Science.gov

Sample records for endocochlear potential depends

  1. Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis.

    PubMed Central

    Takeuchi, S; Ando, M; Kakigi, A

    2000-01-01

    The endocochlear DC potential (EP) is generated by the stria vascularis, and essential for the normal function of hair cells. Intermediate cells are melanocytes in the stria vascularis. To examine the contribution of the membrane potential of intermediate cells (E(m)) to the EP, a comparison was made between the effects of K(+) channel blockers on the E(m) and those on the EP. The E(m) of dissociated guinea pig intermediate cells was measured in the zero-current clamp mode of the whole-cell patch clamp configuration. The E(m) changed by 55.1 mV per 10-fold changes in extracellular K(+) concentration. Ba(2+), Cs(+), and quinine depressed the E(m) in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM had no effect. The reduction of the E(m) by Ba(2+) and Cs(+) was enhanced by lowering the extracellular K(+) concentration from 3.6 mM to 1.2 mM. To examine the effect of the K(+) channel blockers on the EP, the EP of guinea pigs was maintained by vascular perfusion, and K(+) channel blockers were administered to the artificial blood. Ba(2+), Cs(+) and quinine depressed the EP in a dose-dependent manner, whereas tetraethylammonium at 30 mM and 4-aminopyridine at 10 mM did not change the EP. A 10-fold increase in the K(+) concentration in the artificial blood caused a minor decrease in the EP of only 10.6 mV. The changes in the EP were similar to those seen in the E(m) obtained at the lower extracellular K(+) concentration of 1.2 mM. On the basis of these results, we propose that the EP is critically dependent on the voltage jump across the plasma membrane of intermediate cells, and that K(+) concentration in the intercellular space in the stria vascularis may be actively controlled at a concentration lower than the plasma level. PMID:11053131

  2. Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice

    PubMed Central

    Ohlemiller, Kevin K.; Rice, Mary E. Rybak; Gagnon, Patricia M.

    2008-01-01

    NOD/ShiLtJ (previously NOD/LtJ) inbred mice show polygenic autoimmune disease and are commonly used to model autoimmune-related Type I diabetes, as well as Sjogren’s syndrome. They also show rapidly progressing hearing loss, partly due to the combined effects of Cdh23ahl and Ahl2. Congenic NOD.NON-H2nb1/LtJ mice, which carry corrective alleles within the H2 histocompatibility gene complex, are free from diabetes and other overt signs of autoimmune disease, but still exhibit rapidly progressive hearing loss. Here we show that cochlear pathology in these congenics broadly includes hair cell and neuronal loss, plus endocochlear potential (EP) decline from initially normal values after 2 months of age. The EP reduction follows often dramatic degeneration of capillaries in stria vascularis, with resulting strial degeneration. The cochlear modiolus in the congenic mice also features perivascular inclusions that resemble those in some mouse autoimmune models. We posit that cochlear hair cell/neural and strial pathology in NOD.NON-H2nb1 mice arise independently. While sensory cell loss may be closely tied to Cdh23ahl and Ahl2, the strial microvascular pathology and modiolar anomalies we observe may arise from alleles on the NOD background related to immune function. Age-associated EP decline in NOD.NON-H2nb1 mice may model forms of strial age-related hearing loss caused principally by microvascular disease. The remarkable strial capillary loss in these mice may also be useful for studying the relation between strial vascular insufficiency and strial function. PMID:18727954

  3. S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse

    PubMed Central

    Ingham, Neil J.; Carlisle, Francesca; Pearson, Selina; Lewis, Morag A.; Buniello, Annalisa; Chen, Jing; Isaacson, Rivka L.; Pass, Johanna; White, Jacqueline K.; Dawson, Sally J.; Steel, Karen P.

    2016-01-01

    Progressive hearing loss is very common in the population but we still know little about the underlying pathology. A new spontaneous mouse mutation (stonedeaf, stdf ) leading to recessive, early-onset progressive hearing loss was detected and exome sequencing revealed a Thr289Arg substitution in Sphingosine-1-Phosphate Receptor-2 (S1pr2). Mutants aged 2 weeks had normal hearing sensitivity, but at 4 weeks most showed variable degrees of hearing impairment, which became severe or profound in all mutants by 14 weeks. Endocochlear potential (EP) was normal at 2 weeks old but was reduced by 4 and 8 weeks old in mutants, and the stria vascularis, which generates the EP, showed degenerative changes. Three independent mouse knockout alleles of S1pr2 have been described previously, but this is the first time that a reduced EP has been reported. Genomic markers close to the human S1PR2 gene were significantly associated with auditory thresholds in the 1958 British Birth Cohort (n = 6099), suggesting involvement of S1P signalling in human hearing loss. The finding of early onset loss of EP gives new mechanistic insight into the disease process and suggests that therapies for humans with hearing loss due to S1P signalling defects need to target strial function. PMID:27383011

  4. A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential

    PubMed Central

    Bosher, S. K.; Warren, R. L.

    1971-01-01

    1. Changes in the endocochlear potential between the 8th and 18th days after birth were investigated in the rat. Initially the potential was low but its magnitude increased rapidly between the 11th and 16th day. During the 13th and 14th days the rate of increase was approximately 1 mV/hr. 2. The rapid potential increase arose virtually simultaneously in all three turns of the cochlea. 3. Histological examination revealed the cochlea, including the hair cells of Corti's organ and the stria vascularis, to be fully mature before the period of rapid change in the endocochlear potential, apart from the cells of Claudius, whose final development coincided with the latter part of this phase. 4. The endolymphatic sodium concentration (average 1·0 m-equiv/l.) had attained the very low adult level in the earliest period studied. The potassium and chloride concentrations were slightly below the normal adult levels, the result of some degree of general hypo-osmolality present at this time. 5. The endolymphatic ionic concentrations remained unchanged during the phase of rapid increase in the endocochlear potential. 6. The findings thus indicate that the distinctive endolymphatic ionic composition and the endocochlear potential arise largely independently and in succession during cochlear maturation. 7. No differences in osmotic pressure were demonstrated between endolymph, perilymph and serum. The problems concerning the homoeostasis of the inner ear fluids do not consequently seem to be complicated by unusual hydrodynamic aspects. 8. Alterations in body fluid osmolality, produced by intraperitoneal injection of water or hypertonic glycerol, were accompanied by simultaneous changes in the osmotic pressures of the inner ear fluids. Some portion of the membranes bounding the endolymphatic space is therefore considered to be freely permeable to water. 9. The investigations provide no further information about the nature of the endocochlear potential, although an increase in the

  5. Different Cellular and Genetic Basis of Noise-Related Endocochlear Potential Reduction in CBA/J and BALB/cJ Mice

    PubMed Central

    Rosen, Allyson D.; Rellinger, Erin A.; Montgomery, Scott C.; Gagnon, Patricia M.

    2010-01-01

    The acute and permanent effects of noise exposure on the endocochlear potential (EP) and cochlear lateral wall were evaluated in BALB/cJ (BALB) inbred mice, and compared with CBA/J (CBA) and C57BL/6 (B6) mice. Two-hour exposure to broadband noise (4–45 kHz) at 110 dB SPL leads to a ~50 mV reduction in the EP in BALB and CBA, but not B6. EP reduction in BALB and CBA is reliably associated with characteristic acute cellular pathology in stria vascularis and spiral ligament. By 8 weeks after exposure, the EP in CBA mice has returned to normal. In BALBs, however, the EP remains depressed by an average ~10 mV, so that permanent EP reduction contributes to permanent threshold shifts in these mice. We recently showed that the CBA noise phenotype in part reflects the influence of a large effect quantitative trait locus on Chr. 18, termed Nirep (Ohlemiller et al., Hear Res 260:47–53, 2010b). While CBA “EP susceptibility” alleles are dominant to those in B6, examination of (B6 × BALB) F1 hybrid mice and (F1 × BALB) N2 backcross mice revealed that noise-related EP reduction and associated cell pathology in BALBs are inherited in an autosomal recessive manner, and are dependent on multiple genes. Moreover, while N2 mice formed from B6 and CBA retain strong correspondence between acute EP reduction, ligament pathology, and strial pathology, N2s formed from B6 and BALB include subsets that dissociate pathology of ligament and stria. We conclude that the genes and cascades that govern the very similar EP susceptibility phenotypes in BALB and CBA mice need not be the same. BALBs appear to carry alleles that promote more pronounced long term effects of noise on the lateral wall. Separate loci in BALBs may preferentially impact stria versus ligament. PMID:20922451

  6. Compromised potassium recycling in the cochlea contributes to conservation of endocochlear potential in a mouse model of age-related hearing loss.

    PubMed

    Yang, Haidi; Xiong, Hao; Huang, Qiuhong; Pang, Jiaqi; Zheng, Xuqing; Chen, Lian; Yu, Rongjun; Zheng, Yiqing

    2013-10-25

    The C57BL/6 strain is considered an excellent model to study age-related hearing loss (AHL). Aging C57BL/6 mice are characterized by profound hearing loss but conservation of the endocochlear potential (EP). Here we show 12-month-old C57BL/6 mice display a notable hearing loss at 4, 8, 16 and 32kHz while the EP is maintained at normal level. Morphological examination shows significant outer hair cells loss in the cochlear basal turn and atrophy of the stria vascularis (SV). Fluorescence immunohistochemical studies reveal that potassium channel KCNJ10 and KCNQ1 expression dramatically decreased in the SV. Concomitant with this, mRNA levels of KCNJ10 and KCNQ1 are also reduced. In addition, three other potassium transporters, including α1-Na,K-ATPase, α2-Na,K-ATPase and NKCC1, reduce their expression at mRNA levels as well. These observations suggest that conservation of the EP in aging C57BL/6 mice is attributable to the SV generating a new balance for potassium influx and efflux at a relatively lower level.

  7. Deafness induced by Connexin 26 (GJB2) deficiency is not determined by endocochlear potential (EP) reduction but is associated with cochlear developmental disorders.

    PubMed

    Chen, Jin; Chen, Jing; Zhu, Yan; Liang, Chun; Zhao, Hong-Bo

    2014-05-23

    Connexin 26 (Cx26, GJB2) mutations are the major cause of hereditary deafness and are responsible for >50% of nonsyndromic hearing loss. Mouse models show that Cx26 deficiency can cause congenital deafness with cochlear developmental disorders, hair cell degeneration, and the reduction of endocochlear potential (EP) and active cochlear amplification. However, the underlying deafness mechanism still remains undetermined. Our previous studies revealed that hair cell degeneration is not a primary cause of hearing loss. In this study we investigated the role of EP reduction in Cx26 deficiency-induced deafness. We found that the EP reduction is not associated with congenital deafness in Cx26 knockout (KO) mice. The threshold of auditory brainstem response (ABR) in Cx26 KO mice was even greater than 110 dB SPL, demonstrating complete hearing loss. However, the EP in Cx26 KO mice varied and not completely abolished. In some cases, the EP could still remain at higher levels (>70 mV). We further found that the deafness in Cx26 KO mice is associated with cochlear developmental disorders. Deletion of Cx26 in the cochlea before postnatal day 5 (P5) could cause congenital deafness. The cochlea had developmental disorders and the cochlear tunnel was not open. However, no congenital deafness was found when Cx26 was deleted after P5. The cochlea also displayed normal development and the cochlear tunnel was open normally. These data suggest that congenital deafness induced by Cx26 deficiency is not determined by EP reduction and may result from cochlear developmental disorders.

  8. Applying supersymmetry to energy dependent potentials

    SciTech Connect

    Yekken, R.; Lassaut, M.; Lombard, R.J.

    2013-11-15

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  9. Temperature dependence of soil water potential

    SciTech Connect

    Mohamed, A.M.O.; Yong, R.N. ); Cheung, S.C.H. )

    1992-12-01

    To understand the process of coupled heat and water transport, the relationship between temperature and soil water potential must be known. Two clays, Avonlea bentonite and Lake Agassiz clay, are being considered as the clay-based sealing materials for the Canadian nuclear fuel waste disposal vault. Avonlea bentonite is distinguished from Lake Agassiz clay by its high sealing potential in water. A series of experiments was performed in which the two clays were mixed with equal amounts of sand and were compacted to a dry density of 1.67 Mg/m[sup 3] under various moisture contents and temperatures. A psychrometer was placed within the compacted clay-sand to measure the soil water potential based on the electromotive force measured by the psychrometer. The results indicate that the soil water potential at a particular temperature is higher for both clay-sand mixtures than predicted by the change in the surface tension of water; this effect is much more prominent in the Avonlea bentonite and at low moisture contents. The paper presents empirical equations relating the soil water potential with the moisture content and temperature of the two clay-sand mixtures. 24 refs., 8 figs., 2 tabs.

  10. Dentin Biomodification Potential Depends on Polyphenol Source

    PubMed Central

    Aguiar, T.R.; Vidal, C.M.P.; Phansalkar, R.S.; Todorova, I.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F.; Bedran-Russo, A.K.

    2014-01-01

    Although proanthocyanidins (PACs) modify dentin, the effectiveness of different PAC sources and the correlation with their specific chemical composition are still unknown. This study describes the chemical profiling of natural PAC-rich extracts from 7 plants using ultra high pressure/performance liquid chromatography (UHPLC) to determine the overall composition of these extracts and, in parallel, comprehensively evaluate their effect on dentin properties. The total polyphenol content of the extracts was determined (as gallic acid equivalents) using Folin-Ciocalteau assays. Dentin biomodification was assessed by the modulus of elasticity, mass change, and resistance to enzymatic biodegradation. Extracts with a high polyphenol and PAC content from Vitis vinifera, Theobroma cacao, Camellia sinensis, and Pinus massoniana induced a significant increase in modulus of elasticity and mass. The UHPLC analysis showed the presence of multiple types of polyphenols, ranging from simple phenolic acids to oligomeric PACs and highly condensed tannins. Protective effect against enzymatic degradation was observed for all experimental groups; however, statistically significant differences were observed between plant extracts. The findings provide clear evidence that the dentin bioactivities of PACs are source dependent, resulting from a combination of concentration and specific chemical constitution of the complex PAC mixtures. PMID:24574140

  11. Time-dependent potential-functional embedding theory

    SciTech Connect

    Huang, Chen; Libisch, Florian; Carter, Emily A.

    2014-03-28

    We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na{sub 4} cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na{sub 4} cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.

  12. Time-dependent potential-functional embedding theory.

    PubMed

    Huang, Chen; Libisch, Florian; Peng, Qing; Carter, Emily A

    2014-03-28

    We introduce a time-dependent potential-functional embedding theory (TD-PFET), in which atoms are grouped into subsystems. In TD-PFET, subsystems can be propagated by different suitable time-dependent quantum mechanical methods and their interactions can be treated in a seamless, first-principles manner. TD-PFET is formulated based on the time-dependent quantum mechanics variational principle. The action of the total quantum system is written as a functional of the time-dependent embedding potential, i.e., a potential-functional formulation. By exploiting the Runge-Gross theorem, we prove the uniqueness of the time-dependent embedding potential under the constraint that all subsystems share a common embedding potential. We derive the integral equation that such an embedding potential needs to satisfy. As proof-of-principle, we demonstrate TD-PFET for a Na4 cluster, in which each Na atom is treated as one subsystem and propagated by time-dependent Kohn-Sham density functional theory (TDDFT) using the adiabatic local density approximation (ALDA). Our results agree well with a direct TDDFT calculation on the whole Na4 cluster using ALDA. We envision that TD-PFET will ultimately be useful for studying ultrafast quantum dynamics in condensed matter, where key regions are solved by highly accurate time-dependent quantum mechanics methods, and unimportant regions are solved by faster, less accurate methods.

  13. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  14. Temperature dependence of the zeta potential in intact natural carbonates

    NASA Astrophysics Data System (ADS)

    Al Mahrouqi, Dawoud; Vinogradov, Jan; Jackson, Matthew D.

    2016-11-01

    The zeta potential is a measure of the electrical charge on mineral surfaces and is an important control on subsurface geophysical monitoring, adsorption of polar species in aquifers, and rock wettability. We report the first measurements of zeta potential in intact, water-saturated, natural carbonate samples at temperatures up to 120°C. The zeta potential is negative and decreases in magnitude with increasing temperature at low ionic strength (0.01 M NaCl, comparable to potable water) but is independent of temperature at high ionic strength (0.5 M NaCl, comparable to seawater). The equilibrium calcium concentration resulting from carbonate dissolution also increases with increasing temperature at low ionic strength but is independent of temperature at high ionic strength. The temperature dependence of the zeta potential is correlated with the temperature dependence of the equilibrium calcium concentration and shows a Nernstian linear relationship. Our findings are applicable to many subsurface carbonate rocks at elevated temperature.

  15. Dependence of polar cap potential drop on interplanetary parameters

    NASA Technical Reports Server (NTRS)

    Reiff, P. H.; Spiro, R. W.; Hill, T. W.

    1981-01-01

    The convection potential drop across the polar cap is computed from data obtained on high-inclination low-altitude satellites. Potential measurements are correlated with various combinations of parameters measured simultaneously in the upstream solar wind. Most of the potential drop is successfully predicted by merging theory, although a significant background potential drop of 35 kV does not depend on IMF parameters and is attributed to a process other than merging. Results indicate that small values of the IMF are amplified by a factor of 5-10 at the dayside magnetopause, which, when taken into account, improves correlations between IMF parameters and polar cap potential drop. Potential drop is better correlated with IMF parameters than with geomagnetic indices, due to nonlinear response of the magnetosphere affecting geomagnetic activity indices.

  16. Orientation-dependent potential of mean force for protein folding.

    PubMed

    Mukherjee, Arnab; Bhimalapuram, Prabhakar; Bagchi, Biman

    2005-07-01

    We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.

  17. Targeting glutamate homeostasis for potential treatment of nicotine dependence

    PubMed Central

    Alasmari, Fawaz; Al-Rejaie, Salim S.; AlSharari, Shakir D.; Sari, Youssef

    2015-01-01

    Several studies demonstrated that impairment in glutamatergic neurotransmission is linked to drug dependence and drug-seeking behavior. Increased extracellular glutamate concentration in mesocorticolimbic regions has been observed in animals developing nicotine dependence. Changes in glutamate release might be associated with stimulatory effect of nicotinic acetylcholine receptors (nAChRs) via nicotine exposure. We and others have shown increased extracellular glutamate concentration, which was associated with downregulation of the major glutamate transporter, glutamate transporter 1 (GLT-1), in brain reward regions of animals exposed to drug abuse, including nicotine and ethanol. Importantly, studies from our laboratory and others showed that upregulation of GLT-1 expression in the mesocorticolimbic brain regions may have potential therapeutic effects in drug dependence. In this review article, we discussed the effect of antagonizing presynaptic nAChRs in glutamate release, the upregulatory effect in GLT-1 expression and the role of glutamate receptors antagonists in the treatment of nicotine dependence. PMID:26589642

  18. Saturation dependence of the streaming potential during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Vinogradov, J.; Leinov, E.; Jackson, M.

    2012-12-01

    The rock pore space in many subsurface settings is saturated with water and one or more immiscible fluid phases; examples include NAPLs in contaminated aquifers, supercritical CO2 during sequestration in deep saline aquifers, the vadose zone, and hydrocarbon reservoirs. To interpret spontaneous potential measurements for groundwater flow and hydraulic properties in these settings requires an understanding of the saturation dependence of the streaming potential. Vinogradov and Jackson [2011] recently reported measurements of the streaming potential during drainage and, for the first time, imbibition in sandstone plugs saturated with water and either undecane or nitrogen. However, they reported effective values of the streaming potential coupling coefficient (C) at partial saturation (Sw), because Sw in the plugs was not uniform during drainage or imbibition. The aim of this study is to determine the true value of C as a function of Sw. We use a three-step approach in which hydraulic and electrical parameters are determined using numerical simulation and either Nelder-Mead simplex unconstrained optimisation or Active-set constrained optimisation algorithm. In the first step, we determine the saturation dependence of the relative permeability and capillary pressure, assuming these are simple exponential functions of Sw (Corey-type) and using an objective function which is a weighted average of the measured (i) pressure drop across the plug, (ii) liquid rate flowing out of the plug, and (iii) fraction of water flowing out of the plug. In the second, we determine the saturation dependence of the electrical conductivity, using the measured conductivity of the plug as the objective function. In the final step, we determine the saturation dependence of the streaming potential, using the measured streaming potential across the plug as the objective function. We obtain a good match between simulated and measured values of C, and find that it (i) exhibits hysteresis, (ii) can

  19. Temperature dependence of action potential parameters in Aplysia neurons.

    PubMed

    Hyun, Nam Gyu; Hyun, Kwang-Ho; Lee, Kyungmin; Kaang, Bong-Kiun

    2012-01-01

    Although the effects of temperature changes on the activity of neurons have been studied in Aplysia, the reproducibility of the temperature dependence of the action potential (AP) parameters has not been verified. To this end, we performed experiments using Aplysia neurons. Fourteen AP parameters were analyzed using the long-term data series recorded during the experiments. Our analysis showed that nine of the AP parameters decreased as the temperature increased: the AP amplitude (A(AP)), membrane potential at the positive peak (V(pp)), interspike interval, first half (Δt(r1)) and last half (Δt(r2)) of the temperature rising phase, first half (Δt(f1)) and last half (Δt(f2)) of the temperature falling phase, AP (Δt(AP, 1/2)), and differentiated signal (Δt(DS, 1/2)) half-width durations. Five of the AP parameters increased with temperature: the differentiated signal amplitude (A(DS)), absolute value of the membrane potential at negative peak (|V(np)|), absolute value of the maximum slope of the AP during the temperature rising (|-MSR|) and falling (|MSF|) phases, and spiking frequency (Frequency). This work could provide the basis for a better understanding of the elementary processes underlying the temperature-dependent neuronal activity in Aplysia.

  20. Spin- and velocity-dependent nonrelativistic potentials in modified electrodynamics

    NASA Astrophysics Data System (ADS)

    de Brito, G. P.; Malta, P. C.; Ospedal, L. P. R.

    2017-01-01

    We investigate the interparticle potential between spin-0, spin-1 /2 , and spin-1 sources interacting in modified electrodynamics in the nonrelativistic regime. By keeping terms of O (|p |2/m2) in the amplitudes, we obtain spin- and velocity-dependent interaction energies. We find well-known effects such as spin-orbit couplings, as well as spin-spin (dipole-dipole) interactions. For concreteness, we consider the cases of electrodynamics with higher derivatives (Podolsky-Lee-Wick) and hidden photons.

  1. Temperature-dependent potential in cluster-decay process

    NASA Astrophysics Data System (ADS)

    Gharaei, R.; Zanganeh, V.

    2016-08-01

    Role of the thermal effects of the parent nucleus in the Coulomb barrier and the half-life of 28 cluster-decays is systematically analyzed within the framework of the proximity formalism, namely proximity potential 2010. The WKB approximation is used to determine the penetration probability of the emitted cluster. It is shown that the height and width of the Coulomb barrier in the temperature-dependent proximity potential are less than its temperature-independent version. Moreover, this investigation reveals that the calculated values of half-life for selected cluster-decays are in better agreement with the experimental data when the mentioned effects are imposed on the proximity approach. A discussion is also presented about the predictions of the present thermal approach for cluster-decay half-lives of the super-heavy-elements.

  2. Mapping potential groundwater-dependent ecosystems for sustainable management.

    PubMed

    Gou, Si; Gonzales, Susana; Miller, Gretchen R

    2015-01-01

    Ecosystems which rely on either the surface expression or subsurface presence of groundwater are known as groundwater-dependent ecosystems (GDEs). A comprehensive inventory of GDE locations at an appropriate management scale is a necessary first-step for sustainable management of supporting aquifers; however, this information is unavailable for most areas of concern. To address this gap, this study created a two-step algorithm which analyzed existing geospatial and remote sensing data to identify potential GDEs at both state/province and aquifer/basin scales. At the state/province scale, a geospatial information system (GIS) database was constructed for Texas, including climate, topography, hydrology, and ecology data. From these data, a GDE index was calculated, which combined vegetative and hydrological indicators. The results indicated that central Texas, particularly the Edwards Aquifer region, had highest potential to host GDEs. Next, an aquifer/basin scale remote sensing-based algorithm was created to provide more detailed maps of GDEs in the Edwards Aquifer region. This algorithm used Landsat ETM+ and MODIS images to track the changes of NDVI for each vegetation pixel. The NDVI dynamics were used to identify the vegetation with high potential to use groundwater--such plants remain high NDVI during extended dry periods and also exhibit low seasonal and inter-annual NDVI changes between dry and wet seasons/years. The results indicated that 8% of natural vegetation was very likely using groundwater. Of the potential GDEs identified, 75% were located on shallow soil averaging 45 cm in depth. The dominant GDE species were live oak, ashe juniper, and mesquite.

  3. Dynamics of Interacting Fermions in Spin-Dependent Potentials.

    PubMed

    Koller, Andrew P; Wall, Michael L; Mundinger, Josh; Rey, Ana Maria

    2016-11-04

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  4. Dynamics of Interacting Fermions in Spin-Dependent Potentials

    NASA Astrophysics Data System (ADS)

    Koller, Andrew P.; Wall, Michael L.; Mundinger, Josh; Rey, Ana Maria

    2016-11-01

    Recent experiments with dilute trapped Fermi gases observed that weak interactions can drastically modify spin transport dynamics and give rise to robust collective effects including global demagnetization, macroscopic spin waves, spin segregation, and spin self-rephasing. In this Letter, we develop a framework for studying the dynamics of weakly interacting fermionic gases following a spin-dependent change of the trapping potential which illuminates the interplay between spin, motion, Fermi statistics, and interactions. The key idea is the projection of the state of the system onto a set of lattice spin models defined on the single-particle mode space. Collective phenomena, including the global spreading of quantum correlations in real space, arise as a consequence of the long-ranged character of the spin model couplings. This approach achieves good agreement with prior measurements and suggests a number of directions for future experiments.

  5. Menthol's potential effects on nicotine dependence: a tobacco industry perspective

    PubMed Central

    2011-01-01

    Objective To examine what the tobacco industry knows about the potential effects menthol may have on nicotine dependence. Methods A snowball strategy was used to systematically search the Legacy Tobacco Documents Library (http://legacy.library.ucsf.edu/) between 22 February and 29 April, 2010. Of the approximately 11 million documents available in the Legacy Tobacco Documents Library, the iterative searches returned tens of thousands of results. We qualitatively analysed a final collection of 309 documents relevant the effects of menthol on nicotine dependence. Results The tobacco industry knows that menthol overrides the harsh taste of tobacco and alleviates nicotine's irritating effects, synergistically interacts with nicotine, stimulates the trigeminal nerve to elicit a ‘liking’ response for a tobacco product, and makes low tar, low nicotine tobacco products more acceptable to smokers than non-mentholated low delivery products. Conclusion Menthol is not only used in cigarettes as a flavour additive; tobacco companies know that menthol also has sensory effects and interacts with nicotine to produce tobacco products that are easier to smoke, thereby making it easier to expose smokers, especially those who are new and uninitiated, to the addictive power of nicotine. PMID:21504929

  6. Endocannabinoid dynamics gate spike-timing dependent depression and potentiation

    PubMed Central

    Cui, Yihui; Prokin, Ilya; Xu, Hao; Delord, Bruno; Genet, Stephane; Venance, Laurent; Berry, Hugues

    2016-01-01

    Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on short- and long-term scales. Recent reports indicate that eCBs also mediate potentiation of the synapse. However, it is not known how eCB signaling may support bidirectionality. Here, we combined electrophysiology experiments with mathematical modeling to question the mechanisms of eCB bidirectionality in spike-timing dependent plasticity (STDP) at corticostriatal synapses. We demonstrate that STDP outcome is controlled by eCB levels and dynamics: prolonged and moderate levels of eCB lead to eCB-mediated long-term depression (eCB-tLTD) while short and large eCB transients produce eCB-mediated long-term potentiation (eCB-tLTP). Moreover, we show that eCB-tLTD requires active calcineurin whereas eCB-tLTP necessitates the activity of presynaptic PKA. Therefore, just like glutamate or GABA, eCB form a bidirectional system to encode learning and memory. DOI: http://dx.doi.org/10.7554/eLife.13185.001 PMID:26920222

  7. Attention-dependent sound offset-related brain potentials.

    PubMed

    Horváth, János

    2016-05-01

    When performing sensory tasks, knowing the potentially occurring goal-relevant and irrelevant stimulus events allows the establishment of selective attention sets, which result in enhanced sensory processing of goal-relevant events. In the auditory modality, such enhancements are reflected in the increased amplitude of the N1 ERP elicited by the onsets of task-relevant sounds. It has been recently suggested that ERPs to task-relevant sound offsets are similarly enhanced in a tone-focused state in comparison to a distracted one. The goal of the present study was to explore the influence of attention on ERPs elicited by sound offsets. ERPs elicited by tones in a duration-discrimination task were compared to ERPs elicited by the same tones in not-tone-focused attentional setting. Tone offsets elicited a consistent, attention-dependent biphasic (positive-negative--P1-N1) ERP waveform for tone durations ranging from 150 to 450 ms. The evidence, however, did not support the notion that the offset-related ERPs reflected an offset-specific attention set: The offset-related ERPs elicited in a duration-discrimination condition (in which offsets were task relevant) did not significantly differ from those elicited in a pitch-discrimination condition (in which the offsets were task irrelevant). Although an N2 reflecting the processing of offsets in task-related terms contributed to the observed waveform, this contribution was separable from the offset-related P1 and N1. The results demonstrate that when tones are attended, offset-related ERPs may substantially overlap endogenous ERP activity in the postoffset interval irrespective of tone duration, and attention differences may cause ERP differences in such postoffset intervals.

  8. Broken scale invariance in time-dependent trapping potentials

    NASA Astrophysics Data System (ADS)

    Gharashi, Seyed Ebrahim; Blume, D.

    2016-12-01

    The response of a cold atom gas with contact interactions to a smoothly varying external harmonic confinement in the nonadiabatic regime is studied. The time variation of the angular frequency is varied such that the system is, for vanishing or infinitely strong contact interactions, scale invariant. The time evolution of the system with broken scale invariance (i.e., the time evolution of the system with finite interaction strength) is contrasted with that for a scale invariant system, which exhibits Efimovian-like expansion dynamics that is characterized by log-periodic oscillations with unique period and amplitude. It is found that the breaking of the scale invariance by the finiteness of the interactions leads to a time dependence of the oscillation period and amplitude. It is argued, based on analytical considerations for atomic gases of arbitrary size and numerical results for two one-dimensional particles, that the oscillation period approaches that of the scale-invariant system at large times. The role of the time-dependent contact in the expansion dynamics is analyzed.

  9. Potential-dependent dynamic fracture of nanoporous gold.

    PubMed

    Sun, Shaofeng; Chen, Xiying; Badwe, Nilesh; Sieradzki, Karl

    2015-09-01

    When metallic alloys are exposed to a corrosive environment, porous nanoscale morphologies spontaneously form that can adversely affect the mechanical integrity of engineered structures. This form of stress-corrosion cracking is responsible for the well-known 'season cracking' of brass and stainless steel components in nuclear power generating stations. One explanation for this is that a high-speed crack is nucleated within the porous layer, which subsequently injects into non-porous parent-phase material. We study the static and dynamic fracture properties of free-standing monolithic nanoporous gold as a function electrochemical potential using high-speed photography and digital image correlation. The experiments reveal that at electrochemical potentials typical of porosity formation these structures are capable of supporting dislocation-mediated plastic fracture at crack velocities of 200 m s(-1). Our results identify the important role of high-speed fracture in stress-corrosion cracking and are directly applicable to the behaviour of monolithic dealloyed materials at present being considered for a variety of applications.

  10. Potential-dependent dynamic fracture of nanoporous gold

    NASA Astrophysics Data System (ADS)

    Sun, Shaofeng; Chen, Xiying; Badwe, Nilesh; Sieradzki, Karl

    2015-09-01

    When metallic alloys are exposed to a corrosive environment, porous nanoscale morphologies spontaneously form that can adversely affect the mechanical integrity of engineered structures. This form of stress-corrosion cracking is responsible for the well-known `season cracking’ of brass and stainless steel components in nuclear power generating stations. One explanation for this is that a high-speed crack is nucleated within the porous layer, which subsequently injects into non-porous parent-phase material. We study the static and dynamic fracture properties of free-standing monolithic nanoporous gold as a function electrochemical potential using high-speed photography and digital image correlation. The experiments reveal that at electrochemical potentials typical of porosity formation these structures are capable of supporting dislocation-mediated plastic fracture at crack velocities of 200 m s-1. Our results identify the important role of high-speed fracture in stress-corrosion cracking and are directly applicable to the behaviour of monolithic dealloyed materials at present being considered for a variety of applications.

  11. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  12. Angle-Dependent Ionization of Small Molecules by Time-Dependent Configuration Interaction and an Absorbing Potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2015-06-04

    The angle-dependence of strong field ionization of O2, N2, CO2, and CH2O has been studied theoretically using a time-dependent configuration interaction approach with a complex absorbing potential (TDCIS-CAP). Calculation of the ionization yields as a function of the direction of polarization of the laser pulse produces three-dimensional surfaces of the angle-dependent ionization probability. These three-dimensional shapes and their variation with laser intensity can be interpreted in terms of ionization from the highest occupied molecular orbital (HOMO) and lower lying orbitals, and the Dyson orbitals for the ground and excited states of the cations.

  13. Differential effects of K(+) channel blockers on frequency-dependent action potential broadening in supraoptic neurons.

    PubMed

    Hlubek, M D; Cobbett, P

    2000-09-15

    Recordings were made from magnocellular neuroendocrine cells dissociated from the supraoptic nucleus of the adult guinea pig to determine the role of voltage gated K(+) channels in controlling the duration of action potentials and in mediating frequency-dependent action potential broadening exhibited by these neurons. The K(+) channel blockers charybdotoxin (ChTx), tetraethylammonium (TEA), and 4-aminopyridine (4-AP) increased the duration of individual action potentials indicating that multiple types of K(+) channel are important in controlling action potential duration. The effect of these K(+) channel blockers was almost completely reversed by simultaneous blockade of voltage gated Ca(2+) channels with Cd(2+). Frequency-dependent action potential broadening was exhibited by these neurons during trains of action potentials elicited by membrane depolarizing current pulses presented at 10 Hz but not at 1 Hz. 4-AP but not ChTx or TEA inhibited frequency-dependent action potential broadening indicating that frequency-dependent action potential broadening is dependent on increasing steady-state inactivation of A-type K(+) channels (which are blocked by 4-AP). A model of differential contributions of voltage gated K(+) channels and voltage gated Ca(2+) channels to frequency-dependent action potential broadening, in which an increase of Ca(2+) current during each successive action potential is permitted as a result of the increasing steady-state inactivation of A-type K(+) channels, is presented.

  14. Action potential broadening and frequency-dependent facilitation of calcium signals in pituitary nerve terminals.

    PubMed

    Jackson, M B; Konnerth, A; Augustine, G J

    1991-01-15

    Hormone release from nerve terminals in the neurohypophysis is a sensitive function of action potential frequency. We have investigated the cellular mechanisms responsible for this frequency-dependent facilitation by combining patch clamp and fluorimetric Ca2+ measurements in single neurosecretory terminals in thin slices of the rat posterior pituitary. In these terminals both action potential-induced changes in the intracellular Ca2+ concentration ([Ca2+]i) and action potential duration were enhanced by high-frequency stimuli, all with a frequency dependence similar to that of hormone release. Furthermore, brief voltage clamp pulses inactivated a K+ current with a very similar frequency dependence. These results support a model for frequency-dependent facilitation in which the inactivation of a K+ current broadens action potentials, leading to an enhancement of [Ca2+]i signals. Further experiments tested for a causal relationship between action potential broadening and facilitation of [Ca2+]i changes. First, increasing the duration of depolarization, either by broadening action potentials with the K(+)-channel blocker tetraethylammonium or by applying longer depolarizing voltage clamp steps, increased [Ca2+]i changes. Second, eliminating frequency-dependent changes in duration, by voltage clamping the terminal with constant duration pulses, substantially reduced the frequency-dependent enhancement of [Ca2+]i changes. These results indicate that action potential broadening contributes to frequency-dependent facilitation of [Ca2+]i changes. However, the small residual frequency dependence of [Ca2+]i changes seen with constant duration stimulation suggests that a second process, distinct from action potential broadening, also contributes to facilitation. These two frequency-dependent mechanisms may also contribute to activity-dependent plasticity in synaptic terminals.

  15. Mass dependence of the real optical model potential for light ions

    NASA Astrophysics Data System (ADS)

    Srivastava, D. K.; Ganguly, N. K.; Basu, D. N.

    1983-06-01

    The observed target mass dependence of the volume integral per interacting nucleon pair of the real optical model potential for deuterons, helium-3 and alpha particles is explained in terms of the density dependence of the effective projectile-nucleon interaction. A mass dependence function for light ions is derived, which for density dependent forces consists of a volume, a surface, a curvature, and a higher order correction term. For non-saturating forces, this has only the volume term and fails to account for the observed mass dependence.

  16. Na+ binding to the Na(+)-glucose cotransporter is potential dependent.

    PubMed

    Bennett, E; Kimmich, G A

    1992-02-01

    Activity of the Na(+)-glucose cotransporter in LLC-PK1 epithelial cells was assayed by measuring sugar-induced currents (IAMG) using whole cell recording techniques. IAMG was compared among cells by standardizing the measured currents to cell size using cell capacitance measurements. IAMG at a given membrane potential was measured as a function of alpha-methylglucoside (AMG) concentration and can be fit to Michaelis-Menten kinetics. IAMG at varying Na+ concentrations can be described by the Hill equation with a Hill coefficient of 1.6 at all tested potentials. At high external Na+ levels (155 mM), Na+ is at least 90% saturating at all tested potentials. Maximal currents at a given membrane potential (Im) are calculated from the Michaelis-Menten equation fit to data measuring IAMG vs. AMG concentration at a constant Na+ concentration. Im showed potential dependence under all conditions. Potential-dependent Na+ binding rate(s) cannot alone explain the observed potential dependence of Im under saturating Na+ conditions. Therefore, because Im is potential dependent, at least one step of the transport cycle other than external Na+ binding must be potential dependent. Im was also calculated from data taken at 40 mM external Na+. At all potentials studied, Im at 155 mM Na+ is greater than Im calculated at 40 mM Na+. This implies that the rate of external Na+ binding to the transporter at 40 mM also affects the maximal transport rate. Furthermore, Im at 40 mM external Na+ increases with hyperpolarization faster than Im at 155 mM Na+. Together, these facts indicate that the rate at which Na+ binds to the transporter is also potential dependent.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Density dependence of microscopic nucleon optical potential in first order Brueckner theory

    NASA Astrophysics Data System (ADS)

    Saliem, S. M.; Haider, W.

    2002-06-01

    In the present work we apply the lowest order Brueckner theory of infinite nuclear matter to obtain nucleon-nucleus optical potential for p-40Ca elastic scattering at 200 MeV using Urbana V14 soft core internucleon potential. We have investigated the effect of target density on the calculated nucleon-nucleus optical potential. We find that the calculated optical potentials depend quite sensitively on the density distribution of the target nucleus. The important feature is that the real part of calculated central optical potential for all densities shows a wine-bottle-bottom type behaviour at this energy. We also discuss the effect of our new radial dependent effective mass correction. Finally, we compare the prediction of our calculated nucleon optical potential using V14 with the prediction using older hard core Hamada-Johnston internucleon potential for p-40Ca elastic scattering at 200 MeV.

  18. Forskolin induces NMDA receptor-dependent potentiation at a central synapse in the leech.

    PubMed

    Grey, Kathryn B; Burrell, Brian D

    2008-05-01

    In vertebrate hippocampal neurons, application of forskolin (an adenylyl cyclase activator) and rolipram (a phosphodiesterase inhibitor) is an effective technique for inducing chemical long-term potentiation (cLTP) that is N-methyl-d-aspartate (NMDA) receptor (NMDAR)-dependent. However, it is not known whether forskolin induces a similar potentiation in invertebrate synapses. Therefore, we examined whether forskolin plus rolipram treatment could induce potentiation at a known glutamatergic synapse in the leech (Hirudo sp.), specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Perfusion of isolated ganglia with forskolin (50 muM) in conjunction with rolipram (0.1 muM) in Mg(2+)-free saline significantly potentiated the P-to-AP excitatory postsynaptic potential. Application of 2-amino-5-phosphonovaleric acid (APV, 100 muM), a competitive NMDAR antagonist, blocked the potentiation, indicating P-to-AP potentiation is NMDAR-dependent. Potentiation was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA, 1 mM) into the postsynaptic cell, but not by BAPTA injection into the presynaptic neuron, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Application of db-cAMP mimicked the potentiating effects of forskolin, and Rp-cAMP, an inhibitor of protein kinase A, blocked forskolin-induced potentiation. Potentiation was also blocked by autocamtide-2-related inhibitory peptide (AIP), indicating a requirement for activation of Ca(2+)/calmodulin-dependent kinase II (CaMKII). Finally, potentiation was blocked by botulinum toxin, suggesting that trafficking of glutamate receptors also plays a role in this form of synaptic plasticity. These experiments demonstrate that techniques used to induce cLTP in vertebrate synapses also induce NMDAR-dependent potentiation in the leech CNS and that many of the cellular processes that mediate LTP are conserved between vertebrate and invertebrate phyla.

  19. Velocity-dependent optical potential for neutron elastic scattering from 1 p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Ghabar, I. N.; Jaghoub, M. I.

    2015-06-01

    Background: The conventional optical model is quite successful in describing the nucleon elastic scattering data from medium and heavy nuclei. However, its success in describing the light 1 p -shell nuclei is somewhat limited. The velocity-dependent optical potential resulted in a significant improvement in describing the elastic angular distributions for light nuclei in the low energy region. Purpose: To extend the formalism of the velocity-dependent potential to higher energies, and to assess its importance in describing neutron elastic scattering data from light 1 p -shell nuclei at high energies. Method: We fit the angular distribution data for neutron elastic scattering from 12C and 16O using (i) the velocity-dependent optical potential and (ii) the conventional optical potential. The results of the two models are then compared. At low energies, we compare our angular distribution fits with the fits of other works that exist in the literature. Furthermore, the total integrated cross sections in addition to the analyzing power are calculated using the velocity-dependent optical potential and compared to the experimental data. Results: The velocity-dependent potential resulted in significant improvements in describing the angular distributions particularly in the large-angle scattering region and for certain energy ranges. This model is important where the experimental data show structural effects from nuclear surface deformations, which are important in light nuclei. Furthermore, the calculated total elastic cross sections and analyzing power are in good agreement with the experimental data. Conclusions: The velocity-dependent potential gives rise to surface-peaked real terms in the optical model. Such terms account, at least partly, for the structural effects seen in the angular distribution data. The energy range over which the surface terms are needed is found to depend on the target nucleus. Other works that have introduced real surface terms in the optical

  20. Isospectral Trigonometric Pöschl-Teller Potentials with Position Dependent Mass Generated by Supersymmetry

    NASA Astrophysics Data System (ADS)

    Santiago-Cruz, C.

    2016-03-01

    In this work a position dependent mass Hamiltonian with the same spectrum of the trigonometric Pöschl-Teller one was constructed by means of the underlying potential algebra. The corresponding wave functions are determined by using the factorization method. A new family of isospectral potentials are constructed by applying a Darboux transformation. An example is presented in order to illustrate the formalism.

  1. Numerical Density-to-Potential Inversions in Time-dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Inchaustegui, Jean Pierre; Wasserman, Adam

    2014-03-01

    Time-dependent Density Functional Theory (TDDFT) is a formally exact method for solving the quantum many-body problem. In Kohn-Sham TDDFT, a fictitious noninteracting system is defined that exactly reproduces the time-dependent density of the interacting system. The potential that determines this noninteracting system (the time-dependent Kohn-Sham potential) has been proven to exist under certain restrictions, but finding the exact Kohn-Sham potential for a given density remains challenging. We show that this ill-posed inverse problem requires some form of regularization to produce realistic Kohn-Sham potentials. We explore various forms of regularization and illustrate how they work on simple one-dimensional model systems. We also show how our method can be applied to problems with both particle-in-a-box and periodic boundary conditions subject to oscillating electric fields.

  2. Isotopic dependence of fusion enhancement of various heavy ion systems using energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2015-01-01

    In the present work, the fusion of symmetric and asymmetric projectile-target combinations are deeply analyzed within the framework of energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus-nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm, which is much larger than a value (a = 0.65 fm) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus-nucleus potential possesses normal diffuseness parameter.

  3. Tunnelling in a time dependent quartic potential: Possible implications for cosmology

    NASA Astrophysics Data System (ADS)

    Kabir, R.; Mukherjee, A.

    2014-03-01

    The theory of a real scalar field with an arbitrary potential plays an important role in cosmology, particularly in the context of inflationary scenarios. However, in most applications, the potential is treated as independent of time, whereas in an evolving universe, for example, before the onset of inflation, the potential is actually likely to be changing with time. As pointed out by Berry in the context of single-particle quantum mechanics, the existence of multiple time scales can lead to results that are qualitatively different from those obtained with a static potential. The present paper reports on numerical investigations in a scalar field theory with a double-well potential that depends explicitly on time. The transition rate per unit volume for the decay of the false vacuum is found to depend strongly on time. Possible implications for old inflation are discussed.

  4. Molecular determinants of membrane potential dependence in vertebrate gap junction channels.

    PubMed

    Revilla, A; Bennett, M V; Barrio, L C

    2000-12-19

    The conductance, g(j), of many gap junctions depends on voltage between the coupled cells (transjunctional voltage, V(j)) with little effect of the absolute membrane potential (V(m)) in the two cells; others show combined V(j) and V(m) dependence. We examined the molecular determinants of V(m) dependence by using rat connexin 43 expressed in paired Xenopus oocytes. These junctions have, in addition to V(j) dependence, V(m) dependence such that equal depolarization of both cells decreases g(j). The dependence of g(j) on V(m) was abolished by truncation of the C-terminal domain (CT) at residue 242 but not at 257. There are two charged residues between 242 and 257. In full-length Cx43, mutations neutralizing either one of these charges, Arg243Gln and Asp245Gln, decreased and increased V(m) dependence, respectively, suggesting that these residues are part of the V(m) sensor. Mutating both residues together abolished V(m) dependence, although there is no net change in charge. The neutralizing mutations, together or separately, had no effect on V(j) dependence. Thus, the voltage sensors must differ. However, V(j) gating was somewhat modulated by V(m), and V(m) gating was reduced when the V(j) gate was closed. These data suggest that the two forms of voltage dependence are mediated by separate but interacting domains.

  5. Exact Time-Dependent Exchange-Correlation Potential for a 2-Electron System

    NASA Astrophysics Data System (ADS)

    D'Amico, Irene; Vignale, Giovanni

    1998-03-01

    We present an exact solution for the Floquet state evolving from the ground state of a 2-electron system confined in a plane by an isotropic parabolic potential whose curvature is periodically modulated in time. >From this solution we extract the exact frequency-dependent exchange correlation potential V_xc which, when used in the time-dependent Kohn-Sham equation (in addition to external and Hartree potentials) generates the exact time-dependent density. The exact V_xc is compared with the V_xc's obtained from the adiabatic local density approximation and from the retarded local current-density approximation (G. Vignale and W. Kohn, Phys. Rev. Lett. 77), 2037 (1996); G. Vignale, C. Ullrich, and S. Conti, Phys. Rev. Lett. 79 (1997)..

  6. Angular Dependence of Ionization by Circularly Polarized Light Calculated with Time-Dependent Configuration Interaction with an Absorbing Potential.

    PubMed

    Hoerner, Paul; Schlegel, H Bernhard

    2017-02-16

    The angular dependence of ionization by linear and circularly polarized light has been examined for N2, NH3, H2O, CO2, CH2O, pyrazine, methyloxirane, and vinyloxirane. Time-dependent configuration interaction with single excitations and a complex absorbing potential was used to simulate ionization by a seven cycle 800 nm cosine squared pulse with intensities ranging from 0.56 × 10(14) to 5.05 × 10(14) W cm(-2). The shapes of the ionization yield for linearly polarized light can be understood primarily in terms of the nodal structure of the highest occupied orbitals. Depending on the orbital energies, ionization from lower-lying orbitals may also make significant contributions to the shapes. The shapes of the ionization yield for circularly polarized light can be readily explained in terms of the shapes for linearly polarized light. Averaging the results for linear polarization over orientations perpendicular to the direction of propagation yields shapes that are in very good agreement with direct calculations of the ionization yield by circularly polarized light.

  7. Some Exact Results for the Schroedinger Wave Equation with a Time Dependent Potential

    NASA Technical Reports Server (NTRS)

    Campbell, Joel

    2009-01-01

    The time dependent Schroedinger equation with a time dependent delta function potential is solved exactly for many special cases. In all other cases the problem can be reduced to an integral equation of the Volterra type. It is shown that by knowing the wave function at the origin, one may derive the wave function everywhere. Thus, the problem is reduced from a PDE in two variables to an integral equation in one. These results are used to compare adiabatic versus sudden changes in the potential. It is shown that adiabatic changes in the p otential lead to conservation of the normalization of the probability density.

  8. Fluorescence quenching studies of potential-dependent DNA reorientation dynamics at glassy carbon electrode surfaces.

    PubMed

    Li, Qin; Cui, Chenchen; Higgins, Daniel A; Li, Jun

    2012-09-05

    The potential-dependent reorientation dynamics of double-stranded DNA (ds-DNA) attached to planar glassy carbon electrode (GCE) surfaces were investigated. The orientation state of surface-bound ds-DNA was followed by monitoring the fluorescence from a 6-carboxyfluorescein (FAM6) fluorophore covalently linked to the distal end of the DNA. Positive potentials (i.e., +0.2 V vs open circuit potential, OCP) caused the ds-DNA to align parallel to the electrode surface, resulting in strong dipole-electrode quenching of FAM6 fluorescence. Switching of the GCE potential to negative values (i.e., -0.2 V vs OCP) caused the ds-DNA to reorient perpendicular to the electrode surface, with a concomitant increase in FAM6 fluorescence. In addition to the very fast (submilliseconds) dynamics of the initial reorientation process, slow (0.1-0.9 s) relaxation of FAM6 fluorescence to intermediate levels was also observed after potential switching. These dynamics have not been previously described in the literature. They are too slow to be explained by double layer charging, and chronoamperometry data showed no evidence of such effects. Both the amplitude and rate of the dynamics were found to depend upon buffer concentration, and ds-DNA length, demonstrating a dependence on the double layer field. The dynamics are concluded to arise from previously undetected complexities in the mechanism of potential-dependent ds-DNA reorientation. The possible origins of these dynamics are discussed. A better understanding of these dynamics will lead to improved models for potential-dependent ds-DNA reorientation at electrode surfaces and will facilitate the development of advanced electrochemical devices for detection of target DNAs.

  9. Quantum trajectory dynamics in imaginary time with the momentum-dependent quantum potential

    SciTech Connect

    Garashchuk, Sophya

    2010-01-07

    The quantum trajectory dynamics is extended to the wave function evolution in imaginary time. For a nodeless wave function a simple exponential form leads to the classical-like equations of motion of trajectories, representing the wave function, in the presence of the momentum-dependent quantum potential in addition to the external potential. For a Gaussian wave function this quantum potential is a time-dependent constant, generating zero quantum force yet contributing to the total energy. For anharmonic potentials the momentum-dependent quantum potential is cheaply estimated from the global Least-squares Fit to the trajectory momenta in the Taylor basis. Wave functions with nodes are described in the mixed coordinate space/trajectory representation at little additional computational cost. The nodeless wave function, represented by the trajectory ensemble, decays to the ground state. The mixed representation wave functions, with lower energy contributions projected out at each time step, decay to the excited energy states. The approach, illustrated by computing energy levels for anharmonic oscillators and energy level splitting for the double-well potential, can be used for the Boltzmann operator evolution.

  10. Molecular dynamics simulation of alkali borate glass using coordination dependent potential

    SciTech Connect

    Park, B.; Cormack, A.N.

    1997-12-31

    The structure of sodium borate glass was investigated by molecular dynamics simulation using coordination dependent potential model. The simulated alkali borate glass consists of basic units, BO{sub 3} triangle, BO{sub 4} tetrahedra and structural groups such as boroxol ring and triborate units. The coordination of boron is converted from 3 to 4 by adding alkali oxide.

  11. Comment on ''Solution of the Schroedinger equation for the time-dependent linear potential''

    SciTech Connect

    Bekkar, H.; Maamache, M.; Benamira, F.

    2003-07-01

    We present the correct way to obtain the general solution of the Schroedinger equation for a particle in a time-dependent linear potential following the approach used in the paper of Guedes [Phys. Rev. A 63, 034102 (2001)]. In addition, we show that, in this case, the solutions (wave packets) are described by the Airy functions.

  12. Frequency-dependent action potential prolongation in Aplysia pleural sensory neurones.

    PubMed

    Edstrom, J P; Lukowiak, K D

    1985-10-01

    The effects of repetitive activity on action-potential shape in Aplysia californica pleural sensory cells are described. Action potentials were evoked by intracellular current injection at frequencies between 7.41 and 0.2 Hz. In contrast to other molluscan neurons having brief action potentials, it was found that at these firing rates the normally brief action potential develops a prominent shoulder or plateau during the repolarization phase. Higher stimulus rates broaden the action potential more rapidly and to a greater extent than lower stimulus rates. Inactivation is slow relative to activation; effects of 3-s 6-Hz trains are detectable after 1 min rest. The amplitude of the plateau voltage reaches a maximum of 50-70 mV at the highest stimulus rates tested. Frequency-dependent increases in action-potential duration measured at half-amplitude normally range between 6 and 15 ms. Cadmium, at concentrations between 0.05 and 0.5 mM, antagonizes frequency-dependent broadening. The increases in duration induced by repetitive activity are more sensitive to cadmium than are the increases in plateau amplitude. Tetraethylammonium, at concentrations between 0.5 and 10 mM, slightly increases the duration and amplitude of single action potentials. During repetitive activity at high stimulus rates the maximum duration and rate of broadening are both increased but the amplitude of the plateau potential is not affected by these tetraethylammonium concentrations. Above 10 mM, tetraethylammonium greatly increases the duration and amplitude of single action potentials as well as the rates of action-potential duration and amplitude increase during repetitive activity. These high tetraethylammonium concentrations also cause the normally smoothly increasing duration and amplitude to reach a maximum value early in a train and then decline slowly during the remainder of the train. The consequences of frequency-dependent spike broadening in these neurons have not yet been investigated

  13. Size and shape dependent deprotonation potential and proton affinity of nanodiamond

    NASA Astrophysics Data System (ADS)

    Barnard, Amanda S.; Per, Manolo C.

    2014-11-01

    Many important reactions in biology and medicine involve proton abstraction and transfer, and it is integral to applications such as drug delivery. Unlike electrons, which are quantum mechanically delocalized, protons are instantaneously localized on specific residues in these reactions, which can be a distinct advantage. However, the introduction of nanoparticles, such as non-toxic nanodiamonds, to this field complicates matters, as the number of possible sites increases as the inverse radius of the particle. In this paper we present \\gt {{10}4} simulations that map the size- and shape-dependence of the deprotonation potential and proton affinity of nanodiamonds in the range 1.8-2.7 nm in average diameter. We find that while the average deprotonation potential and proton affinities decrease with size, the site-specific values are inhomogeneous over the surface of the particles, exhibiting strong shape-dependence. The proton affinity is strongly facet-dependent, whereas the deprotonation potential is edge/corner-dependent, which creates a type of spatial hysteresis in the transfer of protons to and from the nanodiamond, and provides new opportunities for selective functionalization.

  14. Kinetic and interaction components of the exact time-dependent correlation potential

    SciTech Connect

    Luo, Kai; Fuks, Johanna I.; Sandoval, Ernesto D.; Maitra, Neepa T.; Elliott, Peter

    2014-05-14

    The exact exchange-correlation (xc) potential of time-dependent density functional theory has been shown to have striking features. For example, step and peak features are generically found when the system is far from its ground-state, and these depend nonlocally on the density in space and time. We analyze the xc potential by decomposing it into kinetic and interaction components and comparing each with their exact-adiabatic counterparts, for a range of dynamical situations in model one-dimensional two-electron systems. We find that often, but not always, the kinetic contribution is largely responsible for these features that are missed by the adiabatic approximation. The adiabatic approximation often makes a smaller error for the interaction component, which we write in two parts, one being the Coulomb potential due to the time-dependent xc hole. Non-adiabatic features of the kinetic component were also larger than those of the interaction component in cases that we studied when there is negligible step structure. In ground-state situations, step and peak structures arise in cases of static correlation, when more than one determinant is essential to describe the interacting state. We investigate the time-dependent natural orbital occupation numbers and find the corresponding relation between these and the dynamical step is more complex than for the ground-state case.

  15. Dependence of transient and residual calcium dynamics on action-potential patterning during neuropeptide secretion.

    PubMed

    Muschol, M; Salzberg, B M

    2000-09-15

    Secretion of the neuropeptide arginine vasopressin (AVP) from the neurohypophysis is optimized by short phasic bursts of action potentials with a mean intraburst frequency around 10 Hz. Several hypotheses, most prominently action-potential broadening and buildup of residual calcium, have been proposed to explain this frequency dependence of AVP release. However, how either of these mechanisms would optimize release at any given frequency remains an open question. We have addressed this issue by correlating the frequency-dependence of intraterminal calcium dynamics and AVP release during action-potential stimulation. By monitoring the intraterminal calcium changes with low-affinity indicator dyes and millisecond time resolution, the signal could be dissected into three separate components: rapid Ca(2+) rises (Delta[Ca(2+)](tr)) related to action-potential depolarization, Ca(2+) extrusion and/or uptake, and a gradual increase in residual calcium (Delta[Ca(2+)](res)) throughout the stimulus train. Action-potential stimulation modulated all three components in a manner dependent on both the stimulation frequency and number of stimuli. Overall, the cumulative Delta[Ca(2+)](tr) amplitude initially increased with f(Stim) and then rapidly deteriorated, with a maximum around f(Stim) dependent maxima in Delta[Ca(2+)](tr) and Delta[Ca(2+)](res).

  16. Numerical time-dependent solutions of the Schrödinger equation with piecewise continuous potentials.

    PubMed

    van Dijk, Wytse

    2016-06-01

    We consider accurate numerical solutions of the one-dimensional time-dependent Schrödinger equation when the potential is piecewise continuous. Spatial step sizes are defined for each of the regions between the discontinuities and a matching condition at the boundaries of the regions is employed. The Numerov method for spatial integration is particularly appropriate to this approach. By employing Padé approximants for the time-evolution operator, we obtain solutions with significantly improved precision without increased CPU time. This approach is also appropriate for adaptive changes in spatial step size even when there is no discontinuity of the potential.

  17. Solution of the Schro''dinger equation for the time-dependent linear potential

    SciTech Connect

    Guedes, I.

    2001-03-01

    In this paper I have drawn out the steps to be followed in order to derive the exact Schro''dinger wave function for a particle in a general one-dimensional time-dependent linear potential. To this end I have used the so-called Lewis and Riesenfeld invariant method, which is based on finding an exact quantum-mechanical invariant in whose eigenstates the exact quantum states are found. In particular, I have obtained the wave functions of a particle in the linear potential well, driven by a monochromatic electric field.

  18. Task-dependent signal variations in EEG error-related potentials for brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Iturrate, I.; Montesano, L.; Minguez, J.

    2013-04-01

    Objective. A major difficulty of brain-computer interface (BCI) technology is dealing with the noise of EEG and its signal variations. Previous works studied time-dependent non-stationarities for BCIs in which the user’s mental task was independent of the device operation (e.g., the mental task was motor imagery and the operational task was a speller). However, there are some BCIs, such as those based on error-related potentials, where the mental and operational tasks are dependent (e.g., the mental task is to assess the device action and the operational task is the device action itself). The dependence between the mental task and the device operation could introduce a new source of signal variations when the operational task changes, which has not been studied yet. The aim of this study is to analyse task-dependent signal variations and their effect on EEG error-related potentials.Approach. The work analyses the EEG variations on the three design steps of BCIs: an electrophysiology study to characterize the existence of these variations, a feature distribution analysis and a single-trial classification analysis to measure the impact on the final BCI performance.Results and significance. The results demonstrate that a change in the operational task produces variations in the potentials, even when EEG activity exclusively originated in brain areas related to error processing is considered. Consequently, the extracted features from the signals vary, and a classifier trained with one operational task presents a significant loss of performance for other tasks, requiring calibration or adaptation for each new task. In addition, a new calibration for each of the studied tasks rapidly outperforms adaptive techniques designed in the literature to mitigate the EEG time-dependent non-stationarities.

  19. Solution to the Schrödinger Equation for the Time-Dependent Potential

    NASA Astrophysics Data System (ADS)

    Long, Chao-Yun; Qin, Shui-Jie; Yang, Zhu-Hua; Guo, Guang-Jie

    2009-04-01

    In this work, the Schrödinger equation with the time-dependent potential V(z,hat{p},t)=g1(t)z+g2(t)hat{p}+g3(t) has been solved by the method of time-space transformation in 1+1 dimensions. The corresponding analytical wave function to Schrödinger equation is obtained. In addition, the discussion of solutions to particular cases has been made.

  20. Endocannabinoid-Dependent Long-Term Potentiation of Synaptic Transmission at Rat Barrel Cortex.

    PubMed

    Maglio, Laura Eva; Noriega-Prieto, José Antonio; Maraver, Maria Jesús; Fernández de Sevilla, David

    2017-03-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex.

  1. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.

