Science.gov

Sample records for endocrine signaling underlies

  1. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  2. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  3. Alcohol-induced disruption of endocrine signaling.

    PubMed

    Ronis, Martin J J; Wands, Jack R; Badger, Thomas M; de la Monte, Suzanne M; Lang, Charles H; Calissendorff, Jan

    2007-08-01

    This article contains the proceedings of a symposium at the 2006 ISBRA meeting in Sydney Australia, organized and cochaired by Martin J. Ronis and Thomas M. Badger. The presentations were (1) Effect of long-term ethanol consumption on liver injury and repair, by Jack R. Wands; (2) Alcohol-induced insulin resistance in liver: potential roles in regulation of ADH expression, ethanol clearance, and alcoholic liver disease, by Thomas M. Badger; (3) Chronic gestational exposure to ethanol causes brain insulin and insulin-like growth factor resistance, by Suzanne M de la Monte; (4) Disruption of IGF-1 signaling in muscle: a mechanism underlying alcoholic myopathy, by Charles H. Lang; (5) The role of reduced plasma estradiol and impaired estrogen signaling in alcohol-induced bone loss, by Martin J. Ronis; and (6) Short-term influence of alcohol on appetite-regulating hormones in man, by Jan Calissendorff.

  4. Endocrine hormones and local signals during the development of the mouse mammary gland.

    PubMed

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website.

  5. 77 FR 15101 - Results From Inert Ingredient Test Orders Issued Under EPA's Endocrine Disruptor Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... systems. Extensive background on the Agency's endocrine program is available at http://www.epa.gov/endo..., ``Endocrine Disruptor Screening Program; Policies and Procedures for Initial Screening,'' (74 FR 17560), http... AGENCY Results From Inert Ingredient Test Orders Issued Under EPA's Endocrine Disruptor Screening...

  6. Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise: Implications for Muscle Hypertrophy.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Stout, Jeffrey R; Fukuda, David H; Willoughby, Darryn S

    2016-05-01

    Maintaining skeletal muscle mass and function is critical for disease prevention, mobility and quality of life, and whole-body metabolism. Resistance exercise is known to be a major regulator for promoting muscle protein synthesis and muscle mass accretion. Manipulation of exercise intensity, volume, and rest elicit specific muscular adaptations that can maximize the magnitude of muscle growth. The stimulus of muscle contraction that occurs during differing intensities of resistance exercise results in varying biochemical responses regulating the rate of protein synthesis, known as mechanotransduction. At the cellular level, skeletal muscle adaptation appears to be the result of the cumulative effects of transient changes in gene expression following acute bouts of exercise. Thus, maximizing the resistance exercise-induced anabolic response produces the greatest potential for hypertrophic adaptation with training. The mechanisms involved in converting mechanical signals into the molecular events that control muscle growth are not completely understood; however, skeletal muscle protein synthesis appears to be regulated by the multi-protein phosphorylation cascade, mTORC1 (mammalian/mechanistic target of rapamycin complex 1). The purpose of this review is to examine the physiological response to resistance exercise, with particular emphasis on the endocrine response and intramuscular anabolic signaling through mTORC1. It appears that resistance exercise protocols that maximize muscle fiber recruitment, time-under-tension, and metabolic stress will contribute to maximizing intramuscular anabolic signaling; however, the resistance exercise parameters for maximizing the anabolic response remain unclear.

  7. Environmental signaling: a biological context for endocrine disruption.

    PubMed Central

    Cheek, A O; Vonier, P M; Oberdörster, E; Burow, B C; McLachlan, J A

    1998-01-01

    Endogenous and exogenous chemical signals have evolved as a means for organisms to respond to physical or biological stimuli in the environment. Sensitivity to these signals can make organisms vulnerable to inadvertent signals from xenobiotics. In this review we discuss how various chemicals can interact with steroid-like signaling pathways, especially estrogen. Numerous compounds have estrogenic activity, including steroids, phytoestrogens, and synthetic chemicals. We compare bioavailability, metabolism, interaction with receptors, and interaction with cell-signaling pathways among these three structurally diverse groups in order to understand how these chemicals influence physiological responses. Based on their mechanisms of action, chemical steroid mimics could plausibly be associated with recent adverse health trends in humans and animals. PMID:9539003

  8. The Gut Microbial Endocrine Organ: Bacterially-Derived Signals Driving Cardiometabolic Diseases

    PubMed Central

    Brown, J. Mark; Hazen, Stanley L.

    2015-01-01

    The human gastrointestinal tract is home to trillions of bacteria, which vastly outnumber host cells in the body. Although generally overlooked in the field of endocrinology, gut microbial symbionts organize to form a key endocrine organ that convert nutritional cues from the environment into hormone-like signals that impact both normal physiology and chronic disease in the human host. Recent evidence suggests that several gut microbial-derived products are sensed by dedicated host receptor systems to alter cardiovascular disease (CVD) progression. In fact, gut microbial metabolism of dietary components results in the production of proatherogenic circulating factors that act through a meta-organismal endocrine axis to impact CVD risk. Whether pharmacological interventions at the level of the gut microbial endocrine organ will reduce CVD risk is a key new question in the field of cardiovascular medicine. Here we discuss the opportunities and challenges that lie ahead in targeting meta-organismal endocrinology for CVD prevention. PMID:25587655

  9. [Changes of plasma endocrine hormone in pilots under Coriolis acceleration].

    PubMed

    Dai, Y; Ji, G; Huang, Y; Sun, X; Dai, F

    1998-04-01

    Plasma endocrine hormones were studied in both 24 motion sickness (orthostatic intolerance) and healthy pilots. Coriolis acceleration of 3.75, 5.00 and 6.25 pi 2 cm/s2 were given with intervals of 3-4 min AT-II, insulin, cortisol, Aldosterone and gastrin were determined by radioimmunoassay. It was found that aldosterone, AT-II, gastrin increased with increase of coriolis acceleration in all pilots. (P < 0.05), but cortisol and insulin only increased in healthy pilots (P < 0.05). It suggests excitation of the autonomic nervous system might be insufficient in orthostatic intolerant pilots and that determination of endocrine hormones may be useful in the evaluation of autonomic nervous activities.

  10. Endocrine-like Signaling in Cnidarians: Current Understanding and Implications for Ecophysiology.

    PubMed

    Tarrant, Ann M

    2005-01-01

    The vertebrate endocrine system is well-characterized, with many reports of disruption by environmental chemicals. In contrast, cnidarians are less compartmentalized, physiological regulation is poorly understood, and the potential for disruption is unknown. Endocrine-like activity has not been systematically studied in cnidarians, but several classical vertebrate hormones (e.g., steroids, iodinated organic compounds, neuropeptides, and indoleamines) have been identified in cnidarian tissues. Investigators have made progress in identifying putative bioregulatory molecules in cnidarians, and testing the effects of these individual compounds. Less progress has been made in elucidating signaling pathways. For example, putative gonadotropin-releasing hormone and sex steroids have been identified in cnidarian tissues, but it is unknown whether these compounds are components of a larger signal cascade comparable to the vertebrate hypothalamic-pituitary-gonadal axis. Further, while sex steroids and iodinated organic compounds may help to regulate cnidarian physiology, the mechanisms of action are unknown. Homologs to the vertebrate steroid and thyroid receptors have not been identified in cnidarians, so more research is needed to understand the mechanisms of endocrine-like signaling in cnidarians. Elucidation of cnidarian regulatory pathways will provide insight into evolution of hormonal signaling. These studies will also improve understanding of how cnidarians respond to environmental cues and will provide a basis to investigate disruption of physiological processes by physical and chemical stressors.

  11. Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise.

    PubMed

    Apicella, Jenna M; Lee, Elaine C; Bailey, Brooke L; Saenz, Catherine; Anderson, Jeffrey M; Craig, Stuart A S; Kraemer, William J; Volek, Jeff S; Maresh, Carl M

    2013-03-01

    Our aim was to examine the effect of betaine supplementation on selected circulating hormonal measures and Akt muscle signaling proteins after an acute exercise session. Twelve trained men (age 19.7 ± 1.23 years) underwent 2 weeks of supplementation with either betaine (B) (1.25 g BID) or placebo (P). Following a 2-week washout period, subjects underwent supplementation with the other treatment (B or P). Before and after each 2-week period, subjects performed an acute exercise session (AES). Circulating GH, IGF-1, cortisol, and insulin were measured. Vastus lateralis samples were analyzed for signaling proteins (Akt, p70 S6k, AMPK). B (vs. P) supplementation approached a significant increase in GH (mean ± SD (Area under the curve, AUC), B: 40.72 ± 6.14, P: 38.28 ± 5.54, p = 0.060) and significantly increased IGF-1 (mean ± SD (AUC), B: 106.19 ± 13.45, P: 95.10 ± 14.23, p = 0.010), but significantly decreased cortisol (mean ± SD (AUC), B: 1,079.18 ± 110.02, P: 1,228.53 ± 130.32, p = 0.007). There was no difference in insulin (AUC). B increased resting Total muscle Akt (p = 0.003). B potentiated phosphorylation (relative to P) of Akt (Ser(473)) and p70 S6 k (Thr(389)) (p = 0.016 and p = 0.005, respectively). Phosphorylation of AMPK (Thr(172)) decreased during both treatments (both p = 0.001). Betaine (vs. placebo) supplementation enhanced both the anabolic endocrine profile and the corresponding anabolic signaling environment, suggesting increased protein synthesis.

  12. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  13. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  14. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  15. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation.

    PubMed

    Huang, Wei; Beer, Rebecca L; Delaspre, Fabien; Wang, Guangliang; Edelman, Hannah E; Park, Hyewon; Azuma, Mizuki; Parsons, Michael J

    2016-10-01

    Centroacinar cells (CACs) are ductal Notch-responsive progenitors that in the larval zebrafish pancreas differentiate to form new islets and ultimately contribute to the majority of the adult endocrine mass. Uncovering the mechanisms regulating CAC differentiation will facilitate understanding how insulin-producing β cells are formed. Previously we reported retinoic acid (RA) signaling and Notch signaling both regulate larval CAC differentiation, suggesting a shared downstream intermediate. Sox9b is a transcription factor important for islet formation whose expression is upregulated by Notch signaling in larval CACs. Here we report that sox9b expression in larval CACs is also regulated by RA signaling. Therefore, we hypothesized that Sox9b is an intermediate between both RA- and Notch-signaling pathways. In order to study the role of Sox9b in larval CACs, we generated two cre/lox based transgenic tools, which allowed us to express full-length or truncated Sox9b in larval CACs. In this way we were able to perform spatiotemporal-controlled Sox9b gain- and loss-of-function studies and observe the subsequent effect on progenitor differentiation. Our results are consistent with Sox9b regulating CAC differentiation by being a downstream intermediate of both RA- and Notch-signaling pathways. We also demonstrate that adult zebrafish with only one functional allele of sox9b undergo accelerated β-cell regeneration, an observation consistent with sox9b regulating CAC differentiation in adults. PMID:27565026

  16. Thyroid hormone signaling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption.

    PubMed

    Fini, J B; Le Mével, S; Palmier, K; Darras, V M; Punzon, I; Richardson, S J; Clerget-Froidevaux, M S; Demeneix, B A

    2012-10-01

    Thyroid hormone (TH) is essential for vertebrate brain development. Most research on TH and neuronal development focuses on late development, mainly the perinatal period in mammals. However, in human infants neuromotor development correlates best with maternal TH levels in the first trimester of pregnancy, suggesting that TH signaling could affect early brain development. Studying TH signaling in early embryogenesis in mammals is experimentally challenging. In contrast, free-living embryos, such as Xenopus laevis, permit physiological experimentation independent of maternal factors. We detailed key elements of TH signaling: ligands, receptors (TR), and deiodinases during early X. laevis development, before embryonic thyroid gland formation. Dynamic profiles for all components were found. Between developmental stages 37 and 41 (~48 h after hatching, coincident with a phase of continuing neurogenesis) significant increases in T(3) levels as well as in mRNA encoding deiodinases and TR occurred. Exposure of embryos at this developmental stage for 24 h to either a TH antagonist, NH-3, or to tetrabromobisphenol A, a flame retardant and known TH disruptor, differentially modulated the expression of a number of TH target genes implicated in neural stem cell function or neural differentiation. Moreover, 24-h exposure to either NH-3 or tetrabromobisphenol A diminished cell proliferation in the brain. Thus, these data show first, that TH signaling exerts regulatory roles in early X. laevis neurogenesis and second, that this period represents a potential window for endocrine disruption. PMID:22968643

  17. An integrated serotonin and octopamine neuronal circuit directs the release of an endocrine signal to control C. elegans body fat.

    PubMed

    Noble, Tallie; Stieglitz, Jonathan; Srinivasan, Supriya

    2013-11-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an ancient and conserved neuromodulator of energy balance. Despite its importance, the neural circuits and molecular mechanisms underlying 5-HT-mediated control of body fat remain poorly understood. Here, we decipher the serotonergic neural circuit for body fat loss in C. elegans and show that the effects of 5-HT require signaling from octopamine, the invertebrate analog of adrenaline, to sustain body fat loss. Our results provide a potential molecular explanation for the long-observed potent effects of combined serotonergic and adrenergic weight loss drugs. In metabolic tissues, we find that the conserved regulatory adipocyte triglyceride lipase ATGL-1 drives serotonergic fat loss. We show that the serotonergic chloride channel MOD-1 relays a long-range endocrine signal from C. elegans body cavity neurons to control distal ATGL-1 function, via the nuclear receptor NHR-76. Our findings establish a conserved neuroendocrine axis operated by neural serotonergic and adrenergic-like signaling to regulate body fat.

  18. An Integrated Serotonin and Octopamine Neuronal Circuit Directs The Release of An Endocrine Signal to Control C. elegans Body Fat

    PubMed Central

    Noble, Tallie; Stieglitz, Jonathan; Srinivasan, Supriya

    2013-01-01

    SUMMARY Serotonin (5-hydroxytryptamine, 5-HT) is an ancient and conserved neuromodulator of energy balance. Despite its importance, the neural circuits and molecular mechanisms underlying 5-HT-mediated control of body fat remain poorly understood. Here we decipher the serotonergic neural circuit for body fat loss in C. elegans and show that the effects of 5-HT require signaling from octopamine, the invertebrate analog of adrenaline, to sustain body fat loss. Our results provide a potential molecular explanation for the long-observed potent effects of combined serotonergic and adrenergic weight loss drugs. In metabolic tissues we find that the conserved regulatory adipocyte triglyceride lipase ATGL-1 drives serotonergic fat loss. We show that the serotonergic chloride channel MOD-1 relays a long-range endocrine signal via C. elegans body cavity neurons to control distal ATGL-1 function, via the nuclear receptor NHR-76. Our findings establish a conserved neuroendocrine axis operated by neural serotonergic and adrenergic-like signaling, to regulate body fat. PMID:24120942

  19. Roles of FGFs As Paracrine or Endocrine Signals in Liver Development, Health, and Disease

    PubMed Central

    Itoh, Nobuyuki; Nakayama, Yoshiaki; Konishi, Morichika

    2016-01-01

    The liver plays important roles in multiple processes including metabolism, the immune system, and detoxification and also has a unique capacity for regeneration. FGFs are growth factors that have diverse functions in development, health, and disease. The FGF family now comprises 22 members. Several FGFs have been shown to play roles as paracrine signals in liver development, health, and disease. FGF8 and FGF10 are involved in embryonic liver development, FGF7 and FGF9 in repair in response to liver injury, and FGF5, FGF8, FGF9, FGF17, and FGF18 in the development and progression of hepatocellular carcinoma. In contrast, FGF15/19 and FGF21 are endocrine signals. FGF15/19, which is produced in the ileum, is a negative regulator of bile acid metabolism and a stimulator of gallbladder filling. FGF15/19 is a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. It is also required for hepatocellular carcinoma and liver regeneration. FGF21 is a hepatokine produced in the liver. FGF21 regulates glucose and lipid metabolism in white adipose tissue. Serum FGF21 levels are elevated in non-alcoholic fatty liver. FGF21 also protects against non-alcoholic fatty liver. These findings provide new insights into the roles of FGFs in the liver and potential therapeutic strategies for hepatic disorders. PMID:27148532

  20. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine.

    PubMed

    Li, Hui Joyce; Kapoor, Archana; Giel-Moloney, Maryann; Rindi, Guido; Leiter, Andrew B

    2012-11-15

    Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.

  1. Cell Signaling Underlying Epileptic Behavior

    PubMed Central

    Bozzi, Yuri; Dunleavy, Mark; Henshall, David C.

    2011-01-01

    Epilepsy is a complex disease, characterized by the repeated occurrence of bursts of electrical activity (seizures) in specific brain areas. The behavioral outcome of seizure events strongly depends on the brain regions that are affected by overactivity. Here we review the intracellular signaling pathways involved in the generation of seizures in epileptogenic areas. Pathways activated by modulatory neurotransmitters (dopamine, norepinephrine, and serotonin), involving the activation of extracellular-regulated kinases and the induction of immediate early genes (IEGs) will be first discussed in relation to the occurrence of acute seizure events. Activation of IEGs has been proposed to lead to long-term molecular and behavioral responses induced by acute seizures. We also review deleterious consequences of seizure activity, focusing on the contribution of apoptosis-associated signaling pathways to the progression of the disease. A deep understanding of signaling pathways involved in both acute- and long-term responses to seizures continues to be crucial to unravel the origins of epileptic behaviors and ultimately identify novel therapeutic targets for the cure of epilepsy. PMID:21852968

  2. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development.

    PubMed

    Park, Kiyun; Kwak, Ihn-Sil

    2014-02-01

    Temperature is one of the most important environmental factors affecting the biological processes of aquatic species. To investigate the potential effects of temperature on the developmental processes of aquatic invertebrates, we analyzed biological and molecular transcriptional responses during Chironomus riparius development, including five stages spanning from embryo to adult stages. We assessed the temperature change-induced reduction of survival rate, changes in biological development including the male:female ratio in emerged adults, the success rates of pupation and emergence, and the developmental timing of pupation and emergence. The increased temperature induced expression of endocrine signaling genes, such as the ecdysone receptor, ultraspiracle (ortholog of the RXR), and the estrogen-related receptor in the fourth-instar larval and pupal stages of C. riparius development. Altered temperature also affected the activity of antioxidant genes, including catalase, peroxidase, glutathione peroxidase, and superoxide dismutase during the fourth-instar larval to adult stages of C. riparius development, as a result of altered development. Increased temperature during the fourth-instar larval stage increased oxidative stress in pupae and adults. Responses of antioxidant genes to increased temperature occurred in a developmental stage-dependent manner. However, reduced temperature did not induce the expression of antioxidant genes in a developmental stage-dependent manner, although it did induce oxidative stress during C. riparius development. Increased temperature also caused greater toxicity of di-ethylhexyl phthalate (DEHP) in fourth-instar larvae. Our findings suggest that altered temperatures may disturb the invertebrate hormone system and developmental processes by inducing oxidative stress in aquatic environments.

  3. The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development.

    PubMed

    Park, Kiyun; Kwak, Ihn-Sil

    2014-02-01

    Temperature is one of the most important environmental factors affecting the biological processes of aquatic species. To investigate the potential effects of temperature on the developmental processes of aquatic invertebrates, we analyzed biological and molecular transcriptional responses during Chironomus riparius development, including five stages spanning from embryo to adult stages. We assessed the temperature change-induced reduction of survival rate, changes in biological development including the male:female ratio in emerged adults, the success rates of pupation and emergence, and the developmental timing of pupation and emergence. The increased temperature induced expression of endocrine signaling genes, such as the ecdysone receptor, ultraspiracle (ortholog of the RXR), and the estrogen-related receptor in the fourth-instar larval and pupal stages of C. riparius development. Altered temperature also affected the activity of antioxidant genes, including catalase, peroxidase, glutathione peroxidase, and superoxide dismutase during the fourth-instar larval to adult stages of C. riparius development, as a result of altered development. Increased temperature during the fourth-instar larval stage increased oxidative stress in pupae and adults. Responses of antioxidant genes to increased temperature occurred in a developmental stage-dependent manner. However, reduced temperature did not induce the expression of antioxidant genes in a developmental stage-dependent manner, although it did induce oxidative stress during C. riparius development. Increased temperature also caused greater toxicity of di-ethylhexyl phthalate (DEHP) in fourth-instar larvae. Our findings suggest that altered temperatures may disturb the invertebrate hormone system and developmental processes by inducing oxidative stress in aquatic environments. PMID:24239821

  4. Minireview: Role of intracellular scaffolding proteins in the regulation of endocrine G protein-coupled receptor signaling.

    PubMed

    Walther, Cornelia; Ferguson, Stephen S G

    2015-06-01

    The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies.

  5. Polymorphisms of anti-Müllerian hormone signaling pathway in healthy Singapore women: population differences, endocrine effects and reproductive outcomes.

    PubMed

    Yu, Esther Dawen; Zhu, Huili; Li, Yu; Chua, Seok Eng; Indran, Inthrani Raja; Li, Jun; Yong, Eu-Leong

    2016-01-01

    In order to study the association of genetic polymorphisms of anti-Müllerian hormone (AMH) signaling pathway with endocrine changes and pregnancy outcomes, a total of 213 women of reproductive ages were recruited according to our inclusion and exclusion criteria between November 2011 and September 2014 in Singapore. Genotyping studies were performed using a minor groove binder primer/probe Taqman assay. The allele frequencies of the AMH Ile(49)Ser and AMHR2 -482A > G polymorphisms were analyzed in relation to female reproductive hormone levels, ovarian parameters, menstrual cycle lengths and pregnancy outcomes. AMH Ser allele frequency and AMHR2 G allele frequency of our Singapore population were compared with those of other populations reported in HapMap. The genotype distributions and allele frequencies for the AMH Ile(49)Ser and AMHR2 -482A > G polymorphisms were not associated with estradiol (E2) levels, ovarian parameters, menstrual cycle length, or pregnancy outcomes in our cohort. Our findings suggest that genetic variants in the AMH signal transduction pathway have population differences but do not appear to have significant effects on ovarian, endocrine, metabolic parameters and reproductive outcomes. PMID:26633196

  6. Endocrine interactions between plants and animals: Implications of exogenous hormone sources for the evolution of hormone signaling.

    PubMed

    Miller, Ashley E M; Heyland, Andreas

    2010-05-01

    Hormones are central to animal physiology, metabolism and development. Details on signal transduction systems and regulation of hormone synthesis, activation and release have only been studied for a small number of animal groups, notably arthropods and chordates. However, a significant body of literature suggests that hormonal signaling systems are not restricted to these phyla. For example, work on several echinoderm species shows that exogenous thyroid hormones (THs) affect larval development and metamorphosis and our new data provide strong evidence for endogenous synthesis of THs in sea urchin larvae. In addition to these endogenous sources, these larvae obtain THs when they consume phytoplankton. Another example of an exogenously acquired hormone or their precursors is in insect and arthropod signaling. Sterols from plants are essential for the synthesis of ecdysteroids, a crucial group of insect morphogenic steroids. The availability of a hormone or hormone precursor from food has implications for understanding hormone function and the evolution of hormonal signaling in animals. For hormone function, it creates an important link between the environment and the regulation of internal homeostatic systems. For the evolution of hormonal signaling it helps us to better understand how complex endocrine mechanisms may have evolved.

  7. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Church, David D; Mangine, Gerald T; Oliveira, Leonardo P; Moon, Jordan R; Fukuda, David H; Stout, Jeffrey R

    2015-11-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P < .0001); however, no differences were observed between trials. Resistance exercise also elicited a significant insulin, growth hormone, and cortisol response (P < .01); however, no differences were observed between trials for insulin-like growth factor-1, insulin, testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men. PMID:26428621

  8. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men.

    PubMed

    Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Church, David D; Mangine, Gerald T; Oliveira, Leonardo P; Moon, Jordan R; Fukuda, David H; Stout, Jeffrey R

    2015-11-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P < .0001); however, no differences were observed between trials. Resistance exercise also elicited a significant insulin, growth hormone, and cortisol response (P < .01); however, no differences were observed between trials for insulin-like growth factor-1, insulin, testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men.

  9. G-protein-coupled receptor signaling and the EGF network in endocrine systems.

    PubMed

    Hsieh, Minnie; Conti, Marco

    2005-09-01

    The epidermal growth factor (EGF) network is composed of a complex array of growth factors synthesized as precursors and expressed on the cell surface. These latent growth factors are activated by cleavage and shedding from the cell surface and act by binding to various homo- and hetero-dimers of the EGF receptors (ErbBs). Although the exact molecular steps are poorly understood, ligand binding to G-protein-coupled receptors as diverse as the beta-adrenoceptors or the lysophosphatidic acid receptors leads to shedding of EGF growth factors and activation of EGF receptors. Recent observations from the pituitary and in the ovary are providing new insight into the role of this network in endocrine systems.

  10. Endocrine glands

    MedlinePlus

    Endocrine glands release (secrete) hormones into the bloodstream. The endocrine glands include: Adrenal Hypothalamus Islets of Langerhans in the pancreas Ovaries Parathyroid Pineal Pituitary Testes Thyroid

  11. Endocrine mechanisms underlying the growth effects of developmental lead exposure in the rat.

    PubMed

    Ronis, M J; Badger, T M; Shema, S J; Roberson, P K; Templer, L; Ringer, D; Thomas, P E

    1998-05-22

    A dose-response study was conducted to examine the growth suppression associated with developmental lead exposure in a rat model and to determine the endocrine mechanisms underlying these effects. Ad libitum intake of lead acetate (0.05% to 0.45% w/v) was initiated in time-impregnated female Sprague-Dawley rats (n = 10-15/group) at gestational day 5. At birth, pups were culled to four male and four females per litter. Lead exposure of dams continued until weaning, following which lead exposure of pups was continued until sacrifice at age 2 , 35, 55, and 85 days. Birth weight and prepubertal and pubertal growth rates were significantly suppressed. Growth rates were suppressed to a much greater degree in male as compared to female pups. Decreased growth rates were accompanied by a significant decrease in plasma insulin-like growth factor 1 (IGF1) concentrations and (1) a significant increase in pituitary growth hormone (GH) content during puberty in pups of both sexes, (2) a delay in the developmental profiles of the GH-dependent male-specific liver enzymes cytochrome P-450 CYP2C11 and N-hydroxy-2-acetylaminofluorene sulfotransferase, and (3) continued suppression of these enzymes in lead-exposed adult male pups. In addition, significant decreases in plasma sex steroids, testosterone (male) and 17beta-estradiol (female), were observed during puberty. Postpuberty, at age 85 d, both IGF1 and sex steroid levels were indistinguishable from control pups despite continued lead exposure. Growth rates were also similar in control and lead-exposed pups between age 57 and 85 d. Data suggest that the mechanism underlying lead-induced sex-independent suppression of growth observed in these studies involves disruption of GH secretion during puberty. It is possible that the mechanisms underlying the greater suppression of somatic growth observed at puberty in lead-exposed male offspring may be due to the additional hypoandrogenization produced by the action of lead on the

  12. Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption.

    PubMed

    Préau, Laetitia; Fini, Jean Baptiste; Morvan-Dubois, Ghislaine; Demeneix, Barbara

    2015-02-01

    The essential roles of thyroid hormone (TH) in perinatal brain development have been known for decades. More recently, many of the molecular mechanisms underlying the multiple effects of TH on proliferation, differentiation, migration, synaptogenesis and myelination in the developing nervous system have been elucidated. At the same time data from both epidemiological studies and animal models have revealed that the influence of thyroid signaling on development of the nervous system, extends to all periods of life, from early embryogenesis to neurogenesis in the adult brain. This review focuses on recent insights into the actions of TH during early neurogenesis. A key concept is that, in contrast to the previous ideas that only the unliganded receptor was implicated in these early phases, a critical role of the ligand, T3, is increasingly recognized. These findings are considered in the light of increasing knowledge of cell specific control of T3 availability as a function of deiodinase activity and transporter expression. These requirements for TH in the early stages of neurogenesis take on new relevance given the increasing epidemiological data on adverse effects of TH lack in early pregnancy on children's neurodevelopmental outcome. These ideas lead logically into a discussion on how the actions of TH during the first phases of neurogenesis can be potentially disrupted by gestational iodine lack and/or chemical pollution. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  13. Growth factor signalling networks in breast cancer and resistance to endocrine agents: new therapeutic strategies.

    PubMed

    Nicholson, R I; Hutcheson, I R; Britton, D; Knowlden, J M; Jones, H E; Harper, M E; Hiscox, S E; Barrow, D; Gee, J M W

    2005-02-01

    Recent evidence demonstrates that growth factor networks are highly interactive with the estrogen receptor (ER) in the control of breast cancer growth and development. As such, tumor responses to anti-hormones are likely to be a composite of the ER and growth factor inhibitory activity of these agents, with alterations/aberrations in growth factor signalling providing a mechanism for the development of anti-hormone resistance. In this light, the current article focuses on illustrating the relationship between growth factor signalling and anti-hormone failure in our in-house tumor models of breast cancer and describes how we are now beginning to successfully target their actions to improve the effects of anti-hormonal drugs and to block aggressive disease progression.

  14. Signaling mechanisms underlying metamorphic transitions in animals.

    PubMed

    Heyland, Andreas; Moroz, Leonid L

    2006-12-01

    Metamorphosis in many animal groups involves a radical transition from a larval to a juvenile/adult body plan and the challenge of orchestrating 2 overlapping developmental programs simultaneously, that is, larval development and juvenile development. Metamorphic competence directly precedes this radical change in morphology and can be best described as the developmental potential of a larva to undergo the radical transition in response to internal or external signals. Several studies have employed genomic approaches (for example, microarrays or subtractive hybridization methods) to gain insights into the complexity of changes in gene expression associated with metamorphic transitions. Availability of this technology for an increasing number of organisms from diverse taxonomic groups expands the scope of species for which we can gain detailed understanding of the genetic and epigenetic architecture underlying metamorphosis. Here, we review metamorphosis in insects, amphibians, and several marine invertebrate species including the sea hare Aplysia californica and summarize mechanisms underlying the transition. We conclude that all metamorphoses share at least 4 components: (1) the differentiation of juvenile/adult structures, (2) the degeneration of larval structures, (3) metamorphic competence, and (4) change in habitat. While transcription levels detected by microarray or other molecular methods can vary significantly, some similarities can be observed. For example, transcripts related to stress response, immunity, and apoptosis are associated with metamorphosis in all investigated phyla. It also appears that signaling mediated by hormones and by nitric oxide can contribute to these stress-related responses and that these molecules can act as regulators of metamorphic transitions. This might indicate either that all of these distantly related organisms inherited the same basic regulatory machinery that was employed by their most recent common ancestor (RCA) in

  15. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance.

    PubMed

    Lupien, Mathieu; Meyer, Clifford A; Bailey, Shannon T; Eeckhoute, Jérôme; Cook, Jennifer; Westerling, Thomas; Zhang, Xiaoyang; Carroll, Jason S; Rhodes, Daniel R; Liu, X Shirley; Brown, Myles

    2010-10-01

    Estrogen receptor α (ERα) expression in breast cancer is predictive of response to endocrine therapy; however, resistance is common in ERα-positive tumors that overexpress the growth factor receptor ERBB2. Even in the absence of estrogen, ERα can be activated by growth factors, including the epidermal growth factor (EGF). EGF induces a transcriptional program distinct from estrogen; however, the mechanism of the stimulus-specific response is unknown. Here we show that the EGF-induced ERα genomic targets, its cistromes, are distinct from those induced by estrogen in a process dependent on the transcription factor AP-1. The EGF-induced ERα cistrome specifically regulates genes found overexpressed in ERBB2-positive human breast cancers. This provides a potential molecular explanation for the endocrine therapy resistance seen in ERα-positive breast cancers that overexpress ERBB2. These results suggest a central role for ERα in hormone-refractory breast tumors dependent on growth factor pathway activation and favors the development of therapeutic strategies completely antagonizing ERα, as opposed to blocking its estrogen responsiveness alone.

  16. Endocrine glands

    MedlinePlus

    The endocrine system is primarily composed of glands that produce chemical messengers called hormones. Glands of the endocrine system include the pituitary gland, the thyroid gland, the parathyroid glands, the thymus, ...

  17. Endocrine-disrupting Chemicals: Review of Toxicological Mechanisms Using Molecular Pathway Analysis

    PubMed Central

    Yang, Oneyeol; Kim, Hye Lim; Weon, Jong-Il; Seo, Young Rok

    2015-01-01

    Endocrine disruptors are known to cause harmful effects to human through various exposure routes. These chemicals mainly appear to interfere with the endocrine or hormone systems. As importantly, numerous studies have demonstrated that the accumulation of endocrine disruptors can induce fatal disorders including obesity and cancer. Using diverse biological tools, the potential molecular mechanisms related with these diseases by exposure of endocrine disruptors. Recently, pathway analysis, a bioinformatics tool, is being widely used to predict the potential mechanism or biological network of certain chemicals. In this review, we initially summarize the major molecular mechanisms involved in the induction of the above mentioned diseases by endocrine disruptors. Additionally, we provide the potential markers and signaling mechanisms discovered via pathway analysis under exposure to representative endocrine disruptors, bisphenol, diethylhexylphthalate, and nonylphenol. The review emphasizes the importance of pathway analysis using bioinformatics to finding the specific mechanisms of toxic chemicals, including endocrine disruptors. PMID:25853100

  18. Intramuscular anabolic signaling and endocrine response following high volume and high intensity resistance exercise protocols in trained men

    PubMed Central

    Gonzalez, Adam M; Hoffman, Jay R; Townsend, Jeremy R; Jajtner, Adam R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Mangine, Gerald T; Robinson, Edward H; Church, David D; Oliveira, Leonardo P; Willoughby, Darryn S; Fukuda, David H; Stout, Jeffrey R

    2015-01-01

    Resistance exercise paradigms are often divided into high volume (HV) or high intensity (HI) protocols, however, it is unknown whether these protocols differentially stimulate mTORC1 signaling. The purpose of this study was to examine mTORC1 signaling in conjunction with circulating hormone concentrations following a typical HV and HI lower-body resistance exercise protocol. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) performed each resistance exercise protocol in a random, counterbalanced order. Blood samples were obtained at baseline (BL), immediately (IP), 30 min (30P), 1 h (1H), 2 h (2H), and 5 h (5H) postexercise. Fine needle muscle biopsies were completed at BL, 1H, and 5H. Electromyography of the vastus lateralis was also recorded during each protocol. HV and HI produced a similar magnitude of muscle activation across sets. Myoglobin and lactate dehydrogenase concentrations were significantly greater following HI compared to HV (P = 0.01–0.02), whereas the lactate response was significantly higher following HV compared to HI (P = 0.003). The growth hormone, cortisol, and insulin responses were significantly greater following HV compared to HI (P = 0.0001–0.04). No significant differences between protocols were observed for the IGF-1 or testosterone response. Intramuscular anabolic signaling analysis revealed a significantly greater (P = 0.03) phosphorylation of IGF-1 receptor at 1H following HV compared to HI. Phosphorylation status of all other signaling proteins including mTOR, p70S6k, and RPS6 were not significantly different between trials. Despite significant differences in markers of muscle damage and the endocrine response following HV and HI, both protocols appeared to elicit similar mTORC1 activation in resistance-trained men. PMID:26197935

  19. Metabolic and endocrine profiles and reproductive parameters in dairy cows under grazing conditions: effect of polymorphisms in somatotropic axis genes

    PubMed Central

    2011-01-01

    Background The present study hypothesized that GH-AluI and IGF-I-SnabI polymorphisms do change the metabolic/endocrine profiles in Holstein cows during the transition period, which in turn are associated with productive and reproductive parameters. Methods Holstein cows (Farm 1, primiparous cows, n = 110, and Farm 2, multiparous cows, n = 76) under grazing conditions were selected and GH and IGF-I genotypes were determined. Blood samples for metabolic/endocrine determinations were taken during the transition period and early lactation in both farms. Data was analyzed by farm using a repeated measures analyses including GH and IGF-I genotypes, days and interactions as fixed effects, sire and cow as random effects and calving date as covariate. Results and Discussion Frequencies of GH and IGF-I alleles were L:0.84, V:0.16 and A:0.60, B:0.40, respectively. The GH genotype was not associated with productive or reproductive variables, but interaction with days affected FCM yield in multiparous (farm 2) cows (LL yielded more than LV cows) in early lactation. The GH genotype affected NEFA and IGF-I concentrations in farm 1 (LV had higher NEFA and lower IGF-I than LL cows) suggesting a better energy status of LL cows. There was no effect of IGF-I genotype on productive variables, but a trend was found for FCM in farm 2 (AB cows yielded more than AA cows). IGF-I genotype affected calving first service interval in farm 1, and the interaction with days tended to affect FCM yield (AB cows had a shorter interval and yielded more FCM than BB cows). IGF-I genotype affected BHB, NEFA, and insulin concentrations in farm 1: primiparous BB cows had lower NEFA and BHB and higher insulin concentrations. In farm 2, there was no effect of IGF-I genotype, but there was an interaction with days on IGF-I concentration, suggesting a greater uncoupling somatropic axis in AB and BB than AA cows, being in accordance with greater FCM yield in AB cows. Conclusion The GH and IGF-I genotypes had no

  20. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    PubMed

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  1. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation.

    PubMed

    Kim, Youngji; Joo, Hyunku; Her, Namguk; Yoon, Yeomin; Sohn, Jinsik; Kim, Sungpyo; Yoon, Jaekyung

    2015-05-15

    In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO₂ nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO₂ nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron-hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  2. Predictive Endocrine Testing in the 21st Century Using In Vitro Assays of Estrogen Receptor Signaling Responses

    EPA Science Inventory

    Thousands of environmental chemicals are subject to regulatory review for their potential to be endocrine disruptors (ED). In vitro high-throughput screening (HTS) assays have emerged as a potential tool for prioritizing chemicals for ED-related whole-animal tests. In this study,...

  3. Endocrine alterations and signaling changes associated with declining ovarian function and advanced biological aging in follicle-stimulating hormone receptor haploinsufficient mice.

    PubMed

    Danilovich, Natalia; Javeshghani, Danesh; Xing, Weirong; Sairam, M Ram

    2002-08-01

    Reproductive aging in female mammals is characterized by a progressive decline in fertility due to loss of follicles and reduced ovarian steroidogenesis. In this study we examined some of the endocrine and signaling parameters that might contribute to a decrease in ovulation and reproductive performance of mice with haploinsufficiency of the FSH receptor (FSH-R). For this purpose we compared ovarian changes and hormone levels in FSH-R heterozygous (+/-) and wild-type mice of different ages (3, 7, and 12 mo). Hormone-induced ovulations in immature and 3-mo-old +/- mice were consistently lower. The number of corpora lutea (CL) were lower at 3 and 7 mo, and none were present in 1-yr-old +/- females. The plasma steroid and gonadotropin levels exhibited changes associated with typical ovarian aging. Plasma FSH and LH levels were higher in 7-mo-old +/- mice, but FSH levels continued to rise in both genotypes by 1 yr. Serum estradiol and progesterone were lower in +/- mice at all ages, and testosterone was several-fold higher in 7-mo-old and 1-yr-old +/- mice. Inhibin alpha (Western blot) appeared to be lower in +/- ovaries at all ages. FSH-R (FSH* binding) declined steadily from 3 mo and reaching the lowest point at 1 yr. LH receptor (LH* binding) was high in the 1-yr-old ovary, and expression was localized in the stroma and interstitial cells. Our findings demonstrate that haploinsufficiency of the FSH-R gene could cause premature exhaustion of the gonadal reserves previously noted in these mice. This is accompanied by age-related changes in the hypothalamic-pituitary axis. As these features in our FSH-R +/- mice resemble reproductive failure occurring in middle-age women, further studies in this model might provide useful insights into the mechanisms underlying ovarian aging.

  4. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius.

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-07-01

    There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications

  5. Endocrine Diseases

    MedlinePlus

    ... high or too low, you may have an endocrine disease or disorder. Endocrine diseases and disorders also occur if your body does not respond to hormones the way it is supposed to. Featured Topics Adrenal Insufficiency ... Topics Research Discoveries & News Children with Cushing ...

  6. Endocrine Diseases

    MedlinePlus

    ... low, you may have a hormone disorder. Hormone diseases also occur if your body does not respond ... In the United States, the most common endocrine disease is diabetes. There are many others. They are ...

  7. Endocrine Disruptors

    PubMed Central

    2015-01-01

    Law and science combine in the estimation of risks from endocrine disruptors (EDs) and actions for their regulation. For both, dose–response models are the causal link between exposure and probability (or percentage change) of adverse response. The evidence that leads to either regulations or judicial decrees is affected by uncertainty and limited knowledge, raising difficult policy issues that we enumerate and discuss. In the United States, some courts have dealt with EDs, but causation based on animal studies has been a stumbling block for plaintiffs seeking compensation, principally because those courts opt for epidemiological evidence. The European Union (EU) has several regulatory tools and ongoing research on the risks associated with bisphenol A, under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation and other regulations or directives. The integration of a vast (in kind and in scope) number of research papers into a statement of causation for either policy or to satisfy legal requirements, in both the United States and the EU, relies on experts. We outline the discursive dilemma and issues that may affect consensus-based results and a Bayesian causal approach that accounts for the evolution of information, yielding both value of information and flexibility associated with public choices. PMID:26740809

  8. Intestinal cell kinase, a protein associated with endocrine-cerebro-osteodysplasia syndrome, is a key regulator of cilia length and Hedgehog signaling.

    PubMed

    Moon, Heejung; Song, Jieun; Shin, Jeong-Oh; Lee, Hankyu; Kim, Hong-Kyung; Eggenschwiller, Jonathan T; Bok, Jinwoong; Ko, Hyuk Wan

    2014-06-10

    Endocrine-cerebro-osteodysplasia (ECO) syndrome is a recessive genetic disorder associated with multiple congenital defects in endocrine, cerebral, and skeletal systems that is caused by a missense mutation in the mitogen-activated protein kinase-like intestinal cell kinase (ICK) gene. In algae and invertebrates, ICK homologs are involved in flagellar formation and ciliogenesis, respectively. However, it is not clear whether this role of ICK is conserved in mammals and how a lack of functional ICK results in the characteristic phenotypes of human ECO syndrome. Here, we generated Ick knockout mice to elucidate the precise role of ICK in mammalian development and to examine the pathological mechanisms of ECO syndrome. Ick null mouse embryos displayed cleft palate, hydrocephalus, polydactyly, and delayed skeletal development, closely resembling ECO syndrome phenotypes. In cultured cells, down-regulation of Ick or overexpression of kinase-dead or ECO syndrome mutant ICK resulted in an elongation of primary cilia and abnormal Sonic hedgehog (Shh) signaling. Wild-type ICK proteins were generally localized in the proximal region of cilia near the basal bodies, whereas kinase-dead ICK mutant proteins accumulated in the distal part of bulged ciliary tips. Consistent with these observations in cultured cells, Ick knockout mouse embryos displayed elongated cilia and reduced Shh signaling during limb digit patterning. Taken together, these results indicate that ICK plays a crucial role in controlling ciliary length and that ciliary defects caused by a lack of functional ICK leads to abnormal Shh signaling, resulting in congenital disorders such as ECO syndrome.

  9. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and

  10. Single-cell approaches for molecular classification of endocrine tumors

    PubMed Central

    Koh, James; Allbritton, Nancy L.; Sosa, Julie A.

    2015-01-01

    Purpose of review In this review, we summarize recent developments in single-cell technologies that can be employed for the functional and molecular classification of endocrine cells in normal and neoplastic tissue. Recent findings The emergence of new platforms for the isolation, analysis, and dynamic assessment of individual cell identity and reactive behavior enables experimental deconstruction of intratumoral heterogeneity and other contexts, where variability in cell signaling and biochemical responsiveness inform biological function and clinical presentation. These tools are particularly appropriate for examining and classifying endocrine neoplasias, as the clinical sequelae of these tumors are often driven by disrupted hormonal responsiveness secondary to compromised cell signaling. Single-cell methods allow for multidimensional experimental designs incorporating both spatial and temporal parameters with the capacity to probe dynamic cell signaling behaviors and kinetic response patterns dependent upon sequential agonist challenge. Summary Intratumoral heterogeneity in the provenance, composition, and biological activity of different forms of endocrine neoplasia presents a significant challenge for prognostic assessment. Single-cell technologies provide an array of powerful new approaches uniquely well suited for dissecting complex endocrine tumors. Studies examining the relationship between clinical behavior and tumor compositional variations in cellular activity are now possible, providing new opportunities to deconstruct the underlying mechanisms of endocrine neoplasia. PMID:26632769

  11. Developmental effects of endocrine-disrupting chemicals in wildlife and humans.

    PubMed Central

    Colborn, T; vom Saal, F S; Soto, A M

    1993-01-01

    Large numbers and large quantities of endocrine-disrupting chemicals have been released into the environment since World War II. Many of these chemicals can disturb development of the endocrine system and of the organs that respond to endocrine signals in organisms indirectly exposed during prenatal and/or early postnatal life; effects of exposure during development are permanent and irreversible. The risk to the developing organism can also stem from direct exposure of the offspring after birth or hatching. In addition, transgenerational exposure can result from the exposure of the mother to a chemical at any time throughout her life before producing offspring due to persistence of endocrine-disrupting chemicals in body fat, which is mobilized during egg laying or pregnancy and lactation. Mechanisms underlying the disruption of the development of vital systems, such as the endocrine, reproductive, and immune systems, are discussed with reference to wildlife, laboratory animals, and humans. PMID:8080506

  12. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture.

    PubMed

    Volkoff, Hélène; Hoskins, Leah J; Tuziak, Sarah M

    2010-07-01

    Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.

  13. Signals of New Physics in the Underlying Event

    SciTech Connect

    Harnik, Roni; Wizansky, Tommer; /SLAC

    2010-06-11

    LHC searches for new physics focus on combinations of hard physics objects. In this work we propose a qualitatively different soft signal for new physics at the LHC - the 'anomalous underlying event'. Every hard LHC event will be accompanied by a soft underlying event due to QCD and pile-up effects. Though it is often used for QCD and monte carlo studies, here we propose the incorporation of an underlying event analysis in some searches for new physics. An excess of anomalous underlying events may be a smoking-gun signal for particular new physics scenarios such as 'quirks' or 'hidden valleys' in which large amounts of energy may be emitted by a large multiplicity of soft particles. We discuss possible search strategies for such soft diffuse signals in the tracking system and calorimetry of the LHC experiments. We present a detailed study of the calorimetric signal in a concrete example, a simple quirk model motivated by folded supersymmetry. In these models the production and radiative decay of highly excited quirk bound states leads to an 'antenna pattern' of soft unclustered energy. Using a dedicated simulation of a toy detector and a 'CMB-like' multipole analysis we compare the signal to the expected backgrounds.

  14. Signals of new physics in the underlying event

    SciTech Connect

    Harnik, Roni; Wizansky, Tommer

    2009-10-01

    LHC searches for new physics focus on combinations of hard physics objects. In this work we propose a qualitatively different soft signal for new physics at the LHC - the 'anomalous underlying event'. Every hard LHC event will be accompanied by a soft underlying event due to QCD and pileup effects. Though it is often used for QCD and Monte Carlo studies, here we propose the incorporation of an underlying event analysis in some searches for new physics. An excess of anomalous underlying events may be a smoking-gun signal for particular new physics scenarios such as 'quirks' or 'hidden valleys' in which large amounts of energy may be emitted by a large multiplicity of soft particles. We discuss possible search strategies for such soft diffuse signals in the tracking system and calorimetry of the LHC experiments. We present a detailed study of the calorimetric signal in a concrete example, a simple quirk model motivated by folded supersymmetry. In these models the production and radiative decay of highly excited quirk bound states leads to an 'antenna pattern' of soft unclustered energy. Using a dedicated simulation of a toy detector and a multipole analysis familiar in cosmic microwave background studies, we compare the signal to the expected backgrounds.

  15. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  16. Wilson's disease: An endocrine revelation

    PubMed Central

    Kapoor, Nitin; Shetty, Sahana; Thomas, Nihal; Paul, Thomas Vizhalil

    2014-01-01

    Wilson's disease is an inherited disorder of copper metabolism. The affected patients, who otherwise have a near normal life span, may often suffer from some potentially treatable and under recognized endocrine disorders that may hinder their quality of life. We explored previously published literature on the various endocrine aspects of this disease with their probable underlying mechanisms, highlighting the universal need of research in this area. PMID:25364683

  17. Wilson's disease: An endocrine revelation.

    PubMed

    Kapoor, Nitin; Shetty, Sahana; Thomas, Nihal; Paul, Thomas Vizhalil

    2014-11-01

    Wilson's disease is an inherited disorder of copper metabolism. The affected patients, who otherwise have a near normal life span, may often suffer from some potentially treatable and under recognized endocrine disorders that may hinder their quality of life. We explored previously published literature on the various endocrine aspects of this disease with their probable underlying mechanisms, highlighting the universal need of research in this area. PMID:25364683

  18. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction.

    PubMed

    Davidowitz, Goggy

    2016-08-01

    It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and

  19. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction.

    PubMed

    Davidowitz, Goggy

    2016-08-01

    It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and

  20. Endocrine disruptors and obesity.

    PubMed

    Heindel, Jerrold J; Newbold, Retha; Schug, Thaddeus T

    2015-11-01

    The increasing incidence of obesity is a serious global public health challenge. Although the obesity epidemic is largely fueled by poor nutrition and lack of exercise, certain chemicals have been shown to potentially have a role in its aetiology. A substantial body of evidence suggests that a subclass of endocrine-disrupting chemicals (EDCs), which interfere with endocrine signalling, can disrupt hormonally regulated metabolic processes, especially if exposure occurs during early development. These chemicals, so-called 'obesogens' might predispose some individuals to gain weight despite their efforts to limit caloric intake and increase levels of physical activity. This Review discusses the role of EDCs in the obesity epidemic, the latest research on the obesogen concept, epidemiological and experimental findings on obesogens, and their modes of action. The research reviewed here provides knowledge that health scientists can use to inform their research and decision-making processes. PMID:26391979

  1. Endocrine Tumor: Overview

    MedlinePlus

    ... a roadmap to this full guide. About the endocrine system The endocrine system is made up of cells that produce hormones. ... of sugar in the blood. Part of the endocrine system is the neuroendocrine system, which is made up ...

  2. Endocrine disrupting chemicals

    PubMed Central

    Yeung, Bonnie HY; Wan, Hin T; Law, Alice YS

    2011-01-01

    In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives as well as are commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 were concerns about the endocrine disrupting (ED) effects of these chemicals articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to “the developmental basis of adult disease,” highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed. PMID:22319671

  3. Endocrine taste cells.

    PubMed

    Kokrashvili, Zaza; Yee, Karen K; Ilegems, Erwin; Iwatsuki, Ken; Li, Yan; Mosinger, Bedrich; Margolskee, Robert F

    2014-06-01

    In taste cells, taste receptors, their coupled G proteins and downstream signalling elements mediate the detection and transduction of sweet, bitter and umami compounds. In some intestinal endocrine cells, taste receptors and gustducin contribute to the release of glucagon-like peptide 1 (GLP-1) and other gut hormones in response to glucose and non-energetic sweeteners. Conversely, taste cells have been found to express multiple hormones typically found in intestinal endocrine cells, e.g. GLP-1, glucagon, somatostatin and ghrelin. In the present study, by immunohistochemistry, multiple subsets of taste cells were found to express GLP-1. The release of GLP-1 from 'endocrine taste cells' into the bloodstream was examined. In wild-type mice, even after oesophagectomy and vagotomy, oral stimulation with glucose induced an elevation of GLP-1 levels in the bloodstream within 10 min. Stimulation of taste cell explants from wild-type mice with glucose led to the release of GLP-1 into the medium. Knocking out of the Tas1r3 gene did not eliminate glucose-stimulated GLP-1 release from taste cells in vivo. The present results indicate that a portion of the cephalic-phase rise in circulating GLP-1 levels is mediated by the direct release of GLP-1 from taste cells into the bloodstream.

