a cardiac surgeon and electrophysiologist. The Convergent Procedure, which includes both endocardial and epicardial unipolar ablation bonds together minimally invasive endoscopic surgery with electroanatomical mapping, to deliver best of the two worlds. One goal remains: to help those in urgent need for everlasting relief. PMID:24251031
Mazeh, Nachaat; Haines, David E; Kay, Matthew W; Roth, Bradley J
2013-12-01
The velocity and curvature of a wave front are important factors governing the propagation of electrical activity through cardiac tissue, particularly during heart arrhythmias of clinical importance such as fibrillation. Presently, no simple computational model exists to determine these values simultaneously. The proposed model uses the arrival times at four or five sites to determine the wave front speed ( v ), direction (θ), and radius of curvature (ROC) ( r 0 ). If the arrival times are measured, then v , θ, and r 0 can be found from differences in arrival times and the distance between these sites. During isotropic conduction, we found good correlation between measured values of the ROC r 0 and the distance from the unipolar stimulus ( r = 0.9043 and p < 0.0001). The conduction velocity (m/s) was correlated ( r = 0.998, p < 0.0001) using our method (mean = 0.2403, SD = 0.0533) and an empirical method (mean = 0.2352, SD = 0.0560). The model was applied to a condition of anisotropy and a complex case of reentry with a high voltage extra stimulus. Again, results show good correlation between our simplified approach and established methods for multiple wavefront morphologies. In conclusion, insignificant measurement errors were observed between this simplified approach and an approach that was more computationally demanding. Accuracy was maintained when the requirement that ε (ε = b/r 0 , ratio of recording site spacing over wave fronts ROC) was between 0.001 and 0.5. The present simplified model can be applied to a variety of clinical conditions to predict behavior of planar, elliptical, and reentrant wave fronts. It may be used to study the genesis and propagation of rotors in human arrhythmias and could lead to rotor mapping using low density endocardial recording electrodes.
Myocardial wall thickening from gated magnetic resonance images using Laplace's equation
NASA Astrophysics Data System (ADS)
Prasad, M.; Ramesh, A.; Kavanagh, P.; Gerlach, J.; Germano, G.; Berman, D. S.; Slomka, P. J.
2009-02-01
The aim of our work is to present a robust 3D automated method for measuring regional myocardial thickening using cardiac magnetic resonance imaging (MRI) based on Laplace's equation. Multiple slices of the myocardium in short-axis orientation at end-diastolic and end-systolic phases were considered for this analysis. Automatically assigned 3D epicardial and endocardial boundaries were fitted to short-axis and long axis slices corrected for breathold related misregistration, and final boundaries were edited by a cardiologist if required. Myocardial thickness was quantified at the two cardiac phases by computing the distances between the myocardial boundaries over the entire volume using Laplace's equation. The distance between the surfaces was found by computing normalized gradients that form a vector field. The vector fields represent tangent vectors along field lines connecting both boundaries. 3D thickening measurements were transformed into polar map representation and 17-segment model (American Heart Association) regional thickening values were derived. The thickening results were then compared with standard 17-segment 6-point visual scoring of wall motion/wall thickening (0=normal; 5=greatest abnormality) performed by a consensus of two experienced imaging cardiologists. Preliminary results on eight subjects indicated a strong negative correlation (r=-0.8, p<0.0001) between the average thickening obtained using Laplace and the summed segmental visual scores. Additionally, quantitative ejection fraction measurements also correlated well with average thickening scores (r=0.72, p<0.0001). For segmental analysis, we obtained an overall correlation of -0.55 (p<0.0001) with higher agreement along the mid and apical regions (r=-0.6). In conclusion 3D Laplace transform can be used to quantify myocardial thickening in 3D.
Studying semblances of a true killer: experimental model of human ventricular fibrillation.