    PubMed

    Gittings, William; Huang, Jian; Vandenboom, Rene

    2012-10-01

    The activity dependent potentiation of peak isometric force associated with phosphorylation of the myosin regulatory light chain (RLC) is generally restricted to low activation frequencies. The purpose of this study was to determine if muscle shortening speed influenced the stimulus frequency domain over which concentric force potentiation was observed. To this end, mouse extensor digitorum longus (EDL) muscles (in vitro, 25 °C) were activated at a range of test frequencies (10, 25, 45, 70 or 100 Hz) during shortening ramps at 0.10, 0.30 or 0.50 of the maximal velocity of shortening (V(max)). This procedure was performed before and after a standard conditioning stimulus (CS) that elevated RLC phosphorylation from 0.08 ± 0.01 (rest) to 0.55 ± 0.01 (stimulated) moles phosphate per mol RLC, respectively (n = 9-11) (P < 0.01). When data from all test frequencies were collapsed, the CS potentiated mean concentric force at 0.10, 0.30 and 0.50 V(max) to 1.02 ± 0.03, 1.37 ± 0.03 and 1.59 ± 0.05 of unpotentiated, pre-CS values, respectively (n = 8, P < 0.05). In addition, increasing shortening speed also increased the activation frequency at which concentric force potentiation was maximal, i.e. from 10 Hz at 0.10 V(max) to 10-25 and 25-45 Hz at 0.30 and 0.50 V(max), respectively. These results indicate that both the magnitude of and activation frequency dependence for concentric force potentiation of mouse EDL muscle is shortening speed dependent. Thus, muscle shortening speed may be a critical factor determining the functional utility of the myosin RLC phosphorylation mechanism.

  2. Position-Dependent Mass Schrödinger Equation for the Morse Potential

    NASA Astrophysics Data System (ADS)

    Ovando, G.; Peña, J. J.; Morales, J.; López-Bonilla, J.

    2017-01-01

    The position dependent mass Schrödinger equation (PDMSE) has a wide range of quantum applications such as the study of semiconductors, quantum wells, quantum dots and impurities in crystals, among many others. On the other hand, the Morse potential is one of the most important potential models used to study the electronic properties of diatomic molecules. In this work, the solution of the effective mass one-dimensional Schrödinger equation for the Morse potential is presented. This is done by means of the canonical transformation method in algebraic form. The PDMSE is solved for any model of the proposed kinetic energy operators as for example the BenDaniel-Duke, Gora-Williams, Zhu-Kroemer or Li-Kuhn. Also, in order to solve the PDMSE with Morse potential, we consider a superpotential leading to a special form of the exactly solvable Schrödinger equation of constant mass for a class of multiparameter exponential-type potential along with a proper mass distribution. The proposed approach is general and can be applied in the search of new potentials suitable on science of materials by looking into the viable choices of the mass function.

  3. Voltage-dependent membrane potential oscillations of rat striatal fast-spiking interneurons

    PubMed Central

    Bracci, Enrico; Centonze, Diego; Bernardi, Giorgio; Calabresi, Paolo

    2003-01-01

    We used whole-cell recordings to investigate subthreshold membrane potential oscillations and their relationship with intermittent firing in striatal fast-spiking interneurons. During current injections (100–500 pA, 1 s), these cells displayed a highly variable pattern of spike bursts (comprising 1–30 action potentials) interspersed with membrane potential oscillations. The oscillation threshold was −42 ± 10 mV, and coincided with that for action potentials. The oscillation frequency was voltage dependent and ranged between 20 and 100 Hz. Oscillations were unaffected by the calcium channel blockers cadmium and nickel and by blockers of ionotropic glutamate and GABA receptors. Conversely, the sodium channel blocker tetrodotoxin fully abolished the oscillations and the spike bursts. The first spike of a burst appeared to be triggered by an oscillation, since the timing and rate of rise of the membrane potential in the subthreshold voltage region was similar for the two events. Conversely, the second spike (and the subsequent ones) displayed much faster depolarisations in the subthreshold voltage range, indicating that they were generated by a different mechanism. Consistent with these notions, a small pulse of intracellular current delivered during the oscillation was effective in triggering a burst of action potentials that largely outlasted the pulse. We conclude that fast-spiking interneuron oscillations are generated by an intrinsic membrane mechanism that does not require fast synaptic transmission, and which depends on sodium conductance but not calcium conductance, and that such oscillations are responsible for triggering the intermittent spike bursts that are typical of these neurons. PMID:12665602

  4. Activity dependence of action potential duration in rat supraoptic neurosecretory neurones recorded in vitro.

    PubMed

    Bourque, C W; Renaud, L P

    1985-06-01

    Action potential durations, measured at one-third peak amplitude, were examined during intracellular recordings in 134 supraoptic nucleus neurones maintained in vitro in perfused hypothalamic explants. Spike durations ranged between 1.2 and 3.9 ms and were dependent on firing frequency. Shortest measurements (1.74 +/- 0.03 ms; mean +/- S.E. of mean) were obtained during relative quiescence, i.e. less than or equal to 0.5 Hz. A gradual increase in firing frequency through continuous injection of depolarizing current prolonged spike duration, with maximum levels (2.68 +/- 0.05 ms) achieved at 20 Hz. When interspike interval variability was eliminated and firing was more precisely regulated by brief 15-20 ms intracellular current pulses given at pre-determined frequencies, a proportional relationship between increasing spike duration and firing frequency was retained but the change in spike duration at frequencies between 2 and 10 Hz was less pronounced. Once action potentials had achieved the long duration configuration, their return to the shorter duration took place gradually during any succeeding silent interval with a time constant of 4.9 s. Action potential broadening occurred progressively and was most pronounced at the onset of spontaneous or current-induced bursts. In thirty-six phasically active neurones, spike broadening at the onset of a burst was concurrent with the presence of 5-10 consecutive short (less than or equal to 100 ms) interspike intervals; thereafter, despite a greater than 50% reduction in firing frequency, action potential durations remained prolonged throughout the burst. In all of nineteen cells tested, frequency-dependent changes in spike duration were reversibly decreased or blocked by Cd2+, Co2+ and Mn2+, or when CaCl2 was exchanged for equimolar amounts of EGTA in the perfusion medium. These observations indicate that a Ca2+ conductance contributes to frequency- and firing-pattern-dependent changes in spike duration in rat supraoptic

  5. Potential of Renewable Energy to Reduce the Dependence of the State of Hawaii on Oil

    SciTech Connect

    Arent, D.; Barnett, J.; Mosey, G.; Wise, A.

    2009-01-01

    Deriving nearly 90% of its primary energy resources from oil, the State of Hawaii is more dependent on oil than any other U.S. state. The price of electricity in Hawaii is also more than twice the U.S. average. The Energy Policy Act of 2005 directed assessment of the economic implications of Hawaii's oil dependence and the feasibility of using renewable energy to help meet the state's electrical generation and transportation fuel use. This paper is based on the assessments and report prepared in response to that directive.Current total installed electrical capacity for the State of Hawaii is 2,414 MWe, 83% of which is fuel-oil generated, but already including about 170 MWe of renewable capacity. The assessments identified about 2,133 MWe (plus another estimated 2,000 MWe of rooftop PV systems) of potential new renewable energy capacity. Most notable, in addition to the rooftop solar potential, is 750 MWe and 140 MWe of geothermal potential on Hawaii and Maui, respectively, 840 MWe of potential wind capacity, primarily on Lanai and Molokai, and one potential 285 MWe capacity specific solar project (PV or solar thermal) identified on Kauai. Important social, political, and electrical-grid infrastructure challenges would need to be overcome to realize this potential. Among multiple crop and acreage scenarios, biofuels assessment found 360,000 acres in Hawaii zoned for agriculture and appropriate for sugarcane, enough to produce 429 million gallons of ethanol-enough to meet about 64% of current 2005 Hawaiian gasoline use. Tropical oil seed crops-potentially grown on the same land-might meet a substantial portion of current diesel use, but there has been little experience growing such crops in Hawaii. The U.S. Department of Energy and the State of Hawaii initiated in January 2008 a program that seeks to reduce Hawaii's oil dependence and provide 70% of the state's primary energy from clean energy sources by 2030. The Hawaii Clean Energy Initiative (HCEI) activities will

  6. Exponential dependence of the vortex pinning potential on current density in high- Tc superconductors

    NASA Astrophysics Data System (ADS)

    Yan, H.; Abdelhadi, M. M.; Jung, J. A.; Willemsen, B. A.; Kihlstrom, K. E.

    2005-08-01

    We investigated the dependence of the vortex pinning potential on current density Ueff(J) in Tl2Ba2CaCu2Oy , Tl2Ba2Ca2Cu3Oy , and YBa2Cu3Oy thin films and single crystals, measured by us and other research groups. In all these cases Ueff(J) was calculated from the magnetic relaxation data using Maley’s procedure [Phys. Rev. B 42, 2639 (1990)]. We explored the exponential dependence of Ueff(J) , first introduced by Thompson [Phys. Rev. B 44, 456 (1991).] to explain long-term nonlogarithmic magnetic relaxations in high-temperature superconductors (HTSC), as an alternative to power-law and logarithmic forms of Ueff(J) . The results revealed that for J larger than approximately 0.4Jc , the energy barrier can be expressed in the following form: Ueff(J)=aIco(1-T/T*)3/2exp(-bJ/Jco) , where the constant b is the same for all samples investigated. This result is independent of the anisotropy (the interplanar coupling). The experimental results were analyzed taking into account the spatial dependence of the pinning potential, proposed by Qin [J. Appl. Phys. 77, 2618 (1995)]. We suggested that the exponential form of Ueff(J) could represent vortex pinning and motion in the a-b planes due to a nanoscopic variation of the order parameter, in agreement with the growing experimental evidence for the presence of nanostructures, stripes (filaments) in HTSC.

  7. Frequency-dependent inhibition of antidromic hippocampal compound action potentials by anti-convulsants.

    PubMed

    Teriakidis, Adrianna; Brown, Jon T; Randall, Andrew

    2006-01-01

    Using rat hippocampal slices, extracellularly recorded antidromic compound action potentials (cAP) were produced in CA1 pyramidal cell populations by electrical stimulation of the alveus at 0.5 Hz. These responses were additionally examined across a range of stimulus frequencies between 0.5 and 100 Hz. Anticonvulsant drugs in clinical use were applied via perfusion of the recording chamber. Three anticonvulsants produced a concentration-dependent inhibition of the cAP evoked at low frequency (0.5 Hz). The following IC(50) values were observed: lamotrigine, 210 microM (interpolated); carbamazepine, 210 microM (interpolated); phenytoin, 400 microM (extrapolated). The extent of inhibition produced was increased when trains of 30 cAPs were evoked at frequencies > or 30 Hz. This frequency dependence was quantified by measuring a response integral for a range of compound concentrations. Three other compounds valproate (5 mM), topiramate (500 microM) and levetiracetam (500 microM) produced no clear effect at any stimulus frequency tested. Using this simple neurophysiological assay it has been possible to compare the use-dependent inhibition of hippocampal action potentials by a range of anticonvulsants, providing a useful adjunct to patch clamp studies of such molecules at Na(+) channels. There is no clear correlation between the activity in this model and the clinical efficacy of these drugs in different forms of epilepsy.

  8. Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.

    PubMed

    Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M

    1991-06-01

    An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.

  9. Differential calcium dependence in basal and forskolin-potentiated spontaneous transmitter release in basolateral amygdala neurons.

    PubMed

    Miura, Yuki; Naka, Masamitsu; Matsuki, Norio; Nomura, Hiroshi

    2012-10-31

    Action potential-independent transmitter release, or spontaneous release, is postulated to produce multiple postsynaptic effects (e.g., maintenance of dendritic spines and suppression of local dendritic protein synthesis). Potentiation of spontaneous release may contribute to the precise modulation of synaptic function. However, the expression mechanism underlying potentiated spontaneous release remains unclear. In this study, we investigated the involvement of extracellular and intracellular calcium in basal and potentiated spontaneous release. Miniature excitatory postsynaptic currents (mEPSCs) of the basolateral amygdala neurons in acute brain slices were recorded. Forskolin, an adenylate cyclase activator, increased mEPSC frequency, and the increase lasted at least 25 min after washout. Removal of the extracellular calcium decreased mEPSC frequency in both naïve and forskolin-treated slices. On the other hand, chelation of intracellular calcium by BAPTA-AM decreased mEPSC frequency in naïve, but not in forskolin-treated slices. A blockade of the calcium-sensing receptor (CaSR) resulted in an increase in mEPSC frequency in forskolin-treated, but not in naïve slices. These findings indicate that forskolin-induced potentiation is accompanied by changes in the mechanisms underlying Ca(2+)-dependent spontaneous release.

  10. Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not.

    PubMed

    Li, Bai-Yan; Feng, Bin; Tsu, Hwa Y; Schild, John H

    2007-06-21

    Sensory information arising from visceral organ systems is encoded into action potential trains that propagate along afferent fibers to target nuclei in the central nervous system. These information streams range from tight patterns of action potentials that are well synchronized with the sensory transduction event to irregular, patternless discharge with no clear correlation to the sensory input. In general terms these afferent pathways can be divided into unmyelinated and myelinated fiber types. Our laboratory has a long standing interest in the functional differences between these two types of afferents in terms of the preprocessing of sensory information into action potential trains (synchrony, frequency, duration, etc.), the reflexogenic consequences of this sensory input to the central nervous system and the ionic channels that give rise to the electrophysiological properties of these unique cell types. The aim of this study was to determine whether there were any functional differences in the somatic action potential characteristics of unmyelinated and myelinated vagal afferents in response to different rates of sensory nerve stimulation. Our results showed that activity and frequency-dependent widening of the somatic action potential was quite prominent in unmyelinated but not myelinated vagal afferents. Spike broadening often leads to increased influx of Ca(2+) ions that has been associated with a diverse range of modulatory mechanisms both at the cell body and central synaptic terminations (e.g. increased neurotransmitter release.) We conclude that our observations are indicative of fundamentally different mechanisms for neural integration of sensory information arising from unmyelinated and myelinated vagal afferents.

  11. Orbital-dependent functionals in FLAPW: hybrid functionals and optimized effective potentials

    NASA Astrophysics Data System (ADS)

    Blügel, Stefan

    2011-03-01

    Orbital-dependent functionals are a new class of exchange-correlation (xc) functionals for density-functional theory. Hybrid functionals combine a local or semi-local xc functional with a nonlocal orbital-dependent exchange functional and improve the band gaps of semiconductors and insulators as well as the description of localized states. As an alternative to nonlocal hybrid potentials, one can also construct local optimized effective potentials (OEP) from the exact exchange (EXX) functional. So far, most implementations for periodic systems use a pseudopotential plane-wave approach. We present an efficient all-electron, full-potential implementation of the PBE0 and HSE hybrid functionals as well as the OEP-EXX functional within the FLAPW method (Fleur code: www.flapw.de). Results for prototype semiconductors and insulators are in very good agreement with other implementations. We will demonstrate the improvement over conventional local or semilocal functionals for oxide materials and focus in particular on systems where standard functionals yield qualitatively wrong results. In particular, we will discuss the geometric and magnetic structures of EuO and GdN. Additionally, we will address the possibility of using the hybrid-functional ground state as starting point for a GW quasiparticle correction and show results for complex perovskite systems. Financial support from the DFG through the Priority Program 1145 and the Helmholtz association through the Young Investigators Group Program, contract VH-NG-409, is gratefully acknowledged.

  12. Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus.

    PubMed

    Fernandes, Herman B; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L; Kraniotis, Stephen; Marshall, John J; Kukreja, Lokesh; Vassar, Robert; Contractor, Anis

    2015-04-22

    Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.

  13. The origin of the glucose dependent increase in the potential difference across the tortoise small intestine

    PubMed Central

    Wright, E. M.

    1966-01-01

    1. Experiments were carried out to investigate the origin of the glucose dependent increase in the potential difference (p.d.) across the isolated intestinal mucosa of the tortoise. 2. In addition to glucose, galactose, α-methyl glucoside, 3-0-methyl glucopyranose and sucrose also increased the transepithelial potential difference. There was no increase with either fructose or mannose. 3. The use of micro-electrodes demonstrated that the change in the p.d. due to the presence of glucose was wholly accounted for by the increase in the p.d. across the serosal face of the epithelial cells. 4. Diffusion potentials were produced across the isolated mucosa by varying the ionic composition of either the mucosal or serosal fluids. However, there was no reduction of the glucose dependent increase in the p.d. when the ionic concentration gradients across the serosal face of the cell were reversed. 5. These results suggest that the increase in the p.d. associated with the active transfer of sugars across the small intestine was due to the presence of an electrogenic ion pump at the serosal face of the epithelial cell. PMID:16992234

  14. Effective Schrödinger equation with general ordering ambiguity position-dependent mass Morse potential

    NASA Astrophysics Data System (ADS)

    Ikhdair, Sameer M.

    2012-07-01

    We solve the parametric generalized effective Schrödinger equation with a specific choice of position-dependent mass function and Morse oscillator potential by means of the Nikiforov-Uvarov method combined with the Pekeris approximation scheme. All bound-state energies are found explicitly and all corresponding radial wave functions are built analytically. We choose the Weyl or Li and Kuhn ordering for the ambiguity parameters in our numerical work to calculate the energy spectrum for a few (H2, LiH, HCl and CO) diatomic molecules with arbitrary vibration n and rotation l quantum numbers and different position-dependent mass functions. Two special cases including the constant mass and the vibration s-wave (l = 0) are also investigated.

  15. Specific anion effects on the pressure dependence of the protein-protein interaction potential.

    PubMed

    Möller, Johannes; Grobelny, Sebastian; Schulze, Julian; Steffen, Andre; Bieder, Steffen; Paulus, Michael; Tolan, Metin; Winter, Roland

    2014-04-28

    We present a study on ion specific effects on the intermolecular interaction potential V(r) of dense protein solutions under high hydrostatic pressure conditions. Small-angle X-ray scattering in combination with a liquid-state theoretical approach was used to determine the effect of structure breaking/making salt anions (Cl(-), SO4(2-), PO4(3-)) on the intermolecular interaction of lysozyme molecules. It was found that besides the Debye-Hückel charge screening effect, reducing the repulsiveness of the interaction potential V(r) at low salt concentrations, a specific ion effect is observed at high salt concentrations for the multivalent kosmotropic anions, which modulates also the pressure dependence of the protein-protein interaction potential. Whereas sulfate and phosphate strongly influence the pressure dependence of V(r), chloride anions do not. The strong structure-making effect of the multivalent anions, dominating for the triply charged PO4(3-), renders the solution structure less bulk-water-like at high salt concentrations, which leads to an altered behavior of the pressure dependence of V(r). Hence, the particular structural properties of the salt solutions are able to influence the spatial organization and the intermolecular interactions of the proteins, in particular upon compression. These results are of interest for exploring the combined effects of ionic strength, temperature and pressure on the phase behavior of protein solutions, but may also be of relevance for understanding pressure effects on the hydration behavior of biological matter under extreme environmental conditions.

  16. Calcium-dependent but action potential-independent BCM-like metaplasticity in the hippocampus.

    PubMed

    Hulme, Sarah R; Jones, Owen D; Ireland, David R; Abraham, Wickliffe C

    2012-05-16

    The Bienenstock, Cooper and Munro (BCM) computational model, which incorporates a metaplastic sliding threshold for LTP induction, accounts well for experience-dependent changes in synaptic plasticity in the visual cortex. BCM-like metaplasticity over a shorter timescale has also been observed in the hippocampus, thus providing a tractable experimental preparation for testing specific predictions of the model. Here, using extracellular and intracellular electrophysiological recordings from acute rat hippocampal slices, we tested the critical BCM predictions (1) that high levels of synaptic activation will induce a metaplastic state that spreads across dendritic compartments, and (2) that postsynaptic cell-firing is the critical trigger for inducing that state. In support of the first premise, high-frequency priming stimulation inhibited subsequent long-term potentiation and facilitated subsequent long-term depression at synapses quiescent during priming, including those located in a dendritic compartment different to that of the primed pathway. These effects were not dependent on changes in synaptic inhibition or NMDA/metabotropic glutamate receptor function. However, in contrast to the BCM prediction, somatic action potentials during priming were neither necessary nor sufficient to induce the metaplasticity effect. Instead, in broad agreement with derivatives of the BCM model, calcium as released from intracellular stores and triggered by M1 muscarinic acetylcholine receptor activation was critical for altering subsequent synaptic plasticity. These results indicate that synaptic plasticity in stratum radiatum of CA1 can be homeostatically regulated by the cell-wide history of synaptic activity through a calcium-dependent but action potential-independent mechanism.

  17. Probing the momentum dependence of the symmetry potential by the free n /p ratio of pre-equilibrium emission

    NASA Astrophysics Data System (ADS)

    Liu, He-Lei; Yong, Gao-Chan; Wen, De-Hua

    2015-02-01

    Based on an isospin and momentum-dependent transport model, we studied the effect of the momentum-dependent symmetry potential on the free neutron-to-proton ratio of pre-equilibrium nucleon emission. It is found that, for the 132Sn+124Sn reaction at 400 MeV/nucleon incident beam energy, the free n /p ratio of pre-equilibrium nucleon emission mainly probes the momentum dependence of the symmetry potential at a nucleon momentum around 400-600 MeV/c , whereas for 200 MeV/nucleon incident beam energy this observable mainly probes the momentum dependence of the symmetry potential at a nucleon momentum around 200-400 MeV/c . To probe the symmetry energy/potential using free n /p ratio, not all the details of the momentum dependence of the symmetry potential are important: the values of symmetry potential in only a certain momentum range are crucial for an observable. It is important to input reasonable density and momentum dependence of the symmetry potential according to the magnitude of incident beam energy of heavy-ion collisions. The present experimental data on the symmetry potential are not enough for probing the density-dependent symmetry energy. More experimental data (such as nucleon and nuclei scattering experiments at different nucleonic momenta and densities) on the symmetry potential are therefore needed to pin down the density-dependent symmetry energy.

  18. PLP-dependent enzymes as potential drug targets for protozoan diseases.

    PubMed

    Kappes, Barbara; Tews, Ivo; Binter, Alexandra; Macheroux, Peter

    2011-11-01

    The chemical properties of the B(6) vitamers are uniquely suited for wide use as cofactors in essential reactions, such as decarboxylations and transaminations. This review addresses current efforts to explore vitamin B(6) dependent enzymatic reactions as drug targets. Several current targets are described that are found amongst these enzymes. The focus is set on diseases caused by protozoan parasites. Comparison across a range of these organisms allows insight into the distribution of potential targets, many of which may be of interest in the development of broad range anti-protozoan drugs. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.

  19. Exact expression for the diffusion propagator in a family of time-dependent anharmonic potentials

    NASA Astrophysics Data System (ADS)

    Giampaoli, J. A.; Strier, D. E.; Batista, C.; Drazer, German; Wio, H. S.

    1999-09-01

    We have obtained the exact expression of the diffusion propagator in the time-dependent anharmonic potential V(x,t)=12a(t)x2+b ln x. The underlying Euclidean metric of the problem allows us to obtain analytical solutions for a whole family of the elastic parameter a(t), exploiting the relation between the path integral representation of the short time propagator and the modified Bessel functions. We have also analyzed the conditions for the appearance of a nonzero flow of particles through the infinite barrier located at the origin (b<0).

  20. Adsorption of acridine on silver electrode: SERS spectra potential dependence as a probe of adsorbate state

    NASA Astrophysics Data System (ADS)

    Solovyeva, Elena V.; Myund, Liubov A.; Dem'yanchuk, Evgeniya M.; Makarov, Artiom A.; Denisova, Anna S.

    2013-02-01

    This work investigates acridine adsorption on the silver electrode surface. The dependence of the acridine SERS spectra on the electrode potential proved to be quite different for azaheterocycle molecules, while the pH effect as expected. The changes in the acridine SERS spectrum caused by the double electric layer (DEL) rearrangement can be explained by sorption/desorption rather than the adsorbate molecule reorientation. The presence of chloride anions close to the silver surface is important not only for the SERS-active properties but for the formation of the stabilised surface complexes of the protonated acridine as well.

  1. Strong field ionization rates simulated with time-dependent configuration interaction and an absorbing potential

    SciTech Connect

    Krause, Pascal; Sonk, Jason A.; Schlegel, H. Bernhard

    2014-05-07

    Ionization rates of molecules have been modeled with time-dependent configuration interaction simulations using atom centered basis sets and a complex absorbing potential. The simulations agree with accurate grid-based calculations for the ionization of hydrogen atom as a function of field strength and for charge resonance enhanced ionization of H{sub 2}{sup +} as the bond is elongated. Unlike grid-based methods, the present approach can be applied to simulate electron dynamics and ionization in multi-electron polyatomic molecules. Calculations on HCl{sup +} and HCO{sup +} demonstrate that these systems also show charge resonance enhanced ionization as the bonds are stretched.

  2. Solutions to position-dependent mass quantum mechanics for a new class of hyperbolic potentials

    SciTech Connect

    Christiansen, H. R.; Cunha, M. S.

    2013-12-15

    We analytically solve the position-dependent mass (PDM) 1D Schrödinger equation for a new class of hyperbolic potentials V{sub q}{sup p}(x)=−V{sub 0}(sinh{sup p}x/cosh{sup q}x), p=−2,0,⋯q [see C. A. Downing, J. Math. Phys. 54, 072101 (2013)] among several hyperbolic single- and double-wells. For a solitonic mass distribution, m(x)=m{sub 0} sech{sup 2}(x), we obtain exact analytic solutions to the resulting differential equations. For several members of the class, the quantum mechanical problems map into confluent Heun differential equations. The PDM Poschl-Teller potential is considered and exactly solved as a particular case.

  3. Development of a general time-dependent absorbing potential for the constrained adiabatic trajectory method.

    PubMed

    Leclerc, Arnaud; Jolicard, Georges; Killingbeck, John P

    2011-05-21

    The constrained adiabatic trajectory method (CATM) allows us to compute solutions of the time-dependent Schrödinger equation using the Floquet formalism and Fourier decomposition, using matrix manipulation within a non-orthogonal basis set, provided that suitable constraints can be applied to the initial conditions for the Floquet eigenstate. A general form is derived for the inherent absorbing potential, which can reproduce any dispersed boundary conditions. This new artificial potential acting over an additional time interval transforms any wavefunction into a desired state, with an error involving exponentially decreasing factors. Thus, a CATM propagation can be separated into several steps to limit the size of the required Fourier basis. This approach is illustrated by some calculations for the H(2)(+) molecular ion illuminated by a laser pulse.

  4. Chemical potential dependence of particle ratios within a unified thermal approach

    NASA Astrophysics Data System (ADS)

    Bashir, I.; Nanda, H.; Uddin, S.

    2016-06-01

    A unified statistical thermal freeze-out model (USTFM) is used to study the chemical potential dependence of identified particle ratios at mid-rapidity in heavy-ion collisions. We successfully reproduce the experimental data ranging from SPS energies to LHC energies, suggesting the statistical nature of the particle production in these collisions and hence the validity of our approach. The behavior of the freeze-out temperature is studied with respect to chemical potential. The freeze-out temperature is found to be universal at the RHIC and LHC and is close to the QCD predicted phase transition temperature, suggesting that the chemical freeze-out occurs soon after the hadronization takes place.

  5. Universal time-dependent dispersion properties for diffusion in a one-dimensional critically tilted potential

    NASA Astrophysics Data System (ADS)

    Guérin, T.; Dean, D. S.

    2017-01-01

    We consider the time-dependent dispersion properties of overdamped tracer particles diffusing in a one-dimensional periodic potential under the influence of an additional constant tilting force F . The system is studied in the region where the force is close to the critical value Fc at which the barriers separating neighboring potential wells disappear. We show that, when F crosses the critical value, the shape of the mean-square displacement (MSD) curves is strongly modified. We identify a diffusive regime at intermediate-time scales with an effective diffusion coefficient which is much larger than the late-time diffusion coefficient for F >Fc , whereas for F

  6. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    SciTech Connect

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-28

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  7. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

    PubMed

    Chae, Myong-Ho; Krull, Florian; Knapp, Ernst-Walter

    2015-05-01

    The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/.

  8. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases.

    PubMed

    Pandey, Kavita; Islam, Shams T A; Happe, Thomas; Armstrong, Fraser A

    2017-04-11

    The kinetics of hydrogen oxidation and evolution by [FeFe]-hydrogenases have been investigated by electrochemical impedance spectroscopy-resolving factors that determine the exceptional activity of these enzymes, and introducing an unusual and powerful way of analyzing their catalytic electron transport properties. Attached to an electrode, hydrogenases display reversible electrocatalytic behavior close to the 2H(+)/H2 potential, making them paradigms for efficiency: the electrocatalytic "exchange" rate (measured around zero driving force) is therefore an unusual parameter with theoretical and practical significance. Experiments were carried out on two [FeFe]-hydrogenases, CrHydA1 from the green alga Chlamydomonas reinhardtii, which contains only the active-site "H cluster," and CpI from the fermentative anaerobe Clostridium pasteurianum, which contains four low-potential FeS clusters that serve as an electron relay in addition to the H cluster. Data analysis yields catalytic exchange rates (at the formal 2H(+)/H2 potential, at 0 °C) of 157 electrons (78 molecules H2) per second for CpI and 25 electrons (12 molecules H2) per second for CrHydA1. The experiments show how the potential dependence of catalytic electron flow comprises frequency-dependent and frequency-independent terms that reflect the proficiencies of the catalytic site and the electron transfer pathway in each enzyme. The results highlight the "wire-like" behavior of the Fe-S electron relay in CpI and a low reorganization energy for electron transfer on/off the H cluster.

  9. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    SciTech Connect

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potential for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.

  10. Zinc-dependent action potentials in giant neurons of the snail, Euhadra quaestia.

    PubMed

    Kawa, K

    1979-09-14

    In giant neurons of subesophageal ganglion of the Japanese land snail, Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method. All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24 mM Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations. The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 microM. It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane. On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967, J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.

  11. Fibroblast Circadian Rhythms of PER2 Expression Depend on Membrane Potential and Intracellular Calcium

    PubMed Central

    Noguchi, Takako; Wang, Connie W.; Pan, Haiyun

    2012-01-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca2+. However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, we investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. We found that rhythms were lost or delayed at lower (hyperpolarizing) K+ concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than desynchrony among cells. In lower Ca2+ concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca2+ by the calcium chelator 1,2-Bis(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of IP3-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca2+. Changes in intracellular Ca2+ may mediate the effects of membrane potential that we observed. PMID:22734566

  12. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    PubMed Central

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-01-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures. PMID:27677356

  13. Fibroblast circadian rhythms of PER2 expression depend on membrane potential and intracellular calcium.

    PubMed

    Noguchi, Takako; Wang, Connie W; Pan, Haiyun; Welsh, David K

    2012-07-01

    The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.

  14. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    NASA Astrophysics Data System (ADS)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  15. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester.

    PubMed

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-28

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1(st) and 2(nd) primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  16. Effect of coupled channels on the energy dependence of phenomenological optical potential parameters

    NASA Astrophysics Data System (ADS)

    Al-Rayashi, W. S.; Jaghoub, M. I.

    2016-06-01

    The phenomenological optical potential parameters are known to vary with incident energy due to sources of nonlocalities in the nucleon-nucleus elastic scattering process. Here we investigate the effect of one source, which is coupling the ground-state elastic channel to collective inelastic excitations on the energy dependence of the optical potential parameters. For incident energies in the range 10-70 MeV, we considered elastic and inelastic nucleon scattering from light, medium, and heavy nuclei ranging from 6Li to 208Pb. The potential parameters were first determined by fitting the elastic angular distributions only. Then we included coupling to collective excitation channels and determined the potential parameters that reproduced the elastic and inelastic angular distribution data simultaneously. Our results show that coupling to inelastic excitations reduces the energy variations of the potential parameters compared to that of the elastic scattering case. In particular, the our best fit values for the real part of the spin-orbit term are highly stable as a function of energy. The values of the surface imaginary term are not only more stable but are also reduced compared to the elastic case. The reduction is a direct consequence of the channel coupling accounting explicitly for part of the flux removed from the elastic channel. In the fitting process we also searched for the best fit values of the deformation parameters. Our values compare well with the corresponding ones obtained in previous works. Finally, we used our best fit values for the potential and deformation parameters to theoretically predict the total elastic, total cross section, and polarization data. The predicted values are in very good agreement with the experimental data.

  17. Inverse problems for the Schroedinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect

    SciTech Connect

    Eskin, G.

    2008-02-15

    We consider the inverse boundary value problem for the Schroedinger operator with time-dependent electromagnetic potentials in domains with obstacles. We extend the resuls of the author's works [Inverse Probl. 19, 49 (2003); 19, 985 (2003); 20, 1497 (2004)] to the case of time-dependent potentials. We relate our results to the Aharonov-Bohm effect caused by magnetic and electric fluxes.

  18. Sub-barrier fusion excitation function data and energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh

    2016-07-01

    This paper analyzed the role of intrinsic degrees of freedom of colliding nuclei in the enhancement of sub-barrier fusion cross-section data of various heavy ion fusion reactions. The influences of inelastic surface vibrations of colliding pairs are found to be dominant and their couplings result in the significantly larger fusion enhancement over the predictions of the one dimensional barrier penetration model at sub-barrier energies. The theoretical calculations are performed by using energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with the one dimensional Wong formula. The effects of dominant intrinsic channels are entertained within framework of the coupled channel calculations obtained by using the code CCFULL. It is quite interesting to note that the energy dependence in Woods-Saxon potential simulates the effects of inelastic surface vibrational states of reactants wherein significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.95 fm is required to address the observed fusion excitation function data of the various heavy ion fusion reactions.

  19. Amphetamine augments action potential-dependent dopaminergic signaling in the striatum in vivo.

    PubMed

    Ramsson, Eric S; Covey, Daniel P; Daberkow, David P; Litherland, Melissa T; Juliano, Steven A; Garris, Paul A

    2011-06-01

    Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here, we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine K(m) and V(max) for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH.

  20. Fe nanoparticles on ZnSe: Reversible temperature dependence of the surface barrier potential

    NASA Astrophysics Data System (ADS)

    Cantoni, M.; Bertacco, R.; Brambilla, A.; Finazzi, M.; Duò, L.; Ciccacci, F.; Verdini, A.; Floreano, L.; Morgante, A.; Passoni, M.; Casari, C. S.; Li Bassi, A.

    2012-04-01

    The Fe growth on ZnSe(001) takes place via the initial formation of superparamagnetic nano-islands that subsequently coalesce, giving rise to a continuous film for a nominal thickness of 8 Fe monolayers. For a very low Fe coverage (2 Fe monolayers), we show that the surface barrier potential (i.e. the barrier potential seen by electrons incident on the surface), measured by absorbed current spectroscopy, attains very large values (6.9 eV at room temperature) and dramatically changes as a function of temperature, with an increase of ˜1.5 eV from room temperature down to 130 K, largely exceeding similar changes observed in both thin films and nanoparticles. This phenomenon disappears as the thickness increases and is fully reversible with temperature. Nonequilibrium phenomena due to the experimental conditions are present, but are not able to explain the observed data. Inverse photoemission, core level photoemission, x-ray photoemission diffraction, and scanning tunneling microscopy are employed in order to find temperature-dependent properties of the Fe islands: while only minor changes as a function of temperature are present in the electronic band structure, the Fe crystal structure, and the morphology of the islands, a noticeable temperature dependence of the Se segregation through the Fe islands is found.

  1. Spike timing-dependent long-term potentiation in ventral tegmental area dopamine cells requires PKC.

    PubMed

    Luu, Percy; Malenka, Robert C

    2008-07-01

    Long-term potentiation (LTP) of excitatory synapses on ventral tegmental area (VTA) dopamine (DA) cells is thought to play an important role in mediating some of the behavioral effects of drugs of abuse yet little is known about its underlying mechanisms. We find that spike timing-dependent LTP (STD LTP) in VTA DA cells is absent in slices prepared from mice previously administered cocaine, suggesting that cocaine-induced LTP and STD LTP share underlying mechanisms. This form of STD LTP is dependent on NMDA receptor (NMDAR) activation and a rise in postsynaptic calcium but surprisingly was not affected by an inhibitor of calcium/calmodulin-dependent protein kinase II (CaMKII). It was blocked by antagonists of conventional isoforms of PKC, whereas activation of protein kinase C (PKC) using a phorbol ester enhanced synaptic strength. These results suggest that NMDAR-mediated activation of PKC, but not CaMKII, is a critical trigger for LTP in VTA DA cells.

  2. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation.

    PubMed

    Schendzielorz, Alexander Benjamin; Schulz, Christian; Lytovchenko, Oleksandr; Clancy, Anne; Guiard, Bernard; Ieva, Raffaele; van der Laan, Martin; Rehling, Peter

    2017-01-02

    Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.

  3. Glioblastoma-dependent differentiation and angiogenic potential of human mesenchymal stem cells in vitro.

    PubMed

    Birnbaum, Tobias; Hildebrandt, Jenna; Nuebling, Georg; Sostak, Petra; Straube, Andreas

    2011-10-01

    Tumor angiogenesis is of central importance in the malignancy of glioblastoma multiforme (GBM). As previously shown, human mesenchymal stem cells (hMSC) migrate towards GBM and are incorporated into tumor microvessels. However, phenotype and function of recruited hMSC remain unclear. We evaluated the differentiation and angiogenic potential of hMSC after stimulation with glioblastoma-conditioned medium in vitro. Immunostaining with endothelial, smooth muscle cell and pericyte markers was used to analyze hMSC differentiation in different concentrations of tumor-conditioned medium (CM), and the angiogenic potential was evaluated by matrigel-based tube-formation assay (TFA). Immunofluorescence staining revealed that tumor-conditioned hMSC (CM-hMSC) expressed CD 151, VE-cadherin, desmin, α-smooth muscle actin, nestin, and nerval/glial antigen 2 (NG2) in a CM concentration-dependent manner, whereas no expression of von-Willebrand factor (vWF) and smooth myosin could be detected. These findings are indicative of GBM-dependent differentiation of hMSC into pericyte-like cells, rather than endothelial or smooth muscle cells. Furthermore, TFA of hMSC and CM-hMSC revealed CM-dependent formation of capillary-like networks, which differed substantially from those formed by human endothelial cells (HUVEC), also implying pericyte-like tube formation. These results are indicative of GBM-derived differentiation of hMSC into pericyte-like mural cells, which might contribute to the neovascularization and stabilization of tumor vessels.

  4. Effects of voluntary exercise on hippocampal long-term potentiation in morphine-dependent rats.

    PubMed

    Miladi-Gorji, H; Rashidy-Pour, A; Fathollahi, Y; Semnanian, S; Jadidi, M

    2014-01-03

    This study was designed to examine the effect of voluntary exercise on hippocampal long-term potentiation (LTP) in morphine-dependent rats. The rats were randomly distributed into the saline-sedentary (Sal/Sed), the dependent-sedentary, the saline-exercise (Sal/Exc), and the dependent-exercise (D/Exc) groups. The Sal/Exc and the D/Exc groups were allowed to freely exercise in a running wheel for 10 days. The Sal/Sed and the morphine-sedentary groups were kept sedentary for the same extent of time. Morphine (10 mg/kg) was injected bi-daily (12 h interval) during 10 days of voluntary exercise. On day 11, 2h after the morphine injection, the in vivo LTP in the dentate gyrus of the hippocampus was examined. The theta frequency primed bursts were delivered to the perforant path for induction of LTP. Population spike (PS) amplitude and the field excitatory post-synaptic potentials (fEPSP) slope were measured as indices of increase in synaptic efficacy. Chronic morphine increased the mean basal EPSP, and augmented PS-LTP. Exercise significantly increased the mean baseline EPSP and PS responses, and augmented PS-LTP in both saline and morphine-treated groups. Moreover, the increase of PS-LTP in the morphine-exercise group was greater (22.5%), but not statistically significant, than that of the Sal/Exc group. These results may imply an additive effect between exercise and morphine on mechanisms of synaptic plasticity. Such an interaction between exercise and chronic morphine may influence cognitive functions in opiate addicts.

  5. Nonadiabatic, momentum-dependent, and energy-dependent corrections in the effective-potential description for low-energy scattering of spinless systems - Their relations and validity

    NASA Technical Reports Server (NTRS)

    Au, C. K.

    1988-01-01

    In the effective-potential description for low-energy scattering involving a spinless complex (a body with internal structure), the nonadiabatic corrections are sometimes disguised in momentum-dependent terms. These are distinct from energy-dependent corrections. A general procedure is given here by which all the momentum-dependent corrections can be converted into nonadiabatic corrections in truly local form. Circumstances under which an expansion of the effective potential, in terms of the adiabatic term plus nonadiabatic and energy-dependent corrections is allowed and forbidden, are discussed. An example for the latter is in the case of near degeneracy in the spectrum of the complex or in the extrapolation of the effective potential to short-distance behavior. This indicates that certain claims of 'saturation effect' at short distances in low-energy electron-atom scattering are invalid.

  6. Size-dependent error of the density functional theory ionization potential in vacuum and solution

    DOE PAGES

    Sosa Vazquez, Xochitl A.; Isborn, Christine M.

    2015-12-22

    Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less

  7. Serotonin receptors as potential targets for modulation of nicotine use and dependence.

    PubMed

    Fletcher, Paul J; Lê, Anh Dzung; Higgins, Guy A

    2008-01-01

    Nicotine use carries considerable health risks and plays a major role in a variety of diseases. Current pharmacological treatments to aid in smoking cessation include nicotine-replacement therapy and non-nicotinic strategies such as bupropion and varenicline. While these treatments benefit some individuals there is still a need for better and more effective treatment strategies. Nicotine is the major psychoactive substance in tobacco. Some behavioural effects of nicotine, including its reinforcing efficacy result in part from activation of mesolimbic dopamine neurons. Modulation of dopamine function is one potential treatment strategy that could treat nicotine dependence. Serotonergic neurons modulate the functioning of dopamine neurons in a complex fashion. Much of this complexity arises from the fact that serotonin (5-HT) exerts its effects through multiple receptor subtypes, some of which even act in apparent functional opposition to each other. This article reviews evidence, primarily from animal experiments, using behavioural procedures relevant to nicotine use on the potential for 5-HT receptors as targets for treating nicotine dependence. The 5-HT(1A, 2A, 2C, 3, 4, 6) receptor subtypes have received most experimental attention, with the 5-HT(1A) and 5-HT(2C) receptors being the best studied. Several studies have now shown that 5-HT(1A) receptor antagonists alleviate some of the behavioural signs induced by nicotine withdrawal. Electrophysiological and neurochemical studies show that stimulation of 5-HT(2C) receptors reduces the function of the mesolimbic dopamine pathway. 5-HT(2C) receptor agonists block the stimulatory action of nicotine on midbrain dopamine function. They also reduce several behavioural effects of nicotine including its discriminative stimulus properties and reinforcing effects. Although more work remains to be done, 5-HT(2C) receptor agonists perhaps hold the most promise as potential therapies for smoking cessation.

  8. On Neuron Membrane Potential Distributions for Voltage and Time Dependent Current Modulation

    NASA Astrophysics Data System (ADS)

    Salig, J. B.; Carpio-Bernido, M. V.; Bernido, C. C.; Bornales, J. B.

    Tracking variations of neuronal membrane potential in response to multiple synaptic inputs remains an important open field of investigation since information about neural network behavior and higher brain functions can be inferred from such studies. Much experimental work has been done, with recent advances in multi-electrode recordings and imaging technology giving exciting results. However, experiments have also raised questions of compatibility with available theoretical models. Here we show how methods of modern infinite dimensional analysis allow closed form expressions for important quantities rich in information such as the conditional probability density (cpd). In particular, we use a Feynman integral approach where fluctuations in the dynamical variable are parametrized with Hida white noise variables. The stochastic process described then gives variations in time of the relative membrane potential defined as the difference between the neuron membrane and firing threshold potentials. We obtain the cpd for several forms of current modulation coefficients reflecting the flow of synaptic currents, and which are analogous to drift coefficients in the configuration space Fokker-Planck equation. In particular, we consider cases of voltage and time dependence for current modulation for periodic and non-periodic oscillatory current modulation described by sinusoidal and Bessel functions.

  9. Experimental study of the water saturation dependence of streaming potential in sandstones during drainage and imbibition

    NASA Astrophysics Data System (ADS)

    Vinogradov, Jan; Jackson, Matthew

    2010-05-01

    We report the first measured values of the multiphase streaming potential coupling coefficient in intact sandstone core samples saturated with brine, and either undecane or nitrogen as the second phase, obtained from unsteady-state drainage and imbibition displacement experiments. The displacements are conducted at low rate, with pressure ramping at regular intervals during which the measured pressure and voltage across the sample are used to determine the streaming potential coupling coefficient. The voltage is measured using non-polarizing Ag-AgCl electrodes installed on each face of the sample. We find that the behaviour of the coupling coefficient at partial saturation is different depending upon whether oil or nitrogen is the second phase, and whether the brine saturation is decreasing during drainage, or increasing during imbibition. When undecane displaces brine, the coupling coefficient initially drops sharply as undecane enters the inlet face of the sample, and then remains approximately constant until undecane is produced at the outlet face of the sample. There is then a slow decrease in the coupling coefficient as the brine saturation decreases towards the irreducible value, but the coupling coefficient remains significantly greater than zero even after pumping several thousand pore volumes of undecane through the sample, during which the change in brine saturation is less than 1%. This behaviour would not be observed in measurements during capillary desaturation, as the non-wetting phase is prevented from flowing out of the sample. When nitrogen displaces brine, the coupling coefficient falls gradually as the brine saturation decreases, reaching zero (within experimental error) as the brine saturation approaches the irreducible value. During imbibition, the coupling coefficient increases with increasing brine saturation, exceeding the value obtained when the sample is fully saturated with brine as the residual undecane saturation is approached. However

  10. Vestibular-dependent inter-stimulus interval effects on sound evoked potentials of central origin.

    PubMed

    Todd, N P M; Govender, S; Colebatch, J G

    2016-11-01

    Todd et al. (2014ab) have recently demonstrated the presence of vestibular-dependent contributions to auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs), including a particular deflection labeled as an N42/P52 prior to the long-latency AEPs N1 and P2. In this paper we report the results of an experiment to determine the effect of inter-stimulus interval (ISI) and regularity on potentials recorded above and below VEMP threshold. Five healthy, right-handed subjects were recruited and evoked potentials were recorded to binaurally presented sound stimulation, above and below vestibular threshold, at seven stimulus rates with ISIs of 212, 300, 424, 600, 848, 1200 and 1696 ms. The inner five intervals, i.e. 300, 424, 600, 848, 1200 ms, were presented twice in both regular and irregular conditions. ANOVA on the global field power (GFP) were conducted for each of four waves, N42, P52, N1 and P2 with factors of intensity, ISI and regularity. Both N42 and P52 waves showed significant ANOVA effects of intensity but no other main effects or interactions. In contrast both N1 and P2 showed additional effects of ISI, as well as intensity, and evidence of non-linear interactions between ISI and intensity. A source analysis was carried out consistent with prior work suggesting that when above vestibular threshold, in addition to bilateral superior temporal cortex, ocular, cerebellar and cingulate sources are recruited. Further statistical analysis of the source currents indicated that the origin of the interactions with intensity may be the ISI sensitivity of the vestibular-dependent sources. This in turn may reflect a specific vestibular preference for stimulus rates associated with locomotion, i.e. rates close to 2 Hz, or ISIs close to 500 ms, where saccular afferents show increased gain and the corresponding reflexes are most sensitive.

  11. Optimized Effective Potential for Quantum Electrodynamical Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Pellegrini, Camilla; Flick, Johannes; Tokatly, Ilya V.; Appel, Heiko; Rubio, Angel

    2015-08-01

    We propose an orbital exchange-correlation functional for applying time-dependent density functional theory to many-electron systems coupled to cavity photons. The time nonlocal equation for the electron-photon optimized effective potential (OEP) is derived. In the static limit our OEP energy functional reduces to the Lamb shift of the ground state energy. We test the new approximation in the Rabi model. It is shown that the OEP (i) reproduces quantitatively the exact ground-state energy from the weak to the deep strong coupling regime and (ii) accurately captures the dynamics entering the ultrastrong coupling regime. The present formalism opens the path to a first-principles description of correlated electron-photon systems, bridging the gap between electronic structure methods and quantum optics for real material applications.

  12. Histamine potentiates neuronal excitation by blocking a calcium-dependent potassium conductance.

    PubMed

    Haas, H L

    1984-04-01

    Histaminergic neurones send their axons to the whole forebrain. The diffuse projection is consistent with a modulatory role of these pathways. In hippocampal slices from rats a mechanism for this modulation is described, on pyramidal neurones of the CA 1 area: Strong excitations induced by intracellular current injection, ionophoretic administration of glutamate or synaptic stimulation normally restrict themselves by the activation of the calcium-dependent potassium current (gK(Ca) ). This current causes a long lasting afterhyperpolarization and an accommodation of firing. Their block by histamine and impromidine (reversed by metiamide and cimetidine) leads to a profound potentiation of excitatory signals. It is suggested that HA, through H2 receptors, accelerates the removal of intracellular free Ca++ ions.

  13. Cerebral information processing in personality disorders: I. Intensity dependence of auditory evoked potentials.

    PubMed

    Wang, Wei; Wang, Yehan; Fu, Xianming; Liu, Jianhui; He, Chengsen; Dong, Yi; Livesley, W John; Jang, Kerry L

    2006-02-28

    Patients with personality disorders such as the histrionic type exaggerate their responses when receiving external social or environmental stimuli. We speculated that they might also show an augmenting pattern of the auditory evoked potential N1-P2 component in response to stimuli with increasing levels of intensity, a response pattern that is thought to be inversely correlated with cerebral serotonin (5-HT) activity. To test this hypothesis, we collected auditory evoked potentials in 191 patients with personality disorders (19 patients with the paranoid type, 12 schizoid, 14 schizotypal, 18 antisocial, 15 borderline, 13 histrionic, 17 narcissistic, 25 avoidant, 30 dependent and 28 obsessive-compulsive) and 26 healthy volunteers. Their personality traits were measured using the Dimensional Assessment of Personality Pathology-Basic Questionnaire (DAPP-BQ). Compared with healthy subjects and other patient groups, the histrionic group scored higher on the basic traits Affective Instability, Stimulus Seeking, Rejection and Narcissism, and on the higher traits Emotional Dysregulation and Dissocial, than the other groups, and the schizoid group scored lower on most of the DAPP-BQ basic and higher traits. In addition, the histrionic group showed steeper amplitude/stimulus intensity function (ASF) slopes at three midline scalp electrodes than the healthy controls or the other patient groups. The ASF slopes were not correlated with any DAPP-BQ traits in the total sample of 217 subjects. However, the DAPP-BQ basic trait Rejection was positively correlated with the ASF slopes at all three electrode sites in the histrionic group. The increased intensity dependence of the auditory N1-P2 component might indicate that cerebral 5-HT neuronal activity is, on average, weak in the histrionic patients.

  14. A Single Brief Burst Induces GluR1-Dependent Associative Short-Term Potentiation: A Potential Mechanism for Short-Term Memory

    ERIC Educational Resources Information Center

    Erickson, Martha A.; Maramara, Lauren A.; Lisman, John

    2010-01-01

    Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon…

  15. Length dependence of ionization potentials of transacetylenes: Internally consistent DFT/G W approach

    NASA Astrophysics Data System (ADS)

    Pinheiro, Max; Caldas, Marilia J.; Rinke, Patrick; Blum, Volker; Scheffler, Matthias

    2015-11-01

    We follow the evolution of the ionization potential (IP) for the paradigmatic quasi-one-dimensional transacetylene family of conjugated molecules, from short to long oligomers and to the infinite polymer transpolyacetylene (TPA). Our results for short oligomers are very close to experimental available data. We find that the IP varies with oligomer length and converges to the given value for TPA with a smooth, coupled inverse-length-exponential behavior. Our prediction is based on an "internally consistent" scheme to adjust the exchange mixing parameter α of the PBEh hybrid density functional, so as to obtain a description of the electronic structure consistent with the quasiparticle approximation for the IP. This is achieved by demanding that the corresponding quasiparticle correction, in the G W @PBEh approximation, vanishes for the IP when evaluated at PBEh (αic ). We find that αic is also system-dependent and converges with increasing oligomer length, enabling the dependence of the IP and other electronic properties to be identified.

  16. Effect of conditioning contraction intensity on postactivation potentiation is muscle dependent.

    PubMed

    Fukutani, Atsuki; Hirata, Kosuke; Miyamoto, Naokazu; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2014-04-01

    We aimed to examine whether the influence of conditioning contraction intensity on the extent of postactivation potentiation (PAP) is muscle dependent. Eleven healthy males performed both thumb adduction and plantar flexion as a conditioning contraction. The conditioning contraction intensities were set at 20%, 40%, 60%, 80%, or 100% of the maximal voluntary isometric contraction (MVC). Before and after the conditioning contraction, twitch torque was measured for the respective joint to calculate the extent of PAP. In plantar flexion, the extent of PAP became significantly larger as the conditioning contraction intensity increased up to 80% MVC (p<0.05). In contrast, the extent of PAP in thumb adduction increased significantly only up to 60% MVC (p<0.05), but not at higher intensities. These results indicate that the influence of the conditioning contraction intensity on the extent of PAP is muscle dependent. Our results suggest that a conditioning contraction with submaximal intensity can sufficiently evoke sizable PAP in the muscle where most of muscle fibers are recruited at submaximal intensities, thereby attenuating muscle fatigue induced by the conditioning contraction.

  17. Microscopic theory of dissipation for slowly time-dependent mean field potentials

    NASA Astrophysics Data System (ADS)

    Aleshin, V. P.

    2005-10-01

    We study the dissipation rate Q˙ in systems of nucleons bound by a slowly time-dependent mean-field potential and slightly interacting between themselves. Starting from the many-body linear response formula we evaluate an expression for Q˙ in terms of the pure shell-model quantities and the nucleon-nucleon collision rate Γ. The application of the classical sum rule leads then to an expression for Q˙ in terms of the classical-path integral with the weighting function including Γ. For vanishing Γ this expression reduces to the Koonin-Randrup Knudsen-gas formula. For simplified Skyrme interactions the classical approximation for the Γ itself is obtained. In leptodermous systems the classical-path expression for Q˙ decomposes into the wall formula and the multiple-reflection term owing to incomplete randomization of particle motion between consecutive encounters with the boundary. The mean-free path and temperature dependence of dissipation is analyzed for small-amplitude distortions of spherical cavities.

  18. Effective momentum-dependent potentials for atomic bound states and scattering in strongly coupled plasmas

    NASA Astrophysics Data System (ADS)

    Christlieb, A.; Dharuman, G.; Verboncoeur, J.; Murillo, M. S.

    2016-10-01

    Modeling high energy-density experiments requires simulations spanning large length and time scales. These non-equilibrium experiments have time evolving ionization and partial degeneracy, obviating the direct use of the time-dependent Schrodinger equation. Therefore, efficient approximate methods are greatly needed. We have examined the accuracy of one such method based on an effective classical-dynamics approach employing effective momentum dependent potentials (MDPs) within a Hamiltonian framework that enables large-scale simulations. We have found that a commonly used formulation, based on Kirschbaum-Wilets MDPs leads to very accurate ground state energies and good first/second-ionization energies. The continuum scattering properties of free electrons were examined by comparing the momentum-transfer cross section (MTCS) predicted by KW MDP to a semi-classical phase-shift calculation. Optimizing the KW MDP parameters for the scattering process yielded poor MTCSs, suggesting a limitation of the use of KW MDP for plasmas. However, our new MDP yields MTCS values in much better agreement than KW MDP.

  19. Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism.

    PubMed

    Hayakawa, Kazuhide; Mishima, Kenichi; Hazekawa, Mai; Sano, Kazunori; Irie, Keiichi; Orito, Kensuke; Egawa, Takashi; Kitamura, Yoshihisa; Uchida, Naoki; Nishimura, Ryoji; Egashira, Nobuaki; Iwasaki, Katsunori; Fujiwara, Michihiro

    2008-01-10

    Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC). However, such interactions have not sufficiently been clear and may have important implications for understanding the pharmacological effects of marijuana. In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC on locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory in the eight-arm radial maze task in mice. In addition, we measured expression level of cannabinoid CB(1) receptor at striatum, cortex, hippocampus and hypothalamus. Delta(9)-THC (1, 3, 6 and 10 mg/kg) induced hypoactivity, catalepsy-like immobilisation and hypothermia in a dose-dependent manner. In addition, Delta(9)-THC (1, 3 and 6 mg/kg) dose-dependently impaired spatial memory in eight-arm radial maze. On the other hand, cannabidiol (1, 3, 10, 25 and 50 mg/kg) did not affect locomotor activity, catalepsy-like immobilisation, rectal temperature and spatial memory on its own. However, higher dose of cannabidiol (10 or 50 mg/kg) exacerbated pharmacological effects of lower dose of Delta(9)-THC, such as hypoactivity, hypothermia and impairment of spatial memory. Moreover, cannabidiol (50 mg/kg) with Delta(9)-THC (1 mg/kg) enhanced the expression level of CB(1) receptor expression in hippocampus and hypothalamus. Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism. These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.

  20. Frequency-dependent streaming potential of porous media: Experimental approaches and apparatus design

    NASA Astrophysics Data System (ADS)

    Glover, Paul W. J.; Ruel, Jean; Tardif, Eric

    2013-04-01

    Electro-kinetic phenomena link fluid flow and electrical flow in porous and fractured media such that a hydraulic flow will generate an electrical current and vice versa. Although such a link is likely to be extremely useful, especially in the development of the electro-seismic method, surprisingly few experimental measurements have been carried out, particularly as a function of frequency because of their difficulty. We have carried out a study that considers six different approaches to making laboratory determinations of the frequency-dependent streaming potential coefficient of geomaterials. These are (i) motor and scotch yoke, (ii) motor and cam, (iii) pneumatic drive, (iv) hydraulic drive, (v) electro-magnetic drive, and (vi) piezo-electric drive. In each case, we have analysed the mechanical, electrical, and other technical difficulties involved. We conclude that the electro-magnetic drive is currently the only approach that is practicable, while the piezo-electric drive may be useful for low permeability samples and at specified high frequencies. We have used the electro-magnetic drive approach to design, build, and test an apparatus for measuring the streaming potential coefficient of unconsolidated and disaggregated samples such as sands, gravels, and soils with a diameter of 25.4 mm and lengths between 50 mm and 300 mm.

  1. Atomic bound state and scattering properties of effective momentum-dependent potentials

    NASA Astrophysics Data System (ADS)

    Dharuman, Gautham; Verboncoeur, John; Christlieb, Andrew; Murillo, Michael S.

    2016-10-01

    Effective classical dynamics provide a potentially powerful avenue for modeling large-scale dynamical quantum systems. We have examined the accuracy of a Hamiltonian-based approach that employs effective momentum-dependent potentials (MDPs) within a molecular-dynamics framework through studies of atomic ground states, excited states, ionization energies, and scattering properties of continuum states. Working exclusively with the Kirschbaum-Wilets (KW) formulation with empirical MDPs [C. L. Kirschbaum and L. Wilets, Phys. Rev. A 21, 834 (1980), 10.1103/PhysRevA.21.834], optimization leads to very accurate ground-state energies for several elements (e.g., N, F, Ne, Al, S, Ar, and Ca) relative to Hartree-Fock values. The KW MDP parameters obtained are found to be correlated, thereby revealing some degree of transferability in the empirically determined parameters. We have studied excited-state orbits of electron-ion pair to analyze the consequences of the MDP on the classical Coulomb catastrophe. From the optimized ground-state energies, we find that the experimental first- and second-ionization energies are fairly well predicted. Finally, electron-ion scattering was examined by comparing the predicted momentum transfer cross section to a semiclassical phase-shift calculation; optimizing the MDP parameters for the scattering process yielded rather poor results, suggesting a limitation of the use of the KW MDPs for plasmas.

  2. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

    PubMed

    Kumar, Rakesh; Hazan, Adina; Geron, Matan; Steinberg, Rebbeca; Livni, Lital; Matzner, Henry; Priel, Avi

    2017-03-01

    Peripheral neuronal activation by inflammatory mediators is a multifaceted physiological response that involves a multitude of regulated cellular functions. One key pathway that has been shown to be involved in inflammatory pain is Gq/GPCR, whose activation by inflammatory mediators is followed by the regulated response of the cation channel transient receptor potential vanilloid 1 (TRPV1). However, the mechanism that underlies TRPV1 activation downstream of the Gq/GPCR pathway has yet to be fully defined. In this study, we employ pharmacological and molecular biology tools to dissect this activation mechanism via perforated-patch recordings and calcium imaging of both neurons and a heterologous system. We showed that TRPV1 activity downstream of Gq/GPCR activation only produced a subdued current, which was noticeably different from the robust current that is typical of TRPV1 activation by exogenous stimuli. Moreover, we specifically demonstrated that 2 pathways downstream of Gq/GPCR signaling, namely endovanilloid production by lipoxygenases and channel phosphorylation by PKC, converge on TRPV1 to evoke a tightly regulated response. Of importance, we show that only when both pathways are acting on TRPV1 is the inflammatory-mediated response achieved. We propose that the requirement of multiple signaling events allows subdued TRPV1 activation to evoke regulated neuronal response during inflammation.-Kumar R., Hazan, A., Geron, M., Steinberg, R., Livni, L., Matzner, H., Priel, A. Activation of transient receptor potential vanilloid 1 by lipoxygenase metabolites depends on PKC phosphorylation.

  3. Redox probing study of the potential dependence of charge transport through Li2O2

    DOE PAGES

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; ...

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as amore » function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  4. Event-related potential map differences depend on the prestimulus microstates.