  4. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    PubMed

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  5. [Endocrine hypertension].

    PubMed

    Takeda, R

    1993-03-01

    Endocrine Hypertension, is, in a narrow sense, defined as adrenal hypertension, including mainly pheochromocytoma, Cushing's syndrome, a syndrome of primary aldosteronism and it's related mineralocorticoid excess disorders. In memory of a great contribution to hypertensiology by the late Prof. Murakami, who was the first author to write on pheochromocytoma in Japan, this paper is dedicated to reviewing the current status of adrenal hypertension in Japan from the epidemiological viewpoint, putting emphasis upon the clinical characteristics of aged patients with adrenal hypertension. Secondly, some topics in the research field of each adrenal hypertension are briefly introduced. Thirdly, our recent data are presented, showing 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) mRNA expression in resistance vessels and decreased 11 beta-HSD activities in vessels in SHR which supports the hypothesis that there might exist a subtype identified as partial impairment of 11 beta-HSD in patients with essential hypertension. PMID:8331819

  6. Opioids and endocrine dysfunction

    PubMed Central

    Hester, Joan

    2012-01-01

    The endocrine effects of opioids used for the management of persistent pain are poorly understood by clinicians and patients, and hormone levels are rarely measured. It is recognized that opioids exert this effect via the hypothalamic-pituitary-gonadal axis. Additional effects on adrenal hormones, weight, blood pressure and bone density may also occur. Symptoms and signs of sex hormone deficiency occur in both men and women but are under-reported and are often clinically unrecognized. The potential effects of long term opioid therapy on the endocrine system should be explained to patients before opioid therapy is commenced. Monitoring of sex hormones is recommended; if there are deficiencies opioids should be tapered and withdrawn, if this is clinically acceptable. If opioid therapy has to continue, hormone replacement therapy should be initiated and monitored by an endocrinologist. PMID:26516462

  7. Opioids and endocrine dysfunction.

    PubMed

    Seyfried, Oliver; Hester, Joan

    2012-02-01

    The endocrine effects of opioids used for the management of persistent pain are poorly understood by clinicians and patients, and hormone levels are rarely measured. It is recognized that opioids exert this effect via the hypothalamic-pituitary-gonadal axis. Additional effects on adrenal hormones, weight, blood pressure and bone density may also occur. Symptoms and signs of sex hormone deficiency occur in both men and women but are under-reported and are often clinically unrecognized. The potential effects of long term opioid therapy on the endocrine system should be explained to patients before opioid therapy is commenced. Monitoring of sex hormones is recommended; if there are deficiencies opioids should be tapered and withdrawn, if this is clinically acceptable. If opioid therapy has to continue, hormone replacement therapy should be initiated and monitored by an endocrinologist.

  8. Coordinated changes in hepatic amino acid metabolism and endocrine signals support hepatic glucose production during fetal hypoglycemia

    PubMed Central

    Houin, Satya S.; Rozance, Paul J.; Brown, Laura D.; Hay, William W.; Wilkening, Randall B.

    2014-01-01

    Reduced fetal glucose supply, induced experimentally or as a result of placental insufficiency, produces an early activation of fetal glucose production. The mechanisms and substrates used to fuel this increased glucose production rate remain unknown. We hypothesized that in response to hypoglycemia, induced experimentally with maternal insulin infusion, the fetal liver would increase uptake of lactate and amino acids (AA), which would combine with hormonal signals to support hepatic glucose production. To test this hypothesis, metabolic studies were done in six late gestation fetal sheep to measure hepatic glucose and substrate flux before (basal) and after [days (d)1 and 4] the start of hypoglycemia. Maternal and fetal glucose concentrations decreased by 50% on d1 and d4 (P < 0.05). The liver transitioned from net glucose uptake (basal, 5.1 ± 1.5 μmol/min) to output by d4 (2.8 ± 1.4 μmol/min; P < 0.05 vs. basal). The [U-13C]glucose tracer molar percent excess ratio across the liver decreased over the same period (basal: 0.98 ± 0.01, vs. d4: 0.89 ± 0.01, P < 0.05). Total hepatic AA uptake, but not lactate or pyruvate uptake, increased by threefold on d1 (P < 0.05) and remained elevated throughout the study. This AA uptake was driven largely by decreased glutamate output and increased glycine uptake. Fetal plasma concentrations of insulin were 50% lower, while cortisol and glucagon concentrations increased 56 and 86% during hypoglycemia (P < 0.05 for basal vs. d4). Thus increased hepatic AA uptake, rather than pyruvate or lactate uptake, and decreased fetal plasma insulin and increased cortisol and glucagon concentrations occur simultaneously with increased fetal hepatic glucose output in response to fetal hypoglycemia. PMID:25516551

  9. The Evolutionary Consequences of Disrupted Male Mating Signals: An Agent-Based Modelling Exploration of Endocrine Disrupting Chemicals in the Guppy

    PubMed Central

    Senior, Alistair McNair; Nakagawa, Shinichi; Grimm, Volker

    2014-01-01

    Females may select a mate based on signalling traits that are believed to accurately correlate with heritable aspects of male quality. Anthropogenic actions, in particular chemicals released into the environment, are now disrupting the accuracy of mating signals to convey information about male quality. The long-term prediction for disrupted mating signals is most commonly loss of female preference. Yet, this prediction has rarely been tested using quantitative models. We use agent-based models to explore the effects of rapid disruption of mating signals. In our model, a gene determines survival. Males signal their level of genetic quality via a signal trait, which females use to select a mate. We allowed this system of sexual selection to become established, before introducing a disruption between the male signal trait and quality, which was similar in nature to that induced by exogenous chemicals. Finally, we assessed the capacity of the system to recover from this disruption. We found that within a relatively short time frame, disruption of mating signals led to a lasting loss of female preference. Decreases in mean viability at the population-level were also observed, because sexual-selection acting against newly arising deleterious mutations was relaxed. The ability of the population to recover from disrupted mating signals was strongly influenced by the mechanisms that promoted or maintained genetic diversity in traits under sexual selection. Our simple model demonstrates that environmental perturbations to the accuracy of male mating signals can result in a long-term loss of female preference for those signals within a few generations. What is more, the loss of this preference can have knock-on consequences for mean population fitness. PMID:25047080

  10. Activation of PI3K/Akt/mTOR signaling in the tumor stroma drives endocrine therapy-dependent breast tumor regression

    PubMed Central

    Polo, María Laura; Riggio, Marina; May, María; Rodríguez, María Jimena; Perrone, María Cecilia; Stallings-Mann, Melody; Kaen, Diego; Frost, Marlene; Goetz, Matthew; Boughey, Judy; Lanari, Claudia; Radisky, Derek; Novaro, Virginia

    2015-01-01

    Improved efficacy of neoadjuvant endocrine-targeting therapies in luminal breast carcinomas could be achieved with optimal use of pathway targeting agents. In a mouse model of ductal breast carcinoma we identify a tumor regressive stromal reaction that is induced by neoadjuvant endocrine therapy. This reparative reaction is characterized by tumor neovascularization accompanied by infiltration of immune cells and carcinoma-associated fibroblasts that stain for phosphorylated ribosomal protein S6 (pS6), downstream the PI3K/Akt/mTOR pathway. While tumor variants with higher PI3K/Akt/mTOR activity respond well to a combination of endocrine and PI3K/Akt/mTOR inhibitors, tumor variants with lower PI3K/Akt/mTOR activity respond more poorly to the combination therapy than to the endocrine therapy alone, associated with inhibition of stromal pS6 and the reparative reaction. In human breast cancer xenografts we confirm that such differential sensitivity to therapy is primarily determined by the level of PI3K/Akt/mTOR in tumor cells. We further show that the clinical response of breast cancer patients undergoing neoadjuvant endocrine therapy is associated with the reparative stromal reaction. We conclude that tumor level and localization of pS6 are associated with therapeutic response in breast cancer and represent biomarkers to distinguish which tumors will benefit from the incorporation of PI3K/Akt/mTOR inhibitors with neoadjuvant endocrine therapy. PMID:26098779

  11. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  12. [Endocrine disorders and osteoporosis].

    PubMed

    Kinoshita, Yuka

    2015-10-01

    Secondary osteoporosis is a bone disease characterized by decreased bone mass that predisposes fractures due to underlying disorders or medication. Disorders of the endocrine system, such as primary hyperparathyroidism, hyperthyroidism, hypogonadism, growth hormone deficiency, Cushing's syndrome, and anorexia nervosa frequently cause secondary osteoporosis. In those diseases, hormone excess or deficiency affects functions of osteoblasts, osteocyte, and osteoclasts, leading to aberrant bone remodeling. Bisphosphonates are the first-choice pharmacological agents for fracture prevention in most patients with secondary osteoporosis along with treatment of the underlying disease. PMID:26529938

  13. Evidence of effects of environmental chemicals on the endocrine system in children.

    PubMed

    Rogan, Walter J; Ragan, N Beth

    2003-07-01

    Pollutant chemicals that are widespread in the environment can affect endocrine signaling, as evidenced in laboratory experiments and in wildlife with relatively high exposures. Although humans are commonly exposed to such pollutant chemicals, the exposures are generally low, and clear effects on endocrine function from such exposures have been difficult to demonstrate. Several instances in which there are data from humans on exposure to the chemical agent and the endocrine outcome are reviewed, including age at weaning, age at puberty, and sex ratio at birth, and the strength of the evidence is discussed. Although endocrine disruption in humans by pollutant chemicals remains largely undemonstrated, the underlying science is sound and the potential for such effects is real.

  14. Developmental effects of endocrine-disrupting chemicals in wildlife and humans

    SciTech Connect

    Colborn, T. ); vom Saal, F.S. ); Soto, A.M. )

    1993-10-01

    Large numbers and large quantities of endoncrine-disrupting chemicals have been released into the environment since World War II. Many of these chemicals can disturb development of the endocrine system and of the organs that respond to endocrine signals in organisms indirectly exposed during prenatal and/or early postnatal life; effects of exposure during development are permanent and irreversible. The risk to the developing organism can also stem from direct exposure of the offspring after birth or hatching. In addition, trangenerational exposure can result from the exposure of the mother to a chemical at any time throughout her life before producing offspring due to persistent of endocrine-disrupting chemicals in body fat, which is mobilized during egg laying or pregnancy and lactation. Mechanisms underlying the disruption of the development of vital systems, such as the endocrine, reproductive, and immune systems, are discussed with reference to wildlife, laboratory animals, and humans.

  15. Endocrine Labomas

    PubMed Central

    Dutta, Deep; Chowdhury, Subhankar

    2012-01-01

    Laboratory endocrinology forms an integral part of 21st century endocrinology. Perhaps, no other specialty of medicine is as closely associated with laboratory as endocrinology. This review intends to highlight the challenges faced by an endocrinologist before interpreting a hormone assay report. This review by no means is holistic but intends to highlight some of the pitfalls of laboratory endocrinology and arouse further interest in this important but neglected section of endocrinology. Lack of standardization, as well as rigorous implementation is some of the major challenges facing endocrine assays in our country. It is essential to be aware not only of the details of the method of analysis of a hormone, the pre-analytical requisites, but also disease-specific analytical issues to prevent unnecessary concern both for the patient, as well as the treating physician, as well as needless investigations. Problems with interpretation of serum prolactin, thyroglobulin, steroid hormone assays, rennin assay and vitamin-D assay have been highlighted. PMID:23565398

  16. Endocrine FGFs: Evolution, Physiology, Pathophysiology, and Pharmacotherapy

    PubMed Central

    Itoh, Nobuyuki; Ohta, Hiroya; Konishi, Morichika

    2015-01-01

    The human fibroblast growth factor (FGF) family comprises 22 structurally related polypeptides that play crucial roles in neuronal functions, development, and metabolism. FGFs are classified as intracrine, paracrine, and endocrine FGFs based on their action mechanisms. Paracrine and endocrine FGFs are secreted signaling molecules by acting via cell-surface FGF receptors (FGFRs). Paracrine FGFs require heparan sulfate as a cofactor for FGFRs. In contrast, endocrine FGFs, comprising FGF19, FGF21, and FGF23, require α-Klotho or β-Klotho as a cofactor for FGFRs. Endocrine FGFs, which are specific to vertebrates, lost heparan sulfate-binding affinity and acquired a systemic signaling system with α-Klotho or β-Klotho during early vertebrate evolution. The phenotypes of endocrine FGF knockout mice indicate that they play roles in metabolism including bile acid, energy, and phosphate/active vitamin D metabolism. Accumulated evidence for the involvement of endocrine FGFs in human genetic and metabolic diseases also indicates their pathophysiological roles in metabolic diseases, potential risk factors for metabolic diseases, and useful biomarkers for metabolic diseases. The therapeutic utility of endocrine FGFs is currently being developed. These findings provide new insights into the physiological and pathophysiological roles of endocrine FGFs and potential diagnostic and therapeutic strategies for metabolic diseases. PMID:26483756

  17. [Arterial hypertension secondary to endocrine disorders].

    PubMed

    Minder, Anna; Zulewski, Henryk

    2015-06-01

    Endocrine hypertension offers a potentially curative therapy if the underlying cause is identified and treated accordingly. In contrast to the high prevalence of arterial hypertension especially in the elderly, the classical endocrine causes remain a rare entity. Among patients with arterial hypertension the prevalence of Cushing's syndrome or pheochromocytoma is less than 1%. Primary hyperaldosteronism is more frequent with a reported prevalence of up to 9%. In order to avoid unnecessary, costly and potentially harmful evaluations and therapies due to the limited sensitivity and specificity of the critical endocrine tests it is mandatory to limit the exploration for endocrine causes to preselected patients with high pretest probability for an endocrine disorder. Younger age at manifestation of arterial hypertension or drug resistant hypertension together with other clinical signs of an endocrine disorder should raise the suspicion and prompt the appropriate evaluation.

  18. Chronobiology in the endocrine system.

    PubMed

    Haus, Erhard

    2007-08-31

    Biological signaling occurs in a complex web with participation and interaction of the central nervous system, the autonomous nervous system, the endocrine glands, peripheral endocrine tissues including the intestinal tract and adipose tissue, and the immune system. All of these show an intricate time structure with rhythms and pulsatile variations in multiple frequencies. Circadian (about 24-hour) and circannual (about 1-year) rhythms are kept in step with the cyclic environmental surrounding by the timing and length of the daily light span. Rhythmicity of many endocrine variables is essential for their efficacy and, even in some instances, for the qualitative nature of their effects. Indeed, the continuous administration of certain hormones and their synthetic analogues may show substantially different effects than expected. In the design of drug-delivery systems and treatment schedules involving directly or indirectly the endocrine system, consideration of the human time organization is essential. A large amount of information on the endocrine time structure has accumulated, some of which is discussed in this review.

  19. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act

  20. Circadian rhythms and endocrine functions in adult insects.

    PubMed

    Bloch, Guy; Hazan, Esther; Rafaeli, Ada

    2013-01-01

    Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.

  1. Forebrain circuits underlying the social modulation of vocal communication signals.

    PubMed

    Matheson, Laura E; Sun, Herie; Sakata, Jon T

    2016-01-01

    Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female-directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR-1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR-1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR-1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR-1 expression in these areas. However, EGR-1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context-dependent changes could arise de novo in HVC. The pattern of context-dependent differences in EGR-1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei.

  2. Diagnosis and pathology of endocrine diseases

    SciTech Connect

    Shriver, B.D.

    1988-01-01

    This book contains 22 papers under the headings of Diagnosis and Pathology of endocrine diseases. Topics covered include: Laboratory tests in the diagnosis and management of thyroid disorders, Pathology of thyroid diseases, Diagnosis of adrenourtical disease, Radiologic techniques in evaluating endocrine disorders; and the Pituitary and adrenal glands.

  3. Potentiating effect of an endocrine disruptor, paranonylphenol, on the generation of reactive oxygen species (ROS) in human venous blood -- association with the activation of signal transduction pathway.

    PubMed

    Okai, Yasuji; Sato, Eisuke F; Higashi-Okai, Kiyoka; Inoue, Masayasu

    2007-09-01

    An endocrine disruptor, para-nonylphenol (NP), caused a dose-dependent stimulatory effect on the generation of reactive oxygen species (ROS) in human whole blood from 50 to 1000 microM, which was measured by chemiluminescence generation. ROS-scavenging enzymes such as catalase and superoxide dismutase, and the lipophilic antioxidative agents, alpha-tocopherol and beta-carotene, showed preventive effects on NP-induced ROS generation. To analyze the biochemical mechanism of NP-induced ROS generation in human blood, we investigated the effects of different types of metabolic inhibitors on the activation pathways of ROS generation. An NADPH-dependent oxidase inhibitor, diphenyl iodonium chloride (DPI), and a myeloperoxidase inhibitor, sodium azide (NaN3), showed remarkable inhibitory effects on ROS generation induced by NP, but an inhibitor against mitochondrial respiratory function, potassium cyanide (KCN), did not exhibit a significant effect. Furthermore, a phosphatidylinositol-3 (PI3) kinase inhibitor, wortmannin, and a tyrosine kinase inhibitor, protein phosphorylation inhibitor 1 (PP1), caused a strong suppression of NP-induced ROS generation. Selective protein kinase C inhibitor, Ro-32-0432, p38 MAP kinase inhibitor, SB-203580, and ERK MAP kinase inhibitor, PD 98059, showed significant suppressive effects on NP-induced ROS generation. In addition, when human blood was exposed to lower concentrations (5-50 microM) of NP, they did not cause the significant ROS generation by themselves, but the priming and synergistic effects of NP were detected by the addition of secondary stimulants, opsonized zymosan (OZ) or phorbol myristate acetate (PMA). The analysis of the priming and synergistic effects of NP on OZ- or PMA-dependent ROS generation by antioxidative substances and metabolic inhibitors showed similar results compared with those of human blood treated with NP alone. These results suggest that NP causes an enhancing effect by itself, or priming and synergistic

  4. Endocrine Glands & Their Hormones

    MedlinePlus

    ... Home » Cancer Registration & Surveillance Modules » Anatomy & Physiology » Endocrine System » Endocrine Glands & Their Hormones Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  5. Endocrine system and obesity.

    PubMed

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients.

  6. Multiple Endocrine Neoplasia Syndromes

    MedlinePlus

    ... or cancerous (malignant) tumors or grow excessively without forming tumors. Multiple endocrine neoplasia syndromes are caused by ... This Article Generic Name Select Brand Names corticotropin H.P. ACTHAR GEL epinephrine ADRENALIN Multiple Endocrine Neoplasia ...

  7. Endocrine hypertension in small animals.

    PubMed

    Reusch, Claudia E; Schellenberg, Stefan; Wenger, Monique

    2010-03-01

    Hypertension is classified as idiopathic or secondary. In animals with idiopathic hypertension, persistently elevated blood pressure is not caused by an identifiable underlying or predisposing disease. Until recently, more than 95% of cases of hypertension in humans were diagnosed as idiopathic. New studies have shown, however, a much higher prevalence of secondary causes, such as primary hyperaldosteronism. In dogs and cats, secondary hypertension is the most prevalent form and is subclassified into renal and endocrine hypertension. This review focuses on the most common causes of endocrine hypertension in dogs and cats.

  8. On the Signals Underlying Conscious Awareness of Action

    ERIC Educational Resources Information Center

    Obhi, Sukhvinder S.; Planetta, Peggy J.; Scantlebury, Jordan

    2009-01-01

    To investigate whether conscious judgments of movement onset are based solely on pre-movement signals (i.e., premotor or efference copy signals) or whether sensory feedback (i.e., reafferent) signals also play a role, participants judged the onset of finger and toe movements that were either active (i.e., self initiated) or passive (i.e.,…

  9. Functional Connectivity of EEG Signals Under Laser Stimulation in Migraine

    PubMed Central

    de Tommaso, Marina; Trotta, Gabriele; Vecchio, Eleonora; Ricci, Katia; Van de Steen, Frederik; Montemurno, Anna; Lorenzo, Marta; Marinazzo, Daniele; Bellotti, Roberto; Stramaglia, Sebastiano

    2015-01-01

    In previous studies, migraine patients showed abnormalities in pain-related evoked responses, as reduced habituation to repetitive stimulation. In this study, we aimed to apply a novel analysis of EEG bands synchronization and directed dynamical influences under painful stimuli in migraine patients compared to non-migraine healthy volunteers. Thirty-one migraine without aura outpatients (MIGR) were evaluated and compared to 19 controls (CONT). The right hand was stimulated by means of 30 consecutive CO2 laser stimuli. EEG signal was examined by means of Morlet wavelet, synchronization entropy (SE), and Granger causality (GC), and the statistically validated results were mapped on the corresponding scalp locations. The vertex complex of averaged laser-evoked responses (LEPs) showed reduced habituation compared to CONT. In the prestimulus phase, enhanced SE in the 0, 5–30 Hz range was present in MIGR and CONT between the bilateral temporal–parietal and the frontal regions around the midline. Migraine patients showed an anticipation of EEG changes preceding the painful stimulation compared to CONT. In the poststimulus phase, the same cortical areas were more connected in MIGR vs CONT. In both groups of patients and CONT, the habituation index was negatively correlated with the GC scores. A different pattern of cortical activation after painful stimulation was present in migraine. The increase in cortical connections during repetitive painful stimulation may subtend the phenomenon of LEPs reduced habituation. Brain network analysis may give an aid in understanding subtle changes of pain processing under laser stimuli in migraine patients. PMID:26635589

  10. Coherent Optical Receiver for PPM Signals under Atmospheric Turbulence

    NASA Technical Reports Server (NTRS)

    Munoz Fernandez, Michela; Vilnrotter, Victor A.

    2005-01-01

    Adaptive combining of experimentally obtained heterodyned pulse position modulated (PPM) signals with pulse-to-pulse coherence in the presence of simulated spatial distortions resembling atmospheric turbulence is demonstrated. The adaptively combined PPM signals are phased up via an LMS algorithm suitably optimized to operate with PPM in the presence of additive shot-noise. A convergence analysis of the algorithm is presented, and results with both, computer simulated and experimentally obtained PPM signals are analyzed.

  11. GATA factors in endocrine neoplasia.

    PubMed

    Pihlajoki, Marjut; Färkkilä, Anniina; Soini, Tea; Heikinheimo, Markku; Wilson, David B

    2016-02-01

    GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.

  12. The molecular classification of hereditary endocrine diseases.

    PubMed

    Ye, Lei; Ning, Guang

    2015-12-01

    Hereditary endocrine diseases are an important group of diseases with great heterogeneity. The current classification for hereditary endocrine disease is mostly based upon anatomy, which is helpful for pathophysiological interpretation, but does not address the pathogenic variability associated with different underlying genetic causes. Identification of an endocrinopathy-associated genetic alteration provides evidence for differential diagnosis, discovery of non-classical disease, and the potential for earlier diagnosis and targeted therapy. Molecular diagnosis should be routinely applied when managing patients with suspicion of hereditary disease. To enhance the accurate diagnosis and treatment of patients with hereditary endocrine diseases, we propose categorization of endocrine diseases into three groups based upon the function of the mutant gene: cell differentiation, hormone synthesis and action, and tumorigenesis. Each category was further grouped according to the specific gene function. We believe that this format would facilitate practice of precision medicine in the field of hereditary endocrine diseases.

  13. The effects of nanomaterials as endocrine disruptors.

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-08-14

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited.

  14. The Effects of Nanomaterials as Endocrine Disruptors

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  15. The effects of nanomaterials as endocrine disruptors.

    PubMed

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  16. Two distinct phases of calcium signalling under flow

    PubMed Central

    Liu, Bo; Lu, Shaoying; Zheng, Shuai; Jiang, Zonglai; Wang, Yingxiao

    2011-01-01

    Aims High shear stress (HSS) can have significant impact on angiogenesis and atherosclerosis in collateral arteries near the bifurcation and curvature regions. Here, we investigate the spatiotemporal pattern of HSS-induced intracellular calcium alteration. Methods and results Genetically encoded biosensors based on fluorescence resonance energy transfer were targeted in the cytoplasm and the endoplasmic reticulum (ER) to visualize the subcellular calcium dynamics in bovine aortic endothelial cells under HSS (65 dyn/cm2). Upon HSS application, the intracellular Ca2+ concentration ([Ca2+]i) increased immediately and maintained a sustained high level, while the ER-stored calcium had a significant decrease only after 300 s. The perturbation of calcium influx across the plasma membrane (PM) by the removal of extracellular calcium or the blockage of membrane channels inhibited the early phase of [Ca2+]i increase upon HSS application, which was further shown to be sensitive to the magnitudes of shear stress and the integrity of cytoskeletal support. In contrast, Src, phospholipase C(PLC), and the inositol 1,4,5-trisphosphate receptor (IP3R) can regulate the late phase of HSS-induced [Ca2+]i increase via the promotion of the ER calcium efflux. Conclusion The HSS-induced [Ca2+]i increase consists of two well-co-ordinated phases with different sources and mechanisms: (i) an early phase due to the calcium influx across the PM which is dependent on the mechanical impact and cytoskeletal support and (ii) a late phase originated from the ER-calcium efflux which is regulated by the Src, PLC, and IP3R signalling pathway. Therefore, our work presented new molecular-level insights into systematic understanding of mechanotransduction in cardiovascular systems. PMID:21285296

  17. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage. Removal assessment using light, oxygen and microalgae.

    PubMed

    Abargues, M R; Ferrer, J; Bouzas, A; Seco, A

    2013-12-01

    The aim of this study was to assess the effect of light, oxygen and microalgae on micropollutants removal. The studied micropollutants were 4-(1,1,3,3-tetramethylbutyl)phenol (OP), technical-nonylphenol (t-NP), 4-n-nonylphenol (4-NP), Bisphenol-A (BPA). In order to study the effect of the three variables on the micropollutants removal, a factorial design was developed. The experiments were carried out in four batch reactors which treated the effluent of an anaerobic membrane bioreactor. The gas chromatography mass spectrometry was used for the measurement of the micropollutants. The results showed that light, oxygen and microalgae affected differently to the degradation ratios of each micropollutant. The results showed that under aerated conditions removal ratios higher than 91% were achieved, whereas for non-aerated conditions the removal ratios were between 50% and 80%, except for 4-NP which achieved removal ratios close to 100%. Besides, mass balance showed that the degradation processes were more important than the sorption processes. PMID:24096281

  18. Developing brain as an endocrine organ: a paradoxical reality.

    PubMed

    Ugrumov, M V

    2010-06-01

    The maintaining of homeostasis in the organism in response to a variable environment is provided by the highly hierarchic neuroendocrine-immune system. The crucial component of this system is the hypothalamus providing the endocrine regulation of key peripheral organs, and the adenohypophysis. In this case, neuron-derived signaling molecules (SM) are delivered to the blood vessels in hypothalamic "neurohaemal organs" lacking the blood-brain barrier (BBB), the posterior lobe of the pituitary and the median eminence. The release of SM to the blood vessels in most other brain regions is prohibited by BBB. According to the conventional concept, the development of the neuroendocrine system in ontogenesis begins with the "maturation" of peripheral endocrine glands which first are self-governed and then operate under the adenohypophysial control. Meantime, the brain maturation is under the control of SM secreted by endocrine glands of the developing organism and coming from the placenta and maternal organism. The hypothalamus is involved in the neuroendocrine regulation only after its full maturation that is followed by the conversion of the opened-looped neuroendocrine system to the closed-looped system as in adulthood. Neurons of the developing brain begin to secrete SM shortly after their origin and long before the establishment of specific interneuronal relations providing initially autocrine and paracrine morphogenetic influence on differentiating target neurons. Taking into account that the brain lacks BBB over this ontogenetic period, we hypothesized that it operates as the multipotent endocrine gland secreting SM to the general circulation and thereby providing the endocrine regulation of peripheral organs and the brain. The term "multipotent" means that the spectrum of the brain-derived circulating SM and their occupancy at the periphery in the developing organism should greatly exceed those in adulthood. In order to test this hypothesis, gonadotropin

  19. Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators

    PubMed Central

    Whittington, Miles A.; Kopell, Nancy J.

    2015-01-01

    The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772

  20. Integration and Modulation of Intercellular Signaling Underlying Blood Flow Control

    PubMed Central

    Segal, Steven S.

    2015-01-01

    Vascular resistance networks control tissue blood flow in concert with regulating arterial perfusion pressure. In response to increased metabolic demand, vasodilation arising in arteriolar networks ascends to encompass proximal feed arteries. By reducing resistance upstream, ascending vasodilation (AVD) increases blood flow into the microcirculation. Once initiated [e.g., through local activation of K+ channels in endothelial cells (ECs)], hyperpolarization is conducted through gap junctions along the endothelium. Via EC projections through the internal elastic lamina, hyperpolarization spreads into the surrounding smooth muscle cells (SMCs) through myoendothelial gap junctions (MEGJs) to promote their relaxation. Intercellular signaling through electrical signal transmission (i.e., cell-to-cell conduction) can thereby coordinate vasodilation along and among the branches of microvascular resistance networks. Perivascular sympathetic nerve fibers course through the adventitia and release norepinephrine to stimulate SMCs via α-adrenoreceptors to produce contraction. In turn, SMCs can signal ECs through MEGJs to activate K+ channels and attenuate sympathetic vasoconstriction. Activation of K+ channels along the endothelium will dissipate electrical signal transmission and inhibit AVD, thereby restricting blood flow into the microcirculation while maintaining peripheral resistance and perfusion pressure. This review explores the origins and nature of intercellular signaling governing blood flow control in skeletal muscle with respect to the interplay between AVD and sympathetic innervation. Whereas these interactions are integral to physical daily activity and athletic performance, resolving the interplay between respective signaling events provides insight into how selective interventions can improve tissue perfusion and oxygen delivery during vascular disease. PMID:26368324

  1. Computational principles underlying the recognition of acoustic signals in insects.

    PubMed

    Clemens, Jan; Hennig, R Matthias

    2013-08-01

    Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters--known from visual and auditory physiology--explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.

  2. Potency matters: thresholds govern endocrine activity.

    PubMed

    Borgert, Christopher J; Baker, Stephen P; Matthews, John C

    2013-10-01

    Whether thresholds exist for endocrine active substances and for endocrine disrupting effects of exogenous chemicals has been posed as a question for regulatory policy by the European Union. This question arises from a concern that the endocrine system is too complex to allow estimations of safe levels of exposure to any chemical with potential endocrine activity, and a belief that any such chemical can augment, retard, or disrupt the normal background activity of endogenous hormones. However, vital signaling functions of the endocrine system require it to continuously discriminate the biological information conveyed by potent endogenous hormones from a more concentrated background of structurally similar, endogenous molecules with low hormonal potential. This obligatory ability to discriminate important hormonal signals from background noise can be used to define thresholds for induction of hormonal effects, without which normal physiological functions would be impossible. From such thresholds, safe levels of exposure can be estimated. This brief review highlights how the fundamental principles governing hormonal effects - affinity, efficacy, potency, and mass action - dictate the existence of thresholds and why these principles also define the potential that exogenous chemicals might have to interfere with normal endocrine functioning.

  3. Male endocrine dysfunction.

    PubMed

    Hotaling, James M; Patel, Zamip

    2014-02-01

    Evaluation for endocrine function is a pivotal part of the male infertility workup. Endocrine dysfunction may result from endogenous and exogenous sources. This article describes the traditional roles that the hypothalamic-pituitary-gonadal endocrine axis plays in spermatogenesis and testicular dysfunction, as well as other insults that may contribute to hypospermatogenesis. Recent research into the role alternative hormonal axes play in spermatogenesis and promising new technologies that may correct inborn or acquired endocrinopathies leading to impaired sperm growth and maturation are discussed.

  4. Phosphodiesterases in endocrine physiology and disease.

    PubMed

    Vezzosi, Delphine; Bertherat, Jérôme

    2011-08-01

    The cAMP-protein kinase A pathway plays a central role in the development and physiology of endocrine tissues. cAMP mediates the intracellular effects of numerous peptide hormones. Various cellular and molecular alterations of the cAMP-signaling pathway have been observed in endocrine diseases. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. Indeed, PDEs are the only known mechanism for inactivation of cAMP by catalysis to 5'-AMP. It has been suggested that disruption of PDEs could also have a role in the pathogenesis of many endocrine diseases. This review summarizes the most recent advances concerning the role of the PDEs in the physiopathology of endocrine diseases. The potential significance of this knowledge can be easily envisaged by the development of drugs targeting specific PDEs.

  5. The endocrine system and connective tissue disorders.

    PubMed

    McGuire, J L

    1990-01-01

    The face of many endocrine diseases is rapidly changing as early detection and intervention is achieved. Nevertheless, certain musculoskeletal symptoms can suggest a possible endocrinopathy. The clinician can expect the appearance of particular rheumatic problems during the course of a chronic endocrine disorder. This is especially germaine for diabetes and acromegaly, in which the disorder is controlled but not cured. Clearly hormones play a critical role in the development and expression of immunologic disease. Sex hormones and calcitriol have a direct effect on basic immunobiology (3). The rheumatoid synovium responds to parathyroid hormone and calcitriol in concert with local signals such as prostaglandins, interleukins, and interferon (2,77). Finally, the immune system plays a central role in the pathogenesis of several endocrine diseases. The thyroid diseases, Graves' disease and Hashimoto's disease are best studied. The mechanisms of Ia expression leading to immune destruction and lymphocytic infiltration of the gland will be applied to other endocrine disorders.

  6. Endocrine system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  7. Dopamine D1 signaling organizes network dynamics underlying working memory

    PubMed Central

    Roffman, Joshua L.; Tanner, Alexandra S.; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J.; Ho, New Fei; Nitenson, Adam Z.; Chonde, Daniel B.; Greve, Douglas N.; Abi-Dargham, Anissa; Buckner, Randy L.; Manoach, Dara S.; Rosen, Bruce R.; Hooker, Jacob M.; Catana, Ciprian

    2016-01-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory–emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits. PMID:27386561

  8. Are mammal olfactory signals hiding right under our noses?

    PubMed

    Apps, Peter James

    2013-06-01

    Chemical communication via olfactory semiochemicals plays a central role in the social behaviour and reproduction of mammals, but even after four decades of research, only a few mammal semiochemicals have been chemically characterized. Expectations that mammal chemical signals are coded by quantitative relationships among multiple components have persisted since the earliest studies of mammal semiochemistry, and continue to direct research strategies. Nonetheless, the chemistry of mammal excretions and secretions and the characteristics of those semiochemicals that have been identified show that mammal semiochemicals are as likely to be single compounds as to be mixtures, and are as likely to be coded by the presence and absence of chemical compounds as by their quantities. There is very scant support for the view that mammal semiochemicals code signals as specific ratios between components, and no evidence that they depend on a Gestalt or a chemical image. Of 31 semiochemicals whose chemical composition is known, 15 have a single component and 16 are coded by presence/absence, one may depend on a ratio between two compounds and none of them are chemical images. The expectation that mammal chemical signals have multiple components underpins the use of multivariate statistical analyses of chromatographic data, but the ways in which multivariate statistics are commonly used to search for active mixtures leads to single messenger compounds and signals that are sent by the presence and absence of compounds being overlooked. Research on mammal semiochemicals needs to accommodate the possibility that simple qualitative differences are no less likely than complex quantitative differences to encode chemical signals.

  9. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. PMID:26972038

  10. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed.

  11. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed.

  12. Ecological risk assessment of endocrine disruptors.

    PubMed Central

    Hutchinson, T H; Brown, R; Brugger, K E; Campbell, P M; Holt, M; Länge, R; McCahon, P; Tattersfield, L J; van Egmond, R

    2000-01-01

    The European Centre for Ecotoxicology and Toxicology of Chemicals proposes a tiered approach for the ecological risk assessment of endocrine disruptors, integrating exposure and hazard (effects) characterization. Exposure assessment for endocrine disruptors should direct specific tests for wildlife species, placing hazard data into a risk assessment context. Supplementing the suite of mammalian screens now under Organization for Economic Cooperation and Development (OECD) validation, high priority should be given to developing a fish screening assay for detecting endocrine activity in oviparous species. Taking into account both exposure characterization and alerts from endocrine screening, higher tier tests are also a priority for defining adverse effects. We propose that in vivo mammalian and fish assays provide a comprehensive screening battery for diverse hormonal functions (including androgen, estrogen, and thyroid hormone), whereas Amphibia should be considered at higher tiers if there are exposure concerns. Higher tier endocrine-disruptor testing should include fish development and fish reproduction tests, whereas a full life-cycle test could be subsequently used to refine aquatic risk assessments when necessary. For avian risk assessment, the new OECD Japanese quail reproduction test guideline provides a valuable basis for developing a test to detecting endocrine-mediated reproductive effects; this species could be used, where necessary, for an avian life-cycle test. For aquatic and terrestrial invertebrates, data from existing developmental and reproductive tests remain of high value for ecological risk assessment. High priority should be given to research into comparative endocrine physiology of invertebrates to support data extrapolation to this diverse fauna. PMID:11102288

  13. Endocrine complications following pediatric bone marrow transplantation.

    PubMed

    Ho, Josephine; Lewis, Victor; Guilcher, Gregory M T; Stephure, David K; Pacaud, Danièle

    2011-01-01

    Pediatric bone marrow transplantation (BMT) for various diseases can lead to endocrine system dysfunction owing to preparative regimens involving chemotherapy and radiation therapy. We assessed the prevalence of post-BMT endocrine complications in children treated at the Alberta Children's Hospital (ACH) from 1991 to 2001. Time of onset of endocrine dysfunction, underlying disease processes, chemotherapy, radiation therapy and age at BMT were characterized. Subjects of <18 years of age at the time of allogeneic or autologous BMT for whom 1-year follow-up through the ACH and a chart were available for review were included in the study. Subjects with a pre-existing endocrine condition were excluded. Of the 194 pediatric BMT procedures performed at the ACH between January 1, 1991 and December 31, 2001, 150 complete charts were available for review. Sixty five subjects received follow-up care at other centers and were excluded. Therefore, a total of 85 subjects were included in the review. The prevalence of endocrine complications identified was: primary hypothyroidism 1.2%, compensated hypothyroidism 7.0%, hyperthyroidism 2.4%, hypergonadotrophic hypogonadism 22.4%, abnormal bone density 2.4%, and secondary diabetes mellitus 1.2%. These findings emphasize the need to screen for endocrine system dysfunction, particularly hypergonadotrophic hypogonadism, in children who have undergone BMT. Children need long-term follow-up so that endocrine complications can be diagnosed and treated promptly. PMID:21823531

  14. Endocrine and metabolic emergencies: thyroid storm

    PubMed Central

    Carroll, Richard; Matfin, Glenn

    2010-01-01

    Thyrotoxicosis is a common endocrine condition that may be secondary to a number of underlying processes. Thyroid storm (also known as thyroid or thyrotoxic crisis) represents the severe end of the spectrum of thyrotoxicosis and is characterized by compromised organ function. Whilst rare in the modern era, the mortality rate remains high, and prompt consideration of this endocrine emergency, with specific treatments, can improve outcomes. PMID:23148158

  15. Modeling intracellular signaling underlying striatal function in health and disease.

    PubMed

    Nair, Anu G; Gutierrez-Arenas, Omar; Eriksson, Olivia; Jauhiainen, Alexandra; Blackwell, Kim T; Kotaleski, Jeanette H

    2014-01-01

    Striatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops. Understanding the role of dopamine and other neuromodulators requires the development of quantitative dynamical models for describing the intracellular signaling, in order to provide precise unambiguous descriptions and quantitative predictions. Building such models requires integration of data from multiple data sources containing information regarding the molecular interactions, the strength of these interactions, and the subcellular localization of the molecules. Due to the uncertainty, variability, and sparseness of these data, parameter estimation techniques are critical for inferring or constraining the unknown parameters, and sensitivity analysis evaluates which parameters are most critical for a given observed macroscopic behavior. Here, we briefly review the modeling approaches and tools that have been used to investigate biochemical signaling in the striatum, along with some of the models built around striatum. We also suggest a future direction for the development of such models from the, now becoming abundant, high-throughput data.

  16. Modeling intracellular signaling underlying striatal function in health and disease.

    PubMed

    Nair, Anu G; Gutierrez-Arenas, Omar; Eriksson, Olivia; Jauhiainen, Alexandra; Blackwell, Kim T; Kotaleski, Jeanette H

    2014-01-01

    Striatum, which is the input nucleus of the basal ganglia, integrates cortical and thalamic glutamatergic inputs with dopaminergic afferents from the substantia nigra pars compacta. The combination of dopamine and glutamate strongly modulates molecular and cellular properties of striatal neurons and the strength of corticostriatal synapses. These actions are performed via intracellular signaling networks, containing several intertwined feedback loops. Understanding the role of dopamine and other neuromodulators requires the development of quantitative dynamical models for describing the intracellular signaling, in order to provide precise unambiguous descriptions and quantitative predictions. Building such models requires integration of data from multiple data sources containing information regarding the molecular interactions, the strength of these interactions, and the subcellular localization of the molecules. Due to the uncertainty, variability, and sparseness of these data, parameter estimation techniques are critical for inferring or constraining the unknown parameters, and sensitivity analysis evaluates which parameters are most critical for a given observed macroscopic behavior. Here, we briefly review the modeling approaches and tools that have been used to investigate biochemical signaling in the striatum, along with some of the models built around striatum. We also suggest a future direction for the development of such models from the, now becoming abundant, high-throughput data. PMID:24560149

  17. Higher plant antioxidants and redox signaling under environmental stresses.

    PubMed

    Shao, Hong-bo; Chu, Li-ye; Shao, Ming-an; Jaleel, Cheruth Abdul; Mi, Hong-mei

    2008-06-01

    Main antioxidants in higher plants include glutathione, ascorbate, tocopherol, proline, betaine, and others, which are also information-rich redox buffers and important redox signaling components that interact with biomembrane-related compartments. As an evolutionary consequence of aerobic life for higher plants, reactive oxygen species (ROS) are formed by partial reduction of molecular oxygen. The above enzymatic and non-enzymatic antioxidants in higher plants can protect their cells from oxidative damage by scavenging ROS. In addition to crucial roles in defense system and as enzyme cofactors, antioxidants influence higher plant growth and development by modifying processes from mitosis and cell elongation to senescence and death. Most importantly, they provide essential information on cellular redox state, and regulate gene expression associated with biotic and abiotic stress responses to optimize defense and survival. An overview of the literature is presented in terms of main antioxidants and redox signaling in plant cells. Special attention is given to ROS and ROS-antioxidant interaction as a metabolic interface for different types of signals derived from metabolism and from the changing environment, which regulates the appropriate induction of acclimation processes or, execution of cell death programs, which are the two essential directions for higher plants.

  18. The endocrine quiz

    PubMed Central

    Kalra, Sanjay; Baruah, Manash P.; Nagesh, V. Sri

    2014-01-01

    With the recent explosion in endocrine conferences, audience fatigue has set in and conference planners are now looking at newer pedagogic methods to revive the interest of audiences in these conferences. The endocrine quiz has finally come of vogue and is increasingly becoming one of the most popular attractions of any ranking endocrine conference. The endocrine quiz has a large and varied palette and draws questions from religious scriptures, history, literature, current affairs, sports, movies and basic and paramedical sciences. The more we delve into the quizzable aspects of endocrinology, the more we realize that endocrinology is ubiquitous and there is no sphere in human life untouched by endocrine disorders. Be it epic characters like Kumbhakarna and Bheema, fiction characters like Tintin or Orphan Annie, sportspersons like Gail Devers or heads of state like George Bush Sr and Boris Yeltsin, all have contributed to the melting pot of endocrine quizzing. Adding further grist to the endocrine mill are the Nobel prizes, with their attendant anecdotes and controversies. Step into this world of endocrine quizzing to have an up close and personal look at the diverse facets of this subject. PMID:24944922

  19. Endocrine diseases of rodents.

    PubMed

    Collins, Bobby R

    2008-01-01

    The frequency of documented endocrine diseases in rodents and other small mammals varies considerably among the species maintained as pets, biomedical research animals, or display animals in zoos. The clinical diagnosis of endocrine diseases almost never occurs in free-ranging animals in their native habitat. Feral animals that have clinical endocrine disease, such as neoplasia, adrenal cortical hyperplasia, or diabetes, would exhibit clinical signs of altered behavior that would result in their removal by predators. The diagnosis of endocrine disease thus takes place in the relatively protective environment of captivity. This observation should forewarn pet owners and clinicians caring for these animals that the environment contributes to the development of endocrine diseases in these animals.

  20. Endocrine alterations in the equine athlete: an update.

    PubMed

    McKeever, Kenneth Harrington

    2011-04-01

    Horses spend most of their day eating, standing, and occasionally exercising. Exercise can range from running in a pasture to athletic training. Under resting conditions, horses easily maintain the internal environment. The performance of work or exercise is a major physiologic challenge, a disturbance to homeostasis that invokes an integrative response from multiple organ systems. The response to exercise involves endocrine and neuroendocrine signaling associated with the short-term and adaptive control of many systems. The coordinated control of multiple physiologic variables is essential for achieving regulation to maintain the integrity of the internal environment of the body.

  1. Rare and unusual endocrine cancer syndromes with mutated genes.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2010-12-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have expanded our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient's endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions.

  2. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  3. Receptors, Ion Channels, and Signaling Mechanisms Underlying Microglial Dynamics*

    PubMed Central

    Madry, Christian; Attwell, David

    2015-01-01

    Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved. PMID:25855789

  4. Disruption of the endocrine control of final oocyte maturation in teleosts by xenobiotic chemicals

    SciTech Connect

    Thomas, P.

    1999-07-01

    Final oocyte maturation (FOM) in fish and other vertebrates is under precise endocrine control and involves changes in hormone secretion at all levels of the hypothalamus-pituitary-gonadal axis. Several potential sites and mechanisms of chemical disruption of the endocrine system controlling FOM by are discussed. Neurotoxic chemicals such as lead and PCBs can alter monoamine neurotransmitter function and xenoestrogens can interfere with steroid feedback mechanisms at the hypothalamus and pituitary to impair the neuroendocrine control of gonadotropin secretion. Chemicals which disrupt calcium homeostasis such as cadmium can interfere with calcium-dependent signal transduction pathway activated by reproductive hormones in the pituitary and gonads. Other xenobiotics may disrupt maturation-inducing steroid (MIS) function by impairing its synthesis or receptor binding. The problems in assessing endocrine disruption of FOM are discussed. The relatively few investigations reported in the literature on endocrine disruption of FOM in fishes by chemicals indicate that organochlorine and organophosphorus pesticides at concentrations less than one ppb can impair induction of FOM in response to gonadotropin and the MIS. Moreover, evidence is presented that certain organochlorine pesticides block MIS action by binding to the MIS receptor which is localized on the oocyte plasma membrane. Steroid membrane receptor function may be particularly susceptible to interference by hydrophilic chemicals. Finally, an in vitro bioassay capable of screening many chemicals simultaneously for their ability to disrupt the endocrine control of FOM is described.

  5. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    PubMed

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response.

  6. [Endocrine emergencies during pregnancy].

    PubMed

    Harbeck, B; Schütt, M; Sayk, F

    2012-03-01

    Endocrine emergencies during pregnancy can become life-threatening for both mother and fetus. In addition to some pregnancy-linked endocrine disorders, several pre-existing forms of endocrinopathy, such as Grave's disease, type 1 diabetes and adrenal insufficiency might deteriorate acutely during pregnancy. Early diagnosis and management are challenging because the classical symptoms are often modified by pregnancy. Laboratory tests are subject to altered physiological ranges and pharmacological options are limited while therapeutic goals are stricter than in the non-pregnant patient. This article focuses on endocrine emergencies complicating pregnancy. PMID:22349529

  7. Endocrine Regulation of Compensatory Growth in Fish

    PubMed Central

    Won, Eugene T.; Borski, Russell J.

    2013-01-01

    Compensatory growth (CG) is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. CG is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production, and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting) that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding) when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH) production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs) are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of the prerequisite of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin, and leptin. PMID:23847591

  8. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

    PubMed

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K; Perna, Fabiana; Bowman, Robert L; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N C; Feldman, Michael; Mao, Jun J; Colameco, Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-02-09

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133(hi)/ER(lo) cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133(hi)/ER(lo)/IL6(hi) cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133(hi)/ER(lo)/OXPHOS(lo). These cells exit metabolic dormancy via an IL6-driven feed-forward ER(lo)-IL6(hi)-Notch(hi) loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133(hi) CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133(hi)/ER(lo) cells mediating metastatic progression, which is sensitive to dual targeted therapy.

  9. Self-renewal of CD133hi cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer

    PubMed Central

    Sansone, Pasquale; Ceccarelli, Claudio; Berishaj, Marjan; Chang, Qing; Rajasekhar, Vinagolu K.; Perna, Fabiana; Bowman, Robert L.; Vidone, Michele; Daly, Laura; Nnoli, Jennifer; Santini, Donatella; Taffurelli, Mario; Shih, Natalie N. C.; Feldman, Michael; Mao, Jun J.; Colameco , Christopher; Chen, Jinbo; DeMichele, Angela; Fabbri, Nicola; Healey, John H.; Cricca, Monica; Gasparre, Giuseppe; Lyden, David; Bonafé, Massimiliano; Bromberg, Jacqueline

    2016-01-01

    The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133hi/ERlo/OXPHOSlo. These cells exit metabolic dormancy via an IL6-driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy. PMID:26858125

  10. No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity.

    PubMed

    Shpigler, Hagai Y; Siegel, Adam J; Huang, Zachary Y; Bloch, Guy

    2016-09-01

    A hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend ("nurse") brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees. We studied the influence of juvenile hormone (JH) on task performance in the bumblebee Bombus terrestris. We first used a radioimmunoassay to measure circulating JH titers in workers specializing in nursing and foraging activities. Next, we developed new protocols for manipulating JH titers by combining a size-adjusted topical treatment with the allatotoxin Precocene-I and replacement therapy with JH-III. Finally, we used this protocol to test the influence of JH on task performance. JH levels were either similar for nurses and foragers (three colonies), or higher in nurses (two colonies). Nurses had better developed ovaries and JH levels were typically positively correlated with ovarian state. Manipulation of JH titers influenced ovarian development and wax secretion, consistent with earlier allatectomy studies. These manipulations however, did not affect nursing or foraging activity, or the likelihood to specialize in nursing or foraging activity. These findings contrast with honeybees in which JH influences age-related division of labor but not adult female fertility. Thus, the evolution of complex societies in bees was associated with modifications in the way JH influences social behavior.

  11. Interpopulational Variations in Sexual Chemical Signals of Iberian Wall Lizards May Allow Maximizing Signal Efficiency under Different Climatic Conditions

    PubMed Central

    2015-01-01

    Sexual signals used in intraspecific communication are expected to evolve to maximize efficacy under a given climatic condition. Thus, chemical secretions of lizards might evolve in the evolutionary time to ensure that signals are perfectly tuned to local humidity and temperature conditions affecting their volatility and therefore their persistence and transmission through the environment. We tested experimentally whether interpopulational altitudinal differences in chemical composition of femoral gland secretions of male Iberian wall lizards (Podarcis hispanicus) have evolved to maximize efficacy of chemical signals in different environmental conditions. Chemical analyses first showed that the characteristics of chemical signals of male lizards differed between two populations inhabiting environments with different climatic conditions in spite of the fact that these two populations are closely related genetically. We also examined experimentally whether the temporal attenuation of the chemical stimuli depended on simulated climatic conditions. Thus, we used tongue-flick essays to test whether female lizards were able to detect male scent marks maintained under different conditions of temperature and humidity by chemosensory cues alone. Chemosensory tests showed that chemical signals of males had a lower efficacy (i.e. detectability and persistence) when temperature and dryness increase, but that these effects were more detrimental for signals of the highest elevation population, which occupies naturally colder and more humid environments. We suggest that the abiotic environment may cause a selective pressure on the form and expression of sexual chemical signals. Therefore, interpopulational differences in chemical profiles of femoral secretions of male P. hispanicus lizards may reflect adaptation to maximize the efficacy of the chemical signal in different climates. PMID:26121693

  12. Endocrine origins of rheumatic disease. Diagnostic clues to interrelated syndromes.

    PubMed

    Lockshin, Michael D

    2002-04-01

    Heightened awareness of endocrine abnormalities is important in evaluation of patients presenting with musculoskeletal symptoms. Endocrine disorders such as diabetes, hyperthyroidism, hypothyroidism, hyperparathyroidism, hypoparathyroidism, hyperadrenocorticism, and acromegaly cause a unique array of rheumatic manifestations. Such conditions include Dupuytren's contracture, carpal tunnel syndrome, chondrocalcinosis, pseudogout, scleredema, and osteoporosis. Characteristic changes on radiologic evaluation and serum enzyme testing are additional clues to these atypical presentations. Consideration of a possible endocrine cause early in the evaluation may improve management in patients with such an underlying disorder.