Nair, K; Farid, T; Masse, S; Umapathy, K; Watkins, S; Poku, K; Asta, J; Kusha, M; Sevaptsidis, E; Jacob, J; Floras, J S; Nanthakumar, K
2012-04-01
It is unknown whether ventricular fibrillation (VF) studied in experimental models represents in vivo human VF. First, we examined closed chest in vivo VF induced at defibrillation threshold testing (DFT) in four patients with ischemic cardiomyopathy pretransplantation. We examined VF in these same four hearts in an ex vivo human Langendorff posttransplantation. VF from DFT was compared with VF from the electrodes from a similar region in the right ventricular endocardium in the Langendorff using two parameters: the scale distribution width (extracted from continuous wavelet transform) and VF mean cycle length (CL). In a second substudy group where multielectrode phase mapping could be performed, we examined early VF intraoperatively (in vivo open chest condition) in three patients with left ventricular cardiomyopathy. We investigated early VF in the hearts of three patients in an ex vivo Langendorff and compared findings with intraoperative VF using two metrics: dominant frequency (DF) assessed by the Welch periodogram and the number of phase singularities (lasting >480 ms). Wavelet analysis (P = 0.9) and VF CL were similar between the Langendorff and the DFT groups (225 ± 13, 218 ± 24 ms; P = 0.9), indicating that wave characteristics and activation rate of VF was comparable between the two models. Intraoperative DF was slower but comparable with the Langendorff DF over the endocardium (4.6 ± 0.1, 5.0 ± 0.4 Hz; P = 0.9) and the epicardium (4.5 ± 0.2, 5.2 ± 0.4 Hz; P = 0.9). Endocardial phase singularity number (9.6 ± 5, 12.1 ± 1; P = 0.6) was lesser in number but comparable between in vivo and ex vivo VF. VF dynamics in the limited experimental human studies approximates human in vivo VF.
Hwang, Gyo-Seung; Hayashi, Hideki; Tang, Liang; Ogawa, Masahiro; Hernandez, Heidy; Tan, Alex Y; Li, Hongmei; Karagueuzian, Hrayr S; Weiss, James N; Lin, Shien-Fong; Chen, Peng-Sheng
2006-12-12
The role of intracellular calcium (Ca(i)) in defibrillation and vulnerability is unclear. We simultaneously mapped epicardial membrane potential and Ca(i) during shock on T-wave episodes (n=104) and attempted defibrillation episodes (n=173) in 17 Langendorff-perfused rabbit ventricles. Unsuccessful and type B successful defibrillation shocks were followed by heterogeneous distribution of Ca(i), including regions of low Ca(i) surrounded by elevated Ca(i) ("Ca(i) sinkholes") 31+/-12 ms after shock. The first postshock activation then originated from the Ca(i) sinkhole 53+/-14 ms after the shock. No sinkholes were present in type A successful defibrillation. A Ca(i) sinkhole also was present 39+/-32 ms after a shock on T that induced ventricular fibrillation, followed 22+/-15 ms later by propagated wave fronts that arose from the same site. This wave propagated to form a spiral wave and initiated ventricular fibrillation. Thapsigargin and ryanodine significantly decreased the upper limit of vulnerability and defibrillation threshold. We studied an additional 7 rabbits after left ventricular endocardial cryoablation, resulting in a thin layer of surviving epicardium. Ca(i) sinkholes occurred 31+/-12 ms after the shock, followed in 19+/-7 ms by first postshock activation in 63 episodes of unsuccessful defibrillation. At the Ca(i) sinkhole, the rise of Ca(i) preceded the rise of epicardial membrane potential in 5 episodes. There is a heterogeneous postshock distribution of Ca(i). The first postshock activation always occurs from a Ca(i) sinkhole. The Ca(i) prefluorescence at the first postshock early site suggests that reverse excitation-contraction coupling might be responsible for the initiation of postshock activations that lead to ventricular fibrillation.
Takahashi, Kazuhiro; Fuchigami, Tai; Nabeshima, Taisuke; Sashinami, Arata; Nakayashiro, Mami
2016-03-01
The success of catheter ablation of focal atrial tachycardia is limited by possible collateral damage to the phrenic nerve. Protection of the phrenic nerve is required. Here we present a case of a 9-year-old girl having a history of an unsuccessful catheter ablation of a focal atrial tachycardia near the crista terminalis (because of proximity of the phrenic nerve) who underwent a successful ablation by means of a novel technique for phrenic nerve protection: packing of gauze into the pericardial space. This method is a viable approach for patients with a failed endocardial ablation due to the proximity of the phrenic nerve.
Echocardiographic Changes in Eosinophilic Endocarditis Induced by Churg-Strauss Syndrome.
