Sample records for endocrine system

  1. Endocrine glands

    MedlinePlus Videos and Cool Tools

    ... the pancreas, ovaries and testes. The endocrine and nervous systems work very closely together. The brain continuously sends ... endocrine glands. Because of this intimate relationship, the nervous and endocrine systems are referred to as the neuroendocrine system. The ...

  2. The immune-neuro-endocrine interactions.

    PubMed

    Tomaszewska, D; Przekop, F

    1997-06-01

    This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.

  3. [Novel concepts in biology of diffuse endocrine system: results and future investigations].

    PubMed

    Iaglov, V V; Iaglova, N V

    2012-01-01

    Diffuse endocrine system is a largest part of endocrine system of vertebrates. Recend findings showed that DES-cells are not neuroectodermal but have ectodermal, mesodermal, and entodermal ontogeny. The article reviews novel concept of diffuse endocrine system anatomy and physiology, functional role of DES hormones and poorly investigated aspects like DES-cell morphology, hormones secretion in normal and pathologic conditions. Further research of diffuse endocrine system has a great significance for biochemistry, morphology, and clinical medicine.

  4. Diabetes Insipidus

    MedlinePlus

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... an Endocrinologist Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ...

  5. ENDOCRINE DISRUPTORS IN THE ENVIRONMENT

    EPA Science Inventory

    The endocrine system produces hormones which are powerful natural chemicals that regulate important life processes. Endocrine disruptors are human-made chemicals distributed globally which have the potential to interfere with the endocrine system and produce serious biological e...

  6. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  7. Endocrine system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  8. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  9. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  10. Syndromes that Link the Endocrine System and Genitourinary Tract.

    PubMed

    Özlük, Yasemin; Kılıçaslan, Işın

    2015-01-01

    The endocrine system and genitourinary tract unite in various syndromes. Genitourinary malignancies may cause paraneoplastic endocrine syndromes by secreting hormonal substances. These entities include Cushing`s syndrome, hypercalcemia, hyperglycemia, polycythemia, hypertension, and inappropriate ADH or HCG production. The most important syndromic scenarios that links these two systems are hereditary renal cancer syndromes with specific genotype/phenotype correlation. There are also some very rare entities in which endocrine and genitourinary systems are involved such as Carney complex, congenital adrenal hyperplasia and Beckwith-Wiedemann syndrome. We will review all the syndromes regarding manifestations present in endocrine and genitourinary organs.

  11. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  12. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  13. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    PubMed

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  14. The clandestine organs of the endocrine system.

    PubMed

    Garcia-Reyero, Natàlia

    2018-02-01

    This review analyzes what could be regarded as the "clandestine organs" of the endocrine system: the gut microbiome, the immune system, and the stress system. The immune system is very closely related to the endocrine system, with many intertwined processes and signals. Many researchers now consider the microbiome as an 'organ' that affects the organism at many different levels. While stress is certainly not an organ, it affects so many processes, including endocrine-related processes, that the stress response system deserved a special section in this review. Understanding the connections, effects, and feedback mechanisms between the different "clandestine organs" and the endocrine system will provide us with a better understanding of how an organism functions, as well as reinforce the idea that there are no independent organs or systems, but a complex, interacting network of molecules, cells, tissues, signaling pathways, and mechanisms that constitute an individual. Published by Elsevier Inc.

  15. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  16. Endocrine system and obesity.

    PubMed

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients. Copyright © 2010. Published by Elsevier Inc.

  17. Endocrine Disruptors in Domestic Animal Reproduction: A Clinical Issue?

    PubMed Central

    Magnusson, Ulf; Persson, Sara

    2015-01-01

    Contents The objective of this review was to discuss whether endocrine disruption is a clinical concern in domestic animal reproduction. To that end, we firstly summarize the phenomenon of endocrine disruption, giving examples of the agents of concern and their effects on the mammalian reproductive system. Then there is a brief overview of the literature on endocrine disruptors and domestic animal reproduction. Finally, the clinical implications of endocrine disruptors on the reproductive system of farm animals as well as in dogs and cats are discussed. It is concluded that the evidence for clinical cases of endocrine disruption by chemical pollutants is weak, whereas for phytooestrogens, it is well established. However, there is concern that particular dogs and cats may be exposed to man-made endocrine disruptors. PMID:26382024

  18. The endocrine effects of nicotine and cigarette smoke

    PubMed Central

    Tweed, Jesse Oliver; Hsia, Stanley H.; Lutfy, Kabirullah; Friedman, Theodore C.