    PubMed

    Kondákor, I; Pascual-Marqui, R D; Michel, C M; Lehmann, D

    1995-01-01

    The dependency of the landscapes of visually evoked, 47-channel, event-related potential (ERPs) on the functional microstates (momentary map landscape) just before stimulus arrival was investigated, in 12 volunteers. The prestimulus microstates were determined using the map at the last peak of Global Field Power before the stimulus. The landscapes of these maps were described by the electrode locations of the positive and negative extreme potentials, and assigned to basic classes. The two most frequently occurring map-classes were used (left anterior-right posterior, and right anterior-left posterior). ERP map series were averaged for each subject and each prestimulus microstate class. The Randomization-Monte Carlo MANOVA test was used to test the significance of the difference between the ERP map landscapes at each sample point (n = 128, 500 ms) associated with the two prestimulus microstates. At 16 samples the difference was significant at p < 0.05. The longest uninterrupted sequence (n = 9) of significant differences occurred between 164 and 195 ms, i.e. during the conventional component P200. The results demonstrate that the brain electric microstate at stimulus arrival crucially influences the active neuronal populations that contribute to the ERP. This suggests that the processing of information will differ as a function of the momentary brain microstate at information arrival.

  5. LUNAR DUST GRAIN CHARGING BY ELECTRON IMPACT: DEPENDENCE OF THE SURFACE POTENTIAL ON THE GRAIN SIZE

    SciTech Connect

    Nemecek, Z.; Pavlu, J.; Safrankova, J.; Beranek, M.; Richterova, I.; Vaverka, J.; Mann, I.

    2011-09-01

    The secondary electron emission is believed to play an important role for the dust charging at and close to the lunar surface. However, our knowledge of emission properties of the dust results from model calculations and rather rare laboratory investigations. The present paper reports laboratory measurements of the surface potential on Lunar Highlands Type regolith simulants with sizes between 0.3 and 3 {mu}m in an electron beam with energy below 700 eV. This investigation is focused on a low-energy part, i.e., {<=}100 eV. We found that the equilibrium surface potential of this simulant does not depend on the grain size in our ranges of grain dimensions and the beam energies, however, it is a function of the primary electron beam energy. The measurements are confirmed by the results of the simulation model of the secondary emission from the spherical samples. Finally, we compare our results with those obtained in laboratory experiments as well as those inferred from in situ observations.

  6. Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence

    DTIC Science & Technology

    1993-08-25

    of Underpotentially Deposited Copper on an Iodine Treated Platinum Surface Determined In Situ by Surface EXAFS and Its Polarization Dependence G.M...fiCAtson) Potential Dependent Structural Changes of Underpotentially Deposited Copper on an Irodine Treated Platinum Surface Determined In Situ by...necessary and identify by block number) An in situ structural investigation of the underpotential deposition of copper on an iodine covered platinum

  7. Spatial dependency of cholera prevalence on potential cholera reservoirs in an urban area, Kumasi, Ghana

    NASA Astrophysics Data System (ADS)

    Osei, Frank B.; Duker, Alfred A.; Augustijn, Ellen-Wien; Stein, Alfred

    2010-10-01

    Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs ( R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs ( R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.

  8. Intensity dependence of auditory evoked potentials during light interference in migraine.

    PubMed

    Ambrosini, Anna; Coppola, Gianluca; Gérardy, Pierre-Yves; Pierelli, Francesco; Schoenen, Jean

    2011-04-01

    Migraine patients show interictally a strong intensity dependence of auditory evoked cortical potentials (IDAP) and a lack of habituation of evoked potentials. Photic drive on high-frequency flash stimulation is another well-known interictal feature in migraineurs, associated with alpha-rhythm hyper-synchronisation. We compared therefore the influence of light stimulation on IDAP in healthy volunteers (HV) and migraine patients. A continuous flash stimulation was delivered during the recording of auditory evoked potentials at suprathreshold increasing stimulation intensities. IDAP was measured as the amplitude/stimulus intensity function (ASF) slope. In HV, the ASF slope decreased during flash stimulation, whereas, on average, there was no significant change in migraineurs. A closer analysis of migraineurs disclosed two subgroups of patients with no detectable clinical differences: one, the largest, in which the ASF slope was normal at baseline, but increased during light stimulation, the other with an increased ASF slope at rest and a decrease during light interference. Visual sensory overload is able to increase IDAP in the majority of migraineurs, which contrasts with HV. We hypothesise that this could be due to hyper-synchronisation of the alpha rhythm because of photic drive and possibly thalamo-cortical dysfunction. A minority of migraineurs have, like HV, an IDAP reduction during light interference. They are, however, characterised, unlike most HV, by a high IDAP at baseline. Besides underscoring the pathophysiological heterogeneity of migraine, these results suggest that light interference might improve the phenotyping of migraine patients who have a normal IDAP in the resting condition.

  9. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    PubMed

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases

  10. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    SciTech Connect

    Bahar, M. K.

    2014-07-15

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ρ(r)=ρ{sub o}r{sup 2}. Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed.

  11. Transient receptor potential melastatin 3 is a phosphoinositide-dependent ion channel.

    PubMed

    Badheka, Doreen; Borbiro, Istvan; Rohacs, Tibor

    2015-07-01

    Phosphoinositides are emerging as general regulators of the functionally diverse transient receptor potential (TRP) ion channel family. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been reported to positively regulate many TRP channels, but in several cases phosphoinositide regulation is controversial. TRP melastatin 3 (TRPM3) is a heat-activated ion channel that is also stimulated by chemical agonists, such as pregnenolone sulfate. Here, we used a wide array of approaches to determine the effects of phosphoinositides on TRPM3. We found that channel activity in excised inside-out patches decreased over time (rundown), an attribute of PI(4,5)P2-dependent ion channels. Channel activity could be restored by application of either synthetic dioctanoyl (diC8) or natural arachidonyl stearyl (AASt) PI(4,5)P2. The PI(4,5)P2 precursor phosphatidylinositol 4-phosphate (PI(4)P) was less effective at restoring channel activity. TRPM3 currents were also restored by MgATP, an effect which was inhibited by two different phosphatidylinositol 4-kinase inhibitors, or by pretreatment with a phosphatidylinositol-specific phospholipase C (PI-PLC) enzyme, indicating that MgATP acted by generating phosphoinositides. In intact cells, reduction of PI(4,5)P2 levels by chemically inducible phosphoinositide phosphatases or a voltage-sensitive 5'-phosphatase inhibited channel activity. Activation of PLC via muscarinic receptors also inhibited TRPM3 channel activity. Overall, our data indicate that TRPM3 is a phosphoinositide-dependent ion channel and that decreasing PI(4,5)P2 abundance limits its activity. As all other members of the TRPM family have also been shown to require PI(4,5)P2 for activity, our data establish PI(4,5)P2 as a general positive cofactor of this ion channel subfamily.

  12. Stimulus intensity-dependent modulations of hippocampal long-term potentiation by basolateral amygdala priming

    PubMed Central

    Li, Zexuan; Richter-Levin, Gal

    2012-01-01

    There is growing realization that the relationship between memory and stress/emotionality is complicated, and may include both memory enhancing and memory impairing aspects. It has been suggested that the underlying mechanisms involve amygdala modulation of hippocampal synaptic plasticity, such as long-term potentiation (LTP). We recently reported that while in CA1 basolateral amygdala (BLA) priming impaired theta stimulation induced LTP, it enhanced LTP in the dentate gyrus (DG). However, emotional and stressfull experiences were found to activate synaptic plasticity within the BLA, raising the possibility that BLA modulation of other brain regions may be altered as well, as it may depend on the way the BLA is activated or is responding. In previous studies BLA priming stimulation was relatively weak (1 V, 50 μs pulse duration). In the present study we assessed the effects of two stronger levels of BLA priming stimulation (1 V or 2 V, 100 μs pulse duration) on LTP induction in hippocampal DG and CA1, in anesthetized rats. Results show that 1V-BLA priming stimulation enhanced but 2V-BLA priming stimulation impaired DG LTP; however, both levels of BLA priming stimulation impaired CA1 LTP, suggesting that modulation of hippocampal synaptic plasticity by amygdala is dependent on the degree of amygdala activation. These findings suggest that plasticity-induced within the amygdala, by stressful experiences induces a form of metaplasticity that would alter the way the amygdala may modulate memory-related processes in other brain areas, such as the hippocampus. PMID:22586371

  13. Sleep-Dependent Gene Expression in the Hippocampus and Prefrontal Cortex Following Long-Term Potentiation

    PubMed Central

    Romcy-Pereira, Rodrigo N.; Erraji-Benchekroun, Loubna; Smyrniotopoulos, Peggy; Ogawa, Sonoko; Mello, Claudio V.; Sibille, Etienne; Pavlides, Constantine

    2009-01-01

    The activity-dependent transcription factor zif268 is re-activated in sleep following hippocampal long-term potentiation (LTP). However, the activation of secondary genes, possibly involved in modifying local synaptic strengths and ultimately stabilizing memory traces during sleep, has not yet been studied. Here, we investigated changes in hippocampal and cortical gene expression at a time point subsequent to the previously reported initial zif268 re-activation during sleep. Rats underwent unilateral hippocampal LTP and were assigned to SLEEP or AWAKE groups. Eighty minutes after a long rapid-eye-movement sleep (REMS) episode (or an equivalent amount of time for awake group) animals had their hippocampi dissected and processed for gene microarray hybridization. Prefrontal and parietal cortices were also collected for qRT-PCR analysis. The microarray analysis identified 28 up-regulated genes in the hippocampus: 11 genes were enhanced in the LTPed hemisphere of sleep animals; 13 genes were enhanced after sleep, regardless of hemisphere; and 4 genes were enhanced in LTPed hemisphere, regardless of behavioral state. qRT-PCR analysis confirmed the upregulation of aif-1 and sc-65 during sleep. Moreover, we observed a down-regulation of the purinergic receptor, P2Y4R in the LTP hemisphere of awake animals and a trend for the protein kinase, CaMKI to be up-regulated in the LTP hemisphere of sleep animals. In the prefrontal cortex, we showed a significant LTP-dependent down-regulation of gluR1 and spinophilin specifically during sleep. Zif268 was downregulated in sleep regardless of the hemisphere. No changes in gene expression were observed in the parietal cortex. Our findings indicate that a set of synaptic plasticity-related genes have their expression modulated during sleep following LTP, which can reflect biochemical events associated with reshaping of synaptic connections in sleep following learning. PMID:19389414

  14. EET-dependent potentiation of pulmonary arterial pressure: sex-different regulation of soluble epoxide hydrolase

    PubMed Central

    Kandhi, Sharath; Qin, Jun; Froogh, Ghezal; Jiang, Houli; Luo, Meng; Wolin, Michael S.; Huang, An

    2015-01-01

    We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner. PMID:26498250

  15. Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation

    PubMed Central

    Moya, Esteban A.; Arias, Paulina; Varela, Carlos; Oyarce, María P.; Del Rio, Rodrigo; Iturriaga, Rodrigo

    2016-01-01

    Oxidative stress is involved in the development of carotid body (CB) chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−), a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir) in the CB, the CB chemosensory discharge, and arterial blood pressure (BP) in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day) for 7 days. Ebselen (10 mg/kg/day) was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u.), reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz), and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg). Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation. PMID:26798430

  16. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery.

    PubMed

    Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Mitra, Ashim K

    2012-06-01

    Sodium dependent multivitamin transporter (SMVT; product of the SLC5A6 gene) is an important transmembrane protein responsible for translocation of vitamins and other essential cofactors such as biotin, pantothenic acid and lipoic acid. Hydropathy plot (Kyte-Dolittle algorithm) revealed that human SMVT protein consists of 635 amino acids and 12 transmembrane domains with both amino and carboxyl termini oriented towards the cytoplasm. SMVT is expressed in various tissues such as placenta, intestine, brain, liver, lung, kidney, cornea, retina and heart. This transporter displays broad substrate specificity and excellent capacity for utilization in drug delivery. Drug absorption is often limited by the presence of physiological (epithelial tight junctions), biochemical (efflux transporters and enzymatic degradation) and chemical (size, lipophilicity, molecular weight, charge etc.) barriers. These barriers may cause many potential therapeutics to be dropped from the preliminary screening portfolio and subsequent entry into the market. Transporter targeted delivery has become a powerful approach to deliver drugs to target tissues because of the ability of the transporter to translocate the drug to intracellular organelles at a higher rate. This review highlights studies employing SMVT transporter as a target for drug delivery to improve bioavailability and investigate the feasibility of developing SMVT targeted drug delivery systems.

  17. [Potentiation of nitric oxide-dependent activation of soluble guanylate cyclase by levomycetin, tetracycline, and oxolin].

    PubMed

    Shchegolev, A Iu; Sidorova, T A; Severina, I S

    2009-01-01

    The influence of antibiotics laevomycetin and tetracycline and the antivirus agent oxolin on the activity of human platelet soluble guanylate cyclase, the stimulation of the enzyme by NO-donors (sodium nitroprusside (SNP) and spermine nanoate (spermine NONO)) and the combination of spermine NONO and YC-1 was investigated. All preparations used in the concentration range 0,1-10 mM had no effect on the basal activity of guanylate cyclase but potentiated the SNP-induced activation of this enzyme. All preparations used synergistically increased (similar to YC-1) spermine NONO-induced activation of soluble guanylate cyclase. At the same time these compounds did not produce the leftward shift of spermine NONO concentration response curve characteristic for YC-1. Moreover, all compounds used did not influence the leftward shift of spermine NONO concentration response curve obtained in the presence of YC-1. This demonstrated that there was no competition between YC-1 and the drugs for interaction with the enzyme. The revealed regulatory phenomen of laevomycetin, tetracycline and oxolin to increase synergistically NO-dependent activation of soluble guanylate cyclase may cause additional pharmacological effects during prolong treatment by these drugs. This fact is necessary taking into account.

  18. Transition state geometry of driven chemical reactions on time-dependent double-well potentials.

    PubMed

    Junginger, Andrej; Craven, Galen T; Bartsch, Thomas; Revuelta, F; Borondo, F; Benito, R M; Hernandez, Rigoberto

    2016-11-09

    Reaction rates across time-dependent barriers are difficult to define and difficult to obtain using standard transition state theory approaches because of the complexity of the geometry of the dividing surface separating reactants and products. Using perturbation theory (PT) or Lagrangian descriptors (LDs), we can obtain the transition state trajectory and the associated recrossing-free dividing surface. With the latter, we are able to determine the exact reactant population decay and the corresponding rates to benchmark the PT and LD approaches. Specifically, accurate rates are obtained from a local description regarding only direct barrier crossings and to those obtained from a stability analysis of the transition state trajectory. We find that these benchmarks agree with the PT and LD approaches for obtaining recrossing-free dividing surfaces. This result holds not only for the local dynamics in the vicinity of the barrier top, but also for the global dynamics of particles that are quenched at the reactant or product wells after their sojourn over the barrier region. The double-well structure of the potential allows for long-time dynamics related to collisions with the outside walls that lead to long-time returns in the low-friction regime. This additional global dynamics introduces slow-decay pathways that do not result from the local transition across the recrossing-free dividing surface associated with the transition state trajectory, but can be addressed if that structure is augmented by the population transfer of the long-time returns.

  19. Mapping the chemical potential dependence of current-induced spin polarization in a topological insulator

    NASA Astrophysics Data System (ADS)

    Lee, Joon Sue; Richardella, Anthony; Hickey, Danielle Reifsnyder; Mkhoyan, K. Andre; Samarth, Nitin

    2015-10-01

    We report electrical measurements of the current-induced spin polarization of the surface current in topological insulator devices where contributions from bulk and surface conduction can be disentangled by electrical gating. The devices use a ferromagnetic tunnel junction (permalloy/Al 2O3 ) as a spin detector on a back-gated (Bi,Sb ) 2Te3 channel. We observe hysteretic voltage signals as the magnetization of the detector ferromagnet is switched parallel or antiparallel to the spin polarization of the surface current. The amplitude of the detected voltage change is linearly proportional to the applied dc bias current in the (Bi,Sb ) 2Te3 channel. As the chemical potential is tuned from the bulk bands into the surface state band, we observe an enhancement of the spin-dependent voltages up to 300% within the range of the electrostatic gating. Using a simple model, we extract the spin polarization near charge neutrality (i.e., the Dirac point).

  20. An interpretation of potential scale dependence of the effectivematrix diffusion coefficient

    SciTech Connect

    Liu, H.H.; Zhang, Y.Q.; Zhou, Q.; Molz, F.J.

    2005-11-30

    Matrix diffusion is an important process for solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies indicatedthat the effective matrix diffusion coefficient values, obtained from alarge number of field tracer tests, are enhanced in comparison with localvalues and may increase with test scale. In this study, we have performednumerical experiments to investigate potential mechanisms behind possiblescale-dependent behavior. The focus of the experiments is on solutetransport in flow paths having geometries consistent with percolationtheories and characterized by local flow loops formed mainly bysmall-scale fractures. The water velocity distribution through a flowpath was determined using discrete fracture network flow simulations, andsolute transport was calculated using a previously derivedimpulse-response function and a particle-tracking scheme. Values foreffective (or up-scaled) transport parameters were obtained by matchingbreakthrough curves from numerical experiments with an analyticalsolution for solute transport along a single fracture. Results indicatethat a combination of local flow loops and the associated matrixdiffusion process, together with scaling properties in flow pathgeometry, seems to be the dominant mechanism causing the observed scaledependence of theeffective matrix diffusion coefficient (at a range ofscales).

  1. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice.

    PubMed

    Terada, Yuka; Tsubota, Maho; Sugo, Hiiragi; Wakitani, Kohei; Sekiguchi, Fumiko; Wada, Kyoichi; Takada, Mitsutaka; Oita, Akira; Kawabata, Atsufumi

    2017-01-01

    Transient receptor potential vanilloid-1 (TRPV1) expressed in nociceptors is directly phosphorylated and activated by protein kinase C, and involved in the signaling of pancreatic pain. On the other hand, Cav3.2 T-type Ca2+ channels expressed in nociceptors are functionally upregulated by phosphorylation with protein kinase A and also play a role in pancreatitis-related pain. Calcineurin, a phosphatase, negatively regulates various channel functions including TRPV1, and calcineurin inhibitor-induced pain syndrome by tacrolimus, a calcineurin inhibitor, used as an immunosuppressant, has been a clinical problem. We thus examined the effect of tacrolimus on pancreatitis-related pain in mice. Repeated treatment with cerulein caused referred hyperalgesia accompanying acute pancreatitis, which was unaffected by tacrolimus. Pancreatitis-related symptoms disappeared in 24 h, whereas the referred hyperalgesia recurred following the administration of tacrolimus, which was abolished by the blockers of TRPV1 but not T-type Ca2+ channels. Thus, tacrolimus appears to cause the TRPV1-dependent relapse of pancreatitis-related pain, suggesting the involvement of calcineurin in the termination of pancreatic pain.

  2. Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency.

    PubMed

    Oelkers, R; Grosser, K; Lang, E; Geisslinger, G; Kobal, G; Brune, K; Lötsch, J

    1999-06-01

    Visual information is conducted by two parallel pathways (luminance- and contour-processing pathways) which are thought to be differentially affected in migraine and can be investigated by means of pattern-reversal visual evoked potentials (VEPs). Components and habituation of VEPs at four spatial frequencies were compared between 26 migraineurs (13 without aura, MO; 13 with aura, MA) and 28 healthy volunteers. Migraineurs were recorded in the headache-free interval (at least 72 h before and after an attack). Five blocks of 50 responses to chequerboards of 0.5, 1, 2 and 4 cycles per degree (c.p.d.) were sequentially averaged and analysed for latency and amplitude. Differences in VEPs were dependent on spatial frequency. Only when small checks were presented, i.e. at high spatial frequency (2 and 4 c.p.d.), was the latency of N2 significantly prolonged in MA and did it tend to be delayed in MO subjects. Habituation behaviour was not significantly different between groups under the stimulating conditions employed. Prolonged N2 latency might be explained by the lack or attenuation of a contour-specific component N130 in migraineurs, indicating an imbalance of the two visual pathways with relative predominance of the luminance-processing Y system. These results reflect an interictally persisting dysfunction of precortical visual processing which might be relevant in the pathophysiology of migraine.

  3. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  4. Modeling and experiments to explain the potential dependency of an UHSS to hydrogen environment assisted cracking

    NASA Astrophysics Data System (ADS)

    Kehler, Beth A.

    Modern ultra high strength steels have been developed with outstanding combinations of strength and fracture toughness but lack intrinsic corrosion resistance. Such steels are used by the military for aircraft components such as landing gears but require coatings and cathodic protection which can lead to various rates of hydrogen production depending on material, geometry, and electro(chemistry). The susceptibility of such steels to internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) limits their use in marine environments. The objective of this research is to develop the understanding necessary to design coated ultra high strength steels that resist HEE when stressed in marine environments. The cause of HEE is the establishment of high diffusible hydrogen concentrations (CH,diff) at the crack tip. There is a window of applied potentials (Eapplied) where susceptibility to HEE is reduced because CH,diff is reduced. However, Eapplied itself does not yield insight as to the exact conditions at the crack tip. Ohmic potential drop and electrochemical/chemical reactions in the crack can lead to a significantly different environment at the crack tip than on the surface. The issues that hinder understanding of HEE center on the capability to quantify and ultimately predict crack tip hydrogen concentrations (C H,Tip) relative to critical concentrations that trigger fracture as a function of Eapplied. CH,tip was characterized using a multi-pronged approach. Scaling laws were developed to enable measurements of E and pH in a scaled-up crack as a function of the scaling parameter, x2/G and Eapplied . Such measurements were correlated with CH,diff using an experimentally determined hydrogen uptake law based on first order absorption laws and trapping theory. CH,diff values were then used as inputs into existing micromechanical models for KTH and da/dtII to predict cracking susceptibility. The scientific contributions of this work include the

  5. Emission location dependent ozone depletion potentials for very short-lived halogenated species

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Haynes, P. H.; Law, K. S.

    2010-06-01

    We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and season variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from South and South-East Asia during Northern Hemisphere summer and from the Western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with also non-negligible values extending into northern mid-latitudes particularly in the summer. These first estimates, which include some simplifying assumptions, show larger ODP values than previous studies, particularly over Southern Asia, suggesting that emissions of short-lived halogen source gases in certain geographical regions could have a significant impact on stratospheric ozone depletion.

  6. Emission location dependent ozone depletion potentials for very short-lived halogenated species

    NASA Astrophysics Data System (ADS)

    Pisso, I.; Haynes, P. H.; Law, K. S.

    2010-12-01

    We present trajectory-based estimates of Ozone Depletion Potentials (ODPs) for very short-lived halogenated source gases as a function of surface emission location. The ODPs are determined by the fraction of source gas and its degradation products which reach the stratosphere, depending primarily on tropospheric transport and chemistry, and the effect of the resulting reactive halogen in the stratosphere, which is determined by stratospheric transport and chemistry, in particular by stratospheric residence time. Reflecting the different timescales and physico-chemical processes in the troposphere and stratosphere, the estimates are based on calculation of separate ensembles of trajectories for the troposphere and stratosphere. A methodology is described by which information from the two ensembles can be combined to give the ODPs. The ODP estimates for a species with a fixed 20 d lifetime, representing a compound like n-propyl bromide, are presented as an example. The estimated ODPs show strong geographical and seasonal variation, particularly within the tropics. The values of the ODPs are sensitive to the inclusion of a convective parametrization in the trajectory calculations, but the relative spatial and seasonal variation is not. The results imply that ODPs are largest for emissions from south and south-east Asia during Northern Hemisphere summer and from the western Pacific during Northern Hemisphere winter. Large ODPs are also estimated for emissions throughout the tropics with non-negligible values also extending into northern mid-latitudes, particularly in the summer. These first estimates, whilst made under some simplifying assumptions, show larger ODPs for certain emission regions, particularly south Asia in NH summer, than have typically been reported by previous studies which used emissions distributed evenly over land surfaces.

  7. Event-Related Potential Effects of Object Repetition Depend on Attention and Part-Whole Configuration

    PubMed Central

    Gosling, Angela; Thoma, Volker; de Fockert, Jan W.; Richardson-Klavehn, Alan

    2016-01-01

    The effects of spatial attention and part-whole configuration on recognition of repeated objects were investigated with behavioral and event-related potential (ERP) measures. Short-term repetition effects were measured for probe objects as a function of whether a preceding prime object was shown as an intact image or coarsely scrambled (split into two halves) and whether or not it had been attended during the prime display. In line with previous behavioral experiments, priming effects were observed from both intact and split primes for attended objects, but only from intact (repeated same-view) objects when they were unattended. These behavioral results were reflected in ERP waveforms at occipital–temporal locations as more negative-going deflections for repeated items in the time window between 220 and 300 ms after probe onset (N250r). Attended intact images showed generally more enhanced repetition effects than split ones. Unattended images showed repetition effects only when presented in an intact configuration, and this finding was limited to the right-hemisphere electrodes. Repetition effects in earlier (before 200 ms) time windows were limited to attended conditions at occipito-temporal sites during the N1, a component linked to the encoding of object structure, while repetition effects at central locations during the same time window (P150) were found for attended and unattended probes but only when repeated in the same intact configuration. The data indicate that view-generalization is mediated by a combination of analytic (part-based) representations and automatic view-dependent representations. PMID:27721749

  8. Particle in a box with a time-dependent δ -function potential

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Yi, Su Do; Kim, Minjae

    2016-11-01

    In quantum information processing, one often considers inserting a barrier into a box containing a particle to generate one bit of Shannon entropy. We formulate this problem as a one-dimensional Schrödinger equation with a time-dependent δ -function potential. It is a natural generalization of the particle in a box, a canonical example of quantum mechanics, and we present analytic and numerical investigations on this problem. After deriving an exact Volterra-type integral equation, composed of an infinite sum of modes, we show that approximate formulas with the lowest-frequency modes correctly capture the qualitative behavior of the wave function. If we take into account hundreds of modes, our numerical calculation shows that the quantum adiabatic theorem actually gives a very good approximation even if the barrier height diverges within finite time, as long as it is sufficiently longer than the characteristic time scale of the particle. In particular, if the barrier is slowly inserted at an asymmetric position, the particle is localized by the insertion itself, in accordance with a prediction of the adiabatic theorem. On the other hand, when the barrier is inserted quickly, the wave function becomes rugged after the insertion because of the energy transfer to the particle. Regardless of the position of the barrier, the fast insertion leaves the particle unlocalized so that we can obtain meaningful information by a which-side measurement. Our numerical procedure provides a precise way to calculate the wave function throughout the process, from which one can estimate the amount of this information for an arbitrary insertion protocol.

  9. Lipogenic potential of liver from morbidly obese patients with and without non-insulin-dependent diabetes

    SciTech Connect

    Barakat, H.A.; McLendon, V.D.; Carpenter, J.W.; Marks, R.H.; Legett, N.; O'Brien, K.; Caro, J.F. )

    1991-03-01

    Intra-abdominal liver biopsies were obtained during surgery from fasted obese patients with non-insulin-dependent diabetes mellitus (NIDDM), obese normoglycemic controls, and lean controls. Lipid synthesis was studied in freshly isolated hepatocytes and liver homogenates from the three groups of subjects. Incorporation of 3H2O into the lipids of hepatocytes was determined in the absence and presence of insulin (0.1 mumol/L). The activities of five enzymes involved in fatty acid synthesis, and the incorporation of 14C-glycerol-3-phosphate into lipids were determined in liver homogenates. Basal lipid synthesis by hepatocytes was not different in the three groups of patients. Insulin stimulated lipogenesis by 8% +/- 30% in the lean controls, 33% +/- 8% in the obese controls and 17% +/- 6% in the NIDDM patients. No significant differences in the activities of the five enzymes that are involved in de novo fatty acid synthesis among the three groups of patients were observed. Similarly, incorporation of 14C-glycerol-3-phosphate by liver homogenates, in the presence of saturating or submaximal concentrations of fatty acids, did not differ among the three groups. These results show that under the experimental conditions of this study, including the fasted state of the patients, the basal capacity of liver of NIDDM patients to synthesize fatty acids or glycerides is the same as that of liver from obese and lean controls. Thus, it is likely that an increase in fatty acid flux into a liver with normal lipogenic potential may contribute to the increased synthesis of triglycerides by the liver of these patients in vivo.

  10. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons

    PubMed Central

    Watanabe, Shigeo; Hoffman, Dax A.; Migliore, Michele; Johnston, Daniel

    2002-01-01

    We investigated the role of A-type K+ channels for the induction of long-term potentiation (LTP) of Schaffer collateral inputs to hippocampal CA1 pyramidal neurons. When low-amplitude excitatory postsynaptic potentials (EPSPs) were paired with two postsynaptic action potentials in a theta-burst pattern, N-methyl-d-aspartate (NMDA)-receptor-dependent LTP was induced. The amplitudes of the back-propagating action potentials were boosted in the dendrites only when they were coincident with the EPSPs. Mitogen-activated protein kinase (MAPK) inhibitors PD 098059 or U0126 shifted the activation of dendritic K+ channels to more hyperpolarized potentials, reduced the boosting of dendritic action potentials by EPSPs, and suppressed the induction of LTP. These results support the hypothesis that dendritic K+ channels and the boosting of back-propagating action potentials contribute to the induction of LTP in CA1 neurons. PMID:12048251

  11. Temperature-dependence of phonons, solid state properties and liquid structure of noble metals: A comparison of pair-potentials

    NASA Astrophysics Data System (ADS)

    Januszko, A.; Bose, S. K.

    2015-02-01

    Two groups of effective pair-potentials are studied from the viewpoint of their suitability in being able to describe solid state properties and liquid state structure of noble metals Cu, Ag and Au over a wide temperature range. Since the effective pair-potentials are usually empirical in nature, with parameters obtained by fitting to some reference state properties, the objective of the present study is to determine whether a particular parametrization scheme has any definite advantage over another. We consider Morse potentials with parameters determined by equilibrium lattice parameter, cohesive/sublimation energies as well as bulk modulus values of the solid at low/room temperatures. The other group of potentials considered is Erkoç potentials, where the parameters were determined first by studying dimers and further modified using bulk stability condition and bulk cohesive energy values. The potentials were then used to study the energetics of microclusters containing 3-7 atoms. Quasiharmonic results for the solid obtained at different temperatures and Monte Carlo simulation for the liquid state show that phonon spectra, thermal expansion, temperature-dependence of specific heats and liquid structure are much better described by the latter group. The first group of potentials may have an advantage in reproducing the temperature-dependence of elastic constants and bulk moduli, since they are based on room temperature values of these properties, which show only weak temperature-dependence in general for all metals. It is argued that potentials based on parameters fitted to the properties at a single volume are less versatile in capturing the temperature-dependence of various thermodynamic properties over a wide range. Potentials capable of reproducing the energetics of clusters of different co-ordination numbers and volumes per atom may fare better in this regard.

  12. Dilepton production as a useful probe of quark gluon plasma with temperature dependent chemical potential quark mass

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, S. Somorendro

    2016-07-01

    We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.

  13. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition.

    PubMed

    Gambino, Frédéric; Holtmaat, Anthony

    2012-08-09

    Functional maps in the cerebral cortex reorganize in response to changes in experience, but the synaptic underpinnings remain uncertain. Here, we demonstrate that layer (L) 2/3 pyramidal cell synapses in mouse barrel cortex can be potentiated upon pairing of whisker-evoked postsynaptic potentials (PSPs) with action potentials (APs). This spike-timing-dependent long-term potentiation (STD-LTP) was only effective for PSPs evoked by deflections of a whisker in the neuron's receptive field center, and not its surround. Trimming of all except two whiskers rapidly opened the possibility to drive STD-LTP by the spared surround whisker. This facilitated STD-LTP was associated with a strong decrease in the surrounding whisker-evoked inhibitory conductance and partially occluded picrotoxin-mediated LTP facilitation. Taken together, our data demonstrate that sensory deprivation-mediated disinhibition facilitates STD-LTP from the sensory surround, which may promote correlation- and experience-dependent expansion of receptive fields.

  14. Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential

    NASA Astrophysics Data System (ADS)

    Bader, Philipp; Iserles, Arieh; Kropielnicka, Karolina; Singh, Pranav

    2016-09-01

    We build efficient and unitary (hence stable) methods for the solution of the linear time-dependent Schrödinger equation with explicitly time-dependent potentials in a semiclassical regime. The Magnus-Zassenhaus schemes presented here are based on a combination of the Zassenhaus decomposition (Bader et al. 2014 Found. Comput. Math. 14, 689-720. (doi:10.1007/s10208-013-9182-8)) with the Magnus expansion of the time-dependent Hamiltonian. We conclude with numerical experiments.

  15. Potential Dependence of the Conductivity of Highly Oxidized Polythiophenes, Polypyrroles, and Polyaniline: Finite Windows of High Conductivity

    DTIC Science & Technology

    1990-05-16

    protonation/deprotonation mechanism . Conductivity increases by at least 108 upon oxidizing polyani-ine from neutral to maximally conducting, and decreases...reversible, potential dependent changes in conductivity in liquid S02/electrolyte in the apparent absence of a protonation/deprotonation mechanism ...polyaniline is similar in 0.5 M H2SO4 ,1 liquid S02 /electrolyte, and poly(vinyl alchohol )/H 3PO4.nH20.8 However, the positive potential limit in aqueous

  16. A terrain-dependent reference atmosphere determination method for available potential energy calculations

    NASA Technical Reports Server (NTRS)

    Koehler, T. L.

    1986-01-01

    An iterative technique that determines the reference atmosphere which incorporates the effects of uneven surface topography is presented. This method has been successfully applied in several available potential energy studies. An alternative method due to Taylor is also evaluated. While Taylor presented excellent continuous formulations of the available potential energy that include topography, his method for determining the reference atmosphere distributions failed to provide the accuracy needed to produce reliable available potential energy estimates. Since topography has a significant influence on the general circulation, it is important to employ techniques that incorporate its effects in the determination of available potential energy.

  17. Generalized Sturmians in the time-dependent frame: effect of a fullerene confining potential

    NASA Astrophysics Data System (ADS)

    Frapiccini, Ana Laura; Gasaneo, Gustavo; Mitnik, Dario M.

    2017-02-01

    In this work we present a novel implementation of the Generalized Sturmian Functions in the time-dependent frame to numerically solve the time-dependent Schrödinger equation. We study the effect of the confinement of H atom in a fullerene cage for the 1s → 2p resonant transition of the atom interacting with a finite laser pulse, calculating the population of bound states and spectral density.

  18. Context-dependent symbioses and their potential roles in wildlife diseases

    PubMed Central

    Daskin, Joshua H.; Alford, Ross A.

    2012-01-01

    It is well known in ecology, evolution and medicine that both the nature (commensal, parasitic and mutualistic) and outcome (symbiont fitness, survival) of symbiotic interactions are often context-dependent. Less is known about the importance of context-dependence in symbioses involved in wildlife disease. We review variable symbioses, and use the amphibian disease chytridiomycosis to demonstrate how understanding context-dependence can improve the understanding and management of wildlife diseases. In chytridiomycosis, the host–pathogen interaction is context-dependent; it is strongly affected by environmental temperature. Skin bacteria can also modify the interaction; some bacteria reduce amphibians' susceptibility to chytridiomycosis. Augmentation of protective microbes is being considered as a possible management tool, but informed application of bioaugmentation requires understanding of how the interactions between host, beneficial bacteria and pathogen depend upon environmental context. The community-level response of the amphibian skin microbiota to environmental conditions may explain the relatively narrow range of environmental conditions in which past declines have occurred. Environmental context affects virulence and the protection provided by mutualists in other host–pathogen systems, including threatened bats and corals. Increased focus on context-dependence in interactions between wildlife and their symbionts is likely to be crucial to the future investigation and management of emerging diseases of wildlife. PMID:22237907

  19. Existence, uniqueness, and construction of the density-potential mapping in time-dependent density-functional theory.

    PubMed

    Ruggenthaler, Michael; Penz, Markus; van Leeuwen, Robert

    2015-05-27

    In this work we review the mapping from densities to potentials in quantum mechanics, which is the basic building block of time-dependent density-functional theory and the Kohn-Sham construction. We first present detailed conditions such that a mapping from potentials to densities is defined by solving the time-dependent Schrödinger equation. We specifically discuss intricacies connected with the unboundedness of the Hamiltonian and derive the local-force equation. This equation is then used to set up an iterative sequence that determines a potential that generates a specified density via time propagation of an initial state. This fixed-point procedure needs the invertibility of a certain Sturm-Liouville problem, which we discuss for different situations. Based on these considerations we then present a discussion of the famous Runge-Gross theorem which provides a density-potential mapping for time-analytic potentials. Further we give conditions such that the general fixed-point approach is well-defined and converges under certain assumptions. Then the application of such a fixed-point procedure to lattice Hamiltonians is discussed and the numerical realization of the density-potential mapping is shown. We conclude by presenting an extension of the density-potential mapping to include vector-potentials and photons.

  20. Sustained Exocytosis after Action Potential-Like Stimulation at Low Frequencies in Mouse Chromaffin Cells Depends on a Dynamin-Dependent Fast Endocytotic Process

    PubMed Central

    Moya-Díaz, José; Álvarez, Yanina D.; Montenegro, Mauricio; Bayonés, Lucas; Belingheri, Ana V.; González-Jamett, Arlek M.; Cárdenas, Ana M.; Marengo, Fernando D.

    2016-01-01

    Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2–0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies. PMID:27507935

  1. The APP-Interacting Protein FE65 is Required for Hippocampus-Dependent Learning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Wang, Yan; Zhang, Ming; Moon, Changjong; Hu, Qubai; Wang, Baiping; Martin, George; Sun, Zhongsheng; Wang, Hongbing

    2009-01-01

    FE65 is expressed predominantly in the brain and interacts with the C-terminal domain of [beta]-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with isoform-specific FE65 knockout (p97FE65[superscript -/-]) mice. When examined using the Morris water maze,…

  2. Comment on ``Solution of the Schrödinger equation for the time-dependent linear potential''

    NASA Astrophysics Data System (ADS)

    Bekkar, H.; Benamira, F.; Maamache, M.

    2003-07-01

    We present the correct way to obtain the general solution of the Schrödinger equation for a particle in a time-dependent linear potential following the approach used in the paper of Guedes [Phys. Rev. A 63, 034102 (2001)]. In addition, we show that, in this case, the solutions (wave packets) are described by the Airy functions.

  3. INTERACTION POTENTIALS FROM THE VELOCITY DEPENDENCE OF TOTAL ATOM-ATOM SCATTERING CROSS SECTIONS,

    DTIC Science & Technology

    Lennard - Jones potential, the depth of the interatomic potential well, epsilon and the interatomic separation at the zero of potential energy, sigma was obtained from these measurements. From the experimental epsilon and sigma, a theoretical Q(V) was computed using a partial wave analysis. Good agreement with the experimental data was obtained. In this paper, K-Kr and Li-He are discussed which were studied in the ’low’ velocity region and in the ’’high’’ velocity region, respectively. It is shown that epsilon and sigma may be unambiguously

  4. Rate Dependence and Regulation of Action Potential and Calcium Transient in a Canine Cardiac Ventricular Cell Model

    PubMed Central

    Hund, Thomas J.; Rudy, Yoram

    2007-01-01

    Background Computational biology is a powerful tool for elucidating arrhythmogenic mechanisms at the cellular level, where complex interactions between ionic processes determine behavior. A novel theoretical model of the canine ventricular epicardial action potential and calcium cycling was developed and used to investigate ionic mechanisms underlying Ca2+ transient (CaT) and action potential duration (APD) rate dependence. Methods and Results The Ca2+/calmodulin-dependent protein kinase (CaMKII) regulatory pathway was integrated into the model, which included a novel Ca2+-release formulation, Ca2+ subspace, dynamic chloride handling, and formulations for major ion currents based on canine ventricular data. Decreasing pacing cycle length from 8000 to 300 ms shortened APD primarily because of ICa(L) reduction, with additional contributions from Ito1, INaK, and late INa. CaT amplitude increased as cycle length decreased from 8000 to 500 ms. This positive rate–dependent property depended on CaMKII activity. Conclusions CaMKII is an important determinant of the rate dependence of CaT but not of APD, which depends on ion-channel kinetics. The model of CaMKII regulation may serve as a paradigm for modeling effects of other regulatory pathways on cell function. PMID:15505083

  5. The pH dependence of the cathodic peak potential of the active sites in bilirubin oxidase.

    PubMed

    Filip, Jaroslav; Tkac, Jan

    2014-04-01

    This is the first study showing pH dependence of three distinct redox sites within bilirubin oxidase (BOD) adsorbed on a nanocomposite modified electrode. The 1st redox centre with the highest redox potential Ec(1st)=404 mV vs. Ag/AgCl (614 mV vs. NHE at pH7.0) exhibited pH dependence with a slope -dEc(1st)/dpH=66(±3) mV under a non-turnover process. The 2nd redox centre with a potential Ec(2nd)=228 mV vs. Ag/AgCl (438 mV vs. NHE at pH7.0) was not dependent on pH in the absence and presence of O2. Finally, the 3rd redox site with a redox potential Ec(3rd)=92 mV vs. Ag/AgCl (302 mV vs. NHE at pH7.0) exhibited pH dependence for a cathodic process with -dEc(3rd)/dpH=70(±6) mV and for anodic process with -dEa(3rd)/dpH=73(±2) mV, respectively. Moreover, two break points for dependence of Ec(1st) or Ec(3rd) on pH were observed for the 1st (T1) site and the 3rd site assigned to involvement of two acidic amino acids (Asp105 and Glu463). A diagram of a potential difference between cathodic peaks of BOD as a dependence on pH is shown. The results obtained can be of interest for construction of biofuel cells based on BOD such as for generation of a low level of electricity from body fluids.

  6. Entrance Channel Mass Asymmetry Effects in Sub-Barrier Fusion Dynamics by Using Energy Dependent Woods-Saxon Potential

    NASA Astrophysics Data System (ADS)

    Manjeet Singh, Gautam

    2015-12-01

    The present article highlights the inconsistency of static Woods-Saxon potential and the applicability of energy dependent Woods-Saxon potential to explore the fusion dynamics of {}4822Ti+58,60,6428Ni, {}4622Ti+{}6428Ni,{}5022Ti+{}6028Ni, and {}199F+9341Nb reactions leading to formation of different Sn-isotopes via different entrance channels. Theoretical calculations based upon one-dimensional Wong formula obtained by using static Woods-Saxon potential unable to provide proper explanation for sub-barrier fusion enhancement of these projectile-target combinations. However, the predictions of one-dimensional Wong formula based upon energy dependent Woods-Saxon potential model (EDWSP model) accurately describe the observed fusion dynamics of these systems wherein the significantly larger value of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm is required to address the experimental data in whole range of energy. Therefore, the energy dependence in nucleus-nucleus potential simulates the influence of the nuclear structure degrees of freedom of the colliding pairs. Supported by Dr. D.S. Kothari Post-Doctoral Fellowship Scheme sponsored by University Grants Commission (UGC), New Delhi, India

  7. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism

    PubMed Central

    Alhallak, Kinan; Rebello, Lisa G.; Muldoon, Timothy J.; Quinn, Kyle P.; Rajaram, Narasimhan

    2016-01-01

    The development of prognostic indicators of breast cancer metastatic risk could reduce the number of patients receiving chemotherapy for tumors with low metastatic potential. Recent evidence points to a critical role for cell metabolism in driving breast cancer metastasis. Endogenous fluorescence intensity of nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) can provide a label-free method for assessing cell metabolism. We report the optical redox ratio of FAD/(FAD + NADH) of four isogenic triple-negative breast cancer cell lines with varying metastatic potential. Under normoxic conditions, the redox ratio increases with increasing metastatic potential (168FARN>4T07>4T1), indicating a shift to more oxidative metabolism in cells capable of metastasis. Reoxygenation following acute hypoxia increased the redox ratio by 43 ± 9% and 33 ± 4% in the 4T1 and 4T07 cells, respectively; in contrast, the redox ratio decreased 14 ± 7% in the non-metastatic 67NR cell line. These results demonstrate that the optical redox ratio is sensitive to the metabolic adaptability of breast cancer cells with high metastatic potential and could potentially be used to measure dynamic functional changes that are indicative of invasive or metastatic potential. PMID:27895979

  8. Theoretical approach for optical response in electrochemical systems: Application to electrode potential dependence of surface-enhanced Raman scattering

    SciTech Connect

    Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki

    2014-09-28

    We propose a theoretical approach for optical response in electrochemical systems. The fundamental equation to be solved is based on a time-dependent density functional theory in real-time and real-space in combination with its finite temperature formula treating an electrode potential. Solvation effects are evaluated by a dielectric continuum theory. The approach allows us to treat optical response in electrochemical systems at the atomistic level of theory. We have applied the method to surface-enhanced Raman scattering (SERS) of 4-mercaptopyridine on an Ag electrode surface. It is shown that the SERS intensity has a peak as a function of the electrode potential. Furthermore, the real-space computational approach facilitates visualization of variation of the SERS intensity depending on an electrode potential.

  9. Potential dependence of cuprous/cupric duplex film growth on copper electrode in alkaline media

    NASA Astrophysics Data System (ADS)

    He, Jian-Bo; Lu, Dao-Yong; Jin, Guan-Ping

    2006-11-01

    The duplex oxide film potentiostatically formed on copper in concentrated alkaline media has been investigated by XRD, XPS, negative-going voltammetry and cathodic chronopotentiometry. The interfacial capacity was also measured using fast triangular voltage method under quasi-stationary condition. The obvious differences in the thickness, composition, passivation degree and capacitance behavior were observed between the duplex film formed in lower potential region (-0.13 to 0.18 V versus Hg|HgO electrode with the same solution as the electrolyte) and that formed in higher potential region (0.18-0.60 V). Cuprous oxides could be formed and exist stably in the inner layer in the both potential regions, and three cupric species, soluble ions and Cu(OH) 2 and CuO, could be independently produced from the direct oxidation of metal copper, as indicated by three pairs of redox voltammetric peaks. One of the oxidation peaks appeared only after the scan was reversed from high potential and could be attributed to CuO formation upon the pre-accumulation of O 2- ions within the film under high anodic potentials. A new mechanism for the film growth on the investigated time scale from 1 to 30 min is proposed, that is, the growth of the duplex film in the lower potential region takes place at the film|solution interface to form a thick Cu(OH) 2 outer layer by field-assisted transfer of Cu 2+ ions through the film to solution, whereas the film in the higher potential region grows depressingly and slowly at the metal|film interface to form Cu 2O and less CuO by the transfer of O 2- ions through the film to electrode.

  10. Vibrational dependence of the anisotropic intermolecular potential of Ar-HF

    NASA Astrophysics Data System (ADS)

    Hutson, Jeremy M.

    1992-05-01

    A new intermolecular potential for Ar-HF is obtained by fitting to results from high-resolution microwave, far-infrared, and infrared spectroscopy. The new potential, designated H6(4,3,2), is a function of the diatom mass-reduced vibrational quantum number η=(v+ (1)/(2) )/(μHX)1/2 as well as the intermolecular distance R and angle θ, and has 22 adjustable parameters. It reproduces all the available spectroscopic data for levels of Ar-HF correlating with HF, v=0, 1, and 2, and DF, v=0 and 1. The H6(4,3,2) potential is qualitatively similar to previous potentials, with a linear Ar-H-F equilibrium geometry and a secondary minimum at the linear Ar-F-H geometry. Compared to the potential of Nesbitt et al. [J. Chem. Phys. 90, 4855 (1989)], obtained from spectra of Ar-HF (v=1), the H6(4,3,2) potential is rather deeper near the equilibrium geometry (Ar-H-F), but shallower around the secondary minimum (Ar-F-H). The absolute well depth increases by 19 cm-1 between HF v=0 and v=1. The vibrationally averaged induction energy is calculated to be substantially (8.1 cm-1 ) greater for v=1 than for v=0, and is responsible for most of the observed red shift in the complex. Predictions of additional spectroscopic properties that would test the new potential are given, including far-infrared and overtone spectra of Ar-DF and dipole moments of excited states of Ar-HF and Ar-DF.

  11. Pulsed magnetic stimulation modifies amplitude of action potentials in vitro via ionic channels-dependent mechanism.

    PubMed

    Ahmed, Zaghloul; Wieraszko, Andrzej

    2015-07-01

    This paper investigates the influence of pulsed magnetic fields (PMFs) on amplitude of evoked, compound action potential (CAP) recorded from the segments of sciatic nerve in vitro. PMFs were applied for 30 min at frequency of 0.16 Hz and intensity of 15 mT. In confirmation of our previous reports, PMF exposure enhanced amplitude of CAPs. The effect persisted beyond PMF activation period. As expected, CAP amplitude was attenuated by antagonists of sodium channel, lidocaine, and tetrodotoxin. Depression of the potential by sodium channels antagonists was reversed by subsequent exposure to PMFs. The effect of elevated potassium concentration and veratridine on the action potential was modified by exposure to PMFs as well. Neither inhibitors of protein kinase C and protein kinase A, nor known free radicals scavengers had any effects on PMF action. Possible mechanisms of PMF action are discussed.

  12. [Regulation of potential-dependant calcium channels by 5-HT1B serotonin receptors in various populations of hippocampal cells].

    PubMed

    Kononov, A V; Ivanov, S V; Zinchenko, V P

    2013-01-01

    Metabotropic serotonin receptors of 5HT1-type in brain neurons participate in regulation of such human emotional states as aggression, fear and dependence on alcohol. Activated presynaptic 5-HT1B receptors suppress the Ca2+ influx through the potential-dependent calcium channels in certain neurons. The Ca2+ influx into the cells has been measured by increase of calcium ions concentration in cytoplasm in reply to the depolarization caused by 35mM KC1. Using system of image analysis in hippocampal cells culture we found out that Ca2+-signals to depolarization oin various populations of neurons differed in form, speed and amplitude. 5HT1B receptor agonists in 86 +/- 3 % of neurons slightly suppressed the activity of potential-dependent calcium channels. Two minor cell populations (5-8 % of cells each) were found out, that strongly differed in Ca2+ signal desensitization. Calcium signal caused by depolarization in one cells population differed in characteristic delay and high rate of decay. 5HT1B receptor agonists strongly inhibited the amplitude of the Ca2+ response on KCl only in this population of neurons. The calcium signal in second cell population differed by absence desensitization and smaller amplitude which constantly increased during depolarization. 5HT 1 B receptor agonists increased the calcium response amplitude to depolarization in this population of neurons. Thus we show various sensitivity of potential-dependent calcium channels of separate neurons to 5HTB1 receptor agonist.

  13. Current and Potential Pharmacological Treatment Options for Maintenance Therapy in Opioid-Dependent Individuals

    PubMed Central

    Tetrault, Jeanette M.; Fiellin, David A.

    2013-01-01

    Opioid dependence, manifesting as addiction to heroin and pharmaceutical opioids is increasing. Internationally, there are an estimated 15.6 million illicit opioid users. The global economic burden of opioid dependence is profound both in terms of HIV and hepatitis C virus transmission, direct healthcare costs, and indirectly through criminal activity, absenteeism and lost productivity. Opioid agonist medications, such as methadone and buprenorphine, that stabilize neuronal systems and provide narcotic blockade are the most effective treatments. Prolonged provision of these medications, defined as maintenance treatment, typically produces improved outcomes when compared with short-duration tapers and withdrawal. The benefits of opioid agonist maintenance include decreased illicit drug use, improved retention in treatment, decreased HIV risk behaviours and decreased criminal behaviour. While regulations vary by country, these medications are becoming increasingly available internationally, especially in regions experiencing rapid transmission of HIV due to injection drug use. In this review, we describe the rationale for maintenance treatment of opioid dependence, discuss emerging uses of opioid antagonists such as naltrexone, and sustained-release formulations of naltrexone and buprenorphine, and provide a description of the experimental therapies. PMID:22235870

  14. Corticosterone time-dependently modulates β-adrenergic effects on long-term potentiation in the hippocampal dentate gyrus

    PubMed Central

    Pu, Zhenwei; Krugers, Harm J.; Joëls, Marian

    2007-01-01

    Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on LTP depending on the timing of hormone application in the dentate gyrus as well. Moreover, we tested rapid and delayed actions by corticosterone on β-adrenergic-dependent changes in LTP. Unlike the CA1 region, our in vitro field potential recordings show that rapid effects of corticosterone do not influence LTP induced by mild tetanization in the hippocampal dentate gyrus, unless GABAA receptors are blocked. In contrast, the β-adrenergic agonist isoproterenol does initiate a slow-onset, limited amount of potentiation. When corticosterone was applied concurrently with isoproterenol, a further enhancement of synaptic strength was identified, especially during the early stage of potentiation. Yet, treatment with corticosterone several hours in advance of isoproterenol fully prevented any effect of isoproterenol on LTP. This emphasizes that corticosterone can regulate β-adrenergic modulation of synaptic plasticity in opposite directions, depending on the timing of hormone application. PMID:17522027

  15. Molecular wave function and effective adiabatic potentials calculated by extended multi-configuration time-dependent Hartree-Fock method

    SciTech Connect

    Kato, Tsuyoshi; Ide, Yoshihiro; Yamanouchi, Kaoru

    2015-12-31

    We first calculate the ground-state molecular wave function of 1D model H{sub 2} molecule by solving the coupled equations of motion formulated in the extended multi-configuration time-dependent Hartree-Fock (MCTDHF) method by the imaginary time propagation. From the comparisons with the results obtained by the Born-Huang (BH) expansion method as well as with the exact wave function, we observe that the memory size required in the extended MCTDHF method is about two orders of magnitude smaller than in the BH expansion method to achieve the same accuracy for the total energy. Second, in order to provide a theoretical means to understand dynamical behavior of the wave function, we propose to define effective adiabatic potential functions and compare them with the conventional adiabatic electronic potentials, although the notion of the adiabatic potentials is not used in the extended MCTDHF approach. From the comparison, we conclude that by calculating the effective potentials we may be able to predict the energy differences among electronic states even for a time-dependent system, e.g., time-dependent excitation energies, which would be difficult to be estimated within the BH expansion approach.

  16. LIFE-STAGE DEPENDENT DOSIMETRY AND POTENTIAL IMPACTS ON RISK ASSESSMENT APPROACHES

    EPA Science Inventory

    Increasingly reproductive and developmental toxicity studies are utilized in assessing the potential for adverse affects in pregnant women, nursing infants, and children. These studies largely have been utilized based upon the dose to the mother due to the complexity of describi...

  17. The Potential Energy Density in Transverse String Waves Depends Critically on Longitudinal Motion

    ERIC Educational Resources Information Center

    Rowland, David R.

    2011-01-01

    The question of the correct formula for the potential energy density in transverse waves on a taut string continues to attract attention (e.g. Burko 2010 "Eur. J. Phys." 31 L71), and at least three different formulae can be found in the literature, with the classic text by Morse and Feshbach ("Methods of Theoretical Physics" pp 126-127) stating…

  18. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.

    PubMed

    Covey, Dan P; Bunner, Kendra D; Schuweiler, Douglas R; Cheer, Joseph F; Garris, Paul A

    2016-06-01

    The reinforcing effects of abused drugs are mediated by their ability to elevate nucleus accumbens dopamine. Amphetamine (AMPH) was historically thought to increase dopamine by an action potential-independent, non-exocytotic type of release called efflux, involving reversal of dopamine transporter function and driven by vesicular dopamine depletion. Growing evidence suggests that AMPH also acts by an action potential-dependent mechanism. Indeed, fast-scan cyclic voltammetry demonstrates that AMPH activates dopamine transients, reward-related phasic signals generated by burst firing of dopamine neurons and dependent on intact vesicular dopamine. Not established for AMPH but indicating a shared mechanism, endocannabinoids facilitate this activation of dopamine transients by broad classes of abused drugs. Here, using fast-scan cyclic voltammetry coupled to pharmacological manipulations in awake rats, we investigated the action potential and endocannabinoid dependence of AMPH-induced elevations in nucleus accumbens dopamine. AMPH increased the frequency, amplitude and duration of transients, which were observed riding on top of slower dopamine increases. Surprisingly, silencing dopamine neuron firing abolished all AMPH-induced dopamine elevations, identifying an action potential-dependent origin. Blocking cannabinoid type 1 receptors prevented AMPH from increasing transient frequency, similar to reported effects on other abused drugs, but not from increasing transient duration and inhibiting dopamine uptake. Thus, AMPH elevates nucleus accumbens dopamine by eliciting transients via cannabinoid type 1 receptors and promoting the summation of temporally coincident transients, made more numerous, larger and wider by AMPH. Collectively, these findings are inconsistent with AMPH eliciting action potential-independent dopamine efflux and vesicular dopamine depletion, and support endocannabinoids facilitating phasic dopamine signalling as a common action in drug reinforcement.

  19. Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations.

    PubMed

    Bárándi, László; Virág, László; Jost, Norbert; Horváth, Zoltán; Koncz, István; Papp, Rita; Harmati, Gábor; Horváth, Balázs; Szentandrássy, Norbert; Bányász, Tamás; Magyar, János; Zaza, Antonio; Varró, András; Nánási, Péter P

    2010-05-01

    Class III antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD). In spite of the several theories developed so far to explain this reverse rate-dependency (RRD), its mechanism has not yet been clarified. The aim of the present work was to further elucidate the mechanisms responsible for RRD in mammalian ventricular myocardium. Action potentials were recorded using conventional sharp microelectrodes from human, canine, rabbit and guinea pig ventricular myocardium in a rate-dependent manner varying the cycle length (CL) between 0.3 and 5 s. Rate-dependent drug effects were studied using agents known to lengthen or shorten action potentials, and these drug-induced changes in APD were correlated with baseline APD values. Both drug-induced lengthening (by dofetilide, sotalol, E-4031, BaCl(2), veratrine, BAY K 8644) and shortening (by mexiletine, tetrodotoxin, lemakalim) of action potentials displayed RRD, i.e., changes in APD were greater at longer than at shorter CLs. In rabbit, where APD is a biphasic function of CL, the drug-induced APD changes were proportional to baseline APD values but not to CL. Similar results were obtained when repolarization was modified by injection of inward or outward current pulses in isolated canine cardiomyocytes. In each case the change in APD was proportional to baseline APD (i.e., that measured before the superfusion of drug or injection of current). Also, the net membrane current (I (net)), determined from the action potential waveform at the middle of the plateau, was inversely proportional to APD and consequently with to CL. The results indicate that RRD is a common characteristic of all the drugs tested regardless of the modified ion current species. Thus, drug-induced RRD can be considered as an intrinsic property of cardiac membranes based on the inverse relationship between I (net) and APD.

  20. Contribution of Ca2+-dependent conductances to membrane potential fluctuations of medullary respiratory neurons of newborn rats in vitro.

    PubMed

    Onimaru, Hiroshi; Ballanyi, Klaus; Homma, Ikuo

    2003-11-01

    Ca2+-dependent conductances were studied in respiratory interneurons in the brainstem-spinal cord preparation of newborn rats. omega-Conotoxin-GVIA attenuated evoked postsynaptic potentials, spontaneous or evoked inspiratory spinal nerve activity and blocked spike afterhyperpolarization. Furthermore, omega-conotoxin-GVIA augmented rhythmic drive potentials of pre-inspiratory and inspiratory neurons and increased respiratory-related spike frequency of pre-inspiratory cells with no effect on inspiratory hyperpolarization. In contrast, omega-agatoxin-IVA depressed drive potentials of pre-inspiratory and inspiratory neurons and attenuated inspiratory hyperpolarization and spike frequency of pre-inspiratory cells. It did not affect spike shape and exerted only minor, non-significant, attenuating effects on spontaneous or evoked nerve bursts or evoked postsynaptic potentials. Nifedipine diminished drive potentials and spike frequency of pre-inspiratory neurons and shortened drive potentials in some cells. omega-Conotoxin-MVIIC attenuated drive potentials and intraburst firing rate of pre-inspiratory neurons and decreased substantially respiratory frequency. Respiratory rhythm disappeared following combined application of omega-conotoxin-GVIA, omega-conotoxin-MVIIC, omega-agatoxin-IVA and nifedipine. Apamin potentiated drive potentials and abolished spike afterhyperpolarization, whereas charybdotoxin and tetraethylammonium prolonged spike duration without effect on shape of drive potentials. The results show that specific sets of voltage-activated L-, N- and P/Q-type Ca2+ channels determine the activity of particular subclasses of neonatal respiratory neurons, whereas SK- and BK-type K+ channels attenuate drive potentials and shorten spikes, respectively, independent of cell type. We hypothesize that modulation of spontaneous activity of pre-inspiratory neurons via N-, L- and P/Q-type Ca2+ channels is important for respiratory rhythm or pattern generation.

  1. Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning

    PubMed Central

    Baudry, Michel; Zhu, Guoqi; Liu, Yan; Wang, Yubin; Briz, Victor; Bi, Xiaoning

    2015-01-01

    Since its discovery by Bliss and Lomo, the phenomenon of long-term potentiation (LTP) has been extensively studied, as it was viewed as a potential cellular mechanism of learning and memory. Over the years, many signaling cascades have been implicated in its induction, consolidation and maintenance, raising questions regarding its real significance. Here, we review several of the most commonly studies signaling cascades and discuss how they converge on a common set of mechanisms likely to be involved in the maintenance of LTP. We further argue that the existence of cross-talks between these different signaling cascades can not only account for several discrepancies in the literature, but also account for the existence of different forms of LTP, which can be engaged by different types of stimulus parameters under different experimental conditions. Finally, we discuss how the understanding of the diversity of LTP mechanisms can help us understand the diversity of the types of learning and memory. PMID:25482663

  2. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    PubMed Central

    Rivera-Acevedo, Ricardo E.; Pless, Stephan A.; Schwarz, Stephan K.W.; Ahern, Christopher A.