  13. Endocrine system: part 2.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-01

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  14. Endocrine manifestations in celiac disease

    PubMed Central

    Freeman, Hugh James

    2016-01-01

    Celiac disease (CD) is an autoimmune small intestinal mucosal disorder that often presents with diarrhea, malabsorption and weight loss. Often, one or more associated endocrine disorders may be associated with CD. For this review, methods involved an extensive review of published English-language materials. In children and adolescents, prospective studies have demonstrated a significant relationship to insulin-dependent or type 1 diabetes, whereas in adults, autoimmune forms of thyroid disease, particularly hypothyroidism, may commonly co-exist. In some with CD, multiple glandular endocrinopathies may also occur and complicate the initial presentation of the intestinal disease. In others presenting with an apparent isolated endocrine disorder, serological screening for underlying subclinical CD may prove to be positive, particularly if type 1 diabetes, autoimmune thyroid or other autoimmune endocrine diseases, such as Addison’s disease are first detected. A number of reports have also recorded hypoparathyroidism or hypopituitarism or ovarian failure in CD and these may be improved with a strict gluten-free diet. PMID:27784959

  15. No effect of juvenile hormone on task performance in a bumblebee (Bombus terrestris) supports an evolutionary link between endocrine signaling and social complexity.

    PubMed

    Shpigler, Hagai Y; Siegel, Adam J; Huang, Zachary Y; Bloch, Guy

    2016-09-01

    A hallmark of insect societies is a division of labor among workers specializing in different tasks. In bumblebees the division of labor is related to body size; relatively small workers are more likely to stay inside the nest and tend ("nurse") brood, whereas their larger sisters are more likely to forage. Despite their ecological and economic importance, very little is known about the endocrine regulation of division of labor in bumblebees. We studied the influence of juvenile hormone (JH) on task performance in the bumblebee Bombus terrestris. We first used a radioimmunoassay to measure circulating JH titers in workers specializing in nursing and foraging activities. Next, we developed new protocols for manipulating JH titers by combining a size-adjusted topical treatment with the allatotoxin Precocene-I and replacement therapy with JH-III. Finally, we used this protocol to test the influence of JH on task performance. JH levels were either similar for nurses and foragers (three colonies), or higher in nurses (two colonies). Nurses had better developed ovaries and JH levels were typically positively correlated with ovarian state. Manipulation of JH titers influenced ovarian development and wax secretion, consistent with earlier allatectomy studies. These manipulations however, did not affect nursing or foraging activity, or the likelihood to specialize in nursing or foraging activity. These findings contrast with honeybees in which JH influences age-related division of labor but not adult female fertility. Thus, the evolution of complex societies in bees was associated with modifications in the way JH influences social behavior. PMID:27503109

  16. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  17. The signal processing architecture underlying subjective reports of sensory awareness

    PubMed Central

    Maniscalco, Brian; Lau, Hakwan

    2016-01-01

    What is the relationship between perceptual information processing and subjective perceptual experience? Empirical dissociations between stimulus identification performance and subjective reports of stimulus visibility are crucial for shedding light on this question. We replicated a finding that metacontrast masking can produce such a dissociation (Lau and Passingham, 2006), and report a novel finding that this paradigm can also dissociate stimulus identification performance from the efficacy with which visibility ratings predict task performance. We explored various hypotheses about the relationship between perceptual task performance and visibility rating by implementing them in computational models and using formal model comparison techniques to assess which ones best captured the unusual patterns in the data. The models fell into three broad categories: Single Channel models, which hold that task performance and visibility ratings are based on the same underlying source of information; Dual Channel models, which hold that there are two independent processing streams that differentially contribute to task performance and visibility rating; and Hierarchical models, which hold that a late processing stage generates visibility ratings by evaluating the quality of early perceptual processing. Taking into account the quality of data fitting and model complexity, we found that Hierarchical models perform best at capturing the observed behavioral dissociations. Because current theories of visual awareness map well onto these different model structures, a formal comparison between them is a powerful approach for arbitrating between the different theories. PMID:27499929

  18. Effects of 17α-ethinylestradiol (EE2) on reproductive endocrine status in mummichog (Fundulus heteroclitus) under differing salinity and temperature conditions.

    PubMed

    Gillio Meina, Esteban; Lister, Andrea; Bosker, Thijs; Servos, Mark; Munkittrick, Kelly; MacLatchy, Deborah

    2013-06-15

    Exposure to 17α-ethinylestradiol (EE₂), a synthetic estrogen, has previously been shown to decrease reproductive endocrine status and egg production in northern mummichog (Fundulus heteroclitus macrolepidotus). The objective of this study was to evaluate if variations in salinity or temperature conditions of EE₂-exposed mummichog modify the effect on whole organism reproductive endocrine status and gonadal steroidogenesis. Mummichog were exposed in vivo for 14 days to 0, 50 and 250 ng/L EE₂ in 0, 16 and 32 ppt salinity at 18 °C and to 0 and 250 ng/L EE₂ at 10, 18 and 26 °C at 16 ppt. There was a little overall effect of salinity on measured endpoints. In the salinity exposure, 250 ng/L EE₂-exposed females had significantly reduced 17β-estradiol (E₂) levels. Increased temperature triggered gonadal growth in both sexes and increased plasma E₂ and E₂ production and decreased 11-KT (11-ketotestosterone) production. EE₂ counteracted the effect of temperature by depressing gonadal growth in males. In both exposures, EE₂ effects on testosterone (T) production were variable. The use of steroidogenic precursors (25-OH-cholesterol, and/or pregnenolone and/or testosterone) in the in vitro gonadal incubations indicated decreased E₂ production in females and 11-KT production in males were predominately due to suppression of the terminal conversion step between T and E₂ or 11-KT. Ovarian aromatase A (cyp19a) gene expression at 16 ppt and 18 °C was not affected by 250 ng/L EE₂ (the only treatment combinations tested). Overall, temperature is a factor regulating northern mummichog reproduction; EE₂ overrides its effects and disrupts the terminal step of steroidogenesis. Our results should be considered in designing future estuarine fish bioassays and in understanding effects of estrogenic endocrine disruptors in estuaries. PMID:23608699

  19. Microchimerism in endocrine pathology.

    PubMed

    Rust, Daniel W; Bianchi, Diana W

    2009-01-01

    Chimerism in an individual refers to the coexistence of cells arising from two distinct organisms. It can arise iatrogenically via transplant or blood transfusion, and physiologically via twin to twin transfer, or from trafficking between mother and fetus during pregnancy. Many of the diseases associated with microchimerism affect the endocrine system (e.g., autoimmune thyroid disease and diabetes mellitus type 1). Microchimerism is relevant to endocrine pathology because (a) it is associated with pregnancy, a condition of complex endocrine physiology; (b) materno-fetal and feto-maternal cellular migration must involve the placenta, itself an endocrine organ; and (c) in some species, chimerism results in states of intersexuality, a condition intimately involved with endocrine physiology. Studies of feto-maternal microchimerism in the thyroid have documented the presence of fetal cells in association with Hashimoto thyroiditis, Graves' disease, thyroid adenoma, and papillary thyroid carcinoma. Studies of materno-fetal microchimerism have documented the presence of maternal cells in juvenile diabetes and other pediatric conditions. Microchimerism plays a potential role in the repair of diseased thyroid and pancreatic tissues.

  20. Endocrine causes of male infertility.

    PubMed

    Jarow, Jonathan P

    2003-02-01

    Although endocrinopathies are not often seen in infertile men, these disorders are clinically significant; they often have potentially serious medical significance, regardless of fertility issues. Correction of these disorders represents a possible way to restore normal fertility for the male partner. Male fertility is critically dependent upon a normal hormonal milieu. The hypothalamic-pituitary-gonadal axis is quite sensitive to disruption by endocrine disorders and other generalized medical disorders. Thus, male infertility is occasionally the presenting sign for significant underlying medical disease; it is important to properly evaluate these patients.

  1. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  2. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment.

  3. Inhibition of focal adhesion kinase suppresses the adverse phenotype of endocrine-resistant breast cancer cells and improves endocrine response in endocrine-sensitive cells.

    PubMed

    Hiscox, Stephen; Barnfather, Peter; Hayes, Edd; Bramble, Pamela; Christensen, James; Nicholson, Robert I; Barrett-Lee, Peter

    2011-02-01

    Acquired resistance to endocrine therapy in breast cancer is a major clinical problem. Previous reports have demonstrated that cell models of acquired endocrine resistance have altered cell-matrix adhesion and a highly migratory phenotype, features which may impact on tumour spread in vivo. Focal adhesion kinase (FAK) is an intracellular kinase that regulates signalling pathways central to cell adhesion, migration and survival and its expression is frequently deregulated in breast cancer. In this study, we have used the novel FAK inhibitor PF573228 to address the role of FAK in the development of endocrine resistance. Whilst total-FAK expression was similar between endocrine-sensitive and endocrine-resistant MCF7 cells, FAK phosphorylation status (Y397 or Y861) was altered in resistance. PF573228 promoted a dose-dependent inhibition of FAK phosphorylation at Y397 but did not affect other FAK activation sites (pY407, pY576 and pY861). Endocrine-resistant cells were more sensitive to these inhibitory effects versus MCF7 (mean IC(50) for FAK pY397 inhibition: 0.43 μM, 0.05 μM and 0.13 μM for MCF7, TamR and FasR cells, respectively). Inhibition of FAK pY397 was associated with a reduction in TamR and FasR adhesion to, and migration over, matrix components. PF573228 as a single agent (0-1 μM) did not affect the growth of MCF7 cells or their endocrine-resistant counterparts. However, treatment of endocrine-sensitive cells with PF573228 and tamoxifen combined resulted in greater suppression of proliferation versus single agent treatment. Together these data suggest the importance of FAK in the process of endocrine resistance, particularly in the development of an aggressive, migratory cell phenotype and demonstrate the potential to improve endocrine response through combination treatment. PMID:20354780

  4. Endocrine Problems After Childhood Cancer: Precocious Puberty

    MedlinePlus

    ... cancer Precocious Puberty Version 3.0 - 10/08 Endocrine Problems after Childhood Cancer: Precocious Puberty Children treated ... the complex system of glands known as the endocrine system. What is the endocrine system? The endocrine ...

  5. [Endocrine disease in adrenoleukodystrophy].

    PubMed

    Girard, S; Bruckert, E; Turpin, G

    2001-02-01

    X-linked adrenoleukodysrophy is the most frequent genetic disorder affecting central and peripheral nervous system myelin. One of the biochemical abnormalities is the accumulation of very long chain fatty acids (VLCFA) in tissues and body fluids subsequent to defective catabolism in the peroxysomes. The principal characteristic of the disease is an association between a neurological disorder and an endocrine disorder: primary adrenal insufficiency and testicular failure. Clinical manifestations are variable. There are two main forms, one affecting boys between the age of 5 and 10 years with severe rapidly fatal cerebral involvement, and the other affecting young adults between the age of 20 and 30 years with degeneration of the anterior and posterior long spinal cord tracts, similar to the disorders observed in multiple sclerosis. About 20% of the heterozygous women may develop a syndrome which resembles adrenomyeloneuropathy, rarely adrenal insufficiency. Adrenal insufficiency is present in 85% of the childhood cerebral forms and in about 70% of the adult forms. It may occur before, after or at the same time as the neurological disease but is not correlated with the severity of the neurological disorder. Careful screening is required to avoid missing subclinical forms. Adrenoleukodystrophy should be envisaged in young boys with primary adrenal insufficiency, accounting for about 30% of the cases of primary adrenal insufficiency in children under 3 years of age and about 13% of those in adults. Experience with dietary therapy (low-VLCFA diet and supplementation with unsaturated fatty acids such as glyceryl trioleate (GTO) and glyceryl trierucate (GTE), commonly called Lorenzo's oil) has not demonstrated any clinical improvement in the cerebral forms. Bone marrow transplantation is recommended for children who show early evidence of cerebral involvement. Gene therapy is a promising perspective. Lovastatin and 4-phenlbutyrate have recently been shown to normalize

  6. What Is Women's Endocrine Health?

    MedlinePlus

    ... healthy lifestyle and harness the power to prevent endocrine disorders, the Power of Prevention. Childhood Childhood is a ... frequent at this time. Learning how to prevent endocrine disorders during this age is pivotal. Young Women At ...

  7. 77 FR 12297 - Petition To Demonstrate Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... endocrine system or not; (2) has practical utility before proceeding with more Tier 1 screening orders for... AGENCY Petition To Demonstrate Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening... Request (ICR) of the first list of 67 chemicals to receive orders under the Endocrine Disruptor...

  8. Protein kinase A alterations in endocrine tumors.

    PubMed

    Yu, B; Ragazzon, B; Rizk-Rabin, M; Bertherat, J

    2012-09-01

    Various molecular and cellular alterations of the cyclic adenosine monophosphate (cAMP) pathway have been observed in endocrine tumors. Since protein kinase A (PKA) is a central key component of the cAMP pathway, studies of the alterations of PKA subunits in endocrine tumors reveal new aspects of the mechanisms of cAMP pathway alterations in human diseases. So far, most alterations have been observed for the regulatory subunits, mainly PRKAR1A and to a lower extent, PRKAR2B. One of the best examples of such alteration today is the multiple neoplasia syndrome Carney complex (CNC). The most common endocrine gland manifestations of CNC are pituitary GH-secreting adenomas, thyroid tumors, testicular tumors, and ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). Heterozygous germline inactivating mutations of the PKA regulatory subunit RIα gene (PRKAR1A) are observed in about two-third of CNC patients, and also in patients with isolated PPNAD. PRKAR1A is considered as a tumor suppressor gene. Interestingly, these mutations can also be observed as somatic alterations in sporadic endocrine tumors. More than 120 different PRKAR1A mutations have been found today. Most of them lead to an unstable mutant mRNA, which will be degraded by nonsense mediated mRNA decay. In vitro and in vivo functional studies are in progress to understand the mechanisms of endocrine tumor development due to PKA regulatory subunits inactivation. PRKAR1A mutations stimulate in most models PKA activity, mimicking in some way cAMP pathway constitutive activation. Cross-talks with other signaling pathways summarized in this review have been described and might participate in endocrine tumorigenesis. PMID:22752956

  9. Endocrine neoplasms in familial syndromes of hyperparathyroidism.

    PubMed

    Li, Yulong; Simonds, William F

    2015-06-01

    Familial syndromes of hyperparathyroidism, including multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and the hyperparathyroidism-jaw tumor (HPT-JT), comprise 2-5% of primary hyperparathyroidism cases. Familial syndromes of hyperparathyroidism are also associated with a range of endocrine and nonendocrine tumors, including potential malignancies. Complications of the associated neoplasms are the major causes of morbidities and mortalities in these familial syndromes, e.g., parathyroid carcinoma in HPT-JT syndrome; thymic, bronchial, and enteropancreatic neuroendocrine tumors in MEN1; and medullary thyroid cancer and pheochromocytoma in MEN2A. Because of the different underlying mechanisms of neoplasia, these familial tumors may have different characteristics compared with their sporadic counterparts. Large-scale clinical trials are frequently lacking due to the rarity of these diseases. With technological advances and the development of new medications, the natural history, diagnosis, and management of these syndromes are also evolving. In this article, we summarize the recent knowledge on endocrine neoplasms in three familial hyperparathyroidism syndromes, with an emphasis on disease characteristics, molecular pathogenesis, recent developments in biochemical and radiological evaluation, and expert opinions on surgical and medical therapies. Because these familial hyperparathyroidism syndromes are associated with a wide variety of tumors in different organs, this review is focused on those endocrine neoplasms with malignant potential. PMID:27207564

  10. Your Endocrine System (For Kids)

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Your Endocrine System KidsHealth > For Kids > Your Endocrine System Print A A A Text Size en español ... a pea, is the "master gland" of the endocrine system. It makes and releases a bunch of hormones ...

  11. Endocrine investigation and therapy.

    PubMed

    McClure, R D

    1987-08-01

    The most commonly investigated testicular disorder is male infertility. Although endocrine causes are uncommon, they are potentially curable. A careful history and examination for subtle features of hypogonadism are important initiating steps. Understanding the appropriate use of both baseline and dynamic testing of the hypothalamic-pituitary-gonadal axis (and, in certain instances, the adrenal and thyroid glands) is extremely important.

  12. The Endocrine Machinery.

    ERIC Educational Resources Information Center

    Fillman, David

    1987-01-01

    Promotes a reductionist approach to teaching about the endocrine system in high school biology and anatomy courses. Encourages the study of how hormones travel to the cells and affect them. Provides suggestions for activities and discussion questions, along with sample diagrams and flow charts. (TW)

  13. ENDOCRINE DISRUPTORS: LESSONS LEARNED

    EPA Science Inventory

    For more than ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; its occurrence in the real world; and in developing tools for screening and prediction of risk. Mu...

  14. Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2

    PubMed Central

    Zhang, Shuai; Li, Xin; Sun, Zenghui; Shao, Shujun; Hu, Lingfei; Ye, Meng; Zhou, Yanhong; Xia, Xiaojian; Yu, Jingquan; Shi, Kai

    2015-01-01

    Increasing CO2 concentrations ([CO2]) have the potential to disrupt plant–pathogen interactions in natural and agricultural ecosystems, but the research in this area has often produced conflicting results. Variations in phytohormone salicylic acid (SA) and jasmonic acid (JA) signalling could be associated with variations in the responses of pathogens to plants grown under elevated [CO2]. In this study, interactions between tomato plants and three pathogens with different infection strategies were compared. Elevated [CO2] generally favoured SA biosynthesis and signalling but repressed the JA pathway. The exposure of plants to elevated [CO2] revealed a lower incidence and severity of disease caused by tobacco mosaic virus (TMV) and by Pseudomonas syringae, whereas plant susceptibility to necrotrophic Botrytis cinerea increased. The elevated [CO2]-induced and basal resistance to TMV and P. syringae were completely abolished in plants in which the SA signalling pathway nonexpressor of pathogenesis-related genes 1 (NPR1) had been silenced or in transgenic plants defective in SA biosynthesis. In contrast, under both ambient and elevated [CO2], the susceptibility to B. cinerea highly increased in plants in which the JA signalling pathway proteinase inhibitors (PI) gene had been silenced or in a mutant affected in JA biosynthesis. However, plants affected in SA signalling remained less susceptible to this disease. These findings highlight the modulated antagonistic relationship between SA and JA that contributes to the variation in disease susceptibility under elevated [CO2]. This information will be critical for investigating how elevated CO2 may affect plant defence and the dynamics between plants and pathogens in both agricultural and natural ecosystems. PMID:25657213

  15. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  16. Analysis of signals under compositional noise with applications to SONAR data

    DOE PAGESBeta

    Tucker, J. Derek; Wu, Wei; Srivastava, Anuj

    2013-07-09

    In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between themore » aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.« less

  17. Analysis of signals under compositional noise with applications to SONAR data

    SciTech Connect

    Tucker, J. Derek; Wu, Wei; Srivastava, Anuj

    2013-07-09

    In this paper, we consider the problem of denoising and classification of SONAR signals observed under compositional noise, i.e., they have been warped randomly along the x-axis. The traditional techniques do not account for such noise and, consequently, cannot provide a robust classification of signals. We apply a recent framework that: 1) uses a distance-based objective function for data alignment and noise reduction; and 2) leads to warping-invariant distances between signals for robust clustering and classification. We use this framework to introduce two distances that can be used for signal classification: a) a y-distance, which is the distance between the aligned signals; and b) an x-distance that measures the amount of warping needed to align the signals. We focus on the task of clustering and classifying objects, using acoustic spectrum (acoustic color), which is complicated by the uncertainties in aspect angles at data collections. Small changes in the aspect angles corrupt signals in a way that amounts to compositional noise. As a result, we demonstrate the use of the developed metrics in classification of acoustic color data and highlight improvements in signal classification over current methods.

  18. Compressive Sensing of Roller Bearing Faults via Harmonic Detection from Under-Sampled Vibration Signals.

    PubMed

    Tang, Gang; Hou, Wei; Wang, Huaqing; Luo, Ganggang; Ma, Jianwei

    2015-10-09

    The Shannon sampling principle requires substantial amounts of data to ensure the accuracy of on-line monitoring of roller bearing fault signals. Challenges are often encountered as a result of the cumbersome data monitoring, thus a novel method focused on compressed vibration signals for detecting roller bearing faults is developed in this study. Considering that harmonics often represent the fault characteristic frequencies in vibration signals, a compressive sensing frame of characteristic harmonics is proposed to detect bearing faults. A compressed vibration signal is first acquired from a sensing matrix with information preserved through a well-designed sampling strategy. A reconstruction process of the under-sampled vibration signal is then pursued as attempts are conducted to detect the characteristic harmonics from sparse measurements through a compressive matching pursuit strategy. In the proposed method bearing fault features depend on the existence of characteristic harmonics, as typically detected directly from compressed data far before reconstruction completion. The process of sampling and detection may then be performed simultaneously without complete recovery of the under-sampled signals. The effectiveness of the proposed method is validated by simulations and experiments.

  19. Sleep apnoea in endocrine diseases.

    PubMed

    Rosenow, F; McCarthy, V; Caruso, A C

    1998-03-01

    The pertinent literature on the prevalence, clinical manifestations and pathogenic mechanisms of sleep apnoea (SA) in endocrine diseases, namely acromegaly, Cushing syndrome, hypothyroidism and diabetes mellitus was reviewed. An increased prevalence is well documented in patients with active and treated acromegaly. While most authors report peripheral obstruction, due to hypertrophy of tongue and pharyngeal tissues, to be the cause of SA in acromegaly, some findings argue for a role of hormone-induced changes of central respiratory control. SA is also more common in hypothyroidism, especially when myxedema is present. The associated edema and myopathy appear to be of pathogenic importance. Thyroxin substitution is frequently effective for the treatment of SA but nCPAP can be necessary initially and in some patients even after remission of clinical signs of hypothyroidism. In Cushing disease and syndrome, parapharyngeal fat accumulation can cause SA, but no epidemiological information is available. In non insulin dependent diabetes (NIDDM), obesity is the common risk factor for both, nocturnal hypoxia and insulin resistance. In IDDM, the development of autonomic neuropathy may predispose to SA. Where treatment of the underlying endocrine disease is unable cure the associated SA, nCPAP is usually the treatment of first choice. More prospective studies are clearly needed to establish prevalences and resolve the controversies regarding pathogenesis. PMID:9613423

  20. New direction of arrival estimation of coherent signals based on reconstructing matrix under unknown mutual coupling

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Li, Weixing; Zhang, Yue; Chen, Zengping

    2016-01-01

    A direction of arrival (DOA) estimation algorithm for coherent signals in the presence of unknown mutual coupling is proposed. A group of auxiliary sensors in a uniform linear array are applied to eliminate the effects on the orthogonality of subspaces brought by mutual coupling. Then, a Toeplitz matrix, whose rank is independent of the coherency between impinging signals, is reconstructed to eliminate the rank loss of the spatial covariance matrix. Therefore, the signal and noise subspaces can be estimated properly. This method can estimate the DOAs of coherent signals under unknown mutual coupling accurately without any iteration and calibration sources. It has a low computational burden and high accuracy. Simulation results demonstrate the effectiveness of the algorithm.

  1. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, R.W.; Wang, P.

    1996-04-30

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula shown in the accompanying diagram. 4 figs.

  2. Single step signal group-imidazole labeling of organic phosphate groups under aqueous conditions

    DOEpatents

    Giese, Roger W.; Wang, Poguang

    1996-01-01

    Compounds and methods for single step, covalent labeling of the phosphate group of an organic substance under aqueous conditions are described. The labeling compound includes any kind of detectable signal group covalently bound to an imidazole moiety, which can be imidazole or a substituted imidazole. A preferred labeling compound has the formula ##STR1##

  3. Endocrine disrupters as obesogens.

    PubMed

    Grün, Felix; Blumberg, Bruce

    2009-05-25

    The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity.

  4. Endocrine disorders in pregnancy.

    PubMed

    Sipes, S L; Malee, M P

    1992-12-01

    Disorders of the pituitary gland such as diabetes insipidus, pituitary adenomas, and hyperprolactinemia, disorders of the thyroid gland such as Graves' disease and hypothyroidism, and diseases of the adrenal gland such as adrenocortical insufficiency and Cushing's syndrome can complicate pregnancy. The goals of this article were to provide a basic scientific understanding of the normal function of these endocrine glands, their pregnancy-related changes, and suggestions for diagnosis and treatment of maternal and fetal endocrine disorders during pregnancy. Antenatal recognition and appropriate management of the disorders that especially affect the fetus (i.e., maternal Graves' disease, fetal hypothyroidism, and congenital adrenal hyperplasia) is essential in order to prevent fetal and neonatal morbidity and mortality.

  5. Endocrine causes of nonalcoholic fatty liver disease

    PubMed Central

    Marino, Laura; Jornayvaz, François R

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed. PMID:26494962

  6. Endocrine causes of nonalcoholic fatty liver disease.

    PubMed

    Marino, Laura; Jornayvaz, François R

    2015-10-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.

  7. [Endocrine problems during pregnancy].

    PubMed

    Mann, Klaus; Hintze, Gerhard

    2016-09-01

    Endocrine disorders may have an important influence on fertility, the course of a pregnancy and fetal development. For example, fertility is decreased and the risk of miscarriage is increased in women with autoimmune disorders, such as Addison's disease or autoimmune thyroiditis. Treatment of endocrine diseases in many cases has to be adapted during the course of a pregnancy. In patients with Addison's disease the dosage of hydrocortisone necessarily has to be increased. This is also valid for the time of delivery. Disorders of the thyroid gland are of great importance during pregnancy. If hypothyroidism is diagnosed in early pregnancy, immediate treatment with levothyroxine should be initiated. Iodine supplementation is strongly recommended in all pregnant and breast-feeding women. Treatment of Graves's disease will be performed during the first trimenon with propylthiouracile, afterwards with methimazole (thiamazole). In contrast, thyrotoxicosis due to hCG should not be treated with methimazole. In this paper, we present an overview on the most important endocrine disorders during pregnancy. PMID:27598917

  8. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  9. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    PubMed

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  10. FOXO factors and breast cancer: outfoxing endocrine resistance.

    PubMed

    Bullock, M

    2016-02-01

    The majority of metastatic breast cancers cannot be cured and present a major public health problem worldwide. Approximately 70% of breast cancers express the estrogen receptor, and endocrine-based therapies have significantly improved patient outcomes. However, the development of endocrine resistance is extremely common. Understanding the molecular pathways that regulate the hormone sensitivity of breast cancer cells is important to improving the efficacy of endocrine therapy. It is becoming clearer that the PI3K-AKT-forkhead box O (FOXO) signaling axis is a key player in the hormone-independent growth of many breast cancers. Constitutive PI3K-AKT pathway activation, a driver of breast cancer growth, causes down-regulation of FOXO tumor suppressor functions. This review will summarize what is currently known about the role of FOXOs in endocrine-resistance mechanisms. It will also suggest potential therapeutic strategies for the restoration of normal FOXO transcriptional activity.

  11. Do endocrine disruptors cause hypospadias?

    PubMed Central

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  12. Endocrine disruptors and prostate cancer risk.

    PubMed

    Prins, Gail S

    2008-09-01

    There is increasing evidence both from epidemiology studies and animal models that specific endocrine-disrupting compounds may influence the development or progression of prostate cancer. In large part, these effects appear to be linked to interference with estrogen signaling, either through interacting with ERs or by influencing steroid metabolism and altering estrogen levels within the body. In humans, epidemiologic evidence links specific pesticides, PCBs and inorganic arsenic exposures to elevated prostate cancer risk. Studies in animal models also show augmentation of prostate carcinogenesis with several other environmental estrogenic compounds including cadmium, UV filters and BPA. Importantly, there appears to be heightened sensitivity of the prostate to these endocrine disruptors during the critical developmental windows including in utero and neonatal time points as well as during puberty. Thus infants and children may be considered a highly susceptible population for ED exposures and increased risk of prostate cancers with aging.

  13. Endocrine disruptors and prostate cancer risk

    PubMed Central

    Prins, Gail S

    2010-01-01

    There is increasing evidence both from epidemiology studies and animal models that specific endocrine-disrupting compounds may influence the development or progression of prostate cancer. In large part, these effects appear to be linked to interference with estrogen signaling, either through interacting with ERs or by influencing steroid metabolism and altering estrogen levels within the body. In humans, epidemiologic evidence links specific pesticides, PCBs and inorganic arsenic exposures to elevated prostate cancer risk. Studies in animal models also show augmentation of prostate carcinogenesis with several other environmental estrogenic compounds including cadmium, UV filters and BPA. Importantly, there appears to be heightened sensitivity of the prostate to these endocrine disruptors during the critical developmental windows including in utero and neonatal time points as well as during puberty. Thus infants and children may be considered a highly susceptible population for ED exposures and increased risk of prostate cancers with aging. PMID:18524946

  14. [Hypotension from endocrine origin].

    PubMed

    Vantyghem, Marie-Christine; Douillard, Claire; Balavoine, Anne-Sophie

    2012-11-01

    Hypotension is defined by a low blood pressure either permanently or only in upright posture (orthostatic hypotension). In contrast to hypertension, there is no threshold defining hypotension. The occurrence of symptoms for systolic and diastolic measurements respectively below 90 and 60 mm Hg establishes the diagnosis. Every acute hypotensive event should suggest shock, adrenal failure or an iatrogenic cause. Chronic hypotension from endocrine origin may be linked to adrenal failure from adrenal or central origin, isolated hypoaldosteronism, pseudohypoaldosteronism, pheochromocytoma, neuro-endocrine tumors (carcinoïd syndrome) or diabetic dysautonomia. Hypotension related to hypoaldosteronism associates low blood sodium and above all high blood potassium levels. They are generally classified according to their primary (hyperreninism) or secondary (hyporeninism) adrenal origin. Isolated primary hypoaldosteronisms are rare in adults (intensive care unit, selective injury of the glomerulosa area) and in children (aldosterone synthase deficiency). Isolated secondary hypoaldosteronism is related to mellitus diabetes complicated with dysautonomia, kidney failure, age, iatrogenic factors, and HIV infections. In both cases, they can be associated to glucocorticoid insufficiency from primary adrenal origin (adrenal failure of various origins with hyperreninism, among which congenital 21 hydroxylase deficiency with salt loss) or from central origin (hypopituitarism with hypo-reninism). Pseudohypoaldosteronisms are linked to congenital (type 1 pseudohypoaldosteronism) or acquired states of resistance to aldosterone. Acquired salt losses from enteric (total colectomy with ileostomy) or renal (interstitial nephropathy, Bartter and Gitelman syndromes…) origin might be responsible for hypotension and are associated with hyperreninism-hyperaldosteronism. Hypotension is a rare manifestation of pheochromocytomas, especially during surgical removal when the patient has not been

  15. A new approach for improving reliability of personal navigation devices under harsh GNSS signal conditions.

    PubMed

    Dhital, Anup; Bancroft, Jared B; Lachapelle, Gérard

    2013-11-07

    In natural and urban canyon environments, Global Navigation Satellite System (GNSS) signals suffer from various challenges such as signal multipath, limited or lack of signal availability and poor geometry. Inertial sensors are often employed to improve the solution continuity under poor GNSS signal quality and availability conditions. Various fault detection schemes have been proposed in the literature to detect and remove biased GNSS measurements to obtain a more reliable navigation solution. However, many of these methods are found to be sub-optimal and often lead to unavailability of reliability measures, mostly because of the improper characterization of the measurement errors. A robust filtering architecture is thus proposed which assumes a heavy-tailed distribution for the measurement errors. Moreover, the proposed filter is capable of adapting to the changing GNSS signal conditions such as when moving from open sky conditions to deep canyons. Results obtained by processing data collected in various GNSS challenged environments show that the proposed scheme provides a robust navigation solution without having to excessively reject usable measurements. The tests reported herein show improvements of nearly 15% and 80% for position accuracy and reliability, respectively, when applying the above approach.

  16. A reconstruction algorithm based on sparse representation for Raman signal processing under high background noise

    NASA Astrophysics Data System (ADS)

    Fan, X.; Wang, X.; Wang, X.; Xu, Y.; Que, J.; He, H.; Wang, X.; Tang, M.

    2016-02-01

    Background noise is one of the main interference sources of the Raman spectroscopy measurement and imaging technique. In this paper, a sparse representation based algorithm is presented to process the Raman signals under high background noise. In contrast with the existing de-noising methods, the proposed method reconstructs the pure Raman signals by estimating the Raman peak information. The advantage of the proposed algorithm is its high anti-noise capacity and low pure Raman signal reduction contributed by its reconstruction principle. Meanwhile, the Batch-OMP algorithm is applied to accelerate the training of the sparse representation. Therefore, it is very suitable to be adopted in the Raman measurement or imaging instruments to observe fast dynamic processes where the scanning time has to be shortened and the signal-to-noise ratio (SNR) of the raw tested signal is reduced. In the simulation and experiment, the de-noising result obtained by the proposed algorithm was better than the traditional Savitzky-Golay (S-G) filter and the fixed-threshold wavelet de-noising algorithm.

  17. Endocrine resistance in breast cancer: Current status and a perspective on the roles of miRNAs (Review)

    PubMed Central

    ZHOU, JICHUN; TENG, RONGYUE; WANG, QINCHUAN; XU, CHENPU; GUO, JUFENG; YUAN, CHAO; SHEN, JIANGUO; HU, WENXIAN; WANG, LINBO; XIE, SHUDUO

    2013-01-01

    Current endocrine therapies for females with estrogen receptor-positive breast cancer have facilitated substantial improvements in outcomes. The effectiveness of endocrine therapy is limited by either initial de novo resistance or acquired endocrine resistance. Multiple mechanisms responsible for endocrine resistance have been proposed, including deregulation of various components of the estrogen receptor (ER) pathway, alterations in cell cycle and cell survival signaling molecules, and the activation of escape pathways. Dysregulation of miRNA expression has been associated with experimental and clinical endocrine therapy resistance. miRNAs are pivotal to understanding the complex biological mechanism of endocrine resistance, and may serve as novel candidate predictive and prognostic surrogates and therapeutic targets. This review focuses on current progress concerning the roles of miRNAs in endocrine resistance, and discusses the challenges and opportunities for implementing miRNA-based assays and treatment for patients with endocrine-resistant breast cancer. PMID:24137320

  18. Diabetic and endocrine emergencies

    PubMed Central

    Kearney, T; Dang, C

    2007-01-01

    Endocrine emergencies constitute only a small percentage of the emergency workload of general doctors, comprising about 1.5% of all hospital admission in England in 2004–5. Most of these are diabetes related with the remaining conditions totalling a few hundred cases at most. Hence any individual doctor might not have sufficient exposure to be confident in their management. This review discusses the management of diabetic ketoacidosis, hyperosmolar hyperglycaemic state, hypoglycaemia, hypercalcaemia, thyroid storm, myxoedema coma, acute adrenal insufficiency, phaeochromocytoma hypertensive crisis and pituitary apoplexy in the adult population. PMID:17308209

  19. A steady tracking technology adopted to fast FH/BPSK signal under satellite channel

    NASA Astrophysics Data System (ADS)

    Guo, SuLi; Lou, Zhigang; Wang, XiDuo; Xia, ShuangZhi

    2015-07-01

    In order to survive under the conditions with great jamming and interference, fast frequency hopped signal are employed in satellite communication system. This paper discusses the nonlinear phases induced by the equipment and atmosphere, and their influence on the FFH/BPSK tracking loop. Two methods are developed including compensating phase which is based on channel estimation and compensating Doppler frequency based on velocity normalization. Simulation results for a real circuit with proper parameters shows that the degradation due to the demodulation of frequency-hopped is only a fraction of one dB in an AWGN environment under satellite channel.

  20. Bariatric Surgery and the Endocrine System

    MedlinePlus

    ... Endocrine System Fact Sheet Bariatric Surgery and the Endocrine System February, 2012 Download PDFs English Espanol Editors John ... could have both benefits and risks for your endocrine system—the network of glands that produce, store, and ...

  1. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  2. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons.

    PubMed

    Liu, Zi-Long; Wu, Xu; Luo, Yan-Jia; Wang, Lu; Qu, Wei-Min; Li, Shan-Qun; Huang, Zhi-Li

    2016-04-01

    Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1Rs). The phospholipase C inhibitor U-73122 blocked H1Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+), which took place via activation of Na(+)-Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1Rs via PLC and IP3, increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea.

  3. Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model

    NASA Astrophysics Data System (ADS)

    Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.

    2014-12-01

    In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.

  4. Dendritic cell maturation requires STAT1 and is under feedback regulation by suppressors of cytokine signaling.

    PubMed

    Jackson, Sharon H; Yu, Cheng-Rong; Mahdi, Rashid M; Ebong, Samuel; Egwuagu, Charles E

    2004-02-15

    In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.

  5. Male infertility. 3. Endocrine causes.

    PubMed

    McNally, M R

    1987-02-01

    Endocrine causes of male infertility range from easily manageable disorders such as hypothyroidism to complex problems such as pituitary tumors. Proper management requires a thorough understanding of the hypothalamic-pituitary-testicular axis. Hormonal evaluation is performed only when the patient's history and results of physical examination indicate an endocrine problem. With proper identification and treatment, most of these problems can be successfully managed.

  6. Trauma and the endocrine system.

    PubMed

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma.

  7. [Dementia due to Endocrine Diseases].

    PubMed

    Matsunaga, Akiko; Yoneda, Makoto

    2016-04-01

    Endocrine diseases affecting various organs, such as the pituitary gland, the thyroid, the parathyroid, the adrenal glands and the pancreas, occasionally cause dementia. While Alzheimer's disease (AD) is the main cause of dementia in the elderly and is untreatable, dementia caused by endocrine diseases is treatable in most cases. However, patients with dementia associated with endocrine diseases show memory impairments similar to those found in AD, often leading to misdiagnoses. Patients with endocrine diseases often present with other characteristic systemic and neuropsychiatric symptoms caused by altered hormone levels. Such neuropsychiatric symptoms include involuntary movements, depression, seizures, and muscle weakness. In these cases, abnormalities in imaging and blood or urine tests are helpful in making a differential diagnosis. As delays in the diagnosis and treatment of these patients may cause irreversible brain damage, it is imperative for clinicians to carefully exclude the possibility of latent endocrine diseases when treating patients with dementia.

  8. Signalled and unsignalled percentage reinforcement of performance under a chained schedule.

    PubMed

    Branch, M N

    1977-01-01

    Pigeons were trained to peck a key under a chained fixed-ratio 15 fixed-interval 25-sec schedule of food presentation. In Experiment 1, blocks of sessions in which 100%, 75%, 50%, and 25% of the sequences ended with food presentation were conducted. When food presentation was omitted, a timeout of equal duration replaced it. As the frequency of food presentation decreased so did the frequency of completing the chained schedule. In Experiment 2, 75%, 50%, or 25% of the sequences terminated with food presentation and outcomes were signalled, i.e., completion of the fixed ratio resulted in either a stimulus correlated with the fixed-interval 25-sec schedule or a stimulus correlated with extinction. As the frequency of food presentation decreased, the number of sequences completed per session increased for two pigeons and remained high for a third. In Experiments 3 and 4, assessments of the effects of signalling the outcome of the chained schedule were made with response-independent presentation of events at the end of the sequence. Again, signalling the outcome of the chained schedule led to more chains being completed per session than did not signalling the outcome. Stimuli differentially paired with food presentation have powerful behavioral effects that may be attributed to the potency of these stimuli as conditioned reinforcers.

  9. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system

    PubMed Central

    Milloz, Josselin; Duveau, Fabien; Nuez, Isabelle; Félix, Marie-Anne

    2008-01-01

    Many biological systems produce an invariant output when faced with stochastic or environmental variation. This robustness of system output to variation affecting the underlying process may allow for “cryptic” genetic evolution within the system without change in output. We studied variation of cell fate patterning of Caenorhabditis elegans vulva precursors, a developmental system that relies on a simple intercellular signaling network and yields an invariant output of cell fates and lineages among C. elegans wild isolates. We first investigated the system’s genetic variation in C. elegans by means of genetic tools and cell ablation to break down its buffering mechanisms. We uncovered distinct architectures of quantitative variation along the Ras signaling cascade, including compensatory variation, and differences in cell sensitivity to induction along the anteroposterior axis. In the unperturbed system, we further found variation between isolates in spatio-temporal dynamics of Ras pathway activity, which can explain the phenotypic differences revealed upon perturbation. Finally, the variation mostly affects the signaling pathways in a tissue-specific manner. We thus demonstrate and characterize microevolution of a developmental signaling network. In addition, our results suggest that the vulva genetic screens would have yielded a different mutation spectrum, especially for Wnt pathway mutations, had they been performed in another C. elegans genetic background. PMID:18981482

  10. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system.

    PubMed

    Milloz, Josselin; Duveau, Fabien; Nuez, Isabelle; Félix, Marie-Anne

    2008-11-01

    Many biological systems produce an invariant output when faced with stochastic or environmental variation. This robustness of system output to variation affecting the underlying process may allow for "cryptic" genetic evolution within the system without change in output. We studied variation of cell fate patterning of Caenorhabditis elegans vulva precursors, a developmental system that relies on a simple intercellular signaling network and yields an invariant output of cell fates and lineages among C. elegans wild isolates. We first investigated the system's genetic variation in C. elegans by means of genetic tools and cell ablation to break down its buffering mechanisms. We uncovered distinct architectures of quantitative variation along the Ras signaling cascade, including compensatory variation, and differences in cell sensitivity to induction along the anteroposterior axis. In the unperturbed system, we further found variation between isolates in spatio-temporal dynamics of Ras pathway activity, which can explain the phenotypic differences revealed upon perturbation. Finally, the variation mostly affects the signaling pathways in a tissue-specific manner. We thus demonstrate and characterize microevolution of a developmental signaling network. In addition, our results suggest that the vulva genetic screens would have yielded a different mutation spectrum, especially for Wnt pathway mutations, had they been performed in another C. elegans genetic background.

  11. The PSGL-1–L-selectin signaling complex regulates neutrophil adhesion under flow

    PubMed Central

    Stadtmann, Anika; Germena, Giulia; Block, Helena; Boras, Mark; Rossaint, Jan; Sundd, Prithu; Lefort, Craig; Fisher, Charles I.; Buscher, Konrad; Gelschefarth, Bernadette; Urzainqui, Ana; Gerke, Volker; Ley, Klaus

    2013-01-01

    Neutrophils are recruited from the blood to sites of inflammation, where they contribute to immune defense but may also cause tissue damage. During inflammation, neutrophils roll along the microvascular endothelium before arresting and transmigrating. Arrest requires conformational activation of the integrin lymphocyte function–associated antigen 1 (LFA-1), which can be induced by selectin engagement. Here, we demonstrate that a subset of P-selectin glycoprotein ligand-1 (PSGL-1) molecules is constitutively associated with L-selectin. Although this association does not require the known lectin-like interaction between L-selectin and PSGL-1, the signaling output is dependent on this interaction and the cytoplasmic tail of L-selectin. The PSGL-1–L-selectin complex signals through Src family kinases, ITAM domain–containing adaptor proteins, and other kinases to ultimately result in LFA-1 activation. The PSGL-1–L-selectin complex–induced signaling effects on neutrophil slow rolling and recruitment in vivo demonstrate the functional importance of this pathway. We conclude that this is a signaling complex specialized for sensing adhesion under flow. PMID:24127491

  12. Adrenocortical endocrine disruption.

    PubMed

    Harvey, Philip W

    2016-01-01

    The adrenal has been neglected in endocrine disruption regulatory testing strategy. The adrenal is a vital organ, adrenocortical insufficiency is recognised in life threatening "adrenal crises" and Addison's disease, and the consequences of off-target toxicological inhibition of adrenocortical steroidogenesis is well recognised in clinical medicine, where drugs such as aminoglutethimide and etomidate killed patients via unrecognised inhibition of adrenocortical steroidogenic enzymes (e.g. CYP11B1) along the cortisol and aldosterone pathways. The consequences of adrenocortical dysfunction during early development are also recognised in the congenital salt wasting and adrenogenital syndromes presenting neonatally, yet despite a remit to focus on developmental and reproductive toxicity mechanisms of endocrine disruption by many regulatory agencies (USEPA EDSTAC; REACH) the assessment of adrenocortical function has largely been ignored. Further, every step in the adrenocortical steroidogenic pathway (ACTH receptor, StAR, CYP's 11A1, 17, 21, 11B1, 11B2, and 3-hydroxysteroid dehydrogenase Δ4,5 isomerase) is known to be a potential target with multiple examples of chemicals inhibiting these targets. Many of these chemicals have been detected in human and wildlife tissues. This raises the question of whether exposure to low level environmental chemicals may be affecting adrenocortical function. This review examines the omission of adrenocortical testing in the current regulatory frameworks; the characteristics that make the adrenal cortex particularly vulnerable to toxic insult; chemicals and their toxicological targets within the adrenocortical steroidogenic pathways; the typical manifestations of adrenocortical toxicity (e.g. human iatrogenically induced pharmacotoxicological adrenal insufficiency, manifestations in typical mammalian regulatory general toxicology studies, manifestations in wildlife) and models of adrenocortical functional assessment. The utility of the

  13. Endocrine effects of marijuana.

    PubMed

    Brown, Todd T; Dobs, Adrian S

    2002-11-01

    In the 35 years since the active compound of marijuana, delta9-tetrahydrocannabinol, was isolated, the psychological and physiological impact of marijuana use has been actively investigated. Animal models have demonstrated that cannabinoid administration acutely alters multiple hormonal systems, including the suppression of the gonadal steroids, growth hormone, prolactin, and thyroid hormone and the activation of the hypothalamic-pituitary-adrenal axis. These effects are mediated by binding to the endogenous cannabinoid receptor in or near the hypothalamus. Despite these findings in animals, the effects in humans have been inconsistent, and discrepancies are likely due in part to the development of tolerance. The long-term consequences of marijuana use in humans on endocrine systems remain unclear.

  14. Endocrine activation in tachycardias.

    PubMed

    Lukac, P; Lukacova, S; Vigas, M; Hatala, R

    2001-01-01

    This article reviews the complex character of neuroendocrine response to paroxysmal tachycardia. While the endocrine influences in arrhythmogenesis are well perceived by the cardiologists, less attention has been paid to influence of tachycardia on neuroendocrine activation. However, this may significantly alter the clinical course of tachycardias and its responses to pharmacotherapeutic interventions. Main characteristics of hormones with direct relationship to cardiovascular system (ANP, AVP, catecholamines, angiotensin and others) are listed with description of regulation of their secretion and main biological effects, especially with regard to regulation of circulation. Changes in hemodynamics during tachycardia with accompanying changes in ANP, AVP renin-angiotensin-aldosterone system, sympatho-neural and sympatho-adrenal activation are reviewed. Further research and understanding require more complex approach and concentration on interrelationship of different regulatory hormones in tachycardia. (Fig. 2, Ref. 96.) PMID:11763674

  15. Role of Notch Signaling in the Maintenance of Human Mesenchymal Stem Cells Under Hypoxic Conditions

    PubMed Central

    Moriyama, Mariko; Isshi, Haruki; Ishihara, Shin; Okura, Hanayuki; Ichinose, Akihiro; Ozawa, Toshiyuki; Matsuyama, Akifumi; Hayakawa, Takao

    2014-01-01

    Human adipose tissue-derived multilineage progenitor cells (hADMPCs) are attractive for cell therapy and tissue engineering because of their multipotency and ease of isolation without serial ethical issues. However, their limited in vitro lifespan in culture systems hinders their therapeutic application. Some somatic stem cells, including hADMPCs, are known to be localized in hypoxic regions; thus, hypoxia may be beneficial for ex vivo culture of these stem cells. These cells exhibit a high level of glycolytic metabolism in the presence of high oxygen levels and further increase their glycolysis rate under hypoxia. However, the physiological role of glycolytic activation and its regulatory mechanisms are still incompletely understood. Here, we show that Notch signaling is required for glycolysis regulation under hypoxic conditions. Our results demonstrate that 5% O2 dramatically increased the glycolysis rate, improved the proliferation efficiency, prevented senescence, and maintained the multipotency of hADMPCs. Intriguingly, these effects were not mediated by hypoxia-inducible factor (HIF), but rather by the Notch signaling pathway. Five percent O2 significantly increased the level of activated Notch1 and expression of its downstream gene, HES1. Furthermore, 5% O2 markedly increased glucose consumption and lactate production of hADMPCs, which decreased back to normoxic levels on treatment with a γ-secretase inhibitor. We also found that HES1 was involved in induction of GLUT3, TPI, and PGK1 in addition to reduction of TIGAR and SCO2 expression. These results clearly suggest that Notch signaling regulates glycolysis under hypoxic conditions and, thus, likely affects the cell lifespan via glycolysis. PMID:24878247

  16. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia.

    PubMed

    Weiss, Linda C; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-10-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity.

  17. Psychological aspects of endocrine disease.

    PubMed

    Sonino, N; Guidi, J; Fava, G A

    2015-03-01

    This review illustrates how an innovative psychoneuroendocrine approach to endocrine patients may improve their management. Important psychological issues pertain to all the different phases of an endocrine disorder. Before disease onset, stressful life events may play a pathogenetic role and, together with chronic stress, may contribute to a cumulative burden also called allostatic load; psychological and psychiatric symptoms are common both in the prodromal and in the active phase of illness; after cure or remission, there could be residual symptoms and impaired quality of life that deserve attention. All these aspects should be taken into consideration and introduced in current endocrine care and practice.

  18. Endocrine causes of calcium disorders.

    PubMed

    Greco, Deborah S

    2012-11-01

    Endocrine diseases that may cause hypercalcemia and hypocalcemia include hyperparathyroidism, hypoparathyroidism, thyroid disorders, hyperadrenocorticism, hypoadrenocorticism, and less commonly pheochromocytoma and multiple endocrine neoplasias. The differential diagnosis of hypercalcemia may include malignancy (lymphoma, anal sac carcinoma, and squamous cell carcinoma), hyperparathyroidism, vitamin D intoxication, chronic renal disease, hypoadrenocorticism, granulomatous disorders, osteolysis, or spurious causes. Hypocalcemia may be caused by puerperal tetany, pancreatitis, intestinal malabsorption, ethlyene glycol intoxication, acute renal failure, hypopararthyroidism, hypovitaminosis D, hypomagnesemia, and low albumin. This article focuses on the endocrine causes of calcium imbalance and provides diagnostic and therapeutic guidelines for identifying the cause of hypercalcemia and hypocalcemia in veterinary patients.

  19. Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet.