Masaki, Nobuyuki; Issiki, Ami; Kirimura, Masato; Kamiyama, Tetsuo; Sasaki, Osamu; Ito, Hiroyuki; Maruyama, Yoshiaki; Nishioka, Toshihiko
Eosinophilic myocarditis may be accompanied by Churg-Strauss syndrome (CSS). We report a case of CSS that was accompanied by myocardial changes in the early stage. A 71-year-old woman complained of mild chest pain at rest, but routine echocardiography did not reveal any endocardial abnormalities. Four months later, the patient was hospitalized due to congestive heart failure with neuropathy of both upper extremities. A diagnosis of eosinophilic myocarditis was made based on the patient's laboratory results and the presence of mural thrombus. This case illustrates that, although early eosinophilic myocarditis is an important differential diagnosis in patients with chest pain, it may be difficult to identify in without an apparent mural thrombus.
Echocardiographic Changes in Eosinophilic Endocarditis Induced by Churg-Strauss Syndrome
Masaki, Nobuyuki; Issiki, Ami; Kirimura, Masato; Kamiyama, Tetsuo; Sasaki, Osamu; Ito, Hiroyuki; Maruyama, Yoshiaki; Nishioka, Toshihiko
2016-01-01
Eosinophilic myocarditis may be accompanied by Churg-Strauss syndrome (CSS). We report a case of CSS that was accompanied by myocardial changes in the early stage. A 71-year-old woman complained of mild chest pain at rest, but routine echocardiography did not reveal any endocardial abnormalities. Four months later, the patient was hospitalized due to congestive heart failure with neuropathy of both upper extremities. A diagnosis of eosinophilic myocarditis was made based on the patient's laboratory results and the presence of mural thrombus. This case illustrates that, although early eosinophilic myocarditis is an important differential diagnosis in patients with chest pain, it may be difficult to identify in without an apparent mural thrombus. PMID:27725542
Shabel'nikov, S V; Bystrova, O A; Martynova, M G
2008-01-01
By immunohistochemical and immunocytochemical methods localization of Substanse P (SP) and FMRFamide in the atrium of the snail Achatina fulica was investigated. Nerve fibers innervating the snail atrium contact tightly with the granular cells (GC) situated between muscle and endocardial cells, forming neuroendocrine units. Both neuromediators were found in the cells of the neuroendocrine units. By immunohistochemistry SP- and FMRFamide-immunoreactive material was revealed in the granules of the atrial GC. Elecrtonmicroscopical immunocytochemistry has confirmed the presence of SP- and FMRFamide-immunoreactive material in the granules of the GC and shown their presence in the neurosecretory granules of the nerve endings contacting both the atrial GC and cardiomyocytes.
Contrast-enhanced sonography in pediatrics.
McCarville, M Beth
2011-05-01
Microbubble US contrast agents are composed of an outer shell of protein, phospholipid or polymer that encase air or perfluorocarbon gas. These contrast agents have been widely used in adult cardiology patients to improve endocardial border delineation and have been proved safe and well tolerated in this patient population. There is also a growing body of literature elucidating the value of contrast-enhanced sonography to distinguish benign from malignant liver lesions in adults and to characterize non-hepatic adult malignancies. Because these agents have not been approved for pediatric use in many countries, less is known of the value of contrast-enhanced sonography in children. In this review I will discuss several proven and potential pediatric applications of contrast-enhanced sonography.
Hsu, Chia-Hao; Chen, Tai-Cheng; Huang, Rong-Tan; Tsay, Leu-Wen
2017-01-01
304 stainless steels (SS) were considered as the materials for a dry storage canister. In this study, ER (Electrode Rod) 308L was utilized as the filler metal for the groove and overlay welds of a 304L stainless steel substrate, which was prepared via a gas tungsten arc-welding process in multiple passes. The electron backscatter diffraction (EBSD) map was used to identify the inherent microstructures in distinct specimens. U-bend and weight-loss tests were conducted by testing the 304L substrates and welds in a salt spray containing 5 wt % NaCl at 80 °C to evaluate their susceptibility to stress corrosion cracking (SCC). Generally, the weight loss of the ER 308L deposit was higher than that of the 304L substrate in a salt spray in the same sample-prepared condition. The dissolution of the skeletal structure in the fusion zone (FZ) was responsible for a greater weight loss of the 308L deposit, especially for the cold-rolled and sensitized specimen. Cold rolling was detrimental and sensitization after cold rolling was very harmful to the SCC resistance of the 304L substrate and 308L deposit. Overall, the SCC susceptibility of each specimen was correlated with its weight loss in each group. PMID:28772547
Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; French, John R. P.