    2012-01-01

    With a current prevalence of approximately 20%, smoking continues to impact negatively upon health. Tobacco or nicotine use influences the endocrine system, with important clinical implications. In this review we critically evaluate the literature concerning the impact of nicotine as well as tobacco use on several parameters of the endocrine system and on glucose and lipid homeostasis. Emphasis is on the effect of smoking on diabetes mellitus and obesity and the consequences of smoking cessation on these disorders. Understanding the effects of nicotine and cigarettes on the endocrine system and how these changes contribute to the pathogenesis of various endocrine diseases will allow for targeted therapies and more effective approaches for smoking cessation. PMID:22561025

  19. Update on the Mammalian Tier 1 Endocrine Disruptor Screening Protocols

    EPA Science Inventory

    The endocrine system provides a number of target sites that may be susceptible to disruption by environmental agents. In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system (http://w...

  20. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Environmental endocrine disruption: an effects assessment and analysis.

    PubMed Central

    Crisp, T M; Clegg, E D; Cooper, R L; Wood, W P; Anderson, D G; Baetcke, K P; Hoffmann, J L; Morrow, M S; Rodier, D J; Schaeffer, J E; Touart, L W; Zeeman, M G; Patel, Y M

    1998-01-01

    This report is an overview of the current state of the science relative to environmental endocrine disruption in humans, laboratory testing, and wildlife species. Background information is presented on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption, with specific examples of chemicals affecting these sites. An attempt is made to present objectively the issue of endocrine disruption, consider working hypotheses, offer opposing viewpoints, analyze the available information, and provide a reasonable assessment of the problem. Emphasis is placed on disruption of central nervous system--pituitary integration of hormonal and sexual behavioral activity, female and male reproductive system development and function, and thyroid function. In addition, the potential role of environmental endocrine disruption in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated. The interrelationship of the endocrine and immune system is documented. With respect to endocrine-related ecological effects, specific case examples from the peer-reviewed literature of marine invertebrates and representatives of the five classes of vertebrates are presented and discussed. The report identifies some data gaps in our understanding of the environmental endocrine disruption issue and recommends a few research needs. Finally, the report states the U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine disruption and lists some of the ongoing activities to deal with this matter. PMID:9539004

  4. The Heart of the Matter: Cardiac Manifestations of Endocrine Disease

    PubMed Central

    Binu, Aditya John; Cherian, Kripa Elizabeth; Kapoor, Nitin; Chacko, Sujith Thomas; George, Oommen; Paul, Thomas Vizhalil

    2017-01-01

    Endocrine disorders manifest as a disturbance in the milieu of multiple organ systems. The cardiovascular system may be directly affected or alter its function to maintain the state of homeostasis. In this article, we aim to review the pathophysiology, diagnosis, clinical features and management of cardiac manifestations of various endocrine disorders. PMID:29285459

  5. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.

    PubMed Central

    Zacharewski, T

    1998-01-01

    It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705

  6. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  7. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  8. The Endocrine System [and] Instructor's Guide: The Endocrine System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the endocrine system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use the…

  9. Endocannabinoids and the Endocrine System in Health and Disease.

    PubMed

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  10. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  11. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  12. Hormonally active agents in the environment: a state-of-the-art review.

    PubMed

    Anwer, Faizan; Chaurasia, Savita; Khan, Abid Ali

    2016-12-01

    After the Second World War, infatuation with modern products has exponentially widened the spectrum of chemicals used. Some of them are capable of hijacking the endocrine system by blocking or imitating a hormone and are referred to as hormonally active chemicals or endocrine disruptors. These are chemicals that the body was not designed for evolutionarily and they are present in every matrix of the environment. We are living in a chemical world where the exposures are ubiquitous and take place in combinations that can interact with the endocrine system and some other metabolic activities in unexpected ways. The complexity of interaction of these compounds can be understood by the fact that they interfere with gene expression at extremely low levels, consequently harming an individual life form, its offspring or population. As the endocrine system plays a critical role in many biological or physiological functions, by interfering body's endocrine system, endocrine disrupting compounds (EDCs) have various adverse effects on human health, starting from birth defects to developmental disorders, deadly deseases like cancer and even immunological disorders. Most of these compounds have not been tested yet for safety and their effects cannot be assessed by the available techniques. The establishment of proper exposure measurement techniques and integrating correlation is yet to be achieved to completely understand the impacts at various levels of the endocrine axis.