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing a pathway for large and otherwise relatively impermeant molecules. Further, we have shown recently that these nonselective cation channels, when activated by capsaicin, are potently and reversibly blocked by external application of quaternary ammonium compounds and local anesthetics. Here we describe a novel phenomenon in transient receptor potential channel pharmacology whereby their expression levels in Xenopus laevis oocytes, as assessed by the magnitude of macroscopic currents, are negatively correlated with extracellular blocker affinity: small current densities give rise to nanomolar blockade by quaternary ammoniums and this affinity decreases linearly as current density increases. Possible mechanisms to explain these data are discussed in light of similar observations in other channels and receptors. PMID:23428812

  3. Indications for acceleration-dependent changes of membrane potential in the flagellate Euglena gracilis.

    PubMed

    Richter, P R; Schuster, M; Meyer, I; Lebert, M; Häder, D-P

    2006-12-01

    The effects of the calcium sequester EGTA on gravitactic orientation and membrane potential changes in the unicellular flagellate Euglena gracilis were investigated during a recent parabolic-flight experiment aboard of an Airbus A300. In the course of a flight parabola, an acceleration profile is achieved which yields subsequently about 20 s of hypergravity (1.8 g(n)), about 20 s of microgravity, and another 20 s of hypergravity phases. The movement behavior of the cells was investigated with real-time, computer-based image analysis. Membrane potential changes were detected with a newly developed photometer which measures absorption changes of the membrane potential-sensitive probe oxonol VI. To test whether the data obtained by the oxonol device were reliable, the signal of non-oxonol-labelled cells was recorded. In these samples, no absorption shift was detected. Changes of the oxonol VI signals indicate that the cells depolarize during acceleration (very obvious in the step from microgravity to hypergravity) and slightly hyperpolarize in microgravity, which can possibly be explained with the action of Ca-ATPases. These signals (mainly the depolarization) were significantly suppressed in the presence of EGTA (5 mM). Gravitaxis in parallel was also inhibited after addition of EGTA. Initially, negative gravitaxis was inverted into a positive one. Later, gravitaxis was almost undetectable.

  4. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis

    PubMed Central

    Yamauchi, Yoshio; Yokoyama, Shinji; Chang, Ta-Yuan

    2016-01-01

    Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway. PMID:26497474

  5. Role of energy dependent interaction potential in sub-barrier fusion of S2814i +Z9040r system

    NASA Astrophysics Data System (ADS)

    Gautam, Manjeet Singh; Sharma, Manoj K.

    2015-08-01

    We have analyzed the importance of the inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of S2814i +Z9040r system by using the energy dependent Woods-Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei seem to impart significant contribution. The coupling between relative motion of reactants and these relevant channels in turn produce anomalously large sub-barrier fusion enhancement over the expectations of one dimensional barrier penetration model. Furthermore, the effects of coupling to inelastic surface excitations are imitated due to energy dependence in the Woods-Saxon potential. In EDWSP model calculations, a wide range of diffuseness parameter much larger than the elastic scattering predictions is needed to account the observed fusion enhancement in the close vicinity of Coulomb barrier.

  6. Summary Report: Workshop on the Potential Risks of Antibody-Dependent Enhancement in Human HIV Vaccine Trials

    DTIC Science & Technology

    1993-01-01

    Gidlund M , Chiodi F, et al.: Enhancement of human of gag genes from 70 international HIV- I isolates provides evi- immunodeficiency virus (HIV...Workshop on the Potential Risks of Antibody-Dependent Enhancement in Human HIV Vaccine Trials JOHN R. MASCOLA,’ BONNIE J. MATHIESON, 2 PHILIP M . ZACK...monocyte/macrophage ( M / M ) cells is the pathophysiological Army Institute of Research and was hosted by the Health Sciences mechanism for enhanced disease

  7. Genes and molecules that can potentiate or attenuate psychostimulant dependence: relevance of data from animal models to human addiction.

    PubMed

    Niwa, Minae; Yan, Yijin; Nabeshima, Toshitaka

    2008-10-01

    Recent evidence suggests that a variety of molecule products play critical roles in the transitions from recreational drug use to drug abuse, and then to drug dependence. Elucidation of the roles of specific molecules in the development of drug dependence can come from preclinical animal models and/or from clinical data. Among animal models, behavioral sensitization, conditioned place preference, drug discrimination, drug self-administration, and extensions of these basic procedures have been widely used to identify molecule products that might be involved in psychostimulant dependence. Repeated exposure to psychostimulants causes cellular adaptations in specific neuronal populations that are likely to contribute to dependence in some humans. In animal models, molecules that include shati, piccolo, tumor necrosis factor-alpha, and glial cell line-derived neurotrophic factor can act as antiaddictive factors. In some of these models, other molecules including matrix metalloproteinase and tissue plasminogen activator can act as proaddictive factors. We review evidence that the balance between levels of anti- and proaddictive factors induced by addictive drugs could play important roles in developing drug dependence. We focus on potential risk molecules in animal models for the development of methamphetamine dependence and their relevance to abusers. We propose that dynamic changes in the balance between levels of antiaddictive and proaddictive factors in the brain provide some of the determinants of susceptibility to drug dependence. Exploration of the roles that candidate molecules play in an appropriate repertoire of animal behavioral models, especially drug self-administration and extensions thereof, should thus help us to understand human stimulant dependence.

  8. Pattern-dependent Role of NMDA receptors in Action Potential Generation: Consequences on ERK Activation

    PubMed Central

    Zhao, Meilan; Adams, J. Paige

    2005-01-01

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular-signal regulated kinases 1 and 2 (ERKs) with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs, and ERK activation, could be overcome with the addition of the GABA-A antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to APV, in contrast to that induced with 5 Hz or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation. PMID:16049179

  9. Sex-dependent behavioral effects of Mthfr deficiency and neonatal GABA potentiation in mice.

    PubMed

    Levav-Rabkin, Tamar; Blumkin, Elinor; Galron, Dalia; Golan, Hava M

    2011-01-20

    The methylenetetrahydrofolate reductase (Mthfr) gene and/or abnormal homocysteine-folate metabolism are associated with increased risk for birth defects and neuropsychiatric diseases. In addition, disturbances of the GABAergic system in the brain as well as Mthfr polymorphism are associated with neurodevelopmental disorders such as schizophrenia and autism. In the present study we performed behavioral phenotyping of male and female Mthfr mice (wild type and their heterozygous littermates). The present study addresses two main questions: (1) genetic susceptibility, as examined by effects of Mthfr deficiency on behavior (Experiment 1) and (2) possible gene-drug interactions as expressed by behavioral phenotyping of Mthfr-deficient mice neonatally exposed to the GABA potentiating drug GVG (Experiment 2). Newborn development was slightly influenced by Mthfr genotype per se (Experiment 1); however the gene-drug interaction similarly affected reflex development in both male and female offspring (Experiment 2). Hyperactivity was demonstrated in Mthfr heterozygous male mice (Experiment 1) and due to GVG treatment in both Wt and Mthfr+/- male and female mice (Experiment 2). The gene-environment interaction did not affect anxiety-related behavior of male mice (Experiment 2). In female mice, gene-treatment interactions abolished the reduced anxiety observed due to GVG treatment and Mthfr genotype (Experiment 2). Finally, recognition memory of adult mice was impaired due to genotype, treatment and the gene-treatment combination in a sex-independent manner (Experiment 2). Overall, Mthfr deficiency and/or GABA potentiation differentially affect a spectrum of behaviors in male and female mice. This study is the first to describe behavioral phenotypes due to Mthfr genotype, GVG treatment and the interaction between these two factors. The behavioral outcomes suggest that Mthfr deficiency modulates the effects of GABA potentiating drugs. These findings suggest that future treatment

  10. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.

    PubMed

    Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  11. Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport

    SciTech Connect

    Xie, Hang Kwok, Yanho; Chen, GuanHua; Jiang, Feng; Zheng, Xiao

    2014-10-28

    Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.

  12. Nonlinear pressure dependence of the interaction potential of dense protein solutions.

    PubMed

    Schroer, Martin A; Markgraf, Jonas; Wieland, D C Florian; Sahle, Christoph J; Möller, Johannes; Paulus, Michael; Tolan, Metin; Winter, Roland

    2011-04-29

    The influence of pressure on the structure and protein-protein interaction potential of dense protein solutions was studied and analyzed using small-angle x-ray scattering in combination with a liquid state theoretical approach. The structural as well as the interaction parameters of dense lysozyme solutions are affected by pressure in a nonlinear way. The structural properties of water lead to a modification of the protein-protein interactions below 4 kbar, which might have significant consequences for the stability of proteins in extreme natural environments.

  13. Chemomimetic biocatalysis: exploiting the synthetic potential of cofactor-dependent enzymes to create new catalysts.

    PubMed

    Prier, Christopher K; Arnold, Frances H

    2015-11-11

    Despite the astonishing breadth of enzymes in nature, no enzymes are known for many of the valuable catalytic transformations discovered by chemists. Recent work in enzyme design and evolution, however, gives us good reason to think that this will change. We describe a chemomimetic biocatalysis approach that draws from small-molecule catalysis and synthetic chemistry, enzymology, and molecular evolution to discover or create enzymes with non-natural reactivities. We illustrate how cofactor-dependent enzymes can be exploited to promote reactions first established with related chemical catalysts. The cofactors can be biological, or they can be non-biological to further expand catalytic possibilities. The ability of enzymes to amplify and precisely control the reactivity of their cofactors together with the ability to optimize non-natural reactivity by directed evolution promises to yield exceptional catalysts for challenging transformations that have no biological counterparts.

  14. Sublattice dependent magnetic response of dual Cr doped graphene monolayer: a full potential approach

    NASA Astrophysics Data System (ADS)

    Thakur, Jyoti; Kashyap, Manish K.; Taya, Ankur; Rani, Priti; Saini, Hardev S.

    2017-01-01

    In the present scenario, many researchers are exploring the possibility of inducing a magnetic channel in graphene by introducing various types of defects. To examine the Cr-Cr interactions in dual Cr doped graphene monolayer for magnetic response and spin polarization, the first-principles density functional theory based calculations are performed. Further, the possibility of achieving 100 % spin polarization in various possible configurations of dual Cr-doping have been explored. Dual doping of Cr atoms in graphene monolayer preferring ferromagnetic ordering, generates a spin magnetic state with a local moment of 4.00 µB. Depending upon the relative position of two Cr impurities in graphene, the ground states of doped systems are found be ferromagnetic, antiferromagnetic or paramagnetic. The origin of particular magnetic state observed in all possible dual Cr-doping configurations has been explained on the basis of RKKY indirect exchange interactions.

  15. Labile iron potentiates ascorbate-dependent reduction and mobilization of ferritin iron.

    PubMed

    Badu-Boateng, Charles; Pardalaki, Sofia; Wolf, Claude; Lajnef, Sonia; Peyrot, Fabienne; Naftalin, Richard J

    2017-03-21

    Ascorbate mobilizes iron from equine spleen ferritin by two separate processes. Ascorbate alone mobilizes ferritin iron with an apparent Km (ascorbate) ≈1.5mM. Labile iron >2μM, complexed with citrate (10mM), synergises ascorbate-dependent iron mobilization by decreasing the apparent Km (ascorbate) to ≈270μM and raising maximal mobilization rate by ≈5-fold. Catalase reduces the apparent Km(ascorbate) for both ascorbate and ascorbate+iron dependent mobilization by ≈80%. Iron mobilization by ascorbate alone has a higher activation energy (Ea=45.0±5.5kJ/mole) than when mediated by ascorbate with labile iron (10μM) (Ea=13.7±2.2kJ/mole); also mobilization by iron-ascorbate has a three-fold higher pH sensitivity (pH range 6.0-8.0) than with ascorbate alone. Hydrogen peroxide inhibits ascorbate's iron mobilizing action. EPR and autochemiluminescence studies show that ascorbate and labile iron within ferritin enhances radical formation, whereas ascorbate alone produces negligible radicals. These findings suggest that iron catalysed single electron transfer reactions from ascorbate, involving ascorbate or superoxide and possibly ferroxidase tyrosine radicals, accelerate iron mobilization from the ferroxidase centre more than EPR silent, bi-dentate two-electron transfers. These differing modes of electron transference from ascorbate mirror the known mono and bidentate oxidation reactions of dioxygen and hydrogen peroxide with di-ferrous iron at the ferroxidase centre. This study implies that labile iron, at physiological pH, complexed with citrate, synergises iron mobilization from ferritin by ascorbate (50-4000μM). This autocatalytic process can exacerbate oxidative stress in ferritin-containing inflamed tissue.

  16. Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential.

    PubMed

    Schirawski, J; Unden, G

    1998-10-01

    Succinate dehydrogenases from bacteria and archaea using menaquinone (MK) as an electron acceptor (succinate/menaquinone oxidoreductases) contain, or are predicted to contain, two heme-B groups in the membrane-anchoring protein(s), located close to opposite sides of the membrane. All succinate/ubiquinone oxidoreductases, however, contain only one heme-B molecule. In Bacillus subtilis and other bacteria that use MK as the respiratory quinone, the succinate oxidase activity (succinate-->O2), and the succinate/menaquinone oxidoreductase activity were specifically inhibited by uncoupler (CCCP, carbonyl cyanide m-chlorophenylhydrazone) or by agents dissipating the membrane potential (valinomycin). Other parts of the respiratory chains were not affected by the agents. Succinate oxidase or succinate/ubiquinone oxidoreductase from bacteria using ubiquinone as an acceptor were not inhibited. We propose that the endergonic electron transport from succinate (Eo' = +30 mV) to MK (Eo' approximately/= -80 mV) in succinate/menaquinone oxidoreductase includes a reversed electron transport across the cytoplasmic membrane from the inner (negative) to the outer (positive) side via the two heme-B groups. The reversed electron transport is driven by the proton or electrical potential, which provides the driving force for MK reduction.

  17. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness.

    PubMed

    Carvalheiro, Luísa Gigante; Biesmeijer, Jacobus Christiaan; Benadi, Gita; Fründ, Jochen; Stang, Martina; Bartomeus, Ignasi; Kaiser-Bunbury, Christopher N; Baude, Mathilde; Gomes, Sofia I F; Merckx, Vincent; Baldock, Katherine C R; Bennett, Andrew T D; Boada, Ruth; Bommarco, Riccardo; Cartar, Ralph; Chacoff, Natacha; Dänhardt, Juliana; Dicks, Lynn V; Dormann, Carsten F; Ekroos, Johan; Henson, Kate S E; Holzschuh, Andrea; Junker, Robert R; Lopezaraiza-Mikel, Martha; Memmott, Jane; Montero-Castaño, Ana; Nelson, Isabel L; Petanidou, Theodora; Power, Eileen F; Rundlöf, Maj; Smith, Henrik G; Stout, Jane C; Temitope, Kehinde; Tscharntke, Teja; Tscheulin, Thomas; Vilà, Montserrat; Kunin, William E

    2014-11-01

    Co-flowering plant species commonly share flower visitors, and thus have the potential to influence each other's pollination. In this study we analysed 750 quantitative plant-pollinator networks from 28 studies representing diverse biomes worldwide. We show that the potential for one plant species to influence another indirectly via shared pollinators was greater for plants whose resources were more abundant (higher floral unit number and nectar sugar content) and more accessible. The potential indirect influence was also stronger between phylogenetically closer plant species and was independent of plant geographic origin (native vs. non-native). The positive effect of nectar sugar content and phylogenetic proximity was much more accentuated for bees than for other groups. Consequently, the impact of these factors depends on the pollination mode of plants, e.g. bee or fly pollinated. Our findings may help predict which plant species have the greatest importance in the functioning of plant-pollination networks.

  18. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication.

    PubMed

    Coelho, Cintia M; Dante, Ricardo A; Sabelli, Paolo A; Sun, Yuejin; Dilkes, Brian P; Gordon-Kamm, William J; Larkins, Brian A

    2005-08-01

    Two maize (Zea mays) cyclin-dependent kinase (CDK) inhibitors, Zeama;KRP;1 and Zeama;KRP;2, were characterized and shown to be expressed in developing endosperm. Similar to the CDK inhibitors in Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum), the maize proteins contain a carboxy-terminal region related to the inhibitory domain of the mammalian Cip/Kip inhibitors. Zeama;KRP;1 is present in the endosperm between 7 and 21 d after pollination, a period that encompasses the onset of endoreduplication, while the Zeama;KRP;2 protein declines during this time. Nevertheless, Zeama;KRP;1 accounts for only part of the CDK inhibitory activity that peaks coincident with the endoreduplication phase of endosperm development. In vitro assays showed that Zeama;KRP;1 and Zeama;KRP;2 are able to inhibit endosperm Cdc2-related CKD activity that associates with p13(Suc1). They were also shown to specifically inhibit cyclin A1;3- and cyclin D5;1-associated CDK activities, but not cyclin B1;3/CDK. Overexpression of Zeama;KRP;1 in maize embryonic calli that ectopically expressed the wheat dwarf virus RepA protein, which counteracts retinoblastoma-related protein function, led to an additional round of DNA replication without nuclear division.

  19. Daytime Alertness in Parkinson’s Disease: Potentially Dose-Dependent, Divergent Effects by Drug Class

    PubMed Central

    Bliwise, Donald L.; Trotti, Lynn Marie; Wilson, Anthony G.; Greer, Sophia A.; Wood-Siverio, Cathy; Juncos, Jorge J.; Factor, Stewart A.; Freeman, Alan; Rye, David B.

    2013-01-01

    Background Many patients with idiopathic Parkinson’s disease experience difficulties maintaining daytime alertness. Controversy exists regarding whether this reflects effects of anti-Parkinsonian medications, the disease itself or other factors such as nocturnal sleep disturbances. In this study we examined the phenomenon by evaluating medicated and unmedicated Parkinson’s patients with objective polysomnographic measurements of nocturnal sleep and daytime alertness. Methods Patients (n = 63) underwent a 48-hour laboratory-based study incorporating 2 consecutive nights of overnight polysomnography and 2 days of Maintenance of Wakefulness Testing. We examined correlates of individual differences in alertness, including demographics, clinical features, nocturnal sleep variables and class and dosage of anti-Parkinson’s medications. Results Results indicated that: 1) relative to unmediated patients, all classes of dopaminergic medications were associated with reduced daytime alertness and this effect was not mediated by disease duration or disease severity; 2) increasing dosages of dopamine agonists were associated with less daytime alertness, whereas higher levels of levodopa were associated with higher levels of alertness. Variables unrelated to Maintenance of Wakefulness Test defined daytime alertness included age, sex, years with diagnosis, motor impairment score and most nocturnal sleep variables. Conclusions Deficits in objectively assessed daytime alertness in Parkinson’s disease appear to be a function of both the disease and the medications and their doses utilized. The apparent divergent dose-dependent effects of drug class in Parkinson’s disease are anticipated by basic science studies of the sleep/wake cycle under different pharmacological agents. PMID:22753297

  20. Evaluating the Age-Dependent Potential for Protein Deposition in Naked Neck Meat Type Chicken.

    PubMed

    Khan, Daulat R; Wecke, Christian; Sharifi, Ahmad R; Liebert, Frank

    2015-01-19

    The introduction of the naked neck gene (Na) into modern meat type chicken is known to be helpful in increasing the tolerance for a high ambient temperature (AT) by reducing the feather coverage which allows for a higher level of heat dissipation compared to normally feathered (na/na) birds. In addition, reduced feather coverage could affect requirements for sulfur containing amino acids. As a prerequisite for further modeling of individual amino acid requirements, the daily N maintenance requirement (NMR) and the threshold value of daily N retention (NRmaxT) were determined. This was carried out using graded dietary protein supply and exponential modeling between N intake (NI) and N excretion (NEX) or N deposition (ND), respectively. Studies with homozygous (Na/Na) and heterozygous (Na/na) naked neck meat type chicken utilized 144 birds of average weight (50% of each genotype and sex) within two N balance experiments during both the starter (days 10-20) and the grower period (days 25-35). Birds were randomly allotted to five diets with graded dietary protein supply but constant protein quality. The observed estimates depending on genotype, sex and age varied for NMR and NRmaxT from 224 to 395 and 2881 to 4049 mg N/BWkg(0.67)/day, respectively.

  1. Intracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3

    PubMed Central

    He, Xiang-ping; Yang, Feng; Xie, Zuo-ping; Lu, Bai

    2000-01-01

    Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve–muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), which requires Ca2+ influx for its acute effect, NT3 rapidly enhances spontaneous transmitter release at the developing NMJ even when Ca2+ influx is completely blocked, suggesting that the NT3 effect is independent of extracellular Ca2+. Depletion of intracellular Ca2+ stores, or blockade of inositol 1, 4, 5-trisphosphate (IP3) or ryanodine receptors, prevents the NT3-induced synaptic potentiation. Blockade of IP3 receptors can not prevent BDNF-induced potentiation, suggesting that BDNF and NT3 use different mechanisms to potentiate transmitter release. Inhibition of Ca2+/calmodulin-dependent kinase II (CaMKII) completely blocks the acute effect of NT3. Furthermore, the NT3-induced potentiation requires a continuous activation of CaMKII, because application of the CaMKII inhibitor KN62 reverses the previously established NT3 effect. Thus, NT3 potentiates neurotransmitter secretion by stimulating Ca2+ release from intracellular stores through IP3 and/or ryanodine receptors, leading to an activation of CaMKII. PMID:10811820

  2. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  3. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  4. A single brief burst induces GluR1-dependent associative short-term potentiation: a potential mechanism for short-term memory.

    PubMed

    Erickson, Martha A; Maramara, Lauren A; Lisman, John

    2010-11-01

    Recent work showed that short-term memory (STM) is selectively reduced in GluR1 knockout mice. This raises the possibility that a form of synaptic modification dependent on GluR1 might underlie STM. Studies of synaptic plasticity have shown that stimuli too weak to induce long-term potentiation induce short-term potentiation (STP), a phenomenon that has received little attention. Here we examined several properties of STP and tested the dependence of STP on GluR1. The minimal requirement for inducing STP was examined using a test pathway and a conditioning pathway. Several closely spaced stimuli in the test pathway, forming a single brief burst, were sufficient to induce STP. Thus, STP is likely to be induced by the similar bursts that occur in vivo. STP induction is associative in nature and dependent on the NMDAR. STP decays with two components, a fast component (1.6 +/- 0.26 min) and a slower one (19 +/- 6.6 min). To test the role of GluR1 in STP, experiments were conducted on GluR1 knockout mice. We found that STP was greatly reduced. These results, taken together with the behavioral work of D. Sanderson et al. [Sanderson, D., Good, M. A., Skelton, K., Sprengel, R., Seeburg, P. H., Nicholas, J., et al. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: Evidence for a dual-process memory model. Learning and Memory, 2009], provide genetic evidence that STP is a likely mechanism of STM.

  5. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.

    PubMed Central

    Neunlist, M; Tung, L

    1995-01-01

    Recent theoretical models of cardiac electrical stimulation or defibrillation predict a complex spatial pattern of transmembrane potential (Vm) around a stimulating electrode, resulting from the formation of virtual electrodes of reversed polarity. The pattern of membrane polarization has been attributed to the anisotropic structure of the tissue. To verify such model predictions experimentally, an optical technique using a fluorescent voltage-sensitive dye was used to map the spatial distribution of Vm around a 150-microns-radius extracellular unipolar electrode. An S1-S2 stimulation protocol was used, and vm was measured during an S2 pulse having an intensity equal to 10x the cathodal diastolic threshold of excitation. The recordings were obtained on the endocardial surface of bullfrog atrium in directions parallel and perpendicular to the cardiac fibers. In the longitudinal fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) but only in a region within 445 +/- 112 microns (and 616 +/- 78 microns for anodal pulses) from the center of the electrode (n = 9). Outside this region, vm reversed polarity and reached a local maximum at 922 +/- 136 microns (and 988 +/- 117 microns for anodal pulses) (n = 9). Beyond this point vm decayed to zero over a distance of 1.5-2 mm. In the transverse fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) at all distances from the electrode. The amplitude of the response decreased with distance from the electrode with an exponential decay constant of 343 +/- 110 microns for cathodal pulses and 253 +/- 91 microns for anodal pulses (n = 7). The results were qualitatively similar in both fiber directions when the atrium was bathed in a solution containing ionic channel blockers. A two-dimensional computer model was formulated for the case of highly anisotropic cardiac tissue and qualitatively accounts for nearly all the observed spatial and

  6. Eye color: A potential indicator of alcohol dependence risk in European Americans.

    PubMed

    Sulovari, Arvis; Kranzler, Henry R; Farrer, Lindsay A; Gelernter, Joel; Li, Dawei

    2015-07-01

    In archival samples of European-ancestry subjects, light-eyed individuals have been found to consume more alcohol than dark-eyed individuals. No published population-based studies have directly tested the association between alcohol dependence (AD) and eye color. We hypothesized that light-eyed individuals have a higher prevalence of AD than dark-eyed individuals. A mixture model was used to select a homogeneous sample of 1,263 European-Americans and control for population stratification. After quality control, we conducted an association study using logistic regression, adjusting for confounders (age, sex, and genetic ancestry). We found evidence of association between AD and blue eye color (P = 0.0005 and odds ratio = 1.83 (1.31-2.57)), supporting light eye color as a risk factor relative to brown eye color. Network-based analyses revealed a statistically significant (P = 0.02) number of genetic interactions between eye color genes and AD-associated genes. We found evidence of linkage disequilibrium between an AD-associated GABA receptor gene cluster, GABRB3/GABRG3, and eye color genes, OCA2/HERC2, as well as between AD-associated GRM5 and pigmentation-associated TYR. Our population-phenotype, network, and linkage disequilibrium analyses support association between blue eye color and AD. Although we controlled for stratification we cannot exclude underlying occult stratification as a contributor to this observation. Although replication is needed, our findings suggest that eye pigmentation information may be useful in research on AD. Further characterization of this association may unravel new AD etiological factors. © 2015 Wiley Periodicals, Inc.

  7. Role of Ca(+)-dependent K-channels in the membrane potential and contractility of aorta from spontaneously hypertensive rats.

    PubMed Central

    Silva, E G; Frediani-Neto, E; Ferreira, A T; Paiva, A C; Paiva, T B

    1994-01-01

    1. Contractile responses to KCl and membrane potentials were determined in aortic rings from spontaneously hypertensive rats (SHR), normotensive Wistar rats (NWR) and Wistar Kyoto rats (WKY) both in the absence and in the presence of the Ca(2+)-dependent K-channel blockers, apamin and tetraethylammonium (TEA). 2. Compared to NWR, aortic rings from WKY and SHR were less reactive and their Ca2+ uptake after stimulation with K+ was decreased. 3. Smooth muscle cell membrane potentials were higher in aortae from SHR and WKY than in NWR aortae, whereas SHR had higher K+ and lower Na+ intracellular activities than WKY and NWR, suggesting overactivity of the Na+/K+ pump in the hypertensive animals. 4. Treatment with apamin caused depolarization of WKY and SHR aortae, and increased their contractile responses to the same level as those of the NWR. Treatment with TEA also caused depolarization of aortae from WKY and SHR, but in the SHR the depolarization induced by TEA was smaller than that produced by apamin and the contractile responses to KCl did not reach the level of those of aortae from NWR. 5. It is concluded that overactivity of Ca(2+)-dependent K-channels in aortae of WKY and SHR contributes to their higher membrane potentials and lower responsiveness to vasoconstrictor stimuli. In SHR, an overactive Na+/K+ pump is also present, and the contribution of apamin-sensitive Ca(2+)-dependent K-channels to the membrane potential and reactivity appears to be more relevant than that of TEA-sensitive channels. PMID:7858844

  8. Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909

  9. The ozone depletion potentials on halocarbons: Their dependence of calculation assumptions

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Kiselev, Andrey A.

    1994-01-01

    The concept of Ozone Depletion Potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacement effects on ozone, but the methods, assumptions and conditions used in ODP calculations have not been analyzed adequately. In this paper a model study of effects on ozone of the instantaneous releases of various amounts of CH3CCl3 and of CHF2Cl (HCFC-22) for several compositions of the background atmosphere are presented, aimed at understanding connections of ODP values with the assumptions used in their calculations. To facilitate the ODP computation in numerous versions for the long time periods after their releases, the above rather short-lived gases and the one-dimensional radiative photochemical model of the global annually averaged atmospheric layer up to 50 km height are used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase with its stabilization close to the upper bound of this range in the contemporary atmosphere. The same variations are analyzed for conditions of the CFC-free atmosphere of 1960's and for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC 'business as usual' scenario. Recommendations for proper ways of ODP calculations are proposed for practically important cases.

  10. Event-related potentials in adolescents with different cognitive styles: field dependence and field independence.

    PubMed

    Meng, Xianghong; Mao, Wei; Sun, Wei; Zhang, Xiating; Han, Chunyu; Lu, Changfeng; Huang, Zhaoyang; Wang, Yuping

    2012-01-01

    Field dependence/independence (FD/FI) is an important dimension of personality and cognitive styles. Different ability in mobilizing and/or allocating mental-attentional capacity was considered to be the most possible explanation for the FDI cognitive style. Many studies on characterizing the functional neuroanatomy of attentional control indicated the existence of a dissociable sub-process of conflict-monitoring and "cognitive control" system. However, little was known about it. We might dissociate "cognitive control" system from conflict processing by taking advantage of the variable of the FDI cognitive style. In addition, essentially cognitive styles (FDI) are often widely studied in psychological and educational fields, but hardly in neuroscience. We speculated that ERP components could help to explain the difference between how FD and FI individuals process information. The purpose of the reported study was to explore the possible relation between the "cognitive control" system and the conflict processing system during stimulus-matching task. We first characterized the standard FD/FI of senior-high-school Han students in grade two in Beijing, China, based on 160 students with similar age, education, living and cultural background. Twenty-six adolescents were selected and divided into two groups (extreme FD group and extreme FI group) according to their Group Embedded Figures Test (GEFT) results (FD: 5-8; FI: 17-19). They were tested on both Wechsler Adult Intelligence Scale (WAIS) and stimulus-matching task. ERP was measured while the subjects performed the stimulus-matching tasks by categorizing two figures that were presented sequentially either as a match (same shape) or as a conflict (different shape) conditions. The results showed that the mean amplitude of N270 in FI group was higher relative to that in FD group at nearly all centrofrontal areas in the conflict condition. We conclude that the FDI cognitive styles could influence the conflict processing

  11. Dynamics of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and complex potentials

    NASA Astrophysics Data System (ADS)

    Kengne, Emmanuel; Shehou, Abdourahman; Lakhssassi, Ahmed

    2016-03-01

    We investigate the dynamics of matter-wave solitons in the one-dimensional (1-D) Gross-Pitaevskii (GP) equation describing Bose-Einstein condensates (BECs) with time-dependent scattering length in varying trapping potentials with feeding/loss term. By performing a modified lens-type transformation, we reduce the GP equation into a classical nonlinear Schrödinger (NLS) equation with distributed coefficients and find its integrable condition. Under the integrable condition, we apply the generalized Jacobian elliptic function method (GJEFM) and present exact analytical solutions which describe the propagation of a bright and dark solitons in BECs. Their stability is examined using analytic method. The obtained exact solutions show that the amplitude of bright and dark solitons depends on the scattering length, while their motion and the total number of BEC atoms depend on the external trapping potential. Our results also shown that the loss of atoms can dominate the aggregation of atoms by the attractive interaction, and thus the peak density can decrease in time despite that the strength of the attractive interaction is increased.

  12. System-dependent exchange–correlation functional with exact asymptotic potential and ε{sub HOMO} ≈ − I

    SciTech Connect

    Gledhill, Jonathan D.; Tozer, David J.

    2015-07-14

    Density scaling considerations are used to derive an exchange–correlation explicit density functional that is appropriate for the electron deficient side of the integer and which recovers the exact r → ∞ asymptotic behaviour of the exchange–correlation potential. The functional has an unconventional mathematical form with parameters that are system-dependent; the parameters for an N-electron system are determined in advance from generalised gradient approximation (GGA) calculations on the N- and (N − 1)-electron systems. Compared to GGA results, the functional yields similar exchange–correlation energies, but HOMO energies that are an order of magnitude closer to the negative of the vertical ionisation potential; for anions, the HOMO energies are negative, as required. Rydberg excitation energies are also notably improved and the exchange–correlation potential is visibly lowered towards the near-exact potential. Further development is required to improve valence excitations, static isotropic polarisabilities, and the shape of the potential in non-asymptotic regions. The functional is fundamentally different to conventional approximations.

  13. Generation of matter-wave solitons of the Gross-Pitaevskii equation with a time-dependent complicated potential

    SciTech Connect

    Mohamadou, Alidou; Wamba, Etienne; Kofane, Timoleon C.; Doka, Serge Y.; Ekogo, Thierry B.

    2011-08-15

    We examine the generation of bright matter-wave solitons in the Gross-Pitaevskii equation describing Bose-Einstein condensates with a time-dependent complex potential, which is composed of a repulsive parabolic background potential and a gravitational field. By performing a modified lens-type transformation, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effects of the gravitational field, as well as of the parameter related to the feeding or loss of atoms in the condensate, on the instability growth rate. It is evident from numerical simulations that the feeding with atoms and the magnetic trap have opposite effects on the dynamics of the system. It is shown that the feeding or loss parameter can be well used to control the instability domain. Our study shows that the gravitational field changes the condensate trail of the soliton trains during the propagation. We also perform a numerical analysis to solve the Gross-Pitaevskii equation with a time-dependent complicated potential. The numerical results on the effect of both the gravitational field and the parameter of feeding or loss of atoms in the condensate agree well with predictions of the linear stability analysis. Another result of the present work is the modification of the background wave function in the Thomas-Fermi approximation during the numerical simulations.

  14. Universal steps in quantum dynamics with time-dependent potential-energy surfaces: Beyond the Born-Oppenheimer picture

    NASA Astrophysics Data System (ADS)

    Albareda, Guillermo; Abedi, Ali; Tavernelli, Ivano; Rubio, Angel

    2016-12-01

    It was recently shown [G. Albareda et al., Phys. Rev. Lett. 113, 083003 (2014)], 10.1103/PhysRevLett.113.083003 that within the conditional decomposition approach to the coupled electron-nuclear dynamics, the electron-nuclear wave function can be exactly decomposed into an ensemble of nuclear wave packets effectively governed by nuclear conditional time-dependent potential-energy surfaces (C-TDPESs). Employing a one-dimensional model system, we show that for strong nonadiabatic couplings the nuclear C-TDPESs exhibit steps that bridge piecewise adiabatic Born-Oppenheimer potential-energy surfaces. The nature of these steps is identified as an effect of electron-nuclear correlation. Furthermore, a direct comparison with similar discontinuities recently reported in the context of the exact factorization framework allows us to draw conclusions about the universality of these discontinuities, viz., they are inherent to all nonadiabatic nuclear dynamics approaches based on (exact) time-dependent potential-energy surfaces.

  15. A plant alkaloid, veratridine, potentiates cancer chemosensitivity by UBXN2A-dependent inhibition of an oncoprotein, mortalin-2

    PubMed Central

    Abdullah, Ammara; Sane, Sanam; Branick, Kate A.; Freeling, Jessica L.; Wang, Hongmin; Zhang, Dong; Rezvani, Khosrow

    2015-01-01

    Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects; however, its molecular targets have not been thoroughly studied. Using a high-throughput drug screen, we found that VTD enhances transactivation of UBXN2A, resulting in upregulation of UBXN2A in the cytoplasm, where UBXN2A binds and inhibits the oncoprotein mortalin-2 (mot-2). VTD-treated cancer cells undergo cell death in UBXN2A- and mot-2-dependent manners. The cytotoxic function of VTD is grade-dependent, and the combined treatment with a sub-optimal dose of the standard chemotherapy, 5-Fluorouracil (5-FU) and etoposide, demonstrated a synergistic effect, resulting in higher therapeutic efficacy. VTD influences the CD44+ stem cells, possibly through UBXN2A-dependent inhibition of mot-2. The VTD-dependent expression of UBXN2A is a potential candidate for designing novel strategies for colon cancer treatment because: 1) In 50% of colon cancer patients, UBXN2A protein levels in tumor tissues are significantly lower than those in the adjacent normal tissues. 2) Cytoplasmic expression of the mot-2 protein is very low in non-cancerous cells; thus, VTD can produce tumor-specific toxicity while normal cells remain intact. 3) Finally, VTD or its modified analogs offer a valuable adjuvant chemotherapy strategy to improve the efficacy of 5-FU-based chemotherapy for colon cancer patients harboring WT-p53. PMID:26188124

  16. A plant alkaloid, veratridine, potentiates cancer chemosensitivity by UBXN2A-dependent inhibition of an oncoprotein, mortalin-2.

    PubMed

    Abdullah, Ammara; Sane, Sanam; Branick, Kate A; Freeling, Jessica L; Wang, Hongmin; Zhang, Dong; Rezvani, Khosrow

    2015-09-15

    Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects; however, its molecular targets have not been thoroughly studied. Using a high-throughput drug screen, we found that VTD enhances transactivation of UBXN2A, resulting in upregulation of UBXN2A in the cytoplasm, where UBXN2A binds and inhibits the oncoprotein mortalin-2 (mot-2). VTD-treated cancer cells undergo cell death in UBXN2A- and mot-2-dependent manners. The cytotoxic function of VTD is grade-dependent, and the combined treatment with a sub-optimal dose of the standard chemotherapy, 5-Fluorouracil (5-FU) and etoposide, demonstrated a synergistic effect, resulting in higher therapeutic efficacy. VTD influences the CD44+ stem cells, possibly through UBXN2A-dependent inhibition of mot-2. The VTD-dependent expression of UBXN2A is a potential candidate for designing novel strategies for colon cancer treatment because: 1) In 50% of colon cancer patients, UBXN2A protein levels in tumor tissues are significantly lower than those in the adjacent normal tissues. 2) Cytoplasmic expression of the mot-2 protein is very low in non-cancerous cells; thus, VTD can produce tumor-specific toxicity while normal cells remain intact. 3) Finally, VTD or its modified analogs offer a valuable adjuvant chemotherapy strategy to improve the efficacy of 5-FU-based chemotherapy for colon cancer patients harboring WT-p53.

  17. Frequency-dependent associative long-term potentiation at the hippocampal mossy fiber-CA3 synapse.

    PubMed

    Derrick, B E; Martinez, J L

    1994-10-25

    The mossy fiber-CA3 synapse displays an N-methyl-D-aspartate-receptor-independent mu-opioid-receptor-dependent form of long-term potentiation (LTP) that is thought not to display cooperativity or associativity with coactive afferents. However, because mossy fiber LTP requires repetitive synaptic activity for its induction, we reevaluated cooperativity and associativity at this synapse by using trains of mossy fiber stimulation. Moderate-, but not low-, intensity trains induced mossy fiber LTP, indicating cooperativity. Low-intensity mossy fiber trains that were normally ineffective in inducing LTP could induce mossy fiber LTP when delivered in conjunction with trains delivered to commissural-CA3 afferents. Associative mossy fiber LTP also could be induced with single mossy fiber pulses when delivered with commissural trains in the presence of a mu-opioid-receptor agonist. Our findings suggest a frequency-dependent variation of Hebbian associative LTP induction that is regulated by the release of endogenous opioid peptides.

  18. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates.

    PubMed

    Li, Feng; Qi, Junjie; Xu, Minxuan; Xiao, Jiankun; Xu, Yuliang; Zhang, Xiankun; Liu, Shuo; Zhang, Yue

    2017-04-01

    Here surface potential of chemical vapor deposition (CVD) grown 2D MoS2 with various layers is reported, and the effect of adherent substrate and light illumination on surface potential of monolayer MoS2 are investigated. The surface potential of MoS2 on Si/SiO2 substrate decreases from 4.93 to 4.84 eV with the increase in the number of layer from 1 to 4 or more. Especially, the surface potentials of monolayer MoS2 are strongly dependent on its adherent substrate, which are determined to be 4.55, 4.88, 4.93, 5.10, and 5.50 eV on Ag, graphene, Si/SiO2 , Au, and Pt substrates, respectively. Light irradiation is introduced to tuning the surface potential of monolayer MoS2 , with the increase in light intensity, the surface potential of MoS2 on Si/SiO2 substrate decreases from 4.93 to 4.74 eV, while increases from 5.50 to 5.56 eV on Pt substrate. The I-V curves on vertical of monolayer MoS2 /Pt heterojunction show the decrease in current with the increase of light intensity, and Schottky barrier height at MoS2 /Pt junctions increases from 0.302 to 0.342 eV. The changed surface potential can be explained by trapped charges on surface, photoinduced carriers, charge transfer, and local electric field.

  19. Excited-state nuclear forces on adiabatic potential-energy surfaces by time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Haruyama, Jun; Suzuki, Takahiro; Hu, Chunping; Watanabe, Kazuyuki

    2012-01-01

    We present a simple and computationally efficient method to calculate excited-state nuclear forces on adiabatic potential-energy surfaces (APES) from linear-response time-dependent density-functional theory within a real-space framework. The Casida ansatz, which has been validated for computing first-order nonadiabatic couplings in previous studies, was applied to the calculation of the excited-state forces. Our method is validated by the consistency of results in the lower excited states, which reproduce well those obtained by the numerical derivative of each APES. We emphasize the usefulness of this technique by demonstrating the excited-state molecular-dynamics simulation.

  20. A major role for calcium-dependent potassium current in action potential repolarization in adrenal chromaffin cells.

    PubMed

    Pancrazio, J J; Johnson, P A; Lynch, C

    1994-12-30

    To determine the extent which Ca dependent K current (IKCa) contributes during an action potential (AP), bovine chromaffin cells were voltage-clamped using a pre-recorded AP as the command voltage waveform. Based on (1) differential sensitivity of IKCa and Ca-independent K current (IK) to tetraethylammonium; (2) measurements of AP currents under conditions where Ca activation of IKCa had been abolished; and (3) blockade by charybdotoxin, IKCa comprised 70-90% of the outward K current during AP repolarization. In addition, observations are made concerning the form of AP-evoked Ca current.

  1. On the calculation of the structure of charge-stabilized colloidal dispersions using density-dependent potentials.

    PubMed

    Castañeda-Priego, R; Lobaskin, V; Mixteco-Sánchez, J C; Rojas-Ochoa, L F; Linse, P

    2012-02-15

    The structure of charge-stabilized colloidal dispersions has been studied through a one-component model using a Yukawa potential with density-dependent parameters examined with integral equation theory and Monte Carlo simulations. Partial thermodynamic consistency was guaranteed by considering the osmotic pressure of the dispersion from the approximate mean-field renormalized jellium and Poisson-Boltzmann cell models. The colloidal structures could be accurately described by the Ornstein-Zernike equation with the Rogers-Young closure by using the osmotic pressure from the renormalized jellium model. Although we explicitly show that the correct effective pair-potential obtained from the inverse Monte Carlo method deviates from the Yukawa shape, the osmotic pressure constraint allows us to have a good description of the colloidal structure without losing information on the system thermodynamics. Our findings are corroborated by primitive model simulations of salt-free colloidal dispersions.

  2. Direction dependent thermal conductivity of monolayer phosphorene: Parameterization of Stillinger-Weber potential and molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Zhu, Liyan; Cai, Yongqing; Zhang, Gang; Li, Baowen

    2015-06-01

    A Stillinger-Weber interatomic potential is parameterized for phosphorene. It well reproduces the crystal structure, cohesive energy, and phonon dispersion predicted by first-principles calculations. The thermal conductivity of phosphorene is explored by equilibrium molecular dynamics simulations adopting the optimal set of potential parameters. At room temperature, the intrinsic thermal conductivities along zigzag and armchair directions are about 152.7 and 33.0 W/mK, respectively, with a large anisotropy ratio of five. The remarkably directional dependence of thermal conductivity in phosphorene, consistent with previous reports, is mainly due to the strong anisotropy of phonon group velocities, and weak anisotropy of phonon lifetimes as revealed by lattice dynamics calculations. Moreover, the effective phonon mean free paths at zigzag and armchair directions are about 141.4 and 43.4 nm, respectively.

  3. Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials.

    PubMed

    Zafar, Muhammad Nadeem; Wang, Xiaoju; Sygmund, Christoph; Ludwig, Roland; Leech, Dónal; Gorton, Lo

    2012-01-03

    A new extracellular flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase from Glomerella cingulata (GcGDH) was electrochemically studied as a recognition element in glucose biosensors. The redox enzyme was recombinantly produced in Pichia pastoris and homogeneously purified, and its glucose-oxidizing properties on spectrographic graphite electrodes were investigated. Six different Os polymers, the redox potentials of which ranged in a broad potential window between +15 and +489 mV versus the normal hydrogen electrode (NHE), were used to immobilize and "wire" GcGDH to the spectrographic graphite electrode's surface. The GcGDH/Os polymer modified electrodes were evaluated by chronoamperometry using flow injection analysis. The current response was investigated using a stepwisely increased applied potential. It was observed that the ratio of GcGDH/Os polymer and the overall loading of the enzyme electrode significantly affect the performance of the enzyme electrode for glucose oxidation. The best-suited Os polymer [Os(4,4'-dimethyl-2,2'-bipyridine)(2)(PVI)Cl](+) had a potential of +309 mV versus NHE, and the optimum GcGDH/Os polymer ratio was 1:2 yielding a maximum current density of 493 μA·cm(-2) at a 30 mM glucose concentration.

  4. Frequency-dependent streaming potential of porous media: Experimental measurement of Ottawa sand, Lochaline sand and quartz glass beads

    NASA Astrophysics Data System (ADS)

    Glover, Paul; Walker, Emilie; Ruel, Jean; Yagout, Fuad

    2013-04-01

    High quality frequency-dependent streaming potential coefficient measurements have been made upon Ottawa sand, Lochaline sand and glass bead packs using a new apparatus that is based on an electro-magnetic drive. The apparatus operates in the range 1 Hz to 1 kHz with samples of 25.4mm diameter up to 150 mm long. The results have been analysed using theoretical models that are either (i) based upon vibrational mechanics, (ii) treat the geological material as a bundle of capillary tubes, or (iii) treat the material as a porous medium. In each case we have considered the real and imaginary parts of the complex streaming potential coefficient as well as its magnitude. It is clear from the results that the complex streaming potential coefficient does not follow a Debye-type behaviour, differing from the Debye-type behaviour most markedly for frequencies above the transition frequency. The best fit to all the data was provided by the Pride (1994) model and its simplification by Walker and Glover (2010), which is satisfying as this model was conceived for porous media rather than capillary tube bundles. Theory predicts that the transition frequency is related to the inverse square of the effective pore radius. Values for the transition frequency were derived from each of the models for each sample and were found to be in good agreement with those expected from the independently measured effective pore radius of each material. The fit to the Pride model for all four samples was also found to be consistent with the independently measured steady-state permeability, while the value of the streaming potential coefficient in the low-frequency limit was found to be in good agreement with steady-state streaming potential coefficient data measured using a steady-state streaming potential rig as well as the corpus of steady-state determinations for quartz-based samples existing in the literature.

  5. Cathodic Potential Dependence of Electrochemical Reduction of SiO2 Granules in Molten CaCl2

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Yasuda, Kouji; Nohira, Toshiyuki; Hagiwara, Rika; Homma, Takayuki

    2016-09-01

    As part of an ongoing fundamental study to develop a new process for producing solar-grade silicon, this paper examines the effects of cathodic potential on reduction kinetics, current efficiency, morphology, and purity of Si product during electrolysis of SiO2 granules in molten CaCl2 at 1123 K (850 °C). SiO2 granules were electrolyzed potentiostatically at different cathodic potentials (0.6, 0.8, 1.0, and 1.2 V vs Ca2+/Ca). The reduction kinetics was evaluated based on the growth of the reduced Si layer and the current behavior during electrolysis. The results suggest that a more negative cathodic potential is favorable for faster reduction. Current efficiencies in 60 minutes are greater than 65 pct at all the potentials examined. Si wires with sub-micron diameters are formed, and their morphologies show little dependence on the cathodic potential. The impurities in the Si product can be controlled at low level. The rate-determining step for the electrochemical reduction of SiO2 granules in molten CaCl2 changes with time. At the initial stage of electrolysis, the electron transfer is the rate-determining step. At the later stage, the diffusion of O2- ions is the rate-determining step. The major cause of the decrease in reduction rate with increasing electrolysis time is the potential drop from the current collector to the reaction front due to the increased contact resistance among the reduced Si particles.

  6. Fourth order real space solver for the time-dependent Schrödinger equation with singular Coulomb potential

    NASA Astrophysics Data System (ADS)

    Majorosi, Szilárd; Czirják, Attila

    2016-11-01

    We present a novel numerical method and algorithm for the solution of the 3D axially symmetric time-dependent Schrödinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the symmetry axis. Our propagation algorithm is based on merging the method of the split-operator approximation of the exponential operator with the implicit equations of second order cylindrical 2D Crank-Nicolson scheme. We call this method hybrid splitting scheme because it inherits both the speed of the split step finite difference schemes and the robustness of the full Crank-Nicolson scheme. Based on a thorough error analysis, we verified both the fourth order accuracy of the spatial discretization in the optimal spatial step size range, and the fourth order scaling with the time step in the case of proper high order expressions of the split-operator. We demonstrate the performance and high accuracy of our hybrid splitting scheme by simulating optical tunneling from a hydrogen atom due to a few-cycle laser pulse with linear polarization.

  7. Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation.

    PubMed

    Choi, Jang Hyun; Yang, Yong-Ryoul; Lee, Seul Ki; Kim, Il-Shin; Ha, Sang Hoon; Kim, Eung-Kyun; Bae, Yun Soo; Ryu, Sung Ho; Suh, Pann-Ghill

    2007-08-01

    Phospholipase C-gamma1 (PLC-gamma1), which generates two second messengers, namely, inositol-1, 4, 5-trisphosphate and diacylglycerol, is implicated in growth factor-mediated chemotaxis. However, the exact role of PLC-gamma1 in integrin-mediated cell adhesion and migration remains poorly understood. In this study, we demonstrate that PLC-gamma1 is required for actin cytoskeletal organization and cell motility through the regulation of Pyk2 and paxillin activation. After fibronectin stimulation, PLC-gamma1 directly interacted with the cytoplasmic tail of integrin beta1. In PLC-gamma1-silenced cells, integrin-induced Pyk2 and paxillin phosphorylation were significantly reduced and PLC-gamma1 potentiated the integrin-induced Pyk2/paxillin activation in its enzymatic activity-dependent manner. In addition, specific knock-down of PLC-gamma1 resulted in a failure to form focal adhesions dependent on fibronectin stimulation, which appeared to be caused by the suppression of Pyk2 and paxillin phosphorylation. Interestingly, PLC-gamma1 potentiated the activations of Rac, thus integrin-induced lamellipodia formation was up-regulated. Consequently, the strength of cell-substratum interaction and cell motility were profoundly up-regulated by PLC-gamma1. Taken together, these results suggest that PLC-gamma1 is a key player in integrin-mediated cell spreading and motility achieved by the activation of Pyk2/paxillin/Rac signaling.

  8. Superresolution imaging reveals activity-dependent plasticity of axon morphology linked to changes in action potential conduction velocity.

    PubMed

    Chéreau, Ronan; Saraceno, G Ezequiel; Angibaud, Julie; Cattaert, Daniel; Nägerl, U Valentin

    2017-02-07

    Axons convey information to nearby and distant cells, and the time it takes for action potentials (APs) to reach their targets governs the timing of information transfer in neural circuits. In the unmyelinated axons of hippocampus, the conduction speed of APs depends crucially on axon diameters, which vary widely. However, it is not known whether axon diameters are dynamic and regulated by activity-dependent mechanisms. Using time-lapse superresolution microscopy in brain slices, we report that axons grow wider after high-frequency AP firing: synaptic boutons undergo a rapid enlargement, which is mostly transient, whereas axon shafts show a more delayed and progressive increase in diameter. Simulations of AP propagation incorporating these morphological dynamics predicted bidirectional effects on AP conduction speed. The predictions were confirmed by electrophysiological experiments, revealing a phase of slowed down AP conduction, which is linked to the transient enlargement of the synaptic boutons, followed by a sustained increase in conduction speed that accompanies the axon shaft widening induced by high-frequency AP firing. Taken together, our study outlines a morphological plasticity mechanism for dynamically fine-tuning AP conduction velocity, which potentially has wide implications for the temporal transfer of information in the brain.

  9. Posttetanic potentiation critically depends on an enhanced Ca2+ sensitivity of vesicle fusion mediated by presynaptic PKC

    PubMed Central

    Korogod, Natalya; Lou, Xuelin; Schneggenburger, Ralf

    2007-01-01

    Activity-dependent enhancement of transmitter release is a common form of presynaptic plasticity, but the underlying signaling mechanisms have remained largely unknown, perhaps because of the inaccessibility of most CNS nerve terminals. Here we investigated the signaling steps that underlie posttetanic potentiation (PTP), a form of presynaptic plasticity found at many CNS synapses. Direct whole-cell recordings from the large calyx of Held nerve terminals with the perforated patch-clamp technique showed that PTP was not mediated by changes in the presynaptic action potential waveform. Ca2+ imaging revealed a slight increase of the presynaptic Ca2+ transient during PTP (≈15%), which, however, was too small to explain a large part of PTP. The presynaptic PKC pathway was critically involved in PTP because (i) PTP was occluded by activation of PKC with phorbol esters, and (ii) PTP was largely (by approximately two-thirds) blocked by the PKC inhibitors, Ro31-8220 or bisindolylmaleimide. Activation of PKC during PTP most likely acts directly on the presynaptic release machinery, because in presynaptic Ca2+ uncaging experiments, activation of PKC by phorbol ester greatly increased the Ca2+ sensitivity of vesicle fusion in a Ro31-8220-sensitive manner (≈300% with small Ca2+ uncaging stimuli), but only slightly increased presynaptic voltage-gated Ca2+ currents (≈15%). We conclude that a PKC-dependent increase in the Ca2+ sensitivity of vesicle fusion is a key step in the enhancement of transmitter release during PTP. PMID:17884983

  10. pH-dependent drug-drug interactions for weak base drugs: potential implications for new drug development.

    PubMed

    Zhang, L; Wu, F; Lee, S C; Zhao, H; Zhang, L

    2014-08-01

    Absorption of an orally administered drug with pH-dependent solubility may be altered when it is coadministered with a gastric acid-reducing agent (ARA). Assessing a drug's potential for pH-dependent drug-drug interactions (DDIs), considering study design elements for such DDI studies, and interpreting and communicating study results in the drug labeling to guide drug dosing are important for drug development. We collected pertinent information related to new molecular entities approved from January 2003 to May 2013 by the US Food and Drug Administration for which clinical DDI studies with ARAs were performed. On the basis of assessments of data on pH solubility and in vivo DDIs with ARAs, we proposed a conceptual framework for assessing the need for clinical pH-dependent DDI studies for weak base drugs (WBDs). Important study design considerations include selection of ARAs and timing of dosing of an ARA relative to the WBD in a DDI study. Labeling implications for drugs having DDIs with ARAs are also illustrated.

  11. Skin sensitizers induce antioxidant response element dependent genes: application to the in vitro testing of the sensitization potential of chemicals.

    PubMed

    Natsch, Andreas; Emter, Roger

    2008-03-01

    Tests for skin sensitization are required prior to the market launch of new cosmetic ingredients and in vitro tests are needed to replace the current animal tests. Protein reactivity is the common feature of skin sensitizers and it is a crucial question whether a cellular in vitro assay can detect protein reactivity of diverse test chemicals. The signaling pathway involving the repressor protein Keap1 and the transcription factor nuclear factor-erythroid 2-related factor 2, which binds to the antioxidant response element (ARE) in the promoter of many phase II detoxification genes, is a potential cellular marker because Keap1 had been shown to be covalently modified by electrophiles which leads to activation of ARE-dependent genes. To evaluate whether this regulatory pathway can be used to develop a predictive cellular in vitro test for sensitization, 96 different chemicals of known skin sensitization potential were added to Hepa1C1C7 cells and the induction of the ARE-regulated quinone reductase (QR) activity was determined. In parallel, 102 chemicals were tested on the reporter cell line AREc32, which contains an eightfold repeat of the ARE sequence upstream of a luciferase gene. Among the strong/extreme skin sensitizers 14 out of 15 and 30 out of 34 moderate sensitizers induced the ARE-dependent luciferase activity and in many cases this response was paralleled by an induction of QR activity in Hepa1C1C7 cells. Sixty percent of the weak sensitizers also induced luciferase activity, and the overall accuracy of the assay was 83 percent. Only four of 30 tested nonsensitizers induced low levels of luciferase activity, indicating a high specificity of the assay. Thus, measurement of the induction of this signaling pathway provides an interesting in vitro test to screen for the skin sensitization potential of novel chemicals.

  12. Variability in projected elevation dependent warming in boreal midlatitude winter in CMIP5 climate models and its potential drivers

    NASA Astrophysics Data System (ADS)

    Rangwala, Imtiaz; Sinsky, Eric; Miller, James R.

    2016-04-01

    The future rate of climate change in mountains has many potential human impacts, including those related to water resources, ecosystem services, and recreation. Analysis of the ensemble mean response of CMIP5 global climate models (GCMs) shows amplified warming in high elevation regions during the cold season in boreal midlatitudes. We examine how the twenty-first century elevation-dependent response in the daily minimum surface air temperature [d(ΔTmin)/dz] varies among 27 different GCMs during winter for the RCP 8.5 emissions scenario. The focus is on regions within the northern hemisphere mid-latitude band between 27.5°N and 40°N, which includes both the Rocky Mountains and the Tibetan Plateau/Himalayas. We find significant variability in d(ΔTmin)/dz among the individual models ranging from 0.16 °C/km (10th percentile) to 0.97 °C/km (90th percentile), although nearly all of the GCMs (24 out of 27) show a significant positive value for d(ΔTmin)/dz. To identify some of the important drivers associated with the variability in d(ΔTmin)/dz during winter, we evaluate the co-variance between d(ΔTmin)/dz and the differential response of elevation-based anomalies in different climate variables as well as the GCMs' spatial resolution, their global climate sensitivity, and their elevation-dependent free air temperature response. We find that d(ΔTmin)/dz has the strongest correlation with elevation-dependent increases in surface water vapor, followed by elevation-dependent decreases in surface albedo, and a weak positive correlation with the GCMs' free air temperature response.

  13. Role of AMPA and NMDA receptors and back-propagating action potentials in spike timing-dependent plasticity.

    PubMed

    Fuenzalida, Marco; Fernández de Sevilla, David; Couve, Alejandro; Buño, Washington

    2010-01-01

    The cellular mechanisms that mediate spike timing-dependent plasticity (STDP) are largely unknown. We studied in vitro in CA1 pyramidal neurons the contribution of AMPA and N-methyl-d-aspartate (NMDA) components of Schaffer collateral (SC) excitatory postsynaptic potentials (EPSPs; EPSP(AMPA) and EPSP(NMDA)) and of the back-propagating action potential (BAP) to the long-term potentiation (LTP) induced by a STDP protocol that consisted in pairing an EPSP and a BAP. Transient blockade of EPSP(AMPA) with 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX) during the STDP protocol prevented LTP. Contrastingly LTP was induced under transient inhibition of EPSP(AMPA) by combining SC stimulation, an imposed EPSP(AMPA)-like depolarization, and BAP or by coupling the EPSP(NMDA) evoked under sustained depolarization (approximately -40 mV) and BAP. In Mg(2+)-free solution EPSP(NMDA) and BAP also produced LTP. Suppression of EPSP(NMDA) or BAP always prevented LTP. Thus activation of NMDA receptors and BAPs are needed but not sufficient because AMPA receptor activation is also obligatory for STDP. However, a transient depolarization of another origin that unblocks NMDA receptors and a BAP may also trigger LTP.

  14. Nicotine-activated descending facilitation on spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats.

    PubMed

    Pan, Shwu-Fen; Peng, Hsien-Yu; Chen, Chi-Chung; Chen, Mei-Jung; Lee, Shin-Da; Cheng, Chen-Li; Shyu, Jyh-Cherng; Liao, Jiuan-Miaw; Chen, Gin-Den; Lin, Tzer-Bin

    2008-05-01

    This study was conducted to investigate the possible neurotransmitter that activates the descending pathways coming from the dorsolateral pontine tegmentum (DPT) to modulate spinal pelvic-urethra reflex potentiation. External urethra sphincter electromyogram (EUSE) activity in response to test stimulation (TS, 1/30 Hz) and repetitive stimulation (RS, 1 Hz) on the pelvic afferent nerve of 63 anesthetized rats were recorded with or without microinjection of nicotinic cholinergic receptor (nAChR) agonists, ACh and nicotine, to the DPT. TS evoked a baseline reflex activity with a single action potential (1.00 +/- 0.00 spikes/stimulation, n = 40), whereas RS produced a long-lasting reflex potentiation (16.14 +/- 0.96 spikes/stimulation, n = 40) that was abolished by d-2-amino-5-phosphonovaleric acid (1.60 +/- 0.89 spikes/stimulation, n = 40) and was attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (7.10 +/- 0.84 spikes/stimulation, n = 40). ACh and nicotine microinjections to DPT both produced facilitation on the RS-induced reflex potentiation (23.57 +/- 2.23 and 28.29 +/- 2.36 spikes/stimulation, P < 0.01, n = 10 and 20, respectively). Pretreatment of selective nicotinic receptor antagonist, chlorisondamine, reversed the facilitation on RS-induced reflex potentiation caused by nicotine (19.41 +/- 1.21 spikes/stimulation, P < 0.01, n = 10) Intrathecal WAY-100635 and spinal transection at the T(1) level both abolished the facilitation on reflex potentiation resulting from the DPT nicotine injection (12.86 +/- 3.13 and 15.57 +/- 1.72 spikes/stimulation, P < 0.01, n = 10 each). Our findings suggest that activation of nAChR at DPT may modulate N-methyl-d-aspartic acid-dependent reflex potentiation via descending serotonergic neurotransmission. This descending modulation may have physiological/pathological relevance in the neural controls of urethral closure.