1992-01-01
The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water strains of lake trout that are now being planted. These substrates were in water 6-22 m deep and were composed largely of rounded or angular rubble and cobble. Interstitial spaces in these substrates were 20 cm or deeper and would protect naturally spawned eggs and fry from predators, ice scour, and buffeting by waves and currents. Subsequent studies of egg survival by other researchers confirmed our evaluation that the best substrates at two of these sites still have the potential to produce viable swim-up fry.
Utilizing a Dynamical Description of IspH to Aid in the Development of Novel Antimicrobial Drugs
Blachly, Patrick G.; de Oliveira, César A. F.; Williams, Sarah L.; McCammon, J. Andrew
2013-01-01
The nonmevalonate pathway is responsible for isoprenoid production in microbes, including H. pylori, M. tuberculosis and P. falciparum, but is nonexistent in humans, thus providing a desirable route for antibacterial and antimalarial drug discovery. We coordinate a structural study of IspH, a [4Fe-4S] protein responsible for converting HMBPP to IPP and DMAPP in the ultimate step in the nonmevalonate pathway. By performing accelerated molecular dynamics simulations on both substrate-free and HMBPP-bound [Fe4S4]2+ IspH, we elucidate how substrate binding alters the dynamics of the protein. Using principal component analysis, we note that while substrate-free IspH samples various open and closed conformations, the closed conformation observed experimentally for HMBPP-bound IspH is inaccessible in the absence of HMBPP. In contrast, simulations with HMBPP bound are restricted from accessing the open states sampled by the substrate-free simulations. Further investigation of the substrate-free simulations reveals large fluctuations in the HMBPP binding pocket, as well as allosteric pocket openings – both of which are achieved through the hinge motions of the individual domains in IspH. Coupling these findings with solvent mapping and various structural analyses reveals alternative druggable sites that may be exploited in future drug design efforts. PMID:24367248
Impact of laser anneal on NiPt silicide texture and chemical composition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feautrier, C.; Ozcan, A. S.; Lavoie, C.
We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. Themore » laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.« less
Lance, Michael J.; Unocic, Kinga A.; Haynes, James A.; ...
2015-09-04
Directionally-solidified (DS) superalloy components with advanced thermal barrier coatings (TBC) to lower the metal operating temperature have the potential to replace more expensive single crystal superalloys for large land-based turbines. In order to assess relative TBC performance, furnace cyclic testing was used with superalloys 1483, X4 and Hf-rich DS 247 substrates and high velocity oxygen fuel (HVOF)-NiCoCrAlYHfSi bond coatings at 1100 °C with 1-h cycles in air with 10% H 2O. With these coating and test conditions, there was no statistically-significant effect of substrate alloy on the average lifetime of the air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) top coatingsmore » on small coupons. Using photo-stimulated luminescence piezospectroscopy maps at regular cycling intervals, the residual compressive stress in the α-Al 2O 3 scale underneath the YSZ top coating and on a bare bond coating was similar for all three substrates and delaminations occurred at roughly the same rate and frequency. As a result, x-ray fluorescence (XRF) measurements collected from the bare bond coating surface revealed higher Ti interdiffusion occurring with the 1483 substrate, which contained the highest Ti content.« less
A contact photo-cross-linking investigation of the active site of the 8-17 deoxyribozyme.
Liu, Yong; Sen, Dipankar
2008-09-12
The small RNA-cleaving 8-17 deoxyribozyme (DNAzyme) has been the subject of extensive mechanistic and structural investigation, including a number of recent single-molecule studies of its global folding. Little detailed insight exists, however, into this DNAzyme's active site; for instance, the identity of specific nucleotides that are proximal to or in contact with the scissile site in the substrate. Here, we report a systematic replacement of a number of bases within the magnesium-folded DNAzyme-substrate complex with thio- and halogen-substituted base analogues, which were then photochemically activated to generate contact cross-links within the complex. Mapping of the cross-links revealed a striking pattern of DNAzyme-substrate cross-links but an absence of significant intra-DNAzyme cross-links. Notably, the two nucleotides directly flanking the scissile phosphodiester cross-linked strongly with functionally important elements within the DNAzyme, the thymine of a G.T wobble base pair, a WCGR bulge loop, and a terminal AGC loop. Mutation of the wobble base pair to a G-C pair led to a significant folding instability of the DNAzyme-substrate complex. The cross-linking patterns obtained were used to generate a model for the DNAzyme's active site that had the substrate's scissile phosphodiester sandwiched between the DNAzyme's wobble thymine and its AGC and WCGR loops.