    PubMed

    Martínez-Micaelo, N; González-Abuín, N; Ardévol, A; Pinent, M; Petretto, E; Behmoaras, J; Blay, M

    2016-01-01

    Although the effect of genetic background on obesity-related phenotypes is well established, the main objective of this study is to determine the phenotypic responses to cafeteria diet (CAF) of two genetically distinct inbred rat strains and give insight into the molecular mechanisms that might be underlying. Lewis (LEW) and Wistar-Kyoto (WKY) rats were fed with either a standard or a CAF diet. The effects of the diet and the strain in the body weight gain, food intake, respiratory quotient, biochemical parameters in plasma as well as in the expression of genes that regulate leptin signalling were determined. Whereas CAF diet promoted weight gain in LEW and WKY rats, as consequence of increased energy intake, metabolic management of this energy surplus was significantly affected by genetic background. LEW and WKY showed a different metabolic profile, LEW rats showed hyperglycaemia, hypertriglyceridemia and high FFA levels, ketogenesis, high adiposity index and inflammation, but WKY did not. Leptin signalling, and specifically the LepRb-mediated regulation of STAT3 activation and Socs3 gene expression in the hypothalamus were inversely modulated by the CAF diet in LEW (upregulated) and WKY rats (downregulated). In the present study, we show evidence of gene-environment interactions in obesity exerted by differential phenotypic responses to CAF diet between LEW and WKY rats. Specifically, we found the leptin-signalling pathway as a divergent point between the strain-specific adaptations to diet.

  20. IFNα/βR Signaling Promotes Regulatory T Cell Development and Function Under Stress Conditions

    PubMed Central

    Metidji, Amina; Rieder, Sadiye Amcaoglu; Glass, Deborah Dacek; Cremer, Isabelle; Punkosdy, George A.; Shevach, Ethan M.

    2015-01-01

    Type I IFNs are a family of cytokines with antiviral and immunomodulatory properties. While the antiviral effects of IFNs are well characterized, their immunomodulatory properties are less clear. To specifically address the effects of type I IFNs on Treg, we studied mixed bone morrow (BM) chimeras between wild-type (WT) and IFNα/βR (IFNAR) knockout (KO) mice, and heterozygous female mice expressing a Treg-specific deletion of the IFNAR. In these two models, IFNAR signaling promotes the development of the Treg lineage in the thymus and their survival in the periphery. IFNAR KO Treg had a higher expression of the pro-apoptotic gene Bim and higher frequency of active caspase positive cells. IFNAR KO Treg from chimeric mice displayed a more naïve phenotype, accompanied by lower levels of CD25 and phosphorylated STAT5. Therefore, in Treg IFNAR signaling may directly or indirectly affect phosphorylation of STAT5. In mixed chimeras with Scurfy fetal liver, Treg derived from IFNAR KO BM were unable to control T effector cell activation and tissue inflammation. Under stress conditions or in a competitive environment, IFNAR signaling may be required to maintain Treg homeostasis and function. PMID:25795758

  1. Analysis and compensation for code Doppler effect of BDS II signal under high dynamics

    NASA Astrophysics Data System (ADS)

    Ouyang, Xiaofeng; Zeng, Fangling

    2016-01-01

    In high dynamic circumstances, the acquisition of BDS (BeiDou Navigation Satellite System) signal would be affected by the pseudo-code Doppler. The pseudo-code frequency shift is more prominent and complex when BOC modulation has been adopted by BDS-II, but is not yet involved in current compensation algorithm. In addition, the most frequently used code Doppler compensation algorithm is modifying the sampling rate or local bit rate, which not only increases the complexity of the acquisition and tracking, but also is barely realizable for the hardware receiver to modify the local frequency. Therefore, this paper proposes a code Doppler compensation method based on double estimator receiver, which simultaneously controls NCO delay of code tracking loop and subcarrier tracking loop to compensate for pseudo-code frequency shift. The simulation and test are implemented with BDS-II BOC signal. The test results demonstrate that the proposed algorithm can effectively compensate for pseudo-code Doppler of BOC signal and has detection probability 3dB higher than the uncompensated situation when the false alarm rate is under 0.01 and the coherent integration time is 1ms.

  2. Weak temporal signals can synchronize and accelerate the transition dynamics of biopolymers under tension

    PubMed Central

    Kim, Won Kyu; Hyeon, Changbong; Sung, Wokyung

    2012-01-01

    In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, the cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance and resonant activation. Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises. PMID:22908254

  3. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    NASA Astrophysics Data System (ADS)

    Yu, Zhang; Xinmiao, Lu; Guangyi, Wang; Yongcai, Hu; Jiangtao, Xu

    2016-07-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. Project supported by the National Natural Science Foundation of China (Grant Nos. 61372156 and 61405053) and the Natural Science Foundation of Zhejiang Province of China (Grant No. LZ13F04001).

  4. [Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling].

    PubMed

    Yastreb, T O; Kolupaev, Yu E; Lugovaya, A A; Dmitriev, A P

    2016-01-01

    The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 µM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Leaf treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress.

  5. Nonlinear Bayesian estimation of BOLD signal under non-Gaussian noise.

    PubMed

    Khan, Ali Fahim; Younis, Muhammad Shahzad; Bajwa, Khalid Bashir

    2015-01-01

    Modeling the blood oxygenation level dependent (BOLD) signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF. PMID:25691911

  6. Nonlinear Bayesian Estimation of BOLD Signal under Non-Gaussian Noise

    PubMed Central

    Khan, Ali Fahim; Younis, Muhammad Shahzad; Bajwa, Khalid Bashir

    2015-01-01

    Modeling the blood oxygenation level dependent (BOLD) signal has been a subject of study for over a decade in the neuroimaging community. Inspired from fluid dynamics, the hemodynamic model provides a plausible yet convincing interpretation of the BOLD signal by amalgamating effects of dynamic physiological changes in blood oxygenation, cerebral blood flow and volume. The nonautonomous, nonlinear set of differential equations of the hemodynamic model constitutes the process model while the weighted nonlinear sum of the physiological variables forms the measurement model. Plagued by various noise sources, the time series fMRI measurement data is mostly assumed to be affected by additive Gaussian noise. Though more feasible, the assumption may cause the designed filter to perform poorly if made to work under non-Gaussian environment. In this paper, we present a data assimilation scheme that assumes additive non-Gaussian noise, namely, the e-mixture noise, affecting the measurements. The proposed filter MAGSF and the celebrated EKF are put to test by performing joint optimal Bayesian filtering to estimate both the states and parameters governing the hemodynamic model under non-Gaussian environment. Analyses using both the synthetic and real data reveal superior performance of the MAGSF as compared to EKF. PMID:25691911

  7. [Content of Osmolytes and Flavonoids under Salt Stress in Arabidopsis thaliana Plants Defective in Jasmonate Signaling].

    PubMed

    Yastreb, T O; Kolupaev, Yu E; Lugovaya, A A; Dmitriev, A P

    2016-01-01

    The effects of the salt stress (200 mM NaCl) and exogenous jasmonic acid (JA) on levels of osmolytes and flavonoids in leaves of four-week-old Arabidopsis thaliana L. plants of the wild-type (WT) Columbia-0 (Col-0) and the mutant jin1 (jasmonate insensitive 1) with impaired jasmonate signaling were studied. The increase in proline content caused by the salt stress was higher in the Col-0 plants than in the mutant jin1. This difference was especially marked if the plants had been pretreated with exogenous 0.1 µM JA. The sugar content increased in response to the salt stress in the JA-treated WT plants but decreased in the jin1 mutant. Leaf treatment with JA of the WT plants but not mutant defective in jasmonate signaling also enhanced the levels of anthocyanins and flavonoids absorbed in UV-B range. The presence of JA increased salinity resistance of the Col-0 plants, since the accumulation of lipid peroxidation products and growth inhibition caused by NaCl were less pronounced. Under salt stress, JA almost did not render a positive effect on the jin1 plants. It is concluded that the protein JIN1/MYC2 is involved in control of protective systems under salt stress. PMID:27266252

  8. Analysis of weak signal detection based on tri-stable system under Levy noise

    NASA Astrophysics Data System (ADS)

    Li-Fang, He; Ying-Ying, Cui; Tian-Qi, Zhang; Gang, Zhang; Ying, Song

    2016-06-01

    Stochastic resonance system is an effective method to extract weak signal. However, system output is directly influenced by system parameters. Aiming at this, the Levy noise is combined with a tri-stable stochastic resonance system. The average signal-to-noise ratio gain is regarded as an index to measure the stochastic resonance phenomenon. The characteristics of tri-stable stochastic resonance under Levy noise is analyzed in depth. First, the method of generating Levy noise, the effect of tri-stable system parameters on the potential function and corresponding potential force are presented in detail. Then, the effects of tri-stable system parameters w, a, b, and Levy noise intensity amplification factor D on the resonant output can be explored with different Levy noises. Finally, the tri-stable stochastic resonance system is applied to the bearing fault detection. Simulation results show that the stochastic resonance phenomenon can be induced by tuning the system parameters w, a, and b under different distributions of Levy noise, then the weak signal can be detected. The parameter intervals which can induce stochastic resonances are approximately equal. Moreover, by adjusting the intensity amplification factor D of Levy noise, the stochastic resonances can happen similarly. In bearing fault detection, the detection effect of the tri-stable stochastic resonance system is superior to the bistable stochastic resonance system. Project supported by the National Natural Science Foundation of China (Grant No. 61371164), the Chongqing Municipal Distinguished Youth Foundation, China (Grant No. CSTC2011jjjq40002), and the Research Project of Chongqing Municipal Educational Commission, China (Grant No. KJ130524).

  9. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bechambi, Olfa; Chalbi, Manel; Najjar, Wahiba; Sayadi, Sami

    2015-08-01

    Ag-doped ZnO photocatalysts with different Ag molar content (0.0, 0.5, 1.0, 2.0 and 4.0%) were prepared via hydrothermal method. The X-ray diffraction (XRD), Nitrogen physisorption at 77 K, Fourier transformed infrared spectroscopy (FTIR), UV--Visible spectroscopy, Photoluminescence spectra (PL) and Raman spectroscopy were used to characterize the structural, textural and optical properties of the samples. The results showed that Ag-doping does not change the average crystallite size with the Ag low content (≤1.0%) but slightly decreases with Ag high content (>1.0%). The specific surface area (SBET) increases with the increase of the Ag content. The band gap values of ZnO are decreased with the increase of the Ag doping level. The results of the photocatalytic degradation of bisphenol A (BPA) and nonylphenol (NP) in aqueous solutions under UV irradiation and in the presence of hydrogen peroxide (H2O2) showed that silver ions doping greatly improved the photocatalytic efficiency of ZnO. The TOC conversion BPA and NP are 72.1% and 81.08% respectively obtained using 1% Ag-doped ZnO. The enhancement of photocatalytic activity is ascribed to the fact that the modification of ZnO with an appropriate amount of Ag can increase the separation efficiency of the photogenerated electrons-holes in ZnO. The antibacterial activity of the catalysts which uses Escherichia coli as a model for Gram-negative bacteria confirmed that Ag-doped ZnO possessed more antibacterial activity than the pure ZnO.

  10. Overview of the endocrine response to critical illness: how to measure it and when to treat.

    PubMed

    Hassan-Smith, Zaki; Cooper, Mark S

    2011-10-01

    The assessment and manipulation of the endocrine system in patients with critical illness is one of the most complex and controversial areas in endocrinology. Severe acute illness causes dramatic changes in most endocrine systems. This can lead to considerable difficulty in recognising pre-existing endocrine disorders in severely ill patients. Critical care itself might also induce types of endocrine dysfunction not seen outside the critical care unit. It is important to clarify whether or not such endocrine dysfunction occurs. Where it does occur it is also important to determine whether endocrine intervention is useful in improving outcome. There is also the issue of whether endocrine manipulation in critically ill patients without endocrine dysfunction could benefit from endocrine intervention, e.g. to improve haemodynamics or reverse a catabolic state. This review will discuss some of these contentious issues. It will highlight how endocrine assessment of a patient with critical illness differs from that in other types of patient. It will emphasise the added need to place the biochemical assessment and its interpretation in the context of the patients underlying condition.

  11. Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment

    PubMed Central

    Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai

    2015-01-01

    The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time–frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth. PMID:26121469

  12. Research on the Effect of Electrical Signals on Growth of Sansevieria under Light-Emitting Diode (LED) Lighting Environment.

    PubMed

    Tian, Liguo; Meng, Qinghao; Wang, Liping; Dong, Jianghui; Wu, Hai

    2015-01-01

    The plant electrical signal has some features, e.g. weak, low-frequency and time-varying. To detect changes in plant electrical signals, LED light source was used to create a controllable light environment in this study. The electrical signal data were collected from Sansevieria leaves under the different illumination conditions, and the data was analyzed in time domain, frequency domain and time-frequency domain, respectively. These analyses are helpful to explore the relationship between changes in the light environment and electrical signals in Sansevieria leaves. The changes in the plant electrical signal reflected the changes in the intensity of photosynthesis. In this study, we proposed a new method to express plant photosynthetic intensity as a function of the electrical signal. That is, the plant electrical signal can be used to describe the state of plant growth.

  13. The hidden life of NAD+-consuming ectoenzymes in the endocrine system.

    PubMed

    Malavasi, Fabio; Deaglio, Silvia; Zaccarello, Gianluca; Horenstein, Alberto L; Chillemi, Antonella; Audrito, Valentina; Serra, Sara; Gandione, Marina; Zitella, Andrea; Tizzani, Alessandro

    2010-10-01

    Ectoenzymes are a family of cell surface molecules whose catalytic domain lies in the extracellular region. A subset of this family, nucleotide-metabolizing ectoenzymes, are key components in the regulation of the extracellular balance between nucleotides (e.g. NAD(+) or ATP) and nucleosides (e.g. adenosine). Their substrates and products are signalling molecules that act by binding to specific receptors, triggering signals that regulate a variety of functions, ranging from the migration of immune cells, to synaptic transmission in the brain, to hormone/receptor interactions in the glands. Almost two decades of accumulated data indicate that these regulatory processes significantly affect the endocrine system, a tightly controlled information signal complex with clear evidence of fine regulation. Functional models discussed in this review include insulin secretion, bone modelling and the association between hormones and behaviour. The emerging pattern is one of a system operating as a scale-free network that hinges around hubs of key molecules, such as NAD(+) or ATP. The underlying natural link between nucleotides, ectoenzymes and the endocrine system is far from being clearly demonstrated. However, the body of evidence supporting the existence of such connection is growing exponentially. This review will try to read the available evidence in a hypothesis-oriented perspective, starting from the description of NAD(+) and of ecto- and endoenzymes involved in its metabolism.

  14. Exposure to endocrine disrupting chemicals and neurodevelopmental alterations.

    PubMed

    Pinson, A; Bourguignon, J P; Parent, A S

    2016-07-01

    The developing brain is remarkably malleable as neural circuits are formed and these circuits are strongly dependent on hormones for their development. For those reasons, the brain is very vulnerable to the effects of endocrine-disrupting chemicals (EDCs) during critical periods of development. This review focuses on three ubiquitous endocrine disruptors that are known to disrupt the thyroid function and are associated with neurobehavioral deficits: polychlorinated biphenyls, polybrominated diphenyl ethers, and bisphenol A. The human and rodent data suggesting effects of those EDCs on memory, cognition, and social behavior are discussed. Their mechanisms of action go beyond relative hypothyroidism with effects on neurotransmitter release and calcium signaling. PMID:27285165

  15. Effects of Response-Signal Temporal Separation on Behavior Maintained under Temporally Defined Schedules of Delayed Signaled Reinforcement

    ERIC Educational Resources Information Center

    Pulido, Marco A.; Martinez, Guillermo

    2010-01-01

    The present study assessed the effects of systematically separating the cue from the response in temporally defined schedules of delayed signaled reinforcement. Identical schedules were used to study the effects of the independent variable on response acquisition and response maintenance. In the first experiment, 8 groups of 3 naive rats were…

  16. Signal Persistence of Bispectral Index and State Entropy during Surgical Procedure under Sedation

    PubMed Central

    Paisansathan, Chanannait; Ozcan, Mukadder D.; Khan, Qaiser S.; Baughman, Verna L.; Ozcan, Mehmet S.

    2012-01-01

    Introduction. Bispectral index (BIS) and state entropy (SE) are prone to artifacts, especially due to electrocautery (EC). We compared the incidence of artifacts in BIS and SE during surgery under local anesthesia and sedation. Methods. 28 females undergoing breast surgery under local anesthesia and sedation were studied. Simultaneous BIS and SE measurements were recorded every 10 seconds. Artifact was defined as a failure of the device to display a numerical value while the electrodes remained appropriately attached to the patient's forehead. Ratio of artifact to good signal was compared between BIS and SE in the presence or absence of EC use. Results. 7679 data points were collected from 28 patients. Overall, artifact incidence was similar in BIS and SE (6.2% and 6.3%, resp.). In the presence of EC (1370 data points), BIS had significantly more artifact compared to SE (18.6% versus 6.4%, P < 0.0001). Without EC (6309 data points), BIS had significantly less artifact compared to SE (4.1% versus 7.3%, P < 0.0001). Discussion. BIS and SE were comparable for incidence of artifacts in patients under sedation. Use of EC lead to more artifact in BIS than SE. Conversely, BIS had fewer artifacts than SE when there was no EC use. PMID:22454604

  17. The Basal NPO crh Fluctuation is Sustained Under Compromised Glucocorticoid Signaling in Diurnal Zebrafish

    PubMed Central

    Yeh, Chen-Min

    2015-01-01

    The circadian activity of the hypothalamo-pituitary-adrenal/interrenal (HPA/I) axis is crucial for maintaining vertebrate homeostasis. In mammals, both the principle regulator, corticotropin-releasing hormone (crh) in the hypothalamic paraventricular nucleus (PVN) and the final effector, the glucocorticoids show daily rhythmic patterns. While glucocorticoids are the main negative regulator of PVN crh under stress, whether they modulate the PVN crh rhythm under basal condition is unclear in diurnal animals. Using zebrafish larvae, a recently-established diurnal model organism suited for the HPA/I axis and homeostasis research, we ask if glucocorticoid changes are required to maintain the daily variation of PVN crh. We first characterized the development of the HPI axis overtime and showed that the basal activity of the HPI axis is robust and tightly regulated by circadian cue in 6-day old larvae. We demonstrated a negative correlation between the basal cortisol and neurosecretory preoptic area (NPO) crh variations. To test if cortisol drives NPO crh variation, we analyzed the NPO crh levels in glucorcorticoid antagonist-treated larvae and mutants lacking circadian cortisol variations. We showed that NPO crh basal fluctuation is sustained although the level was decreased without proper cortisol signaling in zebrafish. Our data indicates that glucocorticoids do not modulate the basal NPO crh variations but may be required for maintaining overall NPO crh levels. This further suggests that under basal and stress conditions the HPA/I axis activity is modulated differently by glucocorticoids. PMID:26696807

  18. Notch signaling deficiency underlies age-dependent depletion of satellite cells in muscular dystrophy.

    PubMed

    Jiang, Chunhui; Wen, Yefei; Kuroda, Kazuki; Hannon, Kevin; Rudnicki, Michael A; Kuang, Shihuan

    2014-08-01

    Duchenne muscular dystrophy (DMD) is a devastating disease characterized by muscle wasting, loss of mobility and death in early adulthood. Satellite cells are muscle-resident stem cells responsible for the repair and regeneration of damaged muscles. One pathological feature of DMD is the progressive depletion of satellite cells, leading to the failure of muscle repair. Here, we attempted to explore the molecular mechanisms underlying satellite cell ablation in the dystrophin mutant mdx mouse, a well-established model for DMD. Initial muscle degeneration activates satellite cells, resulting in increased satellite cell number in young mdx mice. This is followed by rapid loss of satellite cells with age due to the reduced self-renewal ability of mdx satellite cells. In addition, satellite cell composition is altered even in young mdx mice, with significant reductions in the abundance of non-committed (Pax7+ and Myf5-) satellite cells. Using a Notch-reporter mouse, we found that the mdx satellite cells have reduced activation of Notch signaling, which has been shown to be necessary to maintain satellite cell quiescence and self-renewal. Concomitantly, the expression of Notch1, Notch3, Jag1, Hey1 and HeyL are reduced in the mdx primary myoblast. Finally, we established a mouse model to constitutively activate Notch signaling in satellite cells, and show that Notch activation is sufficient to rescue the self-renewal deficiencies of mdx satellite cells. These results demonstrate that Notch signaling is essential for maintaining the satellite cell pool and that its deficiency leads to depletion of satellite cells in DMD.

  19. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex

    PubMed Central

    McClatchy, Daniel B.; Savas, Jeffrey N.; Martínez-Bartolomé, Salvador; Park, Sung Kyu; Maher, Pamela; Powell, Susan B.; Yates, John R.

    2015-01-01

    Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP down-regulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this dataset identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating. PMID:25869802

  20. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response.

    PubMed

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.

  1. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response

    PubMed Central

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  2. Road crossing behavior under traffic light conflict: Modulating effects of green light duration and signal congruency.

    PubMed

    Lange, Florian; Haiduk, Michael; Boos, Moritz; Tinschert, Peter; Schwarze, Anke; Eggert, Frank

    2016-10-01

    A large number of pedestrians and cyclists regularly ignore the traffic lights to cross the road illegally. In a recent analysis, illegal road crossing behavior has been shown to be enhanced in the presence of incongruent stimulus configurations. Pedestrians and cyclists are more likely to cross against a red light when exposed to an irrelevant conflicting green light. Here, we present experimental and observational data on the factors moderating the risk associated with incongruent traffic lights. In an observational study, we demonstrated that the conflict-related increase in illegal crossing rates is reduced when pedestrian and cyclist green light periods are long. In a laboratory experiment, we manipulated the color of the irrelevant signals to expose participants to different degrees of incongruency. Results revealed that individuals' performance gradually varied as a function of incongruency, suggesting that the negative impact of a conflicting green light can be reduced by slightly adjusting its color. Our findings highlight that the observation of real-world behavior at intersections and the experimental analysis of psychological processes under controlled laboratory conditions can complement each other in identifying risk factors of risky road crossing behavior. Based on this combination, our study elaborates on promising measures to improve safety at signalized intersections. PMID:27474874

  3. Road crossing behavior under traffic light conflict: Modulating effects of green light duration and signal congruency.

    PubMed

    Lange, Florian; Haiduk, Michael; Boos, Moritz; Tinschert, Peter; Schwarze, Anke; Eggert, Frank

    2016-10-01

    A large number of pedestrians and cyclists regularly ignore the traffic lights to cross the road illegally. In a recent analysis, illegal road crossing behavior has been shown to be enhanced in the presence of incongruent stimulus configurations. Pedestrians and cyclists are more likely to cross against a red light when exposed to an irrelevant conflicting green light. Here, we present experimental and observational data on the factors moderating the risk associated with incongruent traffic lights. In an observational study, we demonstrated that the conflict-related increase in illegal crossing rates is reduced when pedestrian and cyclist green light periods are long. In a laboratory experiment, we manipulated the color of the irrelevant signals to expose participants to different degrees of incongruency. Results revealed that individuals' performance gradually varied as a function of incongruency, suggesting that the negative impact of a conflicting green light can be reduced by slightly adjusting its color. Our findings highlight that the observation of real-world behavior at intersections and the experimental analysis of psychological processes under controlled laboratory conditions can complement each other in identifying risk factors of risky road crossing behavior. Based on this combination, our study elaborates on promising measures to improve safety at signalized intersections.

  4. Assembly of the Sos1-Grb2-Gab1 Ternary Signaling Complex Is Under Allosteric Control

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2009-01-01

    Allostery has evolved as a form of local communication between interacting protein partners allowing them to quickly sense changes in their immediate vicinity in response to external cues. Herein, using isothermal titration calorimetry (ITC) in conjunction with circular dichroism (CD) and macromolecular modeling (MM), we show that the binding of Grb2 adaptor — a key signaling molecule involved in the activation of Ras GTPase — to its downstream partners Sos1 guanine nucleotide exchange factor and Gab1 docker is under tight allosteric regulation. Specifically, our findings reveal that the binding of one molecule of Sos1 to the nSH3 domain allosterically induces a conformational change within Grb2 such that the loading of a second molecule of Sos1 onto the cSH3 domain is blocked and, in so doing, allows Gab1 access to the cSH3 domain in an exclusively non-competitive manner to generate the Sos1-Grb2-Gab1 ternary signaling complex. PMID:20005866

  5. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response.

    PubMed

    Saxena, Ina; Srikanth, Sandhya; Chen, Zhong

    2016-01-01

    It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses. PMID:27200043

  6. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review).

    PubMed

    Del Pup, Lino; Mantovani, Alberto; Cavaliere, Carla; Facchini, Gaetano; Luce, Amalia; Sperlongano, Pasquale; Caraglia, Michele; Berretta, Massimiliano

    2016-08-01

    Endocrine disruptors (EDs) are pollutants that alter the endocrine system and are involved in carcinogenesis. EDs have multiple and complex levels of action. They can affect the synthesis, release and transport of natural hormones. In target tissues, EDs can reduce or increase the effects of natural hormones on their receptors and change signaling cascades. When ED exposure happens at critical periods of life, from embryo to puberty, they can act at doses considered safe for an adult. Furthermore, their epigenetic effects can also influence the cancer risk of future generations. The cancer mechanisms of known EDs are hereby reviewed, There are thousands of newly introduced substances whose potential endocrine-disrupting and cancer effects are completely unknown. Although there are still gaps in our knowledge, these data support the urgent need for health and environmental policies aimed at protecting the public and in particular, the developing fetus and women of reproductive age. PMID:27349723

  7. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review)

    PubMed Central

    Del Pup, Lino; Mantovani, Alberto; Cavaliere, Carla; Facchini, Gaetano; Luce, Amalia; Sperlongano, Pasquale; Caraglia, Michele; Berretta, Massimiliano

    2016-01-01

    Endocrine disruptors (EDs) are pollutants that alter the endocrine system and are involved in carcinogenesis. EDs have multiple and complex levels of action. They can affect the synthesis, release and transport of natural hormones. In target tissues, EDs can reduce or increase the effects of natural hormones on their receptors and change signaling cascades. When ED exposure happens at critical periods of life, from embryo to puberty, they can act at doses considered safe for an adult. Furthermore, their epigenetic effects can also influence the cancer risk of future generations. The cancer mechanisms of known EDs are hereby reviewed, There are thousands of newly introduced substances whose potential endocrine-disrupting and cancer effects are completely unknown. Although there are still gaps in our knowledge, these data support the urgent need for health and environmental policies aimed at protecting the public and in particular, the developing fetus and women of reproductive age. PMID:27349723

  8. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease.

    PubMed

    Skinner, Michael K

    2014-12-01

    Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease.

  9. Endocrine Disruptor Induction of Epigenetic Transgenerational Inheritance of Disease

    PubMed Central

    Skinner, Michael K.

    2014-01-01

    Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease. PMID:25088466

  10. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease.

    PubMed

    Skinner, Michael K

    2014-12-01

    Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease. PMID:25088466

  11. Insulin signalling underlies both plasticity and divergence of a reproductive trait in Drosophila

    PubMed Central

    Green, Delbert A.; Extavour, Cassandra G.

    2014-01-01

    Phenotypic plasticity is the ability of a single genotype to yield distinct phenotypes in different environments. The molecular mechanisms linking phenotypic plasticity to the evolution of heritable diversification, however, are largely unknown. Here, we show that insulin/insulin-like growth factor signalling (IIS) underlies both phenotypic plasticity and evolutionary diversification of ovariole number, a quantitative reproductive trait, in Drosophila. IIS activity levels and sensitivity have diverged between species, leading to both species-specific ovariole number and species-specific nutritional plasticity in ovariole number. Plastic range of ovariole number correlates with ecological niche, suggesting that the degree of nutritional plasticity may be an adaptive trait. This demonstrates that a plastic response conserved across animals can underlie the evolution of morphological diversity, underscoring the potential pervasiveness of plasticity as an evolutionary mechanism. PMID:24500165

  12. Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ping; Zhang, Yu-Xiang; Zhang, Guang-Bin; Liu, Peng

    2013-01-01

    A theory based on equivalent circuit was proposed to demonstrate that magnetodielectric (MDE) effect and electric-induced magnetic permeability (EIMP) exist in the magnetoelectric composite. Both MDE and EIMP are sensitive to the amplitude of inspiring signal. They were researched in a simple Pb(Zr,Ti)O3/Terfenol-D laminate composite experimentally. A large MDE coefficient over 85% was found near the resonance frequency under a low magnetic field of 40 Oe. The EIMP was also observed in the composite. They are mainly originated from the magnetoelectric coupling between the piezoelectric and magnetostrictive components. These results are significant in the device applications of modulating dielectric constant and magnetic permeability at room temperature.

  13. Some evidence of effects of environmental chemicals on the endocrine system in children.

    PubMed

    Rogan, Walter J; Ragan, N Beth

    2007-10-01

    Pollutant chemicals that are widespread in the environment can affect endocrine function in laboratory experiments and in wildlife. Although human beings are commonly exposed to such pollutant chemicals, the exposures are generally low and clear effects on endocrine function from such exposures have been difficult to demonstrate. Human data including both exposure to the chemical agent and the endocrine outcome are reviewed here, including age at weaning, age at puberty, anogenital distance, and sex ratio at birth, and the strength of the evidence are discussed. Although endocrine disruption in humans by pollutant chemicals remains largely undemonstrated, the underlying science is sound and the potential for such effects is real.

  14. Signalling to the nucleus under the control of light and small molecules.

    PubMed

    Juillot, Samuel; Beyer, Hannes M; Madl, Josef; Weber, Wilfried; Zurbriggen, Matias D; Römer, Winfried

    2016-02-01

    One major regulatory mechanism in cell signalling is the spatio-temporal control of the localization of signalling molecules. We synthetically designed an entire cell signalling pathway, which allows controlling the transport of signalling molecules from the plasma membrane to the nucleus, by using light and small molecules.

  15. Subthreshold membrane responses underlying sparse spiking to natural vocal signals in auditory cortex

    PubMed Central

    Perks, Krista Eva; Gentner, Timothy Q.

    2015-01-01

    Natural acoustic communication signals, such as speech, are typically high-dimensional with a wide range of co-varying spectro-temporal features at multiple timescales. The synaptic and network mechanisms for encoding these complex signals are largely unknown. We are investigating these mechanisms in high-level sensory regions of the songbird auditory forebrain, where single neurons show sparse, object-selective spiking responses to conspecific songs. Using whole-cell in-vivo patch clamp techniques in the caudal mesopallium and the caudal nidopallium of starlings, we examine song-driven subthreshold and spiking activity. We find that both the subthreshold and the spiking activity are reliable (i.e., the same song drives a similar response each time it is presented) and specific (i.e. responses to different songs are distinct). Surprisingly, however, the reliability and specificity of the sub-threshold response was uniformly high regardless of when the cell spiked, even for song stimuli that drove no spikes. We conclude that despite a selective and sparse spiking response, high-level auditory cortical neurons are under continuous, non-selective, stimulus-specific synaptic control. To investigate the role of local network inhibition in this synaptic control, we then recorded extracellularly while pharmacologically blocking local GABA-ergic transmission. This manipulation modulated the strength and the reliability of stimulus-driven spiking, consistent with a role for local inhibition in regulating the reliability of network activity and the stimulus specificity of the subthreshold response in single cells. We discuss these results in the context of underlying computations that could generate sparse, stimulus-selective spiking responses, and models for hierarchical pooling. PMID:25728189

  16. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement

    PubMed Central

    Brown, Arleen; Cauley, Jane A.; Chin, Marshall H.; Gary-Webb, Tiffany L.; Kim, Catherine; Sosa, Julie Ann; Sumner, Anne E.; Anton, Blair

    2012-01-01

    Advocacy and Public Outreach Core Committee; and 2) suggestions offered by the Council and members of The Endocrine Society. Conclusions: Several themes emerged in the statement, including a need for basic science, population-based, translational and health services studies to explore underlying mechanisms contributing to endocrine health disparities. Compared to non-Hispanic whites, non-Hispanic blacks have worse outcomes and higher mortality from certain disorders despite having a lower (e.g. macrovascular complications of diabetes mellitus and osteoporotic fractures) or similar (e.g. thyroid cancer) incidence of these disorders. Obesity is an important contributor to diabetes risk in minority populations and to sex disparities in thyroid cancer, suggesting that population interventions targeting weight loss may favorably impact a number of endocrine disorders. There are important implications regarding the definition of obesity in different race/ethnic groups, including potential underestimation of disease risk in Asian-Americans and overestimation in non-Hispanic black women. Ethnic-specific cut-points for central obesity should be determined so that clinicians can adequately assess metabolic risk. There is little evidence that genetic differences contribute significantly to race/ethnic disparities in the endocrine disorders examined. Multilevel interventions have reduced disparities in diabetes care, and these successes can be modeled to design similar interventions for other endocrine diseases. PMID:22730516

  17. Biological impact of environmental polycyclic aromatic hydrocarbons (ePAHs) as endocrine disruptors.

    PubMed

    Zhang, Yanyan; Dong, Sijun; Wang, Hongou; Tao, Shu; Kiyama, Ryoiti

    2016-06-01

    Polycyclic aromatic hydrocarbons (PAHs) are often detected in the environment and are regarded as endocrine disruptors. We here designated mixtures of PAHs in the environment as environmental PAHs (ePAHs) to discuss their effects collectively, which could be different from the sum of the constituent PAHs. We first summarized the biological impact of environmental PAHs (ePAHs) found in the atmosphere, sediments, soils, and water as a result of human activities, accidents, or natural phenomena. ePAHs are characterized by their sources and forms, followed by their biological effects and social impact, and bioassays that are used to investigate their biological effects. The findings of the bioassays have demonstrated that ePAHs have the ability to affect the endocrine systems of humans and animals. The pathways that mediate cell signaling for the endocrine disruptions induced by ePAHs and PAHs have also been summarized in order to obtain a clearer understanding of the mechanisms responsible for these effects without animal tests; they include specific signaling pathways (MAPK and other signaling pathways), regulatory mechanisms (chromatin/epigenetic regulation, cell cycle/DNA damage control, and cytoskeletal/adhesion regulation), and cell functions (apoptosis, autophagy, immune responses/inflammation, neurological responses, and development/differentiation) induced by specific PAHs, such as benz[a]anthracene, benzo[a]pyrene, benz[l]aceanthrylene, cyclopenta[c,d]pyrene, 7,12-dimethylbenz[a]anthracene, fluoranthene, fluorene, 3-methylcholanthrene, perylene, phenanthrene, and pyrene as well as their derivatives. Estrogen signaling is one of the most studied pathways associated with the endocrine-disrupting activities of PAHs, and involves estrogen receptors and aryl hydrocarbon receptors. However, some of the actions of PAHs are contradictory, complex, and unexplainable. Although several possibilities have been suggested, such as direct interactions between PAHs and

  18. Endocrine disruption in aquatic vertebrates.

    PubMed

    Kloas, Werner; Urbatzka, Ralph; Opitz, Robert; Würtz, Sven; Behrends, Thomas; Hermelink, Björn; Hofmann, Frauke; Jagnytsch, Oana; Kroupova, Hana; Lorenz, Claudia; Neumann, Nadja; Pietsch, Constanze; Trubiroha, Achim; Van Ballegooy, Christoph; Wiedemann, Caterina; Lutz, Ilka

    2009-04-01

    Environmental compounds can interfere with endocrine systems of wildlife and humans. The main sink of such substances, called endocrine disrupters (ED), are surface waters. Thus, aquatic vertebrates, such as fish and amphibians, are most endangered. ED can adversely affect reproductive biology and the thyroid system. ED act by (anti)estrogenic and (anti)androgenic modes of action, resulting in abnormal sexual differentiation and impaired reproduction. These effects are mainly driven by direct interferences of ED with sex steroid receptors rather than indirectly by impacting synthesis and bioavailability of sex steroids, which in turn might affect the hypothalamic-pituitary-gonadal axis. Recent findings reveal that, in addition to the human-produced waste of ED, natural sources, such as parasites and decomposition of leaves, also might act as ED, markedly affecting sexual differentiation and reproduction in fish and amphibians. Although the thyroid system has essential functions in both fish and amphibians, amphibian metamorphosis has been introduced as the most sensitive model to detect thyroidal ED; no suitable fish model exists. Whereas ED may act primarily on only one specific endocrine target, all endocrine systems will eventually be deregulated as they are intimately connected to each other. The recent ecotoxicological issue of pharmaceutically active compounds (PhACs) present in the aquatic environment indicates a high potential for further endocrine modes of action on aquatic vertebrates by ED derived from PhACs, such as glucocorticoids, progestins, and beta-agonists.

  19. 76 FR 49473 - Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... AGENCY Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine... decisions on data received in response to the test orders issued under the Endocrine Disruptor Screening...'' system, which means EPA will not know your identity or contact information unless you provide it in...

  20. Wnt signaling underlies evolution and development of the butterfly wing pattern symmetry systems.

    PubMed

    Martin, Arnaud; Reed, Robert D

    2014-11-15

    Most butterfly wing patterns are proposed to be derived from a set of conserved pattern elements known as symmetry systems. Symmetry systems are so-named because they are often associated with parallel color stripes mirrored around linear organizing centers that run between the anterior and posterior wing margins. Even though the symmetry systems are the most prominent and diverse wing pattern elements, their study has been confounded by a lack of knowledge regarding the molecular basis of their development, as well as the difficulty of drawing pattern homologies across species with highly derived wing patterns. Here we present the first molecular characterization of symmetry system development by showing that WntA expression is consistently associated with the major basal, discal, central, and external symmetry system patterns of nymphalid butterflies. Pharmacological manipulations of signaling gradients using heparin and dextran sulfate showed that pattern organizing centers correspond precisely with WntA, wingless, Wnt6, and Wnt10 expression patterns, thus suggesting a role for Wnt signaling in color pattern induction. Importantly, this model is supported by recent genetic and population genomic work identifying WntA as the causative locus underlying wing pattern variation within several butterfly species. By comparing the expression of WntA between nymphalid butterflies representing a range of prototypical symmetry systems, slightly deviated symmetry systems, and highly derived wing patterns, we were able to infer symmetry system homologies in several challenging cases. Our work illustrates how highly divergent morphologies can be derived from modifications to a common ground plan across both micro- and macro-evolutionary time scales.

  1. [Endocrine tumors of the testis].

    PubMed

    Loy, V; Linke, J

    2003-07-01

    The most characteristic endocrine tumours of the testis are germ cell tumours and sex cord/gonadal stromal tumours. They include the primary carcinoid, the relation of which to teratomas is still unclear. In general, gonadal stromal tumours are rare, however, endocrine activity occurs in at least 10%-20%. Among gonadal stromal tumours, only Leydig cell tumours and Sertoli cell tumours are of practical importance. Endocrine disorders are mostly related to Leydig cell tumours (gynaecomastia, pubertas praecox). Although less frequent than the other gonadal stromal tumours, they can, in principle, occur. The large cell calcifying Sertoli cell tumour occurs in association with other complex disorders (i.e. Peutz-Jeghers syndrome). Valuable markers are: inhibin, calretinin, cytokeratin, melan-A, CD-99, Ki-67, androgen receptor and p53. As the conventional morphology and immunohistological markers frequently overlap, unclear cases should be referred to specialised centres. PMID:14513279

  2. Age and the endocrine system.

    PubMed

    Noth, R H; Mazzaferri, E L

    1985-02-01

    The pattern of age-induced changes in each endocrine system is unique. Both hormone levels and target organ responsivity are altered in the aging endocrine-cardiovascular system. Serum levels of vasopressor hormones both increase (norepinephrine) and decrease (renin, aldosterone). Target organ responses to beta-adrenergic stimulation in the heart and probably also in vascular smooth muscle decrease due to postreceptor changes. These effects contribute to the clinical problems of hypertension and orthostatic hypotension which characterize the elderly. Aging produces mild carbohydrate intolerance and a minimal increase in fasting serum glucose in healthy, nonobese individuals, primarily due to decreasing postreceptor responsiveness to insulin. Aging decreases the metabolism of thyroxine, including its conversion to triiodothyronine, but clinically significant alterations of thyroid hormone levels do not occur. Changes in the end-organ response to thyroid hormones, however, significantly alter the clinical presentation of thyroid diseases. Aging shifts the serum vasopressin-serum osmolality relationship toward higher serum vasopressin levels probably due to altered baroreceptor input, probably contributing to the tendency toward hyponatremia in the elderly. Aging slows the metabolism of cortisol, but glucocorticoid levels in the human are essentially unaltered by age. However, recent data indicate that delta-5 adrenal steroids decrease markedly in both men and women. Nodules in the anterior pituitary, the thyroid, and the adrenal increase in frequency with aging. Finally, the reproductive system is primarily altered by endocrine cell death, by unknown mechanisms, resulting in decreased estrogen and testosterone levels in women and men. This most obvious age-related endocrine change turns out to be incompletely understood and is not representative of most age-related endocrine changes. Despite characterization of these many age-related alterations in endocrine systems

  3. Theoretical studies of the properties of magnetic resonance signal formed under the influence of distant dipolar field

    NASA Astrophysics Data System (ADS)

    Wong, Chung Ki

    This dissertation studies the properties of nuclear magnetic resonance (NMR) signals of biological samples formed under the influence of distant dipolar field (DDF). The use of DDF effect for magnetic resonance imaging (MRI) has aroused substantial research interests in recent years because of the unique contrast features of DDF signal. The main research activities on this topic are to improve the DDF signal level, and to characterize the use of DDF effect on probing tissue structures and functional MRI in brain studies. Issues of both directions are addressed in this dissertation. After a brief introduction to basic spin dynamics related to MR, the classical Bloch equation with the nonlinear DDF effect incorporated is solved analytically. The mechanism of separating the DDF signal from the whole signal of the sample based on the correlation spectroscopy revamped by asymmetric z-gradient echo detection (CRAZED) is first reviewed. That the sensitivity of the signal to physical parameters such as static magnetic field and transverse relaxation time are examined, and parameters for optimal signal-to-noise and contrast are obtained. The technique of multiple spin-echo acquisition to increase the signal magnitude and time efficiency is analyzed, and optimal conditions are found. Finally the problem of the sensitivity of DDF signal to variations in local magnetic field on a particular length scale is treated using a perturbation method. The results suggest that such sensitivity exists in a simple field distribution.

  4. Notch signaling represses hypoxia-inducible factor-1α-induced activation of Wnt/β-catenin signaling in osteoblasts under cobalt-mimicked hypoxia

    PubMed Central

    LI, CHEN-TIAN; LIU, JIAN-XIU; YU, BO; LIU, RUI; DONG, CHAO; LI, SONG-JIAN

    2016-01-01

    The modification of Wnt and Notch signaling pathways by hypoxia, and its association with osteoblast proliferation and apoptosis remain to be fully elucidated. To investigate Wnt-Notch crosstalk, and its role in hypoxia-induced osteoblast proliferation and apoptosis regulation, the present study investigated the effects of cobalt-mimicked hypoxia on the mouse pre-osteoblast-like cell line, MC3T3-E1, when the Notch signals were repressed using a γ-secretase inhibitor DAPT. The data showed that the cobalt-mimicked hypoxia suppressed cell proliferation under normal conditions, but increased cell proliferation under conditions of Notch repression, in a concentration-dependent manner. The results of western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that the cobalt treatment increased the levels of activated β-catenin protein and the expression levels of the target genes, axis inhibition protein 2 and myelocytomatosis oncogene, under DAPT-induced Notch repression. However, no significant changes were found in the expression levels of the Notch intracellular domain protein or the Notch target gene, hes1. In a β-catenin gene-knockdown experiment, the proliferation of the MC3T3-E1 cells under hypoxia were decreased by DAPT treatment, and knockdown of the expression of hypoxia-inducible factor-1α (HIF-1α) suppressed the cobalt-induced increase in Wnt target gene levels. No significant difference in cell proliferation rate was found following DAPT treatment when the expression of HIF-1α was knocked down. The results of the present study showed the opposing effects of Wnt and Notch signaling under cobalt-mimicked hypoxia, which were partially regulated by HIF-1α, The results also showed that osteoblast proliferation was dependent on Wnt-Notch signal crosstalk. PMID:27220406

  5. Musculoskeletal manifestations of endocrine disorders.

    PubMed

    Boswell, Stephanie B; Patel, Dakshesh B; White, Eric A; Gottsegen, Christopher J; Forrester, Deborah M; Masih, Sulabha; Matcuk, George R

    2014-01-01

    Endocrine disorders can lead to disturbances in numerous systems within the body, including the musculoskeletal system. Radiological evaluation of these conditions can demonstrate typical appearances of the bones and soft tissues. Knowledge of these patterns can allow the radiologist to suggest a diagnosis that may not be clinically apparent. This review will highlight the typical musculoskeletal findings of acromegaly, hypercortisolism, hyperthyroidism, hypothyroidism, hyperparathyroidism, pseudo- and pseudopseudohypoparathyroidism, and diabetes mellitus. The radiological manifestations of each of these endocrine disorders, along with a brief discussion of the pathophysiology and clinical implications, will be discussed. PMID:24642251

  6. Endocrine Disorders in Cystic Fibrosis.

    PubMed

    Blackman, Scott M; Tangpricha, Vin

    2016-08-01

    Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages. PMID:27469183

  7. Endocrine and Nutritional Management After Bariatric Surgery

    MedlinePlus

    Endocrine and Nutritional Management After Bariatric Surgery A Patient’s Guide Bariatric (weight loss) surgery is a treatment ... This guide for patients is based on The Endocrine Society’s practice guidelines for physicians that focus on ...

  8. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  9. ANALYTICAL CHALLENGES OF ENVIRONMENTAL ENDOCRINE DISRUPTOR MONITORING

    EPA Science Inventory

    Reported increases in the incidence of endocrine-related conditions have led to speculation about environmental causes. Environmental scientists are focusing increased research effort into understanding the mechanisms by which endocrine disruptors affect human and ecological h...

  10. Variations of photoacoustic signals within the Vickers indent in metals under external stresses by the examples of steel and nanocopper

    NASA Astrophysics Data System (ADS)

    Glazov, A. L.; Morozov, N. F.; Muratikov, K. L.

    2016-09-01

    The effect of external mechanical stresses on the parameters of photoacoustic signals within Vickers indents in steel and nanocopper has been experimentally revealed. It has been shown that changes in photoacoustic signals can be reversible and irreversible, depending on the indent orientation and the stress applied to the sample. In this case, reversible changes can reach significant values at the level of tens of percent of the average signal from the sample. The relative changes in the photoacoustic signal amplitudes have been theoretically evaluated for indented and unindented areas, taking into account the temperature dependence of the elastic modulus of metals. It has been shown that its consideration allows qualitative explanation of the differences in the behavior of photoacoustic signals under stresses in indented and unindented areas.

  11. A hypothetical role for vitamin K2 in the endocrine and exocrine aspects of dental caries.

    PubMed

    Southward, Ken

    2015-03-01

    The growing interest in oral/systemic links demand new paradigms to understand disease processes. New opportunities for dental research, particularly in the fields of neuroscience and endocrinology will emerge. The role of the hypothalamus portion of the brain cannot be underestimated. Under the influence of nutrition, it plays a significant role in the systemic model of dental caries. Currently, the traditional theory of dental caries considers only the oral environment and does not recognize any significant role for the brain. The healthy tooth, however, has a centrifugal fluid flow to nourish and cleanse it. This is moderated by the hypothalamus/parotid axis which signals the endocrine portion of the parotid glands. High sugar intake creates an increase in reactive oxygen species and oxidative stress in the hypothalamus. When this signaling mechanism halts or reverses the dentinal fluid flow, it renders the tooth vulnerable to oral bacteria, which can now attach to the tooth's surface. Acid produced by oral bacteria such as Strep Mutans and lactobacillus can now de-mineralize the enamel and irritate the dentin. The acid attack stimulates an inflammatory response which results in dentin breakdown from the body's own matrix metalloproteinases. Vitamin K2 (K2) has been shown to have an antioxidant potential in the brain and may prove to be a potent way to preserve the endocrine controlled centrifugal dentinal fluid flow. Stress, including oxidative stress, magnifies the body's inflammatory response. Sugar can not only increase oral bacterial acid production but it can concurrently reduce the tooth's defenses through endocrine signaling. Saliva production is the exocrine function of the salivary glands. The buffering capacity of saliva is critical to neutralizing the oral environment. This minimizes the de-mineralization of enamel and enhances its re-mineralization. K2, such as that found in fermented cheese, improves salivary buffering through its influence on

  12. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to

  13. Analysing calcium signalling of cells under high shear flows using discontinuous dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Soffe, Rebecca; Baratchi, Sara; Tang, Shi-Yang; Nasabi, Mahyar; McIntyre, Peter; Mitchell, Arnan; Khoshmanesh, Khashayar

    2015-07-01

    Immobilisation of cells is an important feature of many cellular assays, as it enables the physical/chemical stimulation of cells; whilst, monitoring cellular processes using microscopic techniques. Current approaches for immobilising cells, however, are hampered by time-consuming processes, the need for specific antibodies or coatings, and adverse effects on cell integrity. Here, we present a dielectrophoresis-based approach for the robust immobilisation of cells, and analysis of their responses under high shear flows. This approach is quick and label-free, and more importantly, minimises the adverse effects of electric field on the cell integrity, by activating the field for a short duration of 120 s, just long enough to immobilise the cells, after which cell culture media (such as HEPES) is flushed through the platform. In optimal conditions, at least 90% of the cells remained stably immobilised, when exposed to a shear stress of 63 dyn/cm2. This approach was used to examine the shear-induced calcium signalling of HEK-293 cells expressing a mechanosensitive ion channel, transient receptor potential vaniloid type 4 (TRPV4), when exposed to the full physiological range of shear stress.

  14. Insulin Signaling Misregulation underlies Circadian and Cognitive Deficits in a Drosophila Fragile X Model

    PubMed Central

    Monyak, Rachel E.; Emerson, Danielle; Schoenfeld, Brian P.; Zheng, Xiangzhong; Chambers, Daniel B.; Rosenfelt, Cory; Langer, Steven; Hinchey, Paul; Choi, Catherine H.; McDonald, Thomas V.; Bolduc, Francois V.; Sehgal, Amita; McBride, Sean M.J.; Jongens, Thomas A.

    2016-01-01

    Fragile X syndrome (FXS) is an undertreated neurodevelopmental disorder characterized by low IQ and a wide range of other symptoms including disordered sleep and autism. Although FXS is the most prevalent inherited cause of intellectual disability, its mechanistic underpinnings are not well understood. Using Drosophila as a model of FXS, we showed that select expression of dfmr1 in the insulin-producing cells (IPCs) of the brain was sufficient to restore normal circadian behavior and to rescue the memory deficits in the fragile X mutant fly. Examination of the insulin-signaling (IS) pathway revealed elevated levels of Drosophila insulin-like peptide 2 (Dilp2) in the IPCs and elevated IS in the dfmr1 mutant brain. Consistent with a causal role for elevated IS in dfmr1 mutant phenotypes, expression of dfmr1 specifically in the IPCs reduced IS, and genetic reduction of the insulin pathway also led to amelioration of circadian and memory defects. Furthermore we showed that treatment with the FDA approved drug metformin also rescued memory. Finally, we showed that reduction of IS is required at different time points to rescue circadian behavior and memory. Our results indicate that insulin misregulation underlies the circadian and cognitive phenotypes displayed by the Drosophila fragile X model, and thus reveal a metabolic pathway that can be targeted by new and already approved drugs to treat fragile X patients. PMID:27090306

  15. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system.

  16. Secure chaotic transmission of electrocardiography signals with acousto-optic modulation under profiled beam propagation.