  15. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  16. Nitric Oxide Is Required for L-Type Ca2+ Channel-Dependent Long-Term Potentiation in the Hippocampus

    PubMed Central

    Pigott, Beatrice M.; Garthwaite, John

    2016-01-01

    Nitric oxide (NO) has long been implicated in the generation of long-term potentiation (LTP) and other types of synaptic plasticity, a role for which the intimate coupling between NMDA receptors (NMDARs) and the neuronal isoform of NO synthase (nNOS) is likely to be instrumental in many instances. While several types of synaptic plasticity depend on NMDARs, others do not, an example of which is LTP triggered by opening of L-type voltage-gated Ca2+ channels (L-VGCCs) in postsynaptic neurons. In CA3-CA1 synapses in the hippocampus, NMDAR-dependent LTP (LTPNMDAR) appears to be primarily expressed postsynaptically whereas L-VGCC-dependent LTP (LTPL−VGCC), which often coexists with LTPNMDAR, appears mainly to reflect enhanced presynaptic transmitter release. Since NO is an excellent candidate as a retrograde messenger mediating post-to-presynaptic signaling, we sought to determine if NO functions in LTPL−VGCC in mouse CA3-CA1 synapses. When elicited by a burst type of stimulation with NMDARs and the associated NO release blocked, LTPL−VGCC was curtailed by inhibition of NO synthase or of the NO-receptor guanylyl cyclase to the same extent as occurred with inhibition of L-VGCCs. Unlike LTPNMDAR at these synapses, LTPL−VGCC was unaffected in mice lacking endothelial NO synthase, implying that the major source of the NO is neuronal. Transient delivery of exogenous NO paired with tetanic synaptic stimulation under conditions of NMDAR blockade resulted in a long-lasting potentiation that was sensitive to inhibition of NO-receptor guanylyl cyclase but was unaffected by inhibition of L-VGCCs. The results indicate that NO, acting through its second messenger cGMP, plays an unexpectedly important role in L-VGCC-dependent, NMDAR-independent LTP, possibly as a retrograde messenger generated in response to opening of postsynaptic L-VGCCs and/or as a signal acting postsynaptically, perhaps to facilitate changes in gene expression. PMID:27445786

  17. pH-Dependent Reduction Potentials and Proton-Coupled Electron Transfer Mechanisms in Hydrogen-Producing Nickel Molecular Electrocatalysts

    SciTech Connect

    Horvath, Samantha; Fernandez, Laura; Appel, Aaron M.; Hammes-Schiffer, Sharon

    2013-04-01

    The nickel-based Ph Bz 2 2 P N electrocatalysts, which are comprised of a nickel atom and two 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane ligands, have been shown to effectively catalyze H2 production in acetonitrile. Recent electrochemical experiments revealed a linear dependence of the NiII/I reduction potential on pH, suggesting a proton-coupled electron transfer (PCET) reaction. In the proposed mechanism, the catalytic cycle begins with a PCET process involving electrochemical electron transfer to the nickel center and intermolecular proton transfer from an acid to the pendant amine ligand. This paper presents quantum mechanical calculations of this PCET process to examine the thermodynamics of the sequential mechanisms, in which either the electron or the proton transfers first (ET–PT and PT–ET, respectively), and the concerted mechanism (EPT). The favored mechanism depends on a balance among many factors, including the acid strength, association free energy for the acid–catalyst complex, PT free energy barrier, and ET reduction potential. The ET reduction potential is less negative after PT, favoring the PT–ET mechanism, and the association free energy is less positive after reduction, favoring the ET–PT mechanism. The calculations, along with analysis of the experimental data, indicate that the sequential ET–PT mechanism is favored for weak acids because of the substantial decrease in the association free energy after reduction. For strong acids, however, the PT–ET mechanism may be favored because the association free energy is somewhat smaller and PT is more thermodynamically favorable. The concerted mechanism could also occur, particularly for intermediate acid strengths. In the context of the entire catalytic cycle for H2 production, the initial PCET process involving intermolecular PT has a more negative reduction potential than the subsequent PCET process involving intramolecular PT. As a result, the second PCET should

  18. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents.

    PubMed

    Malik, Erum; Dennison, Sarah R; Harris, Frederick; Phoenix, David A

    2016-11-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel

  19. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents

    PubMed Central

    Malik, Erum; Dennison, Sarah R.; Harris, Frederick; Phoenix, David A.

    2016-01-01

    Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel

  20. Limits on the dependence of the fine-structure constant on gravitational potential from white-dwarf spectra.

    PubMed

    Berengut, J C; Flambaum, V V; Ong, A; Webb, J K; Barrow, John D; Barstow, M A; Preval, S P; Holberg, J B

    2013-07-05

    We propose a new probe of the dependence of the fine-structure constant α on a strong gravitational field using metal lines in the spectra of white-dwarf stars. Comparison of laboratory spectra with far-UV astronomical spectra from the white-dwarf star G191-B2B recorded by the Hubble Space Telescope Imaging Spectrograph gives limits of Δα/α=(4.2±1.6)×10(-5) and (-6.1±5.8)×10(-5) from FeV and NiV spectra, respectively, at a dimensionless gravitational potential relative to Earth of Δφ≈5×10(-5). With better determinations of the laboratory wavelengths of the lines employed these results could be improved by up to 2 orders of magnitude.

  1. Highly Efficient Free Energy Calculations of the Fe Equation of State Using Temperature-Dependent Effective Potential Method

    PubMed Central

    2016-01-01

    Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation. PMID:27700093

  2. Highly Efficient Free Energy Calculations of the Fe Equation of State Using Temperature-Dependent Effective Potential Method.

    PubMed

    Mosyagin, Igor; Hellman, Olle; Olovsson, Weine; Simak, Sergei I; Abrikosov, Igor A

    2016-11-03

    Free energy calculations at finite temperature based on ab initio molecular dynamics (AIMD) simulations have become possible, but they are still highly computationally demanding. Besides, achieving simultaneously high accuracy of the calculated results and efficiency of the computational algorithm is still a challenge. In this work we describe an efficient algorithm to determine accurate free energies of solids in simulations using the recently proposed temperature-dependent effective potential method (TDEP). We provide a detailed analysis of numerical approximations employed in the TDEP algorithm. We show that for a model system considered in this work, hcp Fe, the obtained thermal equation of state at 2000 K is in excellent agreement with the results of standard calculations within the quasiharmonic approximation.

  3. VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria.

    PubMed

    Lemeshko, Victor V

    2016-07-01

    Mitochondrial energy in cardiac cells has been reported to be channeled into the cytosol through the intermembrane contact sites formed by the adenine nucleotide translocator, creatine kinase and VDAC. Computational analysis performed in this study showed a high probability of the outer membrane potential (OMP) generation coupled to such a mechanism of energy channeling in respiring mitochondria. OMPs, positive inside, calculated at elevated concentrations of creatine are high enough to restrict ATP release from mitochondria, to significantly decrease the apparent K(m,ADP) for state 3 respiration and to maintain low concentrations of Ca(2+) in the mitochondrial intermembrane space. An inhibition by creatine of Ca(2+)-induced swelling of isolated mitochondria and other protective effects of creatine reported in the literature might be explained by generated positive OMP. We suggest that VDAC-creatine kinase-dependent generation of OMP represents a novel physiological factor controlling metabolic state of mitochondria, cell energy channeling and resistance to death.

  4. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  5. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    NASA Astrophysics Data System (ADS)

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 1014 W/cm2 to 3.5 × 1014 W/cm2. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  6. A conservative type-dependent full potential method for the treatment of supersonic flows with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Shankar, V.; Szema, K.-Y.; Osher, S.

    1983-01-01

    A nonlinear method based on the full potential equation in conservation form, cast in an arbitrary coordinate system, has been developed to treat predominantly supersonic flows with embedded subsonic regions. This type of flow field occurs frequently near the fuselage-canopy junction area and wing leading edge regions for a moderately swept fighter configuration. The method uses the theory of characteristics to accurately monitor the type-dependent flow field. A conservative switching scheme is developed to transition from the supersonic marching algorithm to a subsonic relaxation procedure, and vice versa. An implicit approximate factorization scheme is employed to solve the finite-differenced equation. Results are shown for a few configurations, including a wing-body-wake realistic fighter model having embedded subsonic regions.

  7. Resting, and rate-dependent depression of Vmax of guinea-pig ventricular action potentials by amiodarone and desethylamiodarone.

    PubMed Central

    Pallandi, R. T.; Campbell, T. J.

    1987-01-01

    1 The cellular electrophysiological effects of amiodarone and its metabolite desethylamiodarone (DEA) were studied in guinea-pig ventricular myocardium by use of standard microelectrode techniques. 2 Both compounds produced significant increases in action potential duration (Class III antiarrhythmic effect) and decreases in maximum rate of depolarization (Class I effect), at clinically relevant concentrations. 3 The Class I effects were rate-dependent, with small (0-16%) falls in maximum depolarization rate in the absence of stimulation ('resting block') and progressively larger effects at decreasing interstimulus intervals (range 1200-300 ms). 4 The kinetics of onset and offset of the Class I effect in response to a step change in driving rate were quite fast for both drugs (comparable to those reported for Class Ib agents). 5 It is concluded that this unique combination of Class III action plus Class I effects with fast onset and offset kinetics may help explain the great efficacy of amiodarone in antiarrhythmic therapy. PMID:3664094

  8. Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule.

    PubMed

    Guan, Jingang; Wang, Fan; Ziegler, Tom; Cox, Hazel

    2006-07-28

    Orbital energies, ionization potentials, molecular constants, potential energy curves, and the excitation spectrum of O(2) are calculated using time-dependent density functional theory (TDDFT) with Tamm-Dancoff approximation (TDA). The calculated negative highest occupied molecular orbital energy (-epsilon(HOMO)) is compared with the energy difference ionization potential for five exchange correlation functionals consisting of the local density approximation (LDAxc), gradient corrected Becke exchange plus Perdew correlation (B(88X)+P(86C)), gradient regulated asymptotic correction (GRAC), statistical average of orbital potentials (SAOP), and van Leeuwen and Baerends asymptotically correct potential (LB94). The potential energy curves calculated using TDDFT with the TDA at internuclear distances from 1.0 to 1.8 A are divided into three groups according to the electron configurations. The 1pi(u) (4)1pi(g) (2) electron configuration gives rise to the X (3)Sigma(g) (-), a (1)Delta(g), and b (1)Sigma(g) (+) states; the 1pi(u) (3)1pi(g) (3) electron configuration gives rise to the c (1)Sigma(u) (-), C (3)Delta(u), and A (3)Sigma(u) (+) states; and the B (3)Sigma(u) (-), A (1)Delta(u), and f (1)Sigma(u) (+) states are determined by the mixing of two or more electron configurations. The excitation spectrum of the oxygen molecule, calculated with the aforementioned exchange correlation functionals, shows that the results are quite sensitive to the choice of functional. The LDAxc and the B(88X)+P(86C) functionals produce similar spectroscopic patterns with a single strongly absorbing band positioned at 19.82 and 19.72 eV, respectively, while the asymptotically corrected exchange correlation functionals of the SAOP and the LB94 varieties yield similar excitation spectra where the computed strongly absorbing band is located at 16.09 and 16.42 eV, respectively. However, all of the exchange correlation functionals yield only one strongly absorbing band (oscillator strength

  9. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production.

    PubMed

    Pulliainen, Arto T; Pieles, Kathrin; Brand, Cameron S; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W; Dehio, Christoph

    2012-06-12

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium.

  10. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  11. Robustness of retrieval properties against imbalance between long-term potentiation and depression of spike-timing-dependent plasticity

    NASA Astrophysics Data System (ADS)

    Matsumoto, Narihisa; Okada, Masato

    2003-12-01

    Spike-timing-dependent plasticity (STDP) has recently been shown in some physiological studies. STDP depends on the precise temporal relationship of presynaptic and postsynaptic spikes. Many authors have indicated that a precise balance between long-term potentiation (LTP) and long-term depression (LTD) of STDP is significant for a stable learning. However, a situation in which the balance is maintained precisely is inconceivable in the brain. Using a method of the statistical neurodynamics, we show robust retrieval properties of spatiotemporal patterns in an associative memory model against the imbalance between LTP and LTD. When the fluctuation of LTD is assumed to obey a Gaussian distribution with mean 0 and variance δ2, the storage capacity takes a finite value even at large δ. This means that the balance between LTP and LTD of STDP need not be maintained precisely, but must be maintained on average. Furthermore, we found that the basin of attraction becomes smaller as δ increases while an initial critical overlap remains unchanged.

  12. Short-term memory of motor network performance via activity-dependent potentiation of Na+/K+ pump function.

    PubMed

    Zhang, Hong-Yan; Sillar, Keith T

    2012-03-20

    Brain networks memorize previous performance to adjust their output in light of past experience. These activity-dependent modifications generally result from changes in synaptic strengths or ionic conductances, and ion pumps have only rarely been demonstrated to play a dynamic role. Locomotor behavior is produced by central pattern generator (CPG) networks and modified by sensory and descending signals to allow for changes in movement frequency, intensity, and duration, but whether or how the CPG networks recall recent activity is largely unknown. In Xenopus frog tadpoles, swim bout duration correlates linearly with interswim interval, suggesting that the locomotor network retains a short-term memory of previous output. We discovered an ultraslow, minute-long afterhyperpolarization (usAHP) in network neurons following locomotor episodes. The usAHP is mediated by an activity- and sodium spike-dependent enhancement of electrogenic Na(+)/K(+) pump function. By integrating spike frequency over time and linking the membrane potential of spinal neurons to network performance, the usAHP plays a dynamic role in short-term motor memory. Because Na(+)/K(+) pumps are ubiquitously expressed in neurons of all animals and because sodium spikes inevitably accompany network activity, the usAHP may represent a phylogenetically conserved but largely overlooked mechanism for short-term memory of neural network function.

  13. Time and concentration dependency in the potentially affected fraction of species: the case of hydrogen peroxide treatment of ballast water.

    PubMed

    Smit, Mathijs G D; Ebbens, Eltjo; Jak, Robbert G; Huijbregtst, Mark A J

    2008-03-01

    Transport of large volumes of ballast water contributes greatly to invasions of species. Hydrogen peroxide (H2O2) can be used as a disinfectant to prevent the spread of exotic species via ballast water. Instead of using environmental risk assessment techniques for protecting a certain fraction of the species from being affected, the present study aimed to apply these techniques to define treatment regimes of H2O2 and effectively eliminate as many species as possible. Based on time-dependent dose-response curves for five marine species (Corophium volutator, Artemia salina, Brachionus plicatilis, Dunaliella teriolecta, and Skeletonema costatum), time-dependent species-sensitivity distributions (SSDs) were derived for different effect sizes. The present study showed that H2O2 can be used effectively to treat ballast water but that relatively high concentrations and long treatment durations are required to eliminate the vast majority of species in ballast water. The described toxicant effectiveness approach using SSDs also has other potential fields of application, including short-term application of biocides.

  14. A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells.

    PubMed

    Bertrand, Johanna; Dannhoffer, Luc; Antigny, Fabrice; Vachel, Laura; Jayle, Christophe; Vandebrouck, Clarisse; Becq, Frédéric; Norez, Caroline

    2015-10-15

    TRPC6 plays important human physiological functions, notably in artery and arterioles constriction, in regulation of vascular volume and in bronchial muscle constriction. It is implicated in pulmonary hypertension, cardiovascular disease, and focal segmental glomerulosclerosis and seems to play a role in cancer development. Previously, we identified Guanabenz, an α2-adrenergic agonist used for hypertension treatment (Wytensin®), as an activator of calcium-dependent chloride channels (CaCC) in human Cystic Fibrosis (CF) nasal epithelial cells by transiently increasing [Ca2+]i via an influx of extracellular Ca2+. In this study, using assays to measure chloride channel activity, we show that guanabenz is an activator of CaCC in freshly dissociated human bronchial epithelial cells from three CF patients with various genotypes (F508del/F508del, F508del/R1066C, F508del/H1085R). We further characterised the effect of guanabenz and show that it is independent of α-adrenergic receptors, is inhibited by the TRPC family inhibitor SKF-96365 but not by the TRPV family inhibitor ruthenium red. Using western-blotting, Ca2+ measurements and iodide efflux assay, we found that TRPC1 siRNA has no effect on guanabenz induced responses whereas TRPC6 siRNA prevented the guanabenz-dependent Ca2+ influx and the CaCC-dependent activity stimulated by guanabenz. In conclusion, we show that TRPC6 channel is pivotal for the activation of CaCC by guanabenz through a α2-adrenergic-independent pathway in human airway epithelial cells. We suggest propose a functional coupling between TRPC6 and CaCC and guanabenz as a potential TRPC6 activator for exploring TRPC6 and CaCC channel functions and corresponding channelopathies.

  15. Replication-Dependent Radiosensitization of Human Glioma Cells by Inhibition of Poly(ADP-Ribose) Polymerase: Mechanisms and Therapeutic Potential

    SciTech Connect

    Dungey, Fiona A.; Loeser, Dana A.; Chalmers, Anthony J.

    2008-11-15

    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in {gamma}H2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development.

  16. Neonatal Tissue Damage Promotes Spike Timing-Dependent Synaptic Long-Term Potentiation in Adult Spinal Projection Neurons

    PubMed Central

    Li, Jie

    2016-01-01

    Mounting evidence from both humans and rodents suggests that tissue damage during the neonatal period can “prime” developing nociceptive pathways such that a subsequent injury during adulthood causes an exacerbated degree of pain hypersensitivity. However, the cellular and molecular mechanisms that underlie this priming effect remain poorly understood. Here, we demonstrate that neonatal surgical injury relaxes the timing rules governing long-term potentiation (LTP) at mouse primary afferent synapses onto mature lamina I projection neurons, which serve as a major output of the spinal nociceptive network and are essential for pain perception. In addition, whereas LTP in naive mice was only observed if the presynaptic input preceded postsynaptic firing, early tissue injury removed this temporal requirement and LTP was observed regardless of the order in which the inputs were activated. Neonatal tissue damage also reduced the dependence of spike-timing-dependent LTP on NMDAR activation and unmasked a novel contribution of Ca2+-permeable AMPARs. These results suggest for the first time that transient tissue damage during early life creates a more permissive environment for the production of LTP within adult spinal nociceptive circuits. This persistent metaplasticity may promote the excessive amplification of ascending nociceptive transmission to the mature brain and thereby facilitate the generation of chronic pain after injury, thus representing a novel potential mechanism by which early trauma can prime adult pain pathways in the CNS. SIGNIFICANCE STATEMENT Tissue damage during early life can “prime” developing nociceptive pathways in the CNS, leading to greater pain severity after repeat injury via mechanisms that remain poorly understood. Here, we demonstrate that neonatal surgical injury widens the timing window during which correlated presynaptic and postsynaptic activity can evoke long-term potentiation (LTP) at sensory synapses onto adult lamina I

  17. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.

    PubMed

    Felmy, Felix; Neher, Erwin; Schneggenburger, Ralf

    2003-12-09

    Ca2+ influx through voltage-gated Ca2+ channels and the resulting elevation of intracellular Ca2+ concentration, [Ca2+]i, triggers transmitter release in nerve terminals. However, it is controversial whether in addition to the opening of Ca2+ channels, membrane potential directly affects transmitter release. Here, we assayed the influence of membrane potential on transmitter release at the calyx of Held nerve terminals. Transmitter release was evoked by presynaptic Ca2+ uncaging, or by presynaptic Ca2+ uncaging paired with presynaptic voltage-clamp depolarizations to +80 mV, under pharmacological block of voltage-gated Ca2+ channels. Such a change in membrane potential did not alter the Ca2+ dependence of transmitter release rates or synaptic delays. We also found, by varying the amount of Ca2+ influx during Ca2+ tail-currents, that the time course of phasic transmitter release is not invariant to changes in release probability. Rather, the time difference between peak Ca2+ current and peak transmitter release became progressively shorter with increasing Ca2+ current amplitude. When this time difference was plotted as a function of the estimated local [Ca2+]i at the sites of vesicle fusion, a slope of approximately 100 micros per 10 microM [Ca2+]i was found, in reasonable agreement with a model of cooperative Ca2+ binding and vesicle fusion. Thus, the amplitude and time course of the [Ca2+]i signal at the sites of vesicle fusion controls the timing and the amount of transmitter release, both under conditions of brief periods of Ca2+ influx, as well as during step-like elevations of [Ca2+]i produced by Ca2+ uncaging.

  18. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential

    PubMed Central

    Felmy, Felix; Neher, Erwin; Schneggenburger, Ralf

    2003-01-01

    Ca2+ influx through voltage-gated Ca2+ channels and the resulting elevation of intracellular Ca2+ concentration, [Ca2+]i, triggers transmitter release in nerve terminals. However, it is controversial whether in addition to the opening of Ca2+ channels, membrane potential directly affects transmitter release. Here, we assayed the influence of membrane potential on transmitter release at the calyx of Held nerve terminals. Transmitter release was evoked by presynaptic Ca2+ uncaging, or by presynaptic Ca2+ uncaging paired with presynaptic voltage-clamp depolarizations to +80 mV, under pharmacological block of voltage-gated Ca2+ channels. Such a change in membrane potential did not alter the Ca2+ dependence of transmitter release rates or synaptic delays. We also found, by varying the amount of Ca2+ influx during Ca2+ tail-currents, that the time course of phasic transmitter release is not invariant to changes in release probability. Rather, the time difference between peak Ca2+ current and peak transmitter release became progressively shorter with increasing Ca2+ current amplitude. When this time difference was plotted as a function of the estimated local [Ca2+]i at the sites of vesicle fusion, a slope of ≈100 μs per 10 μM [Ca2+]i was found, in reasonable agreement with a model of cooperative Ca2+ binding and vesicle fusion. Thus, the amplitude and time course of the [Ca2+]i signal at the sites of vesicle fusion controls the timing and the amount of transmitter release, both under conditions of brief periods of Ca2+ influx, as well as during step-like elevations of [Ca2+]i produced by Ca2+ uncaging. PMID:14630950

  19. The defense potential of glutathione-ascorbate dependent detoxification pathway to sulfur dioxide exposure in Tagetes erecta.

    PubMed

    Wei, Aili; Fu, Baochun; Wang, Yunshan; Li, Rui; Zhang, Chao; Cao, Dongmei; Zhang, Xiaobing; Duan, Jiuju

    2015-01-01

    Sulfur dioxide (SO2) exposure is associated with increased risk of various damages to plants. However, little is known about the defense response in ornamental plants. In this study, an artificial fumigation protocol was carried out to study the defense potential of the glutathione (GSH)-ascorbate (AsA) dependent detoxification pathway to SO2 exposure in Tagetes erecta. The results show that when the plants were exposed to different doses of SO2 (0, 15, 30, 50 or 80 mg m(-3)) for different times (6, 12, 18, 24 or 33 h), SO2 induced oxidative stress was confirmed by the increased hydrogen peroxide (H2O2), malondialdehyde (MDA) and relative conductivity of membrane (RC) in a dose-dependent manner for different exposure times. However, the increased levels for H2O2, MDA and RC were not significant vis-a-vis the control when SO2 doses and exposure times were lower than 15 mg m(-3)/33 h, 30 mg m(-3)/24 h or 50 mg m(-3)/12 h (p>0.05). The results could be explained by the increases in the content of reduced form of glutathione (GSH), total glutathione (TGSH), ascorbate (AsA), ratio of GSH/GSSG (oxidized form of glutathione), activities of ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferases (GST). On the other hand, exposure to higher doses of SO2 and longer exposure times, the values of the GSH-AsA dependent antioxidative indices decreased significantly (p<0.01), manifested by increased levels of H2O2. Furthermore, the levels of H2O2, MDA and RC varied little when SO2 doses and exposure times reached a 'critical' value (50 mg m(-3)/24 h). The defense ability of T. erecta to SO2 reached nearly extremity. To summarize, the response of T. erecta to elevated SO2 was related to higher H2O2 levels. GSH-AsA dependent detoxification pathway played an important role in against SO2-induced toxicity, although the defense response could not sufficiently alleviate oxidative damage when SO2 doses and exposure times

  20. Overdamped motion of interacting particles in general confining potentials: time-dependent and stationary-state analyses

    NASA Astrophysics Data System (ADS)

    Ribeiro, M. S.; Nobre, F. D.; Curado, E. M. F.

    2012-12-01

    By comparing numerical and analytical results, it is shown that a system of interacting particles under overdamped motion is very well described by a nonlinear Fokker-Planck equation, which can be associated with nonextensive statistical mechanics. The particle-particle interactions considered are repulsive, motivated by three different physical situations: (i) modified Bessel function, commonly used in vortex-vortex interactions, relevant for the flux-front penetration in disordered type-II superconductors; (ii) Yukawa-like forces, useful for charged particles in plasma, or colloidal suspensions; (iii) derived from a Gaussian potential, common in complex fluids, like polymer chains dispersed in a solvent. Moreover, the system is subjected to a general confining potential, φ( x) = ( α| x| z )/ z ( α > 0 , z > 1), so that a stationary state is reached after a sufficiently long time. Recent numerical and analytical investigations, considering interactions of type (i) and a harmonic confining potential ( z = 2), have shown strong evidence that a q-Gaussian distribution, P( x,t), with q = 0, describes appropriately the particle positions during their time evolution, as well as in their stationary state. Herein we reinforce further the connection with nonextensive statistical mechanics, by presenting numerical evidence showing that: (a) in the case z = 2, different particle-particle interactions only modify the diffusion parameter D of the nonlinear Fokker-Planck equation; (b) for z ≠ 2, all cases investigated fit well the analytical stationary solution P st( x), given in terms of a q-exponential (with the same index q = 0) of the general external potential φ( x). In this later case, we propose an approximate time-dependent P( x,t) (not known analytically for z ≠ 2), which is in very good agreement with the simulations for a large range of times, including the approach to the stationary state. The present work suggests that a wide variety of physical phenomena

  1. Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine.

    PubMed

    Kono, Toru; Kaneko, Atsushi; Omiya, Yuji; Ohbuchi, Katsuya; Ohno, Nagisa; Yamamoto, Masahiro

    2013-02-15

    The functional roles of transient receptor potential (TRP) channels in the gastrointestinal tract have garnered considerable attention in recent years. We previously reported that daikenchuto (TU-100), a traditional Japanese herbal medicine, increased intestinal blood flow (IBF) via adrenomedullin (ADM) release from intestinal epithelial (IE) cells (Kono T et al. J Crohns Colitis 4: 161-170, 2010). TU-100 contains multiple TRP activators. In the present study, therefore, we examined the involvement of TRP channels in the ADM-mediated vasodilatatory effect of TU-100. Rats were treated intraduodenally with the TRP vanilloid type 1 (TRPV1) agonist capsaicin (CAP), the TRP ankyrin 1 (TRPA1) agonist allyl-isothiocyanate (AITC), or TU-100, and jejunum IBF was evaluated using laser-Doppler blood flowmetry. All three compounds resulted in vasodilatation, and the vasodilatory effect of TU-100 was abolished by a TRPA1 antagonist but not by a TRPV1 antagonist. Vasodilatation induced by AITC and TU-100 was abrogated by anti-ADM antibody treatment. RT-PCR and flow cytometry revealed that an IEC-6 cell line originated from the small intestine and purified IE cells expressed ADM and TRPA1 but not TRPV1. AITC increased ADM release in IEC cells remarkably, while CAP had no effect. TU-100 and its ingredient 6-shogaol (6SG) increased ADM release dose-dependently, and the effects were abrogated by a TRPA1 antagonist. 6SG showed similar TRPA1-dependent vasodilatation in vivo. These results indicate that TRPA1 in IE cells may play an important role in controlling bowel microcirculation via ADM release. Epithelial TRPA1 appears to be a promising target for the development of novel strategies for the treatment of various gastrointestinal disorders.

  2. Nitrous oxide directly inhibits action potential-dependent neurotransmission from single presynaptic boutons adhering to rat hippocampal CA3 neurons.

    PubMed

    Wakita, Masahito; Kotani, Naoki; Yamaga, Toshitaka; Akaike, Norio

    2015-09-01

    We evaluated the effects of N2O on synaptic transmission using a preparation of mechanically dissociated rat hippocampal CA3 neurons that allowed assays of single bouton responses evoked from native functional nerve endings. We studied the effects of N2O on GABAA, glutamate, AMPA and NMDA receptor-mediated currents (IGABA, IGlu, IAMPA and INMDA) elicited by exogenous application of GABA, glutamate, (S)-AMPA, and NMDA and spontaneous, miniature, and evoked GABAergic inhibitory and glutamatergic excitatory postsynaptic current (sIPSC, mIPSC, eIPSC, sEPSC, mEPSC and eEPSC) in mechanically dissociated CA3 neurons. eIPSC and eEPSC were evoked by focal electrical stimulation of a single bouton. Administration of 70% N2O altered neither IGABA nor the frequency and amplitude of both sIPSCs and mIPSCs. In contrast, N2O decreased the amplitude of eIPSCs, while increasing failure rates (Rf) and paired-pulse ratios (PPR) in a concentration-dependent manner. On the other hand, N2O decreased IGlu, IAMPA and INMDA. Again N2O did not change the frequency and amplitude of either sEPSCs of mEPSCs. N2O also decreased amplitudes of eEPSCs with increased Rf and PPR. The decay phases of all synaptic responses were unchanged. The present results indicated that N2O inhibits the activation of AMPA/KA and NMDA receptors and also that N2O preferentially depress the action potential-dependent GABA and glutamate releases but had little effects on spontaneous and miniature releases.

  3. Estimation of nitrogen maintenance requirements and potential for nitrogen deposition in fast-growing chickens depending on age and sex.

    PubMed

    Samadi, F; Liebert, F

    2006-08-01

    Experiments were conducted to estimate daily N maintenance requirements (NMR) and the genetic potential for daily N deposition (ND(max)T) in fast-growing chickens depending on age and sex. In N-balance studies, 144 male and 144 female chickens (Cobb 500) were utilized in 4 consecutive age periods (I: 10 to 25 d; II: 30 to 45 d; III: 50 to 65 d; and IV: 70 to 85 d). The experimental diets contained high-protein soybean meal and crystalline amino acids as protein sources and 6 graded levels of protein supply (N1 = 6.6%; N2 = 13.0%; N3 = 19.6%; N4 = 25.1%; N5 = 31.8%; and N6 = 37.6% CP in DM). The connection between N intake and total N excretion was fitted for NMR determination by an exponential function. The average NMR value (252 mg of N/BW(kg)0.67 per d) was applied for further calculation of ND(max)T as the threshold value of the function between N intake and daily N balance. For estimating the threshold value, the principle of the Levenberg-Marquardt algorithm within the SPSS program (Version 11.5) was applied. As a theoretical maximum for ND(max)T, 3,592, 2,723, 1,702, and 1,386 mg of N/BW(kg)0.67 per d for male and 3,452, 2,604, 1,501, and 1,286 mg of N/BW(kg)0.67 per d for female fast-growing chickens (corresponding to age periods I to IV) were obtained. The determined model parameters were the precondition for modeling of the amino acid requirement based on an exponential N-utilization model and depended on performance and dietary amino acid efficiency. This procedure will be further developed and applied in the subsequent paper.

  4. Liposome dependent delivery of S-adenosyl methionine to cells by liposomes: a potential treatment for liver disease.

    PubMed

    Wagner, Eric J; Krugner-Higby, Lisa; Heath, Timothy D

    2009-02-01

    The present study demonstrates that the nutritional supplement S-adenosyl methionine (SAMe), the primary methyl donor in mammalian cells, is delivered selectively to cells by anionic liposomes, and is, therefore, a liposome dependent drug. Contrary to our expectations, free SAMe chloride was growth inhibitory in cultured cells. The growth inhibitory potency of SAMe chloride in anionic liposomes composed of distearoylphosphatidylglycerol/cholesterol 2:1 was fivefold greater than that of free SAMe. Neutral liposomes composed of distearoylphosphatidylcholine and cholesterol did not increase the potency of the drug. An improved anionic liposome SAMe formulation was produced by use of the 1,4-butanedisulfonate salt (SD4), adding a metal chelator (EDTA), and lowering the buffer pH from pH 7.0 to pH 4.0. This formulation was 15-fold more potent than free SD4, and was active after more than 28 days at 4 degrees C. SAMe and its potential degradation products were screened for toxicity. Formaldehyde was determined to have potency similar to that of free SAMe chloride in CV1-P cells, suggesting that the growth inhibitory effects of SAMe may partly arise from the formation of formaldehyde. The cytotoxic effects of formaldehyde and the less stable forms of SAMe, (SAMe chloride and SAMe tosylate) were decreased in the presence of 3 mM GSH (IC(50) approximately 0.44 mM). The cytotoxic effects of SD4 were not reduced by GSH, suggesting that this more stable form of SAMe is not toxic through the production of formaldehyde. SD4 in anionic DSPG liposomes stimulated murine IL-6 production in RAW 264 cells at concentrations 25- to 30-fold lower than free drug. This increase in potency for IL-6 production was in keeping with the increase in potency observed in our growth inhibition experiments. These results suggest that SD4 in liposomes may be a potential treatment for acute or chronic liver failure.

  5. Density-dependent groundwater flow and dissolution potential along a salt diapir in the Transylvanian Basin, Romania

    NASA Astrophysics Data System (ADS)

    Zechner, Eric; Danchiv, Alex; Dresmann, Horst; Mocuţa, Marius; Huggenberger, Peter; Scheidler, Stefan; Wiesmeier, Stefan; Popa, Iulian; Zlibut, Alexandru; Zamfirescu, Florian

    2016-04-01

    Salt diapirs and the surrounding sediments are often involved in a variety of human activities, such as salt mining, exploration and storage of hydrocarbons, and also storage of radioactive waste material. The presence of highly soluble evaporitic rocks, a complex tectonic setting related to salt diapirsm, and human activities can lead to significant environmental problems, e.g. land subsidence, sinkhole development, salt cavern collapse, and contamination of water resources with brines. In the Transylvanian town of Ocna Mures. rock salt of a near-surface diapir has been explored since the Roman ages in open excavations, and up to the 20th century in galleries and with solution mining. Most recently, in 2010 a sudden collapse in the adjacent Quaternary unconsolidated sediments led to the formation of a 70-90m wide salt lake with a max. depth of 23m. Over the last 3 years a Romanian-Swiss research project has led to the development of 3D geological and hydrogeological information systems in order to improve knowledge on possible hazards related to uncontrolled salt dissolution. One aspect which has been investigated is the possibility of density-driven flow along permeable subvertical zones next to the salt dome, and the potential for subsaturated groundwater to dissolve the upper sides of the diapir. Structural 3D models of the salt diapir, the adjacent basin sediments, and the mining galleries, led to the development of 2D numerical vertical density-dependent models of flow and transport along the diapir. Results show that (1) increased rock permeability due to diapirsm, regional tectonic thrusting and previous dissolution, and (2) more permeable sandstone layers within the adjacent basin sediments may lead to freshwater intrusion towards the top of the diapir, and, therefore, to increased potential for salt dissolution.

  6. Formulation and in vitro evaluation of polymeric enteric nanoparticles as dermal carriers with pH-dependent targeting potential.

    PubMed

    Sahle, Fitsum Feleke; Balzus, Benjamin; Gerecke, Christian; Kleuser, Burkhard; Bodmeier, Roland

    2016-09-20

    pH-sensitive nanoparticles which release in a controlled fashion on the skin or dissolve in the hair follicle could significantly improve treatment effectiveness and make transfollicular drug delivery a success. Dexamethasone-loaded Eudragit® L 100 nanoparticles were prepared by nanoprecipitation from an organic drug-polymer solution. Their toxicity potential was assessed using isolated human fibroblasts. pH-dependent swelling and erosion kinetics of the nanoparticles were investigated by dynamic light scattering and viscosity measurements and its effect on drug release was assessed in vitro with Franz diffusion cells. Stable, 100-550nm-sized dexamethasone-loaded Eudragit® L 100 nanoparticles with drug loading capacity and entrapment efficiency as high as 8.3% and 85%, respectively, were obtained by using polyvinyl alcohol as a stabilizer and ethanol as organic solvent. The nanoparticles showed little or no toxicity on isolated normal human fibroblasts. Dexamethasone existed in the nanoparticles as solid solution or in amorphous form. The nanoparticles underwent extensive swelling and slow drug release in media with a low buffer capacity (as low as 10mM) and a higher pH or at a pH close to the dissolution pH of the polymer (pH6) and a higher buffer capacity. In 40mM buffer and above pH6.8, the nanoparticles eroded fast or dissolved completely and thus released the drug rapidly. pH-sensitive nanoparticles which potentially release in a controlled manner on the stratum corneum but dissolve in the hair follicle could be prepared.

  7. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank.

    PubMed

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Schwarzbauer, Jan; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-10-01

    Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.

  8. Co-localisation of K(ir)4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K(+) recycling routes.

    PubMed

    Eckhard, Andreas; Gleiser, Corinna; Rask-Andersen, Helge; Arnold, Heinz; Liu, Wei; Mack, Andreas; Müller, Marcus; Löwenheim, Hubert; Hirt, Bernhard

    2012-10-01

    Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K(+)) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K(+) recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K(+) uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K(+) fluxes across the SCs. This study describes the subcellular co-localisation of the K(ir)4.1 K(+) channel (K(ir)4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of K(ir)4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen's cells, outer sulcus cells) display the co-localisation of K(ir)4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both K(ir)4.1 and AQP4. The subcellular co-localisation of K(ir)4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.

  9. Aryl hydrocarbon receptor–dependent enrichment of a megakaryocytic precursor with a high potential to produce proplatelets

    PubMed Central

    Brouard, Nathalie; Mallo, Lea; Receveur, Nicolas; Mangin, Pierre; Eckly, Anita; Bieche, Ivan; Tarte, Karin; Gachet, Christian; Lanza, François

    2016-01-01

    The mechanisms regulating megakaryopoiesis and platelet production (thrombopoiesis) are still incompletely understood. Identification of a progenitor with enhanced thrombopoietic capacity would be useful to decipher these mechanisms and to improve our capacity to produce platelets in vitro. Differentiation of peripheral blood CD34+ cells in the presence of bone marrow–human mesenchymal stromal cells (MSCs) enhanced the production of proplatelet-bearing megakaryocytes (MKs) and platelet-like elements. This was accompanied by enrichment in a MK precursor population exhibiting an intermediate level of CD41 positivity while maintaining its expression of CD34. Following sorting and subculture with MSCs, this CD34+CD41low population was able to efficiently generate proplatelet-bearing MKs and platelet-like particles. Similarly, StemRegenin 1 (SR1), an antagonist of the aryl hydrocarbon receptor (AhR) transcription factor known to maintain CD34 expression of progenitor cells, led to an enriched CD34+CD41low fraction and to an increased capacity to generate proplatelet-producing MKs and platelet-like elements ultrastructurally and functionally similar to circulating platelets. The effect of MSCs, like that of SR1, appeared to be mediated by an AhR-dependent mechanism because both culture conditions resulted in repression of its downstream effector CYP1B1. This newly described isolation of a precursor exhibiting strong MK potential could be exploited to study normal and abnormal thrombopoiesis and for in vitro platelet production. PMID:26966088

  10. pH-dependent cross-linking of catechols through oxidation via Fe(3+) and potential implications for mussel adhesion.

    PubMed

    Fullenkamp, Dominic E; Barrett, Devin G; Miller, Dusty R; Kurutz, Josh W; Messersmith, Phillip B

    2014-01-01

    The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe(3+), found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe(3+) to Fe(2+). In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe(3+) can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion.

  11. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method

    NASA Astrophysics Data System (ADS)

    Grabowski, Ireneusz; Fabiano, Eduardo; Teale, Andrew M.; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio

    2014-07-01

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn-Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite-spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  12. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method.

    PubMed

    Grabowski, Ireneusz; Fabiano, Eduardo; Teale, Andrew M; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio

    2014-07-14

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn-Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite-spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  13. Spontaneous glutamatergic activity induces a BDNF-dependent potentiation of GABAergic synapses in the newborn rat hippocampus

    PubMed Central

    Kuczewski, Nicola; Langlois, Anais; Fiorentino, Hervé; Bonnet, Stéphanie; Marissal, Thomas; Diabira, Diabe; Ferrand, Nadine; Porcher, Christophe; Gaiarsa, Jean-Luc

    2008-01-01

    Spontaneous ongoing synaptic activity is thought to play an instructive role in the maturation of the neuronal circuits. However the type of synaptic activity involved and how this activity is translated into structural and functional changes is not fully understood. Here we show that ongoing glutamatergic synaptic activity triggers a long-lasting potentiation of γ-aminobutyric acid (GABA) mediated synaptic activity (LLPGABA-A) in the developing rat hippocampus. LLPGABA-A induction requires (i) the activation of AMPA receptors and L-type voltage-dependent calcium channels, (ii) the release of endogenous brain-derived neurotrophic factor (BDNF), and (iii) the activation of postsynaptic tropomyosin-related kinase receptors B (TrkB). We found that spontaneous glutamatergic activity is required to maintain a high level of native BDNF in the newborn rat hippocampus and that application of exogenous BDNF induced LLPGABA-A in the absence of glutamatergic activity. These results suggest that ongoing glutamatergic synaptic activity plays a pivotal role in the functional maturation of hippocampal GABAergic synapses by means of a cascade involving BDNF release and downstream signalling through postsynaptic TrkB receptor activation. PMID:18772203

  14. Temperature-dependent evaluation of Nd:LiCAF optical properties as potential vacuum ultraviolet laser material

    NASA Astrophysics Data System (ADS)

    Minami, Yuki; Arita, Ren; Cadatal-Raduban, Marilou; Pham, Minh Hong; Empizo, Melvin John Fernandez; Luong, Mui Viet; Hori, Tatsuhiro; Takabatake, Masahiro; Fukuda, Kazuhito; Mori, Kazuyuki; Yamanoi, Kohei; Shimizu, Toshihiko; Sarukura, Nobuhiko; Fukuda, Kentaro; Kawaguchi, Noriaki; Yokota, Yuui; Yoshikawa, Akira

    2016-08-01

    We investigate the temperature-dependent optical properties of Nd3+-doped LiCaAlF6 (Nd:LiCAF) in the vacuum ultraviolet (VUV) region. The 172-nm absorption edge does not seem to experience any significant blue shift as temperature is decreased from room temperature down to 30 K. This is confirmed by excitation spectra for the same temperature range. Several energy levels in the excited state configuration are observed. Based on these energy levels, the dominant emission peak at 177 nm is assigned to the allowed dipole transition from the 4f25d configuration of Nd3+ and the 4I11/2 level of the 4f3 ground state configuration. The position of the dominant 177-nm emission peak appears to be fixed across the temperature range considered. Our results suggest that the spectral overlap between the excitation and emission spectra should not increase as temperature is raised, possibly making Nd:LiCAF a potential VUV laser gain medium operating at room temperature.

  15. Anaplerotic input is sufficient to induce time-dependent potentiation of insulin release in rat pancreatic islets.

    PubMed

    Gunawardana, Subhadra C; Liu, Yi-Jia; Macdonald, Michael J; Straub, Susanne G; Sharp, Geoffrey W G

    2004-11-01

    Nutrients that induce biphasic insulin release, such as glucose and leucine, provide acetyl-CoA and anaplerotic input in the beta-cell. The first phase of release requires increased ATP production leading to increased intracellular Ca(2+) concentration ([Ca(2+)](i)). The second phase requires increased [Ca(2+)](i) and anaplerosis. There is strong evidence to indicate that the second phase is due to augmentation of Ca(2+)-stimulated release via the K(ATP) channel-independent pathway. To test whether the phenomenon of time-dependent potentiation (TDP) has similar properties to the ATP-sensitive K(+) channel-independent pathway, we monitored the ability of different agents that provide acetyl-CoA and anaplerotic input or both of these inputs to induce TDP. The results show that anaplerotic input is sufficient to induce TDP. Interestingly, among the agents tested, the nonsecretagogue glutamine, the nonhydrolyzable analog of leucine aminobicyclo[2.2.1]heptane-2-carboxylic acid, and succinic acid methyl ester all induced TDP, and all significantly increased alpha-ketoglutarate levels in the islets. In conclusion, anaplerosis that enhances the supply and utilization of alpha-ketoglutarate in the tricarboxylic acid cycle appears to play an essential role in the generation of TDP.

  16. Androgen receptor is a potential novel prognostic marker and oncogenic target in osteosarcoma with dependence on CDK11

    PubMed Central

    Liao, Yunfei; Sassi, Slim; Halvorsen, Stefan; Feng, Yong; Shen, Jacson; Gao, Yan; Cote, Gregory; Choy, Edwin; Harmon, David; Mankin, Henry; Hornicek, Francis; Duan, Zhenfeng

    2017-01-01

    Osteosarcoma is the most common bone cancer in children and adolescents. Previously, we have found that cyclin-dependent kinase 11 (CDK11) signaling was essential for osteosarcoma cell growth and survival. Subsequently, CDK11 siRNA gene targeting, expression profiling, and network reconstruction of differentially expressed genes were performed between CDK11 knock down and wild type osteosarcoma cells. Reconstructed network of the differentially expressed genes pointed to the AR as key to CDK11 signaling in osteosarcoma. CDK11 increased transcriptional activation of AR gene in osteosarcoma cell lines. AR protein was highly expressed in various osteosarcoma cell lines and patient tumor tissues. Tissue microarray analysis showed that the disease-free survival rate for patients with high-expression of AR was significantly shorter than for patients with low-expression of AR. In addition, AR gene expression knockdown via siRNA greatly inhibited cell growth and viability. Similar results were found in osteosarcoma cells treated with AR inhibitor. These findings suggest that CDK11 is involved in the regulation of AR pathway and AR can be a potential novel prognostic marker and therapeutic target for osteosarcoma treatment. PMID:28262798

  17. Orbital-dependent second-order scaled-opposite-spin correlation functionals in the optimized effective potential method

    SciTech Connect

    Grabowski, Ireneusz Śmiga, Szymon; Buksztel, Adam; Fabiano, Eduardo; Teale, Andrew M.; Sala, Fabio Della

    2014-07-14

    The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn–Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite–spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.

  18. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade.

    PubMed

    Gainey, Melanie A; Tatavarty, Vedakumar; Nahmani, Marc; Lin, Heather; Turrigiano, Gina G

    2015-07-07

    Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing in response to changes in synapse number and strength. Scaling up in response to action-potential blockade is accomplished through increased synaptic accumulation of GluA2-containing AMPA receptors (AMPAR), but the receptor trafficking steps that drive this process remain largely obscure. Here, we show that the AMPAR-binding protein glutamate receptor-interacting protein-1 (GRIP1) is essential for regulated synaptic AMPAR accumulation during scaling up. Synaptic abundance of GRIP1 was enhanced by activity deprivation, directly increasing synaptic GRIP1 abundance through overexpression increased the amplitude of AMPA miniature excitatory postsynaptic currents (mEPSCs), and shRNA-mediated GRIP1 knockdown prevented scaling up of AMPA mEPSCs. Furthermore, knockdown and replace experiments targeting either GRIP1 or GluA2 revealed that scaling up requires the interaction between GRIP1 and GluA2. Finally, GRIP1 synaptic accumulation during scaling up did not require GluA2 binding. Taken together, our data support a model in which activity-dependent trafficking of GRIP1 to synaptic sites drives the forward trafficking and enhanced synaptic accumulation of GluA2-containing AMPAR during synaptic scaling up.

  19. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  20. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity.

    PubMed

    Moghaddam, Maria Sabaye; Shimizu, Seishi; Chan, Hue Sun

    2005-01-12

    Temperature-dependent three-body hydrophobic interactions are investigated by extensive constant-pressure simulations of methane-like nonpolar solutes in TIP4P model water at six temperatures. A multiple-body hydrophobic interaction is considered to be (i) additive, (ii) cooperative, or (iii) anti-cooperative if its potential of mean force (PMF) is (i) equal to, (ii) smaller than, or (iii) larger than the corresponding pairwise sum of two-methane PMFs. We found that three-methane hydrophobic interactions at the desolvation barrier are anti-cooperative at low to intermediate T, and vary from essentially additive to slightly cooperative at high T. Interactions at the contact minimum are slightly anti-cooperative over a wider temperature range. Enthalpy, entropy, and heat capacity are estimated from the computed PMFs. Contrary to the common expectation that burial of solvent-accessible nonpolar surface area always leads to a decrease in heat capacity, the present results show that the change in heat capacity upon three-methane association is significantly positive at the desolvation barrier and slightly positive at the contact minimum. This suggests that the heat capacity signature of a hydrophobic polymer need not vary uniformly nor monotonically with conformational compactness. Ramifications for protein folding are discussed.

  1. Energy dependence of the optical potentials for the 9Be +208Pb and 9Be +209Bi systems at near-Coulomb-barrier energies

    NASA Astrophysics Data System (ADS)

    Gómez Camacho, A.; Yu, N.; Zhang, H. Q.; Gomes, P. R. S.; Jia, H. M.; Lubian, J.; Lin, C. J.

    2015-04-01

    We analyze the energy dependence of the interacting optical potential, at near barrier energies, for two systems involving the weakly bound projectile 9Be and the heavy 208Pb and 209Bi targets, by the simultaneous fit of elastic scattering angular distributions and fusion excitation functions. The approach used consists of dividing the optical potential into two parts. A short-range potential VF+i WF that is responsible for fusion, and a superficial potential VDR+i WDR for direct reactions. It is found, for both systems studied, that the fusion imaginary potential WF presents the usual threshold anomaly (TA) observed in tightly bound systems, whereas the direct reaction imaginary potential WDR shows a breakup threshold anomaly (BTA) behavior. Both potentials satisfy the dispersion relation. The direct reaction polarization potential predominates over the fusion potential and so a net overall behavior is found to follow the BTA phenomenon.

  2. Communication: Rigorous quantum dynamics of O + O{sub 2} exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients

    SciTech Connect

    Li, Yaqin; Sun, Zhigang E-mail: dawesr@mst.edu; Jiang, Bin; Guo, Hua E-mail: dawesr@mst.edu; Xie, Daiqian; Dawes, Richard E-mail: dawesr@mst.edu

    2014-08-28

    The kinetics and dynamics of several O + O{sub 2} isotope exchange reactions have been investigated on a recently determined accurate global O{sub 3} potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged “reef” structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  3. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients.

    PubMed

    Li, Yaqin; Sun, Zhigang; Jiang, Bin; Xie, Daiqian; Dawes, Richard; Guo, Hua

    2014-08-28

    The kinetics and dynamics of several O + O2 isotope exchange reactions have been investigated on a recently determined accurate global O3 potential energy surface using a time-dependent wave packet method. The agreement between calculated and measured rate coefficients is significantly improved over previous work. More importantly, the experimentally observed negative temperature dependence of the rate coefficients is for the first time rigorously reproduced theoretically. This negative temperature dependence can be attributed to the absence in the new potential energy surface of a submerged "reef" structure, which was present in all previous potential energy surfaces. In addition, contributions of rotational excited states of the diatomic reactant further accentuate the negative temperature dependence.

  4. Vanishing rainbows near orbiting and the energy dependence of rainbow scattering - Relation to properties of the potential. [molecular beam scattering cross sections

    NASA Technical Reports Server (NTRS)

    Greene, E. F.; Hall, R. B.; Mason, E. A.

    1975-01-01

    The energy threshold behavior of elastic rainbow scattering near the transition to orbiting is derived. Analysis of the energy dependence of the rainbow angle shows that the full range from high energies down to orbiting can be fitted with two parameters. Thus, measurements of the rainbow angle can give essentially only two pieces of information about the potential. For potentials of common shapes, such measurements are sensitive to regions of the potential just beyond the minimum and give information about the shape of the potential in this range. However, neither a minimum nor a point of inflection in the potential is necessary for rainbow scattering.

  5. A self-consistent, microenvironment modulated screened coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins.

    PubMed Central

    Mehler, E L; Guarnieri, F

    1999-01-01

    An improved approach is presented for calculating pH-dependent electrostatic effects in proteins using sigmoidally screened Coulomb potentials (SCP). It is hypothesized that a key determinant of seemingly aberrant behavior in pKa shifts is due to the properties of the unique microenvironment around each residue. To help demonstrate this proposal, an approach is developed to characterize the microenvironments using the local hydrophobicity/hydrophilicity around each residue of the protein. The quantitative characterization of the microenvironments shows that the protein is a complex mosaic of differing dielectric regions that provides a physical basis for modifying the dielectric screening functions: in more hydrophobic microenvironments the screening decreases whereas the converse applies to more hydrophilic regions. The approach was applied to seven proteins providing more than 100 measured pKa values and yielded a root mean square deviation of 0.5 between calculated and experimental values. The incorporation of the local hydrophobicity characteristics into the algorithm allowed the resolution of some of the more intractable problems in the calculation of pKa. Thus, the divergent shifts of the pKa of Glu-35 and Asp-66 in hen egg white lysozyme, which are both about 90% buried, was correctly predicted. Mechanistically, the divergence occurs because Glu-35 is in a hydrophobic microenvironment, while Asp-66 is in a hydrophilic microenvironment. Furthermore, because the calculation of the microenvironmental effects takes very little CPU time, the computational speed of the SCP formulation is conserved. Finally, results from different crystal structures of a given protein were compared, and it is shown that the reliability of the calculated pKa values is sufficient to allow identification of conformations that may be more relevant for the solution structure. PMID:10388736

  6. Caspase Dependent Programmed Cell Death in Developing Embryos: A Potential Target for Therapeutic Intervention against Pathogenic Nematodes

    PubMed Central

    Mohapatra, Alok Das; Kumar, Sunil; Satapathy, Ashok Kumar; Ravindran, Balachandran

    2011-01-01

    Background Successful embryogenesis is a critical rate limiting step for the survival and transmission of parasitic worms as well as pathology mediated by them. Hence, blockage of this important process through therapeutic induction of apoptosis in their embryonic stages offers promise for developing effective anti-parasitic measures against these extra cellular parasites. However, unlike in the case of protozoan parasites, induction of apoptosis as a therapeutic approach is yet to be explored against metazoan helminth parasites. Methodology/Principal Findings For the first time, here we developed and evaluated flow cytometry based assays to assess several conserved features of apoptosis in developing embryos of a pathogenic filarial nematode Setaria digitata, in-vitro as well as ex-vivo. We validated programmed cell death in developing embryos by using immuno-fluorescence microscopy and scoring expression profile of nematode specific proteins related to apoptosis [e.g. CED-3, CED-4 and CED-9]. Mechanistically, apoptotic death of embryonic stages was found to be a caspase dependent phenomenon mediated primarily through induction of intracellular ROS. The apoptogenicity of some pharmacological compounds viz. DEC, Chloroquine, Primaquine and Curcumin were also evaluated. Curcumin was found to be the most effective pharmacological agent followed by Primaquine while Chloroquine displayed minimal effect and DEC had no demonstrable effect. Further, demonstration of induction of apoptosis in embryonic stages by lipid peroxidation products [molecules commonly associated with inflammatory responses in filarial disease] and demonstration of in-situ apoptosis of developing embryos in adult parasites in a natural bovine model of filariasis have offered a framework to understand anti-fecundity host immunity operational against parasitic helminths. Conclusions/Significance Our observations have revealed for the first time, that induction of apoptosis in developing embryos can

  7. Exploring the Antibacterial and Antifungal Potential of Jellyfish-Associated Marine Fungi by Cultivation-Dependent Approaches

    PubMed Central

    Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2015-01-01

    Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches

  8. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    PubMed

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment.

  9. Exploring the Antibacterial and Antifungal Potential of Jellyfish-Associated Marine Fungi by Cultivation-Dependent Approaches.

    PubMed

    Yue, Yang; Yu, Huahua; Li, Rongfeng; Xing, Ronge; Liu, Song; Li, Pengcheng

    2015-01-01

    Fungi isolated from marine invertebrates are of considerable importance as new promising sources of unique secondary metabolites with significant biomedical potential. However, the cultivable fungal community harbored in jellyfish was less investigated. In this work, we seek to recover symbiotic fungi from different tissues of jellyfish Nemopilema nomurai. A total of seven morphotypes were isolated, which were assigned into four genera (Aspergillus, Cladosporium, Purpureocillium, and Tilletiopsis) from two phyla (Ascomycota and Basidiomycota) by comparing the rDNA-ITS sequences with the reference sequences in GenBank. The most fungi were found in the inner tissues of subumbrella. Two of the cultivation-independent procedures, changing media type and co-cultivation, were employed to maximize the complexity of metabolites. Thus, thirteen EtOAc gum were obtained and fingerprinted by High Performance Liquid Chromatography (HPLC) equipped with a photodiode array (PDA) detector. Antibacterial and antifungal activities of these complex mixtures were tested against a panel of bacterial and fungal pathogens. The antimicrobial results showed that all of the 13 EtOAc extracts displayed different levels of antibacterial activity, three of which exhibited strong to significant antibacterial activity to the bacterial pathogens Staphylococcus aureus and Salmonella entrica. Antifungal activity indicated that the EtOAc extracts from pure culture of Aspergillus versicolor and co-culture of A. versicolor and Tilletiopsis sp. in rice media were promising for searching new compounds, with the maximal mycelial growth inhibition of 82.32% ± 0.61% for Rhizoctonia solani and 48.41% ± 11.02% for Botrytis cinerea at 200 μg/ml, respectively. This study is the first report on the antibacterial and antifungal activity of jellyfish-associated fungi and allows the first sight into cultivable fungal community residing in jellyfish. Induced metabolites by cultivation-dependent approaches

  10. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    PubMed

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  11. A Context-Dependent View on the Linguistic Interdependence Hypothesis: Language Use and SES as Potential Moderators

    ERIC Educational Resources Information Center

    Prevoo, Mariëlle J. L.; Malda, Maike; Emmen, Rosanneke A. G.; Yeniad, Nihal; Mesman, Judi

    2015-01-01

    The linguistic interdependence hypothesis states that the development of skills in a second language (L2) partly depends on the skill level in the first language (L1). It has been suggested that the theory lacked attention for differential interdependence. In this study we test what we call the hypothesis of context-dependent linguistic…

  12. RING finger-dependent ubiquitination by PRAJA is dependent on TGF-beta and potentially defines the functional status of the tumor suppressor ELF.

    PubMed

    Saha, T; Vardhini, D; Tang, Y; Katuri, V; Jogunoori, W; Volpe, E A; Haines, D; Sidawy, A; Zhou, X; Gallicano, I; Schlegel, R; Mishra, B; Mishra, L

    2006-02-02

    In gastrointestinal cells, biological signals for transforming growth factor-beta (TGF-beta) are transduced through transmembrane serine/threonine kinase receptors that signal to Smad proteins. Smad4, a tumor suppressor, is often mutated in human gastrointestinal cancers. The mechanism of Smad4 inactivation, however, remains uncertain and could be through E3-mediated ubiquitination of Smad4/adaptor protein complexes. Disruption of ELF (embryonic liver fodrin), a Smad4 adaptor protein, modulates TGF-beta signaling. We have found that PRAJA, a RING-H2 protein, interacts with ELF in a TGF-beta-dependent manner, with a fivefold increase of PRAJA expression and a subsequent decrease in ELF and Smad4 expression, in gastrointestinal cancer cell lines (P < 0.05). Strikingly, PRAJA manifests substantial E3-dependent ubiquitination of ELF and Smad3, but not Smad4. Delta-PRAJA, which has a deleted RING finger domain at the C terminus, abolishes ubiquitination of ELF. A stable cell line that overexpresses PRAJA exhibits low levels of ELF in comparison to a Delta-PRAJA stable cell line, where ELF expression is high compared to normal controls. The alteration of ELF and/or Smad4 expression and/or function in the TGF-beta signaling pathway may be induced by enhancement of ELF degradation, which is mediated by a high-level expression of PRAJA in gastrointestinal cancers. In hepatocytes, half-life (t(1/2)) and rate constant for degradation (k(D)) of ELF is 1.91 h and 21.72 min(-1) when coupled with ectopic expression of PRAJA in cells stimulated by TGF-beta, compared to PRAJA-transfected unstimulated cells (t(1/2) = 4.33 h and k(D) = 9.6 min(-1)). These studies reveal a mechanism for tumorigenesis whereby defects in adaptor proteins for Smads, such as ELF, can undergo degradation by PRAJA, through the ubiquitin-mediated pathway.

  13. Cyclic AMP-dependent modulation of giant depolarizing potentials by metabotropic glutamate receptors in the rat hippocampus.

    PubMed Central

    Strata, F; Sciancalepore, M; Cherubini, E

    1995-01-01

    1. Intracellular recordings were used to study the role of metabotropic glutamate receptors (mGluRs) in modulating GABA-mediated giant depolarizing potentials (GDPs) in immature rat hippocampal CA3 neurones. 2. The mGluR antagonist (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG, 1 mM) reduced the frequency of GDPs. The broad-spectrum ionotropic glutamate receptor antagonist kynurenic acid (1 mM) blocked GDPs. 3. In the presence of kynurenic acid, both tetanic stimulation of the hilus or bath application of quisqualic acid (1 microM) and trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD, 20 microM) induced the appearance of GDPs. These effects were antagonized by MCPG (1 mM) or L(+)-2-amino-3-phosphonopropionic acid (L-AP3) and blocked by bicuculline (10 microM). 4. 8-Bromo-cAMP (8-Br-cAMP, 0.3 mM), 3-isobutyl-1-methylxanthine (IBMX, 200 microM) or forskolin (30 microM) mimicked the effects of mGluR agonists on GDPs. The forskolin analogue 1,9-dideoxyforskolin (30 microM), which does not activate adenylate cyclase, was ineffective. 5. Incubation of slices in the presence of the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Rp-cAMPS) (500 microM) or superfusion of Rp-cAMPS (20 microM) prevented the effects of forskolin or t-ACPD on GDPs. In the presence of kynurenic acid, the protein kinase C activator, phorbol 12,13-diacetate (2 microM) induced the appearance of GDPs. This effect was prevented by staurosporine (1 microM). However, staurosporine (1-3 microM) did not modify the effects of t-ACPD on GDPs. 6. It is suggested that, during development, mGluRs enhance the synchronous release of GABA, responsible for GDPs, through cAMP-dependent protein kinase. PMID:8583396

  14. Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates.