  13. Nab-paclitaxel and Gemcitabine vs Gemcitabine Alone as Adjuvant Therapy for Patients With Resected Pancreatic Cancer (the "Apact" Study)

    ClinicalTrials.gov

    2018-03-26

    Pancreatic Neoplasms; Digestive System Neoplasms; Neoplasms by Site; Neoplasms; Endocrine Gland Neoplasms; Pancreatic Diseases; Digestive System Diseases; Endocrine System Diseases; Gemcitabine; Antimetabolites, Antineoplastic

  14. How does obesity affect the endocrine system? A narrative review.

    PubMed

    Poddar, M; Chetty, Y; Chetty, V T

    2017-06-01

    Obesity is a chronic, relapsing medical condition that results from an imbalance of energy expenditure and consumption. It is a leading cause of preventable illness, disability and premature death. The causes of obesity are multifactorial and include behavioural, socioeconomic, genetic, environmental and psychosocial factors. Rarely are endocrine diseases, e.g., hypothyroidism or Cushing's syndrome, the cause of obesity. What is less understood is how obesity affects the endocrine system. In this review, we will discuss the impact of obesity on multiple endocrine systems, including the hypothalamic-pituitary axis, changes in vitamin D homeostasis, gender steroids and thyroid hormones. We will also examine the renin angiotensin aldosterone system and insulin pathophysiology associated with obesity. We will provide a general overview of the biochemical changes that can be seen in patients with obesity, review possible aetiologies of these changes and briefly consider current guidelines on their management. This review will not discuss endocrine causes of obesity. © 2017 World Obesity Federation.

  15. IDENTIFYING ENDOCRINE DISRUPTORS BY HIGH-RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    The EPA is currently interested in human and ecosystem exposure to endocrine disruptors (1)-compounds that interfere with endogenous hormone systems. Possible endocrine disruptors in the environment include certain pesticides, industrial by-products, and pharmaceuticals. Such c...

  16. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  17. Parabens and their effects on the endocrine system.

    PubMed

    Nowak, Karolina; Ratajczak-Wrona, Wioletta; Górska, Maria; Jabłońska, Ewa

    2018-03-27

    Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  19. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  20. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  1. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  2. Endocrine system: part 2.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-03

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  3. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  4. A Cohort Study Comparing Women with Autism Spectrum Disorder with and without Generalized Joint Hypermobility

    PubMed Central

    Sharp, Julia L.; Edelson, Stephen M.; Kelly, Desmond P.; Casanova, Manuel F.

    2018-01-01

    Reports suggest comorbidity between autism spectrum disorder (ASD) and the connective tissue disorder, Ehlers-Danlos syndrome (EDS). People with EDS and the broader spectrum of Generalized Joint Hypermobility (GJH) often present with immune- and endocrine-mediated conditions. Meanwhile, immune/endocrine dysregulation is a popular theme in autism research. We surveyed a group of ASD women with/without GJH to determine differences in immune/endocrine exophenotypes. ASD women 25 years or older were invited to participate in an online survey. Respondents completed a questionnaire concerning diagnoses, immune/endocrine symptom history, experiences with pain, and seizure history. ASD women with GJH (ASD/GJH) reported more immune- and endocrine-mediated conditions than their non-GJH counterparts (p = 0.001). Autoimmune conditions were especially prominent in the ASD/GJH group (p = 0.027). Presence of immune-mediated symptoms often co-occurred with one another (p < 0.001–0.020), as did endocrine-mediated symptoms (p < 0.001–0.045), irrespective of the group. Finally, the numbers of immune- and endocrine-mediated symptoms shared a strong inter-relationship (p < 0.001), suggesting potential system crosstalk. While our results cannot estimate comorbidity, they reinforce concepts of an etiological relationship between ASD and GJH. Meanwhile, women with ASD/GJH have complex immune/endocrine exophenotypes compared to their non-GJH counterparts. Further, we discuss how connective tissue regulates the immune system and how the immune/endocrine systems in turn may modulate collagen synthesis, potentially leading to higher rates of GJH in this subpopulation. PMID:29562607

  5. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  6. High School Students' Written Argumentation Qualities with Problem-Based Computer-Aided Material (PBCAM) Designed about Human Endocrine System

    ERIC Educational Resources Information Center

    Vekli, Gülsah Sezen; Çimer, Atilla

    2017-01-01

    This study investigated development of students' scientific argumentation levels in the applications made with Problem-Based Computer-Aided Material (PBCAM) designed about Human Endocrine System. The case study method was used: The study group was formed of 43 students in the 11th grade of the science high school in Rize. Human Endocrine System…

  7. [Outstanding problems of normal and pathological morphology of the diffuse endocrine system].

    PubMed

    Iaglov, V V; Iaglova, N V

    2011-01-01

    The diffuse endocrine system (DES)--a mosaic-cellular endoepithelial gland--is the biggest part of the human endocrine system. Scientists used to consider cells of DES as neuroectodermal. According to modem data cells of DES are different cytogenetic types because they develop from the different embryonic blastophyllum. So that any hormone-active tumors originated from DES of the digestive, respiratory and urogenital system shouldn't be considered as neuroendocrinal tumors. The basic problems of DES morphology and pathology are the creation of scientifically substantiated histogenetic classification of DES tumors.