    PubMed

    Almehmadi, Fares S; Chatterjee, Monish R

    2015-01-10

    Electrocardiography (ECG) signals are used for both medical purposes and identifying individuals. It is often necessary to encrypt this highly sensitive information before it is transmitted over any channel. A closed-loop acousto-optic hybrid device acting as a chaotic modulator is applied to ECG signals to achieve this encryption. Recently improved modeling of this approach using profiled optical beams has shown it to be very sensitive to key parameters that characterize the encryption and decryption process, exhibiting its potential for secure transmission of analog and digital signals. Here the encryption and decryption is demonstrated for ECG signals, both analog and digital versions, illustrating strong encryption without significant distortion. Performance analysis pertinent to both analog and digital transmission of the ECG waveform is also carried out using output signal-to-noise, signal-to-distortion, and bit-error-rate measures relative to the key parameters and presence of channel noise in the system. PMID:25967617

  17. Hormones in the city: endocrine ecology of urban birds.

    PubMed

    Bonier, Frances

    2012-05-01

    Urbanization dramatically changes the landscape, presenting organisms with novel challenges and often leading to reduced species diversity. Urban ecologists have documented numerous biotic and abiotic consequences of urbanization, such as altered climate, species interactions, and community composition, but we lack an understanding of the mechanisms underlying organisms' responses to urbanization. Here, I review findings from the nascent field of study of the endocrine ecology of urban birds. Thus far, no clear or consistent patterns have been revealed, but we do have evidence that urban habitat can shape endocrine traits, and that those traits might contribute to adaptation to the urban environment. I suggest strong approaches for future work addressing exciting questions about the role of endocrine traits in mediating responses to urbanization within species across the globe.

  18. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model.

    PubMed

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  19. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model

    PubMed Central

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region. PMID:22837740

  20. Neural mechanisms underlying the effects of face-based affective signals on memory for faces: a tentative model.

    PubMed

    Tsukiura, Takashi

    2012-01-01

    In our daily lives, we form some impressions of other people. Although those impressions are affected by many factors, face-based affective signals such as facial expression, facial attractiveness, or trustworthiness are important. Previous psychological studies have demonstrated the impact of facial impressions on remembering other people, but little is known about the neural mechanisms underlying this psychological process. The purpose of this article is to review recent functional MRI (fMRI) studies to investigate the effects of face-based affective signals including facial expression, facial attractiveness, and trustworthiness on memory for faces, and to propose a tentative concept for understanding this affective-cognitive interaction. On the basis of the aforementioned research, three brain regions are potentially involved in the processing of face-based affective signals. The first candidate is the amygdala, where activity is generally modulated by both affectively positive and negative signals from faces. Activity in the orbitofrontal cortex (OFC), as the second candidate, increases as a function of perceived positive signals from faces; whereas activity in the insular cortex, as the third candidate, reflects a function of face-based negative signals. In addition, neuroscientific studies have reported that the three regions are functionally connected to the memory-related hippocampal regions. These findings suggest that the effects of face-based affective signals on memory for faces could be modulated by interactions between the regions associated with the processing of face-based affective signals and the hippocampus as a memory-related region.

  1. [Endocrine abnormalities in HIV infections].

    PubMed

    Verges, B; Chavanet, P; Desgres, J; Kisterman, J P; Waldner, A; Vaillant, G; Portier, H; Brun, J M; Putelat, R

    The finding of endocrine gland lesions at pathological examination in AIDS and reports of several cases of endocrine disease in patients with this syndrome have prompted us to study endocrine functions in 63 patients (51 men, 12 women) with HIV-1 infection. According to the Center for Disease Control (CDC) classification system, 13 of these patients were stage CDC II, 27 stage CDC III and 23 stage CDC IV. We explored the adrenocortical function (ACTH, immediate tetracosactrin test) and the thyroid function (free T3 and T4 levels, TRH on TSH test) in all 63 patients. The hypothalamic-pituitary-gonadal axis (testosterone levels, LHRH test) and prolactin secretion (THR test) were explored in the 51 men. The results obtained showed early peripheral testicular insufficiency at stage CDC II and early pituitary gland abnormalities with hypersecretion of ACTH and prolactin also at stage CDC II. On the other hand, adrenocortical and pituitary abnormalities were not frequently found. The physiopathology of the endocrine abnormalities observed in HIV-1-infected patients remains unclear, but one may suspect that it involves interleukin-1 since this protein factor has recently been shown to stimulate the corticotropin-releasing hormone secretion and to act directly on the glycoprotein capsule of the virus (gp 120) whose structure is similar to that of some neurohormones.

  2. [Environmental contaminants and endocrine disruptors].

    PubMed

    Fontenele, Eveline Gadelha Pereira; Martins, Manoel Ricardo Alves; Quidute, Ana Rosa Pinto; Montenegro, Renan Magalhães

    2010-02-01

    The toxicity of various pollutants has been routinely investigated according to their teratogenic and carcinogenic effects. In the last few decades, however, many of such pollutants have been shown to adversely affect the endocrine system of human beings and other species. Currently, more than eleven million chemical substances are known in the world, and approximately 3,000 are produced on a large scale. Numerous chemical composites of domestic, industrial and agricultural use have been shown to influence hormonal activity. Examples of such chemical products with estrogenic activity are substances used in cosmetics, anabolizing substances for animal feeding, phytoestrogens and persistent organic pollutants (POPs). These agents are seen in residential, industrial and urban sewerage system effluents and represent an important source of environmental contamination. The International Programme on Chemical Safety (IPCS) defines as endocrine disruptors substances or mixtures seen in the environment capable of interfering with endocrine system functions resulting in adverse effects in an intact organism or its offspring. In this article the authors present a current literature review about the role of these pollutants in endocrine and metabolic diseases, probable mechanisms of action, and suggest paths of investigation and possible strategies for prevention and reduction of its possible damages. PMID:20414542

  3. CURRENT CHALLENGES ON ENDOCRINE DISRUPTORS

    EPA Science Inventory

    For over ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; the occurrence of this in the real world and in developing tools for screening and prediction of risk. ...

  4. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  5. Plasticity of renal endocrine function.

    PubMed

    Kurt, Birgül; Kurtz, Armin

    2015-03-15

    The kidneys are important endocrine organs. They secrete humoral factors, such as calcitriol, erythropoietin, klotho, and renin into the circulation, and therefore, they are essentially involved in the regulation of a variety of processes ranging from bone formation to erythropoiesis. The endocrine functions are established by cells, such as proximal or distal tubular cells, renocortical interstitial cells, or mural cells of afferent arterioles. These endocrine cells are either fixed in number, such as tubular cells, which individually and gradually upregulate or downregulate hormone production, or they belong to a pool of cells, which display a recruitment behavior, such as erythropoietin- and renin-producing cells. In the latter case, regulation of humoral function occurs via (de)recruitment of active endocrine cells. As a consequence renin- and erythropoietin-producing cells in the kidney show a high degree of plasticity by reversibly switching between distinct cell states. In this review, we will focus on the characteristics of renin- and of erythropoietin-producing cells, especially on their origin and localization, their reversible transformations, and the mediators, which are responsible for transformation. Finally, we will discuss a possible interconversion of renin and erythropoietin expression. PMID:25608752

  6. Fluctuations, under time reversal, of the natural time and the entropy distinguish similar looking electric signals of different dynamics

    SciTech Connect

    Varotsos, P. A.; Sarlis, N. V.; Skordas, E. S.; Lazaridou, M. S.

    2008-01-01

    We show that the scale dependence of the fluctuations of the natural time itself under time reversal provides a useful tool for the discrimination of seismic electric signals (critical dynamics) from noises emitted from man-made sources, as well as for the determination of the scaling exponent. We present recent data of electric signals detected at the Earth's surface, which confirm that the value of the entropy in natural time as well as its value under time reversal are smaller than that of the entropy of a 'uniform' distribution.

  7. The Intersection of Neurotoxicology and Endocrine Disruption

    PubMed Central

    Weiss, Bernard

    2012-01-01

    Endocrine disruption, the guiding theme of the 27th International Neurotoxicology Conference, merged into the neurotoxicology agenda largely because hormones help steer the process of brain development. Although the disruption motif first attracted public health attention because of reproductive anomalies in both wildlife and humans, the neurobehavioral implications had been planted decades earlier. They stemmed from the principle that sex differences in behavior are primarily the outcomes of differences in how the brain is sexually differentiated during early development by gonadal hormones (the Organizational Hypothesis). We also now understand that environmental chemicals are capable of altering these underlying events and processes. Among those chemicals, the group labeled as endocrine disrupting chemicals (EDCs) offers the clearest evidence of such selectivity, a consequence of their actions on the endogenous sex steroids, androgens and estrogens. Two EDCs in particular offer useful and intriguing examples. One is phthalate esters. The other is bisphenol A. Both agents are used extensively in plastics manufacture, and are pervasive in the environment. Both are produced in immense quantities. Both are found in almost all humans. Phthalates are considered to function in essence as anti-androgens, while bisphenol A is labeled as an estrogen. Their associations with brain sexual differentiation are reviewed and further questions noted. Both EDCs produce a wider spectrum of health effects, however, than would be extrapolated simply from their properties as anti-androgens and estrogens. Obesity is one example. Further complicating their assessment as health risks are questions about nonmonotonic dose-response functions and about transgenerational effects incurred via epigenetic mechanisms. All these facets of endocrine disruption are pieces of a puzzle that challenge neurotoxicologists for solutions. PMID:22659293

  8. Performance of a Ka-band satellite system under variable transmitted signal power conditions

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene; Kerczewski, Robert J.

    1987-01-01

    A laboratory hardware-based satellite communication system simulator has been used to measure the effects of transmitted signal power changes on the performance of a Ka-band system. Such power changes can be used to compensate for signal fade due to rain attenuation. This paper presents and discusses the results of these measurements.

  9. Attenuated orexinergic signaling underlies depression-like responses induced by daytime light deficiency.

    PubMed

    Deats, S P; Adidharma, W; Lonstein, J S; Yan, L

    2014-07-11

    Light has profound effects on mood, as exemplified by seasonal affective disorder (SAD) and the beneficial effects of bright light therapy. However, the underlying neural pathways through which light regulates mood are not well understood. Our previous work has developed the diurnal grass rat, Arvicanthis niloticus, as an animal model of SAD (Leach et al., 2013a,b). By utilizing a 12:12-h dim light:dark (DLD) paradigm that simulates the lower light intensity of winter, we showed that the animals housed in DLD exhibited increased depression-like behaviors in the forced swim test (FST) and sweet solution preference (SSP) compared to animals housed in bright light during the day (BLD). The objective of the present study was to test the hypothesis that light affects mood by acting on the brain orexinergic system in the diurnal grass rat model of SAD. First, orexin A immunoreactivity (OXA-ir) was examined in DLD and BLD grass rats. Results revealed a reduction in the number of OXA-ir neurons in the hypothalamus and attenuated OXA-ir fiber density in the dorsal raphe nucleus of animals in the DLD compared to those in the BLD group. Then, the animals in BLD were treated systemically with SB-334867, a selective orexin 1 receptor (OX1R) antagonist, which led to a depressive phenotype characterized by increased immobility in the FST and a decrease in SSP compared to vehicle-treated controls. Results suggest that attenuated orexinergic signaling is associated with increased depression-like behaviors in grass rats, and support the hypothesis that the orexinergic system mediates the effects of light on mood.

  10. UWB doublet signal generation and modulation based on DFB laser under optical pulses injection

    NASA Astrophysics Data System (ADS)

    Chen, Dalei; Wang, Rong; Xiang, Peng; Pu, Tao; Fang, Tao; Zhou, Hua; Zhao, Jiyong; Huang, Long; Zhu, Huatao; Wang, Peng

    2016-05-01

    In this paper, a novel scheme to generate ultra-wideband (UWB) doublet signals based on the cross-gain modulation (XGM) effect in the DFB lasers is proposed and experimentally demonstrated, the modulation and transmission of the generated UWB doublet signals are also researched. In the proposed system, a gain-switched laser (GSL) is used as a master laser (ML) and the optical pulses from the ML are optically injected into two paralleled DFB lasers, which are used as slave lasers (SL). Then the outputs from the SLs are detected by a balanced photodiode (BPD) to generate the Bi-phased UWB signals. By properly setting the system parameters, UWB signals with various modulation formats such as on-off keying (OOK), pulse amplitude modulation (PAM) as well as the phase-shift keying (PSK) can be generated. In addition, fiber transmission of the modulated UWB signals is also experimentally investigated.

  11. Review of the reproductive biology of amphipods and their endocrine regulation: identification of mechanistic pathways for reproductive toxicants.

    PubMed

    Hyne, Ross V

    2011-12-01

    The reproductive biology of amphipods is reviewed to update the knowledge of the male and female reproductive processes of oogenesis and spermatogenesis as well as the endocrine systems of amphipods with the aim of advancing studies of reproductive toxicology. The ovarian and reproduction cycles of female gammaridean amphipods are closely correlated with the molt cycle, which is under direct control by the steroid hormone 20-hydroxyecdysone. The ability of males to copulate and subsequently for females to ovulate is restricted to the early postmolt period of the females. New developments in our understanding of the molt cycle and the endocrine regulatory pathways for reproduction using genomics techniques on other crustacean species are also discussed. The arthropod sterol ponasterone A or xenobiotics such as the fungicide fenarimol have been shown to elicit endocrine disruption in some crustaceans by acting as an agonist for 20-hydroxyecdysone at the ecdysone receptor or by inhibiting the synthesis of 20-hydroxyecdysone, respectively, resulting in disruption of molting and reproduction. Recent studies suggest that cadmium can inhibit secondary vitellogenesis in amphipods. Experimental approaches for examining the metabolic pathways associated with ecdysteroid hormonal signaling or metabolism, exoskeleton maintenance and molting, and the regulation of vitellogenin in amphipods are discussed. This information should aid in the identification of useful biomarkers for reproductive toxicity.

  12. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    PubMed Central

    Hu, Zheng; Lin, Jun; Chen, Zhong-Sheng; Yang, Yong-Min; Li, Xue-Jun

    2015-01-01

    High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT) have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes. PMID:25621612

  13. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    PubMed Central

    Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119

  14. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  15. Endocrine therapy resistance in breast cancer: current status, possible mechanisms and overcoming strategies.

    PubMed

    Fan, Weimin; Chang, Jinjia; Fu, Peifeng

    2015-08-01

    Endocrine therapy has become one of most effective forms of targeted adjuvant therapy for hormone-sensitive breast cancer and may be given after surgery or radiotherapy, and also prior, or subsequent to chemotherapy. Current commonly used drugs for adjuvant endocrine therapy can be divided into following three classes: selective estrogen receptor modulators, aromatase inhibitors and selective estrogen receptor downregulators. Tumor cells can develop resistance to endocrine therapy, a major obstacle limiting the success of breast cancer treatment. The complicated crosstalk, both genomic and nongenomic, between estrogen receptors and growth factors was considered to be a crucial factor contributing to endocrine resistance. However, resistance to this therapy is thought to be a progressive, step-wise process, and the underlying mechanism remains unclear. In this review, we summarize the possible biological and molecular mechanisms that underlie endocrine resistance, and discuss some novel strategies to overcoming these issues.

  16. Endocrine Factors Modulating Immune Responses in Pregnancy

    PubMed Central

    Schumacher, Anne; Costa, Serban-Dan; Zenclussen, Ana Claudia

    2014-01-01

    How the semi-allogeneic fetus is tolerated by the maternal immune system remains a fascinating phenomenon. Despite extensive research activity in this field, the mechanisms underlying fetal tolerance are still not well understood. However, there are growing evidences that immune–immune interactions as well as immune–endocrine interactions build up a complex network of immune regulation that ensures fetal survival within the maternal uterus. In the present review, we aim to summarize emerging research data from our and other laboratories on immune modulating properties of pregnancy hormones with a special focus on progesterone, estradiol, and human chorionic gonadotropin. These pregnancy hormones are critically involved in the successful establishment, maintenance, and termination of pregnancy. They suppress detrimental maternal alloresponses while promoting tolerance pathways. This includes the reduction of the antigen-presenting capacity of dendritic cells (DCs), monocytes, and macrophages as well as the blockage of natural killer cells, T and B cells. Pregnancy hormones also support the proliferation of pregnancy supporting uterine killer cells, retain tolerogenic DCs, and efficiently induce regulatory T (Treg) cells. Furthermore, they are involved in the recruitment of mast cells and Treg cells into the fetal–maternal interface contributing to a local accumulation of pregnancy-protective cells. These findings highlight the importance of endocrine factors for the tolerance induction during pregnancy and encourage further research in the field. PMID:24847324

  17. Endocrine pancreas development in zebrafish.

    PubMed

    Tehrani, Zahra; Lin, Shuo

    2011-10-15

    Type 1 diabetes results from the autoimmune destruction of insulin-producing pancreatic β cells. Current efforts to cure diabetes are aimed at replenishing damaged cells by generating a new supply of β cells in vitro. The most promising strategy for achieving this goal is to differentiate embryonic stem (ES) cells by sequentially exposing them to signaling molecules that they would normally encounter in vivo. This approach requires a thorough understanding of the temporal sequence of the signaling events underlying pancreatic β-cell induction during embryonic development. The zebrafish system has emerged as a powerful tool in the study of pancreas development. In this review, we provide a temporal summary of pancreas development in zebrafish with a special focus on the formation of pancreatic β cells.

  18. Endocrine responsiveness: understanding how progesterone receptor can be used to select endocrine therapy.

    PubMed

    Osborne, C Kent; Schiff, Rachel; Arpino, Grazia; Lee, Adrian Susan; Hilsenbeck, V G

    2005-12-01

    The receptor for the female hormone progesterone (PR), like that for estrogen (ER), is an important predictive marker for response to endocrine therapy in patients with breast cancer. PR exists as two isoforms, A and B. PR is important in mammary gland development and excess production of PRB is associated with breast cancer risk. Overabundance of PRA is related to resistance to tamoxifen. Total loss of PR is linked to reduced benefit from tamoxifen in both the adjuvant and metastatic settings. The predictive significance of PR expression was originally explained on the basis that PR is an ER-regulated gene and its presence indicates a functioning ER pathway and, therefore, an endocrine-responsive tumor. More recent data, however, suggest an alternative explanation. While many studies show that loss of PR predicts relative resistance to the antiestrogen tamoxifen, a recent study suggests that PR loss may not indicate resistance to aromatase inhibition. The finding that PR loss may not correlate with resistance to aromatase inhibition may be related to crosstalk between ER and PR and growth factor receptor pathways such as HER2. PR loss in some tumors is due to excessive growth factor receptor signaling (overexpression of HER2), which downregulates expression of the PR gene. Neoadjuvant studies also show that HER2 signaling is associated with tamoxifen resistance, but not resistance to aromatase inhibitors. Therefore, high HER2 signaling could explain both PR loss and resistance to tamoxifen while the response to aromatase inhibitors is maintained. In this way, PR loss in some tumors may be a surrogate marker for increased signaling through the growth factor receptor tyrosine kinase pathway and it may help clinicians decide between initial use of an aromatase inhibitor or tamoxifen in the individual patient.

  19. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment.

  20. Participation of signaling cascades in the regulation of erythropoiesis under conditions of cytostatic treatment.

    PubMed

    Dygai, A M; Zhdanov, V V; Miroshnichenko, L A; Udut, E V; Zyuz'kov, G N; Simanina, E V; Chaikovskii, A V; Stavrova, L A; Trofimova, E S; Burmina, Ya V

    2015-01-01

    We studied the role of signaling pathways in the regulation of erythropoiesis against the background of myelosuppression caused by administration of 5-fluorouracil. The important role of cyclic AMP in the maturation of erythroid progenitors after cytostatic treatment was demonstrated. The secretory activity of myelokaryocytes during the period of erythroid hemopoiesis recovery is mainly regulated via the p38 MAPK signaling pathway; non-erythropoietin factors are involved in the formation of erythropoietic activity of adherent cells of the microenvironment. PMID:25578863

  1. Notch Signaling in Pancreatic Development

    PubMed Central

    Li, Xu-Yan; Zhai, Wen-Jun; Teng, Chun-Bo

    2015-01-01

    The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promotes premature differentiation of the endocrine pancreas. However, there is still the contrary opinion that Notch signaling specifies the endocrine lineage. Here, we review the current knowledge of the Notch signaling pathway in pancreatic development and its crosstalk with the Wingless and INT-1 (Wnt) and fibroblast growth factor (FGF) pathways. PMID:26729103

  2. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  3. Warning signals are under positive frequency-dependent selection in nature

    PubMed Central

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-01-01

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency. PMID:26858416

  4. Warning signals are under positive frequency-dependent selection in nature.

    PubMed

    Chouteau, Mathieu; Arias, Mónica; Joron, Mathieu

    2016-02-23

    Positive frequency-dependent selection (FDS) is a selection regime where the fitness of a phenotype increases with its frequency, and it is thought to underlie important adaptive strategies resting on signaling and communication. However, whether and how positive FDS truly operates in nature remains unknown, which hampers our understanding of signal diversity. Here, we test for positive FDS operating on the warning color patterns of chemically defended butterflies forming multiple coexisting mimicry assemblages in the Amazon. Using malleable prey models placed in localities showing differences in the relative frequencies of warningly colored prey, we demonstrate that the efficiency of a warning signal increases steadily with its local frequency in the natural community, up to a threshold where protection stabilizes. The shape of this relationship is consistent with the direct effect of the local abundance of each warning signal on the corresponding avoidance knowledge of the local predator community. This relationship, which differs from purifying selection acting on each mimetic pattern, indicates that predator knowledge, integrated over the entire community, is saturated only for the most common warning signals. In contrast, among the well-established warning signals present in local prey assemblages, most are incompletely known to local predators and enjoy incomplete protection. This incomplete predator knowledge should generate strong benefits to life history traits that enhance warning efficiency by increasing the effective frequency of prey visible to predators. Strategies such as gregariousness or niche convergence between comimics may therefore readily evolve through their effects on predator knowledge and warning efficiency.

  5. Nonruminant Nutrition Symposium: Involvement of gut neural and endocrine systems in pathological disorders of the digestive tract.

    PubMed

    Furness, J B; Poole, D P

    2012-04-01

    The functioning of the gastrointestinal tract is under the control of the most extensive system of peripheral neurons in the body, the enteric nervous system, and the largest endocrine system of the body, the GEP endocrine system. The enteric nervous system in large mammals contains 500 million neurons, and the GEP endocrine system produces more than 30 hormones. Numerous enteric neuropathies affecting both humans and animals have been described and digestive disorders affect commercially important species, such as horses and cattle. The most severe enteric neuropathies (e.g., lethal white syndrome in horses or Hirschsprung's disease in humans) can be fatal. Also, horses with ileus or other digestive disorders are commonly euthanized. In this review we discuss examples of enteric neuropathies that affect agricultural animals and humans: prion disease, postoperative ileus, distal enteric aganglionosis, and infective diarrhea. Enteric neurons and glia are a location of prion proteins and are involved in transmission of the infection from gut to brain and brain to gut. Postoperative ileus is a complex disorder involving the local inhibitory effects of sympathetic nervous system activation and the release of opioids, presumably from enteric neurons. Intestinal inflammation, especially of the external muscle that includes enteric ganglia, also occurs in ileus. Congenital distal bowel aganglionosis, responsible for lethal white syndrome in horses, Hirschsprung's disease in humans, and similar conditions in mice and rats, is a fatal condition if untreated. Mutations of the same genes can cause the condition in each of these species. The only effective current treatment is surgical removal of the aganglionic bowel. Infectious diarrheas involve activation of enteric secretomotor neurons by pathogens and the toxins they produce, which causes substantial fluid loss. Strategies to target enteric neurons in the treatment of secretory diarrheas have not been developed. Disorders

  6. Multiple endocrine neoplasia type 2.

    PubMed

    Lodish, Maya

    2013-01-01

    Multiple endocrine neoplasia type 2 (MEN2) is an autosomal-dominant cancer syndrome characterized by variable penetrance of medullary thyroid carcinoma(MTC), pheochromocytoma (PHEO), and primary hyperparathyroidism (PHPT). MEN2 consists of two clinical subtypes, MEN2A and MEN2B. Familial medullary thyroid cancer is now viewed as a phenotypic variant of MEN2A with decreased penetrance for PHEO and PHPT rather than a distinct entity. All subtypes are caused by gain-of-function mutations of the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. Recognition of the clinical entity in individuals and families at risk of harboring a germline RET mutation is crucial for the management and prevention of associated malignancies. Recent guidelines released by the American Thyroid Association regarding the management of MTC will be summarized in this chapter.

  7. Classical endocrine diseases causing obesity.

    PubMed

    Weaver, Jolanta U

    2008-01-01

    Obesity is associated with several endocrine diseases, including common ones such as hypothyroidism and polycystic ovarian syndrome to rare ones such as Cushing's syndrome, central hypothyroidism and hypothalamic disorders. The mechanisms for the development of obesity vary in according to the endocrine condition. Hypothyroidism is associated with accumulation of hyaluronic acid within various tissues, additional fluid retention due to reduced cardiac output and reduced thermogenesis. The pathophysiology of obesity associated with polycystic ovarian syndrome remains complex as obesity itself may simultaneously be the cause and the effect of the syndrome. Net excess of androgen appears to be pivotal in the development of central obesity. In Cushing's syndrome, an interaction with thyroid and growth hormones plays an important role in addition to an increased adipocyte differentiation and adipogenesis. This review also describes remaining rare cases: hypothalamic obesity due to central hypothyroidism and combined hormone deficiencies. PMID:18230905

  8. Male reprotoxicity and endocrine disruption

    PubMed Central

    Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim

    2013-01-01

    Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574

  9. Endocrine therapy of breast cancer

    SciTech Connect

    Cavalli, F.

    1986-01-01

    This book results from a meeting of the ESO (European School of Oncology) Task Force on endocrine aspects of breast cancer. The contributions stem from some of the most outstanding researchers in Europe and highlight mainly methodological issues and new avenues for future research. The chapters on basic research deal primarily with experimental strategies for studying the relationship between steroid hormones, growth factors, and oncongenes. The clinically oriented chapters treat the methodology of clinical trials. Provocative questions are raised, such as: What are the pitfalls in endocrine trials. What does statistical proof mean. How can we consider a quality of life endpoint in the adjuvant setting. Two special reports deal with the controversial issues of chemoprevention in high-risk normal women and the optimization of the hormonal contribution to the adjuvant therapy of breast cancer. Topics considered included oncogenic transformations, radiotherapy, steroid hormones, cell proliferation, tamoxifen, and preventive medicine.

  10. [Contamination, endocrine disruptors and cancer].

    PubMed

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-03-01

    Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations. PMID:27382804

  11. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    PubMed

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals.

  12. An artificial network model for estimating the network structure underlying partially observed neuronal signals.

    PubMed

    Komatsu, Misako; Namikawa, Jun; Chao, Zenas C; Nagasaka, Yasuo; Fujii, Naotaka; Nakamura, Kiyohiko; Tani, Jun

    2014-01-01

    Many previous studies have proposed methods for quantifying neuronal interactions. However, these methods evaluated the interactions between recorded signals in an isolated network. In this study, we present a novel approach for estimating interactions between observed neuronal signals by theorizing that those signals are observed from only a part of the network that also includes unobserved structures. We propose a variant of the recurrent network model that consists of both observable and unobservable units. The observable units represent recorded neuronal activity, and the unobservable units are introduced to represent activity from unobserved structures in the network. The network structures are characterized by connective weights, i.e., the interaction intensities between individual units, which are estimated from recorded signals. We applied this model to multi-channel brain signals recorded from monkeys, and obtained robust network structures with physiological relevance. Furthermore, the network exhibited common features that portrayed cortical dynamics as inversely correlated interactions between excitatory and inhibitory populations of neurons, which are consistent with the previous view of cortical local circuits. Our results suggest that the novel concept of incorporating an unobserved structure into network estimations has theoretical advantages and could provide insights into brain dynamics beyond what can be directly observed.

  13. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers.

    PubMed

    Dai, Lei; Korolev, Kirill S; Gore, Jeff

    2015-08-11

    Shifting patterns of temporal fluctuations have been found to signal critical transitions in a variety of systems, from ecological communities to human physiology. However, failure of these early warning signals in some systems calls for a better understanding of their limitations. In particular, little is known about the generality of early warning signals in different deteriorating environments. In this study, we characterized how multiple environmental drivers influence the dynamics of laboratory yeast populations, which was previously shown to display alternative stable states [Dai et al., Science, 2012]. We observed that both the coefficient of variation and autocorrelation increased before population collapse in two slowly deteriorating environments, one with a rising death rate and the other one with decreasing nutrient availability. We compared the performance of early warning signals across multiple environments as "indicators for loss of resilience." We find that the varying performance is determined by how a system responds to changes in a specific driver, which can be captured by a relation between stability (recovery rate) and resilience (size of the basin of attraction). Furthermore, we demonstrate that the positive correlation between stability and resilience, as the essential assumption of indicators based on critical slowing down, can break down in this system when multiple environmental drivers are changed simultaneously. Our results suggest that the stability-resilience relation needs to be better understood for the application of early warning signals in different scenarios.

  14. Mechanism underlying the inner membrane retention of Escherichia coli lipoproteins caused by Lol avoidance signals.

    PubMed

    Hara, Takashi; Matsuyama, Shin-ichi; Tokuda, Hajime

    2003-10-10

    Escherichia coli lipoproteins are localized to either the inner or outer membrane depending on the residue at position 2. The inner membrane retention signal, Asp at position 2 in combination with certain residues at position 3, functions as a Lol avoidance signal, i.e. the signal inhibits the recognition of lipoproteins by LolCDE that releases lipoproteins from the inner membrane. To understand the role of the residue at position 2, outer membrane-specific lipoproteins with Cys at position 2 were subjected to chemical modification followed by the release reaction in reconstituted proteoliposomes. Sulfhydryl-specific introduction of nonprotein molecules or a negative charge to Cys did not inhibit the LolCDE-dependent release. In contrast, oxidation of Cys to cysteic acid resulted in generation of the Lol avoidance signal, indicating that the Lol avoidance signal requires a critical length of negative charge at the second residue. Furthermore, not only modification of the carboxylic acid of Asp at position 2 but also that of the amine of phosphatidylethanolamine abolished the Lol avoidance function. Based on these results, the Lol avoidance mechanism is discussed.

  15. Dopaminergic signaling mediates the motivational response underlying the opponent process to chronic but not acute nicotine.

    PubMed

    Grieder, Taryn E; Sellings, Laurie H; Vargas-Perez, Hector; Ting-A-Kee, Ryan; Siu, Eric C; Tyndale, Rachel F; van der Kooy, Derek

    2010-03-01

    The mesolimbic dopamine (DA) system is implicated in the processing of the positive reinforcing effect of all drugs of abuse, including nicotine. It has been suggested that the dopaminergic system is also involved in the aversive motivational response to drug withdrawal, particularly for opiates, however, the role for dopaminergic signaling in the processing of the negative motivational properties of nicotine withdrawal is largely unknown. We hypothesized that signaling at dopaminergic receptors mediates chronic nicotine withdrawal aversions and that dopaminergic signaling would differentially mediate acute vs dependent nicotine motivation. We report that nicotine-dependent rats and mice showed conditioned place aversions to an environment paired with abstinence from chronic nicotine that were blocked by the DA receptor antagonist alpha-flupenthixol (alpha-flu) and in DA D(2) receptor knockout mice. Conversely, alpha-flu pretreatment had no effect on preferences for an environment paired with abstinence from acute nicotine. Taken together, these results suggest that dopaminergic signaling is necessary for the opponent motivational response to nicotine in dependent, but not non-dependent, rodents. Further, signaling at the DA D(2) receptor is critical in mediating withdrawal aversions in nicotine-dependent animals. We suggest that the alleviation of nicotine withdrawal primarily may be driving nicotine motivation in dependent animals. PMID:20032966

  16. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  17. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  18. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress

    PubMed Central

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-01-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  19. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    PubMed

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  20. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  1. Entropy of seismic electric signals: Analysis in natural time under time reversal

    SciTech Connect

    Varotsos, P.A.; Skordas, E.S.; Sarlis, N.V.; Lazaridou, M.S.; Tanaka, H.K.

    2006-03-15

    Electric signals have been recently recorded at the Earth's surface with amplitudes appreciably larger than those hitherto reported. Their entropy in natural time is smaller than that of a 'uniform' distribution. The same holds for their entropy upon time reversal. Such a behavior, which is also found by numerical simulations in fractional Brownian motion time series and in an on-off intermittency model, stems from infinitely ranged long range temporal correlations and hence these signals are probably seismic electric signal activities (critical dynamics). This classification is strikingly confirmed since three strong nearby earthquakes occurred (which is an extremely unusual fact) after the original submission of the present paper. The entropy fluctuations are found to increase upon approaching bursting, which is reminiscent of the behavior identifying sudden cardiac death individuals when analyzing their electrocardiograms.

  2. Signal detection by human observers: a cutoff reinforcement learning model of categorization decisions under uncertainty.

    PubMed

    Erev, I

    1998-04-01

    Previous experimental examinations of binary categorization decisions have documented robust behavioral regularities that cannot be predicted by signal detection theory (D.M. Green & J.A. Swets, 1966/1988). The present article reviews the known regularities and demonstrates that they can be accounted for by a minimal modification of signal detection theory: the replacement of the "ideal observer" cutoff placement rule with a cutoff reinforcement learning rule. This modification is derived from a cognitive game theoretic analysis (A.E. Roth & I. Erev, 1995). The modified model reproduces all 19 experimental regularities that have been considered. In all cases,it outperforms the original explanations. Some of these previous explanations are based on important concepts such as conservatism, probability matching, and "the gambler's fallacy" that receive new meanings given the current results. Implications for decision-making research and for applications of traditional signal detection theory are discussed.

  3. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  4. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure.

    PubMed

    Heger, J; Schulz, R; Euler, G

    2016-01-01

    Cardiac hypertrophy is a mechanism to compensate for increased cardiac work load, that is, after myocardial infarction or upon pressure overload. However, in the long run cardiac hypertrophy is a prevailing risk factor for the development of heart failure. During pathological remodelling processes leading to heart failure, decompensated hypertrophy, death of cardiomyocytes by apoptosis or necroptosis and fibrosis as well as a progressive dysfunction of cardiomyocytes are apparent. Interestingly, the induction of hypertrophy, cell death or fibrosis is mediated by similar signalling pathways. Therefore, tiny changes in the signalling cascade are able to switch physiological cardiac remodelling to the development of heart failure. In the present review, we will describe examples of these molecular switches that change compensated hypertrophy to the development of heart failure and will focus on the importance of the signalling cascades of the TGFβ superfamily in this process. In this context, potential therapeutic targets for pharmacological interventions that could attenuate the progression of heart failure will be discussed.

  5. Endocrine resistance in breast cancer--An overview and update.

    PubMed

    Clarke, Robert; Tyson, John J; Dixon, J Michael

    2015-12-15

    Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects.

  6. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems.

  7. Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup

    2009-03-01

    Detection of different extra-cellular stimuli leading to functionally distinct outcomes is common in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. For cellular responses stimulated by small numbers of molecules, the stochastic effects are important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in ``on'' or ``off'' states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters ``anomalously'' compared to mean-field predictions.

  8. Monopolar electromyographic signals recorded by a current amplifier in air and under water without insulation.

    PubMed

    Whitting, John W; von Tscharner, Vinzenz

    2014-12-01

    It was recently proposed that one could use signal current instead of voltage to collect surface electromyography (EMG). With EMG-current, the electrodes remain at the ground potential, thereby eliminating lateral currents. The purpose of this study was to determine whether EMG-currents can be recorded in Tap and Salt water, as well as in air, without electrically shielding the electrodes. It was hypothesized that signals would display consistent information between experimental conditions regarding muscle responses to changes in contraction effort. EMG-currents were recorded from the flexor digitorum muscles as participant's squeezed a pre-inflated blood pressure cuff bladder in each experimental condition at standardized efforts. EMG-current measurements performed underwater showed no loss of signal amplitude when compared to measurements made in air, although some differences in amplitude and spectral components were observed between conditions. However, signal amplitudes and frequencies displayed consistent behavior across contraction effort levels, irrespective of the experimental condition. This new method demonstrates that information regarding muscle activity is comparable between wet and dry conditions when using EMG-current. Considering the difficulties imposed by the need to waterproof traditional bipolar EMG electrodes when underwater, this new methodology is tremendously promising for assessments of muscular function in aquatic environments.

  9. Evaluation of Fixed Momentary DRO Schedules under Signaled and Unsignaled Arrangements

    ERIC Educational Resources Information Center

    Hammond, Jennifer L.; Iwata, Brian A.; Fritz, Jennifer N.; Dempsey, Carrie M.

    2011-01-01

    Fixed momentary schedules of differential reinforcement of other behavior (FM DRO) generally have been ineffective as treatment for problem behavior. Because most early research on FM DRO included presentation of a signal at the end of the DRO interval, it is unclear whether the limited effects of FM DRO were due to (a) the momentary response…

  10. Monopolar electromyographic signals recorded by a current amplifier in air and under water without insulation.

    PubMed

    Whitting, John W; von Tscharner, Vinzenz

    2014-12-01

    It was recently proposed that one could use signal current instead of voltage to collect surface electromyography (EMG). With EMG-current, the electrodes remain at the ground potential, thereby eliminating lateral currents. The purpose of this study was to determine whether EMG-currents can be recorded in Tap and Salt water, as well as in air, without electrically shielding the electrodes. It was hypothesized that signals would display consistent information between experimental conditions regarding muscle responses to changes in contraction effort. EMG-currents were recorded from the flexor digitorum muscles as participant's squeezed a pre-inflated blood pressure cuff bladder in each experimental condition at standardized efforts. EMG-current measurements performed underwater showed no loss of signal amplitude when compared to measurements made in air, although some differences in amplitude and spectral components were observed between conditions. However, signal amplitudes and frequencies displayed consistent behavior across contraction effort levels, irrespective of the experimental condition. This new method demonstrates that information regarding muscle activity is comparable between wet and dry conditions when using EMG-current. Considering the difficulties imposed by the need to waterproof traditional bipolar EMG electrodes when underwater, this new methodology is tremendously promising for assessments of muscular function in aquatic environments. PMID:25241214

  11. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants

    NASA Technical Reports Server (NTRS)

    Boonsirichai, K.; Guan, C.; Chen, R.; Masson, P. H.

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  12. Root gravitropism: an experimental tool to investigate basic cellular and molecular processes underlying mechanosensing and signal transmission in plants.

    PubMed

    Boonsirichai, K; Guan, C; Chen, R; Masson, P H

    2002-01-01

    The ability of plant organs to use gravity as a guide for growth, named gravitropism, has been recognized for over two centuries. This growth response to the environment contributes significantly to the upward growth of shoots and the downward growth of roots commonly observed throughout the plant kingdom. Root gravitropism has received a great deal of attention because there is a physical separation between the primary site for gravity sensing, located in the root cap, and the site of differential growth response, located in the elongation zones (EZs). Hence, this system allows identification and characterization of different phases of gravitropism, including gravity perception, signal transduction, signal transmission, and curvature response. Recent studies support some aspects of an old model for gravity sensing, which postulates that root-cap columellar amyloplasts constitute the susceptors for gravity perception. Such studies have also allowed the identification of several molecules that appear to function as second messengers in gravity signal transduction and of potential signal transducers. Auxin has been implicated as a probable component of the signal that carries the gravitropic information between the gravity-sensing cap and the gravity-responding EZs. This has allowed the identification and characterization of important molecular processes underlying auxin transport and response in plants. New molecular models can be elaborated to explain how the gravity signal transduction pathway might regulate the polarity of auxin transport in roots. Further studies are required to test these models, as well as to study the molecular mechanisms underlying a poorly characterized phase of gravitropism that is independent of an auxin gradient.

  13. Purely stochastic binary decisions in cell signaling models without underlying deterministic bistabilities

    PubMed Central

    Artyomov, Maxim N.; Das, Jayajit; Kardar, Mehran; Chakraborty, Arup K.

    2007-01-01

    Detection of different extracellular stimuli leading to functionally distinct outcomes is ubiquitous in cell biology, and is often mediated by differential regulation of positive and negative feedback loops that are a part of the signaling network. In some instances, these cellular responses are stimulated by small numbers of molecules, and so stochastic effects could be important. Therefore, we studied the influence of stochastic fluctuations on a simple signaling model with dueling positive and negative feedback loops. The class of models we have studied is characterized by single deterministic steady states for all parameter values, but the stochastic response is bimodal; a behavior that is distinctly different from models studied in the context of gene regulation. For example, when positive and negative regulation is roughly balanced, a unique deterministic steady state with an intermediate value for the amount of a downstream signaling product is found. However, for small numbers of signaling molecules, stochastic effects result in a bimodal distribution for this quantity, with neither mode corresponding to the deterministic solution; i.e., cells are in “on” or “off” states, not in some intermediate state. For a large number of molecules, the stochastic solution converges to the mean-field result. When fluctuations are important, we find that signal output scales with control parameters “anomalously” compared with mean-field predictions. The necessary and sufficient conditions for the phenomenon we report are quite common. So, our findings are expected to be of broad relevance, and suggest that stochastic effects can enable binary cellular decisions. PMID:18025473

  14. Growing new endocrine pancreas in situ.

    PubMed

    Hammerman, Marc R

    2006-03-01

    Type 1 diabetes mellitus is a major cause of endstage renal disease in young adults. Maintenance of normoglycemia in type 1 diabetics using exogenous insulin is difficult under the best of circumstances. Transplantation therapies are limited by the scarcity of human donor organs, rendering a priority the identification of an alternative source for replacing insulin-secreting cells. Embryonic pancreatic primordia transplanted into diabetic animal hosts undergo selective endocrine differentiation in situ and normalize glucose tolerance. Pancreatic primordia can be transplanted across isogeneic, allogeneic, and both concordant (rat-to-mouse) and highly disparate (pig-to-rodent) xenogeneic barriers. Successful transplantation of pancreatic primordia depends on obtaining them at defined windows during embryonic development within which the risk of teratogenicity is eliminated, growth potential is maximized, and immunogenicity is reduced. Here we review studies exploring the potential for pancreatic organogenesis post-transplantation of embryonic primordia as a therapy for type 1 diabetes.

  15. Epigenetic transgenerational effects of endocrine disruptors on male reproduction.

    PubMed

    Guerrero-Bosagna, Carlos M; Skinner, Michael K

    2009-09-01

    Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype.

  16. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  17. Anatomical and functional imaging in endocrine hypertension

    PubMed Central

    Chaudhary, Vikas; Bano, Shahina

    2012-01-01

    In endocrine hypertension, hormonal excess results in clinically significant hypertension. The functional imaging (such as radionuclide imaging) complements anatomy-based imaging (such as ultrasound, computed tomography, and magnetic resonance imaging) to facilitate diagnostic localization of a lesion causing endocrine hypertension. The aim of this review article is to familiarize general radiologists, endocrinologists, and clinicians with various anatomical and functional imaging techniques used in patients with endocrine hypertension. PMID:23087854

  18. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    NASA Astrophysics Data System (ADS)

    Kallweit, Nicole; Baumhoff, Peter; Krueger, Alexander; Tinne, Nadine; Heisterkamp, Alexander; Kral, Andrej; Maier, Hannes; Ripken, Tammo

    2016-02-01

    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea.

  19. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  20. Cosmetics as endocrine disruptors: are they a health risk?

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Hens, Luc; Sasco, Annie J

    2015-12-01

    Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility". PMID:26825071

  1. IMPAN cells: a pancreatic model for differentiation into endocrine cells.

    PubMed

    Klein, T; Frandsen, U; Heller, R S; Serup, P

    2001-11-15

    It is currently believed that pancreatic progenitor or stem cells exist in the ductal cell population and that these cells have the ability to be grown and differentiated into endocrine cells for the treatment of diabetes. In this study, we have examined this potential in IMPAN (Immortalized Pancreatic) cells. These cells are derived from the adult H-2K(b)-tsA58 transgenic mouse. We observed an increased mRNA expression of insulin, proendocrine gene neurogenin 3, and beta-cell transcription factor Pdx1 when the cells were grown on bovine collagen I gels. The induction profile of these three genes was similar under the tested conditions. No glucagon or other endocrine-specific transcription factors were detectable. Application of GIP, GLP-1 derivative NN2211, and activin-A/betacellulin to IMPAN cells in normal culture did not lead to endocrine differentiation. In conclusion, it appears that the ability of IMPAN cells to mature to endocrine cells is limited. PMID:11697865

  2. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward. PMID:26847433

  3. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  4. Effect of endocrine disruptor pesticides: a review.

    PubMed

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-06-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.

  5. Basic mechanisms of ovarian endocrine function

    PubMed Central

    Schomberg, David W.

    1978-01-01

    This review outlines the current understanding of ovarian endocrine development and regulation with both physiological and biochemical background to provide a framework applicable to problems concerning environmental agents and ovarian endocrine function. Two approaches are used. First, the endocrine regulation of follicle development and corpus luteum function is considered in the classical sense, i.e., viewing these structures as gonadotropin-responsive units undergoing a programmed sequence of development and differentiation. Secondly, a relatively new area of ovarian physiology concerned with intra-ovarian regulation is explored, since this area holds potential for exploration of the direct effects of toxicological or environmental agents upon gonadal endocrine cells. PMID:17539154

  6. Genetics Home Reference: multiple endocrine neoplasia

    MedlinePlus

    ... Tumor Encyclopedia: Pheochromocytoma Encyclopedia: Pituitary Tumor Health Topic: Endocrine Diseases Health Topic: Parathyroid Disorders Health Topic: Pheochromocytoma Health Topic: Thyroid Cancer Genetic ...

  7. Endocrine side effects of broad-acting kinase inhibitors.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2010-09-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level, which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently, proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs.

  8. Endocrine side effects of broad-acting kinase inhibitors

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2011-01-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs. PMID:20603395

  9. Environmental factors affecting pregnancy: endocrine disrupters, nutrients and metabolic pathways.

    PubMed

    Bazer, Fuller W; Wu, Guoyao; Johnson, Gregory A; Wang, Xiaoqiu

    2014-12-01

    Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolized via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring. PMID:25224489

  10. Familiar and novel reproductive endocrine disruptors: xenoestrogens, dioxins and nanoparticles

    PubMed Central

    Hutz, R. J.; Carvan, M. J.; Larson, J. K.; Liu, Q.; Stelzer, R. V.; King-Heiden, T. C.; Baldridge, M. G.; Shahnoor, N.; Julien, K.

    2015-01-01

    Environmental contaminants are known to exert endocrine-disrupting effects on the reproductive axis of animals. Many of these molecules can affect steroid biosynthesis or estrogen-receptor signaling by behaving as estrogen-like molecules (“xenoestrogens”), or by exerting estrogenmodulatory effects. Exposure to some compounds has been correlated with the skewing of sex ratios in aquatic species, feminization and demasculinization of male animals, declines in human sperm counts, and overall diminution in fertility of birds, fish, and mammals. We herein devote space to several classes of endocrine-disrupting compounds (EDCs), including estrogenic substances such as bisphenol A (BPA), molecules that can behave at times anti-estrogenically while activating the aromatic hydrocarbon receptor (AHR), such as dioxins (a known human carcinogen), and novel, ubiquitous molecules such as nanoparticles, particularly gold nanoparticles (GNPs), that appear to alter the sexsteroid biosynthetic pathway. PMID:25798032

  11. Performance of hybrid chirp/DS signals under Doppler and pulsed jamming

    NASA Astrophysics Data System (ADS)

    Elhakeem, A. K.; Targi, Ali

    The bit-error probability is evaluated for a hybrid chirp/direct sequence (DS) spread-spectrum communication system. The received signal is received in Doppler; the channel is contaminated by a pulsed barrage jammer with a varying duty factor. Moreover, the DS correlation loss due to imperfect code synchronization is taken into account. The tradeoffs involved in dividing the total RF bandwidth into the DS and chirp bandwidths to combat both the jamming and the Doppler are discussed.

  12. Reactive Oxygen Species Generation-Scavenging and Signaling during Plant-Arbuscular Mycorrhizal and Piriformospora indica Interaction under Stress Condition

    PubMed Central

    Nath, Manoj; Bhatt, Deepesh; Prasad, Ram; Gill, Sarvajeet S.; Anjum, Naser A.; Tuteja, Narendra

    2016-01-01

    A defined balance between the generation and scavenging of reactive oxygen species (ROS) is essential to utilize ROS as an adaptive defense response of plants under biotic and abiotic stress conditions. Moreover, ROS are not only a major determinant of stress response but also act as signaling molecule that regulates various cellular processes including plant-microbe interaction. In particular, rhizosphere constitutes the biologically dynamic zone for plant–microbe interactions which forms a mutual link leading to reciprocal signaling in both the partners. Among plant–microbe interactions, symbiotic associations of arbuscular mycorrhizal fungi (AMF) and arbuscular mycorrhizal-like fungus especially Piriformospora indica with plants are well known to improve plant growth by alleviating the stress-impacts and consequently enhance the plant fitness. AMF and P. indica colonization mainly enhances ROS-metabolism, maintains ROS-homeostasis, and thereby averts higher ROS-level accrued inhibition in plant cellular processes and plant growth and survival under stressful environments. This article summarizes the major outcomes of the recent reports on the ROS-generation, scavenging and signaling in biotic-abiotic stressed plants with AMF and P. indica colonization. Overall, a detailed exploration of ROS-signature kinetics during plant-AMF/P. indica interaction can help in designing innovative strategies for improving plant health and productivity under stress conditions.

  13. Presenilins, Notch dose control the fate of pancreatic endocrine progenitors during a narrow developmental window

    PubMed Central

    Cras-Méneur, Corentin; Li, Lin; Kopan, Raphael; Permutt, M. Alan

    2009-01-01

    Canonical Notch signaling is thought to control the endocrine/exocrine decision in early pancreatic progenitors. Later, RBP-Jκ interacts with Ptf1a and E12 to promote acinar differentiation. To examine the involvement of Notch signaling in selecting specific endocrine lineages, we deregulated this pathway by targeted deletion of presenilin1 and presenilin2, the catalytic core of γ-secretase, in Ngn3- or Pax6-expressing endocrine progenitors. Surprisingly, whereas Pax6+ progenitors were irreversibly committed to the endocrine fate, we discovered that Ngn3+ progenitors were bipotential in vivo and in vitro. When presenilin amounts are limiting, Ngn3+ progenitors default to an acinar fate; subsequently, they expand rapidly to form the bulk of the exocrine pancreas. γ-Secretase inhibitors confirmed that enzymatic activity was required to block acinar fate selection by Ngn3 progenitors. Genetic interactions identified Notch2 as the substrate, and suggest that γ-secretase and Notch2 act in a noncanonical titration mechanism to sequester RBP-Jκ away from Ptf1a, thus securing selection of the endocrine fate by Ngn3 progenitors. These results revise the current view of pancreatic cell fate hierarchy, establish that Ngn3 is not in itself sufficient to commit cells to the endocrine fate in the presence of Ptf1a, reveal a noncanonical action for Notch2 protein in endocrine cell fate selection, and demonstrate that acquisition of an endocrine fate by Ngn3+ progenitors is γ-secretase-dependent until Pax6 expression begins. PMID:19723764

  14. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry.

    PubMed

    Song, Dongsheng; Rusz, Jan; Cai, Jianwang; Zhu, Jing

    2016-10-01

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y3Fe5O12, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. PMID:27448200

  15. Multistage estimation of received carrier signal parameters under very high dynamic conditions of the receiver

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1990-01-01

    A multistage estimator is provided for the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc., as may arise, for example, in the case of Global Positioning Systems (GPS) where the signal parameters are directly related to the position, velocity and jerk of the GPS ground-based receiver. In a two-stage embodiment of the more general multistage scheme, the first stage, selected to be a modified least squares algorithm referred to as differential least squares (DLS), operates as a coarse estimator resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency, provides relatively coarse estimates of the frequency and its derivatives. The second stage of the estimator, an extended Kalman filter (EKF), operates on the error signal available from the first stage refining the overall estimates of the phase along with a more refined estimate of frequency as well and in the process also reduces the number of cycle slips.