Yu, Xiaobo; Woolery, Andrew R.; Luong, Phi; Hao, Yi Heng; Grammel, Markus; Westcott, Nathan; Park, Jin; Wang, Jie; Bian, Xiaofang; Demirkan, Gokhan; Hang, Howard C.; Orth, Kim; LaBaer, Joshua
2014-01-01
AMPylation (adenylylation) is a recently discovered mechanism employed by infectious bacteria to regulate host cell signaling. However, despite significant effort, only a few host targets have been identified, limiting our understanding of how these pathogens exploit this mechanism to control host cells. Accordingly, we developed a novel nonradioactive AMPylation screening platform using high-density cell-free protein microarrays displaying human proteins produced by human translational machinery. We screened 10,000 unique human proteins with Vibrio parahaemolyticus VopS and Histophilus somni IbpAFic2, and identified many new AMPylation substrates. Two of these, Rac2, and Rac3, were confirmed in vivo as bona fide substrates during infection with Vibrio parahaemolyticus. We also mapped the site of AMPylation of a non-GTPase substrate, LyGDI, to threonine 51, in a region regulated by Src kinase, and demonstrated that AMPylation prevented its phosphorylation by Src. Our results greatly expanded the repertoire of potential host substrates for bacterial AMPylators, determined their recognition motif, and revealed the first pathogen-host interaction AMPylation network. This approach can be extended to identify novel substrates of AMPylators with different domains or in different species and readily adapted for other post-translational modifications. PMID:25073739
Impact of laser anneal on NiPt silicide texture and chemical composition
NASA Astrophysics Data System (ADS)
Feautrier, C.; Ozcan, A. S.; Lavoie, C.; Valery, A.; Beneyton, R.; Borowiak, C.; Clément, L.; Pofelski, A.; Salem, B.
2017-06-01
We have combined synchrotron X-ray pole figure measurements and transmission electron microscopy (TEM) nano-beam diffraction to study the impact of millisecond laser anneal on the texture and microstructure of NiPt silicide thin films. The powerful use of nano-beam diffraction in plan-view geometry allows here for both a mapping of grain orientation and intra-grain measurements even if these crystalline grains become very small. With this unique combination of local and large-scale probes, we find that silicide formation on n and p doped substrates using laser annealing results in smaller grains compared with the films processed using standard rapid thermal annealing. The laser annealed samples also result in grains that are more epitaxially oriented with respect to the Si substrate. For n-type substrate, the film is dominated by (020) and (013) oriented fibers with significant levels of intra-grain bending (transrotation) observed in both types of grains. For p-type substrates, mostly epitaxially aligned grains are detected. TEM coupled with energy-dispersive X-ray analysis was also used to study the elemental distribution in the silicide samples. Here, we confirm that laser anneal leads to a larger accumulation of platinum at the silicide-substrate interface and modifies the distribution of dopants throughout the film.
Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li
2013-09-01
The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. © 2013.
Role of Rotors in the Ablative Therapy of Persistent Atrial Fibrillation
Schricker, Amir A; Zaman, Junaid; Narayan, Sanjiv M
2015-01-01
Atrial fibrillation (AF) ablation is increasingly used to maintain sinus rhythm yet its results are sub-optimal, especially in patients with persistent AF or prior unsuccessful procedures. Attempts at improvement have often targeted substrates that sustain AF after it is triggered, yet those mechanisms are debated. Many studies now challenge the concept that AF is driven by self-sustaining disordered wavelets, showing instead that localised drivers (rotors) may drive disorder via a process known as fibrillatory conduction. Novel mapping using wide-area recordings, physiological filtering and phase analysis demonstrates rotors in human AF. Contact mapping with focal impulse and rotor modulation (FIRM) shows that localised ablation at sources can improve procedural success in many populations on long-term follow up and some newer approaches to rotor mapping are qualitatively similar. This review critically evaluates the data on rotor mapping and ablation, which advances our conceptual understanding of AF and holds the promise of substantially improving ablative outcomes in patients with persistent AF. PMID:26835100
In Situ Optical Mapping of Voltage and Calcium in the Heart
Ewart, Paul; Ashley, Euan A.; Loew, Leslie M.; Kohl, Peter; Bollensdorff, Christian; Woods, Christopher E.