  8. Endocrine Profiling and Prioritization Using ToxCast Assays

    EPA Science Inventory

    The U.S. EPA's Endocrine Disruptor Screening Program (EDSP) is charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife (http://www.epa.gov/endo/). The prioritization of chemicals for test...

  9. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminantsmore » in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.« less

  10. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    USGS Publications Warehouse

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. 

  11. Generation of enteroendocrine cell diversity in midgut stem cell lineages

    PubMed Central

    Beehler-Evans, Ryan; Micchelli, Craig A.

    2015-01-01

    The endocrine system mediates long-range peptide hormone signaling to broadcast changes in metabolic status to distant target tissues via the circulatory system. In many animals, the diffuse endocrine system of the gut is the largest endocrine tissue, with the full spectrum of endocrine cell subtypes not yet fully characterized. Here, we combine molecular mapping, lineage tracing and genetic analysis in the adult fruit fly to gain new insight into the cellular and molecular mechanisms governing enteroendocrine cell diversity. Neuropeptide hormone distribution was used as a basis to generate a high-resolution cellular map of the diffuse endocrine system. Our studies show that cell diversity is seen at two distinct levels: regional and local. We find that class I and class II enteroendocrine cells can be distinguished locally by combinatorial expression of secreted neuropeptide hormones. Cell lineage tracing studies demonstrate that class I and class II cells arise from a common stem cell lineage and that peptide profiles are a stable feature of enteroendocrine cell identity during homeostasis and following challenge with the enteric pathogen Pseudomonas entomophila. Genetic analysis shows that Notch signaling controls the establishment of class II cells in the lineage, but is insufficient to reprogram extant class I cells into class II enteroendocrine cells. Thus, one mechanism by which secretory cell diversity is achieved in the diffuse endocrine system is through cell-cell signaling interactions within individual adult stem cell lineages. PMID:25670792

  12. Trauma and the endocrine system.

    PubMed

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma. Copyright © 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  13. Current limitations and recommendations to improve testing ...

    EPA Pesticide Factsheets

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizations, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormonal pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1)adequately sensitive species and life-stages, 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern, and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and to reduce uncertainty. For example, in vitro high throughput

  14. The Effects of Nanomaterials as Endocrine Disruptors

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  15. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  16. EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

    EPA Science Inventory

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many ...

  17. ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

    EPA Science Inventory

    During the last decade, concerns have been raised regarding the possible harmful effects of exposure to certain chemicals that are capable of modulating or disrupting the function of the endocrine system. These chemicals, which are referred to as endocrine disrupting chemicals (E...

  18. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  19. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  20. Molecular Mechanisms of Action of BPA.

    PubMed

    Acconcia, Filippo; Pallottini, Valentina; Marino, Maria

    2015-01-01

    Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.

  1. Review: the role of neural crest cells in the endocrine system.

    PubMed

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  2. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  3. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  4. THE ROLE OF THE PINEAL GLAND AND OF ENVIRONMENTAL LIGHTING IN THE REGULATION OF THE ENDOCRINE AND REPRODUCTIVE SYSTEMS OF RODENTS.

    DTIC Science & Technology

    PHOTOPERIODISM, REPRODUCTION(PHYSIOLOGY)), (*ENDOCRINE GLANDS , REPRODUCTION(PHYSIOLOGY)), RODENTS, REPRODUCTIVE SYSTEM, EYE, EXCISION, TESTES, OVARIES, ADRENAL GLANDS , THYROID GLAND , IODINE, THIOUREA, RATS, HAMSTERS

  5. Practical homeostasis lighting control system using sensor agent robots for office space

    NASA Astrophysics Data System (ADS)

    Tokiwa, Momoko; Mita, Akira

    2014-03-01

    The comfortable space can be changed by season, age, physical condition and the like. However, the current systems are not able to resolve them absolutely. This research proposes the Homeostasis lighting control system based on the mechanism of biotic homeostasis for making the algorithms of apparatus control. Homeostasis are kept by the interaction of the three systems, endocrine system, immune system, and nervous system[1]. By the gradual reaction in the endocrine system, body's protective response in the immune system, and the electrical reaction in the nerve system, we can keep the environments against variable changes. The new lighting control system utilizes this mechanism. Firstly, we focused on legibility and comfort in the office space to construct the control model learning from the endocrine and immune systems. The mechanism of the endocrine system is used for ambient lights in the space is used considering circadian rhythm for comfort. For the legibility, the immune system is used to control considering devices near the human depending on the distance between the human. Simulations and the demonstration were conducted to show the feasibility. Finally, the nerve system was intruded to enhance the system.