  16. Coordination of Plastid and Light Signaling Pathways upon Development of Arabidopsis Leaves under Various Photoperiods

    PubMed Central

    Lepistö, Anna; Rintamäki, Eevi

    2012-01-01

    Plants synchronize their cellular and physiological functions according to the photoperiod (the length of the light period) in the cycle of 24 h. Photoperiod adjusts several traits in the plant life cycle, including flowering and senescence in annuals and seasonal growth cessation in perennials. Photoperiodic development is controlled by the coordinated action of photoreceptors and the circadian clock. During the past 10 years, remarkable progress has been made in understanding the molecular mechanism of the circadian clock, especially with regard to the transition of Arabidopsis from the vegetative growth to the reproductive phase. Besides flowering photoperiod also modifies plant photosynthetic structures and traits. Light signals controlling biogenesis of chloroplasts and development of leaf photosynthetic structures are perceived both by photoreceptors and in chloroplasts. In this review, we provide evidence suggesting that the photoperiodic development of Arabidopsis leaves mimics the acclimation of plant to various light intensities. Furthermore, the chloroplast-to-nucleus retrograde signals that adjust acclimation to light intensity are proposed to contribute also to the signaling pathways that control photoperiodic acclimation of leaves. PMID:22199239

  17. Multistage estimation of received carrier signal parameters under very high dynamic conditions of the receiver

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra (Inventor)

    1991-01-01

    A multistage estimator is provided for the parameters of a received carrier signal possibly phase-modulated by unknown data and experiencing very high Doppler, Doppler rate, etc., as may arise, for example, in the case of Global Positioning Systems (GPS) where the signal parameters are directly related to the position, velocity and jerk of the GPS ground-based receiver. In a two-stage embodiment of the more general multistage scheme, the first stage, selected to be a modified least squares algorithm referred to as differential least squares (DLS), operates as a coarse estimator resulting in higher rms estimation errors but with a relatively small probability of the frequency estimation error exceeding one-half of the sampling frequency, provides relatively coarse estimates of the frequency and its derivatives. The second stage of the estimator, an extended Kalman filter (EKF), operates on the error signal available from the first stage refining the overall estimates of the phase along with a more refined estimate of frequency as well and in the process also reduces the number of cycle slips.

  18. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations

    NASA Astrophysics Data System (ADS)

    Li, L.; Yang, K.; Jia, G.; Ran, X.; Song, J.; Han, Z.-Q.

    2015-05-01

    The accurate estimation of the tire-road friction coefficient plays a significant role in the vehicle dynamics control. The estimation method should be timely and reliable for the controlling requirements, which means the contact friction characteristics between the tire and the road should be recognized before the interference to ensure the safety of the driver and passengers from drifting and losing control. In addition, the estimation method should be stable and feasible for complex maneuvering operations to guarantee the control performance as well. A signal fusion method combining the available signals to estimate the road friction is suggested in this paper on the basis of the estimated ones of braking, driving and steering conditions individually. Through the input characteristics and the states of the vehicle and tires from sensors the maneuvering condition may be recognized, by which the certainty factors of the friction of the three conditions mentioned above may be obtained correspondingly, and then the comprehensive road friction may be calculated. Experimental vehicle tests validate the effectiveness of the proposed method through complex maneuvering operations; the estimated road friction coefficient based on the signal fusion method is relatively timely and accurate to satisfy the control demands.

  19. Plant signaling networks involving Ca2+ and Rboh/Nox-mediated ROS production under salinity stress

    PubMed Central

    Kurusu, Takamitsu; Kuchitsu, Kazuyuki; Tada, Yuichi

    2015-01-01

    Salinity stress, which induces both ionic and osmotic damage, impairs plant growth and causes severe reductions in crop yield. Plants are equipped with defense responses against salinity stress such as regulation of ion transport including Na+ and K+, accumulation of compatible solutes and stress-related gene expression. The initial Ca2+ influx mediated by plasma membrane ion channels has been suggested to be crucial for the adaptive signaling. NADPH oxidase (Nox)-mediated production of reactive oxygen species (ROS) has also been suggested to play crucial roles in regulating adaptation to salinity stress in several plant species including halophytes. Respiratory burst oxidase homolog (Rboh) proteins show the ROS-producing Nox activity, which are synergistically activated by the binding of Ca2+ to EF-hand motifs as well as Ca2+-dependent phosphorylation. We herein review molecular identity, structural features and roles of the Ca2+-permeable channels involved in early salinity and osmotic signaling, and comparatively discuss the interrelationships among spatiotemporal dynamic changes in cytosolic concentrations of free Ca2+, Rboh-mediated ROS production, and downstream signaling events during salinity adaptation in planta. PMID:26113854

  20. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment.

    PubMed

    Frolova, Olga; Samudio, Ismael; Benito, Juliana Maria; Jacamo, Rodrigo; Kornblau, Steven M; Markovic, Ana; Schober, Wendy; Lu, Hongbo; Qiu, Yi Hua; Buglio, Daniela; McQueen, Teresa; Pierce, Sherry; Shpall, Elizabeth; Konoplev, Sergej; Thomas, Deborah; Kantarjian, Hagop; Lock, Richard; Andreeff, Michael; Konopleva, Marina

    2012-08-01

    Overcoming resistance to chemotherapy is the main therapeutic challenge in the treatment of acute lymphocytic leukemia (ALL). Interactions between leukemia cells and the microenvironment promote leukemia cell survival and confer resistance to chemotherapy. Hypoxia is an integral component of bone marrow (BM) microenvironment. Hypoxia-inducible factor-1α (HIF-1), a key regulator of the cellular response to hypoxia, regulates cell growth and metabolic adaptation to hypoxia. HIF-1α expression, analyzed by Reverse Phase Protein Arrays in 92 specimens from newly diagnosed patients with pre-B-ALL, had a negative prognostic impact on survival (p = 0.0025). Inhibition of HIF-1α expression by locked mRNA antagonist (LNA) promoted chemosensitivity under hypoxic conditions, while pharmacological or genetic stabilization of HIF-1α under normoxia inhibited cell growth and reduced apoptosis induction by chemotherapeutic agents. Co-culture of pre-B ALL or REH cells with BM-derived mesenchymal stem cells (MSC) under hypoxia resulted in further induction of HIF-1α protein and acquisition of the glycolytic phenotype, in part via stroma-induced AKT/mTOR signaling. mTOR blockade with everolimus reduced HIF-1α expression, diminished glucose uptake and glycolytic rate and partially restored the chemosensitivity of ALL cells under hypoxia/stroma co-cultures. Hence, mTOR inhibition or blockade of HIF-1α-mediated signaling may play an important role in chemosensitization of ALL cells under hypoxic conditions of the BM microenvironment.

  1. Endocrine Disease in Aged Horses.

    PubMed

    Durham, Andy E

    2016-08-01

    Aging horses may be at particular risk of endocrine disease. Two major equine endocrinopathies, pituitary pars intermedia dysfunction and equine metabolic syndrome, are commonly encountered in an aging population and may present with several recognizable signs, including laminitis. Investigation, treatment, and management of these diseases are discussed. Additionally, aging may be associated with development of rarer endocrinopathic problems, often associated with neoplasia, including diabetes mellitus and other confounders of glucose homeostasis, as well as thyroid, parathyroid, and adrenal diseases. Brief details of the recognition and management of these conditions are presented. PMID:27449391

  2. Endocrine problems of adolescent pregnancy.

    PubMed

    Molitch, M E

    1993-09-01

    A number of changes in renal and endocrine physiology occur during pregnancy that alter hormone levels and affect a number of disease processes. Increased glomerular filtration causes an increase in hormone and substrate clearance. Increased placental steroid production causes an increase in hormone-binding globulin production, insulin resistance, and prolactinoma growth. Production of peptide hormones may cause changes in normal physiology and alter dynamic hormone testing. Placental vasopressinase increases vasopressin clearance. A number of diseases of hormone overproduction and underproduction affect pregnancy outcome and must be treated promptly by therapeutic modalities that also may affect the fetus.

  3. Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat.

    PubMed

    Steiner, Michel A; Sciarretta, Carla; Brisbare-Roch, Catherine; Strasser, Daniel S; Studer, Rolf; Jenck, Francois

    2013-04-01

    The orexin neuropeptide system regulates wakefulness and contributes to physiological and behavioral stress responses. Moreover, a role for orexins in modulating hypothalamus-pituitary-adrenal (HPA) axis activity has been proposed. Brain penetrating dual orexin receptor (OXR) antagonists such as almorexant decrease vigilance and have emerged as a novel therapeutic class for the treatment of insomnia. Almorexant was used here as a pharmacological tool to examine the role of endogenous orexin signaling in HPA axis endocrine function under natural conditions. After confirming the expression of prepro-orexin and OXR-1 and OXR-2 mRNA in hypothalamus, pituitary and adrenal glands, the effects of systemic almorexant were investigated on peripheral HPA axis hormone release in the rat under baseline, stress and pharmacological challenge conditions. Almorexant did not alter basal or stress-induced corticosterone release despite affecting wake and sleep stages (detected by radiotelemetric electroencephalography/electromyography) during the stress exposure. Moreover, almorexant did not affect the release of adrenocorticotropin (ACTH) and corticosterone at different time points along the diurnal rhythm, nor corticotrophin-releasing hormone (CRH)- and ACTH-stimulated neuroendocrine responses, measured in vivo under stress-free conditions. These results illustrate that dual OXR antagonists, despite modulating stress-induced wakefulness, do not interfere with endocrine HPA axis function in the rat. They converge to suggest that endogenous orexin signaling plays a minor role in stress hormone release under basal conditions and under challenge.

  4. A critical role for purinergic signalling in the mechanisms underlying generation of BOLD fMRI responses.

    PubMed

    Wells, Jack A; Christie, Isabel N; Hosford, Patrick S; Huckstepp, Robert T R; Angelova, Plamena R; Vihko, Pirkko; Cork, Simon C; Abramov, Andrey Y; Teschemacher, Anja G; Kasparov, Sergey; Lythgoe, Mark F; Gourine, Alexander V

    2015-04-01

    The mechanisms of neurovascular coupling underlying generation of BOLD fMRI signals remain incompletely understood. It has been proposed that release of vasoactive substances by astrocytes couples neuronal activity to changes in cerebrovascular blood flow. However, the role of astrocytes in fMRI responses remains controversial. Astrocytes communicate via release of ATP, and here we tested the hypothesis that purinergic signaling plays a role in the mechanisms underlying fMRI. An established fMRI paradigm was used to trigger BOLD responses in the forepaw region of the somatosensory cortex (SSFP) of an anesthetized rat. Forepaw stimulation induced release of ATP in the SSFP region. To interfere with purinergic signaling by promoting rapid breakdown of the vesicular and/or released ATP, a lentiviral vector was used to express a potent ectonucleotidase, transmembrane prostatic acid phosphatase (TMPAP), in the SSFP region. TMPAP expression had no effect on resting cerebral blood flow, cerebrovascular reactivity, and neuronal responses to sensory stimulation. However, TMPAP catalytic activity markedly reduced the magnitude of BOLD fMRI responses triggered in the SSFP region by forepaw stimulation. Facilitated ATP breakdown could result in accumulation of adenosine. However, blockade of A1 receptors had no effect on BOLD responses and did not reverse the effect of TMPAP. These results suggest that purinergic signaling plays a significant role in generation of BOLD fMRI signals. We hypothesize that astrocytes activated during periods of enhanced neuronal activity release ATP, which propagates astrocytic activation, stimulates release of vasoactive substances and dilation of cerebral vasculature.

  5. Modeling the intra- and extracellular cytokine signaling pathway under heat stroke in the liver.

    PubMed

    Rodriguez-Fernandez, Maria; Grosman, Benyamin; Yuraszeck, Theresa M; Helwig, Bryan G; Leon, Lisa R; Doyle, Francis J

    2013-01-01

    Heat stroke (HS) is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS). The observation that pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF) receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events) in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation) and proteomic (circulating cytokines and receptors) data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico). PMID:24039931

  6. Modeling the Intra- and Extracellular Cytokine Signaling Pathway under Heat Stroke in the Liver

    PubMed Central

    Rodriguez-Fernandez, Maria; Grosman, Benyamin; Yuraszeck, Theresa M.; Helwig, Bryan G.; Leon, Lisa R.; Doyle III, Francis J.

    2013-01-01

    Heat stroke (HS) is a life-threatening illness induced by prolonged exposure to a hot environment that causes central nervous system abnormalities and severe hyperthermia. Current data suggest that the pathophysiological responses to heat stroke may not only be due to the immediate effects of heat exposure per se but also the result of a systemic inflammatory response syndrome (SIRS). The observation that pro- (e.g., IL-1) and anti-inflammatory (e.g., IL-10) cytokines are elevated concomitantly during recovery suggests a complex network of interactions involved in the manifestation of heat-induced SIRS. In this study, we measured a set of circulating cytokine/soluble cytokine receptor proteins and liver cytokine and receptor mRNA accumulation in wild-type and tumor necrosis factor (TNF) receptor knockout mice to assess the effect of neutralization of TNF signaling on the SIRS following HS. Using a systems approach, we developed a computational model describing dynamic changes (intra- and extracellular events) in the cytokine signaling pathways in response to HS that was fitted to novel genomic (liver mRNA accumulation) and proteomic (circulating cytokines and receptors) data using global optimization. The model allows integration of relevant biological knowledge and formulation of new hypotheses regarding the molecular mechanisms behind the complex etiology of HS that may serve as future therapeutic targets. Moreover, using our unique modeling framework, we explored cytokine signaling pathways with three in silico experiments (e.g. by simulating different heat insult scenarios and responses in cytokine knockout strains in silico). PMID:24039931

  7. Endocrine and metabolic changes in payload specialist (L-1)

    NASA Technical Reports Server (NTRS)

    Matsui, Nobuo

    1993-01-01

    The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.

  8. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. PMID:26748264

  9. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish.

  10. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion.

  11. Convergent evolution of floral signals underlies the success of Neotropical orchids.

    PubMed

    Papadopulos, Alexander S T; Powell, Martyn P; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A; Salamin, Nicolas; Chittka, Lars; Williams, Norris H; Whitten, W Mark; Loader, Deniz; Valente, Luis M; Chase, Mark W; Savolainen, Vincent

    2013-08-22

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry--a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system--operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.

  12. Differential TGF-β Signaling in Glial Subsets Underlies IL-6-Mediated Epileptogenesis in Mice.

    PubMed

    Levy, Nitzan; Milikovsky, Dan Z; Baranauskas, Gytis; Vinogradov, Ekaterina; David, Yaron; Ketzef, Maya; Abutbul, Shai; Weissberg, Itai; Kamintsky, Lyn; Fleidervish, Ilya; Friedman, Alon; Monsonego, Alon

    2015-08-15

    TGF-β1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-β1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-β signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-β1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-β signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-β1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death.

  13. Differential TGF-β Signaling in Glial Subsets Underlies IL-6-Mediated Epileptogenesis in Mice.

    PubMed

    Levy, Nitzan; Milikovsky, Dan Z; Baranauskas, Gytis; Vinogradov, Ekaterina; David, Yaron; Ketzef, Maya; Abutbul, Shai; Weissberg, Itai; Kamintsky, Lyn; Fleidervish, Ilya; Friedman, Alon; Monsonego, Alon

    2015-08-15

    TGF-β1 is a master cytokine in immune regulation, orchestrating both pro- and anti-inflammatory reactions. Recent studies show that whereas TGF-β1 induces a quiescent microglia phenotype, it plays a pathogenic role in the neurovascular unit and triggers neuronal hyperexcitability and epileptogenesis. In this study, we show that, in primary glial cultures, TGF-β signaling induces rapid upregulation of the cytokine IL-6 in astrocytes, but not in microglia, via enhanced expression, phosphorylation, and nuclear translocation of SMAD2/3. Electrophysiological recordings show that administration of IL-6 increases cortical excitability, culminating in epileptiform discharges in vitro and spontaneous seizures in C57BL/6 mice. Intracellular recordings from layer V pyramidal cells in neocortical slices obtained from IL-6 -: treated mice show that during epileptogenesis, the cells respond to repetitive orthodromic activation with prolonged after-depolarization with no apparent changes in intrinsic membrane properties. Notably, TGF-β1 -: induced IL-6 upregulation occurs in brains of FVB/N but not in brains of C57BL/6 mice. Overall, our data suggest that TGF-β signaling in the brain can cause astrocyte activation whereby IL-6 upregulation results in dysregulation of astrocyte -: neuronal interactions and neuronal hyperexcitability. Whereas IL-6 is epileptogenic in C57BL/6 mice, its upregulation by TGF-β1 is more profound in FVB/N mice characterized as a relatively more susceptible strain to seizure-induced cell death. PMID:26136430

  14. Gamete signalling underlies the evolution of mating types and their number.

    PubMed

    Hadjivasiliou, Zena; Pomiankowski, Andrew

    2016-10-19

    The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. PMID:27619695

  15. Convergent evolution of floral signals underlies the success of Neotropical orchids

    PubMed Central

    Papadopulos, Alexander S. T.; Powell, Martyn P.; Pupulin, Franco; Warner, Jorge; Hawkins, Julie A.; Salamin, Nicolas; Chittka, Lars; Williams, Norris H.; Whitten, W. Mark; Loader, Deniz; Valente, Luis M.; Chase, Mark W.; Savolainen, Vincent

    2013-01-01

    The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry—a form of Batesian mimicry that involves multiple models and is more complex than a simple one model–one mimic system—operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant–animal interactions. PMID:23804617

  16. Gamete signalling underlies the evolution of mating types and their number

    PubMed Central

    Hadjivasiliou, Zena; Pomiankowski, Andrew

    2016-01-01

    The gametes of unicellular eukaryotes are morphologically identical, but are nonetheless divided into distinct mating types. The number of mating types varies enormously and can reach several thousand, yet most species have only two. Why do morphologically identical gametes need to be differentiated into self-incompatible mating types, and why is two the most common number of mating types? In this work, we explore a neglected hypothesis that there is a need for asymmetric signalling interactions between mating partners. Our review shows that isogamous gametes always interact asymmetrically throughout sex and argue that this asymmetry is favoured because it enhances the efficiency of the mating process. We further develop a simple mathematical model that allows us to study the evolution of the number of mating types based on the strength of signalling interactions between gametes. Novel mating types have an advantage as they are compatible with all others and rarely meet their own type. But if existing mating types coevolve to have strong mutual interactions, this restricts the spread of novel types. Similarly, coevolution is likely to drive out less attractive mating types. These countervailing forces specify the number of mating types that are evolutionarily stable. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’. PMID:27619695

  17. Predicting electromyographic signals under realistic conditions using a multiscale chemo–electro–mechanical finite element model

    PubMed Central

    Mordhorst, Mylena; Heidlauf, Thomas; Röhrle, Oliver

    2015-01-01

    This paper presents a novel multiscale finite element-based framework for modelling electromyographic (EMG) signals. The framework combines (i) a biophysical description of the excitation–contraction coupling at the half-sarcomere level, (ii) a model of the action potential (AP) propagation along muscle fibres, (iii) a continuum-mechanical formulation of force generation and deformation of the muscle, and (iv) a model for predicting the intramuscular and surface EMG. Owing to the biophysical description of the half-sarcomere, the model inherently accounts for physiological properties of skeletal muscle. To demonstrate this, the influence of membrane fatigue on the EMG signal during sustained contractions is investigated. During a stimulation period of 500 ms at 100 Hz, the predicted EMG amplitude decreases by 40% and the AP propagation velocity decreases by 15%. Further, the model can take into account contraction-induced deformations of the muscle. This is demonstrated by simulating fixed-length contractions of an idealized geometry and a model of the human tibialis anterior muscle (TA). The model of the TA furthermore demonstrates that the proposed finite element model is capable of simulating realistic geometries, complex fibre architectures, and can include different types of heterogeneities. In addition, the TA model accounts for a distributed innervation zone, different fibre types and appeals to motor unit discharge times that are based on a biophysical description of the α motor neurons. PMID:25844148

  18. Depolarizing chloride gradient in developing cochlear nucleus neurons: underlying mechanism and implication for calcium signaling.

    PubMed

    Witte, M; Reinert, T; Dietz, B; Nerlich, J; Rübsamen, R; Milenkovic, I

    2014-03-01

    Precise regulation of the chloride homeostasis crucially determines the action of inhibitory transmitters GABA and glycine and thereby endows neurons or even discrete neuronal compartments with distinct physiological responses to the same transmitters. In mammals, the signaling mediated by GABAA/glycine receptors shifts during early postnatal life from depolarization to hyperpolarization, due to delayed maturation of the chloride homeostasis system. While the activity of the secondary active, K(+)-Cl(-)-extruding cotransporter KCC2, renders GABA/glycine hyperpolarizing in auditory brainstem nuclei of altricial rodents, the mechanisms contributing to the initially depolarizing transmembrane gradient for Cl(-) in respective neurons remained unknown. Here we used gramicidin-perforated patch recordings, non-invasive Cl(-) and Ca(2+) imaging, and immunohistochemistry to identify the Cl(-)-loading transporter that renders depolarizing effects of GABA/glycine in early postnatal life of spherical bushy cells in the cochlear nucleus of gerbil. Our data identify the 1Na(+):1K(+):2Cl(-) cotransporter 1 (NKCC1) as the major Cl(-)-loader responsible for depolarizing action of GABA/glycine at postnatal days 3-5 (P3-5). Extracellular GABA/muscimol elicited calcium signaling through R-, L-, and T-type channels, which was dependent on bumetanide- and [Na(+)]e-sensitive Cl(-) accumulation. The "adult like", low intracellular Cl(-) concentration is established during the second postnatal week, through a mechanism engaging the NKCC1-down regulation between P5 and P15 and ongoing KCC2-mediated Cl(-)-extrusion. PMID:24388924

  19. Endocrine tumors of the pancreas.

    PubMed

    Meko, J B; Norton, J A

    1994-01-01

    Pancreatic endocrine tumors are rare, yet can cause significant morbidity due to excessive secretion of hormones. Octreotide is effective in reducing the plasma concentrations of many of these hormones. The availability of potent H2-receptor antagonists and omeprazole has altered the emphasis in patients with Zollinger-Ellison syndrome away from total gastrectomy and towards resection of the gastrinoma for potential cure. Fifty percent of insulinomas and gastrinomas are not evident on preoperative imaging studies, despite their sophistication. Calcium angiography, endoscopic ultrasonography, isotope-labeled octreotide scanning, and injection of methylene blue during secretin angiography are recent imaging modalities that have shown promise in the localization of these tumors. Intraoperative ultrasound has emerged as the best method for operative detection of insulinomas. Duodenotomy and intraoperative endoscopic transillumination are especially important in the surgical management of Zollinger-Ellison syndrome because 30% to 40% of gastrinomas are located in the duodenum. The management of patients with multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome continues to be controversial. Some advocate an aggressive surgical approach, whereas others have had little success in rendering patients eugastrinemic.

  20. Endocrine response to brain injury.

    PubMed

    Chioléro, R; Berger, M

    1994-11-01

    The neuroendocrine response (NER) is an essential component of the adaptive process to trauma, brain injury, and major surgery. While receiving additive humoral and neural afferent inputs, the brain nuclei responsible for the NER act mainly by efferent pathways to the hypothalamic-pituitary-adrenal (HPA) axis and the sympathoadrenal system, the activations of which induce subsequent circulatory and metabolic responses. The NER to brain injury is similar to the response observed in patients with extracerebral injury, even if the response after brain injury is extremely variable. Generally, there is a biphasic pattern, with a sympathoadrenal storm associated with variable and altered stimulation of the HPA during the ebb phase. The first phase is followed by a decrease in both responses while other endocrine changes develop, involving mainly the counter-regulatory, gonadal, and thyroid hormones. The outcome after brain injury is closely correlated with the intensity of these changes, particularly with catecholamine plasma levels and the severity of the low triiodothyronine syndrome. Alterations of the thyroid hormones are largely related to a reduction in peripheral deiodination of thyroxin. Recent research shows that increased free-radical production and decreased selenium (an antioxidant) serum levels play an important role in thyroid metabolism. Two major issues remain unsolved: a) the precise definition of cerebral death, since endocrine brain function is not abolished in the state currently defined as brain death; and b) the question of whether substitutive hormone therapy should be applied in severe brain injury.

  1. Management of fetal endocrine disorders.

    PubMed

    Hughes, I A

    2003-08-01

    A number of maternal endocrine disorders, when active during pregnancy, can have adverse effects on the newborn. Frequently, these affects can be anticipated as in Graves' disease, or the adverse effect can be prevented as in macrosomia in the infant of the diabetic mother. Occasionally, there are opportunities for prenatal treatment of a fetal endocrine disorder. For instance, a large goitre that may cause problems during delivery can be treated with thyroid hormones administered intra-amniotically or as analogues that cross the placenta. A uniquely effective form of treatment for prevention of a major birth defect is administration of dexamethasone to the mother to avoid virilisation of a female fetus with congenital adrenal hyperplasia (CAH). However, such treatment should only be conducted within the framework of a clinical trial as the long-term effects of exposure to potent glucocorticoids in utero are unknown. Intrauterine growth retardation, which affects about 5% of newborns, is currently not amenable to direct pharmacological treatment before birth. However, there are more practical options for managing this condition, including improved maternal nutrition and avoidance of toxins injurious to fetal growth.

  2. [The vitamin D endocrine system].

    PubMed

    Castro, Luiz Claudio Gonçalves de

    2011-11-01

    The vitamin D endocrine system comprises a group of 7-dehydrocholesterol-derived secosteroid molecules, including its active metabolite 1,25-dihydroxy-vitamin D (1,25(OH)(2)D), its precursors and other metabolites, its binding protein (DBP) and nuclear receptor (VDR), as well as cytochrome P450 complex enzymes participating in activation and inactivation pathways of those molecules. The biologic effects of 1,25(OH)(2)D are mediated by VDR, a ligand-activated transcription factor which is a member of the nuclear receptors family, spread in almost all human cells. In addition to its classic role in the regulation of calcium metabolism and bone health, evidence suggests that 1,25(OH)(2)D directly or indirectly modulates about 3% of the human genome, participating in the regulation of chief functions of systemic homeostasis, such as cell growth, differentiation and apoptosis, regulation of immune, cardiovascular and musculoskeletal systems, and insulin metabolism. Given the critical influence of the vitamin D endocrine system in many processes of systemic metabolic equilibrium, the laboratory assays available for the evaluation of this system have to present high accuracy and reproducibility, enabling the establishment of cutoff points that, beyond being consensually accepted, reliably express the vitamin D status of the organism, and the respective clinical-metabolic impacts on the global health of the individual.

  3. DIFFERENTIATING sEMG SIGNALS UNDER MUSCLE FATIGUE AND NON-FATIGUE CONDITIONS USING LOGISTIC REGRESSION CLASSIFIERS.

    PubMed

    Venugopal, G; Ramakrishnan, S

    2014-01-01

    In this work, an attempt has been made to differentiate surface electromyography signals under fatigue and non-fatigue conditions. Signals are recorded from the biceps brachii muscles of 50 healthy volunteers. A well-established experimental protocol is followed for this purpose. Signals are subjected to further processing and features namely amplitude of first burst, myopulse percentage rate, Willison amplitude, power spectrum ratio and variance of central frequency are extracted. Three types of logistic regression classifiers, linear logistic, polykernel logistic regression and multinomial regression with ridge estimator are used for automated analysis. Classifier parameters are tuned to enhance the accuracy and performance indices of algorithms, and are compared. The results show distinct values for extracted features in fatigue conditions which are statistically significant (0.0027 = P = 0.03). All classifiers are found to be effective in demarcating the signals. The linear logistic regression algorithm provides 79% accuracy with 40 iterations. However, in the case of multinomial regression with ridge estimator, only 7 iterations are required to achieve 80% accuracy. The polykernel logistic regression algorithm (0.06 = ? = 0.1) also provides 80% accuracy but with a marginal increment (1 % to 4 %) for precision, recall and specificity compared to other two classifiers.

  4. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

    PubMed

    Gore, A C; Chappell, V A; Fenton, S E; Flaws, J A; Nadal, A; Prins, G S; Toppari, J; Zoeller, R T

    2015-12-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence

  5. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals.

    PubMed

    Gore, A C; Chappell, V A; Fenton, S E; Flaws, J A; Nadal, A; Prins, G S; Toppari, J; Zoeller, R T

    2015-12-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence

  6. Skin manifestations of endocrine and neuroendocrine tumors.

    PubMed

    Leventhal, Jonathan S; Braverman, Irwin M

    2016-06-01

    The skin signs of benign and malignant endocrine and neuroendocrine tumors are manifold and early identification of these dermatologic features is crucial in initiating timely diagnosis and management. This article reviews the salient cutaneous features of these tumors that arise in the classic endocrine glands, lung and gastrointestinal tract either as individual neoplasms or as part of a syndrome.

  7. Simulation and Analysis of Eletrocardiogram-like Signals under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Rosa, Reinaldo; Guerra, Juliana; Russomano, Thais

    The electrocardiogram (ECG) is a time-varying signal reflecting the ionic current flow which causes the cardiac fibers to contract and subsequently relax. A single normal cycle of the ECG represents the successive atrial depolarization/repolarization and ventricular depolarization/repolarization which occurs with every heartbeat. In the first part of this paper we have compared synthetic ECG, obtained from two different models, where the noise level of gravity potential influence on the oscillations is explicitly considered in the models. The synthetic data were generated from (i) the Fitzhugh Nagumo equation and (ii) MCTS dynamical model [McSharry et al.; IEEE, v.50, n.3, 289-294, 2003]. From the asymmetry spectra of the Gradient Pattern Analysis [Rosa et al.; Braz. J. Phys. 33(3): 605-610, 2003; Advances in Space Research, 2007, 10.1016/j.asr.2007.08.015] we shown that the MCTS dynamical model is closer to the o real ECG variability pattern. Although the Fitzhugh Nagumo model can capture the electrical characteristics of the heart beat, it is not able to represent the PQRST wave's morphology in detail. In the MCTS dynamical model this limitation is solved taking into account the 3D cycle dynamics explicitly. Even this implies a very fine complex structure in the ECG signal (2%) this "very low noise level" can be captured by the asymmetry spectrum. In the second part, the same analytical approach is employed to assess simulated ECG without the gravity potential influence. In that case the gradient spectra have shown between -2% to -1 % of asymmetries that is captured using the mutual information distance. Thus, this "very low noise level" due to the microgravity also can be captured by the ECG asymmetry spectrum. Based on these results we discuss how to analyze signal in a large database like the Physionet in order to get an indication of the accuracy of our simulation when applied to real data including the ECG from space missions. Finally, we show, based on non

  8. Genetic testing by cancer site: endocrine system.

    PubMed

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  9. Interaction between diet and gastrointestinal endocrine cells

    PubMed Central

    EL-SALHY, MAGDY; MAZZAWI, TAREK; HAUSKEN, TRYGVE; HATLEBAKK, JAN GUNNAR

    2016-01-01

    The gastrointestinal endocrine cells are essential for life. They regulate the gastrointestinal motility, secretion, visceral sensitivity, absorption, local immune defense, cell proliferation and appetite. These cells act as sensory cells with specialized microvilli that project into the lumen that sense the gut contents (mostly nutrients and/or bacteria byproducts), and respond to luminal stimuli by releasing hormones into the lamina propria. These released hormones exert their actions by entering the circulating blood and reaching distant targets (endocrine mode), nearby structures (paracrine mode) or via afferent and efferent synaptic transmission. The mature intestinal endocrine cells are capable of expressing several hormones. A change in diet not only affects the release of gastrointestinal hormones, but also alters the densities of the gut endocrine cells. The interaction between ingested foodstuffs and the gastrointestinal endocrine cells can be utilized for the clinical management of gastrointestinal and metabolic diseases, such as irritable bowel syndrome, obesity and diabetes. PMID:27284402

  10. Correlation of hemodynamic and fluorescence signals under resting state conditions in mice's barrel field cortex.

    PubMed

    Bélanger, Samuel; de Souza, Bruno Oliveira Ferreira; Casanova, Christian; Lesage, Frédéric

    2016-03-11

    Both neurons and astrocytes are known to affect local vascular response in the brain following neuronal activity. In order to differentiate the contributions of each cell type to the hemodynamic response during stimulation and resting state, intrinsic optical signal (IOI) was recorded synchronized with fluorescence imaging of calcium concentration sensitive dye Oregon Green BAPTA-1 AM. By changing the stimulation parameters (frequency and duration), it was possible to individually promote neuronal and glial responses and to compare them to levels of oxy (HbO), deoxy (HbR) and total (HbT) hemoglobin concentrations. Finally, resting state recordings were done to investigate the possible correlation between hemoglobin fluctuation and calcium transients, based on different frequency bands associated either with neuronal or glial activity. PMID:26850574

  11. Detection, Evaluation, and Optimization of Optical Signals Generated by Fiber Optic Bragg Gratings Under Dynamic Excitations

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Lekki, John; Lock, James A.

    2002-01-01

    The dynamic response of a fiber optic Bragg grating to mechanical vibrations is examined both theoretically and experimentally. The theoretical expressions describing the consequences of changes in the grating's reflection spectrum are derived for partially coherent beams in an interferometer. The analysis is given in terms of the dominant wavelength, optical bandwidth, and optical path difference of the interfering signals. Changes in the reflection spectrum caused by a periodic stretching and compression of the grating were experimentally measured using an unbalanced Michelson interferometer, a Michelson interferometer with a non-zero optical path difference. The interferometer's sensitivity to changes in dominant wavelength of the interfering beams was measured as a function of interferometer unbalance and was compared to theoretical predictions. The theoretical analysis enables the user to determine the optimum performance for an unbalanced interferometer.

  12. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation

    SciTech Connect

    Lv, Zun-Ren; Ji, Hai-Ming Luo, Shuai; Gao, Feng; Xu, Feng; Yang, Tao; Xiao, De-Hang

    2015-10-15

    Large signal modulation characteristics of the simultaneous ground-state (GS) and excited-state (ES) lasing quantum dot lasers are theoretically investigated. Relaxation oscillations of ‘0 → 1’ and ‘1 → 0’ in the GS lasing region (Region I), the transition region from GS lasing to two-state lasing (Region II) and the two-state lasing region (Region III) are compared and analyzed. It is found that the overshooting power and settling time in both Regions I and III decrease as the bias current increases. However, there exist abnormal behaviors of the overshooting power and settling time in Region II owing to the occurrence of ES lasing, which lead to fuzzy eye diagrams of the GS and ES lasing. Moreover, the ES lasing in Region III possesses much better eye diagrams because of its shorter settling time and smaller overshooting power over the GS lasing in Region I.

  13. Wnt signalling underlies the evolution of new phenotypes and craniofacial variability in Lake Malawi cichlids

    PubMed Central

    Parsons, Kevin J.; Taylor, A. Trent; Powder, Kara E.; Albertson, R. Craig

    2014-01-01

    Progress towards understanding adaptive radiations at the mechanistic level is still limited with regard to the proximate molecular factors that both promote and constrain evolution. Here we focus on the craniofacial skeleton and show that expanded Wnt/β-catenin signalling early in ontogeny is associated with the evolution of phenotypic novelty and ecological opportunity in Lake Malawi cichlids. We demonstrate that the mode of action of this molecular change is to effectively lock into place an early larval phenotype, likely through accelerated rates of bone deposition. However, we demonstrate further that this change toward phenotypic novelty may in turn constrain evolutionary potential through the corresponding reduction in craniofacial plasticity at later stages of ontogeny. In all, our data implicate the Wnt pathway as an important mediator of craniofacial form and offer new insights into how developmental systems can evolve to both promote and constrain evolutionary change. PMID:24699776

  14. Signalling mechanisms underlying the morphological responses of the root system to nitrogen in Arabidopsis thaliana.

    PubMed

    Zhang, Hanma; Rong, Honglin; Pilbeam, David

    2007-01-01

    Plants display considerable developmental plasticity in response to changing environmental conditions. The adaptations of the root system to variations in N supply are an excellent example of such developmental plasticity. In Arabidopsis, four morphological adaptations to the N supply have been characterized: (i) a localized stimulatory effect of external nitrate on lateral root elongation; (ii) a systemic inhibitory effect of high tissue nitrate concentrations on the activation of lateral root meristems; (iii) a suppression of lateral root initiation by high C:N ratios, and (iv) an inhibition of primary root growth and stimulation of root branching by external L-glutamate. These responses have provided valuable experimental systems for the study of N signalling in plants. This article will highlight some recent progress made in this direction from studies using the Arabidopsis root system. One recent development of note has been the emerging evidence of a regulatory role of nitrate transporters in some of the responses. It has been reported that the AtNRT1.1 (CHL1) dual-affinity nitrate transporter acts upstream of the ANR1 MADS box gene in mediating the stimulatory effect of a localized nitrate supply on lateral root proliferation. The AtNRT2.1 high-affinity nitrate transporter seems to be involved in the repression of lateral root initiation by high C:N ratios. The systemic inhibitory effect of high nitrate supply on lateral root development, which is mediated by abscisic acid (ABA), may be linked to the recently identified ABA receptor, FCA. The newly discovered root architectural response to external L-glutamate potentially offers a valuable experimental tool for studying the biological function of plant glutamate receptors and amino acid signalling.

  15. P38 MAPK signaling underlies a cell autonomous loss of stem cell self-renewal in aged skeletal muscle

    PubMed Central

    Bernet, Jennifer D.; Doles, Jason D.; Hall, John K.; Kelly-Tanaka, Kathleen; Carter, Thomas A.; Olwin, Bradley B.

    2014-01-01

    Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and decreased regenerative capacity, which can lead to sarcopenia and increased mortality. While the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here, we show that a cell-autonomous loss in self-renewal occurs via alterations in FGF Receptor 1 and p38αβ MAPK signaling in aged satellite cells. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus, our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveal potential therapeutic opportunities for the treatment of progressive muscle wasting. PMID:24531379

  16. Early pre- and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice

    PubMed Central

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; Jacobson, Christopher; Molgó, Jordi; Stutzmann, Grace E.

    2012-01-01

    Alzheimer’s disease (AD)-linked presenilin mutations result in pronounced endoplasmic reticulum (ER) calcium disruptions that occur prior to detectable histopathology and cognitive deficits. More subtly, these early AD-linked calcium alterations also reset neurophysiological homeostasis, such that calcium-dependent pre- and postsynaptic signaling appear functionally normal yet are actually operating under aberrant calcium signaling systems. In these 3xTg-AD mouse brains, upregulated RyR activity is associated with a shift towards synaptic depression, likely through a reduction in presynaptic vesicle stores and increased postsynaptic outward currents through SK2 channels. The deviant RyR-calcium involvement in the 3xTg-AD mice also compensates for an intrinsic predisposition for hippocampal LTD and reduced LTP. In this study we detail the impact of disrupted ryanodine receptor (RyR)-mediated calcium stores on synaptic transmission properties, long term depression (LTD) and calcium-activated membrane channels of hippocampal CA1 pyramidal neurons in presymptomatic 3xTg-AD mice. Using electrophysiological recordings in young 3xTg-AD and NonTg hippocampal slices, we show that increased RyR-evoked calcium release in 3xTg-AD mice ‘normalizes’ an altered synaptic transmission system operating under a shifted homeostatic state that is not present in NonTg mice. In the process, we uncover compensatory signaling mechanisms recruited early in the disease process which counterbalance the disrupted RyR-calcium dynamics, namely increases in presynaptic spontaneous vesicle release, altered probability of vesicle release, and upregulated postsynaptic SK channel activity. As AD is increasingly recognized as a ‘synaptic disease’, calcium-mediated signaling alterations may serve as a proximal trigger for the synaptic degradation driving the cognitive loss in AD. PMID:22699914

  17. Prognostic and Predictive Biomarkers of Endocrine Responsiveness for Estrogen Receptor Positive Breast Cancer.

    PubMed

    Ma, Cynthia X; Bose, Ron; Ellis, Matthew J

    2016-01-01

    The estrogen-dependent nature of breast cancer is the fundamental basis for endocrine therapy. The presence of estrogen receptor (ER), the therapeutic target of endocrine therapy, is a prerequisite for this therapeutic approach. However, estrogen-independent growth often exists de novo at diagnosis or develops during the course of endocrine therapy. Therefore ER alone is insufficient in predicting endocrine therapy efficacy. Several RNA-based multigene assays are now available in clinical practice to assess distant recurrence risk, with majority of these assays evaluated in patients treated with 5 years of adjuvant endocrine therapy. While MammaPrint and Oncotype Dx are most predictive of recurrence risk within the first 5 years of diagnosis, Prosigna, Breast Cancer Index (BCI), and EndoPredict Clin have also demonstrated utility in predicting late recurrence. In addition, PAM50, or Prosigna, provides further biological insights by classifying breast cancers into intrinsic molecular subtypes. Additional strategies are under investigation in prospective clinical trials to differentiate endocrine sensitive and resistant tumors and include on-treatment Ki-67 and Preoperative Endocrine Prognostic Index (PEPI) score in the setting of neoadjuvant endocrine therapy. These biomarkers have become important tools in clinical practice for the identification of low risk patients for whom chemotherapy could be avoided. However, there is much work ahead toward the development of a molecular classification that informs the biology and novel therapeutic targets in high-risk disease as chemotherapy has only modest benefit in this population. The recognition of somatic mutations and their relationship to endocrine therapy responsiveness opens important opportunities toward this goal.

  18. Prognostic and Predictive Biomarkers of Endocrine Responsiveness for Estrogen Receptor Positive Breast Cancer.

    PubMed

    Ma, Cynthia X; Bose, Ron; Ellis, Matthew J

    2016-01-01

    The estrogen-dependent nature of breast cancer is the fundamental basis for endocrine therapy. The presence of estrogen receptor (ER), the therapeutic target of endocrine therapy, is a prerequisite for this therapeutic approach. However, estrogen-independent growth often exists de novo at diagnosis or develops during the course of endocrine therapy. Therefore ER alone is insufficient in predicting endocrine therapy efficacy. Several RNA-based multigene assays are now available in clinical practice to assess distant recurrence risk, with majority of these assays evaluated in patients treated with 5 years of adjuvant endocrine therapy. While MammaPrint and Oncotype Dx are most predictive of recurrence risk within the first 5 years of diagnosis, Prosigna, Breast Cancer Index (BCI), and EndoPredict Clin have also demonstrated utility in predicting late recurrence. In addition, PAM50, or Prosigna, provides further biological insights by classifying breast cancers into intrinsic molecular subtypes. Additional strategies are under investigation in prospective clinical trials to differentiate endocrine sensitive and resistant tumors and include on-treatment Ki-67 and Preoperative Endocrine Prognostic Index (PEPI) score in the setting of neoadjuvant endocrine therapy. These biomarkers have become important tools in clinical practice for the identification of low risk patients for whom chemotherapy could be avoided. However, there is much work ahead toward the development of a molecular classification that informs the biology and novel therapeutic targets in high-risk disease as chemotherapy has only modest benefit in this population. The recognition of somatic mutations and their relationship to endocrine therapy responsiveness opens important opportunities toward this goal. PMID:26987533

  19. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-03-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a "diffuse sensory organ" that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this "pan-endocrine illness" is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death.

  20. Endocrine manifestations related to inherited metabolic diseases in adults

    PubMed Central

    2012-01-01

    Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses. PMID:22284844

  1. Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/IGF1R Signaling under Hypoxia

    PubMed Central

    Hirakawa, Toshiki; Yashiro, Masakazu; Doi, Yosuke; Kinoshita, Haruhito; Morisaki, Tamami; Fukuoka, Tatsunari; Hasegawa, Tsuyoshi; Kimura, Kenjiro; Amano, Ryosuke; Hirakawa, Kosei

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by its hypovascularity, with an extremely poor prognosis because of its highly invasive nature. PDAC proliferates with abundant stromal cells, suggesting that its invasive activity might be controlled by intercellular interactions between cancer cells and fibroblasts. Using four PDAC cell lines and two pancreas cancer-associated fibroblasts (CAFs), the expression of insulin-like growth factor-1 (IGF1) and IGF1 receptor (IGF1R) was evaluated by RT-PCR, FACScan, western blot, or ELISA. Correlation between IGF1R and the hypoxia marker carbonic anhydrase 9 (CA9) was examined by immunohistochemical staining of 120 pancreatic specimens. The effects of CAFs, IGF1, and IGF1R inhibitors on the motility of cancer cells were examined by wound-healing assay or invasion assay under normoxia (20% O2) and hypoxia (1% O2). IGF1R expression was significantly higher in RWP-1, MiaPaCa-2, and OCUP-AT cells than in Panc-1 cells. Hypoxia increased the expression level of IGF1R in RWP-1, MiaPaCa-2, and OCUP-AT cells. CA9 expression was correlated with IGF1R expression in pancreatic specimens. CAFs produced IGF1 under hypoxia, but PDAC cells did not. A conditioned medium from CAFs, which expressed αSMA, stimulated the migration and invasion ability of MiaPaCa-2, RWP-1, and OCUP-AT cells. The motility of all PDAC cells was greater under hypoxia than under normoxia. The motility-stimulating ability of CAFs was decreased by IGF1R inhibitors. These findings might suggest that pancreas CAFs stimulate the invasion activity of PDAC cells through paracrine IGF1/IGF1R signaling, especially under hypoxia. Therefore the targeting of IGF1R signaling might represent a promising therapeutic approach in IGF1R-dependent PDAC. PMID:27487118

  2. Endocrine regulation of longitudinal bone growth.

    PubMed

    Wit, Jan M; Camacho-Hübner, Cecilia

    2011-01-01

    Longitudinal growth is primarily influenced by the GH-IGF-I axis, which is a mixed endocrine-paracrine-autocrine system. Further, classical hormones such as thyroxine, glucocorticosteroids and sex steroids play a role, as well as primarily paracrine systems. In the GH-IGF-I axis, seven disorders can be differentiated: (1) GH deficiency; (2) GHR defects; (3) defects in the GH signal transduction pathway; (4) IGF1 defects; (5) IGFALS defects; (6) IGF1R defects, and (7) IGF2 defects. Children with one of the first 3 disorders have near-normal prenatal growth, while children with defects of IGF1, IGF1R or IGF2 show prenatal as well as postnatal growth retardation. Hypothyroidism or a thyroid hormone resistance cause growth failure, but the effect of hyperthyroidism on growth is modest. Hypercortisolism causes poor growth, while FGD caused by ACTH insensitivity is associated with tall stature. Increased sex steroids in childhood cause advanced growth but even more skeletal maturation, so that adult height is decreased. Finally, the paracrine-autocrine SHOX-BNP pathway and the related CNP-NPR2 pathway are also involved in growth, as very many other growth factors and their receptors and mediators. PMID:21865752

  3. Endocrine regulation of longitudinal bone growth.

    PubMed

    Wit, Jan M; Camacho-Hübner, Cecilia

    2011-01-01

    Longitudinal growth is primarily influenced by the GH-IGF-I axis, which is a mixed endocrine-paracrine-autocrine system. Further, classical hormones such as thyroxine, glucocorticosteroids and sex steroids play a role, as well as primarily paracrine systems. In the GH-IGF-I axis, seven disorders can be differentiated: (1) GH deficiency; (2) GHR defects; (3) defects in the GH signal transduction pathway; (4) IGF1 defects; (5) IGFALS defects; (6) IGF1R defects, and (7) IGF2 defects. Children with one of the first 3 disorders have near-normal prenatal growth, while children with defects of IGF1, IGF1R or IGF2 show prenatal as well as postnatal growth retardation. Hypothyroidism or a thyroid hormone resistance cause growth failure, but the effect of hyperthyroidism on growth is modest. Hypercortisolism causes poor growth, while FGD caused by ACTH insensitivity is associated with tall stature. Increased sex steroids in childhood cause advanced growth but even more skeletal maturation, so that adult height is decreased. Finally, the paracrine-autocrine SHOX-BNP pathway and the related CNP-NPR2 pathway are also involved in growth, as very many other growth factors and their receptors and mediators.

  4. Real-time MST radar signal processing using a microcomputer running under FORTH

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A.

    1983-01-01

    Data on power, correlation time, and velocity were obtained at the Urbana radar using microcomputer and a single floppy disk drive. This system includes the following features: (1) measurement of the real and imaginary components of the received signal at 20 altitudes spaced by 1.5 km; (2) coherent integration of these components over a 1/8-s time period; (3) continuous real time display of the height profiles of the two coherently integrated components; (4) real time calculation of the 1 minute averages of the power and autocovariance function up to 6 lags; (5) output of these data to floppy disk once every 2 minutes; (6) display of the 1 minute power profiles while the data are stored to the disk; (7) visual prompting for the operator to change disks when required at the end of each hour of data; and (8) continuous audible indication of the status of the interrupt service routine. Accomplishments were enabled by two developments: the use of a new correlation algorithm and the use of the FORTH language to manage the various low level and high level procedures involved.

  5. TRP channel Ca2+ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization

    PubMed Central

    Sullivan, Michelle N.

    2013-01-01

    Important functions of the vascular endothelium, including permeability, production of antithrombotic factors, and control of vascular tone, are regulated by changes in intracellular Ca2+. The molecular identities and regulation of Ca2+ influx channels in the endothelium are incompletely understood, in part because of experimental difficulties associated with application of patch-clamp electrophysiology to native endothelial cells. However, advances in confocal and total internal reflection fluorescence microscopy and the development of fast, high-affinity Ca2+-binding fluorophores have recently allowed for direct visualization and characterization of single-channel transient receptor potential (TRP) channel Ca2+ influx events in endothelial cells. These events, called “TRP channel Ca2+ sparklets,” have been optically recorded from primary endothelial cells and the intact endothelium, and the biophysical properties and fundamental significance of these Ca2+ signals in vasomotor regulation have been characterized. This review will first briefly discuss the role of endothelial cell TRP channel Ca2+ influx in endothelium-dependent vasodilation, describe improved methods for recording unitary TRP channel activity using optical methods, and highlight discoveries regarding the regulation and physiological significance of TRPV4 Ca2+ sparklets in the vascular endothelium enabled by this new technology. Perspectives on the potential use of these techniques to evaluate changes in TRP channel Ca2+ influx activity associated with endothelial dysfunction are offered. PMID:24025865

  6. Bayesian image recovery for dendritic structures under low signal-to-noise conditions.

    PubMed

    Fudenberg, Geoffrey; Paninski, Liam

    2009-03-01

    Experimental research seeking to quantify neuronal structure constantly contends with restrictions on image resolution and variability. In particular, experimentalists often need to analyze images with very low signal-to-noise ratio (SNR). In many experiments, dye toxicity scales with the light intensity; this leads experimentalists to reduce image SNR in order to preserve the viability of the specimen. In this paper, we present a Bayesian approach for estimating the neuronal shape given low-SNR observations. This Bayesian framework has two major advantages. First, the method effectively incorporates known facts about 1) the image formation process, including blur and the Poisson nature of image noise at low intensities, and 2) dendritic shape, including the fact that dendrites are simply-connected geometric structures with smooth boundaries. Second, we may employ standard Markov chain Monte Carlo techniques for quantifying the posterior uncertainty in our estimate of the dendritic shape. We describe an efficient computational implementation of these methods and demonstrate the algorithm's performance on simulated noisy two-photon laser-scanning microscopy images. PMID:19211329

  7. Increase of global monsoon area and precipitation under global warming: A robust signal?

    NASA Astrophysics Data System (ADS)

    Hsu, Pang-chi; Li, Tim; Luo, Jing-Jia; Murakami, Hiroyuki; Kitoh, Akio; Zhao, Ming

    2012-03-01

    Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns. The results show that the global monsoon area, precipitation and intensity all increase consistently among the model projections. This indicates that the strengthened global monsoon is a robust signal across the models and SST patterns explored here. The increase of the global monsoon precipitation is attributed to the increases of moisture convergence and surface evaporation. The former is caused by the increase of atmospheric water vapor and the latter is due to the increase of SST. The effect of the moisture and evaporation increase is offset to a certain extent by the weakening of the monsoon circulation.

  8. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed. PMID:8331806

  9. Endocrine Consequences of Anorexia Nervosa

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664

  10. Signal transduction pathways in erythrocyte nitric oxide metabolism under high fibrinogen levels

    NASA Astrophysics Data System (ADS)

    Saldanha, Carlota; Freitas, T.; Lopez de Almeida, J. P.; Silva-Herdade, A.