2012-01-01
Electroanatomic mapping the interrelation of intracardiac electrical activation with anatomic locations has become an important tool for clinical assessment of complex arrhythmias. Optical mapping of cardiac electrophysiology combines high spatiotemporal resolution of anatomy and physiological function with fast and simultaneous data acquisition. If applied to the clinical setting, this could improve both diagnostic potential and therapeutic efficacy of clinical arrhythmia interventions. The aim of this study was to explore this utility in vivo using a rat model. To this aim, we present a single-camera imaging and multiple light-emitting-diode illumination system that reduces economic and technical implementation hurdles to cardiac optical mapping. Combined with a red-shifted calcium dye and a new near-infrared voltage-sensitive dye, both suitable for use in blood-perfused tissue, we demonstrate the feasibility of in vivo multi-parametric imaging of the mammalian heart. Our approach combines recording of electrophysiologically-relevant parameters with observation of structural substrates and is adaptable, in principle, to trans-catheter percutaneous approaches. PMID:22876327
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
Pearson, Daniel K.; Braun, Christopher L.; Moring, J. Bruce
2016-01-21
This report documents differences in the mapped spatial extents and physical characteristics of in-channel fish habitat evaluated at the mesohabitat scale during winter 2011–12 (moderate streamflow) and summer 2012 (low streamflow) at 15 sites on the Middle Rio Grande in New Mexico starting about 3 kilometers downstream from Cochiti Dam and ending about 40 kilometers upstream from Elephant Butte Reservoir. The results of mesohabitat mapping, physical characterization, and fish assemblage surveys are summarized from the data that were collected. The report also presents general comparisons of physical mesohabitat data, such as wetted area and substrate type, and biological mesohabitat data, which included fish assemblage composition, species richness, Rio Grande silvery minnow relative abundance, and Rio Grande silvery minnow catch per unit effort.
Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David
2017-04-01
The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.
Shared protection based virtual network mapping in space division multiplexing optical networks
NASA Astrophysics Data System (ADS)
Zhang, Huibin; Wang, Wei; Zhao, Yongli; Zhang, Jie
2018-05-01
Space Division Multiplexing (SDM) has been introduced to improve the capacity of optical networks. In SDM optical networks, there are multiple cores/modes in each fiber link, and spectrum resources are multiplexed in both frequency and core/modes dimensions. Enabled by network virtualization technology, one SDM optical network substrate can be shared by several virtual networks operators. Similar with point-to-point connection services, virtual networks (VN) also need certain survivability to guard against network failures. Based on customers' heterogeneous requirements on the survivability of their virtual networks, this paper studies the shared protection based VN mapping problem and proposes a Minimum Free Frequency Slots (MFFS) mapping algorithm to improve spectrum efficiency. Simulation results show that the proposed algorithm can optimize SDM optical networks significantly in terms of blocking probability and spectrum utilization.
Raman microscopy of individual living human embryonic stem cells
NASA Astrophysics Data System (ADS)
Novikov, S. M.; Beermann, J.; Bozhevolnyi, S. I.; Harkness, L. M.; Kassem, M.
2010-04-01
We demonstrate the possibility of mapping the distribution of different biomolecules in living human embryonic stem cells grown on glass substrates, without the need for fluorescent markers. In our work we improve the quality of measurements by finding a buffer that gives low fluorescence, growing cells on glass substrates (whose Raman signals are relatively weak compared to that of the cells) and having the backside covered with gold to improve the image contrast under direct white light illumination. The experimental setup used for Raman microscopy is the commercially available confocal scanning Raman microscope (Alpha300R) from Witec and sub-μm spatially resolved Raman images were obtained using a 532 nm excitation wavelength.
Energy-aware virtual network embedding in flexi-grid optical networks
NASA Astrophysics Data System (ADS)
Lin, Rongping; Luo, Shan; Wang, Haoran; Wang, Sheng; Chen, Bin
2018-01-01
Virtual network embedding (VNE) problem is to map multiple heterogeneous virtual networks (VN) on a shared substrate network, which mitigate the ossification of the substrate network. Meanwhile, energy efficiency has been widely considered in the network design. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the power increment of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low energy consumption. Numerical results show the functionality of the heuristic algorithm in a 24-node network.