    PubMed

    Albi, Tomás; Serrano, Aurelio

    2015-05-01

    The single-copy genes encoding putative polyphosphate-glucose phosphotransferases (PPGK, EC 2.7.1.63) from two nitrogen-fixing Cyanobacteria, Nostoc sp. PCC7120 and Nostoc punctiforme PCC73102, were cloned and functionally characterized. In contrast to their actinobacterial counterparts, the cyanobacterial PPGKs have shown the ability to phosphorylate glucose using strictly inorganic polyphosphates (polyP) as phosphoryl donors. This has proven to be an economically attractive reagent in contrast to the more costly ATP. Cyanobacterial PPGKs had a higher affinity for medium-long-sized polyP (greater than ten phosphoryl residues). Thus, longer polyP resulted in higher catalytic efficiency. Also in contrast to most their homologs in Actinobacteria, both cyanobacterial PPGKs exhibited a modest but significant polyP-mannokinase activity as well. Specific activities were in the range of 180-230 and 2-3 μmol min(-1) mg(-1) with glucose and mannose as substrates, respectively. No polyP-fructokinase activity was detected. Cyanobacterial PPGKs required a divalent metal cofactor and exhibited alkaline pH optima (approx. 9.0) and a remarkable thermostability (optimum temperature, 45 °C). The preference for Mg(2+) was noted with an affinity constant of 1.3 mM. Both recombinant PPGKs are homodimers with a subunit molecular mass of ca. 27 kDa. Based on database searches and experimental data from Southern blots and activity assays, closely related PPGK homologs appear to be widespread among unicellular and filamentous mostly nitrogen-fixing Cyanobacteria. Overall, these findings indicate that polyP may be metabolized in these photosynthetic prokaryotes to yield glucose (or mannose) 6-phosphate. They also provide evidence for a novel group-specific subfamily of strictly polyP-dependent gluco(manno)kinases with ancestral features and high biotechnological potential, capable of efficiently using polyP as an alternative and cheap source of energy-rich phosphate instead of costly ATP

  15. Avoidance of a potential tracheoinnominate fistula by innominate artery re-implantation in a four year old girl with tracheostomy dependence and Pfeiffer syndrome.

    PubMed

    Olson, Michael D; Boesch, R Paul; Duncan, Audra A; Cofer, Shelagh A

    2016-02-01

    A 4 year old tracheostomy dependent girl with Pfeiffer syndrome was noted on bronchoscopy to have a pulsatile tracheostomal mass. CT chest angiography was consistent with the innominate artery crossing anterior to the trachea and superior to the sternal notch. The patient underwent reimplantation of the innominate artery via a median sternotomy approach. Tracheoinnominate fistula is a potentially devastating complication of tracheostomy. We report discovery of a near tracheoinnominate fistula in order to highlight the importance of regular interval surveillance endoscopy in tracheostomy dependent children and to discuss a preventative surgical intervention employed in prevention of this potentially devastating complication.

  16. The effect of adrenaline on the temperature dependency of cardiac action potentials in pink salmon Oncorhynchus gorbuscha.

    PubMed

    Ballesta, S; Hanson, L M; Farrell, A P

    2012-04-01

    Using sharp electrode impalement, action potentials recorded from atrial and ventricular tissue of pink salmon Oncorhynchus gorbuscha generally decreased in duration with increasing test temperature (6, 10, 16 and 20° C). Stimulation of the tissue using 500 nM adrenaline had no significant effect on the duration of the atrial action potential at any test temperature but lengthened the ventricular action potential by ~17%.

  17. Temperature dependence of the ligand field strength in systems with modulated potential-energy surfaces. A suggestion for interpreting spectroscopic properties of metalloproteins

    NASA Astrophysics Data System (ADS)

    Bacci, M.

    1984-07-01

    The structural and spectroscopic properties of physical systems having different potential-energy wells are strongly affected by temperature where energy barriers are comparable to the thermal energy. A theoretical analysis has been performed using an asymmetric double-well potential and, on the basis of the results obtained, an interpretation of the temperature-dependent properties of some real systems, such as the active sites in copper proteins, is proposed.

  18. INTERPRETATION OF THE CANCER RESPONSE TO POTENTIAL RENTAL CARCINOGENS IN THE TSC2 KNOCKOUT (EKER) RAT IS DEPENDENT ON LENGTH OF TREATMENT.

    EPA Science Inventory

    INTERPRETATION OF THE CANCER RESPONSE TO POTENTIAL RENAL CARCINOGENS IN THE TSC2 KNOCKOUT (EKER) RAT IS DEPENDENT ON LENGTH OF TREATMENT.

    Genetically increasing the function of oncogenes or knocking out the function of a tumor supressor gene has dramatically increased the...

  19. Comment on 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' [J. Math. Phys. 48, 073515 (2007)

    SciTech Connect

    Castro, L. B.; Castro, A. S. de

    2010-03-15

    It is shown that the paper 'Wave functions for a Duffin-Kemmer-Petiau particle in a time-dependent potential' by Merad and Bensaid [J. Math. Phys. 48, 073515 (2007)] is not correct in using inadvertently a non-Hermitian Hamiltonian in a formalism that does require Hermitian Hamiltonians.

  20. Learning-Dependent Potentiation in the Vibrissal Motor Cortex Is Closely Related to the Acquisition of Conditioned Whisker Responses in Behaving Mice

    ERIC Educational Resources Information Center

    Delgado-Garcia, Jose Maria; Troncoso, Julieta; Munera, Alejandro

    2007-01-01

    The role of the primary motor cortex in the acquisition of new motor skills was evaluated during classical conditioning of vibrissal protraction responses in behaving mice, using a trace paradigm. Conditioned stimulus (CS) presentation elicited a characteristic field potential in the vibrissal motor cortex, which was dependent on the synchronized…

  1. Quantization of time-dependent non-central singular potential systems in three dimensions by using the Nikiforov-Uvarov method

    NASA Astrophysics Data System (ADS)

    Menouar, Salah; Choi, Jeong Ryeol

    2016-02-01

    Quantum solutions of a time-dependent Hamiltonian for the motion of a time-varying mass subjected to time-dependent singular potentials in three dimensions are investigated. A time-dependent inverse quadratic potential and a Coulomb-like potential are considered as the components of the singular potential of the system. Because the Hamiltonian is a function of time, special techniques for deriving quantum solutions of the system are necessary. A quadratic invariant operator is introduced, and its eigenstates are derived using the Nikiforov-Uvarov method together with a unitary transformation method. The Nikiforov-Uvarov method enables us to solve the eigenvalue equations of the invariant operator, which are second-order linear diffierential equations, by reducing the original equation to a hypergeometric type. According to the invariant operator theory, the wave functions of the system are represented in terms of the eigenstates obtained in such a way. The difference of the wave functions from the eigenstates of the invariant operator is that the wave functions have time-dependent phases while the eigenstates do not. By determining the phases of the wave functions via the help of the Schr¨odinger equation, we identify the full wave functions of the system and address their physical implications.

  2. Surface spectral function of momentum-dependent pairing potentials in a topological insulator: application to CuxBi2Se3.

    PubMed

    Chen, Liang; Wan, Shaolong

    2013-05-29

    We propose three possible momentum-dependent pairing potentials as candidates for topological superconductors (for example CuxBi2Se3), and calculate the surface spectral function and surface density of states with these pairing potentials. We find that the first two can give the same spectral functions as the fully gapped and node-contacted pairing potentials given by Fu and Berg (2010 Phys. Rev. Lett. 105 097001), and that the third one can obtain a topological non-trivial case in which there exists a flat Andreev bound state and which preserves the threefold rotation symmetry. We hope our proposals and results will be assessed by future experiment.

  3. Cue exposure in the treatment of drug dependence: the potential of a new method for preventing relapse.

    PubMed

    Heather, N; Greeley, J

    1990-01-01

    Cue exposure has been used successfully in the treatment of neurotic disorders. Its application to the treatment of drug dependence is founded on the premise that craving for drugs can become classically conditioned to internal and external drug-related cues and that such conditioned craving responses play an important part in relapse to drug use. This article reviews the theoretical background for the use of cue exposure, research on cue reactivity in samples of drug-dependent persons and the role of cue reactivity in relapse. What evidence exists on the clinical effectiveness of cue exposure is reviewed in some detail and a number of clinical issues relating to its practical application are discussed. It is concluded that controlled trials of the effectiveness of cue exposure treatment for drug dependence should be implemented without further delay.

  4. Dynamic subnuclear relocalization of WRKY40, a potential new mechanism of ABA-dependent transcription factor regulation.

    PubMed

    Geilen, Katja; Böhmer, Maik

    2015-01-01

    The phytohormone ABA plays a major role during plant development, e.g. seed maturation and seed germination, and during adaptation to abiotic stresses like stomatal aperture regulation. The three closely related WRKY transcription factors WRKY18, WRKY40 and WRKY60 function in ABA signal transduction. We recently demonstrated that WRKY18 and WRKY40 but not WRKY60 localize to nuclear bodies in A. thaliana mesophyll protoplasts. WRKY40, a negative regulator of ABA-dependent inhibition of seed germination, relocalizes from PNBs to the nucleoplasm in the presence of ABA in a dynamic and phosphorylation-dependent manner. We propose that subnuclear relocalization of WRKY40 might constitute a new regulatory mechanism of ABA-dependent modulation of transcription factor activity.

  5. Frequency-dependent effects of 4-aminopyridine and almokalant on action-potential duration of adult and neonatal rabbit ventricular muscle.

    PubMed

    Elizalde, A; Barajas, H; Navarro-Polanco, R; Sánchez-Chapula, J

    1999-03-01

    The effects of 4-aminopyridine (1 mM) and almokalant (1 microM) on action-potential duration of neonatal and adult rabbit ventricular multicellular preparations and plateau membrane currents of single ventricular myocytes were studied. In adult ventricular preparations, 4-aminopyridine increased action-potential duration in a frequency-dependent manner, with a greater effect at low stimulation frequencies ("reverse" use dependence). In neonatal preparations, the increase in action-potential duration by 4-aminopyridine was significantly smaller than in adults, and the effect was frequency independent. Almokalant increased the action-potential duration more in neonatal than in adult myocytes. The effect of almokalant was frequency independent between 0.5 and 2 Hz. The block of transient outward current and delayed rectifier current in single myocytes was quantitatively similar. We propose that differences in the kinetic behavior of the transient outward current between adult and neonatal ventricular preparations, slower inactivation, and recovery from inactivation in adults determine differences in the frequency-dependent changes induced by 4-aminopyridine and almokalant on action-potential duration.

  6. Molecular dynamics simulation of the recrystallization of amorphous Si layers: Comprehensive study of the dependence of the recrystallization velocity on the interatomic potential

    NASA Astrophysics Data System (ADS)

    Krzeminski, C.; Brulin, Q.; Cuny, V.; Lecat, E.; Lampin, E.; Cleri, F.

    2007-06-01

    The molecular dynamics method is applied to simulate the recrystallization of an amorphous/crystalline silicon interface. The atomic structure of the amorphous material is constructed with the method of Wooten, Winer, and Weaire. The amorphous on crystalline stack is annealed afterward on a wide range of temperature and time using five different interatomic potentials: Stillinger-Weber, Tersoff, EDIP, SW115, and Lenosky. The simulations are exploited to systematically extract the recrystallization velocity. A strong dependency of the results on the interatomic potential is evidenced and explained by the capability of some potentials (Tersoff and SW115) to correctly handle the amorphous structure, while other potentials (Stillinger-Weber, EDIP, and Lenosky) lead to the melting of the amorphous. Consequently, the interatomic potentials are classified according to their ability to simulate the solid or the liquid phase epitaxy.

  7. Host sex-dependent growth of potential Thy-1+ lymphoma cells that appear in the thymus of X-irradiated NFS mice

    SciTech Connect

    Mori, N.; Takamori, Y. )

    1990-01-01

    During the course of studies designed to detect potentially leukemic cells in radiation lymphomagenesis, using an opposite-sex (male----female) transplantation assay method, we previously found that potential Thy-1- lymphoma cells are generated in the bone marrow of NFS mice exposed to a split-dose irradiation (1.7 Gy X 4), while potential Thy-1+ lymphoma cells are not detectable. In this report, using a (female----male) intrathymic transplantation assay system we show that potential Thy-1+ lymphoma cells were generated in the thymus of female NFS mice exposed to split-dose irradiation, and reconfirm that such cells were not detected in the (male----female) transplantation system. These results demonstrate that the detection of potential Thy-1+ lymphoma cells strictly depends on the transplantation system.

  8. Kinetics of rate-dependent shortening of action potential duration in guinea-pig ventricle; effects of IK1 and IKr blockade.

    PubMed

    Williams, B A; Dickenson, D R; Beatch, G N

    1999-03-01

    1. The kinetics of shortening of action potential duration (APD) following an increase in pacing rate, from 2 to 3.3 Hz, was characterized in guinea-pig ventricular preparations. Terikalant (RP62719), an inhibitor of the inwardly rectifying K+ current (IK1), and dofetilide, a specific inhibitor of the rapidly activating delayed-rectifier current (IKr), were applied to determine the effect of inhibition of these ion currents on slow APD shortening. 2. Action potentials were recorded from isolated guinea-pig ventricular myocytes using the perforated-patch patch-clamp technique, and monophasic action potentials were recorded from Langendorff-perfused guinea-pig ventricles using a contact epicardial probe. 3. Under control conditions, after an increase in pacing rate, APD immediately decreased, and then shortened slowly with an exponential time course. In ventricular myocytes, the time constant of this exponential shortening was 28+/-4 s and the amount of slow shortening was 21.9+/-0.9 ms (n=8) for an increase in rate from 2 to 3.3 Hz. Similar values were observed in Langendorff-perfused ventricles. 4. Terikalant dose-dependently increased APD and the increase was enhanced by rapid pacing ('positive' rate-dependence). The drug dose-dependently decreased the time constant of shortening and amount of slow APD shortening. In contrast, dofetilide, an inhibitor of IKr, which shows 'reverse' rate-dependent APD widening, had no significant effect on the time constant or amount of slow shortening. 5. These observations suggest that IK1 plays a role in rate-dependent shortening of APD. The results appear to support the hypothesis that 'reverse' rate-dependent effects of IKr blockers are due to these drugs not affecting the ion current(s) mediating intrinsic rate-dependent slow shortening of APD.

  9. Potentiation of vasoconstrictor response and inhibition of endothelium-dependent vasorelaxation by gallic acid in rat aorta.

    PubMed

    Sanae, Fujiko; Miyaichi, Yukinori; Hayashi, Hisao

    2002-08-01

    In the isolated rat thoracic aorta, gallic acid potentiated the vasoconstrictor response to phenylephrine. The potentiation produced by gallic acid was absent in endothelium-denuded arteries. The potentiation was abolished by N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, and slightly attenuated by an addition of L-arginine, while indomethacin or BQ610 had no effect. The potentiation of response to phenylephrine was not found for structural modifications of gallic acid, except for caffeic acid. Gallic acid also inhibited vasorelaxation induced by acetylcholine, sodium nitroprusside or prostacyclin, especially that by acetylcholine. The effect on vasorelaxation induced by acetylcholine was decreased by esterification of the carboxy group of gallic acid, and in the absence or by the methylation of the o-dihydroxy group. Caffeic acid inhibited the vasorelaxation, though the effect was smaller than that of gallic acid. These findings indicate that gallic acid produces a potentiation of contractile response and inhibition of vasorelaxant responses, probably through inactivation of nitric oxide (NO), in which endothelially produced NO is principally involved, and that the modification of functional groups of the gallic acid molecule abolishes the potentiation of contractile response and attenuates the inhibition of vasorelaxant responses.

  10. Comment on ``Solution of the Schrödinger equation for the time-dependent linear potential''

    NASA Astrophysics Data System (ADS)

    Bauer, Jarosław

    2002-03-01

    It is shown that the wave function recently found by Guedes [Phys. Rev. A 63, 034102 (2001)] is a special case of the well-known Volkov solution to the time-dependent Schrödinger equation describing a nonrelativistic charged particle moving in an electromagnetic field.

  11. C1-transport in gastric micorsomes. An ATP-dependent influx sensitive to membrane potential and to protein kinase inhibitor.

    PubMed

    Soumarmon, A; Abastado, M; Bonfils, S; Lewin, M J

    1980-12-25

    Uptakes of radioactive C1- or 1- by gastric microsomal vesicles were stimulated 2- to 8-fold by AtP. The sensitivity of those uptakes to a C1- in equilibrium OH- ionophore and to osmotic swelling suggested they were due to transport rather than to binding. The ATP effect was labile, but dithiothreitol and methanol improved its stability. The stimulation of anion transport required magnesium; GTP and UTP were less potent than ATP whereas ADP and AMP had no effect. The apparent Km for ATP was estimated to be 2 X 10(-4) M at 22 degrees C. The rate of the ATP-dependent transport showed saturation-type kinetics, with half-maximal uptake at 10 mM for I- and 15 mM for C1-. Nonradioactive C1-, I-, and SCN- competed with 125I- uptake while SO42- did not. K+ valinomycin increased the ATP-dependent C1- uptake. The thermostable inhibitor of cAMP-dependent protein kinases inhibited the effect of ATP. These results suggest the existence of an anion conductance, permeant to C1-, I-, and SCN- and nonpermeant to SO42-, which could be linked to a cAMP-dependent protein kinase.

  12. Validation of differential GDAP1 DNA methylation in alcohol dependence and its potential function as a biomarker for disease severity and therapy outcome.

    PubMed

    Brückmann, Christof; Di Santo, Adriana; Karle, Kathrin Nora; Batra, Anil; Nieratschker, Vanessa

    2016-06-02

    Alcohol dependence is a severe disorder contributing substantially to the global burden of disease. Despite the detrimental consequences of chronic alcohol abuse and dependence, effective prevention strategies as well as treatment options are largely missing to date. Accumulating evidence suggests that gene-environment interactions, including epigenetic mechanisms, play a role in the etiology of alcohol dependence. A recent epigenome-wide study reported widespread alterations of DNA methylation patterns in alcohol dependent patients compared to control individuals. In the present study, we validate and replicate one of the top findings from this previous investigation in an independent cohort: the hypomethylation of GDAP1 in patients. To our knowledge, this is the first independent replication of an epigenome-wide finding in alcohol dependence. Furthermore, the AUDIT as well as the GSI score were negatively associated with GDAP1 methylation and we found a trend toward a negative association between GDAP1 methylation and the years of alcohol dependency, pointing toward a potential role of GDAP1 hypomethylation as biomarker for disease severity. In addition, we show that the hypomethylation of GDAP1 in patients reverses during a short-term alcohol treatment program, suggesting that GDAP1 DNA methylation could also serve as a potential biomarker for treatment outcome. Our data add to the growing body of knowledge on epigenetic effects in alcohol dependence and support GDAP1 as a novel candidate gene implicated in this disorder. As the role of GDAP1 in alcohol dependence is unknown, this novel candidate gene should be followed up in future studies.

  13. Kohn–Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space

    PubMed Central

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-01-01

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron–photon interactions in terms of effective Kohn–Sham potentials. In this work, we numerically construct the exact electron–photon Kohn–Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light–matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account. PMID:26627715

  14. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  15. Nitric oxide-dependent long-term depression but not endocannabinoid-mediated long-term potentiation is crucial for visual recognition memory

    PubMed Central

    Tamagnini, Francesco; Barker, Gareth; Warburton, E Clea; Burattini, Costanza; Aicardi, Giorgio; Bashir, Zafar I

    2013-01-01

    Synaptic plasticity in perirhinal cortex is essential for recognition memory. Nitric oxide and endocannabinoids (eCBs), which are produced in the postsynaptic cell and act on the presynaptic terminal, are implicated in mechanisms of long-term potentiation (LTP) and long-term depression (LTD) in other brain regions. In this study, we examine these two retrograde signalling cascades in perirhinal cortex synaptic plasticity and in visual recognition memory in the rat. We show that inhibition of NO-dependent signalling prevented both carbachol- and activity (5 Hz)-dependent LTD but not activity (100 Hz theta burst)-dependent LTP in the rat perirhinal cortex in vitro. In contrast, inhibition of the eCB-dependent signalling prevented LTP but not the two forms of LTD in vitro. Local administration into perirhinal cortex of the nitric oxide synthase inhibitor NPA (2 μm) disrupted acquisition of long-term visual recognition memory. In contrast, AM251 (10 μm), a cannabinoid receptor 1 antagonist, did not impair visual recognition memory. The results of this study demonstrate dissociation between putative retrograde signalling mechanisms in LTD and LTP in perirhinal cortex. Thus, LTP relies on cannabinoid but not NO signalling, whilst LTD relies on NO- but not eCB-dependent signalling. Critically, these results also establish, for the first time, that NO- but not eCB-dependent signalling is important in perirhinal cortex-dependent visual recognition memory. PMID:23671159

  16. The potential role of ATF3 on immune response is regulated by BMP10 through Smad dependent pathway.

    PubMed

    Wang, Yong; Zhang, Yi-Wei; Xu, Li; Xin, Hong-bo

    2011-05-01

    It is hypothesis that ATF3 is a downstream component of BMP10. The possible function of ATF3 on immune response is partially regulated by BMP10 via Smad dependent pathway. BMP10 is highly expressed in blood cells during embryonic development based on our in situ hybridization. The expression of ATF3 is enhanced by BMP10 in overexpression transgenic mice. Both BMP10 and ATF3 can response to stress stimulate, and ATF3 is well understood as a stress inducible gene which possible contributes to immune response. The Smad dependent pathway is well established for BMP10 in regulation expression of downstream targets. It would be interesting for us to determine the relationship between BMP10 and ATF3, especially to understand the mechanism of BMP10 and ATF3 effecting on heart development, as well as immune response exposed to stress stimulates.

  17. The autoimmunity-associated gene PTPN22 potentiates toll-like receptor-driven, type 1 interferon-dependent immunity.

    PubMed

    Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J

    2013-07-25

    Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation.

  18. Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition.

    PubMed

    Pilli, J; Kumar, S S

    2014-07-11

    N-methyl-d-aspartate receptors (NMDARs) at layer (L)1/primary whisker motor cortex synaptic inputs are distinct from thalamic/striatal (Str) synaptic inputs onto L5 pyramidal neurons in the rat somatosensory cortex. However, the consequences of differential expression of putative GluN3A-containing triheteromeric NMDARs at L1 inputs and GluN2A-containing diheteromeric NMDARs at Str inputs on plasticity of the underlying synapses at the respective inputs remain unknown. Here we demonstrate that L1, but not Str, synapses are potentiated following delta burst stimulation (dBS). This potentiation is blocked by d-serine and/or intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) suggesting that it is subunit-specific and dependent on elevations in intracellular Ca(2+). Interestingly, ifenprodil, the GluN2B-preferring antagonist, suppresses baseline L1 responses but does not prevent induction of dBS-evoked potentiation. Unlike L1, Str synapses are maximally potentiated following theta burst stimulation (tBS) and this potentiation is blocked with BAPTA and/or the GluN2A-preferring antagonist NVP-AAM077. We show further that while dBS is both necessary and sufficient to potentiate L1 synapses, tBS is most effective in potentiating Str synapses. Our data suggest distinct potentiating paradigms for the two convergent inputs onto pyramidal neurons in the somatosensory cortex and co-dependence of synaptic potentiation on brain wave-tuned frequencies of burst stimulation and subunit composition of underlying NMDARs. A model for predicting the likelihood of enhancing synaptic efficacy is proposed based on Ca(2+) influx through these receptors and integration of EPSPs at these inputs. Together, these findings raise the possibility of input-specific enhancements of synaptic efficacy in neurons as a function of the animal's behavioral state and/or arousal in vivo.

  19. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential.

    PubMed

    Yang, Linlin; Li, Nianbei; Li, Baowen

    2014-12-01

    The temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with soft on-site potential (soft-KG) are investigated systematically. Similarly to the previously studied hard-KG lattices, the existence of renormalized phonons is also confirmed in soft-KG lattices. In particular, the temperature dependence of the renormalized phonon frequency predicted by a classical field theory is verified by detailed numerical simulations. However, the thermal conductivities of soft-KG lattices exhibit the opposite trend in temperature dependence in comparison with those of hard-KG lattices. The interesting thing is that the temperature-dependent thermal conductivities of both soft- and hard-KG lattices can be interpreted in the same framework of effective phonon theory. According to the effective phonon theory, the exponents of the power-law dependence of the thermal conductivities as a function of temperature are only determined by the exponents of the soft or hard on-site potentials. These theoretical predictions are consistently verified very well by extensive numerical simulations.

  20. A Protein Synthesis and Nitric Oxide-Dependent Presynaptic Enhancement in Persistent Forms of Long-Term Potentiation

    ERIC Educational Resources Information Center

    Johnstone, Victoria P. A.; Raymond, Clarke R.

    2011-01-01

    Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2,…

  1. Corticosterone Time-Dependently Modulates [beta]-Adrenergic Effects on Long-Term Potentiation in the Hippocampal Dentate Gyrus

    ERIC Educational Resources Information Center

    Pu, Zhenwei; Krugers, Harm J.; Joels, Marian

    2007-01-01

    Previous experiments in the hippocampal CA1 area have shown that corticosterone can facilitate long-term potentiation (LTP) in a rapid non-genomic fashion, while the same hormone suppresses LTP that is induced several hours after hormone application. Here, we elaborated on this finding by examining whether corticosterone exerts opposite effects on…

  2. Simple way of determining the dependence of the Hamiltonian on the action variable for certain one-dimensional potentials

    NASA Astrophysics Data System (ADS)

    Susskind, S. M.

    1986-07-01

    By further developing an idea found in Goldstein's book Classical Mechanics together with a trivial generalization of the virial theorem, an alternative and simple perturbative procedure for obtaining H=H(J) for certain one-dimensional potentials is presented. The anharmonic oscillator and the Stark effect for hydrogen, both in one dimension, are given as examples of the method.

  3. Activity-Dependent Calpain Activation Plays a Critical Role in Synaptic Facilitation and Post-Tetanic Potentiation

    ERIC Educational Resources Information Center

    Khoutorsky, Arkady; Spira, Micha E.

    2009-01-01

    Synaptic facilitation and post-tetanic potentiation (PTP) are believed to necessitate active regeneration of the release machinery and supply of synaptic vesicles to a ready-releasable site. The prevailing hypothesis assumes that synapsins play pivotal roles in these processes. Using a cholinergic synapse formed between cultured "Aplysia" neurons…

  4. Influence of endothelium in dose-dependent inhibition and potentiation by isoniazid of isosorbide dinitrate relaxation of rat aorta.

    PubMed

    Vidrio, H; Fernández, G

    2001-05-01

    The influence of in vivo administration of isoniazid on the relaxant effect of isosorbide dinitrate was determined by pretreating rats with various doses of isoniazid and obtaining concentration-response curves to isosorbide dinitrate in aortic rings from these animals. In rings with endothelium, isoniazid potentiated responses to isosorbide dinitrate at doses of 10, 30, and 100 mg/kg; 3 and 300 mg/kg were without effect. In endothelium-denuded preparations, potentiation was present only at 10 mg/kg; 3 and 300 mg/kg inhibited relaxation. Other experiments indicated that isoniazid potentiation was prevented by pyridoxine, was reproduced with theophylline, and did not occur with 3-morpholinosydnonimine or papaverine. These results were deemed compatible with the hypothesis that isoniazid inhibits transsulfuration of homocysteine and causes its accumulation in vascular smooth muscle and endothelial cells, where it functions as a thiol intermediate and leads to enhanced bioactivation of isosorbide dinitrate. Potentiation appeared to occur only with moderate increases of homocysteine.

  5. Lovastatin dose-dependently potentiates the pro-inflammatory activity of lipopolysaccharide both in vitro and in vivo.

    PubMed

    Zanin, Valentina; Marcuzzi, Annalisa; Kleiner, Giulio; Piscianz, Elisa; Monasta, Lorenzo; Zacchigna, Serena; Crovella, Sergio; Zauli, Giorgio

    2013-12-01

    Since contradictory findings have been reported on potential effects of statins in modulating the inflammatory response, we have analysed the biological activity of lovastatin both in vitro using the Raw 264.7 murine macrophagic cell line and in vivo using BALB/c mice. When added to Raw 264.7 cells in combination with lipopolysaccharide, lovastatin significantly potentiated the release of interleukin-1β, interleukin-6 and interleukin-12 with respect to lipopolysaccharide alone and showed an additive effect on the release of nitric oxide. Similarly, when lovastatin was intraperitoneally administrated to BALB/c mice, it did not induce any pro-inflammatory effect when used alone, but it significantly potentiated the pro-inflammatory activity of lipopolysaccharide, in terms of number of intraperitoneal cells and serum levels of serum amyloid A, interleukin-1β, interleukin-6 and interleukin-12. A potential clinical implication of our study is that lovastatin might exert a pro-inflammatory activity in subjects affected by inflammatory processes, with clinically evident or subclinical infections.

  6. Platelets as potential peripheral markers to study functioning of the high-affinity sodium-dependent glutamate transporters in the nerve terminals of the brain

    NASA Astrophysics Data System (ADS)

    Borisova, T. A.; Kasatkina, L. A.

    Activity of the high-affinity sodium-dependent glutamate transporters in the brain nerve terminals is demonstrated to alter under artificial gravity conditions. A comparison analysis is made for L-[14C] glutamate transport in platelets and isolated nerve terminals. The kinetic characteristics of the transporters, [Na+]-dependence and influence of the transpoter inhibitor DL-threo-beta-benzyloxyaspartate on the L-[14C] glutamate uptake process are determined. It is shown that glutamate uptake process is very similar for platelets and nerve terminals. Thus it is reasonable to use platelets as a potential peripheral model for glutamate transport.

  7. Investigation of Bohr Hamiltonian in the presence of time-dependent Manning-Rosen, harmonic oscillator and double ring shaped potentials

    NASA Astrophysics Data System (ADS)

    Sobhani, Hadi; Hassanabadi, Hassan

    2016-08-01

    This paper contains study of Bohr Hamiltonian considering time-dependent form of two important and famous nuclear potentials and harmonic oscillator. Dependence on time in interactions is considered in general form. In order to investigate this system, a powerful mathematical method has been employed, so-called Lewis-Riesenfeld dynamical invariant method. Appropriate dynamical invariant for considered system has been constructed. Then its eigen functions and the wave function are derived. At the end, we discussed about physical meaning of the results.

  8. Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adrenocortical cells

    PubMed Central

    Matthews, E. K.; Saffran, M.

    1973-01-01

    1. The effects of changes of ionic environment upon corticosteroid production by rabbit adrenal glands have been investigated in vitro using a superfusion technique and on-line steroid analysis by an automated fluorescence method. In some experiments micro-electrode recordings of adrenocortical transmembrane potentials were made concomitantly with measurement of steroid output. 2. Adrenocorticotrophic hormone (ACTH), 10 m-u./ml., induced a sevenfold increase in corticosteroid production rate in normal Krebs solution. 3. The steroidogenic response to ACTH was not impaired after omission of [K]o for 1 hr but was inhibited following exposure to K+-free medium for 3 hr. Increase of [K]o tenfold to 47 mM increased the basal but not the ACTH-stimulated output of corticosteroid whereas raising [K]o twentyfold to 94 mM enhanced both the basal and ACTH-stimulated steroid production rate. In K+-free solution the adrenocortical cells hyperpolarized from - 67 to - 86 mV; subsequently on addition of ACTH they depolarized. Reintroduction of K+ restored the membrane potential. 4. Omission of Ca2+ partially depolarized the cells but only affected the steroidogenic response to ACTH in the presence of EDTA. A threefold increase of [Ca]o, to 7·68 mM, had no effect on either membrane potentials or steroid formation, but increasing [Ca]o tenfold to 25·6 mM partially blocked ACTH action. Increasing [Mg]o twentyfold to 22·6 mM had little effect on ACTH-stimulated corticosteroid output and Sr 2·56 mM, in substitution for Ca2+, supported ACTH action, but La, 0·25 mM, completely blocked the steroidogenic effect of ACTH. 5. Replacement of NaCl, 118 mM by choline chloride, 118 mM, was without effect on ACTH-induced steroidogenesis, whereas LiCl, 118 mM, reduced it by 50%. NaF, 1 and 10 mM, inhibited ACTH-induced steroidogenesis by approximately 60%. 6. Nupercaine, 10-4 M, inhibited the steroid response to ACTH with no effect upon membrane potentials: increasing the nupercaine

  9. Energy dependence of the optical potential of weakly and tightly bound nuclei as projectiles on a medium-mass target

    SciTech Connect

    Figueira, J. M.; Arazi, A.; Carnelli, P.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Capurro, O. A.; Fimiani, L.; Marti, G. V.; Lubian, J.; Monteiro, D. S.; Gomes, P. R. S.

    2010-02-15

    Angular distributions for the elastic scattering of the weakly bound {sup 6,7}Li+{sup 144}Sm systems were measured with high accuracy at bombarding energies from 85% up to 170% of the Coulomb barrier. An optical model analysis was performed, and the relevant parameters of the real and imaginary parts of the optical potential were extracted. The results are compared with those previously published for the tightly bound {sup 12}C+{sup 144}Sm and {sup 16}O+{sup 144}Sm systems. The usual threshold anomaly observed in the behavior of the potential of tightly bound systems was not observed for either weakly bound system. This absence is attributed to the repulsion due to breakup coupling which cancels the attraction arising from couplings with bound channels.

  10. Analysis of the Mechanism of Action of RPF1: Potentiator of Progesterone Receptor and p53-dependent Transcriptional Activity

    DTIC Science & Technology

    2000-07-01

    subcellular localization using fluorescence confocal microscopy. Both EGFP-hPRTB and the ’PY’ mutant have identical fluorescence patterns and are localized ...a potential substrate of hRPF1/Nedd4 which is found in the nucleus, we have localized hPRTB to a subcellular localization similar to that of another...al., Human ubiquitin-protein ligase Nedd4: expression, subcellular localization and selective interaction wiwth ubiquitin-conjugating enzymes. Genes

  11. Scalar-Tensor gravity with system-dependent potential and its relation with Renormalization Group extended General Relativity

    SciTech Connect

    Rodrigues, Davi C.; Piattella, Oliver F.; Chauvineau, Bertrand E-mail: Bertrand.Chauvineau@oca.eu

    2015-09-01

    We show that Renormalization Group extensions of the Einstein-Hilbert action for large scale physics are not, in general, a particular case of standard Scalar-Tensor (ST) gravity. We present a new class of ST actions, in which the potential is not necessarily fixed at the action level, and show that this extended ST theory formally contains the Renormalization Group case. We also propose here a Renormalization Group scale setting identification that is explicitly covariant and valid for arbitrary relativistic fluids.

  12. A Multiple Scattering Theory Approach to Solving the Time-Dependent Schrödinger Equation with an Asymmetric Rectangular Potential

    NASA Astrophysics Data System (ADS)

    Los, Victor F.; Los, Nicholas V.

    2016-04-01

    The exact expressions for an energy-dependent Green function (resolvent), space-time propagator and time-dependent solution for the wave function Ψ(r, t) of a particle moving in the presence of an asymmetric rectangular well/barrier potential are obtained. It is done by applying to this problem the multiple scattering theory (MST), which is different from previous such approaches by using the localized at the potential jumps effective potentials responsible for transmission through and reflection from the considered rectangular potential. This approach (alternative to the path-integral one) enables considering these processes from a particle (rather than a wave) point of view. The solution for the wave function describes these quantum phenomena as a function of time and is related to the fundamental issues (such as measuring time) of quantum mechanics. It is presented in terms of integrals of elementary functions and is a sum of the forward- and backward-moving components of the wave packet. The relative contribution of these components and their interference as well as of the potential asymmetry to the probability density |Ψ(x, t)|2 and particle dwell time is considered and numerically visualized for narrow and broad energy (momentum) distributions of the initial Gaussian wave packet. It is shown that in the case of a broad initial wave packet, the quantum mechanical counterintuitive effect of the influence of the backward-moving components on the considered quantities becomes significant.

  13. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway.

    PubMed

    Fernandez-Gomez, Francisco J; Galindo, Maria F; Gómez-Lázaro, Maria; Yuste, Victor J; Comella, Joan X; Aguirre, Norberto; Jordán, Joaquín

    2005-02-01

    1. Herein we study the effects of the mitochondrial complex II inhibitor malonate on its primary target, the mitochondrion. 2. Malonate induces mitochondrial potential collapse, mitochondrial swelling, cytochrome c (Cyt c) release and depletes glutathione (GSH) and nicotinamide adenine dinucleotide coenzyme (NAD(P)H) stores in brain-isolated mitochondria. 3. Although, mitochondrial potential collapse was almost immediate after malonate addition, mitochondrial swelling was not evident before 15 min of drug presence. This latter effect was blocked by cyclosporin A (CSA), Ruthenium Red (RR), magnesium, catalase, GSH and vitamin E. 4. Malonate added to SH-SY5Y cell cultures produced a marked loss of cell viability together with the release of Cyt c and depletion of GSH and NAD(P)H concentrations. All these effects were not apparent in SH-SY5Y cells overexpressing Bcl-xL. 5. When GSH concentrations were lowered with buthionine sulphoximine, cytoprotection afforded by Bcl-xL overexpression was not evident anymore. 6. Taken together, all these data suggest that malonate causes a rapid mitochondrial potential collapse and reactive oxygen species production that overwhelms mitochondrial antioxidant capacity and leads to mitochondrial swelling. Further permeability transition pore opening and the subsequent release of proapoptotic factors such as Cyt c could therefore be, at least in part, responsible for malonate-induced toxicity.

  14. Transient receptor potential TRPA1 channel desensitization in sensory neurons is agonist dependent and regulated by TRPV1-directed internalization.

    PubMed

    Akopian, Armen N; Ruparel, Nikita B; Jeske, Nathaniel A; Hargreaves, Kenneth M

    2007-08-15

    The pharmacological desensitization of receptors is a fundamental mechanism for regulating the activity of neuronal systems. The TRPA1 channel plays a key role in the processing of noxious information and can undergo functional desensitization by unknown mechanisms. Here we show that TRPA1 is desensitized by homologous (mustard oil; a TRPA1 agonist) and heterologous (capsaicin; a TRPV1 agonist) agonists via Ca2+-independent and Ca2+-dependent pathways, respectively, in sensory neurons. The pharmacological desensitization of TRPA1 by capsaicin and mustard oil is not influenced by activation of protein phosphatase 2B. However, it is regulated by phosphatidylinositol-4,5-bisphosphate depletion after capsaicin, but not mustard oil, application. Using a biosensor, we establish that capsaicin, unlike mustard oil, consistently activates phospholipase C in sensory neurons. We next demonstrate that TRPA1 desensitization is regulated by TRPV1, and it appears that mustard oil-induced TRPA1 internalization is prevented by coexpression with TRPV1 in a heterologous expression system and in sensory neurons. In conclusion, we propose novel mechanisms whereby TRPA1 activity undergoes pharmacological desensitization through multiple cellular pathways that are agonist dependent and modulated by TRPV1.

  15. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    SciTech Connect

    Vitória, R.L.L.; Furtado, C. Bakke, K.

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.

  16. Fixed conditions for achieving the real-valued partition function of one-dimensional Gross-Pitaevskii equation coupled with time-dependent potential

    NASA Astrophysics Data System (ADS)

    Prayitno, T. B.

    2014-03-01

    We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225-230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.

  17. Fixed conditions for achieving the real-valued partition function of one-dimensional Gross-Pitaevskii equation coupled with time-dependent potential

    SciTech Connect

    Prayitno, T. B.

    2014-03-24

    We have imposed the conditions in order to preserve the real-valued partition function in the case of onedimensional Gross-Pitaevskii equation coupled by time-dependent potential. In this case we have solved the Gross-Pitaevskii equation by means of the time-dependent perturbation theory by extending the previous work of Kivshar et al. [Phys. Lett A 278, 225–230 (2001)]. To use the method, we have treated the equation as the macroscopic quantum oscillator and found that the expression of the partition function explicitly has complex values. In fact, we have to choose not only the appropriate functions but also the suitable several values of the potential to keep the real-valued partition function.

  18. [Rhythmic bioelectrical activity of the cerebral cortex analyzed with allowance for the nonlinear voltage dependence of excitatory postsynaptic potentials induced by neocortical neurons].

    PubMed

    Bakharev, B V

    2008-01-01

    A nonlinear voltage dependence between the membrane and excitatory postsynaptic potentials coming via corticocortical connections was derived based on literature data. The existence of a region of stability of oscillations with increasing mean value of nonspecific afferent input was shown. As the afferent input strongly increases, a high-frequency component of oscillations (40-60 Hz), appeas which may result in the instability of oscillations and initiation of abnormal brain activity.

  19. REGULATORY T CELL SUPPRESSION IS POTENTIATED BY TARGET T CELLS IN A CELL CONTACT, IL-35- AND IL-10-DEPENDENT MANNER1

    PubMed Central

    Collison, Lauren W.; Pillai, Meenu R.; Chaturvedi, Vandana; Vignali, Dario A. A.

    2009-01-01

    Regulatory T cells (Treg) are believed to suppress conventional T cell (Tconv) proliferation in vitro in a contact-dependent, cytokine-independent manner, based in part on experiments in which Treg and Tconv are separated by a permeable membrane. We show that the production of interleukin-35 (IL-35), a novel inhibitory cytokine expressed by natural Treg, increases substantially following contact with Tconv. Surprisingly, Treg were able to mediate potent suppression of Tconv across a permeable membrane when placed in direct contact with Tconv in the upper chamber of a Transwell™ plate. Suppression was IL-35- and IL-10-dependent, and Tconv activation was required for maximal potentiation of Treg suppression. These data suggest that it is the ‘induction’ of suppression, rather than the ‘function’ of Treg that is obligatorily contact-dependent. PMID:19414764

  20. Thin Film Nanocrystalline TiO2 Electrodes: Dependence of Flat Band Potential on pH and Anion Adsorption.

    PubMed

    Minella, M; Maurino, V; Minero, C; Pelizzetti, E

    2015-05-01

    Thin nanocrystalline TiO2 films were produced on ITO conductive glass by dip-coating of a sol-gel TiO2 precursor. The transparent films were characterized from the optical and structural point of view with UV-Vis, Spectroscopic Ellipsometry, Raman and X-ray photoelectron spectroscopies, the roughness of the coating by AFM. The changes in the electrochemical properties features of ITO/TiO2 electrodes were evaluated in the presence of different electrolytes (KCI, Na2SO4 and phosphate buffer) with the aim to clarify the role of the ion adsorption on the structure of the electrical double layer. Electrochemical tests (Cyclic Voltammetry, CV, and Impedance Electrochemical Spectroscopy, EIS) showed a strong influence of the electrolyte properties on the semiconductor band edge position in the electrochemical scale and on band bending. The CV profiles recorded can be explained by considering that the interface capacity is due to the charging of surface states (e.g., Ti(IV) surface sites coordinated by oxygen atoms, ≡Ti-OH or Ti-O-Ti). The surface charge is strongly affected also by the density and nature of adsorbed ions and by dissociation of surficial OH. Of interest the fact that for the produced nanocrystalline electrodes the flat band potential, measured from the Mott-Schottky analysis of the space charge layer capacity obtained with EIS, showed a non Nernstian behavior with the pH probably caused by a change in the surface acidity as a consequence of specific anion adsorption. The modulation of flat band potential with adsorbed ions is of interest for many applications, in particular for photocatalysis (change in the redox potential of photogenerated carriers) and for photovoltaic applications like DSSC (change in the photopotentials).

  1. Pattern-dependent role of NMDA receptors in action potential generation: consequences on extracellular signal-regulated kinase activation.

    PubMed

    Zhao, Meilan; Adams, J Paige; Dudek, Serena M

    2005-07-27

    Synaptic long-term potentiation is maintained through gene transcription, but how the nucleus is recruited remains controversial. Activation of extracellular signal-regulated kinases (ERKs) 1 and 2 with synaptic stimulation has been shown to require NMDA receptors (NMDARs), yet stimulation intensities sufficient to recruit action potentials (APs) also appear to be required. This has led us to ask the question of whether NMDARs are necessary for AP generation as they relate to ERK activation. To test this, we examined the effects of NMDAR blockade on APs induced with synaptic stimulation using whole-cell current-clamp recordings from CA1 pyramidal cells in hippocampal slices. NMDAR antagonists were found to potently inhibit APs generated with 5 and 100 Hz synaptic stimulation. Blockade of APs and ERK activation could be overcome with the addition of the GABAA antagonist bicuculline, indicating that APs are sufficient to activate signals such as ERK in the nucleus and throughout the neuron in the continued presence of NMDAR antagonists. Interestingly, no effects of the NMDAR antagonists were observed when theta-burst stimulation (TBS) was used. This resistance to the antagonists is conferred by temporal summation during the bursts. These results clarify findings from a previous study showing that ERK activation induced with TBS is resistant to 2-amino-5-phosphonovalerate, in contrast to that induced with 5 or 100 Hz stimulation, which is sensitive. By showing that NMDAR blockade inhibits AP generation, we demonstrate that a major role that NMDARs play in cell-wide and nuclear ERK activation is through their contribution to action potential generation.

  2. Frequency-dependent effects of phenytoin on the maximum upstroke velocity of action potentials in guinea-pig papillary muscles.

    PubMed

    Kojima, M; Ichiyama, M; Ban, T

    1986-07-01

    Phenytoin, at 50 to 200 micrograms reduced the maximum upstroke velocity of action potentials (Vmax) with increases in frequency from 0.25 to 5 Hz and in the external potassium concentration [( K+]0) from 2.7 to 8.1 mM. The drug-induced shortening of action potential duration was evident at 0.25 to 2 Hz but little at 3 to 5 Hz. Time courses of recovery of Vmax was studied by applying premature responses between the conditioning responses at 1 Hz both in control and in drug-treated preparations. Concerning the time courses of the difference between the Vmax values before and after drug treatments at the same diastolic interval, with increases in drug concentrations the intercepts at APD90 were increased but the time constants were not changed or slightly decreased in 8.1 to 5.4 mM [K+]0, whereas they were increased in 2.7 mM [K+]0. To understand the kinetic behavior of this drug on sodium channels, rate constants for the interaction of phenytoin with three states of channels in terms of Hondeghem-Katzung model were estimated from the above experiments of Vmax. The model most consistent with the present experiments was that with an affinity for inactivated channels 20 times greater than that for resting channels and with a minor affinity for open channels. Phenytoin produced a delay in the time course of recovery of overshoot and action potential duration at 0 mV (APD0), suggesting an additional inhibition of the slow channel by this drug.

  3. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms.

    PubMed

    Estacion, M; Sinkins, W G; Schilling, W P

    2001-01-01

    Patch clamp and fura-2 fluorescence were employed to characterize receptor-mediated activation of recombinant Drosophila TrpL channels expressed in Sf9 insect cells. TrpL was activated by receptor stimulation and by exogenous application of diacylglycerol (DAG) or poly-unsaturated fatty acids (PUFAs). Activation of TrpL was blocked more than 70% by U73122, suggesting that the effect of these agents was dependent upon phospholipase C (PLC). In fura-2 assays, extracellular application of bacterial phosphatidylinositol (PI)-PLC or phosphatidylcholine (PC)-PLC caused a transient increase in TrpL channel activity, the magnitude of which was significantly less than that observed following receptor stimulation. TrpL channels were also activated in excised inside-out patches by cytoplasmic application of mammalian PLC-b2, bacterial PI-PLC and PC-PLC, but not by phospholipase D (PLD). The phospholipases had little or no effect when examined in either whole-cell or cell-attached configurations.TrpL activity was inhibited by addition of phosphatidylinositol-4,5-bisphosphate (PIP2) to excised inside-out membrane patches exhibiting spontaneous channel activity or to patches pre-activated by treatment with PLC. The effect was reversible, specific for PIP2, and was not observed with phosphatidylethanolamine (PE), PI, PC or phosphatidylserine (PS). However, antibodies against PIP2 consistently failed to activate TrpL in inside-out patches. It is concluded that both the hydrolysis of PIP2 and the generation of DAG are required to rapidly activate TrpL following receptor stimulation, or that some other PLC-dependent mechanism plays a crucial role in the activation process.

  4. MicroRNA-dependent regulation of telomere maintenance mechanisms: a field as much unexplored as potentially promising.

    PubMed

    Santambrogio, Francesca; Gandellini, Paolo; Cimino-Reale, Graziella; Zaffaroni, Nadia; Folini, Marco

    2014-01-01

    The activation of telomere maintenance mechanisms, which rely on telomerase reactivation or on a recombination-based process known as alternative lengthening of telomeres, guarantees a limitless proliferative potential to human tumor cells. To date, the molecular underpinnings that drive the activation of telomere maintenance mechanisms during tumorigenesis are poorly understood, but there are indications that complex signaling networks might be involved. Since telomerase activity has been mainly detected in tumors of epithelial origin and the alternative lengthening of telomere mechanisms is more frequently expressed in mesenchymal and neuroepithelial cancers, it could be hypothesized that cell-type specific mechanisms can favor their activation during tumor development. In this context, microRNAs - small non coding RNAs that regulate gene expression at post-transcriptional level - have emerged as key players in the development and progression of human cancers, being involved in the control of all the typical features of cancer cells, including the limitless replicative potential. In the present review, we will summarize the recent findings concerning the identification and biological validation of microRNAs which may play a role in the regulation of telomere biology as well as of the mechanisms that govern telomere maintenance.

  5. Pigment epithelium-derived factor: clinical significance in estrogen-dependent tissues and its potential in cancer therapy

    PubMed Central

    Franco-Chuaire, María Liliana; Ramírez-Clavijo, Sandra; Chuaire-Noack, Lilian

    2015-01-01

    Pigment epithelium-derived factor (PEDF) is a glycoprotein that belongs to the family of non-inhibitory serpins. The broad spectrum of PEDF biological activity is evident when considering its effects in promoting cell survival and proliferation, as well as its antiangiogenic, antitumor, and anti-metastatic properties. Although the structural domains of the PEDF gene that mediate such diverse effects and their mechanisms of action have not been completely elucidated, there is a large body of evidence describing their diverse range of activities; this evidence combined with the regulation of PEDF expression by sex steroids and their receptors have led to the idea that PEDF is not only a diagnostic and prognostic marker for certain diseases such as cancer, but is also a potential therapeutic target. In this manner, this paper aims to generally review the regulation of PEDF expression and PEDF interactions, as well as the findings that relate PEDF to the role of estrogens and estrogen receptors. In addition, this manuscript will review major advances toward potential therapeutic applications of PEDF. PMID:26523216

  6. Evaluation of Neurogenic Potential of Human Umbilical Cord Mesenchymal Cells; a Time- and Concentration-Dependent Manner

    PubMed Central

    Eftekhar-Vaghefi, Seyed Hassan; Zahmatkesh, Leila; Salehinejad, Parvin; Totonchi, Shahin; Shams-Ara, Ali

    2015-01-01

    Background: Retinoic acid as one of the most important regulators for cell differentiation was examined in this study for differentiation of human umbilical mesenchymal cells (hUCM). Methods: After isolation, hUCM were evaluated for mesenchymal stem cell properties by flow cytometry and alkaline phosphatase assay. Also, doubling time of the cells and their differentiation potential into adipogenic and osteogenic cells were tested. hUCM were then cultured with different concentrations of retinoic acid, and on days 1, 7, and 12, the percentage of differentiated cells was determined by immunostaining for nestin, anti-microtubule associated protein 2 (MAP2), glutamic acid decarboxylase (GAD), and gamma-aminobutyric acid (GABA) markers. Results: The isolated cells were negative for the hematopoietic markers and positive for the mesenchymal markers. They showed the population doubling time 60 ± 3 hours and differentiated into osteogenic and adipogenic cells. A descending trend in nestin and an ascending trend in MAP2, GAD, and GABA expression were observed from the first day until the last day between different concentrations of retinoic acid. Conclusion: hUCM cells may have the potential to differentiate into neural cells in the presence of different incubation period and concentration of retinoic acid. PMID:25864812

  7. Hyperammonemia impairs NMDA receptor-dependent long-term potentiation in the CA1 of rat hippocampus in vitro.

    PubMed

    Muñoz, M D; Monfort, P; Gaztelu, J M; Felipo, V

    2000-04-01

    Hyperammonemia is considered the main factor responsible for the neurological and cognitive alterations found in hepatic encephalopathy and in patients with congenital deficiencies of the urea cycle enzymes. The underlying mechanisms remain unclear. Chronic moderate hyperammonemia reduces nitric oxide-induced activation of soluble guanylate cyclase and glutamate-induced formation of cGMP. NMDA receptor-associated transduction pathways, including activation of soluble guanylate cyclase, are involved in the induction of long-term potentiation (LTP), a phenomenon that is considered to be the molecular basis for some forms of memory and learning. Using an animal model we show that chronic hyperammonemia significantly reduces the degree of long-term potentiation induced in the CA1 of hippocampus slices (200% increase in control and 50% increase in slices of hyperammonemic animals). Also, addition of 1 mM ammonia impaired the maintenance of non-decremental LTP. The LTP impairment could be involved in the intellectual impairment present in chronic hepatocerebral disorders associated with hyperammonemia.

  8. Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh(ax)

    NASA Astrophysics Data System (ADS)

    Dong, Shishan; Sun, Guo-Hua; Falaye, B. J.; Dong, Shi-Hai

    2016-05-01

    In this work we report the semi-exact solutions of the position-dependent mass Schrödinger equation (PDMSE) with a class of hyperbolic potential V0tanh(a x). The terminology of semi-exact solutions arises from the fact that the wave functions of this quantum system can be expressed by confluent Heun functions, but the energy levels cannot be obtained analytically. The potential V(z) obtained by some canonical transformations essentially keeps invariant when the potential parameter v is replaced by - v . The properties of the wave functions depending on v are also illustrated graphically. We find that the quasi-symmetric and quasi-antisymmetric wave functions that appear only for very small v are violated completely when v becomes large. This arises from the fact that the parity, which is almost a defined symmetry for very small v, is completely violated for large v. We also notice that the energy level \\varepsilon1 decreases and the \\varepsilon_{6-8} ones increase with the increasing potential parameter v, respectively, while the \\varepsilon_{2-5} ones first increase and then decrease with increasing v.

  9. Theory of Frequency-Dependent Polarization of General Planar Electrodes with Zeta Potentials of Arbitrary Magnitude in Ionic Media.

    PubMed

    Scott; Paul; Kaler

    2000-10-15

    Electrode polarization effects have long aggravated the efforts of low frequency analysis, particularly those investigations carried out on biological material or in highly conductive media. Beginning from elementary equations of electrostatics and hydrodynamics, a comprehensive model is devised to account for the screening of a general planar electrode by an ionic double layer. The surface geometry of the planar electrode is left unspecified to include any type of micromachined array. Building on the previous work by DeLacey and White (1982, J. Chem. Soc. Faraday Trans. 2 78, 457) using a variational theorem, we extend their numerical results with compact analytic solutions, analogous to the Debye-Hückel potential for dc systems, but applicable now to dynamic ac experiments. The variational approach generates functions that are not restricted by perturbation expansions or numerical convergence, representing optimal approximations to the exact solutions. Copyright 2000 Academic Press.

  10. Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR.

    PubMed Central

    Benkirane, M; Neuveut, C; Chun, R F; Smith, S M; Samuel, C E; Gatignol, A; Jeang, K T

    1997-01-01

    TAR RNA binding protein (TRBP) belongs to an RNA binding protein family that includes the double-stranded RNA-activated protein kinase (PKR), Drosophila Staufen and Xenopus xlrbpa. One member of this family, PKR, is a serine/threonine kinase which has anti-viral and anti-proliferative effects. In this study we show that TRBP is a cellular down-regulator of PKR function. Assaying expression from an infectious HIV-1 molecular clone, we found that PKR inhibited viral protein synthesis and that over-expression of TRBP effectively countered this inhibition. In intracellular and in cell-free assays we show that TRBP directly inhibits PKR autophosphorylation through an RNA binding-independent pathway. Biologically, TRBP serves a growth-promoting role; cells that overexpress TRBP exhibit transformed phenotypes. Our results demonstrate the oncogenic potential of TRBP and are consistent with the notion that intracellular PKR function contributes physiologically towards regulating cellular proliferation. PMID:9034343

  11. Length and sequence dependent accumulation of simple sequence repeats in vertebrates: potential role in genome organization and regulation.

    PubMed

    Ramamoorthy, Senthilkumar; Garapati, Hita Sony; Mishra, Rakesh Kumar

    2014-11-10

    Simple sequence repeats (SSRs) or microsatellites are tandemly repeated short DNA sequence motifs found to be abundant in higher eukaryotes. Enrichment of SSRs with increasing genome complexity points to a positive selection and their functional relevance. We analyzed genomes of 24 organisms to find features that may help understand the functional relevance of SSRs. Of the 501 possible SSRs, only 73 show length specific enrichment. We also noticed that ~45 bp is the optimum length for a majority of them particularly in the human genome. Finally, we observed non-random distribution of ACG and CCG, enriched around transcriptional start sites (TSSs) in several species. Taken together, these results suggest that SSRs are functionally relevant with potential regulatory role. We propose that such repeats are evolving under positive selection pressure like any other functional element in the genome.

  12. Effects of rotation on the sleep state-dependent midlatency auditory evoked P50 potential in the human

    NASA Technical Reports Server (NTRS)

    Dornhoffer, John L.; Mamiya, N.; Bray, P.; Skinner, Robert D.; Garcia-Rill, Edgar

    2002-01-01

    Sopite syndrome, characterized by loss of initiative, sensitivity to normally innocuous sensory stimuli, and impaired concentration amounting to a sensory gating deficit, is commonly associated with Space Motion Sickness (SMS). The amplitude of the P50 potential is a measure of level of arousal, and a paired-stimulus paradigm can be used to measure sensory gating. We used the rotary chair to elicit the sensory mismatch that occurs with SMS by overstimulating the vestibular apparatus. The effects of rotation on the manifestation of the P50 midlatency auditory evoked response were then assessed as a measure of arousal and distractibility. Results showed that rotation-induced motion sickness produced no change in the level of arousal but did produce a significant deficit in sensory gating, indicating that some of the attentional and cognitive deficits observed with SMS may be due to distractibility induced by decreased habituation to repetitive stimuli.

  13. Age-dependent decline in motor evoked potential (MEP) amplitude: with a comment on changes in Parkinson's disease.

    PubMed

    Eisen, A; Siejka, S; Schulzer, M; Calne, D

    1991-06-01

    Peak-to-peak measurement of the maximum amplitude motor evoked potential (MAXMEP) elicited by 20 consecutive transcranial magnetic stimuli recorded from the contracting thenar and hypothenar muscles measured 9.8 +/- 2.0 mV and 7.25 +/- 2.9 mV respectively (P less than 0.01). The ratio of MAXMEP/CMAP measured 92.6 +/- 25.8% and 54.8 +/- 12.3% respectively (P less than 0.001). Repeat studies showed good individual reproducibility. Amplitudes declined linearly with age (r = -0.836 for thenar MAXMEP P less than 0.001). It is argued that MAXMEP related to age is more meaningful than the MEP/CMAP wave ratio and is proportional to the number of fast conducting cortical motor neurons excited. In 7/18 patients with Parkinson's disease (PD) MAXMEP was increased; in 2 other patients MAXMEP was decreased for their age.

  14. Amphetamine-induced disruption and haloperidol-induced potentiation of latent inhibition depend on the nature of the stimulus.

    PubMed

    Ruob, C; Elsner, J; Weiner, I; Feldon, J

    1997-10-01

    If a stimulus (e.g. light) is repeatedly preexposed without consequences, it subsequently develops a weaker association with a reinforcer (e.g. foot shock) than does a non-preexposed stimulus. This retarded conditioning to the preexposed as compared to the non-preexposed stimulus, is latent inhibition (LI). It is well documented that LI is disrupted by low doses of amphetamine and potentiated by neuroleptic drugs, and there is evidence that the action of these agents on LI can be modified by changes in the parameters of preexposure or conditioning. The present experiments tested whether the effects of DA agents on LI are influenced by the nature of the stimulus. In two experiments, LI was assessed using an off-baseline conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: preexposure, in which the stimulus (a light) to be conditioned, was repeatedly presented without being followed by reinforcement; conditioning, in which the preexposed stimulus was paired with reinforcement (a foot-shock); and test, in which LI was indexed by animals' degree of suppression of licking during stimulus presentation. In both experiments, different groups of animals were preexposed and conditioned with four different preexposed visual stimuli: three steady side-lights, three flashing side-lights, one flashing side-light, and a flashing houselight. Experiment 1 used 40 stimulus preexposures and tested the effects of 1 mg/kg D-amphetamine, whereas experiment 2 used 10 preexposures and tested the effects of 0.1 mg/kg haloperidol. The results showed that of the four stimuli used, both drugs were effective with only one and the same stimulus, namely, flashing houselight. This demonstrates that the disruptive effect of amphetamine and the potentiating effect of haloperidol on LI, are modifiable by manipulating the nature of the preexposed stimulus.