    2014-05-01

    Previous studies show that the fibrinogen molecule modulates the metabolism of nitric oxide (NO) in erythrocyte. The in vitro induced hiperfibrinogenemia interferes in the metabolism of the NO in the erythrocyte in dependence of the phosphorylation degree of the band 3. The soluble form of fibrinogen binds into CD47 protein present in the erythrocyte membrane. The soluble thrombomodulin is an inflammatory marker that binds to the erythrocyte CD47 in a site with a sequence peptide known as 4N1K. A study done in vitro shows that when hiperfibrinogenemia was induced in the presence of the peptide 4N1K agonist of CD47 it were observed variations in the efflux of NO from erythrocyte and an increase in the concentrations of GSNO, peroxinitrite, nitrite and nitrate of the erythrocytes. The aim of this work was to study the influence of the peptide 4N1K, on the metabolism of NO in the erythrocyte under high fibrinogen concentration and in the presence of inhibitors of the status of phosphorylation of protein band 3. In this in vitro study, whole blood samples were harvested from healthy subjects and NO, peroxynitrite, nitrite, nitrate and S-nitro-glutathione (GSNO) were determined in presence of 4N1K, calpeptine, Syk inhibitor and under high fibrinogen concentrations. The results obtained in erythrocytes under high fibrinogen levels when 4N1K is present with the Syk inhibitor or with calpeptine, showed in relation to the control samples increased significant concentrations of efflux of NO and of peroxynitrite, nitrite, nitrate and GSNO. In conclusion it was verified that in the in vitro model of hiperfibrinogenemia the peptide 4N1K, agonist of CD47, induces mobilization of NO in the erythrocyte in dependence of the status of phosphorylation of protein band 3.

  11. Stability of the color-opponent signals under changes of illuminant in natural scenes.

    PubMed

    Lovell, P G; Tolhurst, D J; Párraga, C A; Baddeley, R; Leonards, U; Troscianko, J; Troscianko, T

    2005-10-01

    Illumination varies greatly both across parts of a natural scene and as a function of time, whereas the spectral reflectance function of surfaces remains more stable and is of much greater relevance when searching for specific targets. This study investigates the functional properties of postreceptoral opponent-channel responses, in particular regarding their stability against spatial and temporal variation in illumination. We studied images of natural scenes obtained in UK and Uganda with digital cameras calibrated to produce estimated L-, M-, and S-cone responses of trichromatic primates (human) and birds (starling). For both primates and birds we calculated luminance and red-green opponent (RG) responses. We also calculated a primate blue-yellow-opponent (BY) response. The BY response varies with changes in illumination, both across time and across the image, rendering this factor less invariant. The RG response is much more stable than the BY response across such changes in illumination for primates, less so for birds. These differences between species are due to the greater separation of bird L and M cones in wavelength and the narrower bandwidth of the cone action spectra. This greater separation also produces a larger chromatic signal for a given change in spectral reflectance. Thus bird vision seems to suffer a greater degree of spatiotemporal "clutter" than primate vision, but also enhances differences between targets and background. Therefore, there may be a trade-off between the degree of chromatic clutter in a visual system versus the degree of chromatic difference between a target and its background. Primate and bird visual systems have found different solutions to this trade-off. PMID:16277277

  12. Corruption of homeostatic mechanisms in the guanylyl cyclase C signaling pathway underlying colorectal tumorigenesis.

    PubMed

    Li, Peng; Waldman, Scott A

    2010-08-01

    Colon cancer, the second leading cause of cancer-related mortality worldwide, originates from the malignant transformation of intestinal epithelial cells. The intestinal epithelium undergoes a highly organized process of rapid regeneration along the crypt-villus axis, characterized by proliferation, migration, differentiation and apoptosis, whose coordination is essential to maintaining the mucosal barrier. Disruption of these homeostatic processes predisposes cells to mutations in tumor suppressors or oncogenes, whose dysfunction provides transformed cells an evolutionary growth advantage. While sequences of genetic mutations at different stages along the neoplastic continuum have been established, little is known of the events initiating tumorigenesis prior to adenomatous polyposis coli (APC) mutations. Here, we examine a role for the corruption of homeostasis induced by silencing novel tumor suppressors, including the intestine-specific transcription factor CDX2 and its gene target guanylyl cyclase C (GCC), as early events predisposing cells to mutations in APC and other sequential genes that initiate colorectal cancer. CDX2 and GCC maintain homeostatic regeneration in the intestine by restricting cell proliferation, promoting cell maturation and adhesion, regulating cell migration and defending the intestinal barrier and genomic integrity. Elimination of CDX2 or GCC promotes intestinal tumor initiation and growth in aged mice, mice carrying APC mutations or mice exposed to carcinogens. The roles of CDX2 and GCC in suppressing intestinal tumorigenesis, universal disruption in their signaling through silencing of hormones driving GCC, and the uniform overexpression of GCC by tumors underscore the potential value of oral replacement with GCC ligands as targeted prevention and therapy for colorectal cancer.

  13. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the

  14. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the

  15. α-Syntrophin is involved in the survival signaling pathway in myoblasts under menadione-induced oxidative stress.

    PubMed

    Lim, Jeong-A; Choi, Su Jin; Moon, Jae Yun; Kim, Hye Sun

    2016-05-15

    Dystrophin-deficient muscle is known to be more vulnerable to oxidative stress, but not much is known about the signaling pathway(s) responsible for this phenomenon. α-Syntrophin, a component of the dystrophin-glycoprotein complex, can function as a scaffold protein because of its multiple protein interaction domains. In this study, we investigated the role of α-syntrophin in C2 myoblasts under menadione-induced oxidative stress. We found that the protein level of α-syntrophin was elevated when cells were exposed to menadione. To investigate the function of α-syntrophin during oxidative stress, we established α-syntrophin-overexpressing and knockdown cell lines. The α-syntrophin-overexpressing cells were resistant to the menadione-induced oxidative stress. In addition, survival signalings such as protein kinase B (Akt) phosphorylation and the Bcl-2/BAX ratio were increased in these cells. On the other hand, apoptotic signals such as cleavage of caspase-3 and poly ADP ribose polymerase (PARP) were increased in the α-syntrophin knockdown cells. Furthermore, Ca(2+)influx, which is known to increase when cells are exposed to oxidative stress, decreased in the α-syntrophin-overexpressing cells, but increased in the knockdown cells. These results suggest that α-syntrophin plays a pivotal role in the survival pathway triggered by menadione-induced oxidative stress in cultured myoblasts.

  16. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution.

  17. Retinoid metabolism in invertebrates: when evolution meets endocrine disruption.

    PubMed

    André, A; Ruivo, R; Gesto, M; Castro, L Filipe C; Santos, M M

    2014-11-01

    Recent genomic and biochemical evidence in invertebrate species pushes back the origin of the retinoid metabolic and signaling modules to the last common ancestor of all bilaterians. However, the evolution of retinoid pathways are far from fully understood. In the majority of non-chordate invertebrate lineages, the ongoing functional characterization of retinoid-related genes (metabolism and signaling pathways), as well as the characterization of the endogenous retinoid content (precursors and active retinoids), is still incomplete. Despite limited, the available data supports the presence of biologically active retinoid pathways in invertebrates. Yet, the mechanisms controlling the spatial and temporal distribution of retinoids as well as their physiological significance share similarities and differences with vertebrates. For instance, retinol storage in the form of retinyl esters, a key feature for the maintenance of retinoid homeostatic balance in vertebrates, was only recently demonstrated in some mollusk species, suggesting that such ability is older than previously anticipated. In contrast, the enzymatic repertoire involved in this process is probably unlike that of vertebrates. The suggested ancestry of active retinoid pathways implies that many more metazoan species might be potential targets for endocrine disrupting chemicals. Here, we review the current knowledge about the occurrence and functionality of retinoid metabolic and signaling pathways in invertebrate lineages, paying special attention to the evolutionary origin of retinoid storage mechanisms. Additionally, we summarize existing information on the endocrine disruption of invertebrate retinoid modules by environmental chemicals. Research priorities in the field are highlighted.

  18. An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors

    PubMed Central

    Yamashita-Sugahara, Yzumi; Matsumoto, Masahito; Ohtaka, Manami; Nishimura, Ken; Nakanishi, Mahito; Mitani, Kohnosuke; Okazaki, Yasushi

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) provide a potential resource for regenerative medicine. To identify the signalling pathway(s) contributing to the development of functional β cells, we established a tracing model consisting of dual knock-in hiPSCs (INS-Venus/NGN3-mCherry) (hIveNry) expressing the fluorescent proteins Venus and mCherry under the control of intrinsic insulin (INS) and neurogenin 3 (NGN3) promoters, respectively. hIveNry iPSCs differentiated into NGN3- and mCherry-positive endocrine progenitors and then into Venus-positive β cells expressing INS, PDX1, NKX6.1, and glucokinase (GCK). Using these cells, we conducted high-throughput screening of chemicals and identified a specific kinase inhibitor of fibroblast growth factor receptor 1 (FGFR1) that acted in a stage-dependent manner to promote the terminal differentiation of pancreatic endocrine cells, including β cells, from the intermediate stage of pancreatic endocrine progenitors while blocking the early development of pancreatic progenitors. This FGFR1 inhibitor augmented the expression of functional β cell markers (SLC30A8 and ABCC8) and improved glucose-stimulated INS secretion. Our findings indicate that the hIveNry model could provide further insights into the mechanisms of hiPS-derived β cell differentiation controlled by FGFR1-mediated regulatory pathways in a temporal-dependent fashion. PMID:27786288

  19. Signaling Mechanisms Underlying Slit2-Induced Collapse of Xenopus Retinal Growth Cones

    PubMed Central

    Piper, Michael; Anderson, Richard; Dwivedy, Asha; Weinl, Christine; van Horck, Francis; Leung, Kin Mei; Cogill, Emily; Holt, Christine

    2013-01-01

    Summary Slits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion. Interestingly, Slit2-CM causes a fast PS-dependent decrease in cytoskeletal F-actin concomitant with a PS-dependent increase in the actin-depolymerizing protein cofilin. Our findings reveal an unexpected link between Slit2 and cofilin in growth cones and suggest that local translation of actin regulatory proteins contributes to repulsion. PMID:16423696

  20. Pyrethroid Pesticides as Endocrine Disruptors: Molecular Mechanisms in Vertebrates with a Focus on Fishes.

    PubMed

    Brander, Susanne M; Gabler, Molly K; Fowler, Nicholas L; Connon, Richard E; Schlenk, Daniel

    2016-09-01

    Pyrethroids are now the fourth most used group of insecticides worldwide. Employed in agriculture and in urban areas, they are detected in waterways at concentrations that are lethally and sublethally toxic to aquatic organisms. Highly lipophilic, pyrethroids accumulate in sediments and bioaccumulate in fishes. Additionally, these compounds are demonstrated to act as endocrine disrupting compounds (or EDCs) in mammals and fishes, and therefore interfere with endocrine signaling by blocking, mimicking, or synergizing endogenous hormones through direct receptor interactions, and indirectly via upstream signaling pathways. Pyrethroid metabolites have greater endocrine activity than their parent structures, and this activity is dependent on the enantiomer present, as some pyrethroids are chiral. Many EDCs studied thus far in fish have known estrogenic or antiestrogenic effects, and as such cause the inappropriate or altered expression of genes or proteins (i.e., Vtg-vitellogenin, Chg-choriogenin), often leading to physiological or reproductive effects. Additionally, these compounds can also interfere with other endocrine pathways and immune response. This review highlights studies that focus on the mechanisms of pyrethroid biotransformation and endocrine toxicity to fishes across a broad range of different pyrethroid types, and integrates literature on the in vitro and mammalian responses that inform these mechanisms. PMID:27464030

  1. [Studies of interaction of intracellular signalling and metabolic pathways under inhibition of mitochondrial aconitase with fluoroacetate].

    PubMed

    Zinchenko, V P; Goncharov, N V; Teplova, V V; Kasymov, V A; Petrova, O I; Berezhnov, A V; Senchenkov, E V; Mindukshev, I V; Jenkins, R O; Radilov, A S

    2007-01-01

    Mitochondrial aconitase has been shown to be inactivated by a spectrum of substances or critical states. Fluoroacetate (FA) is the most known toxic agent inhibiting aconitase. The biochemistry of toxic action of FA is rather well understood, though no effective therapy has been proposed for the past six decades. In order to reveal novel approaches for possible antidotes to be developed, experiments were performed with rat liver mitochondria, Ehrlich ascite tumor cells and cardiomyocytes, exposed to FA or fluorocitrate in vitro. The effect of FA developed at much higher concentrations in comparison with fluorocitrate and was dependent upon respiratory substrates in experiments with mitochondria: with pyruvate, FA induced a slow oxidation and/or leak of pyridine nucleotides and inhibition of respiration. Oxidation of pyridine nucleotides was prevented by incubation of mitochondria with cyclosporin A. Studies of the pyridine nucleotides level and calcium response generated in Ehrlich ascite tumor cells under activation with ATP also revealed a loss of pyridine nucleotides from mitochondria resulting in a shift in the balance of mitochondrial and cytosolic NAD(P)H under exposure to FA. An increase of cytosolic [Ca2+] was observed in the cell lines exposed to FA and is explained by activation of plasma membrane calcium channels; this mechanism, could have an impact on amplitude and rate of Ca2+ waves in cardiomyocytes. Highlighting the reciprocal relationship between intracellular pyridine nucleotides and calcium balance, we discuss metabolic pathway modulation in the context of probable development of an effective therapy for FA poisoning and other inhibitors of aconitase. PMID:18318221

  2. Compact optical displacement sensing by detection of microwave signals generated from a monolithic passively mode-locked laser under feedback

    NASA Astrophysics Data System (ADS)

    Simos, Christos; Simos, Hercules; Nikas, Thomas; Syvridis, Dimitris

    2015-05-01

    A monolithic passively mode-locked laser is proposed as a compact optical sensor for displacements and vibrations of a reflecting object. The sensing principle relies on the change of the laser repetition frequency that is induced by optical feedback from the object under measurement. It has been previously observed that, when a semiconductor passively mode locked laser receives a sufficient level of optical feedback from an external reflecting surface it exhibits a repetition frequency that is no more determined by the mode-locking rule of the free-running operation but is imposed by the length of the external cavity. Therefore measurement of the resulting laser repetition frequency under self-injection permits the accurate and straightforward determination of the relative position of the reflecting object. The system has an inherent wireless capability since the repetition rate of the laser can be wirelessly detected by means of a simple antenna which captures the microwave signal generated by the saturable absorber and is emitted through the wiring of the laser. The sensor setup is very simple as it requires few optical components besides the laser itself. Furthermore, the deduction of the relative position of the reflecting object is straightforward and does not require any processing of the detected signal. The proposed sensor has a theoretical sub-wavelength resolution and its performance depends on the RF linewidth of the laser and the resolution of the repetition frequency measurement. Other physical parameters that induce phase changes of the external cavity could also be quantified.

  3. Adaptive autoregressive modeling of non-stationary vibration signals under distinct gear states. Part 2: experimental analysis

    NASA Astrophysics Data System (ADS)

    Zhan, Y. M.; Jardine, A. K. S.

    2005-09-01

    Parametric time-frequency representation based on parametric models is more desirable for presenting highly precise time-frequency domain information due to its high-resolution property. However, the sensitivity and robustness of parametric models, in particular the parametric models on the basis of advanced adaptive filtering algorithms, has never been investigated for on-line condition monitoring of rotating machinery. Part 1 of this study proposed three adaptive parametric models based on three advanced adaptive filtering algorithms. Part 2 of this study is concerned with the effectiveness of the proposed models under distinct gear states, especially the highly non-stationary conditions accrued from advanced gear faults. Four gear states are considered: healthy state, adjacent gear tooth failure, non-adjacent gear tooth failure and distributed gear tooth failure. The vibration signals used in this study include the time-domain synchronous averaging signal and gear motion residual signal for each considered gear state. The test results demonstrate that the optimum filter behavior can readily be attained and the white Gaussian assumption of innovations can relatively be easily guaranteed for the NAKF-based model under distinct gear states and a wide variety of model initializations. On the other hand, the EKF- and MEKF-based models are capable of generating more accurate time-frequency representations than the NAKF-based model, but in general the optimality condition for white Gaussian assumption cannot be guaranteed for these two advanced models. Therefore, the NAKF-based model is preferred for automatic condition monitoring due to its appealing robustness to distinct gear states and arbitrary model initializations, whereas the EKF- and MEKF-based models are desirable when accurate time-frequency representation is concerned.

  4. Amphibians as model to study endocrine disrupters.

    PubMed

    Kloas, Werner; Lutz, Ilka

    2006-10-13

    Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.

  5. Endocrine scintigraphy with hybrid SPECT/CT.

    PubMed

    Wong, Ka Kit; Fig, Lorraine M; Youssef, Ehab; Ferretti, Alice; Rubello, Domenico; Gross, Milton D

    2014-10-01

    Nuclear medicine imaging of endocrine disorders takes advantage of unique cellular properties of endocrine organs and tissues that can be depicted by targeted radiopharmaceuticals. Detailed functional maps of biodistributions of radiopharmaceutical uptake can be displayed in three-dimensional tomographic formats, using single photon emission computed tomography (CT) that can now be directly combined with simultaneously acquired cross-sectional anatomic maps derived from CT. The integration of function depicted by scintigraphy and anatomy with CT has synergistically improved the efficacy of nuclear medicine imaging across a broad spectrum of clinical applications, which include some of the oldest imaging studies of endocrine dysfunction.

  6. Intestinal bile acid sensing is linked to key endocrine and metabolic signalng pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G prote...

  7. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.

    PubMed

    Li, Ting; Jia, Kun-Peng; Lian, Hong-Li; Yang, Xu; Li, Ling; Yang, Hong-Quan

    2014-11-01

    Anthocyanins are critical for plants. It is shown that the expression of genes encoding the key enzymes such as dihydroflavonol 4-reductase (DFR), UDP-Glc: flavonoid 3-O-glucosyltransferase (UF3GT), and leucoanthocyanidin dioxygenase (LDOX) in anthocyanin biosynthesis pathway is regulated by MYB75, a R2R3 MYB transcription factor. The production of anthocyanin is known to be promoted by jasmonic acid (JA) in light but not in darkness. The photoreceptors cryptochrome 1 (CRY1), phytochrome B (phyB), and phytochrome A (phyA) are also shown to mediate light promotion of anthocyanin accumulation, respectively, whereas their downstream factor COP1, a master negative regulator of photomorphogensis, represses anthocyanin accumulation. However, whether JA coordinates with photoreceptors in the regulation of anthocyanin accumulation is unknown. Here, we show that under far-red light, JA promotes anthocyanin accumulation in a phyA signaling pathway-dependent manner. The phyA mutant is hyposensitive to jasmonic acid analog methyl jasmonic acid (MeJA) under far-red light. The dominant mutant of MYB75, pap1-D, accumulates significantly higher levels of anthocyanin than wild type under far-red light, whereas knockdown of MYBs (MYB75, MYB90, MYB113, and MYB114) through RNAi significantly reduces MeJA promotion of anthocyanin accumulation. The phyA pap1-D double mutant shows reduced responsiveness to MeJA, similar to phyA mutant under far-red light. In darkness, a mutant allele of cop1, cop1-4, shows enhanced responsiveness to MeJA, but pap1-D mutant is barely responsive to MeJA. Upon MeJA application, the cop1-4 pap1-D double mutant accumulates considerably higher levels of anthocyanin than cop1-4 in darkness. Protein studies indicate that MYB75 protein is stabilized by white light and far-red light. Further gene expression studies suggest that MeJA promotes the expression of DFR, UF3GT, and LDOX genes in a phyA- and MYB75-dependent manner under far-red light. Our findings suggest

  8. Endocrine-Disrupting Compounds in Aquatic Ecosystems.

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are a ubiquitous issue of concern in our aquatic systems. Commonly detected EDCs include natural and synthetic hormones, surfactants, plasticizers, disinfectants, herbicides and metals. The potency of these chemicals varies substantially, as ...

  9. FIELD MONITORING FOR ENDOCRINE DISRUPTION IN INVERTEBRATES

    EPA Science Inventory

    The field monitoring chapter addresses the following issues: cases where endocrine disruption (ED) has been identified as causing effects in either individuals, populations, or communities in the field; practical...

  10. The skeleton as an endocrine organ.

    PubMed

    DiGirolamo, Douglas J; Clemens, Thomas L; Kousteni, Stavroula

    2012-11-01

    Surprising new discoveries in the field of skeletal biology show that bone cells produce endocrine hormones that regulate phosphate and glucose homeostasis. In this Review, we examine the features of these new endocrine pathways and discuss their physiological importance in the context of our current understanding of energy metabolism and mineral homeostasis. Consideration of evolutionary and comparative biology provides clues that a key driving force for the emergence of these hormonal pathways was the development of a large, energy-expensive musculoskeletal system. Specialized bone cells also evolved and produced endocrine hormones to integrate the skeleton in global mineral and nutrient homeostasis. The recognition of bone as a true endocrine organ represents a fertile area for further research and should improve the diagnosis and treatment of metabolic diseases such as osteoporosis and diabetes mellitus.

  11. Endocrine-Active Pharmaceuticals: An Environmental Concern?

    EPA Science Inventory

    Recently, there has been growing interest in pharmaceuticals that are specifically designed to have endocrine activity, such as the estrogens used in birth control pills, exerting unintended effects on fish and other aquatic organisms. These pharmaceuticals may not be persistent...

  12. [Endocrine effects of antiepileptic drugs].

    PubMed

    Leśkiewicz, Monika; Budziszewska, Bogusława; Lasoń, Władysław

    2008-01-01

    Both seizures and antiepileptic drugs may induce disturbances in hormonal system. Regarding endocrine effects of anticonvulsants, an interaction of these drugs with gonadal, thyroid, and adrenal axis deserves attention. Since majority of antiepileptic drugs block voltage dependent sodium and calcium channels, enhance GABAergic transmission and/or antagonize glutamate receptors, one may expect that similar neurochemical mechanisms are engaged in the interaction of these drugs with synthesis of hypothalamic neurohormones such as gonadotropin-releasing hormone (GnRH), thyrotropin-releasing hormone (TRH), corticotropin-releasing hormone (CRH) and growth hormone releasing hormone (GHRH). Moreover some antiepileptic drugs may affect hormone metabolism via inhibiting or stimulating cytochrome P-450 iso-enzymes. An influence of antiepileptic drugs on hypothalamic-pituitary-gonadal axis appears to be sex-dependent. In males, valproate decreased follicle-stimulating hormone (FSH) and luteinizing hormone (LH) but elevated dehydroepiandrosterone sulfate (DHEAS) concentrations. Carbamazepine decreased testosterone/sex-hormone binding globulin (SHBG) ratio, whereas its active metabolite--oxcarbazepine--had no effect on androgens. In females, valproate decreased FSH-stimulated estradiol release and enhanced testosterone level. On the other hand, carbamazepine decreased testosterone level but enhanced SHBG concentration. It has been reported that carbamazepine, oxcarbazepine or joined administration of carbamazepine and valproate decrease thyroxine (T4) level in patients with no effect on thyrotropin (TSH). While valproate itself has no effect on T4, phenytoin, phenobarbital and primidone, as metabolic enzyme inducers, can decrease the level of free and bound thyroxine. On the other hand, new antiepileptics such as levetiracetam, tiagabine, vigabatrine or lamotrigine had no effect on thyroid hormones. With respect to hormonal regulation of metabolic processes, valproate was

  13. Uncertainties for endocrine disrupters: our view on progress.

    PubMed

    Daston, George P; Cook, Jon C; Kavlock, Robert J

    2003-08-01

    hormonal activity should include androgens and compounds that affect thyroid function, and expanded the mandate to include all chemicals under EPA's jurisdiction, potentially including the 70,000 chemicals regulated under the Toxic Substances Control Act (Endocrine Disruptor Screening and Testing Advisory Committee [EDSTAC], 1998). EDSTAC recommended an extensive process of prioritization, screening, and testing of chemicals for endocrine-disrupting activity, including a screening battery that involves a combination of at least eight in vitro and in vivo assays spanning a number of taxa (EDSTAC, 1998). What started out as a hypothesis has become one of the biggest testing programs conceived in the history of toxicology and the only one that has ever been based on mechanism of action as its premise. As we pass the 10th anniversary of the emergence of the endocrine disruptor hypothesis, it is useful to look back on the progress that has been made in answering the nine questions posed as data gaps in the EPA's research strategy (EPA, 1998a)--not only to see what we have learned, but also to examine whether the questions are still appropriate for the goal, what gaps remain, and what directions should be emphasized in the future. PMID:12730617

  14. [Regeneration of endocrine gastroenteropancreatic system in experimental and clinical pathology: concept development and current problems].

    PubMed

    Ivanova, V F

    2013-01-01

    Literature review contains the literature data and the results of author's own investigations describing the coming into being and the development of the concepts on the regeneration of endocrine gastroenteropancreatic (GEP) system under the conditions of norm, experimental and clinical pathology. Data analysis permitted to reveal the similarities and differences in the course of this process in various organs of the digestive system. Endocrine GEP system renewal occurs at different levels of its organization. At the tissue level, the endocrine cells renewal occurs via the transformation of exocrine cells into the endocrine ones and as a result of differentiation from stem cells via the "agranular" cell stage which are precursors of the endocrine cells. This pathway of regeneration is the major one after the damage. Regeneration at cellular level occurs through mitotic division of the differentiated endocrine cells (early stage of regeneration) and as a result of the formation granules with different hormonal profile in D-cells. At the intracellular level, the regeneration is realized through the intracellular structure restoration after their damage induced by the increase of cell functional activity accompanied by degranulation and dystrophic changes development

  15. Endocrine Disrupting Contaminants—Beyond the Dogma

    PubMed Central

    Guillette, Louis J.

    2006-01-01

    Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, antiandrogenic, and antithyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. For example, the DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] metabolite, p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] is known to disrupt prostaglandin synthesis in the uterus of birds, providing part of the explanation for DDT-induced egg shell thinning. Few studies have examined prostaglandin synthesis as a target for endocrine disruption, yet these hormones are active in reproduction, immune responses, and cardiovascular physiology. Future studies must broaden the basic science approach to endocrine disruption, thereby expanding the mechanisms and endocrine end points examined. This goal should be accomplished even if the primary influence and funding continue to emphasize a narrower approach based on regulatory needs. Without this broader approach, research into endocrine disruption will become dominated by a narrow dogma, focusing on a few end points and mechanisms. PMID:16818240

  16. The endocrine system in diabetes mellitus.

    PubMed

    Alrefai, Hisham; Allababidi, Hisham; Levy, Shiri; Levy, Joseph

    2002-07-01

    The pathophysiology of diabetes mellitus is complex and not fully understood. However, it emerges as an abnormal metabolic condition associated with a systemic damage to the vascular bed. Cumulative evidence also reveals that the endocrine system is not intact in patients with diabetes mellitus. It is not clear whether the changes observed in the endocrine system represent a primary defect or reflect the effects of the impaired insulin action and abnormal carbohydrate and lipid metabolism on the hormonal milieu. Review of the literature reveals that the function of the entire endocrine system including the functions of hormones from the hypothalamus, pituitary, adrenal, thyroid, parathyroid, the vitamin D system, the gonads, and the endocrine function of the adipose tissue, is impaired. Good metabolic control and insulin treatment may reverse some of these abnormalities. It remains unanswered as to what extent these changes in the endocrine system contribute to the vascular pathologies observed in individuals affected by diabetes mellitus and whether part of the abnormalities observed in the endocrine system reflect a basic cellular defect in the diabetic syndrome.

  17. Skeletal muscle is an endocrine organ.

    PubMed

    Iizuka, Kenji; Machida, Takuji; Hirafuji, Masahiko

    2014-01-01

    Skeletal muscle plays a key role in postural retention as well as locomotion for maintaining the physical activities of human life. Skeletal muscle has a second role as an elaborate energy production and consumption system that influences the whole body's energy metabolism. Skeletal muscle is a specific organ that engenders a physical force, and exercise training has been known to bring about multiple benefits for human health maintenance and/or improvement. The mechanisms underlying the improvement of the human physical condition have been revealed: skeletal muscle synthesizes and secretes multiple factors, and these muscle-derived factors, so-called as myokines, exert beneficial effects on peripheral and remote organs. In this short review, we focus on the third aspect of skeletal muscle function - namely, the release of multiple types of myokines, which constitute a broad network for regulating the function of remote organs as well as skeletal muscle itself. We conclusively show that skeletal muscle is one of the endocrine organs and that understanding the mechanisms of production and secretion of myokines may lead to a new pharmacological approach for treatment of clinical disorders.

  18. [Radionuclide therapy of endocrine-related cancer].

    PubMed

    Kratochwil, C; Giesel, F L

    2014-10-01

    This article gives an overview of the established radionuclide therapies for endocrine-related cancer that already have market authorization or are currently under evaluation in clinical trials. Radioiodine therapy is still the gold standard for differentiated iodine-avid thyroid cancer. In patients with bone and lung metastases (near) total remission is seen in approximately 50% and the 15-year survival rate for these patients is approximately 90%. In contrast to the USA, meta-iodobenzylguanidine (MIBG) therapy has market approval in Europe. According to the current literature, in the setting of advanced stage neuroblastoma and malignant pheochromocytoma or paraganglioma, radiological remission can be achieved in >30% and symptom control in almost 80% of the treated patients. Somatostatin receptor targeted radionuclide therapies (e.g. with DOTATATE or DOTATOC) demonstrated promising results in phase 2 trials, reporting progression-free survival in the range of 24-36 months. A first phase 3 pivotal trial for intestinal carcinoids is currently recruiting and another trial for pancreatic neuroendocrine tumors is planned. Radiopharmaceuticals based on glucagon-like peptide 1 (GLP1) or minigastrins are in the early evaluation stage for application in the treatment of insulinomas and medullary thyroid cancer. In general, radiopharmaceutical therapy belongs to the group of so-called theranostics which means that therapy is tailored for individual patients based on molecular imaging diagnostics to stratify target positive or target negative tumor phenotypes.

  19. Skeletal muscle: an endocrine organ.

    PubMed

    Pratesi, Alessandra; Tarantini, Francesca; Di Bari, Mauro

    2013-01-01

    Tropism and efficiency of skeletal muscle depend on the complex balance between anabolic and catabolic factors. This balance gradually deteriorates with aging, leading to an age-related decline in muscle quantity and quality, called sarcopenia: this condition plays a central role in physical and functional impairment in late life. The knowledge of the mechanisms that induce sarcopenia and the ability to prevent or counteract them, therefore, can greatly contribute to the prevention of disability and probably also mortality in the elderly. It is well known that skeletal muscle is the target of numerous hormones, but only in recent years studies have shown a role of skeletal muscle as a secretory organ of cytokines and other peptides, denominated myokines (IL6, IL8, IL15, Brain-derived neurotrophic factor, and leukaemia inhibitory factor), which have autocrine, paracrine, or endocrine actions and are deeply involved in inflammatory processes. Physical inactivity promotes an unbalance between these substances towards a pro-inflammatory status, thus favoring the vicious circle of sarcopenia, accumulation of fat - especially visceral - and development of cardiovascular diseases, type 2 diabetes mellitus, cancer, dementia and depression, according to what has been called "the diseasome of physical inactivity". PMID:23858303

  20. [Endocrine disruptors: are they carcinogens?].

    PubMed

    Rochefort, Henri; Balaguer, Patrick

    2010-06-01

    Concerned with the high incidence of breast and prostate cancers in industrialized countries, including France, we reviewed the literature and national reports on the potential carcinogenic effects of several endocrine disruptors (ED) present in the environment. We examine why it is extremely difficult to obtain clear proof of a carcinogenic effect of ED in humans. Yet the results of several independent studies strongly point to such a carcinogenic effect, particularly in the case of hormone-dependent cancers. Such malignancies have been induced experimentally in rodents and have also been observed in humans. For example, a moderately elevated incidence of prostate cancer has been noted in U.S. farmers and, more recently in the French West Indian population exposed for more than 30 years to the insecticide chlordecone. We discuss the molecular mechanisms involved in this effect in prostate cancer Lessons from the observed trans-generational carcinogenic effect of the synthetic estrogen diethylstilboestrol also strongly suggests that future generations must be protected from widespread distribution of synthetic estrogens in the environment. We argue that a reduction in the use of some EDs in agriculture and the plastics industry would be much more beneficial in France than the prohibition of transgenic plants. PMID:21513143

  1. Telomerase and the endocrine system.

    PubMed

    Pacini, Furio; Cantara, Silvia; Capezzone, Marco; Marchisotta, Stefania

    2011-03-29

    Telomeres are nucleoprotein complexes located at the ends of chromosomes that have a critical role in the maintenance of chromosomal integrity. This involvement is based on complex secondary and tertiary structures that rely on DNA-DNA, DNA-protein and protein-protein interactions. De novo synthesis and maintenance of telomere repeats is controlled by telomerase, a specialized complex that consists of a telomerase RNA component and a protein component--telomerase reverse transcriptase. When telomerase is silent (its default state in differentiated somatic cells), chromosomes shorten with every cell division, thus limiting the lifespan of the cells (the process of senescence) and preventing unlimited cell proliferation, which might eventually lead to the development of cancer. During this process, occasionally, a cell can activate telomerase, which stabilizes short telomeres and enables immortalization-a process essential for malignant transformation. Thus, although telomere erosion is a barrier to malignant progression, paradoxically, in certain circumstances it might also trigger tumorigenesis. A number of studies have demonstrated unequivocally that reactivation of telomerase in the presence of short telomeres is one of the most common features of human cancers, including those of the endocrine system.

  2. Endocrine disrupting chemicals and endometriosis.

    PubMed

    Smarr, Melissa M; Kannan, Kurunthachalam; Buck Louis, Germaine M

    2016-09-15

    Endometriosis is an estrogen dependent gynecologic disease with lasting implications for many women's fertility, somatic health, and overall quality of life. Growing evidence suggests that endocrine disrupting chemicals (EDCs) may be etiologically involved in the development and severity of disease. We weigh the available human evidence focusing on EDCs and endometriosis, restricting to research that has individually quantified chemical concentrations for women, included a comparison group of unaffected women, and used multivariable analytic techniques. Evidence supporting an environmental etiology for endometriosis includes metals/trace elements, dioxins, and other persistent organic pollutants, as well as nonpersistent chemicals, such as benzophenones and phthalates. To address the equivocal findings for various EDCs, future research directions for filling data gaps include [1] use of integrated clinical and population sampling frameworks allowing for incorporation of new diagnostic modalities; [2] the collection of various biologic media, including target tissues for quantifying exposures; [3] study designs that offer various comparison groups to assess potentially shared etiologies with other gynecologic disorders; and [4] novel laboratory and statistical approaches that fully explore all measured EDCs for the assessment of mixtures and low dose effects and the use of directed acyclic graphs and supporting causal analysis for empirically delineating relationships between EDCs and endometriosis. PMID:27424048

  3. Endocrine disrupters: a human risk?

    PubMed

    Waring, R H; Harris, R M

    2005-12-01

    Endocrine disrupters (EDs) alter normal hormonal regulation and may be naturally occurring or environmental contaminants. Classically, EDs act genomically, with agonistic or antagonistic effects on steroid receptors and may alter reproductive function and/or cause feminisation by binding to oestrogen or androgen receptors; their binding to the thyroid receptor may dysregulate the neuroendocrine system. Recently, it has been shown that EDs can also act by non-genomic mechanisms, altering steroid synthesis (inhibition of cytochrome P450 isoforms) or steroid metabolism. The alkylphenol and phthalate plasticisers inhibit the inactivation of oestrogens by sulphation (via SULT 1A1 and 1E1 isoforms) and so cause a rise in levels of the free active endogenous oestrogens. A range of ED effects have been shown in mammals, fish, birds, reptiles, amphibia and aquatic invertebrates but it is not yet clear whether these processes also occur in human beings. It is evident that EDs, as well as altering reproduction, can cause changes in neurosteroid levels and so have the potential to affect immune function, behaviour and memory. This may be of long-term concern since traces of EDs such as plasticisers, brominated fire retardants, sunscreen agents and cosmetic ingredients are widely distributed in the environment and in human biofluids. PMID:16271281

  4. Evaluation of the dark signal performance of different SiPM-technologies under irradiation with cold neutrons

    NASA Astrophysics Data System (ADS)

    Durini, Daniel; Degenhardt, Carsten; Rongen, Heinz; Feoktystov, Artem; Schlösser, Mario; Palomino-Razo, Alejandro; Frielinghaus, Henrich; van Waasen, Stefan

    2016-11-01

    In this paper we report the results of the assessment of changes in the dark signal delivered by three silicon photomultiplier (SiPM) detector arrays, fabricated by three different manufacturers, when irradiated with cold neutrons (wavelength λn=5 Å or neutron energy of En=3.27 meV) up to a neutron dose of 6×1012 n/cm2. The dark signals as well as the breakdown voltages (Vbr) of the SiPM detectors were monitored during the irradiation. The system was characterized at room temperature. The analog SiPM detectors, with and without a 1 mm thick Cerium doped 6Li-glass scintillator material located in front of them, were operated using a bias voltage recommended by the respective manufacturer for a proper detector performance. Iout-Vbias measurements, used to determine the breakdown voltage of the devices, were repeated every 30 s during the first hour and every 300 s during the rest of the irradiation time. The digital SiPM detectors were held at the advised bias voltage between the respective breakdown voltage and dark count mappings repeated every 4 min. The measurements were performed on the KWS-1 instrument of the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. The two analog and one digital SiPM detector modules under investigation were respectively fabricated by SensL (Ireland), Hamamatsu Photonics (Japan), and Philips Digital Photon Counting (Germany).

  5. Complex network inference from P300 signals: Decoding brain state under visual stimulus for able-bodied and disabled subjects

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Cai, Qing; Dong, Na; Zhang, Shan-Shan; Bo, Yun; Zhang, Jie

    2016-10-01

    Distinguishing brain cognitive behavior underlying disabled and able-bodied subjects constitutes a challenging problem of significant importance. Complex network has established itself as a powerful tool for exploring functional brain networks, which sheds light on the inner workings of the human brain. Most existing works in constructing brain network focus on phase-synchronization measures between regional neural activities. In contrast, we propose a novel approach for inferring functional networks from P300 event-related potentials by integrating time and frequency domain information extracted from each channel signal, which we show to be efficient in subsequent pattern recognition. In particular, we construct brain network by regarding each channel signal as a node and determining the edges in terms of correlation of the extracted feature vectors. A six-choice P300 paradigm with six different images is used in testing our new approach, involving one able-bodied subject and three disabled subjects suffering from multiple sclerosis, cerebral palsy, traumatic brain and spinal-cord injury, respectively. We then exploit global efficiency, local efficiency and small-world indices from the derived brain networks to assess the network topological structure associated with different target images. The findings suggest that our method allows identifying brain cognitive behaviors related to visual stimulus between able-bodied and disabled subjects.

  6. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  7. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    PubMed

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus. PMID:24713122

  8. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    PubMed

    García-Grajales, Julián A; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  9. A transcriptional approach to unravel the connection between phospholipases A₂ and D and ABA signal in citrus under water stress.

    PubMed

    Romero, Paco; Lafuente, M Teresa; Alférez, Fernando

    2014-07-01

    The effect of water stress on the interplay between phospholipases (PL) A2 and D and ABA signalling was investigated in fruit and leaves from the sweet orange Navelate and its fruit-specific ABA-deficient mutant Pinalate by studying simultaneously expression of 5 PLD and 3 PLA2-encoding genes. In general, expression levels of PLD-encoding genes were higher at harvest in the flavedo (coloured outer part of the peel) from Pinalate. Moreover, a higher and transient increase in expression of CsPLDα, CsPLDβ, CsPLDδ and CsPLDζ was observed in the mutant as compared to Navelate fruit under water stress, which may reflect a mechanism of acclimation to water stress influenced by ABA deficiency. An early induction in CsPLDγ gene expression, when increase in peel damage during fruit storage was most evident, suggested a role for this gene in membrane degradation processes during water stress. Exogenous ABA on mutant fruit modified the expression of all PLD genes and reduced the expression of CsPLDα and CsPLDβ by 1 week to levels similar to those of Navelate, suggesting a repressor role of ABA on these genes. In general, CssPLA2α and β transcript levels were lower in flavedo from Pinalate than from Navelate fruit during the first 3 weeks of storage, suggesting that expression of these genes also depends at least partially on ABA levels. Patterns of expression of PLD and PLA2-encoding genes were very similar in Navelate and Pinalate leaves, which have similar ABA levels, when comparing both RH conditions. Results comparison with other from previous works in the same experimental systems helped to decipher the effect of the stress severity on the differential response of some of these genes under dehydration conditions and pointed out the interplay between PLA2 and PLD families and their connection with ABA signalling in citrus.

  10. Osteoporosis-associated alteration in the signalling status of BMP-2 in human MSCs under adipogenic conditions.

    PubMed

    Donoso, Oscar; Pino, Ana María; Seitz, Germán; Osses, Nelson; Rodríguez, J Pablo

    2015-07-01

    Postmenopausal osteoporosis is characterized by decreased bone quality and mineral density. Mesenchymal stem cells (MSCs) found in the bone marrow, are pluripotent cells able to differentiate into several phenotypes, including osteoblasts and adipocytes. In osteoporosis, MSCs' commitment and differentiation into osteoblast/adipocyte is unbalanced, favoring adipocyte formation. The osteo and adipogenic processes are modulated by the bone morphogenetic protein-2 (BMP-2). This cytokine regulates the expression of transcription factors PPARγ and Runx 2, but its action on cells under adipogenic conditions is poorly understood. In this work we studied BMP-2 signaling in MSCs obtained from bone marrow of control or osteoporotic volunteer postmenopausal women. MSCs were cultured under basal, adipogenic (AD) or AD plus BMP-2 conditions. The protein content of PPARγ, p-PPARγ, Runx2, bone morphogenetic receptor IA (BMPR IA), phosphorylated Smad-1/5/8 (p-Smad) and Smad 4 were determined by specific western blots. mRNA level for BMPRs was determined by PCR and cell localization of p-Smad-1/5/8 were detected by immunocytochemistry. Control MSCs showed a differential response to both AD and AD plus BMP-2 treatments: BMP-2 exerted an anti-adipogenic effect increasing both transcription factors analyzed. Moreover, p-Smads-1/5/8 were detected in nuclei after short term BMP-2 treatment. Osteoporotic MSCs showed no response to exogenous added BMP-2, as shown by p-PPARγ/PPARγ ratio and Runx2 levels, although BMPR-IA level was significantly higher in osteoporotic than in control MSCs. In addition, staining for p-Smad-1/5/8 in o-MSCs was observed around nuclei at all experimental conditions. Taken together results demonstrate failure of BMP-2 signaling in osteoporotic MSCs.

  11. Intra-Testicular Signals Regulate Germ Cell Progression and Production of Qualitatively Mature Spermatozoa in Vertebrates

    PubMed Central

    Meccariello, Rosaria; Chianese, Rosanna; Chioccarelli, Teresa; Ciaramella, Vincenza; Fasano, Silvia; Pierantoni, Riccardo; Cobellis, Gilda

    2014-01-01

    Spermatogenesis, a highly conserved process in vertebrates, is mainly under the hypothalamic–pituitary control, being regulated by the secretion of pituitary gonadotropins, follicle stimulating hormone, and luteinizing hormone, in response to stimulation exerted by gonadotropin releasing hormone from hypothalamic neurons. At testicular level, gonadotropins bind specific receptors located on the somatic cells regulating the production of steroids and factors necessary to ensure a correct spermatogenesis. Indeed, besides the endocrine route, a complex network of cell-to-cell communications regulates germ cell progression, and a combination of endocrine and intra-gonadal signals sustains the production of high quality mature spermatozoa. In this review, we focus on the recent advances in the area of the intra-gonadal signals supporting sperm development. PMID:24847312

  12. Adipose tissue as an endocrine organ.

    PubMed

    Galic, Sandra; Oakhill, Jon S; Steinberg, Gregory R

    2010-03-25

    Obesity is characterized by increased storage of fatty acids in an expanded adipose tissue mass and is closely associated with the development of insulin resistance in peripheral tissues such as skeletal muscle and the liver. In addition to being the largest source of fuel in the body, adipose tissue and resident macrophages are also the source of a number of secreted proteins. Cloning of the obese gene and the identification of its product, leptin, was one of the first discoveries of an adipocyte-derived signaling molecule and established an important role for adipose tissue as an endocrine organ. Since then, leptin has been found to have a profound role in the regulation of whole-body metabolism by stimulating energy expenditure, inhibiting food intake and restoring euglycemia, however, in most cases of obesity leptin resistance limits its biological efficacy. In contrast to leptin, adiponectin secretion is often diminished in obesity. Adiponectin acts to increase insulin sensitivity, fatty acid oxidation, as well as energy expenditure and reduces the production of glucose by the liver. Resistin and retinol binding protein-4 are less well described. Their expression levels are positively correlated with adiposity and they are both implicated in the development of insulin resistance. More recently it has been acknowledged that macrophages are an important part of the secretory function of adipose tissue and the main source of inflammatory cyokines, such as TNFalpha and IL-6. An increase in circulating levels of these macrophage-derived factors in obesity leads to a chronic low-grade inflammatory state that has been linked to the development of insulin resistance and diabetes. These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity. PMID:19723556

  13. VEGF-targeted cancer therapeutics-paradoxical effects in endocrine organs.

    PubMed

    Cao, Yihai

    2014-09-01

    Systemic administration of antiangiogenic drugs that target components of the vascular endothelial growth factor A (VEGF-A; VEGF) signal transduction pathway has become a viable therapeutic option for patients with various types of cancer. Nevertheless, these drugs can drive alterations in healthy vasculatures, which in turn are associated with adverse effects in healthy tissues. VEGF is crucial for vascular homeostasis and the maintenance of vascular integrity and architecture in endocrine organs. Given these critical physiological functions, systemic delivery of drugs that target VEGF signalling can block VEGF-mediated vascular functions in endocrine organs, such as the thyroid gland, and lead to endocrine dysfunction, including hypothyroidism, adrenal insufficiency and altered insulin sensitivity. This Review discusses emerging evidence from preclinical and clinical studies that contributes to understanding the mechanisms that underlie the vascular changes and subsequent modulations of endocrine function that are induced by targeted inhibition of VEGF signalling. Understanding these mechanisms is crucial for the design of antiangiogenic drugs with minimal associated adverse effects that will enable effective treatment of patients with cancer.

  14. Remote preconditioning-endocrine factors in organ protection against ischemic injury.

    PubMed

    Bolte, Craig S; Liao, Siyun; Gross, Garrett J; Schultz, Jo El J

    2007-09-01

    Cardiovascular disease is the leading cause of death in the United States and developing world. Experimental and clinical studies have demonstrated that a number of interventions including brief periods of ischemia or hypoxia and certain endogenous factors such as opioids, bradykinin, growth factors or pharmacological agents are capable of protecting the heart against post-ischemic contractile dysfunction, arrhythmias and myocardial infarction. This conventional cardioprotection occurs via an autocrine or paracrine action in which these protective factors are released from the heart to act upon itself. Over the last ten years, a growing body of evidence indicates that a brief ischemic insult on one organ releases endogenous factors that protect other organs against a prolonged ischemic insult. This phenomenon, termed remote preconditioning or preconditioning at a distance, implicates an endocrine action, and may involve humoral or neural-endocrine signaling. This review will summarize the endocrine factors identified and implicated in this inter-organ cytoprotection. PMID:17897043

  15. Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas.

    PubMed

    Pujadas, G; Cervantes, S; Tutusaus, A; Ejarque, M; Sanchez, L; García, A; Esteban, Y; Fargas, L; Alsina, B; Hartmann, C; Gomis, R; Gasa, R

    2016-01-14

    Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs.

  16. Wnt9a deficiency discloses a repressive role of Tcf7l2 on endocrine differentiation in the embryonic pancreas

    PubMed Central

    Pujadas, G.; Cervantes, S.; Tutusaus, A.; Ejarque, M.; Sanchez, L.; García, A.; Esteban, Y.; Fargas, L.; Alsina, B.; Hartmann, C.; Gomis, R.; Gasa, R.

    2016-01-01

    Transcriptional and signaling networks establish complex cross-regulatory interactions that drive cellular differentiation during development. Using microarrays we identified the gene encoding the ligand Wnt9a as a candidate target of Neurogenin3, a basic helix-loop-helix transcription factor that functions as a master regulator of pancreatic endocrine differentiation. Here we show that Wnt9a is expressed in the embryonic pancreas and that its deficiency enhances activation of the endocrine transcriptional program and increases the number of endocrine cells at birth. We identify the gene encoding the endocrine transcription factor Nkx2-2 as one of the most upregulated genes in Wnt9a-ablated pancreases and associate its activation to reduced expression of the Wnt effector Tcf7l2. Accordingly, in vitro studies confirm that Tcf7l2 represses activation of Nkx2-2 by Neurogenin3 and inhibits Nkx2-2 expression in differentiated β-cells. Further, we report that Tcf7l2 protein levels decline upon initiation of endocrine differentiation in vivo, disclosing the downregulation of this factor in the developing endocrine compartment. These findings highlight the notion that modulation of signalling cues by lineage-promoting factors is pivotal for controlling differentiation programs. PMID:26771085

  17. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms.

    PubMed

    Maqbool, Faheem; Mostafalou, Sara; Bahadar, Haji; Abdollahi, Mohammad

    2016-01-15

    Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases. PMID:26497928

  18. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms.

    PubMed

    Maqbool, Faheem; Mostafalou, Sara; Bahadar, Haji; Abdollahi, Mohammad

    2016-01-15

    Endocrine disrupting chemicals (EDC) are released into environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDC have major risks for human by targeting different organs and systems in the body. Multiple mechanisms are involved in targeting the normal system, through estrogen receptors, nuclear receptors and steroidal receptors activation. In this review, different methods by which xenobiotics stimulate signaling pathways and genetic mutation or DNA methylation have been discussed. These methods help to understand the results of xenobiotic action on the endocrine system. Endocrine disturbances in the human body result in breast cancer, ovarian problems, thyroid eruptions, testicular carcinoma, Alzheimer disease, schizophrenia, nerve damage and obesity. EDC characterize a wide class of compounds such as organochlorinated pesticides, industrial wastes, plastics and plasticizers, fuels and numerous other elements that exist in the environment or are in high use during daily life. The interactions and mechanism of toxicity in relation to human general health problems, especially endocrine disturbances with particular reference to reproductive problems, diabetes, and breast, testicular and ovarian cancers should be deeply investigated. There should also be a focus on public awareness of these EDC risks and their use in routine life. Therefore, the aim of this review is to summarize all evidence regarding different physiological disruptions in the body and possible involved mechanisms, to prove the association between endocrine disruptions and human diseases.

  19. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  20. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  1. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy

    NASA Astrophysics Data System (ADS)

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems.

  2. NMR signal for particles diffusing under potentials: From path integrals and numerical methods to a model of diffusion anisotropy.