Studying the Variation in Gas Permeability of Porous Building Substrates
NASA Astrophysics Data System (ADS)
Townsend, L.; Savidge, C. R.; Hu, L.; Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.
2009-12-01
Understanding permeability of building materials is important for problems involving studies of contaminant transport. Examples include contamination from fire, acid rain, and chemical and biological weapons. Our research investigates the gas permeability of porous building substrates such as concretes, limestones, sandstones, and bricks. Each sample was cored to produce 70 mm (2.75”) diameter cores approximately 75-130 mm (3-5”) tall. The surface gas permeability was measured on the top surface of these specimens using the AutoScan II device manufactured by New England Research, Inc. The measurements were taken along a 3 mm grid producing a map of surface gas permeability. An example map is shown in Figure 1. The macroscopic measurements were performed along the entire cored specimen. A second set of measurements were made on a 5 mm thick slice cut from the top of each specimen to examine whether these measurements compare better with the surface measurements. The macroscopic gas permeability was measured for all specimens using ASTM D 4525. The results are summarized in Table 1. In general, the surface and macroscopic gas permeability measurements (Table 1) compare reasonably well (within one order of magnitude). The permeability of the 5 mm slices is not significantly different from the entire core for the specimens tested. Figure 1. Results of surface permeability mappingof Ohio Sandstone using the AutoScan II device. a) Map of gas permeability b) Range of gas permeability c) Density function of permeability. Table 1. Gas permeability values (mD)
Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet.
Patil, Nagesh D; Bhardwaj, Rajneesh; Sharma, Atul
2018-06-13
Here, we investigate deposit patterns and associated morphology formed after the evaporation of an aqueous droplet containing mono- and bidispersed colloidal particles. In particular, the combined effect of substrate heating and particle diameter is investigated. We employ high-speed visualization, optical microscopy, and scanning electron microscopy to characterize the evaporating droplets, particle motion, and deposit morphology, respectively. In the context of monodispersed colloidal particles, an inner deposit and a typical ring form for smaller and larger particles, respectively, on a nonheated surface. The formation of the inner deposit is attributed to early depinning of the contact line, explained by a mechanistic model based on the balance of several forces acting on a particle near the contact line. At larger substrate temperature, a thin ring with inner deposit forms, explained by the self-pinning of the contact line and advection of the particles from the contact line to the center of the droplet due to the Marangoni flow. In the context of bidispersed colloidal particles, self-sorting of the colloidal particles within the ring occurs at larger substrate temperature. The smaller particles deposit at the outermost edge compared to the larger particles, and this preferential deposition in a stagnation region near the contact line is due to the spatially varying height of the liquid-gas interface above the substrate. The sorting occurs at a smaller ratio of the diameters of the smaller and larger particles. At larger substrate temperature and larger ratio, the particles do not get sorted and mix into each other. Our measurements show that there exists a critical substrate temperature as well as a diameter ratio to achieve the sorting. We propose regime maps on substrate temperature-particle diameter and substrate temperature-diameter ratio plane for mono- and bidispersed solutions, respectively.
The Circumpolar Arctic vegetation map
Walker, Donald A.; Raynolds, Martha K.; Daniels, F.J.A.; Einarsson, E.; Elvebakk, A.; Gould, W.A.; Katenin, A.E.; Kholod, S.S.; Markon, C.J.; Melnikov, E.S.; Moskalenko, N.G.; Talbot, S. S.; Yurtsev, B.A.; Bliss, L.C.; Edlund, S.A.; Zoltai, S.C.; Wilhelm, M.; Bay, C.; Gudjonsson, G.; Ananjeva, G.V.; Drozdov, D.S.; Konchenko, L.A.; Korostelev, Y.V.; Ponomareva, O.E.; Matveyeva, N.V.; Safranova, I.N.; Shelkunova, R.; Polezhaev, A.N.; Johansen, B.E.; Maier, H.A.; Murray, D.F.; Fleming, Michael D.; Trahan, N.G.; Charron, T.M.; Lauritzen, S.M.; Vairin, B.A.