  15. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer

    PubMed Central

    Zhou, Yubing; Shen, Jacson K.; Hornicek, Francis J.; Kan, Quancheng; Duan, Zhenfeng

    2016-01-01

    Overexpression and/or hyperactivation of cyclin-dependent kinases (CDKs) are common features of most cancer types. CDKs have been shown to play important roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. CDK4/6 inhibitor palbociclib has been recently approved by the FDA for the treatment of breast cancer. CDK11 is a serine/threonine protein kinase in the CDK family and recent studies have shown that CDK11 also plays critical roles in cancer cell growth and proliferation. A variety of genetic and epigenetic events may cause universal overexpression of CDK11 in human cancers. Inhibition of CDK11 has been shown to lead to cancer cell death and apoptosis. Significant evidence has suggested that CDK11 may be a novel and promising therapeutic target for the treatment of cancers. This review will focus on the emerging roles of CDK11 in human cancers, and provide a proof-of-principle for continued efforts toward targeting CDK11 for effective cancer treatment. PMID:27049727

  16. Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials

    PubMed Central

    Gao, Jun-feng; Yang, Yong; Huang, Wen-tao; Lin, Pan; Ge, Sheng; Zheng, Hong-mei; Gu, Ling-yun; Zhou, Hui; Li, Chen-hong; Rao, Ni-ni

    2016-01-01

    To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception. PMID:27833159

  17. A model of strain-dependent glomerular basement membrane maintenance and its potential ramifications in health and disease.

    PubMed

    Barocas, Victor H; Dorfman, Kevin D; Segal, Yoav

    2012-08-01

    A model is developed and analyzed for type IV collagen turnover in the kidney glomerular basement membrane (GBM), which is the primary structural element in the glomerular capillary wall. The model incorporates strain dependence in both deposition and removal of the GBM, leading to an equilibrium tissue strain at which deposition and removal are balanced. The GBM thickening decreases tissue strain per unit of transcapillary pressure drop according to the law of Laplace, but increases the transcapillary pressure drop required to maintain glomerular filtration. The model results are in agreement with the observed GBM alterations in Alport syndrome and thin basement membrane disease, and the model-predicted linear relation between the inverse capillary radius and inverse capillary thickness at equilibrium is consistent with published data on different mammals. In addition, the model predicts a minimum achievable strain in the GBM based on the geometry, properties, and mechanical environment; that is, an infinitely thick GBM would still experience a finite strain. Although the model assumptions would be invalid for an extremely thick GBM, the minimum achievable strain could be significant in diseases, such as Alport syndrome, characterized by focal GBM thickening. Finally, an examination of reasonable values for the model parameters suggests that the oncotic pressure drop-the osmotic pressure difference between the plasma and the filtrate due to large molecules-plays an important role in setting the GBM strain and, thus, leakage of protein into the urine may be protective against some GBM damage.

  18. [Potentiation of NO-dependent activation of soluble guanylyl cyclase by 5-nitroisatin and antiviral preparatation arbidol].

    PubMed

    Severina, I S; Shchegolev, A Iu; Medvedev, A E

    2013-01-01

    Isatin (indole-dione) is an endogenous indole that exibits a wide range of biological and physiological activity. The influence of isatin derivatives 5-nitroisatin and arbidol (an antiviral preparatation) on spermine NONO-induced activation of human platelet soluble guanylyl cyclase was investigated. 5-nitroistnin and arbidol had no effect on basal activity, but synergistically increased in a concentration-dependent manner the spermine NONO-induced activation of this enzyme. 5-Nitroisatin and arbidol, like YC-1, sensitized guanylyl cyclase towards nitric oxide (NO) and produced a leftward shift of the spermine NONO concentration response curve. At the same time both compounds used did not influence the activation of guanylyl cyclase by YC-1 and did not change the synergistic increase of spermine NONO-induced activation of soluble guanylyl cyclase in the presence of YC-1. This suggests that 5-nitroisanin and arbidol did not compete with YC-1. Addition of isatin did not change the synergistic increase in the spermine NONO-induced guanylyl cyclase activation by 5-nitroisatin and arbidol and did not influence a leftward shift of spermine NONO concentration response curve produced by these compounds. These data suggest lack of competitive interaction between isatin and both its derivatives used.

  19. Exploring time- and frequency- dependent functional connectivity and brain networks during deception with single-trial event-related potentials

    NASA Astrophysics Data System (ADS)

    Gao, Jun-Feng; Yang, Yong; Huang, Wen-Tao; Lin, Pan; Ge, Sheng; Zheng, Hong-Mei; Gu, Ling-Yun; Zhou, Hui; Li, Chen-Hong; Rao, Ni-Ni

    2016-11-01

    To better characterize the cognitive processes and mechanisms that are associated with deception, wavelet coherence was employed to evaluate functional connectivity between different brain regions. Two groups of subjects were evaluated for this purpose: 32 participants were required to either tell the truth or to lie when facing certain stimuli, and their electroencephalogram signals on 12 electrodes were recorded. The experimental results revealed that deceptive responses elicited greater connectivity strength than truthful responses, particularly in the θ band on specific electrode pairs primarily involving connections between the prefrontal/frontal and central regions and between the prefrontal/frontal and left parietal regions. These results indicate that these brain regions play an important role in executing lying responses. Additionally, three time- and frequency-dependent functional connectivity networks were proposed to thoroughly reflect the functional coupling of brain regions that occurs during lying. Furthermore, the wavelet coherence values for the connections shown in the networks were extracted as features for support vector machine training. High classification accuracy suggested that the proposed network effectively characterized differences in functional connectivity between the two groups of subjects over a specific time-frequency area and hence could be a sensitive measurement for identifying deception.

  20. Identification and key management of non-transfusion-dependent thalassaemia patients: not a rare but potentially under-recognised condition.

    PubMed

    Viprakasit, Vip; Tyan, Paul; Rodmai, Sarayuth; Taher, Ali T

    2014-09-30

    Patients with non-transfusion-dependent thalassaemia (NTDT) have a genetic defect or combination of defects that affect haemoglobin synthesis, but which is not severe enough to require regular blood transfusions. The carrier frequency of NTDT is high (up to 80% in some parts of the world) but the prevalence of symptomatic patients varies with geography and is estimated to be from 1 in 100,000 to 1 in 100. NTDT has a variable presentation that may include mild to severe anaemia, enlarged spleen and/or liver, skeletal deformities, growth retardation, elevated serum ferritin and iron overload. The contributing factors to disease progression are ineffective erythropoiesis and increased haemolysis, which lead to chronic anaemia. The body's attempts to correct the anaemia result in constantly activated erythropoiesis, leading to marrow expansion and extramedullary haematopoiesis. Diagnosis of NTDT is largely clinical but can be confirmed by genetic sequencing. NTDT must be differentiated from other anaemias including sideroblastic anaemia, paroxysmal nocturnal haemoglobinuria, congenital dyserythropoietic anaemia, myelodysplastic syndromes and iron-deficiency anaemia. Management of NTDT is based on managing symptoms, and includes blood transfusions, hydroxyurea treatment, iron chelation and sometimes splenectomy. Prognosis for well managed patients is good, with most patients living a normal life. Since NTDT is mainly prevalent in sub-tropical regions, patients who present in other parts of the world, in particular the Northern hemisphere, might not been correctly recognised and it can be considered a 'rare' condition. It is particularly important to identify and diagnose patients early, thereby preventing complications.

  1. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway.

    PubMed

    Chatterjee, Ananya; Chatterjee, Sirshendu; Biswas, Angshuman; Bhattacharya, Sayanti; Chattopadhyay, Subrata; Bandyopadhyay, Sandip K

    2012-01-01

    The healing activity of gallic acid enriched ethanolic extract (GAE) of Phyllanthus emblica fruits (amla) against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX-) dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose) administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO) activity and inducible nitric oxide synthase (i-NOS) expression. Proangiogenic parameters such as the levels of prostaglandin (PG) E(2), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), von Willebrand Factor VIII, and endothelial NOS (e-NOS) were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day) and omeprazole (3 mg/kg/day) for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL). Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE(2) synthesis and augmenting e-NOS/i-NOS ratio.

  2. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  3. Hypoglycemic Effect of Aquatic Extract of Stevia in Pancreas of Diabetic Rats: PPARγ-dependent Regulation or Antioxidant Potential

    PubMed Central

    Assaei, Raheleh; Mokarram, Pooneh; Dastghaib, Sanaz; Darbandi, Sara; Darbandi, Mahsa; Zal, Fatemeh; Akmali, Masoumeh; Ranjbar Omrani, Gholam Hossein

    2016-01-01

    Background: Traditional medicines with anti-diabetic effects are considered suitable supplements to treat diabetes. Among medicinal herbs, Stevia Rebaudiana Bertoni is famous for its sweet taste and beneficial effect in regulation of glucose. However, little is known about the exact mechanism of stevia in pancreatic tissue. Therefore, this study investigated the possible effects of stevia on pancreas in managing hyperglycemia seen in streptozotocin-induced Sprague-Dawley rats. Methods: Sprague-Dawley rats were divided into four groups including normoglycemic, diabetic and two more diabetic groups in which, one was treated with aquatic extract of stevia (400 mg/kg) and the other with pioglitazone (10 mg/kg) for the period of 28 days. After completion of the experimental duration, rats were dissected; blood samples and pancreas were further used for detecting biochemical and histopathological changes. FBS, TG, cholestrol, HDL, LDL, ALT and AST levels were measured in sera. Moreover, MDA (malondialdehyde) level, catalase activity, levels of insulin and PPARγ mRNA expression were also measured in pancreatic tissue. Results: Aquatic extract of stevia significantly reduced the FBS, triglycerides, MDA, ALT, AST levels and normalized catalase activity in treated rats compared with diabetic rats (p<0.05). In addition to this, stevia surprisingly, increased PPARγ and insulin mRNA levels in treated rats (p<0.05). Furthermore, stevia compensated for the histopathological damage in diabetic rats. Conclusion: It is concluded that stevia acts on pancreatic tissue to elevate the insulin level and exerts beneficial anti-hyperglycemic effects through the PPARγ-dependent mechanism and stevia’s antioxidant properties. PMID:27141265

  4. Charged black holes in string-inspired gravity II. Mass inflation and dependence on parameters and potentials

    SciTech Connect

    Hansen, Jakob; Yeom, Dong-han E-mail: innocent.yeom@gmail.com

    2015-09-01

    We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.

  5. Charged black holes in string-inspired gravity II. Mass inflation and dependence on parameters and potentials

    SciTech Connect

    Hansen, Jakob; Yeom, Dong-han

    2015-09-07

    We investigate the relation between the existence of mass inflation and model parameters of string-inspired gravity models. In order to cover various models, we investigate a Brans-Dicke theory that is coupled to a U(1) gauge field. By tuning a model parameter that decides the coupling between the Brans-Dicke field and the electromagnetic field, we can make both of models such that the Brans-Dicke field is biased toward strong or weak coupling directions after gravitational collapses. We observe that as long as the Brans-Dicke field is biased toward any (strong or weak) directions, there is no Cauchy horizon and no mass inflation. Therefore, we conclude that to induce a Cauchy horizon and mass inflation inside a charged black hole, either there is no bias of the Brans-Dicke field as well as no Brans-Dicke hair outside the horizon or such a biased Brans-Dicke field should be well trapped and controlled by a potential.

  6. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease.

    PubMed

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit; Tepel, Martin; Thilo, Florian

    2011-10-01

    It is unknown whether extracellular calcium may regulate the expression of transient receptor potential canonical type 3 (TRPC3) channels in patients with chronic kidney disease. Using quantitative in-cell Western assay we compared the expression of TRPC3 channel protein in monocytes from 20 patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression in patients with chronic kidney disease compared to healthy control subjects (normalized expression, 0.42±0.06 vs. 0.19±0.03; p<0.01). Expression of TRPC3 was significantly inversely correlated with estimated glomerular filtration rates (Spearman r=-0.41) or serum calcium concentration (Spearman r=-0.34). During a hemodialysis session serum calcium concentrations significantly increased, whereas the expression of TRPC3 channels and calcium influx significantly decreased. In vitro studies confirmed that higher calcium concentrations but not magnesium, barium nor sodium concentrations significantly decreased TRPC3 expression in human monocytes. This study indicates that reduced extracellular calcium concentrations up-regulate TRPC3 channel protein expression in patients with chronic kidney disease.

  7. Long-Term Task- and Dopamine-Dependent Dynamics of Subthalamic Local Field Potentials in Parkinson’s Disease

    PubMed Central

    Hanrahan, Sara J.; Nedrud, Joshua J.; Davidson, Bradley S.; Farris, Sierra; Giroux, Monique; Haug, Aaron; Mahoor, Mohammad H.; Silverman, Anne K.; Zhang, Jun Jason; Hebb, Adam Olding

    2016-01-01

    Subthalamic nucleus (STN) local field potentials (LFP) are neural signals that have been shown to reveal motor and language behavior, as well as pathological parkinsonian states. We use a research-grade implantable neurostimulator (INS) with data collection capabilities to record STN-LFP outside the operating room to determine the reliability of the signals over time and assess their dynamics with respect to behavior and dopaminergic medication. Seven subjects were implanted with the recording augmented deep brain stimulation (DBS) system, and bilateral STN-LFP recordings were collected in the clinic over twelve months. Subjects were cued to perform voluntary motor and language behaviors in on and off medication states. The STN-LFP recorded with the INS demonstrated behavior-modulated desynchronization of beta frequency (13–30 Hz) and synchronization of low gamma frequency (35–70 Hz) oscillations. Dopaminergic medication did not diminish the relative beta frequency oscillatory desynchronization with movement. However, movement-related gamma frequency oscillatory synchronization was only observed in the medication on state. We observed significant inter-subject variability, but observed consistent STN-LFP activity across recording systems and over a one-year period for each subject. These findings demonstrate that an INS system can provide robust STN-LFP recordings in ambulatory patients, allowing for these signals to be recorded in settings that better represent natural environments in which patients are in a variety of medication states. PMID:27916831

  8. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.

    PubMed

    Kosson, David S; Garrabrants, Andrew C; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.

  9. Habitat-dependent call divergence in the common cuckoo: is it a potential signal for assortative mating?

    PubMed

    Fuisz, Tibor I; de Kort, Selvino R

    2007-09-07

    The common cuckoo (Cuculus canorus) is an obligate brood parasite that mimics the eggs of its hosts. The host-specific egg pattern is thought to be inherited matrilinearly, creating female-only host-specific races. Males are thought not to be adapted to their host and they maintain the species by mating arbitrarily with respect to host specialization of females. However, recent results suggest that male cuckoos may also show host-specific adaptations and these may require assortative mating with respect to host. The calls males produce on the breeding grounds could provide a potential mechanism for assortative mating. We tested whether male cuckoo calls differ more between nearby populations that parasitize different hosts than between distant populations that parasitize the same host. We recorded the calls of geographically distant pairs of populations in Hungary, with each pair consisting of a forest population and a nearby reed bed population. Each habitat is characterized by one main host species for the common cuckoo. Our results show that calls of distant cuckoo populations from the same habitat type are more similar to each other than they are to those of nearby populations from a different habitat. These results suggest that cuckoo calls differ sufficiently to allow recognition of habitat-specific individuals.

  10. Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain.

    PubMed

    Murphy, M P; Brand, M D

    1988-05-02

    The charge/oxygen (q+/O) stoichiometry of mitochondria respiring on succinate was measured under conditions of high membrane potential (delta psi). The technique used was a variation of the steady-state method of Al-Shawi and Brand [(1981) Biochem. J. 200, 539-546]. We show that q+/O was about 2.7 at high values of delta psi (170 mV). As delta psi was lowered from 170 mV to 85 mV with the respiratory inhibitor malonate the q+/O stoichiometry increased to 6.0. A number of artefacts which could have led to an underestimation of the q+/O stoichiometry were eliminated. These included effects of any rapid change in mitochondrial volume, internal pH, activity of the endogenous K+/H+ exchanger or in H+ conductance due to changes in delta psi after the addition of inhibitor. The experiments presented here are the first direct demonstration that the stoichiometry of proton pumping by the mitochondrial respiratory chain changes as delta psi is varied.

  11. Photodynamic tumor eradication with a novel targetable photosensitizer: strong vascular effects and dependence on treatment repetition versus potentiation.

    PubMed

    Savellano, Mark D; Owusu-Brackett, Nicci; Son, Ji; Ganga, Tanay; Leung, Nadia L; Savellano, Dagmar H

    2013-01-01

    A novel pyropheophorbide-a (PPa) derivative, Ac-sPPp, was developed in our lab for targeted photodynamic therapy (PDT) and combination therapies. Its versatile peptide moiety, high water-solubility, amphiphilicity, and micellar aggregation allow efficient coupling to targeting moieties and convenient mixing with other therapeutics. Photosensitizer immunoconjugate (PIC) targeted PDT, using Ac-sPPp conjugated to therapeutic anti-epidermal growth factor receptor (EGFR) antibody cetuximab, and PDT + chemotherapy combination treatment, using Ac-sPPp mixed with stealth liposomal doxorubicin (Doxil), were investigated as promising strategies for potentiating PDT and improving target specificity. Passively targeted PDT with Ac-sPPp only or surfactant-solubilized PPa was also investigated for comparison. The A-431 human vulvar squamous cell carcinoma, xenografted in nude mice, was chosen as a tumor model because of its high EGFR expression and sensitivity to liposomal doxorubicin in vitro. Fluorescence imaging and PDT experiments showed that Ac-sPPp formulations circulated far longer and provided superior tumor contrast and superior tumor control compared to PPa. Strong PDT vascular effects were observed by laser Doppler imaging regardless of whether Ac-sPPp was passively or actively targeted. Passively targeted Ac-sPPp PDT gave equivalent or better tumor control than PIC-targeted PDT or PDT + Doxil combination therapy, and when treatments were repeated, it also yielded the highest cure rate.

  12. Transient receptor potential vanilloid 4-dependent calcium influx and ATP release in mouse and rat gastric epithelia

    PubMed Central

    Mihara, Hiroshi; Suzuki, Nobuhiro; Boudaka, Ammar Abdullkader; Muhammad, Jibran Sualeh; Tominaga, Makoto; Tabuchi, Yoshiaki; Sugiyama, Toshiro

    2016-01-01

    AIM: To explore the expression of transient receptor potential vanilloid 4 (TRPV4) and its physiological meaning in mouse and rat gastric epithelia. METHODS: RT-PCR and immunochemistry were used to detect TRPV4 mRNA and protein expression in mouse stomach and a rat normal gastric epithelial cell line (RGE1-01), while Ca2+-imaging and electrophysiology were used to evaluate TRPV4 channel activity. ATP release was measured by a luciferin-luciferase assay. Gastric emptying was also compared between WT and TRPV4 knockout mice. RESULTS: TRPV4 mRNA and protein were detected in mouse tissues and RGE1-01 cells. A TRPV4-specific agonist (GSK1016790A) increased intracellular Ca2+ concentrations and/or evoked TRPV4-like current activities in WT mouse gastric epithelial cells and RGE1-01 cells, but not TRPV4KO cells. GSK1016790A or mechanical stimuli induced ATP release from RGE1-01 cells while TRPV4 knockout mice displayed delayed gastric emptying in vivo. CONCLUSION: TRPV4 is expressed in mouse and rat gastric epithelium and contributes to ATP release and gastric emptying. PMID:27350729

  13. Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential

    PubMed Central

    Hegyi, Bence; Komáromi, István; Kistamás, Kornél; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Nánási, Péter P.; Szentandrássy, Norbert

    2013-01-01

    Tetrodotoxin (TTX) is believed to be one of the most selective inhibitors of voltage-gated fast Na+ channels in excitable tissues. Recently, however, TTX has been shown to block L-type Ca2+ current (ICa) in canine cardiac cells. In the present study, the TTX-sensitivity of ICa was studied in isolated canine ventricular myocytes as a function of (1) channel phosphorylation, (2) extracellular pH and (3) the redox potential of the bathing medium using the whole cell voltage clamp technique. Fifty-five micromoles of TTX (IC50 value obtained under physiological conditions) caused 60% ± 2% inhibition of ICa in acidic (pH = 6.4), while only a 26% ± 2% block in alkaline (pH = 8.4) milieu. Similarly, the same concentration of TTX induced 62% ± 6% suppression of ICa in a reductant milieu (containing glutathione + ascorbic acid + dithiothreitol, 1 mM each), in contrast to the 31% ± 3% blockade obtained in the presence of a strong oxidant (100 μM H2O2). Phosphorylation of the channel protein (induced by 3 μM forskolin) failed to modify the inhibiting potency of TTX; an IC50 value of 50 ± 4 μM was found in forskolin. The results are in a good accordance with the predictions of our model, indicating that TTX binds, in fact, to the selectivity filter of cardiac L-type Ca channels. PMID:23771047

  14. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  15. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria

    PubMed Central

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C.; Fernyhough, Paul

    2015-01-01

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30–35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. PMID:26647379

  16. Atmospheric chemistry of HFE-7300 and HFE-7500: Temperature dependent kinetics, atmospheric lifetimes, infrared spectra and global warming potentials

    NASA Astrophysics Data System (ADS)

    Rodríguez, Ana; Rodríguez, Diana; Moraleda, Araceli; Bravo, Iván; Moreno, Elena; Notario, Alberto

    2014-10-01

    The atmospheric degradation of two hydrofluoroethers, HFE-7300 [n-C2F5CF(OCH3)CF(CF3)2] and HFE-7500 [n-C3F7CF(OC2H5)CF(CF3)2] used in industrial applications has been studied. The kinetics and reaction products were determined at atmospheric pressure as a function of temperature in a reaction chamber using GC/FID and GC/MS techniques for the analysis. The following Arrhenius expressions were obtained (in units of cm3 molecule-1 s-1): kHFE-7300 + OH = (5.6 ± 2.0) × 10-13 exp(-(1186 ± 111)/T); kHFE-7300 + Cl = (3.8 ± 1.3) × 10-12 exp(-(968 ± 101)/T); and kHFE-7500 + OH = (7.6 ± 6.0) × 10-12 exp(-(1163 ± 385)/T) (temperature range 271-333 K). The atmospheric lifetimes calculated from kinetic data for HFE-7300 and HFE-7500 were 5.24 and 0.30 years, respectively. In the oxidation of HFE-7300 with OH and Cl radicals, the only detected product was CF3CF2CF(OCHO)CF(CF3)2, whereas in the oxidation of HFE-7500 by OH radicals the detected products were: C3F7CF(OC(O)CH3)CF(CF3)2 and C3F7CF(OC(O)H)CF(CF3)2. Infrared spectra of the studied HFEs have also been measured and radiative forcing efficiencies were determined. Combining these results with the kinetic data, we estimated 100-year time horizon global warming potentials of 440 and 12 for HFE-7300 and HFE-7500, respectively.

  17. Membrane potential and Ca2+ concentration dependence on pressure and vasoactive agents in arterial smooth muscle: A model.

    PubMed

    Karlin, Arthur

    2015-07-01

    Arterial smooth muscle (SM) cells respond autonomously to changes in intravascular pressure, adjusting tension to maintain vessel diameter. The values of membrane potential (Vm) and sarcoplasmic Ca(2+) concentration (Ca(in)) within minutes of a change in pressure are the results of two opposing pathways, both of which use Ca(2+) as a signal. This works because the two Ca(2+)-signaling pathways are confined to distinct microdomains in which the Ca(2+) concentrations needed to activate key channels are transiently higher than Ca(in). A mathematical model of an isolated arterial SM cell is presented that incorporates the two types of microdomains. The first type consists of junctions between cisternae of the peripheral sarcoplasmic reticulum (SR), containing ryanodine receptors (RyRs), and the sarcolemma, containing voltage- and Ca(2+)-activated K(+) (BK) channels. These junctional microdomains promote hyperpolarization, reduced Ca(in), and relaxation. The second type is postulated to form around stretch-activated nonspecific cation channels and neighboring Ca(2+)-activated Cl(-) channels, and promotes the opposite (depolarization, increased Ca(in), and contraction). The model includes three additional compartments: the sarcoplasm, the central SR lumen, and the peripheral SR lumen. It incorporates 37 protein components. In addition to pressure, the model accommodates inputs of α- and β-adrenergic agonists, ATP, 11,12-epoxyeicosatrienoic acid, and nitric oxide (NO). The parameters of the equations were adjusted to obtain a close fit to reported Vm and Ca(in) as functions of pressure, which have been determined in cerebral arteries. The simulations were insensitive to ± 10% changes in most of the parameters. The model also simulated the effects of inhibiting RyR, BK, or voltage-activated Ca(2+) channels on Vm and Ca(in). Deletion of BK β1 subunits is known to increase arterial-SM tension. In the model, deletion of β1 raised Ca(in) at all pressures, and these

  18. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    PubMed

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control.

  19. Potential crosstalk of the interleukin-6-heme oxygenase-1-dependent mechanism involved in resistance to lenalidomide in multiple myeloma cells.

    PubMed

    Wu, Weibing; Ma, Dan; Wang, Ping; Cao, Lu; Lu, Tangsheng; Fang, Qin; Zhao, Jiangyuan; Wang, Jishi

    2016-03-01

    Interleukin (IL)-6 is one of the most important survival factors in multiple myeloma (MM), and determines the poor prognosis of MM. IL-6 mainly has a paracrine bone marrow stromal cell origin and an autocrine MM cell origin. As an enzyme having cytoprotective effects, heme oxygenase-1 (HO-1) promotes the growth and drug resistance of various malignant tumors. HO-1 expression levels in bone marrow CD138(+) cells of MM patients were significantly higher than those in healthy donors, and positively correlated with both serum IL-6 and intracellular IL-6 mRNA expression levels. Culture of U266, RPMI8226 and CD138(+) cells with exogenous IL-6 in vitro induced high HO-1 expression levels and allowed them to resist lenalidomide. It is hypothesized that this was probably attributable to IL-6-mediated activation of the Janus kinase 2-signal transducer and activator of transcription 3 pathway. In contrast, without IL-6 coculture, enhanced HO-1 expression in U266, RPMI8226 and bone marrow CD138(+) cells from MM patients significantly inreased IL-6 mRNA expression levels and facilitated autocrine IL-6 production. The findings were associated with high HO-1 expression-enhanced p38 mitogen-activated protein kinase phosphorylation. Reduced HO-1 expression sensitized MM cells to lenalidomide. Therefore, we postulated that IL-6 in the bone marrow microenvironment of MM patients stimulated high HO-1 expression in MM cells and their resistance to lenalidomide. High HO-1 expression also stimulated autocrine IL-6 production, and exacerbated drug resistance and disease. This study supports the use of HO-1 as a possible marker for both MM prognosis and drug resistance, and as a potential therapeutic target.

  20. Dose-dependent, therapeutic potential of angiotensin-(1–7) for the treatment of pulmonary arterial hypertension

    PubMed Central

    Breitling, Siegfried; Krauszman, Adrienn; Parihar, Richa; Walther, Thomas; Friedberg, Mark K.

    2015-01-01

    Abstract The effects of the heptapeptide angiotensin-(1–7) (Ang-(1–7)), via its receptor Mas, oppose many of the effects of the classic angiotensin II signaling pathway, and pharmacological exploitation of this effect is currently actively pursued for a wide range of cardiovascular, neoplastic, or immunological disorders. On the basis of its vasodilatory and antiproliferative properties, Ang-(1–7) has consequentially also been proposed as a novel therapeutic strategy for the treatment of pulmonary arterial hypertension (PAH). In this study, we tested the effectiveness of Ang-(1–7) and its stable, cyclic analog cAng-(1–7) over a range of doses for their therapeutic potential in experimental PAH. In the monocrotaline (MCT) rat model of PAH, Ang-(1–7) or cAng-(1–7) were injected in doses of 30, 100, 300, or 900 μg kg−1 day−1, and effects on pulmonary hemodynamics and vascular remodeling were assessed. Five weeks after MCT injection, right ventricular systolic pressure (RVSP) was significantly reduced for 3 dose groups treated with Ang-(1–7) (100, 300, and 900 μg kg−1 day−1) and for all dose groups treated with cAng-(1–7), as compared to untreated controls, yet the total reduction of RVSP was <50% at best and thus markedly lower than that with a positive treatment control with ambrisentan. Medial-wall thickness in pulmonary arterioles was only slightly reduced, without reaching significance, for any of the tested Ang-(1–7) compounds and doses. The reported moderate attenuation of PAH does not confirm the previously postulated high promise of this strategy, and the therapeutic usefulness of Ang-(1–7) may be limited in PAH relative to that in other cardiovascular diseases. PMID:26697172

  1. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    PubMed

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2015-12-08

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances.

  2. Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid n-hexadecane under shear

    NASA Astrophysics Data System (ADS)

    Tseng, Huan-Chang; Chang, Rong-Yeu; Wu, Jiann-Shing

    2011-01-01

    Extensive computer experiments have been conducted in order to shed light on the macroscopic shear flow behavior of liquid n-hexadecane fluid under isobaric-isothermal conditions through the nonequilibrium molecular dynamic methodology. With respect to shear rates, the accompanying variations in structural properties of the fluid span the microscopic range of understanding from the intrinsic to extrinsic characteristics. As drawn from the average value of bond length and bond angle, the distribution of dihedral angle, and the radius distribution function of intramolecular and intermolecular van der Waals distances, these intrinsic structures change with hardness, except in the situation of extreme shear rates. The shear-induced variation of thermodynamic state curve along with the shear rate studied is shown to consist of both the quasiequilibrium state plateau and the nonequilibrium-thermodynamic state slope. Significantly, the occurrence of nonequilibrium-thermodynamic state behavior is attributed to variations in molecular potential energies, which include bond stretching, bond bending, bond torsion, and intra- and intermolecular van der Waals interactions. To unfold the physical representation of extrinsic structural deformation, under the aggressive influence of a shear flow field, the molecular dimension and appearance can be directly described via the squared radius of gyration and the sphericity angle, Rg2 and φ, respectively. In addition, a specific orientational order Sx defines the alignment of the molecules with the flow direction of the x-axis. As a result, at low shear rates, the overall molecules are slightly stretched and shaped in a manner that is increasingly ellipsoidal. Simultaneously, there is an obvious enhancement in the order. In contrast to high shear rates, the molecules spontaneously shrink themselves with a decreased value of Rg2, while their shape and order barely vary with an infinite value of φ and Sx. It is important to note that

  3. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-κB-dependent autophagy.

    PubMed

    Shulak, Laura; Beljanski, Vladimir; Chiang, Cindy; Dutta, Sucharita M; Van Grevenynghe, Julien; Belgnaoui, S Mehdi; Nguyên, Thi Lien-Anh; Di Lenardo, Thomas; Semmes, O John; Lin, Rongtuan; Hiscott, John

    2014-03-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus that induces cancer cell death through activation of the apoptotic pathway. Intrinsic resistance to oncolysis is found in some cell lines and many primary tumors as a consequence of residual innate immunity to VSV. In resistant-tumor models, VSV oncolytic potential can be reversibly stimulated by combination with epigenetic modulators, such as the histone deacetylase inhibitor vorinostat. Based on this reversible effect of vorinostat, we reasoned that critical host genes involved in oncolysis may likewise be reversibly regulated by vorinostat. A transcriptome analysis in prostate cancer PC3 cells identified a subset of NF-κB target genes reversibly regulated by vorinostat, as well as a group of interferon (IFN)-stimulated genes (ISGs). Consistent with the induction of NF-κB target genes, vorinostat-mediated enhancement of VSV oncolysis increased hyperacetylation of NF-κB RELA/p65. Additional bioinformatics analysis revealed that NF-κB signaling also increased the expression of several autophagy-related genes. Kinetically, autophagy preceded apoptosis, and apoptosis was observed only when cells were treated with both VSV and vorinostat. VSV replication and cell killing were suppressed when NF-κB signaling was inhibited using pharmacological or genetic approaches. Inhibition of autophagy by 3-methyladenine (3-MA) enhanced expression of ISGs, and either 3-MA treatment or genetic ablation of the autophagic marker Atg5 decreased VSV replication and oncolysis. Together, these data demonstrate that vorinostat stimulates NF-κB activity in a reversible manner via modulation of RELA/p65 signaling, leading to induction of autophagy, suppression of the IFN-mediated response, and subsequent enhancement of VSV replication and apoptosis.

  4. Transient receptor potential vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse oesophageal keratinocytes.

    PubMed

    Mihara, Hiroshi; Boudaka, Ammar; Sugiyama, Toshiro; Moriyama, Yoshinori; Tominaga, Makoto

    2011-07-15

    Gastro-oesophageal reflux disease (GERD) is a multi-factorial disease that may involve oesophageal hypersensitivity to mechanical or heat stimulus as well as acids. Intraganglionic laminar endings (IGLEs) are the most prominent terminal structures of oesophageal vagal mechanosensitive afferents and may modulate mechanotransduction via purinergic receptors. Transient receptor potential channel vanilloid 4 (TRPV4) can detect various stimuli such as warm temperature, stretch and some chemicals, including 4α-phorbol 12,13-didecanoate (4α-PDD) and GSK1016790A. TRPV4 is expressed in many tissues, including renal epithelium, skin keratinocytes and urinary bladder epithelium, but its expression and function in the oesophagus is poorly understood. Here, we show anatomical and functional TRPV4 expression in mouse oesophagus and its involvement in ATP release. TRPV4 mRNA and protein were detected in oesophageal keratinocytes. Several known TRPV4 activators (chemicals, heat and stretch stimulus) increased cytosolic Ca2+ concentrations in cultured WT keratinocytes but not in TRPV4 knockout (KO) cells. Moreover, the TRPV4 agonist GSK1016790A and heat stimulus evoked TRPV4-like current responses in isolated WT keratinocytes, but not in TRPV4KO cells. GSK1016790A and heat stimulus also significantly increased ATP release from WT oesophageal keratinocytes compared to TRPV4KO cells. The vesicle-trafficking inhibitor brefeldin A (BFA) inhibited the ATP release. This ATP release could be mediated by the newly identified vesicle ATP transporter, VNUT, which is expressed by oesophageal keratinocytes at the mRNA and protein levels. In conclusion, in response to heat, chemical and possibly mechanical stimuli, TRPV4 contributes to ATP release in the oesophagus. Thus, TRPV4 could be involved in oesophageal mechano- and heat hypersensitivity.

  5. Partial recovery of alcohol dependence-related deficits in sleep evoked potentials following 12 months of abstinence.

    PubMed

    Colrain, Ian M; Padilla, Mayra L; Baker, Fiona C

    2012-01-01

    Stimuli presented during sleep can produce an evoked EEG delta wave referred to as a K-complex. These responses occur when large numbers of cortical cells burst fire in a synchronized manner. Large amplitude synchronized scalp responses require that the CNS contain large numbers of healthy neurons that are interconnected with highly functional white matter pathways. The P2, N550, and P900 components of the evoked K-complex are sensitive measures of normal healthy brain aging, showing a decrease in amplitude with age. N550 and P900 amplitudes are also reduced in recently detoxified alcoholics, most dramatically over frontal scalp regions. The present study tested the hypothesis that the amplitude of K-complex related evoked potential components would increase with prolonged abstinence. Fifteen alcoholics (12 men) were studied twice, separated by a 12 month period, during which time they were followed with monthly phone calls. Subjects were aged between 38 and 60 years at their first study. They had on average a 29.3 ± 6.7 year drinking history and had been abstinent for between 54 and 405 days at initial testing. Evoked K-complexes were identified in the EEG and averaged to enable measurement of the P2, N550 and P900 peaks. Data were collected from seven scalp sites (FP1, FP2, Fz, FCz, Cz, CPz, and Pz). N550 and P900 amplitudes were significantly higher after 12 months of abstinence and an improvement of at least 5 μV occurred in 12 of the 15 subjects. N550 and P900 also showed highly significant site by night interactions with the largest increases occurring over prefrontal and frontal sites. The data indicate that the sleep evoked response may provide a sensitive marker of brain recovery with abstinence from alcohol.

  6. Species dependence of the redox potential of the primary electron donor p700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry.

    PubMed

    Nakamura, Akimasa; Suzawa, Tomoyuki; Kato, Yuki; Watanabe, Tadashi

    2011-05-01

    The redox potential of the primary electron donor P700, E(m)(P700/P700(+)), of Photosystem I (PSI) has been determined for 10 oxygenic photosynthesis organisms, ranging from cyanobacteria, red algae, green algae to higher plants, by spectroelectrochemistry with an optically transparent thin-layer electrode (OTTLE) cell to elucidate the scattering by as much as 150 mV in reported values of E(m)(P700/P700(+)). The E(m)(P700/P700(+)) values determined within error ranges of ± 1-4 mV exhibited a significant species dependence, with a span >70 mV, from +398 to +470 mV vs. the standard hydrogen electrode (SHE). The E(m)(P700/P700(+)) value appears to change systematically in going from cyanobacteria and primitive eukaryotic red algae, then to green algae and higher plants. From an evolutionary point of view, this result suggests that the species believed to appear later in evolution of photosynthetic organisms exhibit higher values of E(m)(P700/P700(+)). Further, the species dependence of E(m)(P700/P700(+)) seems to originate in the species-dependent redox potentials of soluble metalloproteins, Cyt c(6) and plastocyanin, which re-reduce the oxidized P700 in the electron transfer chain.

  7. Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer

    PubMed Central

    Casneuf, Tineke; Axel, Amy E; King, Peter; Alvarez, John D; Werbeck, Jillian L; Verhulst, Tinne; Verstraeten, Karin; Hall, Brett M; Sasser, A Kate

    2016-01-01

    engraftment with siltuximab, fulvestrant, or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, siltuximab alone induced regressions in 90% (9/10) of tumors, which were established in the presence which were established in the presence of hMSC expressing human IL-6 and estrogen. Conclusion Given the established role for IL-6 in ERα-positive breast cancer, these data demonstrate the potential for anti-IL-6 therapeutics in breast cancer. PMID:26893580

  8. Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity

    PubMed Central

    Luo, Ceng; Gangadharan, Vijayan; Bali, Kiran Kumar; Xie, Rou-Gang; Agarwal, Nitin; Kurejova, Martina; Tappe-Theodor, Anke; Tegeder, Irmgard; Feil, Susanne; Lewin, Gary; Polgar, Erika; Todd, Andrew J.; Schlossmann, Jens; Hofmann, Franz; Liu, Da-Lu; Hu, San-Jue; Feil, Robert; Kuner, Thomas; Kuner, Rohini

    2012-01-01

    Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I−/− mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I−/− mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I−/− mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are

  9. Angle dependent interaction potentials for NOAr, NOKr and NOXe derived from various total collision cross section data

    NASA Astrophysics Data System (ADS)

    Thuis, H. H. W.; Stolte, S.; Reuss, J.; Van Den Biesen, J. J. H.; Van Den Meijdenberg, C. J. N.

    1980-10-01

    Three independent sources of information are used to analyze the angle dependent potential for NOAr: (a) the glory structure of the total collision cross section; (b) the relative difference in the total collision cross section for two different orientations of NO in the 2Π 3/2 state; (c) the absolute value of the total collision cross section. The sudden approximation employed for the calculation of the various properties is discussed. For NOAr a fit to the total collision cross section data is obtained on the basis of an extended Maitland—Smith potential containing a Pt anisotropy in the repulsion and a P2 anisotropy in the repulsion and attraction. A comparison is made with the theoretical potential for NOAr recently by Nielson et al. and the extended Lennard-Jones potential employed in the earlier analysis. For NOKr and NOXe similar Maitland—Smith potentials are obtained by assuming the Pt anisotropy parameter for these systems to be equal to that for NOAr. In a separate appendix is analyzed which intermolecular distances are probed through measurements of the anisotropy in the total collision cross section.

  10. Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer on a gold electrode surface studied by cyclic voltammetry, electrochemical quartz microbalance, and electrochemical atomic force microscopy.

    PubMed

    Masuda, Takuya; Ikeda, Kota; Uosaki, Kohei

    2013-02-19

    Potential-dependent adsorption/desorption behavior of perfluorosulfonated ionomer (PFSI) on a gold electrode was investigated by cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), and electrochemical atomic force microscopy (EC-AFM) in a Nafion (i.e., PFSI) dispersed aqueous solution without any other electrolyte. It was found that PFSI serves as an electrolyte and that electrochemical measurements can be performed in this solution without any significant IR drop. PFSI molecules were adsorbed on the Au surface in the lying-down configuration in the potential range between 0 and 0.45 V, the amount of adsorbed PFSI increased when the potential was made more positive than 0.75 V, and the adsorbed PFSI fully desorbed from the surface at potentials more positive than 1.4 V where gold oxide was formed. Once the gold oxide had been reduced, PFSI readsorbed on the surface, albeit slowly. PFSI desorbed from the surface as the potential was made more negative than 0 V. These processes took place reversibly.

  11. Potential-dependent structures investigated at the perchloric acid solution/iodine modified Au(111) interface by electrochemical frequency-modulation atomic force microscopy.

    PubMed

    Utsunomiya, Toru; Tatsumi, Shoko; Yokota, Yasuyuki; Fukui, Ken-ichi

    2015-05-21

    Electrochemical frequency-modulation atomic force microscopy (EC-FM-AFM) was adopted to analyze the electrified interface between an iodine modified Au(111) and a perchloric acid solution. Atomic resolution imaging of the electrode was strongly dependent on the electrode potential within the electrochemical window: each iodine atom was imaged in the cathodic range of the electrode potential, but not in the more anodic range where the tip is retracted by approximately 0.1 nm compared to the cathodic case for the same imaging parameters. The frequency shift versus tip-to-sample distance curves obtained in the electric double layer region on the iodine adlayer indicated that the water structuring became weaker at the anodic potential, where the atomic resolution images could not be obtained, and immediately recovered at the original cathodic potential. The reversible hydration structures were consistent with the reversible topographic images and the cyclic voltammetry results. These results indicate that perchlorate anions concentrated at the anodic potential affect the interface hydration without any irreversible changes to the interface under these conditions.

  12. Temperature dependence of the pinning potential in the high-temperature superconductor Y1Ba2Cu3O7- x

    NASA Astrophysics Data System (ADS)

    Dobbert, O.; Dinse, K.-P.; Goldacker, W.; Wolf, T.

    1991-06-01

    Combining the results of magnetization decay and microwave absorption experiments the logarithmic flux decay in twinned YBaCuO crystals was studied over a wide temperature range ( Θ=0.1 to 0.8) under conditions of small applied external fields ( B=2.4 mT). The resulting quasi exponential temperature dependence of the pinning potential can be modelled satisfactorily by assuming a structural limitation for the shielding current, resulting from S-N-S barriers. The temperature dependence in the crystalline material is similar to jcr(Θ) observed for epitaxic YBaCuO films, and leads to an estimate of the barrier width of the order of 10 nm.

  13. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed.

  14. P3 event-related potential reactivity to smoking cues: Relations with craving, tobacco dependence, and alcohol sensitivity in young adult smokers.

    PubMed

    Piasecki, Thomas M; Fleming, Kimberly A; Trela, Constantine J; Bartholow, Bruce D

    2017-02-01

    The current study tested whether the amplitude of the P3 event-related potential (ERP) elicited by smoking cues is (a) associated with the degree of self-reported craving reactivity, and (b) moderated by degree of tobacco dependence. Because alcohol and cigarettes are frequently used together, and given recent evidence indicating that individual differences in alcohol sensitivity influence reactivity to alcohol cues, we also investigated whether alcohol sensitivity moderated neural responses to smoking cues. ERPs were recorded from young adult smokers (N = 90) while they participated in an evaluative categorization oddball task involving 3 types of targets: neutral images, smoking-related images, and images of drinking straws. Participants showing larger P3 amplitudes to smoking cues and to straw cues (relative to neutral targets) reported greater increases in craving after cue exposure. Neither smoking status (daily vs. occasional use) nor psychometric measures of tobacco dependence consistently or specifically moderated P3 reactivity to smoking cues. Lower alcohol sensitivity was associated with larger P3 to smoking cues but not comparison straw cues (relative to neutral targets). This effect was further moderated by tobacco dependence, with the combination of lower sensitivity and higher dependence associated with especially pronounced P3 reactivity to smoking cues. The findings suggest the smoking-cue elicited P3 ERP component indexes an approach-oriented incentive motivational state accompanied by a subjective sense of cigarette craving. Self-reported low sensitivity to the pharmacologic effects of alcohol may represent a marker of drug cue reactivity and therefore deserves attention as a potential moderator in smoking cue exposure studies. (PsycINFO Database Record

  15. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  16. An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash M.; LaMattina, Bruce; Irving, Douglas L.; Rajendran, Arunachalam M.; Zikry, Mohammed A.; Brenner, Donald W.

    2012-04-01

    A new interatomic potential is developed for the Al/Si system in the formulation of the recently developed angular-dependent embedded atom method (A-EAM). The A-EAM is formulated by combining the embedded atom method potential for Al with the Stillinger-Weber potential for Si. The parameters of the Al/Si cross-interactions are fitted to reproduce the structural energetics of Al/Si bulk alloys determined based on the results of density functional theory calculations and the experimentally observed mixing behavior of the AlSi liquid alloy at high temperatures. The ability to investigate the thermodynamic properties of the Al/Si system is demonstrated by computing the binary phase diagram of the Al-Si system as predicted by the A-EAM potential and comparing with that obtained using experiments. The ability to study the mechanical behavior of the Al/Si composite systems is demonstrated by investigating the micromechanisms related to dynamic failure of the Al/Si nanocomposites using MD simulations.

  17. Development of a new meta-score for protein structure prediction from seven all-atom distance dependent potentials using support vector regression.

    PubMed

    Shirota, Matsuyuki; Ishida, Takashi; Kinoshita, Kengo

    2009-10-01

    An accurate scoring function is required for protein structure prediction. The scoring function should distinguish the native structure among model structures (decoys) and it also should have correlation with the quality of the decoys. However, we had observed the trade-off between the two requirements for seven all-atom distance dependent potentials in the previous study, where the native structure could be discriminated by examining the fine atomic details, whereas the correlation could be improved by examining coarse-grained interactions, To overcome this problem, in this study, we tried to make an improved scoring function by combining the seven potentials. First, the seven potentials were normalized by the expected energy values of the native and reference states of the target protein. Second, the relationship between the seven normalized energies and the quality (GDT_TS) of the structure were learned using support vector regression with the decoy sets of CASP6 as the training set. Then the meta-score was obtained as the predicted GDT_TS and it was tested with the decoys of the CASP7 experiment. The meta-score showed improvement in correlations with the GDT_TS and in the Z-score of the native structure. It also showed comparable performances in the GDT and enrichment criteria, with the best component potentials. The meta-score could be also used as the absolute quality of the structures. Our study suggests the benefit of combining several different scoring functions for model evaluation.

  18. Ciprofloxacin provokes SOS-dependent changes in respiration and membrane potential and causes alterations in the redox status of Escherichia coli.

    PubMed

    Smirnova, Galina V; Tyulenev, Aleksey V; Muzyka, Nadezda G; Peters, Mikhail A; Oktyabrsky, Oleg N

    2017-01-01

    An in-depth understanding of the physiological response of bacteria to antibiotic-induced stress is needed for development of new approaches to combatting microbial infections. Fluoroquinolone ciprofloxacin causes phase alterations in Escherichia coli respiration and membrane potential that strongly depend on its concentration. Concentrations lower than the optimal bactericidal concentration (OBC) do not inhibit respiration during the first phase. A dose higher than the OBC provokes immediate SOS-independent inhibition of respiration and growth that can contribute to a decreased SOS response and lowered susceptibility to high concentrations of ciprofloxacin. Cells retain their metabolic activity, membrane potential and accelerated K(+) uptake and produce low levels of superoxide and H2O2 during the first phase. The time before initiation of the second phase is inversely correlated with the ciprofloxacin concentration. The second phase is SOS-dependent and characterized by respiratory inhibition, membrane depolarization, K(+) and glutathione leakage and cessation of glucose consumption and may be considered as cell death. atpA, gshA and kefBkefC knockouts, which perturb fluxes of protons and K(+), can modify the degree and duration of respiratory inhibition and potassium retention. Loss of K(+) efflux channels KefB and KefC enhances the susceptibility of E. coli to ciprofloxacin.

  19. Neutron transfer versus inelastic surface vibrations in the enhancement of sub-barrier fusion excitation function data and the energy dependent Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Singh Gautam, Manjeet

    2015-02-01

    This work deeply analyzed the relative importance of the neutron transfer channels and inelastic surface vibrations of colliding nuclei in the sub-barrier fusion enhancement of various heavy ion systems using an energy dependent Woods-Saxon potential (EDWSP) model in conjunction with a one-dimensional Wong formula and the coupled channel formulation using the code CCFULL. The multi-phonon vibrational states of colliding nuclei and the nucleon transfer channels are found to be dominant internal degrees of freedom. The coupling between the relative motion of reactants and these relevant channels produces anomalously large sub-barrier fusion enhancement over the expectations of the one-dimensional barrier penetration model. In some cases, the influence of neutron transfer dominates over the couplings to low lying surface vibrational states of collision partners. Furthermore, the effects of coupling to inelastic surface excitations and the impact of neutron transfer channels with positive ground state Q-values are imitated due to energy dependence in the Woods-Saxon potential. In the EDWSP model calculations, a wide range for the diffuseness parameter, which is much larger than the value extracted from the elastic scattering data, is needed to account for the observed fusion enhancement in the close vicinity of the Coulomb barrier.

  20. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface.

    PubMed

    de Jong, Rob N; Beurskens, Frank J; Verploegen, Sandra; Strumane, Kristin; van Kampen, Muriel D; Voorhorst, Marleen; Horstman, Wendy; Engelberts, Patrick J; Oostindie, Simone C; Wang, Guanbo; Heck, Albert J R; Schuurman, Janine; Parren, Paul W H I

    2016-01-01

    IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell-expressed antigen.

  1. A Novel Platform for the Potentiation of Therapeutic Antibodies Based on Antigen-Dependent Formation of IgG Hexamers at the Cell Surface

    PubMed Central

    Verploegen, Sandra; Strumane, Kristin; van Kampen, Muriel D.; Voorhorst, Marleen; Horstman, Wendy; Engelberts, Patrick J.; Oostindie, Simone C.; Wang, Guanbo; Heck, Albert J. R.; Schuurman, Janine; Parren, Paul W. H. I.

    2016-01-01

    IgG antibodies can organize into ordered hexamers on cell surfaces after binding their antigen. These hexamers bind the first component of complement C1 inducing complement-dependent target cell killing. Here, we translated this natural concept into a novel technology platform (HexaBody technology) for therapeutic antibody potentiation. We identified mutations that enhanced hexamer formation and complement activation by IgG1 antibodies against a range of targets on cells from hematological and solid tumor indications. IgG1 backbones with preferred mutations E345K or E430G conveyed a strong ability to induce conditional complement-dependent cytotoxicity (CDC) of cell lines and chronic lymphocytic leukemia (CLL) patient tumor cells, while retaining regular pharmacokinetics and biopharmaceutical developability. Both mutations potently enhanced CDC- and antibody-dependent cellular cytotoxicity (ADCC) of a type II CD20 antibody that was ineffective in complement activation, while retaining its ability to induce apoptosis. The identified IgG1 Fc backbones provide a novel platform for the generation of therapeutics with enhanced effector functions that only become activated upon binding to target cell–expressed antigen. PMID:26736041

  2. Action Potentials are required for nitric oxide dependent LTP in CA1 neurons of adult GluR1 knockout and Wild-type mice

    PubMed Central

    Phillips, Keith G.; Hardingham, Neil R.; Fox, Kevin

    2009-01-01

    Neocortical LTP consists of both pre- and postsynaptic components that rely on nitric oxide (NO) and GluR1 respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (> 8 week old) GluR1 knockout mice was almost entirely NO-dependent and involved both the α splice variant of NO synthase-1 (αNOS-1) and the NO synthase-3 (NOS-3) isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice, and made up approximately 50% of the potentiation 2 hours post-tetanus. Theta-burst stimulation reliably produced postsynaptic spikes including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knockout mice and also blocked the NO-component of LTP in wild-types. We conclude that theta-burst stimulation is particularly well suited to producing the somatic postsynaptic spikes required for NO-dependent LTP. PMID:19109486

  3. Effects of the brominated flame retardant hexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evoked potentials in a one-generation reproduction study in Wistar rats.

    PubMed

    Lilienthal, Hellmuth; van der Ven, Leo T M; Piersma, Aldert H; Vos, Josephus G

    2009-02-25

    Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.

  4. Calcium-Dependent Protein Kinase C Is Not Required for Post-Tetanic Potentiation at the Hippocampal CA3 to CA1 Synapse

    PubMed Central

    Wang, Chih-Chieh; Weyrer, Christopher; Paturu, Mounica; Fioravante, Diasynou

    2016-01-01

    Post-tetanic potentiation (PTP) is a widespread form of short-term synaptic plasticity in which a period of elevated presynaptic activation leads to synaptic enhancement that lasts tens of seconds to minutes. A leading hypothesis for the mechanism of PTP is that tetanic stimulation elevates presynaptic calcium that in turn activates calcium-dependent protein kinase C (PKC) isoforms to phosphorylate targets and enhance neurotransmitter release. Previous pharmacological studies have implicated this mechanism in PTP at hippocampal synapses, but the results are controversial. Here we combine genetic and pharmacological approaches to determine the role of classic PKC isoforms in PTP. We find that PTP is unchanged in PKC triple knock-out (TKO) mice in which all calcium-dependent PKC isoforms have been eliminated (PKCα, PKCβ, and PKCγ). We confirm previous studies and find that in wild-type mice 10 μm of the PKC inhibitor GF109203 eliminates PTP and the PKC activator PDBu enhances neurotransmitter release and occludes PTP. However, we find that the same concentrations of GF109203 and PDBu have similar effects in TKO animals. We also show that 2 μm GF109203 does not abolish PTP even though it inhibits the PDBu-dependent phosphorylation of PKC substrates. We conclude that at the CA3 to CA1 synapse Ca2+-dependent PKC isoforms do not serve as calcium sensors to mediate PTP. SIGNIFICANCE STATEMENT Neurons dynamically regulate neurotransmitter release through many processes known collectively as synaptic plasticity. Post-tetanic potentiation (PTP) is a widespread form of synaptic plasticity that lasts for tens of seconds that may have important computational roles and contribute to short-term memory. According to a leading mechanism, presynaptic calcium activates protein kinase C (PKC) to increase neurotransmitter release. Pharmacological studies have also implicated this mechanism at hippocampal CA3 to CA1 synapses, but there are concerns about the specificity of PKC

  5. Hartree potential dependent exchange functional

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2016-08-01

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob's ladder classification of non-empirical density functionals.

  6. Antibody-Dependent NK Cell Activation Is Associated with Late Kidney Allograft Dysfunction and the Complement-Independent Alloreactive Potential of Donor-Specific Antibodies

    PubMed Central

    Legris, Tristan; Picard, Christophe; Todorova, Dilyana; Lyonnet, Luc; Laporte, Cathy; Dumoulin, Chloé; Nicolino-Brunet, Corinne; Daniel, Laurent; Loundou, Anderson; Morange, Sophie; Bataille, Stanislas; Vacher-Coponat, Henri; Moal, Valérie; Berland, Yvon; Dignat-George, Francoise; Burtey, Stéphane; Paul, Pascale

    2016-01-01

    Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs). The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR) of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK) cells as innate immune effectors of antibody-dependent cellular cytotoxicity (ADCC), but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT) was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years). Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate over a 1-year period (hazard ratio: 2.83). In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration of

  7. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA.

    PubMed

    Curtis, Jennifer A; Flint, Lorraine E; Flint, Alan L; Lundquist, Jessica D; Hudgens, Brian; Boydston, Erin E; Young, Julie K

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  8. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada Ecoregion, CA

    USGS Publications Warehouse

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist.

  9. Incorporating Cold-Air Pooling into Downscaled Climate Models Increases Potential Refugia for Snow-Dependent Species within the Sierra Nevada Ecoregion, CA

    PubMed Central

    Curtis, Jennifer A.; Flint, Lorraine E.; Flint, Alan L.; Lundquist, Jessica D.; Hudgens, Brian; Boydston, Erin E.; Young, Julie K.

    2014-01-01

    We present a unique water-balance approach for modeling snowpack under historic, current and future climates throughout the Sierra Nevada Ecoregion. Our methodology uses a finer scale (270 m) than previous regional studies and incorporates cold-air pooling, an atmospheric process that sustains cooler temperatures in topographic depressions thereby mitigating snowmelt. Our results are intended to support management and conservation of snow-dependent species, which requires characterization of suitable habitat under current and future climates. We use the wolverine (Gulo gulo) as an example species and investigate potential habitat based on the depth and extent of spring snowpack within four National Park units with proposed wolverine reintroduction programs. Our estimates of change in spring snowpack conditions under current and future climates are consistent with recent studies that generally predict declining snowpack. However, model development at a finer scale and incorporation of cold-air pooling increased the persistence of April 1st snowpack. More specifically, incorporation of cold-air pooling into future climate projections increased April 1st snowpack by 6.5% when spatially averaged over the study region and the trajectory of declining April 1st snowpack reverses at mid-elevations where snow pack losses are mitigated by topographic shading and cold-air pooling. Under future climates with sustained or increased precipitation, our results indicate a high likelihood for the persistence of late spring snowpack at elevations above approximately 2,800 m and identify potential climate refugia sites for snow-dependent species at mid-elevations, where significant topographic shading and cold-air pooling potential exist. PMID:25188379

  10. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase.

    PubMed

    Bauer, Georg; Zarkovic, Neven

    2015-04-01

    Tumor cells generate extracellular superoxide anions and are protected against superoxide anion-mediated intercellular apoptosis-inducing signaling by the expression of membrane-associated catalase. 4-Hydroxy-2-nonenal (4-HNE), a versatile second messenger generated during lipid peroxidation, has been shown to induce apoptosis selectively in malignant cells. The findings described in this paper reveal the strong, concentration-dependent potential of 4-HNE to specifically inactivate extracellular catalase of tumor cells both indirectly and directly and to consequently trigger apoptosis in malignant cells through superoxide anion-mediated intercellular apoptosis-inducing signaling. Namely, 4-HNE caused apoptosis selectively in NOX1-expressing tumor cells through inactivation of their membrane-associated catalase, thus reactivating subsequent intercellular signaling through the NO/peroxynitrite and HOCl pathways, followed by the mitochondrial pathway of apoptosis. Concentrations of 4-HNE of 1.2 µM and higher directly inactivated membrane-associated catalase of tumor cells, whereas at lower concentrations, 4-HNE triggered a complex amplificatory pathway based on initial singlet oxygen formation through H2O2 and peroxynitrite interaction. Singlet-oxygen-dependent activation of the FAS receptor and caspase-8 increased superoxide anion generation by NOX1 and amplification of singlet oxygen generation, which allowed singlet-oxygen-dependent inactivation of catalase. 4-HNE and singlet oxygen cooperate in complex autoamplificatory loops during this process. The finding of these novel anticancer pathways may be useful for understanding the role of 4-HNE in the control of malignant cells and for the optimization of ROS-dependent therapeutic approaches including antioxidant treatments.

  11. Pathways to decoding the clinical potential of stress response FOXO-interaction networks for Huntington's disease: of gene prioritization and context dependence

    PubMed Central

    Parmentier, Frédéric; Lejeune, François-Xavier; Neri, Christian

    2013-01-01

    The FOXO family of transcription factors is central to the regulation of organismal longevity and cellular survival. Several studies have indicated that FOXO factors lie at the center of a complex network of upstream pathways, cofactors and downstream targets (FOXO-interaction networks), which may have developmental and post-developmental roles in the regulation of chronic-stress response in normal and diseased cells. Noticeably, FOXO factors are important for the regulation of proteotoxicity and neuron survival in several models of neurodegenerative disease, suggesting that FOXO-interaction networks may have therapeutic potential. However, the status of FOXO-interaction networks in neurodegenerative disease remains largely unknown. Systems modeling is anticipated to provide a comprehensive assessment of this question. In particular, interrogating the context-dependent variability of FOXO-interaction networks could predict the clinical potential of cellular-stress response genes and aging regulators for tackling brain and peripheral pathology in neurodegenerative disease. Using published transcriptomic data obtained from murine models of Huntington's disease (HD) and post-mortem brains, blood samples and induced-pluripotent-stem cells from HD carriers as a case example, this review briefly highlights how the biological status and clinical potential of FOXO-interaction networks for HD may be decoded by developing network and entropy based feature selection across heterogeneous datasets. PMID:23781200

  12. Culture-dependent and culture-independent characterization of potentially functional biphenyl-degrading bacterial community in response to extracellular organic matter from Micrococcus luteus

    PubMed Central

    Su, Xiao-Mei; Liu, Yin-Dong; Hashmi, Muhammad Zaffar; Ding, Lin-Xian; Shen, Chao-Feng

    2015-01-01

    Biphenyl (BP)-degrading bacteria were identified to degrade various polychlorinated BP (PCB) congers in long-term PCB-contaminated sites. Exploring BP-degrading capability of potentially useful bacteria was performed for enhancing PCB bioremediation. In the present study, the bacterial composition of the PCB-contaminated sediment sample was first investigated. Then extracellular organic matter (EOM) from Micrococcus luteus was used to enhance BP biodegradation. The effect of the EOM on the composition of bacterial community was investigated by combining with culture-dependent and culture-independent methods. The obtained results indicate that Proteobacteria and Actinobacteria were predominant community in the PCB-contaminated sediment. EOM from M. luteus could stimulate the activity of some potentially difficult-to-culture BP degraders, which contribute to significant enhancement of BP biodegradation. The potentially difficult-to-culture bacteria in response to EOM addition were mainly Rhodococcus and Pseudomonas belonging to Gammaproteobacteria and Actinobacteria respectively. This study provides new insights into exploration of functional difficult-to-culture bacteria with EOM addition and points out broader BP/PCB degrading, which could be employed for enhancing PCB-bioremediation processes. PMID:25675850

  13. Tumor-dependent increase of serum amino acid levels in breast cancer patients has diagnostic potential and correlates with molecular tumor subtypes

    PubMed Central

    2013-01-01

    Background Malignancies induce changes in the levels of serum amino acids (AA), which may offer diagnostic potential. Furthermore, changes in AA levels are associated with immune cell function. In this study, serum AA levels were studied in breast cancer patients versus patients with benign breast lesions. Methods In a prospective study, serum levels of 15 AA were measured by high performance liquid chromatography before and after surgery in 41 breast cancer patients (BrCA) and nine patients with benign breast lesions (healthy donors, HD). Results were analyzed in relation to clinical tumor data and tested against immunological flow cytometry data. Principal component analysis was performed and the accuracy of AA levels as a potential diagnostic tool was tested. Results Pre- but not postoperative serum AA levels were increased in BrCA in eight out of 15 AA compared with HD. Serum AA levels were highest in the most aggressive (basal-like) as compared with the least aggressive tumor subtype (luminal A). A principal component (PC1) of all measured AA correlated with a mainly pro-inflammatory immune profile, while a second one (PC2, selectively considering AA preoperatively differing between HD and BrCA) could predict health state with an area under the curve of 0.870. Conclusions Breast cancer shows a tumor-dependent impact on serum AA levels, which varies with intrinsic tumor subtypes and is associated with a pro-inflammatory state. Serum AA levels need further evaluation as a potential diagnostic tool. PMID:24237611

  14. Net electron-phonon scattering rates in InN/GaN multiple quantum wells: The effects of an energy dependent acoustic deformation potential

    SciTech Connect

    Xia, H. Patterson, R.; Feng, Y.; Shrestha, S.; Conibeer, G.