    PubMed

    Yolcu, Cem; Memiç, Muhammet; Şimşek, Kadir; Westin, Carl-Fredrik; Özarslan, Evren

    2016-05-01

    We study the influence of diffusion on NMR experiments when the molecules undergo random motion under the influence of a force field and place special emphasis on parabolic (Hookean) potentials. To this end, the problem is studied using path integral methods. Explicit relationships are derived for commonly employed gradient waveforms involving pulsed and oscillating gradients. The Bloch-Torrey equation, describing the temporal evolution of magnetization, is modified by incorporating potentials. A general solution to this equation is obtained for the case of parabolic potential by adopting the multiple correlation function (MCF) formalism, which has been used in the past to quantify the effects of restricted diffusion. Both analytical and MCF results were found to be in agreement with random walk simulations. A multidimensional formulation of the problem is introduced that leads to a new characterization of diffusion anisotropy. Unlike the case of traditional methods that employ a diffusion tensor, anisotropy originates from the tensorial force constant, and bulk diffusivity is retained in the formulation. Our findings suggest that some features of the NMR signal that have traditionally been attributed to restricted diffusion are accommodated by the Hookean model. Under certain conditions, the formalism can be envisioned to provide a viable approximation to the mathematically more challenging restricted diffusion problems. PMID:27300946

  3. Pancreatic endocrine tumors: recent advances.

    PubMed

    Jensen, R T

    1999-01-01

    Pancreatic endocrine tumors (PET's) can be divided on a clinical and pathologic basis into ten classes [insulinomas, gastrinomas (Zollinger-Ellison syndrome), VIPomas (Verner-Morrison syndrome, WDHA, pancreatic cholera), glucagonomas, somatostatinomas, ACTH-releasing tumors (ACTHomas), growth hormone-releasing factor secreting tumors (GRFomas), nonfunctioning or pancreatic polypeptide secreting tumors (non-functioning PET), PET's causing carcinoid syndrome and PET's causing hypercalcemia)]. Recent reports suggest calcitonin-secreting PET's also rarely occur but whether they cause a distinct clinical syndrome is unclear. PET's resemble carcinoid tumors histologically; in their ability to synthesize and frequently secrete multiple peptides such as neuroendocrine cell markers (chromogranins); their biologic behavior and their tumor growth patterns. Both groups of tumors are highly vascular, have high densities of somatostatin receptors and similar tumor localization studies including somatostatin receptor scintigraphy are used for both. PET's, similar to carcinoids causing the carcinoid syndrome, require two separate treatment options be considered: treatment directed against the hormone-excess state and treatment directed against the tumor per se because of their malignant nature. In the last few years there have been advances in tumor diagnosis, localization methods, treatment approaches particularly related to the use of synthetic somatostatin analogues, and the definition of the role of surgical procedures in these diseases. Important other advances include insights into the long-term natural history of PET's particularly from studies of gastrinomas, which allow prognostic factors to be identified and the timing of treatment options to better planned, as well as insights into the molecular basis of these disorders. The latter includes both a description of the molecular basis of the genetic inherited syndromes associated with PET's or carcinoid tumors, as well as

  4. Endocrine dysfunction in hereditary hemochromatosis.

    PubMed

    Pelusi, C; Gasparini, D I; Bianchi, N; Pasquali, R

    2016-08-01

    Hereditary hemochromatosis (HH) is a genetic disorder of iron overload and subsequent organ damage. Five types of HH are known, classified by age of onset, genetic cause, clinical manifestations and mode of inheritance. Except for the rare form of juvenile haemochromatosis, symptoms do not usually appear until after decades of progressive iron loading and may be triggered by environmental and lifestyle factors. Despite the last decades discovery of genetic and phenotype diversity of HH, early studies showed a frequent involvement of the endocrine glands where diabetes and hypogonadism are the most common encountered endocrinopathies. The pathogenesis of diabetes is still relatively unclear, but the main mechanisms include the loss of insulin secretory capacity and insulin resistance secondary to liver damage. The presence of obesity and/or genetic predisposition may represent addictive risk factor for the development of this metabolic disease. Although old cases of primary gonad involvement are described, hypogonadism is mainly secondary to selective deposition of iron on the gonadotropin-producing cells of the pituitary gland, leading to hormonal impaired secretion. Cases of hypopituitarism or selected tropin defects, and abnormalities of adrenal, thyroid and parathyroid glands, even if rare, are reported. The prevalence of individual gland dysfunction varies enormously within studies for several bias due to small numbers of and selected cases analyzed, mixed genotypes and missing data on medical history. Moreover, in the last few years early screening and awareness of the disease among physicians have allowed hemochromatosis to be diagnosed in most cases at early stages when patients have no symptoms. Therefore, the clinical presentation of this disease has changed significantly and the recognized common complications are encountered less frequently. This review summarizes the current knowledge on HH-associated endocrinopathies. PMID:26951056

  5. Endocrine dysfunction in hereditary hemochromatosis.

    PubMed

    Pelusi, C; Gasparini, D I; Bianchi, N; Pasquali, R

    2016-08-01

    Hereditary hemochromatosis (HH) is a genetic disorder of iron overload and subsequent organ damage. Five types of HH are known, classified by age of onset, genetic cause, clinical manifestations and mode of inheritance. Except for the rare form of juvenile haemochromatosis, symptoms do not usually appear until after decades of progressive iron loading and may be triggered by environmental and lifestyle factors. Despite the last decades discovery of genetic and phenotype diversity of HH, early studies showed a frequent involvement of the endocrine glands where diabetes and hypogonadism are the most common encountered endocrinopathies. The pathogenesis of diabetes is still relatively unclear, but the main mechanisms include the loss of insulin secretory capacity and insulin resistance secondary to liver damage. The presence of obesity and/or genetic predisposition may represent addictive risk factor for the development of this metabolic disease. Although old cases of primary gonad involvement are described, hypogonadism is mainly secondary to selective deposition of iron on the gonadotropin-producing cells of the pituitary gland, leading to hormonal impaired secretion. Cases of hypopituitarism or selected tropin defects, and abnormalities of adrenal, thyroid and parathyroid glands, even if rare, are reported. The prevalence of individual gland dysfunction varies enormously within studies for several bias due to small numbers of and selected cases analyzed, mixed genotypes and missing data on medical history. Moreover, in the last few years early screening and awareness of the disease among physicians have allowed hemochromatosis to be diagnosed in most cases at early stages when patients have no symptoms. Therefore, the clinical presentation of this disease has changed significantly and the recognized common complications are encountered less frequently. This review summarizes the current knowledge on HH-associated endocrinopathies.

  6. Glycogen Synthase Kinase 3 Regulates Cell Death and Survival Signaling in Tumor Cells under Redox Stress1

    PubMed Central

    Venè, Roberta; Cardinali, Barbara; Arena, Giuseppe; Ferrari, Nicoletta; Benelli, Roberto; Minghelli, Simona; Poggi, Alessandro; Noonan, Douglas M.; Albini, Adriana; Tosetti, Francesca

    2014-01-01

    Targeting tumor-specific metabolic adaptations is a promising anticancer strategy when tumor defense mechanisms are restrained. Here, we show that redox-modulating drugs including the retinoid N-(4-hydroxyphenyl)retinamide (4HPR), the synthetic triterpenoid bardoxolone (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester), arsenic trioxide (As2O3), and phenylethyl isothiocyanate (PEITC), while affecting tumor cell viability, induce sustained Ser9 phosphorylation of the multifunctional kinase glycogen synthase kinase 3β (GSK3β). The antioxidant N-acetylcysteine decreased GSK3β phosphorylation and poly(ADP-ribose) polymerase cleavage induced by 4HPR, As2O3, and PEITC, implicating oxidative stress in these effects. GSK3β phosphorylation was associated with up-regulation of antioxidant enzymes, in particular heme oxygenase-1 (HO-1), and transient elevation of intracellular glutathione (GSH) in cells surviving acute stress, before occurrence of irreversible damage and death. Genetic inactivation of GSK3β or transfection with the non-phosphorylatable GSK3β-S9A mutant inhibited HO-1 induction under redox stress, while tumor cells resistant to 4HPR exhibited increased GSK3β phosphorylation, HO-1 expression, and GSH levels. The above-listed findings are consistent with a role for sustained GSK3β phosphorylation in a signaling network activating antioxidant effector mechanisms during oxidoreductive stress. These data underlie the importance of combination regimens of antitumor redox drugs with inhibitors of survival signaling to improve control of tumor development and progression and overcome chemoresistance. PMID:25246272

  7. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  8. [Affective disorders: endocrine and metabolic comorbidities].

    PubMed

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances. PMID:25550238

  9. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  10. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  11. Environmental endocrine disruptors: A proposed classification scheme

    SciTech Connect

    Fur, P.L. de; Roberts, J.

    1995-12-31

    A number of chemicals known to act on animal systems through the endocrine system have been termed environmental endocrine disruptors. This group includes some of the PCBs and TCDDs, as well as lead, mercury and a large number of pesticides. The common feature is that the chemicals interact with endogenous endocrine systems at the cellular and/or molecular level to alter normal processes that are controlled or regulated by hormones. Although the existence of artificial or environmental estrogens (e.g. chlordecone and DES) has been known for some time, recent data indicate that this phenomenon is widespread. Indeed, anti-androgens have been held responsible for reproductive dysfunction in alligator populations in Florida. But the significance of endocrine disruption was recognized by pesticide manufacturers when insect growth regulators were developed to interfere with hormonal control of growth. Controlling, regulating or managing these chemicals depends in no small part on the ability to identify, screen or otherwise know that a chemical is an endocrine disrupter. Two possible classifications schemes are: using the effects caused in an animal, or animals as an exposure indicator; and using a known screen for the point of contact with the animal. The former would require extensive knowledge of cause and effect relationships in dozens of animal groups; the latter would require a screening tool comparable to an estrogen binding assay. The authors present a possible classification based on chemicals known to disrupt estrogenic, androgenic and ecdysone regulated hormonal systems.

  12. Exercise and the Regulation of Endocrine Hormones.

    PubMed

    Hackney, Anthony C; Lane, Amy R

    2015-01-01

    The endocrine system has profound regulatory effects within the human body and thus the ability to control and maintain appropriate function within many physiological systems (i.e., homeostasis). The hormones associated with the endocrine system utilize autocrine, paracrine, or endocrine actions on the cells of their target tissues within these physiologic systems to adjust homeostasis. The introduction of exercise as a stressor to disrupt homeostasis can greatly amplify and impact the actions of these hormones. To that end, the endocrine response to an acute exercise session occurs in a progression of phases with the magnitude of the response being relative to the exercise work intensity or volume. Various physiologic mechanisms are considered responsible for these responses, although not all are completely understood or elucidated. Chronic exercise training does not eliminate the acute exercise response but may attenuate the overall effect of the responsiveness as the body adapts in a positive fashion to the training stimulus. Regrettably, an excessive intensity and/or volume of training may lead to maladaptation and is associated with inappropriate endocrine hormonal responses. The mechanisms leading to a deleterious maladaptive state are not well understood and require additional research for elucidation. PMID:26477919

  13. [Endocrine disorders in "empty" sella turcica].

    PubMed

    Mizetskaia, E A; Snigireva, R Ia

    1984-01-01

    The results of endocrine examination of 37 patients with an "empty" sella turcica (22 with primary and 15 with secondary) are discussed. The diagnosis in all cases was verified by the findings of pneumocisternotomography and computer-aided tomography. The trophic function of the hypophysis was mainly studied. It was found that primary "empty" sella turcica mostly occurs in females with a history of many pregnancies. Obesity and disorders of menstrual function were the principal clinical manifestations of endocrine disorders. The inconstantly encountered moderate hyperprolactinemia disappeared after parlodel medication. In secondary "empty" sella turcica hyperprolactinemia was of a more stable character. The trophic function of the hypophysis was reduced in primary "empty" sella turcica as a result of which lesser doses of substitutive hormonal preparations were needed than in secondary "empty" sella turcica. The endocrine disorders in primary "empty" sella turcica were probably of hypothalamic origin, those in a secondary condition were evidently associated with a tumor of the adenohypophysis. PMID:6528785

  14. Endocrine Abnormalities in Townes–Brocks Syndrome

    PubMed Central

    Lawrence, Cara; Hong-McAtee, Irene; Hall, Bryan; Hartsfield, James; Rutherford, Andrew; Bonilla, Tracy; Bay, Carolyn

    2016-01-01

    Townes–Brocks syndrome is a recognizable variable pattern of malformation caused by mutations to the SALL1 gene located on chromosome 16q12.1. Only three known cases of Townes–Brocks syndrome with proven SALL1 gene mutation and concurrent endocrine abnormalities have been previously documented to our knowledge [Kohlhase et al., 1999; Botzenhart et al., 2005; Choi et al., 2010]. We report on two unrelated patients with Townes–Brocks syndrome who share an identical SALL1 mutation (c.3414_3415delAT), who also have endocrine abnormalities. Patient 1 appears to be the first known case of growth hormone deficiency, and Patient 2 extends the number of documented mutation cases with hypothyroidism to four. We suspect endocrine abnormalities, particularly treatable deficiencies, may be an underappreciated component to Townes–Brocks syndrome. PMID:23894113

  15. Diagnosis and management of endocrine gland neoplasms

    SciTech Connect

    Weller, R.E.

    1989-05-01

    Functional and nonfunctional neoplasms of the endocrine glands constitute some of the more challenging diagnostic and therapeutic problems in veterinary cancer medicine. The clinical signs are usually the result of an overproduction of hormones that are normally biosynthesized by the neoplastic endocrine gland (orthoendocrine syndromes), as opposed to those that are the result of hormones that are not normally biosynthesized and secreted by those cells that have undergone neoplastic transformation (paraendocrine syndromes, also known as endocrine paraneoplastic syndromes or ectopic hormone syndromes). The biological effects produced by a neoplasm may be out of proportion to the actual size of the tumor. This report focuses on the clinical signs and syndromes associated with neoplasms of the thyroid, adrenal glands and pancreas. Discussion will focus on the mechanisms producing the clinical signs, diagnosis, staging, therapy and prognosis. 2 tabs.

  16. Endocrine correlates of susceptibility to motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1985-01-01

    Motion sickness releases ACTH, epinerphrine, and norepinephrine. The endocrine responses to motion sickness, adaptive responses leading to the resolution of the syndrome, and the way in which antimotion-sickness drugs influence the endocrine responses were studied. Susceptible or insusceptible subjects were administered antimotion-sickness drugs prior to stressful stimulation. Insusceptible subjects displayed more pronounced elevations of ACTH, epinephrine, and norepinephrine after stressful motion. Predrug levels of ACTH were higher in insusceptible subjects (p less than 0.01). Acute blockade of hormone responses to stressful motion or alteration of levels of ACTH by drugs were not correlated with individual susceptibility. No correlation was apparent between epinephrine and ACTH release. These endocrine differences may represent neurochemical markers for susceptibility to motion, stress, or general adaptability, and it may be that the chronic modulation of their levels might be more effective in preventing motion sickness than the acute blockage or stimulation of specific receptors.

  17. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice.

    PubMed

    Regnier, Shane M; Kirkley, Andrew G; Ye, Honggang; El-Hashani, Essam; Zhang, Xiaojie; Neel, Brian A; Kamau, Wakanene; Thomas, Celeste C; Williams, Ayanna K; Hayes, Emily T; Massad, Nicole L; Johnson, Daniel N; Huang, Lei; Zhang, Chunling; Sargis, Robert M

    2015-03-01

    Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome. PMID:25535829

  18. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila.

    PubMed

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina L

    2010-05-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type.

  19. Dietary Exposure to the Endocrine Disruptor Tolylfluanid Promotes Global Metabolic Dysfunction in Male Mice

    PubMed Central

    Regnier, Shane M.; Kirkley, Andrew G.; Ye, Honggang; El-Hashani, Essam; Zhang, Xiaojie; Neel, Brian A.; Kamau, Wakanene; Thomas, Celeste C.; Williams, Ayanna K.; Hayes, Emily T.; Massad, Nicole L.; Johnson, Daniel N.; Huang, Lei; Zhang, Chunling

    2015-01-01

    Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome. PMID:25535829

  20. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system.

  1. Nuclear factor-ĸB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells.

    PubMed

    Oida, Kumiko; Matsuda, Akira; Jung, Kyungsook; Xia, Yan; Jang, Hyosun; Amagai, Yosuke; Ahn, Ginnae; Nishikawa, Sho; Ishizaka, Saori; Jensen-Jarolim, Erika; Matsuda, Hiroshi; Tanaka, Akane

    2014-01-01

    Since more than 75% of breast cancers overexpress estrogen receptors (ER), endocrine therapy targeting ER has significantly improved the survival rate. Nonetheless, breast cancer still afflicts women worldwide and the major problem behind it is resistance to endocrine therapy. We have previously shown the involvement of nuclear factor-κB (NF-κB) in neoplastic proliferation of human breast cancer cells; however, the association with the transformation of ER-positive cells remains unclear. In the current study, we focused on roles of NF-κB in the hormone dependency of breast cancers by means of ER-positive MCF-7 cells. Blocking of NF-κB signals in ER-negative cells stopped proliferation by downregulation of D-type cyclins. In contrast, the MCF-7 cells were resistant to NF-κB inhibition. Under estrogen-free conditions, the ER levels were reduced when compared with the original MCF-7 cells and the established cell subline exhibited tamoxifen resistance. Additionally, NF-κB participated in cell growth instead of the estrogen-ER axis in the subline and consequently, interfering with the NF-κB signals induced additive anticancer effects with tamoxifen. MMP-9 production responsible for cell migration, as well as the cell expansion in vivo, were suppressed by NF-κB inhibition. Therefore, we suggest that NF-κB is a master switch in both ER-positive and ER-negative breast cancers. PMID:24531845

  2. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  3. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    PubMed Central

    Reif, David M.; Martin, Matthew T.; Tan, Shirlee W.; Houck, Keith A.; Judson, Richard S.; Richard, Ann M.; Knudsen, Thomas B.; Dix, David J.; Kavlock, Robert J.

    2010-01-01

    Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks. PMID:20826373

  4. The endocrine basis of infertility in women.

    PubMed

    Alexander, N B; Cotanch, P H

    1980-09-01

    In treating infertile couples an understanding of the endocrine system and its relationship to reproduction is essential. The reproductive capacity in women is regulated by the hypothalamic-pituitary-ovarian axis, a system which controls hormonal synthesis, secretion, and inhibition. Unregulated positive feedback systems produce disequilibrium which can cause hormonal imbalance predisposing the individual to possible infertility. The hypothalamus receives, processes, and acts upon various signals associated with reproductive processes. At the pituitary level, short, negative feedback loops inhibit the release of gonadotropin releasing hormone once adequate levels of pituitary hormones are reached. Hypothalamic dysfunction may be attributable to abnormalities in the amount of sequence of estrogen secretion or the inability of the hypothalamus to respond to the estrogen cue. The pituitary gland responds to levels of gonadotropin releasing hormone through inhibition or secretion of follicle stimulating hormone and luteinizing hormone. A direct outcome of pituitary gonadotropin stimulation is the rhythmicity of ovarian function. The key events in the menstrual cycle are dependent on the central role of estrogen. Ovarian failure is generally attributed to the absence of follicular tissue, which presents as some type of gonadal disgenesis. During the initial interview, the infertile couple must be informed as to the time and financial considerations and statistical outcomes of treatments and the couple's psychological status must be determined to some extent as well. Clomiphene citrate is the most widely used drug in the management of anovulatory conditions related to inadequate cycle stimulation by the pituitary gonadotropins; the usual dose os 50 mg for 5 days, increased up to 200 mg for 5 days if success is not achieved. While it does not directly stimulate ovulation, this drug starts a sequence of events that are physiologically similar to a specific phase of the

  5. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  6. [Effect of extreme conditions on seasonal patterns of endocrine and metabolic processes].

    PubMed

    Barabash, L V; Levitskiĭ, E F; Khon, V B; Zaĭtsev, A A

    2009-01-01

    The study was designed to clarify seasonal patterns of endocrine and metabolic processes and their changes under extreme conditions in Special Police Force servicemen. Hormonal status, lipid spectra, activity of lipid peroxidation and nonspecific protection systems were assessed during transition seasons. It was shown that the stay in a local armed conflict zone had marked effect on the structure of adaptive reactions. Hormonal dysregulation and impaired efficiency of protective systems were most pronounced during the autumn/winter season. Disturbed endocrine regulation in winter/spring resulted in undesirable changes of lipid metabolism and increased load on the protective function mediated through bioactive radicals. PMID:19705792

  7. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function.

    PubMed

    Henley, Derek V; Korach, Kenneth S

    2006-06-01

    The term endocrine-disrupting chemicals is used to define a structurally diverse class of synthetic and natural compounds that possess the ability to alter various components of the endocrine system and potentially induce adverse health effects in exposed individuals and populations. Research on these compounds has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. This review will describe in vitro and in vivo studies that highlight the spectrum of unique mechanisms of action and biological effects of four endocrine-disrupting chemicals--diethylstilbestrol, genistein, di(n-butyl)phthalate, and methoxyacetic acid--to illustrate the diverse and complex nature of this class of compounds.

  8. Altered Amphibian Secondary Sex Characteristics following Exposure to Model Endocrine Disruptors

    EPA Science Inventory

    The formation of the secondary sex characteristics, oviducts and nuptial pads, are under the control of steroid hormones in frogs and as such are potential targets for endocrine-disrupting compounds. Oviducts are large, convoluted tubules derived from the Mullerian ducts in whic...

  9. Changes of Pain Perception, Autonomic Function, and Endocrine Parameters during Treatment of Anorectic Adolescents

    ERIC Educational Resources Information Center

    Bar, Karl-Jurgen; Boettger, Silke; Wagner, Gerd; Wilsdorf, Christine; Gerhard, Uwe Jens; Boettger, Michael K.; Blanz, Bernhard; Sauer, Heinrich

    2006-01-01

    Objectives: The underlying mechanisms of reduced pain perception in anorexia nervosa (AN) are unknown. To gain more insight into the pathology, the authors investigated pain perception, autonomic function, and endocrine parameters before and during successful treatment of adolescent AN patients. Method: Heat pain perception was assessed in 15…

  10. ASSESSING ENDOCRINE-DISRUPTING CHEMICAL EXPOSURE IN INDIGENOUS AQUATIC POPULATIONS IN THE OHIO RIVER

    EPA Science Inventory

    The NERL has launched a collaborative study with the ORSANCO to determine the degree of ecologically relevant endocrine-disrupting chemical (EDC) exposure in the New Cumberland Pool of the Ohio River under the Environmental Monitoring and Assessment Program - Great Rivers Project...

  11. Endocrine-related reproductive effects in molluscs.

    PubMed

    Ketata, Imen; Denier, Xavier; Hamza-Chaffai, Amel; Minier, Christophe

    2008-04-01

    Research on endocrine disruption has been a major topic of the past decade. Although most studies concentrated on vertebrate species, invertebrates are now gaining more attention. In particular, data on molluscs is increasing. One of the best-documented and more relevant examples of endocrine disruption is the imposex phenomenon affecting some gastropod species. But the increasing interest is also due to the fact that molluscs, especially bivalves, are good bioindicators used for decades in environmental studies and that progress have been made in the understanding of the physiology and endocrinology of some mollusc species. Recent results suggest that molluscs can be adversely affected by compounds that alter their reproduction and that vertebrate-type sex-steroids metabolism or mechanism of action could be involved in these effects. Nevertheless, the endocrine system of molluscs appears to be dissimilar in many aspects to those of vertebrates and sex-steroids might not have the same importance in all mollusc species. This diversity constitutes an important opportunity to examine and understand new and alternative mechanisms for endocrine disruption.

  12. Endocrine deficit after fractionated total body irradiation.

    PubMed

    Ogilvy-Stuart, A L; Clark, D J; Wallace, W H; Gibson, B E; Stevens, R F; Shalet, S M; Donaldson, M D

    1992-09-01

    Endocrine function was assessed in 31 children (17 boys) after fractionated total body irradiation used in the preparative regimen for bone marrow transplantation. Endocrine dysfunction was present in 25 children. Fifteen of 29 had growth hormone insufficiency 0.9-4.9 years after total body irradiation, yet only three of the 15 had received previous cranial irradiation. Five of 30 had thyroid dysfunction: two with a low thyroxine and raised thyroid stimulating hormone (TSH) concentration and three with a raised TSH and normal thyroxine concentration. Thus the incidence of thyroid dysfunction (16%) is much lower than that reported after single fraction total body irradiation (39-59%). In only two children were abnormalities of the hypothalamic-pituitary-adrenal axis demonstrated. The majority of pubertal children assessed (n = 15) showed evidence of gonadal damage. All the pubertal girls (n = 5) had ovarian failure, although there was evidence of recovery of ovarian function in one girl. All seven boys in late puberty showed evidence of damage to the germinal epithelium, and two of three in early puberty had raised follicle stimulating hormone concentrations. Despite the use of a fractionated total body irradiation regimen, endocrine morbidity is substantial and children undergoing such procedures will require long term endocrine review and management.

  13. Pesticides as endocrine-disrupting chemicals

    EPA Science Inventory

    Pesticides are designed to be bioactive against certain targets but can cause toxicity to nontarget species by a variety of other modes of action including disturbance of endocrine function. As such, pesticides have been found to bind and alter the function of hormone receptors, ...

  14. Endocrine Aspects of Environmental "Obesogen" Pollutants.

    PubMed

    Nappi, Francesca; Barrea, Luigi; Di Somma, Carolina; Savanelli, Maria Cristina; Muscogiuri, Giovanna; Orio, Francesco; Savastano, Silvia

    2016-01-01

    Growing evidence suggests the causal link between the endocrine-disrupting chemicals (EDCs) and the global obesity epidemics, in the context in the so-called "obesogenic environment". Dietary intake of contaminated foods and water, especially in association with unhealthy eating pattern, and inhalation of airborne pollutants represent the major sources of human exposure to EDCs. This is of particular concern in view of the potential impact of obesity on chronic non-transmissible diseases, such as type 2 diabetes, cardiovascular disease, and hormone-sensitive cancers. The key concept is the identification of adipose tissue not only as a preferential site of storage of EDCs, but also as an endocrine organ and, as such, susceptible to endocrine disruption. The timing of exposure to EDCs is critical to the outcome of that exposure, with early lifetime exposures (e.g., fetal or early postnatal) particularly detrimental because of their permanent effects on obesity later in life. Despite that the mechanisms operating in EDCs effects might vary enormously, this minireview is aimed to provide a general overview on the possible association between the pandemics of obesity and EDCs, briefly describing the endocrine mechanisms linking EDCs exposure and latent onset of obesity. PMID:27483295

  15. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    EPA Science Inventory

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  16. "Flashes in eyes" at Space Flight are the Signals that Retina is under "Hard" Affecting of Cosmic Charged Particles

    NASA Astrophysics Data System (ADS)

    Trukhanov, Kirill

    "Flashes in eyes" at Space Flight are the Signals that Retina is under "Hard" Affecting of Cosmic Charged Particles K.A. Trukhanov SSC RF - Institute of bio-medical problems RAS, Moscow The report is dedicated to the further development of the hypothesis that seeming streak images are caused by a "hard" action of cosmic ions passing through the multilayer structure of retinal ganglion cell axons. It is suggested that the axons are exсited or are blocked by a passage of charged particles through the retina. The simplified mathematical model has been developed to establish a relation of an exposure conditions and visual images of streaks. The hypothesis explains many peculiarities of streaks remaining without any explanations in the literature. For example, it explains the horizontal orientation of streaks, the sensation (feeling) of fast moving ("spreading") of streaks, etc. The total cross-section of the axon manyfold exceeds cross-section of a photoreceptor. The damage of the multilayer axon structure is equivalent to the damage of the tens of thousands of photoreceptors. The offered mechanism is not linked to photobiological processes and does not demand complete dark adaptation for flash sensations. Taking into account composite processes of visual perception, the necessity of some adaptation time, naturally, remains. Thus, the developed hypothesis requires a specification of retinal damage estimations at long-term flight (for example, to Mars). It is interesting to note that there is the surprising similarity of a loss in the visual field (the scotomata) at traumata of retinal nerve fibers to visual images of some streaks. It is not inconceivable that the retina will turn out to be one of critical structures at long interplanetary flight. Thus, there is return to an idea which belongs to Prof. C.A. Tobias that the visual tract can be one of critical structures in relation to the space radiation. The cataractogenesis must be taken into account too.

  17. Review of endocrine syndromes associated with tumours of non-endocrine origin

    PubMed Central

    Hobbs, C. B.; Miller, A. L.

    1966-01-01

    During the past 10 years there has been particular interest in the occurrence of a number of endocrine syndromes in association with tumours of organs other than the endocrines. Evidence is increasing to suggest that these result from the formation of hormone-like substances by the tumours. The clinical importance and theoretical implications of these syndromes constitute the justification for reviewing them here. PMID:5325646

  18. Developmental exposure to endocrine disrupting chemicals alters the epigenome: Identification of reprogrammed targets

    PubMed Central

    Prusinski, Lauren; Al-Hendy, Ayman; Yang, Qiwei

    2016-01-01

    Endocrine disruptions induced by environmental toxicants have placed an immense burden on society to properly diagnose, treat and attempt to alleviate symptoms and disease. Environmental exposures during critical periods of development can permanently reprogram normal physiological responses, thereby increasing susceptibility to disease later in life - a process known as developmental reprogramming. During development, organogenesis and tissue differentiation occur through a continuous series of tightly-regulated and precisely-timed molecular, biochemical and cellular events. Humans may encounter endocrine disrupting chemicals (EDCs) daily and during all stages of life, from conception and fetal development through adulthood and senescence. Though puberty and perimenopausal periods may be affected by endocrine disruption due to hormonal effects, prenatal and early postnatal windows are most critical for proper development due to rapid changes in system growth. Developmental reprogramming is shown to be caused by alterations in the epigenome. Development is the time when epigenetic programs are ‘installed’ on the genome by ‘writers’, such as histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs), which add methyl groups to lysine and arginine residues on histone tails and to CpG sites in DNA, respectively. A number of environmental compounds, referred to as estrogenic endocrine disruptors (EEDs), are able to bind to estrogen receptors (ERs) and interfere with the normal cellular development in target tissues including the prostate and uterus. These EEDs, including diethylstilbestrol (DES), bisphenol A (BPA), and genistein (a phytoestrogen derived from soybeans), have been implicated in the malformation of reproductive organs and later development of disease. Due to the lack of fully understanding the underlying mechanisms of how environmental toxicants and their level of exposure affect the human genome, it can be challenging to create clear

  19. Adipokines and the Endocrine Role of Adipose Tissues.

    PubMed

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  20. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment.

    PubMed

    Jonker, S S; Louey, S

    2016-01-01

    Immature contractile cardiomyocytes proliferate to rapidly increase cell number, establishing cardiomyocyte endowment in the perinatal period. Developmental changes in cellular maturation, size and attrition further contribute to cardiac anatomy. These physiological processes occur concomitant with a changing hormonal environment as the fetus prepares itself for the transition to extrauterine life. There are complex interactions between endocrine, hemodynamic and nutritional regulators of cardiac development. Birth has been long assumed to be the trigger for major differences between the fetal and postnatal cardiomyocyte growth patterns, but investigations in normally growing sheep and rodents suggest this may not be entirely true; in sheep, these differences are initiated before birth, while in rodents they occur after birth. The aim of this review is to draw together our understanding of the temporal regulation of these signals and cardiomyocyte responses relative to birth. Further, we consider how these dynamics are altered in stressed and suboptimal intrauterine environments. PMID:26432905

  1. Low-dose effects of hormones and endocrine disruptors.

    PubMed

    Vandenberg, Laura N

    2014-01-01

    Endogenous hormones have effects on tissue morphology, cell physiology, and behaviors at low doses. In fact, hormones are known to circulate in the part-per-trillion and part-per-billion concentrations, making them highly effective and potent signaling molecules. Many endocrine-disrupting chemicals (EDCs) mimic hormones, yet there is strong debate over whether these chemicals can also have effects at low doses. In the 1990s, scientists proposed the "low-dose hypothesis," which postulated that EDCs affect humans and animals at environmentally relevant doses. This chapter focuses on data that support and refute the low-dose hypothesis. A case study examining the highly controversial example of bisphenol A and its low-dose effects on the prostate is examined through the lens of endocrinology. Finally, the chapter concludes with a discussion of factors that can influence the ability of a study to detect and interpret low-dose effects appropriately.

  2. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, H.E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  3. Real-time detection of acetylcholine release from the human endocrine pancreas.

    PubMed

    Rodriguez-Diaz, Rayner; Dando, Robin; Huang, Y Anthony; Berggren, Per-Olof; Roper, Stephen D; Caicedo, Alejandro

    2012-05-03

    Neurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time. Chinese hamster ovary cells expressing the muscarinic acetylcholine (ACh) receptor M3 were used as ACh biosensors to record ACh release from human pancreatic islets. We show how ACh biosensors loaded with the Ca(2+) indicator Fura-2 and pressed against isolated human pancreatic islets allow the detection of ACh release. The biosensor approach is simple; the Ca(2+) signal generated in the biosensor cell reflects the presence (release) of a neurotransmitter. The technique is versatile because biosensor cells expressing a variety of receptors can be used in many applications. The protocol takes ∼3 h.

  4. Real-time detection of acetylcholine release from the human endocrine pancreas

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Huang, Y Anthony; Berggren, Per-Olof; Roper, Stephen D; Caicedo, Alejandro

    2012-01-01

    Neurons, sensory cells and endocrine cells secrete neurotransmitters and hormones to communicate with other cells and to coordinate organ and system function. Validation that a substance is used as an extracellular signaling molecule by a given cell requires a direct demonstration of its secretion. In this protocol we describe the use of biosensor cells to detect neurotransmitter release from endocrine cells in real-time. Chinese hamster ovary cells expressing the muscarinic acetylcholine (ACh) receptor M3 were used as ACh biosensors to record ACh release from human pancreatic islets. We show how ACh biosensors loaded with the Ca2+ indicator Fura-2 and pressed against isolated human pancreatic islets allow the detection of ACh release. The biosensor approach is simple; the Ca2+ signal generated in the biosensor cell reflects the presence (release) of a neurotransmitter. The technique is versatile because biosensor cells expressing a variety of receptors can be used in many applications. The protocol takes ~3 h. PMID:22555241

  5. Actions of endocrine-disrupting chemicals on stem/progenitor cells during development and disease.

    PubMed

    Kopras, Elizabeth; Potluri, Veena; Bermudez, Mei-Ling; Williams, Karin; Belcher, Scott; Kasper, Susan

    2014-04-01

    Development and fate of the stem cell are regulated by extrinsic signals from the environment. Endocrine-disrupting chemicals which perturb hormonal signaling in utero and during early childhood may cause deregulation of multiple developmental processes, ranging from breakdown of stem cell niche architecture, developmental reprograming and altered stem cell fate to impaired organ and gonad development and sexual differentiation. Therefore, study of the environmental effects on stem cell integrity and normal development is a new and emerging focus for developmental biologists and cell toxicologists. When combined with new human and mouse stem cell-based models, stem cell differentiation dynamics can be studied in more biologically relevant ways. In this study, we review the current status of our understanding of the molecular mechanisms by which endocrine disruptors alter embryonic stem cell and adult stem/progenitor cell fate, organ development, cancer stem cell activity, and tumorigenesis.

  6. Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis

    PubMed Central

    Hess, Kathryn; Jeitziner, Rachel

    2015-01-01

    Worldwide, breast cancer incidence has been increasing for decades. Exposure to reproductive hormones, as occurs with recurrent menstrual cycles, affects breast cancer risk, and can promote disease progression. Exogenous hormones and endocrine disruptors have also been implicated in increasing breast cancer incidence. Numerous in vitro studies with hormone-receptor-positive cell lines have provided insights into the complexities of hormone receptor signaling at the molecular level; in vivo additional layers of complexity add on to this. The combined use of mouse genetics and tissue recombination techniques has made it possible to disentangle hormone action in vivo and revealed that estrogens, progesterone, and prolactin orchestrate distinct developmental stages of mammary gland development. The 2 ovarian steroids that fluctuate during menstrual cycles act on a subset of mammary epithelial cells, the hormone-receptor-positive sensor cells, which translate and amplify the incoming systemic signals into local, paracrine stimuli. Progesterone has emerged as a major regulator of cell proliferation and stem cell activation in the adult mammary gland. Two progesterone receptor targets, receptor activator of NfκB ligand and Wnt4, serve as downstream paracrine mediators of progesterone receptor-induced cell proliferation and stem cell activation, respectively. Some of the findings in the mouse have been validated in human ex vivo models and by next-generation whole-transcriptome sequencing on healthy donors staged for their menstrual cycles. The implications of these insights into the basic control mechanisms of mammary gland development for breast carcinogenesis and the possible role of endocrine disruptors, in particular bisphenol A in this context, will be discussed below. PMID:26241069

  7. Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis.

    PubMed

    Brisken, Cathrin; Hess, Kathryn; Jeitziner, Rachel

    2015-10-01

    Worldwide, breast cancer incidence has been increasing for decades. Exposure to reproductive hormones, as occurs with recurrent menstrual cycles, affects breast cancer risk, and can promote disease progression. Exogenous hormones and endocrine disruptors have also been implicated in increasing breast cancer incidence. Numerous in vitro studies with hormone-receptor-positive cell lines have provided insights into the complexities of hormone receptor signaling at the molecular level; in vivo additional layers of complexity add on to this. The combined use of mouse genetics and tissue recombination techniques has made it possible to disentangle hormone action in vivo and revealed that estrogens, progesterone, and prolactin orchestrate distinct developmental stages of mammary gland development. The 2 ovarian steroids that fluctuate during menstrual cycles act on a subset of mammary epithelial cells, the hormone-receptor-positive sensor cells, which translate and amplify the incoming systemic signals into local, paracrine stimuli. Progesterone has emerged as a major regulator of cell proliferation and stem cell activation in the adult mammary gland. Two progesterone receptor targets, receptor activator of NfκB ligand and Wnt4, serve as downstream paracrine mediators of progesterone receptor-induced cell proliferation and stem cell activation, respectively. Some of the findings in the mouse have been validated in human ex vivo models and by next-generation whole-transcriptome sequencing on healthy donors staged for their menstrual cycles. The implications of these insights into the basic control mechanisms of mammary gland development for breast carcinogenesis and the possible role of endocrine disruptors, in particular bisphenol A in this context, will be discussed below. PMID:26241069

  8. Lateral hypothalamic signaling mechanisms underlying feeding stimulation: differential contributions of Src family tyrosine kinases to feeding triggered either by NMDA injection or by food deprivation.

    PubMed

    Khan, Arshad M; Cheung, Herman H; Gillard, Elizabeth R; Palarca, Jennifer A; Welsbie, Derek S; Gurd, James W; Stanley, B Glenn

    2004-11-24

    In rats, feeding can be triggered experimentally using many approaches. Included among these are (1) food deprivation and (2) acute microinjection of the neurotransmitter l-glutamate (Glu) or its receptor agonist NMDA into the lateral hypothalamic area (LHA). Under both paradigms, the NMDA receptor (NMDA-R) within the LHA appears critically involved in transferring signals encoded by Glu to stimulate feeding. However, the intracellular mechanisms underlying this signal transfer are unknown. Because protein-tyrosine kinases (PTKs) participate in NMDA-R signaling mechanisms, we determined PTK involvement in LHA mechanisms underlying both types of feeding stimulation through food intake and biochemical measurements. LHA injections of PTK inhibitors significantly suppressed feeding elicited by LHA NMDA injection (up to 69%) but only mildly suppressed deprivation feeding (24%), suggesting that PTKs may be less critical for signals underlying this feeding behavior. Conversely, food deprivation but not NMDA injection produced marked increases in apparent activity for Src PTKs and in the expression of Pyk2, an Src-activating PTK. When considered together, the behavioral and biochemical results demonstrate that, although it is easier to suppress NMDA-elicited feeding by PTK inhibitors, food deprivation readily drives PTK activity in vivo. The latter result may reflect greater PTK recruitment by neurotransmitter receptors, distinct from the NMDA-R, that are activated during deprivation-elicited but not NMDA-elicited feeding. These results also demonstrate how the use of only one feeding stimulation paradigm may fail to reveal the true contributions of signaling molecules to pathways underlying feeding behavior in vivo.

  9. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds

    NASA Astrophysics Data System (ADS)

    Harada, Shusaku; Hiromori, Youhei; Nakamura, Shota; Kawahara, Kazuki; Fukakusa, Shunsuke; Maruno, Takahiro; Noda, Masanori; Uchiyama, Susumu; Fukui, Kiichi; Nishikawa, Jun-Ichi; Nagase, Hisamitsu; Kobayashi, Yuji; Yoshida, Takuya; Ohkubo, Tadayasu; Nakanishi, Tsuyoshi

    2015-02-01

    Organotin compounds such as triphenyltin (TPT) and tributyltin (TBT) act as endocrine disruptors through the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway. We recently found that TPT is a particularly strong agonist of PPARγ. To elucidate the mechanism underlying organotin-dependent PPARγ activation, we here analyzed the interactions of PPARγ ligand-binding domain (LBD) with TPT and TBT by using X-ray crystallography and mass spectroscopy in conjunction with cell-based activity assays. Crystal structures of PPARγ-LBD/TBT and PPARγ-LBD/TPT complexes were determined at 1.95 Å and 1.89 Å, respectively. Specific binding of organotins is achieved through non-covalent ionic interactions between the sulfur atom of Cys285 and the tin atom. Comparisons of the determined structures suggest that the strong activity of TPT arises through interactions with helix 12 of LBD primarily via π-π interactions. Our findings elucidate the structural basis of PPARγ activation by TPT.

  10. Chlordimeform-induced alterations in endocrine regulation within the male rat reproductive system.

    PubMed

    Goldman, J M; Cooper, R L; Laws, S C; Rehnberg, G L; Edwards, T L; McElroy, W K; Hein, J F

    1990-06-01

    The acaricide chlordimeform has been reported to have adverse effects in mammals that may be mediated by an interaction with alpha-adrenergic receptors. Since the hormonal signals involved in the regulation of reproductive function are themselves under hypothalamic adrenergic control, the present study was designed to investigate the effects of acute exposure to this compound on the hypothalamic-pituitary-testicular axis. Male rats given two intraperitoneal injections of chlordimeform-HCl (20 or 50 mg/kg) spaced 12 hr apart showed 24-hr declines in serum gonadotropins at 50 mg/kg that were paralleled by a drop in testosterone. These changes returned to control levels by 96 hr. Thyroid-stimulating hormone exhibited a dose-response decline that was accompanied by a similar decrease in serum thyroid hormone levels. The norepinephrine-stimulated secretion in vitro of gonadotropin-releasing hormone from hypothalamic explants was suppressed at the higher dose, while LH release from pituitary fragments in culture was unaffected. Although measurements of the in vitro release of other pituitary hormones suggest that there could be some direct pituitary effects of the compound, it appears likely that chlordimeform is able to influence endocrine regulation adversely within the reproductive system by interfering with hypothalamic alpha-adrenergic activity.

  11. Inhibition of connexin43 gap junction channels by the endocrine disruptor ioxynil

    SciTech Connect

    Leithe, Edward; Kjenseth, Ane; Bruun, Jarle; Sirnes, Solveig; Rivedal, Edgar

    2010-08-15

    Gap junctions are intercellular plasma membrane domains containing channels that mediate transport of ions, metabolites and small signaling molecules between adjacent cells. Gap junctions play important roles in a variety of cellular processes, including regulation of cell growth and differentiation, maintenance of tissue homeostasis and embryogenesis. The constituents of gap junction channels are a family of trans-membrane proteins called connexins, of which the best-studied is connexin43. Connexin43 functions as a tumor suppressor protein in various tissue types and is frequently dysregulated in human cancers. The pesticide ioxynil has previously been shown to act as an endocrine disrupting chemical and has multiple effects on the thyroid axis. Furthermore, both ioxynil and its derivative ioxynil octanoate have been reported to induce tumors in animal bioassays. However, the molecular mechanisms underlying the possible tumorigenic effects of these compounds are unknown. In the present study we show that ioxynil and ioxynil octanoate are strong inhibitors of connexin43 gap junction channels. Both compounds induced rapid loss of connexin43 gap junctions at the plasma membrane and increased connexin43 degradation. Ioxynil octanoate, but not ioxynil, was found to be a strong activator of ERK1/2. The compounds also had different effects on the phosphorylation status of connexin43. Taken together, the data show that ioxynil and ioxynil octanoate are potent inhibitors of intercellular communication via gap junctions.

  12. THERAPY OF ENDOCRINE DISEASE: Endocrine dilemma: management of Graves' orbitopathy.

    PubMed

    Campi, Irene; Vannucchi, Guia; Salvi, Mario

    2016-09-01

    Management of Graves' orbitopathy (GO) must be based on the correct assessment of activity and severity of the disease. Activity is usually assessed with the Clinical Activity Score, whereas severity is classified according to a European Group On Graves' Orbitopathy (EUGOGO) consensus statement as mild, moderate-to-severe, and sight-threatening. Myopathic and chronic congestive forms are uncommon clinical presentations of GO. Restoration and maintenance of stable euthyroidism are recommended in the presence of GO.In moderate-to-severe disease, steroids have been widely employed and have shown to possess an anti-inflammatory activity, but about 20-30% of patients are not responsive and present recurrence. Some novel immunosuppressors have already been employed in clinical studies and have shown interesting results, although the lack of randomized and controlled trials suggests caution for their use in clinical practice. Potential targets for therapy in GO are the thyroid-stimulating hormone and the insulin-like growth factor 1 receptor on the fibroblasts, inflammatory cytokines, B and T cells, and the PIK3/mTORC1 signaling cascades for adipogenesis. A recent open study has shown that tocilizumab, an anti-sIL-6R antibody, inactivates GO. Consistent reports on the efficacy of rituximab have recently been challenged by randomized controlled trials.As the main goal of treatment is the well-being of the patient, the therapeutic strategy should be addressed to better suit the patient needs, more than improving one or more biological parameters. The increasing availability of new therapies will expand the therapeutic options for GO patients and allow the clinician to really personalize the treatment to better suit the patients' personal needs. PMID:27032693

  13. Metformin Exposure at Environmentally Relevant Concentrations Causes Potential Endocrine Disruption in Adult Male Fish

    PubMed Central

    Niemuth, Nicholas J; Jordan, Renee; Crago, Jordan; Blanksma, Chad; Johnson, Rodney; Klaper, Rebecca D

    2015-01-01

    Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have been found ubiquitously in wastewater and surface waters around the world. A major source of these compounds is incomplete metabolism in humans and subsequent excretion in human waste, resulting in discharge into surface waters by wastewater treatment plant (WWTP) effluent. One pharmaceutical found in particularly high abundance in recent WWTP effluent and surface water studies is metformin, one of the world's most widely prescribed antidiabetic drugs. Interactions between insulin signaling and steroidogenesis suggest potential endocrine-disrupting effects of metformin found in the aquatic environment. Adult fathead minnows (Pimephales promelas) were chronically exposed to metformin for 4 wk, at 40 µg/L, a level similar to the average found in WWTP effluent in Milwaukee, Wisconsin, USA. Genetic endpoints related to metabolism and endocrine function as well as reproduction-related endpoints were examined. Metformin treatment induced significant up-regulation of messenger ribonucleic acid (mRNA) encoding the egg-protein vitellogenin in male fish, an indication of endocrine disruption. The present study, the first to study the effects of environmentally relevant metformin exposure in fathead minnows, demonstrates the need for further study of the endocrine-disrupting effects of metformin in aquatic organisms. Environ Toxicol Chem 2014;9999:1–6. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. PMID:25358780

  14. A possible role for the canonical Wnt pathway in endocrine cell development in chicks

    SciTech Connect

    Pedersen, Anna Hauntoft; Heller, R. Scott . E-mail: shll@hagedorn.dk

    2005-08-05

    Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of {beta}-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal {beta}-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken.

  15. Endocrine disrupting properties of perfluorooctanoic acid☆,☆☆

    PubMed Central

    White, Sally S.; Fenton, Suzanne E.; Hines, Erin P.

    2012-01-01

    Perfluoroalkyl acids (PFAAs) have attracted attention in recent years for their environmental ubiquity, as well as their toxicity. Several PFAAs are found in human tissues globally, as humans are exposed on a daily basis through intake of contaminated food, water, and air, irrespective of proximity to industry. Perfluorooctanoic acid (PFOA) is a PFAA shown to be developmentally toxic in mice, with broad and varied health consequences that may include long-lasting effects in reproductive tissues and metabolic reprogramming. To date, the only demonstrated mode of action by which the health effects of PFOA are mediated is via the activation of the peroxisome proliferator-activated receptor alpha (PPARα). The endogenous roles for this receptor, as well as the adverse outcomes of activation by exogenous agents during development, are currently under investigation. Recent studies suggest that PFOA may alter steroid hormone production or act indirectly, via ovarian effects, as a novel means of endocrine disruption. Here we review the existing literature on the known health effects of PFOA in animal models, focusing on sensitive developmental periods. To complement this, we also present epidemiologic health data, with the caveat that these studies largely address only associations between adult exposures and outcomes, rarely focusing on endocrine-specific endpoints, susceptible subpopulations, or windows of sensitivity. Further research in these areas is needed. PMID:21397692

  16. Commentary: The Year in Endocrine Genetics for Basic Scientists

    PubMed Central

    2011-01-01

    During the past several years, one of the most interesting and challenging issues in endocrine genetics is determining how to integrate the findings and approaches traditionally used to understand the powerful, single-gene mutations causing endocrine syndromes with those newer techniques used to dissect the complex genetic architecture of polygenic conditions. With this overriding consideration in mind, it makes sense to begin these considerations with recent novel findings derived from the study of a particularly prismatic monogenic disorder, isolated GnRH deficiency, in defining an area of neuroendocrinology and development. Careful study of this human disease model has been employed successfully by several groups to provide unique windows through which to gain an improved understanding of the challenging issues of the developmental biology of the GnRH neurons where previous nonhuman approaches have had significant technical limitations. For example, study of this disorder has provided the field of neuroendocrinology with several unique insights into the surprising origins and early development of the GnRH neuronal network. Its associated clinical phenotypes have helped to unearth a growing list of genes responsible for GnRH neuronal specification, migration, and neuroendocrine function. Finally, this human genetic model is beginning to provide increasing evidence of interactions between these single genes, clearly demonstrating that an oligogenic genetic architecture underlies this condition. PMID:22108799

  17. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.

    PubMed

    Yamasaki, Akio; Onishi, Hideya; Imaizumi, Akira; Kawamoto, Makoto; Fujimura, Akiko; Oyama, Yasuhiro; Katano, Mitsuo

    2016-08-01

    Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor. PMID:27466498

  18. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila.

    PubMed

    Reiff, Tobias; Jacobson, Jake; Cognigni, Paola; Antonello, Zeus; Ballesta, Esther; Tan, Kah Junn; Yew, Joanne Y; Dominguez, Maria; Miguel-Aliaga, Irene

    2015-01-01

    The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output.

  19. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila

    PubMed Central

    Reiff, Tobias; Jacobson, Jake; Cognigni, Paola; Antonello, Zeus; Ballesta, Esther; Tan, Kah Junn; Yew, Joanne Y; Dominguez, Maria; Miguel-Aliaga, Irene

    2015-01-01

    The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output. DOI: http://dx.doi.org/10.7554/eLife.06930.001 PMID:26216039

  20. Molecular Mechanisms of Pituitary Endocrine Cell Calcium Handling

    PubMed Central

    Stojilkovic, Stanko S.

    2011-01-01

    Endocrine pituitary cells express numerous voltage-gated Na+, Ca2+, K+, and Cl− channels and several ligand-gated channels, and they fire action potentials spontaneously. Depending on the cell type, this electrical activity can generate localized or global Ca2+ signals, the latter reaching the threshold for stimulus-secretion coupling. These cells also express numerous G-protein-coupled receptors, which can stimulate or silence electrical activity and Ca2+ influx through voltage-gated Ca2+ channels and hormone release. Receptors positively coupled to the adenylyl cyclase signaling pathway stimulate electrical activity with cAMP, which activates hyperpolarization-activated cyclic nucleotide-regulated channels directly, or by cAMP-dependent kinase-mediated phosphorylation of K+, Na+, Ca2+, and/or non-selective cation-conducting channels. Receptors that are negatively coupled to adenylyl cyclase signaling pathways inhibit spontaneous electrical activity and accompanied Ca2+ transients predominantly through the activation of inwardly rectifying K+ channels and the inhibition of voltage-gated Ca2+ channels. The Ca2+-mobilizing receptors activate inositol trisphosphate-gated Ca2+ channels in the endoplasmic reticulum, leading to Ca2+ release in an oscillatory or non-oscillatory manner, depending on the cell type. This Ca2+ release causes a cell type-specific modulation of electrical activity and intracellular Ca2+ handling. PMID:22138111