  6. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  7. BIODEGRADABILITY OF SELECTED EDCS UNDER REDOX CONDITIONS TYPICAL OF WASTEWATER TREATMENT AND SEDIMENTS

    EPA Science Inventory

    A number of emerging chemicals being detected in the environment are now gaining attention for having possible endocrine disrupting capabilities. These endocrine disrupting chemicals (EDCs) have been shown to have adverse affects on the endocrine system of fish and wildlife. But ...

  8. SCREENING CALIFORNIA SURFACE WATERS FOR ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS (EEDC) WITH A JUVENILE RAINBOW TROUT LIVER VITELLOGENIN MRNA PROCEDURE

    EPA Science Inventory

    Concern regarding the occurrence of chemicals that disrupt endocrine system functions in aquatic species has heightened over the last 15 years. However, little attention has been given to monitoring for estrogenic endocrine disrupting chemicals (EEDCs) in California's freshwater ...

  9. ALTERATIONS IN DEVELOPMENT OF REPRODUCTIVE AND ENDOCRINE SYSTEMS OF WILDLIFE POPULATIONS EXPOSED TO ENDOCRINE-DISRUPTING CONTAMINANTS.

    EPA Science Inventory

    Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target ...

  10. Nanotoxicity: a growing need for study in the endocrine system.

    PubMed

    Lu, Xuefei; Liu, Ying; Kong, Xiangjun; Lobie, Peter E; Chen, Chunying; Zhu, Tao

    2013-05-27

    Nanomaterials (NMs) are engineered for commercial purposes such as semiconductors, building materials, cosmetics, and drug carriers, while natural nanoparticles (NPs) already exist in the environment. Due to their unique physicochemical properties, they may interact actively with biological systems. Some of these interactions might be detrimental to human health, and therefore studies on the potential 'nanotoxicity' of these materials in different organ systems are warranted. The purpose of developing the concept of nanotoxicity is to recognize and evaluate the hazards and risks of NMs and evaluate safety. This review will summarize and discuss recent reports derived from cell lines or animal models concerning the effects of NMs on, and their application in, the endocrine system of mammalian and other species. It will present an update on current studies of the effects of some typical NMs-such as metal-based NMs, carbon-based NMs, and dendrimers-on endocrine functions, in which some effects are adverse or unwanted and others are favorable or intended. Disruption of endocrine function is associated with adverse health outcomes including reproductive failure, metabolic syndrome, and some types of cancer. Further investigations are therefore required to obtain a thorough understanding of any potential risk of pathological endocrine disruption from products containing NMs. This review aims to provide impetus for further studies on the interactions of NMs with endocrine functions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Human immunodeficiency virus endocrinopathy

    PubMed Central

    Sinha, Uma; Sengupta, Nilanjan; Mukhopadhyay, Prasanta; Roy, Keshab Sinha

    2011-01-01

    Human immunodeficiency virus (HIV) endocrinopathy encompasses a broad spectrum of disorders. Almost all the endocrine organs are virtually affected by HIV infection. HIV can directly alter glandular function. More commonly secondary endocrine dysfunction occurs due to opportunistic infections and neoplasms in immunocompromised state. The complex interaction between HIV infection and endocrine system may be manifested as subtle biochemical and hormonal perturbation to overt glandular failure. Antiretroviral therapy as well as other essential medications often result in adverse endocrinal consequences. Apart from adrenal insufficiency, hypogonadism, diabetes and bone loss, AIDS wasting syndrome and HIV lipodystrophy need special reference. Endocrinal evaluation should proceed as in other patients with suspected endocrine dysfunction. Available treatment options have been shown to improve quality of life and long-term mortality in AIDS patients. PMID:22028995

  12. The US EPA's Endocrine Disruptor Screening Program: In VItro and In Vivo Mammalian Tier 1 Screening Assays

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system, the Food Quality Protection Act mandated that the U.S. EPA develop and implement an endocrine disruptor screening program (EDSP...

  13. Endocrinology and physiology of pseudocyesis

    PubMed Central

    2013-01-01

    This literature review on pseudocyesis or false pregnancy aims to find epidemiological, psychiatric/psychologic, gynecological and endocrine traits associated with this condition in order to propose neuroendocrine/endocrine mechanisms leading to the emergence of pseudocyetic traits. Ten women from 5 selected studies were analyzed after applying stringent criteria to discriminate between cases of true pseudocyesis (pseudocyesis vera) versus delusional, simulated or erroneous pseudocyesis. The analysis of the reviewed studies evidenced that pseudocyesis shares many endocrine traits with both polycystic ovarian syndrome and major depressive disorder, although the endocrine traits are more akin to polycystic ovarian syndrome than to major depressive disorder. Data support the notion that pseudocyetic women may have increased sympathetic nervous system activity, dysfunction of central nervous system catecholaminergic pathways and decreased steroid feedback inhibition of gonadotropin-releasing hormone. Although other neuroendocrine/endocrine pathways may be involved, the neuroendocrine/endocrine mechanisms proposed in this review may lead to the development of pseudocyetic traits including hypomenorrhea or amenorrhea, galactorrhea, diurnal and/or nocturnal hyperprolactinemia, abdominal distension and apparent fetal movements and labor pains at the expected date of delivery. PMID:23672289