    2014-08-11

    The rates of charge carrier relaxation by phonon emission are of substantial importance in the field of hot carrier solar cell, primarily in investigation of mechanisms to slow down hot carrier cooling. In this work, energy and momentum resolved deformation potentials relevant to electron-phonon scattering are computed for wurtzite InN and GaN as well as an InN/GaN multiple quantum well (MQW) superlattice using ab-initio methods. These deformation potentials reveal important features such as discontinuities across the electronic bandgap of the materials and variations over tens of eV. The energy dependence of the deformation potential is found to be very similar for wurtzite nitrides despite differences between the In and Ga pseudopotentials and their corresponding electronic band structures. Charge carrier relaxation by this mechanism is expected to be minimal for electrons within a few eV of the conduction band edge. However, hole scattering at energies more accessible to excitation by solar radiation is possible between heavy and light hole states. Moderate reductions in overall scattering rates are observed in MQW relative to the bulk nitride materials.

  15. Genetic Dependence of Cochlear Cells and Structures Injured by Noise

    PubMed Central

    Ohlemiller, Kevin K.; Gagnon, Patricia M.

    2007-01-01

    The acute and permanent effects of a single damaging noise exposure were compared in CBA/J, C57BL/6 (B6), and closely related strains of mice. Two hrs of broadband noise (4–45 kHz) at 110 dB SPL led to temporary reduction in the endocochlear potential (EP) of CBA/J and CBA/CaJ (CBA) mice and acute cellular changes in cochlear stria vascularis and spiral ligament. For the same exposure, B6 mice showed no EP reduction and little of the pathology seen in CBA. Eight weeks after exposure, all mice showed a normal EP, but only CBA mice showed injury and cell loss in cochlear lateral wall, despite the fact that B6 sustained larger permanent threshold shifts. Examination of noise injury in B6 congenics carrying alternate alleles of genes encoding otocadherin (Cdh23), agouti protein, and tyrosinase (albinism) indicated that none of these loci can account for the strain differences observed. Examination of B6xCBA F1 mice and F1xB6 N2 mice further indicated that susceptibility to noise-related EP reduction and associated cell pathology are inherited in an autosomal dominant manner, and are established by one or a few large effect quantitative trait loci. Findings support a common genetic basis for an entire constellation of noise related cochlear pathologies in cochlear lateral wall and spiral limbus. Even within species, cellular targets of acute and permanent cochlear noise injury may vary with genetic makeup. PMID:17175124

  16. Selective induction of metabotropic glutamate receptor 1- and metabotropic glutamate receptor 5-dependent chemical long-term potentiation at oriens/alveus interneuron synapses of mouse hippocampus.

    PubMed

    Le Vasseur, M; Ran, I; Lacaille, J-C

    2008-01-02

    Synaptic plasticity in inhibitory interneurons is essential to maintain a proper equilibrium between excitation and inhibition in hippocampal network. Recent studies showed that theta-burst-induced long-term potentiation (LTP) at excitatory synapses of oriens/alveus (O/A) interneurons in CA1 hippocampal region required the activation of metabotropic glutamate receptor (mGluR) 1. However these interneurons also express mGluR5 and the contribution of this receptor subtype in interneuron synaptic plasticity remains unexplored. We combined pharmacological and transgenic approaches to examine the relative contribution of mGluR1/5 in LTP at excitatory synapses on O/A interneurons. Bath-application of the selective mGluR1/5 agonist (s)-3,5-dihydroxyphenylglycine (DHPG) induced LTP of compound excitatory postsynaptic potentials. DHPG-induced LTP was not prevented by application of either mGluR1 or mGluR5 antagonists, was still present in mGluR1 knockout mice, but was blocked by co-application of both antagonists. These results indicate that LTP can be induced at O/A interneuron synapses by either mGluR1 or mGluR5 activation. As previously reported for mGluR1-dependent LTP, the mGluR5-dependent LTP was independent of N-methyl-d-aspartate receptors. Pairing DHPG application with postsynaptic depolarization induced mGluR1- and mGluR5-dependent LTP of minimally-evoked excitatory postsynaptic currents, which were composed of calcium-permeable AMPA receptor and presynaptically modulated by group II mGluRs, hence confirming that both forms of LTP occurred directly at interneuron excitatory synapses. These findings uncover a new mGluR5-dependent form of LTP at O/A interneuron synapses and indicate that activation of mGluR1 or mGluR5 is sufficient to induce LTP at these synapses. Thus, a rich repertoire of adaptive changes may take place at these interneuron synapses to regulate hippocampal feedback inhibition.

  17. Time course and voltage dependence of expressed HERG current compared with native "rapid" delayed rectifier K current during the cardiac ventricular action potential.

    PubMed

    Hancox, J C; Levi, A J; Witchel, H J

    1998-11-01

    It is widely believed that HERG (human ether-a-go-go-related gene) encodes the major subunit of the cardiac "rapid" delayed rectifier K channel. The aims of the present study were threefold: (1) to record directly the time course and voltage dependence of expressed HERG current in a mammalian cell line, during an imposed ventricular action potential (AP); (2) to compare this with native rapid delayed rectifier current (IKr) elicited by applying an AP command to isolated guinea-pig ventricular myocytes; (3) to provide mechanistic information regarding the profile of HERG/IKr during the AP. We used the AP clamp technique and conventional whole-cell patch-clamp recordings at 32-34 degreesC. HERG was transiently expressed in Chinese hamster ovary (CHO) cells. There was an outward current in transfected CHO cells, which developed progressively during the AP plateau and slow repolarisation phase. The instantaneous current-voltage (I-V) relation for both leak-subtracted HERG current (n=10) and E-4031-sensitive current (n=6) during AP repolarisation was maximal between -30 mV and -40 mV. The conductance-voltage (G-V) relation was maximal at potentials between -60 and -75 mV. A similar voltage dependence for HERG current was observed during a descending ramp from +60 to -80 mV (n=5), but not during either an ascending ramp (n=5), or a reversed AP waveform (n=8). These data suggest that instantaneous HERG current during the AP does not depend on the instantaneous command voltage alone, but upon the previous voltages during the applied waveform. The time course of activation of HERG current at potentials near the AP plateau was rapid. Tail currents recorded on premature repolarisation at different time points in the AP showed directly that HERG also activates rapidly during the AP. The I-V profiles of fully activated HERG and of current during the AP were very similar. IKr from guinea-pig ventricular myocytes was measured as E-4031-sensitive current during the AP clamp

  18. pH-Dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging.

    PubMed

    Hu, Kuo-Wei; Hsu, Kang-Che; Yeh, Chen-Sheng

    2010-09-01

    We report a pH dependence of degradable silica nanotubes, which dissolved to the biodegradation product monosilicic acid, Si(OH)(4). The silica nanotubes, potentially acting as oral-based administration carriers, were resistant to dissolution in the extreme acidic condition of pH 1, but degraded quickly at pH 8, and the degradation rate can be tuned by tailoring the thickness of silica nanotubes with thicker nanotubes dissolving more slowly. Because Gd(OH)(3) nanorods were used as templates, the silica nanotubes could be further developed as MR imaging contrast agents as well as drugs carriers. The released Gd(3+) ions resulting from the etching of Gd(OH)(3) nanorods were chelated by the pre-modified DOTA, yielding Gd-DOTA complexes grafted onto silica nanotubes. The Gd-DOTA grafted silica nanotubes loaded with doxorubicin revealed enhanced T(1) imaging contrast and anticancer activity.

  19. Biophysical Insights into How Spike Threshold Depends on the Rate of Membrane Potential Depolarization in Type I and Type II Neurons

    PubMed Central

    Yi, Guo-Sheng; Wang, Jiang; Tsang, Kai-Ming; Wei, Xi-Le; Deng, Bin

    2015-01-01

    Dynamic spike threshold plays a critical role in neuronal input-output relations. In many neurons, the threshold potential depends on the rate of membrane potential depolarization (dV/dt) preceding a spike. There are two basic classes of neural excitability, i.e., Type I and Type II, according to input-output properties. Although the dynamical and biophysical basis of their spike initiation has been established, the spike threshold dynamic for each cell type has not been well described. Here, we use a biophysical model to investigate how spike threshold depends on dV/dt in two types of neuron. It is observed that Type II spike threshold is more depolarized and more sensitive to dV/dt than Type I. With phase plane analysis, we show that each threshold dynamic arises from the different separatrix and K+ current kinetics. By analyzing subthreshold properties of membrane currents, we find the activation of hyperpolarizing current prior to spike initiation is a major factor that regulates the threshold dynamics. The outward K+ current in Type I neuron does not activate at the perithresholds, which makes its spike threshold insensitive to dV/dt. The Type II K+ current activates prior to spike initiation and there is a large net hyperpolarizing current at the perithresholds, which results in a depolarized threshold as well as a pronounced threshold dynamic. These predictions are further attested in several other functionally equivalent cases of neural excitability. Our study provides a fundamental description about how intrinsic biophysical properties contribute to the threshold dynamics in Type I and Type II neurons, which could decipher their significant functions in neural coding. PMID:26083350

  20. Analysis of Ribonucleotide 5'-Triphosphate Analogs as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase by Using Nonradioactive Polymerase Assays.

    PubMed

    Lu, Gaofei; Bluemling, Gregory R; Collop, Paul; Hager, Michael; Kuiper, Damien; Gurale, Bharat P; Painter, George R; De La Rosa, Abel; Kolykhalov, Alexander A

    2017-03-01

    Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn(2+) is required for enzymatic activity, while Mg(2+) is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5'-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2'-C-methyl- and 2'-C-ethynyl-substituted analog 5'-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.

  1. Establishment of a GM-CSF-dependent megakaryoblastic cell line with the potential to differentiate into an eosinophilic lineage in response to retinoic acids.

    PubMed

    Ma, F; Koike, K; Higuchi, T; Kinoshita, T; Takeuchi, K; Mwamtemi, H H; Sawai, N; Kamijo, T; Shiohara, M; Horie, S; Kawa, S; Sasaki, Y; Hidaka, E; Yamagami, O; Yamashita, T; Koike, T; Ishii, E; Komiyama, A

    1998-02-01

    We recently established a human granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent cell line (HML) from colony-constituent cells grown by peripheral blood cells of a patient with acute megakaryoblastic leukaemia. The HML cells possessed megakaryocytic features, as determined by cytochemical, electron microscopic and flow cytometric analysis. In the present study we examined the effects of retinoic acid (RA) on the development of HML cells. All-trans-RA, 13-cis-RA and 9-cis-RA at 10(-8) mol/l to 10(-5) mol/l inhibited the GM-CSF-dependent cell growth. Some of the RA-treated cells contained prominent azurophilic granules and were positive for peroxidase. They also reacted with Biebrich scarlet, Luxol fast blue and a monoclonal antibody against eosinophil peroxidase. In addition, exposure to RA increased the frequency and the intensity of major basic protein-positive cells. However, eosinophil-derived neurotoxin and eosinophil cationic protein were not detected or were only detected at a low level in the lysates of the HML cells treated with RA. Although IL-5 alone could not stimulate cell growth, the addition of IL-5 to the cultures containing stem cell factor + all-trans-RA was required for the expression of the eosinophilic phenotype. These results suggest that the HML cell line is a megakaryoblastic cell line with the potential to differentiate into the eosinophilic lineage. HML cells may be a useful model for elucidating the eosinophilic differentiation programme.

  2. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel.

    PubMed

    Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe

    2015-03-01

    A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases.

  3. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    PubMed

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  4. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    PubMed Central

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  5. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    PubMed

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. The Fmr1 knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC of Fmr1KO mice from 2 to 12 months. In young adult Fmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-old Fmr1KO mice. We found that acute pharmacological blockade of mGlu5 receptor in 12-month-old Fmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP in Fmr1KO mice, which may correlate to some of the complex age-related deficits in FXS.

  6. Potential effects of climate change on inland glacial lakes and implications for lake-dependent biota in Wisconsin: final report April 2013

    USGS Publications Warehouse

    Meyer, Michael W.; Walker, John F.; Kenow, Kevin P.; Rasmussen, Paul W.; Garrison, Paul J.; Hanson, Paul C.; Hunt, Randall J.

    2013-01-01

    F statewide, and an increase in precipitation of 1”–2”. However, summer precipitation in the northern part of the state is expected to be less and winter precipitation will be greater. By the end of the 21st century, the magnitude of changes in temperature and precipitation are expected to intensify. Such climatic changes have altered, and would further alter hydrological, chemical, and physical properties of inland lakes. Lake-dependent wildlife sensitive to changes in water quality, are particularly susceptible to lake quality-associated habitat changes and are likely to suffer restrictions to current breeding distributions under some climate change scenarios. We have selected the common loon (Gavia immer) to serve as a sentinel lake-dependent piscivorous species to be used in the development of a template for linking primary lake-dependent biota endpoints (e.g., decline in productivity and/or breeding range contraction) to important lake quality indicators. In the current project, we evaluate how changes in freshwater habitat quality (specifically lake clarity) may impact common loon lake occupancy in Wisconsin under detailed climate-change scenarios. In addition, we employ simple land-use/land cover and habitat scenarios to illustrate the potential interaction of climate and land-use/land cover effects. The methods employed here provide a template for studies where integration of physical and biotic models is used to project future conditions under various climate and land use change scenarios. Findings presented here project the future conditions of lakes and loons within an important watershed in northern Wisconsin – of importance to water resource managers and state citizens alike.

  7. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hAβPPSwInd-J20 mouse.

    PubMed

    Fu, YuHong; Rusznák, Zoltán; Kwok, John B J; Kim, Woojin Scott; Paxinos, George

    2014-01-01

    The J20 mouse expresses human mutant amyloid-β protein precursor (hAβPPSwInd) and is an established transgenic model of Alzheimer's disease (AD). From the age of 5 months, amyloid-β (Aβ) deposits appear in the hippocampus with concomitant increase of AD-associated features. Although changes occurring after the appearance of Aβ deposits have been extensively studied, very little is known about alterations that occur prior to 5 months. The present study aimed to identify changes in the cellular composition and proliferative potential of the J20 hippocampus using 1-18-month-old mice. Neuronal, non-neuronal, Ki-67+, and TUNEL+ cell numbers were counted with the isotropic fractionator method. Age-dependent changes of the expression of microglia-, astrocyte-, and neurogenesis-specific markers were sought in the entire hippocampus. Several transgene-associated changes were revealed before the appearance of Aβ deposits. The number of proliferating cells decreased whereas the number of microglia clusters increased as early as 4 weeks of age. The neurogenesis was also impaired in the dentate gyrus of 7-11-week-old J20 mice. A statistically significant negative correlation was found between the number of proliferating cells and age in both populations, but the time course of the age-dependence was steeper in wild-type than in J20 mice. Negative age-dependence was noted when the number of cells committed to apoptosis was examined. Our results indicate that overexpression of mutant hAβPP initiates a cascade of pathologic events well before the appearance of visible Aβ plaques. Accordingly, early signs of AD include reduced cell proliferation, impaired neurogenesis, and increased activity of microglia in the hippocampus.

  8. The tilt-dependent potential of mean force of a pair of DNA oligomers from all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Cortini, Ruggero; Cheng, Xiaolin; Smith, Jeremy C.

    2017-03-01

    Electrostatic interactions between DNA molecules have been extensively studied experimentally and theoretically, but several aspects (e.g. its role in determining the pitch of the cholesteric DNA phase) still remain unclear. Here, we performed large-scale all-atom molecular dynamics simulations in explicit water and 150 mM sodium chloride, to reconstruct the potential of mean force (PMF) of two DNA oligomers 24 base pairs long as a function of their interaxial angle and intermolecular distance. We find that the potential of mean force is dominated by total DNA charge, and not by the helical geometry of its charged groups. The theory of homogeneously charged cylinders fits well all our simulation data, and the fit yields the optimal value of the total compensated charge on DNA to  ≈65% of its total fixed charge (arising from the phosphorous atoms), close to the value expected from Manning’s theory of ion condensation. The PMF calculated from our simulations does not show a significant dependence on the handedness of the angle between the two DNA molecules, or its size is on the order of 1{{k}\\text{B}}T . Thermal noise for molecules of the studied length seems to mask the effect of detailed helical charge patterns of DNA. The fact that in monovalent salt the effective interaction between two DNA molecules is independent on the handedness of the tilt may suggest that alternative mechanisms are required to understand the cholesteric phase of DNA.

  9. Rotation and vibration of diatomic molecule in the spatially-dependent mass Schrödinger equation with generalized q-deformed Morse potential

    NASA Astrophysics Data System (ADS)

    Ikhdair, Sameer M.

    2009-06-01

    The analytic solutions of the spatially-dependent mass Schrödinger equation of diatomic molecules with the centrifugal term l(l+1)/r2 for the generalized q-deformed Morse potential are obtained approximately by means of a parametric generalization of the Nikiforov-Uvarov (NU) method combined with the Pekeris approximation scheme. The energy eigenvalues and the corresponding normalized radial wave functions are calculated in closed form with a physically motivated choice of a reciprocal Morse-like mass function, m(r)=m0/(1-δe)2,0⩽δ<1, where a and re are the range of the potential and the equilibrium position of the nuclei. The constant mass case when δ→0 is also studied. The energy states for H 2, LiH, HCl and CO diatomic molecules are calculated and compared favourably well with those obtained by using other approximation methods for arbitrary vibrational n and rotational l quantum numbers.

  10. Redox probing study of the potential dependence of charge transport through Li2O2

    SciTech Connect

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; Vegge, Tejs; Hjelm, Johan

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li2O2, in the Li–O2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfer exchange rate as a function of the potential and the Li2O2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li2O2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.

  11. Higher-Order Modes of Modulation Instability in Bose-Einstein Condensates with a Time-Dependent Three-Dimensional Parabolic Potential

    NASA Astrophysics Data System (ADS)

    Zong, Feng-De; Yan, Yu-Sheng; Shen, Sen-Ting

    2014-10-01

    By the similarity reduction and Darboux transformation, we derive higher-order modes of three-dimensional Bose-Einstein condensate modulation instability in the nonautonomous Gross-Pitaevskii equation and manipulate them by regulating the time-dependent potential and gain. Firstly, by the similarity reduction, the (3+1)-dimensional nonautonomous Gross-Pitaevskii equation reduces to a (1+1)-dimensional standard nonlinear Schrödinger equation with constant coefficients. Then, considering the Akhmediev breather solution as the first-order modulation instability solution of the higher-order modes of Bose-Einstein condensate modulation instability, we achieve the Nth-order (N = 2, 3, 4, and 5) modulation instability solutions by the Darboux transformation. Finally, we verify the stable higher-order modes of Bose-Einstein condensate modulation instability and manipulate them by direct numerical simulation. The obtained results may raise the possibility of related experiments and potential applications in Bose-Einstein condensates and other related fields.

  12. An Eight-Degree-of-Freedom, Time-Dependent Quantum Dynamics Study for the H₂+C₂H Reaction on a New Modified potential Energy Surface

    SciTech Connect

    Wang, Dunyou; Huo, Winifred M.

    2007-10-21

    An eight dimensional time-dependent quantum dynamics wavepacket approach is performed for the study of the H₂+C₂H ! H + C₂H₂ reaction system on a new modified potential energy surface (PES) [Chem. Phys. Lett. 409, 249 (2005)]. This new potential energy surface is obtained by modifying Wang and Bowman's old PES [ J. Chem. Phys. 101, 8646 (1994)] based on the new ab initio calculation. This new modified PES has a much lower transition state barrier height at 2.29 kcal/mol than Wang and Bowman's old PES at 4.3 kcal/mol. This study shows the reactivity for this diatom-triatom reaction system is enchanced by vibrational excitations of H₂; whereas, the vibrational excitations of C₂H only have a small effect on the reactivity. Furthermore, the bending excitations of C₂H, comparing to the ground state reaction probability, hinder the reactivity. The comparison of the rate constant between this calculation and experimental results agree with each other very well. This comparison indicates that the new modified PES corrects the large barrier height problem in Wang and Bowman's old PES.

  13. C-type lectin-like molecule-1 (CLL1)-targeted TRAIL augments the tumoricidal activity of granulocytes and potentiates therapeutic antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Wiersma, Valerie R; de Bruyn, Marco; Shi, Ce; Gooden, Marloes J M; Wouters, Maartje C A; Samplonius, Douwe F; Hendriks, Djoke; Nijman, Hans W; Wei, Yunwei; Zhou, Jin; Helfrich, Wijnand; Bremer, Edwin

    2015-01-01

    The therapeutic effect of anti-cancer monoclonal antibodies stems from their capacity to opsonize targeted cancer cells with subsequent phagocytic removal, induction of antibody-dependent cell-mediated cytotoxicity (ADCC) or induction of complement-mediated cytotoxicity (CDC). The major immune effector cells involved in these processes are natural killer (NK) cells and granulocytes. The latter and most prevalent blood cell population contributes to phagocytosis, but is not effective in inducing ADCC. Here, we report that targeted delivery of the tumoricidal protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to granulocyte marker C-type lectin-like molecule-1 (CLL1), using fusion protein CLL1:TRAIL, equips granulocytes with high levels of TRAIL. Upon CLL1-selective binding of this fusion protein, granulocytes acquire additional TRAIL-mediated cytotoxic activity that, importantly, potentiates antibody-mediated cytotoxicity of clinically used therapeutic antibodies (e.g., rituximab, cetuximab). Thus, CLL1:TRAIL could be used as an adjuvant to optimize the clinical potential of anticancer antibody therapy by augmenting tumoricidal activity of granulocytes.

  14. 4-oxo-2-nonenal (4-ONE): evidence of transient receptor potential ankyrin 1-dependent and -independent nociceptive and vasoactive responses in vivo.

    PubMed

    Graepel, Rabea; Fernandes, Elizabeth S; Aubdool, Aisah A; Andersson, David A; Bevan, Stuart; Brain, Susan D

    2011-04-01

    This study explores the in vivo effects of the proposed transient receptor potential ankyrin 1 (TRPA1) agonist 4-oxo-2-nonenal (4-ONE). Pharmacological inhibitors and genetically modified mice were used to investigate the ability of 4-ONE to act via TRPA1 receptors and possible mechanisms involving transient receptor potential vanilloid 1 (TRPV1). We hypothesized that 4-ONE activates sensory nerves, via TRPA1 or possibly TRPV1, and thus triggers mechanical hyperalgesia, edema formation, and vasodilatation in mice. An automated dynamic plantar aesthesiometer was used to determine hind paw withdrawal thresholds, and a laser Doppler flowmeter was used to measure skin blood flow. Edema formation was determined by measuring paw weights and thickness. 4-ONE (10 nmol) triggers unilateral mechanical hyperalgesia, edema formation, and vasodilatation in mice and is shown here to exhibit TRPA1-dependent and -independent effects. Neurogenic vasodilatation and mechanical hyperalgesia at 0.5 h postinjection were significantly greater in TRPA1 wild-type (WT) mice compared with TRPA1 knockout (KO) mice. Edema formation throughout the time course as well as mechanical hyperalgesia from 1 to 4 h postinjection were similar in WT and TRPA1 KO mice. Studies involving TRPV1 KO mice revealed no evidence of TRPV1 involvement or interactions between TRPA1 and TRPV1 in mediating the in vivo effects of 4-ONE. Previously, 4-ONE was shown to be a potent TRPA1 agonist in vitro. We demonstrate its ability to mediate vasodilatation and certain nociceptive effects in vivo. These data indicate the potential of TRPA1 as an oxidant sensor for vasodilator responses in vivo. However, 4-ONE also triggers TRPA1-independent effects that relate to edema formation and pain.

  15. Age-Dependent Switch of the Role of Serotonergic 5-HT1A Receptors in Gating Long-Term Potentiation in Rat Visual Cortex In Vivo

    PubMed Central

    Gagolewicz, Peter J.; Dringenberg, Hans C.

    2016-01-01

    The rodent primary visual cortex (V1) is densely innervated by serotonergic axons and previous in vitro work has shown that serotonin (5-HT) can modulate plasticity (e.g., long-term potentiation (LTP)) at V1 synapses. However, little work has examined the effects of 5-HT on LTP under in vivo conditions. We examined the role of 5-HT on LTP in V1 elicited by theta burst stimulation (TBS) of the lateral geniculate nucleus in urethane-anesthetized (adult and juvenile) rats. Thalamic TBS consistently induced potentiation of field postsynaptic potentials (fPSPs) recorded in V1. While 5-HT application (0.1–10 mM) itself did not alter LTP levels, the broad-acting 5-HT receptor antagonists methiothepin (1 mM) resulted in a clear facilitation of LTP in adult animals, an effect that was mimicked by the selective 5-HT1A receptor antagonist WAY 100635 (1 mM). Interestingly, in juvenile rats, WAY 100635 application inhibited LTP, indicative of an age-dependent switch in the role of 5-HT1A receptors in gating V1 plasticity. Analyses of spontaneous electrocorticographic (ECoG) activity in V1 indicated that the antagonist-induced LTP enhancement was not related to systematic changes in oscillatory activity in V1. Together, these data suggest a facilitating role of 5-HT1A receptor activation on LTP in the juvenile V1, which switches to a tonic, inhibitory influence in adulthood. PMID:27247804

  16. A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation

    PubMed Central

    Wang, Weisheng; Jia, Yousheng; Pham, Danielle T.; Karsten, Carley A.; Merrill, Collin B.; Gall, Christine M.; Piomelli, Daniele

    2016-01-01

    Abstract The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity. PMID:27517090

  17. Supersymmetric approach to exact solutions of (1+ 1)-dimensional time-independent Klein-Gordon equation: Application to a position-dependent mass and a PT-symmetric vector potential

    NASA Astrophysics Data System (ADS)

    Zaghou, N.; Benamira, F.; Guechi, L.

    2017-01-01

    Rigorous use of the SUSYQM approach applied for the Klein-Gordon equation with scalar and vector potentials is discussed. The method is applied to solve exactly, for bound states, two models with position-dependent masses and PT-symmetric vector potentials, depending on some parameters. The necessary conditions on the parameters to get physical solutions are described. Some special cases are also derived by adjusting the parameters of the models.

  18. Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones.

    PubMed

    Shrivastava, Nidhi; Nag, Jeetendra K; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran; Misra-Bhattacharya, Shailja

    2015-07-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.

  19. Irradiation with UV-C inhibits TNF-α-dependent activation of the NF-κB pathway in a mechanism potentially mediated by reactive oxygen species.

    PubMed

    Szoltysek, Katarzyna; Walaszczyk, Anna; Janus, Patryk; Kimmel, Marek; Widlak, Piotr

    2017-01-01

    Pathways depending on the NF-κB transcription factor are essential components of cellular response to stress. Plethora of stimuli modulating NF-κB includes inflammatory signals, ultraviolet radiation (UV) and reactive oxygen species (ROS), yet interference between different factors affecting NF-κB remains relatively understudied. Here, we aim to characterize the influence of UV radiation on TNF-α-induced activity of the NF-κB pathway. We document inhibition of TNF-α-induced activation of NF-κB and subsequent suppression of NF-κB-regulated genes in cells exposed to UV-C several hours before TNF-α stimulation. Accumulation of ROS and subsequent activation of NRF2, p53, AP-1 and NF-κB-dependent pathways, with downstream activation of antioxidant mechanisms (e.g., SOD2 and HMOX1 expression), is observed in the UV-treated cells. Moreover, NF-κB inhibition is not observed if generation of UV-induced ROS is suppressed by chemical antioxidants. It is noteworthy that stimulation with TNF-α also generates a wave of ROS, which is suppressed in cells pre-treated by UV. We postulate that irradiation with UV-C activates antioxidant mechanisms, which in turn affect ROS-mediated activation of NF-κB by TNF-α. Considering a potential cross talk between p53 and NF-κB, we additionally compare observed effects in p53-proficient and p53-deficient cells and find the UV-mediated suppression of TNF-α-activated NF-κB in both types of cells.

  20. Homology Modeling of NAD+-Dependent DNA Ligase of the Wolbachia Endosymbiont of Brugia malayi and Its Drug Target Potential Using Dispiro-Cycloalkanones

    PubMed Central

    Shrivastava, Nidhi; Nag, Jeetendra K.; Pandey, Jyoti; Tripathi, Rama Pati; Shah, Priyanka; Siddiqi, Mohammad Imran

    2015-01-01

    Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD+-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD+-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD+ cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates. PMID:25845868

  1. Event-related potentials reveal task-dependence and inter-individual differences in negation processing during silent listening and explicit truth-value evaluation.

    PubMed

    Herbert, C; Kissler, J

    2014-09-26

    In sentences such as dogs cannot fly/bark, evaluation of the truth-value of the sentence is assumed to appear after the negation has been integrated into the sentence structure. Moreover negation processing and truth-value processing are considered effortful processes, whereas processing of the semantic relatedness of the words within sentences is thought to occur automatically. In the present study, modulation of event-related brain potentials (N400 and late positive potential, LPP) was investigated during an implicit task (silent listening) and active truth-value evaluation to test these theoretical assumptions and determine if truth-value evaluation will be modulated by the way participants processed the negated information implicitly prior to truth-value verification. Participants first listened to negated sentences and then evaluated these sentences for their truth-value in an active evaluation task. During passive listening, the LPP was generally more pronounced for targets in false negative (FN) than true negative (TN) sentences, indicating enhanced attention allocation to semantically-related but false targets. N400 modulation by truth-value (FN>TN) was observed in 11 out of 24 participants. However, during active evaluation, processing of semantically-unrelated but true targets (TN) elicited larger N400 and LPP amplitudes as well as a pronounced frontal negativity. This pattern was particularly prominent in those 11 individuals, whose N400 modulation during silent listening indicated that they were more sensitive to violations of the truth-value than to semantic priming effects. The results provide evidence for implicit truth-value processing during silent listening of negated sentences and for task dependence related to inter-individual differences in implicit negation processing.

  2. First-passage-time statistics of a Brownian particle driven by an arbitrary unidimensional potential with a superimposed exponential time-dependent drift

    NASA Astrophysics Data System (ADS)

    Urdapilleta, Eugenio

    2015-12-01

    In one-dimensional systems, the dynamics of a Brownian particle are governed by the force derived from a potential as well as by diffusion properties. In this work, we obtain the first-passage-time statistics of a Brownian particle driven by an arbitrary potential with an exponential temporally decaying superimposed field up to a prescribed threshold. The general system analyzed here describes the sub-threshold signal integration of integrate-and-fire neuron models, of any kind, supplemented by an adaptation-like current, whereas the first-passage-time corresponds to the declaration of a spike. Following our previous studies, we base our analysis on the backward Fokker-Planck equation and study the survival probability and the first-passage-time density function in the space of the initial condition. By proposing a series solution we obtain a system of recurrence equations, which given the specific structure of the exponential time-dependent drift, easily admit a simpler Laplace representation. Naturally, the present general derivation agrees with the explicit solution we found previously for the Wiener process in (2012 J. Phys. A: Math. Theor. 45 185001). However, to demonstrate the generality of the approach, we further explicitly evaluate the first-passage-time statistics of the underlying Ornstein-Uhlenbeck process. To test the validity of the series solution, we extensively compare theoretical expressions with the data obtained from numerical simulations in different regimes. As shown, agreement is precise whenever the series is truncated at an appropriate order. Beyond the fact that both the Wiener and Ornstein-Uhlenbeck processes have a direct interpretation in the context of neuronal models, given their ubiquity in different fields, our present results will be of interest in other settings where an additive state-independent temporal relaxation process is being developed as the particle diffuses.

  3. Recruitment of hepatocyte nuclear factor 4 into specific intranuclear compartments depends on tyrosine phosphorylation that affects its DNA-binding and transactivation potential.

    PubMed Central

    Ktistaki, E; Ktistakis, N T; Papadogeorgaki, E; Talianidis, I

    1995-01-01

    Hepatocyte nuclear factor 4 (HNF-4) is a prominent member of the family of liver-enriched transcription factors, playing a role in the expression of a large number of liver-specific genes. We report here that HNF-4 is a phosphoprotein and that phosphorylation at tyrosine residue(s) is important for its DNA-binding activity and, consequently, for its transactivation potential both in cell-free systems and in cultured cells. Tyrosine phosphorylation did not affect the transport of HNF-4 from the cytoplasm to the nucleus but had a dramatic effect on its subnuclear localization. HNF-4 was concentrated in distinct nuclear compartments, as evidenced by in situ immunofluorescence and electron microscopy. This compartmentalization disappeared when tyrosine phosphorylation was inhibited by genistein. The correlation between the intranuclear distribution of HNF-4 and its ability to activate endogenous target genes demonstrates a phosphorylation signal-dependent pathway in the regulation of transcription factor activity. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7568236

  4. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    PubMed Central

    Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-01

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778

  5. Measuring the magnetic-field-dependent chemical potential of a low-density three-dimensional electron gas in n -GaAs and extracting its magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Roy Choudhury, Aditya N.; Venkataraman, V.

    2016-01-01

    We report the magnetic-field-dependent shift of the electron chemical potential in bulk, n -type GaAs at room temperature. A transient voltage of ˜100 μ V was measured across a Au-Al2O3 -GaAs metal-oxide-semiconductor capacitor in a pulsed magnetic field of ˜6 T . Several spurious voltages larger than the signal that had plagued earlier researchers performing similar experiments were carefully eliminated. The itinerant magnetic susceptibility of GaAs is extracted from the experimentally measured data for four different doping densities, including one as low as 5 ×1015cm-3 . Though the susceptibility in GaAs is dominated by Landau-Peierls diamagnetism, the experimental technique demonstrated can be a powerful tool for extracting the total free carrier magnetization of any electron system. The method is also virtually independent of the carrier concentration and is expected to work better in the nondegenerate limit. Such experiments had been successfully performed in two-dimensional electron gases at cryogenic temperatures. However, an unambiguous report on having observed this effect in any three-dimensional electron gas has been lacking. We highlight the 50 year old literature of various trials and discuss the key details of our experiment that were essential for its success. The technique can be used to unambiguously yield only the itinerant part of the magnetic susceptibility of complex materials such as magnetic semiconductors and hexaborides, and thus shed light on the origin of ferromagnetism in such systems.

  6. Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: The D(+)+H2 Reaction on the Triple-Sheeted DMBE Potential Energy Surface.

    PubMed

    Ghosh, Sandip; Sahoo, Tapas; Adhikari, Satrajit; Sharma, Rahul; Varandas, António J C

    2015-12-17

    We implement a coupled three-dimensional (3D) time-dependent wave packet formalism for the 4D reactive scattering problem in hyperspherical coordinates on the accurate double many body expansion (DMBE) potential energy surface (PES) for the ground and first two singlet states (1(1)A', 2(1)A', and 3(1)A') to account for nonadiabatic processes in the D(+) + H2 reaction for both zero and nonzero values of the total angular momentum (J). As the long-range interactions in D(+) + H2 contribute significantly due to nonadiabatic effects, the convergence profiles of reaction probabilities for the reactive noncharge transfer (RNCT), nonreactive charge transfer (NRCT), and reactive charge transfer (RCT) processes are shown for different collisional energies with respect to the helicity (K) and total angular momentum (J) quantum numbers. The total and state-to-state cross sections are presented as a function of the collision energy for the initial rovibrational state v = 0, j = 0 of the diatom, and the calculated cross sections compared with other theoretical and experimental results.

  7. 2-Oxoglutarate-dependent dioxygenases are sensors of energy metabolism, oxygen availability, and iron homeostasis: potential role in the regulation of aging process.

    PubMed

    Salminen, Antero; Kauppinen, Anu; Kaarniranta, Kai

    2015-10-01

    Recent studies have revealed that the members of an ancient family of nonheme Fe(2+)/2-oxoglutarate-dependent dioxygenases (2-OGDO) are involved in the functions associated with the aging process. 2-Oxoglutarate and O2 are the obligatory substrates and Fe(2+) a cofactor in the activation of 2-OGDO enzymes, which can induce the hydroxylation of distinct proteins and the demethylation of DNA and histones. For instance, ten-eleven translocation 1-3 (TET1-3) are the demethylases of DNA, whereas Jumonji C domain-containing histone lysine demethylases (KDM2-7) are the major epigenetic regulators of chromatin landscape, known to be altered with aging. The functions of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD1-3) as well as those of collagen hydroxylases are associated with age-related degeneration. Moreover, the ribosomal hydroxylase OGFOD1 controls mRNA translation, which is known to decline with aging. 2-OGDO enzymes are the sensors of energy metabolism, since the Krebs cycle intermediate 2-oxoglutarate is an activator whereas succinate and fumarate are the potent inhibitors of 2-OGDO enzymes. In addition, O2 availability and iron redox homeostasis control the activities of 2-OGDO enzymes in tissues. We will briefly elucidate the catalytic mechanisms of 2-OGDO enzymes and then review the potential functions of the above-mentioned 2-OGDO enzymes in the control of the aging process.

  8. Relationship between Serotonergic Dysfunction Based on Loudness Dependence of Auditory-Evoked Potentials and Suicide in Patients with Major Depressive Disorder.

    PubMed

    Park, Young-Min

    2015-10-01

    The relationship between suicidality and the loudness dependence of auditory-evoked potentials (LDAEP) remains controversial. This article reviews the literature related to the LDAEP and suicide in patients with major depressive disorder, and suggests future research directions. Serotonergic dysfunction in suicidality seems to be more complicated than was originally thought. Studies of suicide based on the LDAEP have produced controversial results, but it is possible that these are due to differences in study designs and the smallness of samples. For example, some studies have evaluated suicide ideation and the LDAEP, while others have evaluated suicide attempts and the LDAEP. Furthermore, some of the latter studies enrolled acute suicide attempters, while others enrolled those with the history of previous suicide attempts, irrespective of whether these were acute or chronic. Thus, a more robust study design is needed in future studies, for example by evaluating the LDAEP immediately after a suicide attempt rather than in those with a history of suicide attempts and suicide ideation in order to reduce bias. Moreover, genuine suicide attempt, self-injurious behaviors, and faked suicide attempt need to be discriminated in the future.

  9. Conformational temperature-dependent behavior of a histone H2AX: a coarse-grained Monte Carlo approach via knowledge-based interaction potentials.

    PubMed

    Fritsche, Miriam; Pandey, Ras B; Farmer, Barry L; Heermann, Dieter W

    2012-01-01

    Histone proteins are not only important due to their vital role in cellular processes such as DNA compaction, replication and repair but also show intriguing structural properties that might be exploited for bioengineering purposes such as the development of nano-materials. Based on their biological and technological implications, it is interesting to investigate the structural properties of proteins as a function of temperature. In this work, we study the spatial response dynamics of the histone H2AX, consisting of 143 residues, by a coarse-grained bond fluctuating model for a broad range of normalized temperatures. A knowledge-based interaction matrix is used as input for the residue-residue Lennard-Jones potential.We find a variety of equilibrium structures including global globular configurations at low normalized temperature (T* = 0.014), combination of segmental globules and elongated chains (T* = 0.016,0.017), predominantly elongated chains (T* = 0.019,0.020), as well as universal SAW conformations at high normalized temperature (T* ≥ 0.023). The radius of gyration of the protein exhibits a non-monotonic temperature dependence with a maximum at a characteristic temperature (T(c)* = 0.019) where a crossover occurs from a positive (stretching at T* ≤ T(c)*) to negative (contraction at T* ≥ T(c)*) thermal response on increasing T*.

  10. Temperature and pressure dependent rate coefficients for the reaction of C2H4 + HO2 on the C2H4O2H potential energy surface.

    PubMed

    Guo, JunJiang; Xu, JiaQi; Li, ZeRong; Tan, NingXin; Li, XiangYuan

    2015-04-02

    The potential energy surface (PES) for reaction C2H4 + HO2 was examined by using the quantum chemical methods. All rates were determined computationally using the CBS-QB3 composite method combined with conventional transition state theory(TST), variational transition-state theory (VTST) and Rice-Ramsberger-Kassel-Marcus/master-equation (RRKM/ME) theory. The geometries optimization and the vibrational frequency analysis of reactants, transition states, and products were performed at the B3LYP/CBSB7 level. The composite CBS-QB3 method was applied for energy calculations. The major product channel of reaction C2H4 + HO2 is the formation C2H4O2H via an OH(···)π complex with 3.7 kcal/mol binding energy which exhibits negative-temperature dependence. We further investigated the reactions related to this complex, which were ignored in previous studies. Thermochemical properties of the species involved in the reactions were determined using the CBS-QB3 method, and enthalpies of formation of species were compared with literature values. The calculated rate constants are in good agreement with those available from literature and given in modified Arrhenius equation form, which are serviceable in combustion modeling of hydrocarbons. Finally, in order to illustrate the effect for low-temperature ignition of our new rate constants, we have implemented them into the existing mechanisms, which can predict ethylene ignition in a shock tube with better performance.

  11. A novel gelatin-based micro-cavitary hydrogel for potential application in delivery of anchorage dependent cells: A study with vasculogenesis model.

    PubMed

    Leong, Wenyan; Fan, Changjiang; Wang, Dong-An

    2016-10-01

    Hydrogels have been widely regarded as promising tissue engineering scaffolds and cell delivery vehicles, however, their inherent submicron- or nano-scale polymer networks severely inhibit the settlement of anchorage dependent cells (ADCs). Here, using endothelial progenitor outgrowth cells (EPOCs) as the typical ADCs, a gelatin-based micro-cavitary gel (namely Gel-MCG) is developed with gelatin-methacrylate and gelatin microspheres as precursor and porogens, respectively, to promote cellular focal adhesion and functions. The introduction of micro-cavitary structures within the Gel-MCG improves its physical properties as well as creates numerous gel-microcavity interfaces within gel-based matrices. Compared with conventional gelatin gel (Gel-G) scaffold, the Gel-MCG provides more suitable microenvironments for EPOCs' attachment, spreading, and proliferation, and then which leads to enhanced endothelial differentiation and vascularization as demonstrated by higher expressions of endothelial markers. The Gel-MCG system shows great potential as vehicle for the delivery of ADCs in tissue engineering.

  12. Calcium input potentiates the transforming growth factor (TGF)-beta1-dependent signaling to promote the export of inorganic pyrophosphate by articular chondrocyte.

    PubMed

    Cailotto, Frederic; Reboul, Pascal; Sebillaud, Sylvie; Netter, Patrick; Jouzeau, Jean-Yves; Bianchi, Arnaud

    2011-06-03

    Transforming growth factor (TGF)-β1 stimulates extracellular PP(i) (ePP(i)) generation and promotes chondrocalcinosis, which also occurs secondary to hyperparathyroidism-induced hypercalcemia. We previously demonstrated that ANK was up-regulated by TGF-β1 activation of ERK1/2 and Ca(2+)-dependent protein kinase C (PKCα). Thus, we investigated mechanisms by which calcium could affect ePP(i) metabolism, especially its main regulating proteins ANK and PC-1 (plasma cell membrane glycoprotein-1). We stimulated articular chondrocytes with TGF-β1 under extracellular (eCa(2+)) or cytosolic Ca(2+) (cCa(2+)) modulations. We studied ANK, PC-1 expression (quantitative RT-PCR, Western blotting), ePP(i) levels (radiometric assay), and cCa(2+) input (fluorescent probe). Voltage-operated Ca(2+)-channels (VOC) and signaling pathways involved were investigated with selective inhibitors. Finally, Ank promoter activity was evaluated (gene reporter). TGF-β1 elevated cCa(2+) and ePP(i) levels (by up-regulating Ank and PC-1 mRNA/proteins) in an eCa(2+) dose-dependent manner. TGF-β1 effects were suppressed by cCa(2+) chelation or L- and T-VOC blockade while being mostly reproduced by ionomycin. In the same experimental conditions, the activation of Ras, the phosphorylation of ERK1/2 and PKCα, and the stimulation of Ank promoter activity were affected similarly. Activation of SP1 (specific protein 1) and ELK-1 (Ets-like protein-1) transcription factors supported the regulatory role of Ca(2+). SP1 or ELK-1 overexpression or blockade experiments demonstrated a major contribution of ELK-1, which acted synergistically with SP1 to activate Ank promoter in response to TGF-β1. TGF-β1 promotes input of eCa(2+) through opening of L- and T-VOCs, to potentiate ERK1/2 and PKCα signaling cascades, resulting in an enhanced activation of Ank promoter and ePP(i) production in chondrocyte.

  13. Cell type-specific and activity-dependent dynamics of action potential-evoked Ca2+ signals in dendrites of hippocampal inhibitory interneurons

    PubMed Central

    Evstratova, Alesya; Chamberland, Simon; Topolnik, Lisa

    2011-01-01

    Abstract In most central neurons, action potentials (APs), generated in the initial axon segment, propagate back into dendrites and trigger considerable Ca2+ entry via activation of voltage-sensitive calcium channels (VSCCs). Despite the similarity in its underlying mechanisms, however, AP-evoked dendritic Ca2+ signalling often demonstrates a cell type-specific profile that is determined by the neuron dendritic properties. Using two-photon Ca2+ imaging in combination with patch-clamp whole-cell recordings, we found that in distinct types of hippocampal inhibitory interneurons Ca2+ transients evoked by backpropagating APs not only were shaped by the interneuron-specific properties of dendritic Ca2+ handling but also involved specific Ca2+ mechanisms that were regulated dynamically by distinct activity patterns. In dendrites of regularly spiking basket cells, AP-evoked Ca2+ rises were of large amplitude and fast kinetics; however, they decreased with membrane hyperpolarization or following high-frequency firing episodes. In contrast, AP-evoked Ca2+ elevations in dendrites of Schaffer collateral-associated cells exhibited significantly smaller amplitude and slower kinetics, but increased with membrane hyperpolarization. These cell type-specific properties of AP-evoked dendritic Ca2+ signalling were determined by distinct endogenous buffer capacities of the interneurons examined and by specific types of VSCCs recruited by APs during different patterns of activity. Furthermore, AP-evoked Ca2+ transients summated efficiently during theta-like bursting and were associated with the induction of long-term potentiation at inhibitory synapses onto both types of interneurons. Therefore, the cell type-specific profile of AP-evoked dendritic Ca2+ signalling is shaped in an activity-dependent manner, such that the same pattern of hippocampal activity can be differentially translated into dendritic Ca2+ signals in different cell types. However, Cell type-specific differences in Ca

  14. McN-5691: a novel vasodilator which blocks receptor-operated and potential-dependent calcium channels in rabbit aorta

    SciTech Connect

    Flaim, S.F.; Gleason, M.M.; Shank, R.P.

    1986-03-05

    The mechanism of action of the novel vasodilator McN-5691 (N-(2-(3,4-dimethoxyphenyl)ethyl)-5-methoxy-N,..cap alpha..-dimethyl-2-(phenylethynyl)benzenepropanamine HCl) (McN) was studied in rabbit thoracic aortic rings. The effects of McN (0.1-10..mu..M) to inhibit the KCl-sensitive potential-dependent calcium (Ca) channel (PDC) and the norepinephrine (NE) sensitive receptor-operated Ca channel (ROC) were evaluated by measuring McN's effects on the active development of isometric tension and on the activation of Ca influx (/sup 45/Ca)(CI) through both channels as well as leak channel CI. McN had no effect on the leak channel but blocked PDC and ROC CI (1,10..mu..M) and active tension development (KCl: 1,10..mu..M; NE: 10..mu..M). McN also relaxed rings precontracted with NE (1..mu..M) and KCl (30mM) with similar potency (IC/sub 50/ against NE = 159..mu..M; KCl = 190..mu..M). McN did not inhibit intracellular Ca release or Ca-calmodulin interaction as evidenced by a lack of effect on NE-induced isometric tension development in zero Ca buffer. McN did not enhance Ca efflux from unstimulated or from NE-stimulated rings preloaded with /sup 45/Ca. Receptor binding studies using membrane preparations from rat cerebral cortex showed little or no ..cap alpha..-1 (/sup 3/H-WB4101) antagonist activity and no binding to the ..cap alpha..-2 (/sup 3/H-clonidine) receptor. These results indicate that McN is a novel dual-channel Ca blocker vasodilator which lacks intracellular effects.

  15. Role of Sialidase in Long-Term Potentiation at Mossy Fiber-CA3 Synapses and Hippocampus-Dependent Spatial Memory

    PubMed Central

    Minami, Akira; Saito, Masakazu; Mamada, Shou; Ieno, Daisuke; Hikita, Tomoya; Takahashi, Tadanobu; Otsubo, Tadamune; Ikeda, Kiyoshi; Suzuki, Takashi

    2016-01-01

    Sialic acid bound to glycans in glycolipids and glycoproteins is essential for synaptic plasticity and memory. Sialidase (EC 3.2.1.18), which has 4 isozymes including Neu1, Neu2, Neu3 and Neu4, regulates the sialylation level of glycans by removing sialic acid from sialylglycoconjugate. In the present study, we investigated the distribution of sialidase activity in rat hippocampus and the role of sialidase in hippocampal memory processing. We previously developed a highly sensitive histochemical imaging probe for sialidase activity, BTP3-Neu5Ac. BTP3-Neu5Ac was cleaved efficiently by rat Neu2 and Neu4 at pH 7.3 and by Neu1 and Neu3 at pH 4.6. When a rat hippocampal acute slice was stained with BTP3-Neu5Ac at pH 7.3, mossy fiber terminal fields showed relatively intense sialidase activity. Thus, the role of sialidase in the synaptic plasticity was investigated at mossy fiber terminal fields. The long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses was impaired by 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), a sialidase inhibitor. DANA also failed to decrease paired-pulse facilitation after LTP induction. We also investigated the role of sialidase in hippocampus-dependent spatial memory by using the Morris water maze. The escape latency time to reach the platform was prolonged by DANA injection into the hippocampal CA3 region or by knockdown of Neu4 without affecting motility. The results show that the regulation of sialyl signaling by Neu4 is involved in hippocampal memory processing. PMID:27783694

  16. Dependence of macrophage superoxide release on the pulse amplitude of an applied pressure regime: a potential factor at the soft tissue-implant interface.

    PubMed

    Shin, Hainsworth Y; Frechette, Danielle M; Rohner, Nathan; Zhang, Xiaoyan; Puleo, David A; Bjursten, Lars M

    2016-03-01

    Failure of soft tissue implants has been largely attributed to the influence of biomaterial surface properties on the foreign body response, but some implant complications, e.g. macrophage accumulation and necrosis, are still not effectively addressed with surface treatments to minimize deleterious biomaterial effects. We explored an alternative explanation for implant failure, linking biocompatibility with implant micromotion-induced pressure fluctuations at the tissue-biomaterial interface. For this purpose, we used a custom in vitro system to characterize the effects of pressure fluctuations on the activity of macrophages, the predominant cells at a healing implant site. Initially, we quantified superoxide production by HL60-derived macrophage-like cells under several different pressure regimes with means of 5-40 mmHg, amplitudes of 0-15 mmHg and frequencies of 0-1.5 Hz. All pressure regimes tested elicited significantly (p < 0.05) reduced superoxide production by macrophage-like cells relative to parallel controls. Notably, pressure-sensitive reductions in superoxide release correlated (r(2)  = 0.74; p < 0.01) only with pulse pressures. Based on the connection between superoxide production and cell viability, we also explored the influence of cyclic pressure on macrophage numbers and death. Compared to controls, adherent macrophage-like cells exposed to 7.5/2.5 mmHg cyclic pressures for 6 h exhibited significantly (p < 0.01) reduced cell numbers, independent of cell death. A similar effect was observed for cells treated with 10 U/ml superoxide dismutase. Collectively, our results suggest that pressure pulses are a putative regulator of macrophage adhesion via a superoxide-related effect. Pressure fluctuations, e.g. due to implant micromotion, may, therefore, potentially modulate macrophage-dependent wound healing.

  17. PLC-β2 is modulated by low oxygen availability in breast tumor cells and plays a phenotype dependent role in their hypoxia-related malignant potential.

    PubMed

    Brugnoli, Federica; Grassilli, Silvia; Al-Qassab, Yasamin; Capitani, Silvano; Bertagnolo, Valeria

    2016-12-01

    Limited oxygen availability plays a critical role in the malignant progression of breast cancer by orchestrating a complex modulation of the gene transcription largely dependent on the tumor phenotype. Invasive breast tumors belonging to different molecular subtypes are characterized by over-expression of PLC-β2, whose amount positively correlates with the malignant evolution of breast neoplasia and supports the invasive potential of breast tumor cells. Here we report that hypoxia modulates the expression of PLC-β2 in breast tumor cells in a phenotype-related manner, since a decrease of the protein was observed in the BT-474 and MCF7 cell lines while an increase was revealed in MDA-MB-231 cells as a consequence of low oxygen availability. Under hypoxia, the down-modulation of PLC-β2 was mainly correlated with the decrease of the EMT marker E-cadherin in the BT-474 cells and with the up-regulation of the stem cell marker CD133 in MCF7 cells. The increase of PLC-β2 induced by low oxygen in MDA-MB-231 cells supports the hypoxia-related reorganization of actin cytoskeleton and sustains invasion capability. In all examined cell lines, but with an opposite role in the ER-positive and ER-negative cells, PLC-β2 was involved in the hypoxia-induced increase of HIF-1α, known to affect both EMT and CD133 expression. Our data include PLC-β2 in the complex and interconnected signaling pathways induced by low oxygen availability in breast tumor cells and suggest that the forced modulation of PLC-β2 programmed on the basis of tumor phenotype may prevent the malignant progression of breast neoplasia as a consequence of intra-tumoral hypoxia. © 2016 Wiley Periodicals, Inc.

  18. Selective targeting of JAK/STAT signaling is potentiated by Bcl-xL blockade in IL-2–dependent adult T-cell leukemia

    PubMed Central

    Zhang, Meili; Mathews Griner, Lesley A.; Ju, Wei; Duveau, Damien Y.; Guha, Rajarshi; Petrus, Michael N.; Wen, Bernard; Maeda, Michiyuki; Shinn, Paul; Ferrer, Marc; Conlon, Kevin D.; Bamford, Richard N.; O’Shea, John J.; Thomas, Craig J.; Waldmann, Thomas A.

    2015-01-01

    Adult T-cell leukemia (ATL) develops in individuals infected with human T-cell lymphotropic virus-1 (HTLV-1). Presently there is no curative therapy for ATL. HTLV-1–encoded protein Tax (transactivator from the X-gene region) up-regulates Bcl-xL (B-cell lymphoma-extra large) expression and activates interleukin-2 (IL-2), IL-9, and IL-15 autocrine/paracrine systems, resulting in amplified JAK/STAT signaling. Inhibition of JAK signaling reduces cytokine-dependent ex vivo proliferation of peripheral blood mononuclear cells (PBMCs) from ATL patients in smoldering/chronic stages. Currently, two JAK inhibitors are approved for human use. In this study, we examined activity of multiple JAK inhibitors in ATL cell lines. The selective JAK inhibitor ruxolitinib was examined in a high-throughput matrix screen combined with >450 potential therapeutic agents, and Bcl-2/Bcl-xL inhibitor navitoclax was identified as a strong candidate for multicomponent therapy. The combination was noted to strongly activate BAX (Bcl-2-associated X protein), effect mitochondrial depolarization, and increase caspase 3/7 activities that lead to cleavage of PARP (poly ADP ribose polymerase) and Mcl-1 (myeloid cell leukemia 1). Ruxolitinib and navitoclax independently demonstrated modest antitumor efficacy, whereas the combination dramatically lowered tumor burden and prolonged survival in an ATL murine model. This combination strongly blocked ex vivo proliferation of five ATL patients’ PBMCs. These studies provide support for a therapeutic trial in patients with smoldering/chronic ATL using a drug combination that inhibits JAK signaling and antiapoptotic protein Bcl-xL. PMID:26396258

  19. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK.

    PubMed

    Paranjpe, Avina; Cacalano, Nicholas A; Hume, Wyatt R; Jewett, Anahid

    2009-04-01

    The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-kappaB in the cells, since HEMA mediated inhibition of nuclear NF-kappaB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-kappaB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-kappaB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-kappaB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-kappaB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-kappaB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-kappaB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection.

  20. Cytoskeleton-Dependent Transport as a Potential Target for Interfering with Post-transcriptional HuR mRNA Regulons

    PubMed Central

    Eberhardt, Wolfgang; Badawi, Amel; Biyanee, Abhiruchi; Pfeilschifter, Josef

    2016-01-01

    The ubiquitous mRNA binding protein human antigen R (HuR), a member of the embryonal lethal abnormal vision protein family has a critical impact on the post-transcriptional control of AU-rich element bearing mRNA regulons implied in inflammation, senescence, and carcinogenesis. HuR in addition to mRNA stability can affect many other aspects of mRNA processing including splicing, polyadenylation, translation, modulation of miRNA repression, and intracellular mRNA trafficking. Since many of the identified HuR mRNA targets (“HuR mRNA regulons”) encode tumor-related proteins, HuR is not only discussed as an useful biomarker but also as promising therapeutic target for treatment of various human cancers. HuR which is most abundantly localized in the nucleus is translocated to the cytoplasm which is fundamental for most of the described HuR functions on target mRNAs. Accordingly, an elevation in cytoplasmic HuR was found in many tumors and correlated with a high grade of malignancy and a poor prognosis of patients. Therefore, direct interference with the intracellular trafficking of HuR offers an attractive approach to intervene with pathologically deregulated HuR functions. Data from several laboratories implicate that the integrity of the cytoskeleton is critical for HuR-mediated intracellular mRNA localization and translation. This review will particularly focus on drugs which have proven a direct inhibitory effect on HuR translocation. Based on the results from those studies, we will also discuss on the principle value of targeting cytoskeleton-dependent transport of HuR by natural or synthetic inhibitors as a potential therapeutic avenue for interfering with dysregulated post-transcriptional HuR mRNA regulons and related tumor cell functions. In spite of that, interfering with cytoplasmic HuR transport could highlight a so far underestimated action of microtubule inhibitors clinically used for cancer chemotherapy. PMID:27582706

  1. Kinase Inhibitor Screening Identifies Cyclin-Dependent Kinases and Glycogen Synthase Kinase 3 as Potential Modulators of TDP-43 Cytosolic Accumulation during Cell Stress.

    PubMed

    Moujalled, Diane; James, Janine L; Parker, Sarah J; Lidgerwood, Grace E; Duncan, Clare; Meyerowitz, Jodi; Nonaka, Takashi; Hasegawa, Masato; Kanninen, Katja M; Grubman, Alexandra; Liddell, Jeffrey R; Crouch, Peter J; White, Anthony R

    2013-01-01

    Abnormal processing of TAR DNA binding protein 43 (TDP-43) has been identified as a major factor in neuronal degeneration during amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). It is unclear how changes to TDP-43, including nuclear to cytosolic translocation and subsequent accumulation, are controlled in these diseases. TDP-43 is a member of the heterogeneous ribonucleoprotein (hnRNP) RNA binding protein family and is known to associate with cytosolic RNA stress granule proteins in ALS and FTLD. hnRNP trafficking and accumulation is controlled by the action of specific kinases including members of the mitogen-activated protein kinase (MAPK) pathway. However, little is known about how kinase pathways control TDP-43 movement and accumulation. In this study, we used an in vitro model of TDP-43-positve stress granule formation to screen for the effect of kinase inhibitors on TDP-43 accumulation. We found that while a number of kinase inhibitors, particularly of the MAPK pathways modulated both TDP-43 and the global stress granule marker, human antigen R (HuR), multiple inhibitors were more specific to TDP-43 accumulation, including inhibitors of cyclin-dependent kinases (CDKs) and glycogen synthase kinase 3 (GSK3). Close correlation was observed between effects of these inhibitors on TDP-43, hnRNP K and TIAR, but often with different effects on HuR accumulation. This may indicate a potential interaction between TDP-43, hnRNP K and TIAR. CDK inhibitors were also found to reverse pre-formed TDP-43-positive stress granules and both CDK and GSK3 inhibitors abrogated the accumulation of C-terminal TDP-43 (219-414) in transfected cells. Further studies are required to confirm the specific kinases involved and whether their action is through phosphorylation of the TDP-43 binding partner hnRNP K. This knowledge provides a valuable insight into the mechanisms controlling abnormal cytoplasmic TDP-43 accumulation and may herald new opportunities

  2. Enteral nutrients potentiate glucagon-like peptide-2 action and reduce dependence on parenteral nutrition in a rat model of human intestin