2005-01-01
Question: What are the major vegetation units in the Arctic, what is their composition, and how are they distributed among major bioclimate subzones and countries? Location: The Arctic tundra region, north of the tree line. Methods: A photo-interpretive approach was used to delineate the vegetation onto an Advanced Very High Resolution Radiometer (AVHRR) base image. Mapping experts within nine Arctic regions prepared draft maps using geographic information technology (ArcInfo) of their portion of the Arctic, and these were later synthesized to make the final map. Area analysis of the map was done according to bioclimate subzones, and country. The integrated mapping procedures resulted in other maps of vegetation, topography, soils, landscapes, lake cover, substrate pH, and above-ground biomass. Results: The final map was published at 1:7 500 000 scale map. Within the Arctic (total area = 7.11 x 106 km 2), about 5.05 ?? 106 km2 is vegetated. The remainder is ice covered. The map legend generally portrays the zonal vegetation within each map polygon. About 26% of the vegetated area is erect shrublands, 18% peaty graminoid tundras, 13% mountain complexes, 12% barrens, 11% mineral graminoid tundras, 11% prostrate-shrub tundras, and 7% wetlands. Canada has by far the most terrain in the High Arctic mostly associated with abundant barren types and prostrate dwarf-shrub tundra, whereas Russia has the largest area in the Low Arctic, predominantly low-shrub tundra. Conclusions: The CAVM is the first vegetation map of an entire global biome at a comparable resolution. The consistent treatment of the vegetation across the circumpolar Arctic, abundant ancillary material, and digital database should promote the application to numerous land-use, and climate-change applications and will make updating the map relatively easy. ?? IAVS; Opulus Press.
Simulation of seagrass bed mapping by satellite images based on the radiative transfer model
NASA Astrophysics Data System (ADS)
Sagawa, Tatsuyuki; Komatsu, Teruhisa
2015-06-01
Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.
1980-08-01
also a mobile substrate habitat type, but not the massive dunes described previously; some vegetation is established. Most foredunes along the coastal...wvith the Fish and Wildlife Co~ordiinatioin ccnii h’ should be cdirected toe ard tin’, still Sit i~l~( ie . apliC ii n lilt Act IS 320.3ft Obovei
From an Executive Network to Executive Control: A Computational Model of the "n"-Back Task
ERIC Educational Resources Information Center
Chatham, Christopher H.; Herd, Seth A.; Brant, Angela M.; Hazy, Thomas E.; Miyake, Akira; O'Reilly, Randy; Friedman, Naomi P.
2011-01-01
A paradigmatic test of executive control, the n-back task, is known to recruit a widely distributed parietal, frontal, and striatal "executive network," and is thought to require an equally wide array of executive functions. The mapping of functions onto substrates in such a complex task presents a significant challenge to any theoretical…
NASA Astrophysics Data System (ADS)
Mazonakis, Michalis; Grinias, Elias; Pagonidis, Konstantin; Tziritas, George; Damilakis, John
2010-02-01
The purpose of this study was to develop and evaluate a semiautomatic method for left ventricular (LV) segmentation on cine MR images and subsequent estimation of cardiac parameters. The study group comprised cardiac MR examinations of 18 consecutive patients with known or suspected coronary artery disease. The new method allowed the automatic detection of the LV endocardial and epicardial boundaries on each short-axis cine MR image using a Bayesian flooding segmentation algorithm and weighted least-squares B-splines minimization. Manual editing of the automatic contours could be performed for unsatisfactory segmentation results. The end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF) and LV mass estimated by the new method were compared with the reference values obtained by manually tracing the LV cavity borders. The reproducibility of the new method was determined using data from two independent observers. The mean number of endocardial and epicardial outlines not requiring any manual adjustment was more than 80% and 76% of the total contour number per study, respectively. The mean segmentation time including the required manual corrections was 2.3 ± 0.7 min per patient. LV volumes estimated by the semiautomatic method were significantly lower than those by manual tracing (P < 0.05), whereas no difference was found for EF and LV mass (P > 0.05). LV indices estimated by the two methods were well correlated (r >= 0.80). The mean difference between manual and semiautomatic method for estimating EDV, ESV, EF and LV mass was 6.1 ± 7.2 ml, 3.0 ± 5.2 ml, -0.6 ± 4.3% and -6.2 ± 12.2 g, respectively. The intraobserver and interobserver variability associated with the semiautomatic determination of LV indices was 0.5-1.2% and 0.8-3.9%, respectively. The estimation of LV parameters with the new semiautomatic segmentation method is technically feasible, highly reproducible and time effective.