  14. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  15. [Hygienic evaluation of immune and endocrine systems and modifications of their relationship in reproductive-age women working under exposure to chemical factors in activated carbon emissions].

    PubMed

    Lanin, D V; Zaĭtseva, N V; Dolgikh, O V; Zemlianova, M A; Kir'ianov, D A

    2013-01-01

    The article presents results of the evaluation the changes in the relationships between immune and endocrine systems in reproductive-age women, working under exposure to chemical factors from activated carbon production. A significant increase of some chemical elements and compounds was found in blood that was associated with changes in the endocrine and immune status, as well as the presence of features in correlation parameters of these systems in reproductive-age women, working under exposure to chemical factors.

  16. Fetal endocrinology

    PubMed Central

    Kota, Sunil Kumar; Gayatri, Kotni; Jammula, Sruti; Meher, Lalit Kumar; Kota, Siva Krishna; Krishna, S. V. S.; Modi, Kirtikumar D.

    2013-01-01

    Successful outcome of pregnancy depends upon genetic, cellular, and hormonal interactions, which lead to implantation, placentation, embryonic, and fetal development, parturition and fetal adaptation to extrauterine life. The fetal endocrine system commences development early in gestation and plays a modulating role on the various physiological organ systems and prepares the fetus for life after birth. Our current article provides an overview of the current knowledge of several aspects of this vast field of fetal endocrinology and the role of endocrine system on transition to extrauterine life. We also provide an insight into fetal endocrine adaptations pertinent to various clinically important situations like placental insufficiency and maternal malnutrition. PMID:23961471

  17. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    PubMed

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  19. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  20. Endocrine disruption, parasites and pollutants in wild freshwater fish.

    PubMed

    Jobling, S; Tyler, C R

    2003-01-01

    Disruption of the endocrine system has been shown to occur in wild freshwater fish populations across the globe. Effects range from subtle changes in the physiology and sexual behaviour of fish to permanently altered sexual differentiation, impairment of gonad development and/or altered fertility. A wide variety of adverse environmental conditions may induce endocrine disruption, including sub-optimal temperatures, restricted food supply, low pH, environmental pollutants, and/or parasites. Furthermore, it is conceivable that any/all of these factors could act simultaneously to cause a range of disparate or inter-related effects. Some of the strongest evidence for a link between an adverse health effect, as a consequence of endocrine disruption, and a causative agent(s) is between the condition of intersex in wild roach (Rutlius rutilus) in UK rivers and exposure to effluents from sewage treatment works. The evidence to indicate that intersex in roach (and other cyprinid fish living in these rivers) is caused by chemicals that mimic and/or disrupt hormone function/balance in treated sewage effluent is substantial. There are a few parasites that affect the endocrine system directly in fish, including the tape worm Ligula intestinalis and a few parasites from the micropsora phylum. L. intestinalis acts at the level of the hypothalamus restricting GnRH secretion (resulting in poorly developed gonads) and is one of the very few examples where an endocrine disrupting event has been shown to result in a population-level effect (reducing it). It is well established that many parasites affect the immune system and thus the most common effect of parasites on the endocrine system in fish is likely to be an indirect one.

  1. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    PubMed

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  2. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  3. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  4. Fifteen years after "Wingspread"- Environmental Endocrine Disrupters and human and wildlife health: Where we are today and where we need to go.

    EPA Science Inventory

    In 1991 a group of expert scientists at a Wingspread work session on endocrine disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and hum...

  5. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary.

    USDA-ARS?s Scientific Manuscript database

    It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the ef...

  6. Introduction to the Endocrine System

    MedlinePlus

    ... by downloading the Hormone Health Network's 3D Patient Education mobile app ! The endocrine system is a series of glands that produce and ... Network partners with other organizations to further patient education on hormone related issues. Network Sponsors The Hormone Health ... Disrupting Chemicals (EDCs) Steroid and Hormone ...

  7. Contaminant impacts to the endocrine system in largemouth bass in northeast U.S. rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.B.; Sorenson, S.K.

    1995-12-31

    The National Biological Service (NBS) in cooperation with the USGS-National Water Quality Assessment (NAWQA) program conducted a reconnaissance investigation of potential disruption of the endocrine system in carp and largemouth bass (LMB) from streams and rivers across the US. Chemical analysis of sediment and fish tissue, from agricultural and industrial sites in NAWQA study units, indicated the potential for impacts to the endocrine system of fish. Collections of 39 male and 28 female LMB were made in fall 1994 from contaminated and reference sites in three major river systems in the Northeast US (Potomac, Hudson, and Connecticut rivers). Additional fishmore » collections will be made at these same sites in Spring 1995. Blood and gonadal tissue samples will give a triad of bioindicators (17B-estradiol/11-ketotestosterone ratios, vitellogenin, and gonad histopathology) of potential endocrine disruption. Chemical residue for tissue will also be made from selected LMB to compare with the bioindicators. Comparisons of contaminated sites and reference site indicated a significantly lower E/T ratio in female LMB from two contaminated sites (Housatonic River in the Connecticut River system and the Anacostia River in the Potomac River system). Additionally, significantly higher E/T ratios in male LMB were found from each of the three river systems. These E/T ratios indicate that endocrine disruption is both estrogenic to male LMB (feminization) and potentially androgenic to the female LMB (masculinization).« less

  8. Research on Endocrine Disruptors

    EPA Pesticide Factsheets

    EPA researchers are developing innovative approaches, tools, models and data to improve the understanding of potential risks to human health and wildlife from chemicals that could disrupt the endocrine system.

  9. Do endocrine disruptors cause hypospadias?

    PubMed Central

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  10. Social Interactions and Familial Relationships Preservice Science Teachers Describe during Interviews about Their Drawings of the Endocrine and Gastrointestinal Systems

    ERIC Educational Resources Information Center

    Patrick, Patricia

    2014-01-01

    This study examined preservice science teachers' understandings of the structure and function of the human gastrointestinal and endocrine systems through drawings and interviews. Moreover, the preservice science teachers described where they thought they learned about the systems. The 142 preservice teachers were asked to draw the human…

  11. The Use of Metabolising Systems for In Vitro Testing of Endocrine Disruptors

    EPA Science Inventory

    Legislation and prospective proposals in for instance the USA, Europe, and Japan require, or may require that chemicals are tested for their ability to disrupt the hormonal systems of mammals. Chemicals found to test positive are considered to be endocrine active substances (EAS...

  12. A MATHEMATICAL MODEL FOR THE KINETICS OF THE MALE REPRODUCTIVE ENDOCRINE SYSTEM

    EPA Science Inventory

    In this presentation a model for the hormonal regulation of the reproductive endocrine system in the adult male rat will be discussed. The model includes a description of the kinetics of the androgenic hormones testosterone and dihydrotestosterone, as well as the receptor-mediate...

  13. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  14. Endocrine Disrupting Chemicals and Disease Susceptibility

    PubMed Central

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  15. Endocrine disrupting chemicals and disease susceptibility.

    PubMed

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J

    2011-11-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. Published by Elsevier Ltd.

  16. Steroids and Autoimmunity.

    PubMed

    Trombetta, Amelia Chiara; Meroni, Marianna; Cutolo, Maurizio

    2017-01-01

    From the middle of the 19th century, it is known that endocrine and immune systems interact bi-directionally in different processes that ensure organism homeostasis. Endocrine and nervous systems have a pivotal role in the balancing of pro- and anti-inflammatory functions of immune system, and constitute a complex circadian neuroendocrine network. Autoimmune diseases have in fact a complex pathogenic origin in which the importance of endocrine system was demonstrated. In this chapter, we will mention the structure and function of steroidal hormones involved in the neuroendocrine immune network and we will address the ways in which endocrine and immune systems influence each other, in a bi-directional fashion. Adrenal hormones, sex hormones, vitamin D, and melatonin and prolactin importantly all contribute to the homeostasis of the immune system. Indeed, some of the steroidal hormone activities determine inhibition or stimulation of immune system components, in both physiological (i.e. suppression of an unwanted response in pregnancy, or stimulation of a protective response in infections) and pathological conditions. We will finally mention the rationale for optimization of exogenous administration of glucocorticoids in chronic autoimmune diseases, and the latest developments concerning these drugs. © 2017 S. Karger AG, Basel.

  17. Tumors of the endocrine/neuroendocrine system: an overview.

    PubMed

    Erlandson, R A; Nesland, J M

    1994-01-01

    For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.

  18. A COMPUTATIONAL LIBRARY OF THE BIOMOLECULAR TARGETS FOR TOXICITY: RECEPTORS IN THE ENDOCRINE SYSTEM

    EPA Science Inventory

    A Computational Library of the Biomolecular Targets for Toxicity: Receptors in the Endocrine System

    Authors: James R. Rabinowitz and Stephen B. Little, MTB/ECD/NHEERL/ORD, and Huajun Fan, Curriculum in Toxicology, University of North Carolina
    Structure activity models ...

  19. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  20. A review on endocrine disruptors and their possible impacts on human health.

    PubMed

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Environmental stressors influencing hormones and systems physiology in cattle

    PubMed Central

    2014-01-01

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges. PMID:24996419

  2. PHEOCHROMOCYTOMA: AN ENDOCRINE STRESS MIMICKING DISORDER

    PubMed Central

    Kantorovich, Vitaly; Eisenhofer, Graeme; Pacak, Karel

    2008-01-01

    Pheochromocytoma is an endocrine tumor that can uniquely mimic numerous stress-associated disorders, with variations in clinical manifestations resulting from different patterns of catecholamine secretion and actions of released catecholamines on physiological systems. PMID:19120142

  3. Cross-species extrapolation of toxicity information using the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool

    EPA Science Inventory

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two ...

  4. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis.

    PubMed

    Haddad, John J; Saadé, Nayef E; Safieh-Garabedian, Bared

    2002-12-01

    Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.

  5. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review.

    PubMed

    Giulivo, Monica; Lopez de Alda, Miren; Capri, Ettore; Barceló, Damià

    2016-11-01

    Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    PubMed

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  7. Psycho-Neuro-Endocrine-Immunology: A Psychobiological Concept.

    PubMed

    França, Katlein; Lotti, Torello M

    2017-01-01

    Psycho-Neuro-Endocrine-Immunology (P.N.E.I.) is a scientific field of study that investigates the link between bidirectional communications among the nervous system, the endocrine system, and the immune system and the correlations of this cross-talk with physical health. The P.N.E.I. innovative medical approach represents a paradigm shift from a strictly biomedical view of health and disease taken as hermetically sealed compartments to a more interdisciplinary one. The key element of P.N.E.I. approach is represented by the concept of bidirectional cross-talk between the psychoneuroendocrine and immune systems. The Low Dose Medicine is one of the most promising approaches able to allow the researchers to design innovative therapeutic strategies for the treatment of skin diseases based on the rebalance of the immune response.

  8. Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model

    NASA Astrophysics Data System (ADS)

    Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.

    2014-12-01

    In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.

  9. Endocrine-Disrupting Compounds in Aquatic Ecosystems.

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are a ubiquitous issue of concern in our aquatic systems. Commonly detected EDCs include natural and synthetic hormones, surfactants, plasticizers, disinfectants, herbicides and metals. The potency of these chemicals varies substantially, as ...

  10. Cross-species extrapolation of toxicity information using the ...

    EPA Pesticide Factsheets

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two tiered approach for screening chemicals that applied standardized in vitro and in vivo toxicity tests. The Tier 1 screening assays were designed to identify substances that have the potential of interacting with the endocrine system and Tier 2 testing was developed to identify adverse effects caused by the chemical, with documentation of dose-response relationships. While this tiered approach was effective in identifying possible endocrine disrupting chemicals, the cost and time to screen a single chemical was significant. Therefore, in 2012 the EDSP proposed a transition to make greater use of computational approaches (in silico) and high-throughput screening (HTS; in vitro) assays to more rapidly and cost-efficiently screen chemicals for endocrine activity. This transition from resource intensive, primarily in vivo, screening methods to more pathway-based approaches aligns with the simultaneously occurring transformation in toxicity testing termed “Toxicity Testing in the 21st Century” which shifts the focus to the disturbance of the biological pathway predictive of the observable toxic effects. An example of such screening tools include the US Environmental Protection Agency’s

  11. Bilingual Skills Training Program. Barbering/Cosmetology. Module 7.0: Endocrine System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the endocrine system is the seventh of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory epxerience. Module objectives are for students to…

  12. Systemic Effects of Non-Endocrine Tumours

    PubMed Central

    Sullivan, James D.; Rona, George

    1964-01-01

    Tumours of non-endocrine origin may exert deleterious effects by elaborating active principles which disturb body regulation. Systemic manifestations are fairly common with neoplasms of the lung, kidney, gastro-intestinal tract and thymus. The secretion of these tumours may have a known chemical structure (serotonin), may present hormone-like action (parathormone, antidiuretic hormone, insulinoid), or have well-defined biological properties (erythropoietin, gastrin-like principle). Tumours may stimulate endocrine glands by an unknown mechanism, producing disorders such as Cushing's syndrome, hypercalcemia, gynecomastia and hypoglycemia. Thymomas may be associated with autoimmune diseases. Tumours may extensively utilize or excrete some metabolite (glucose) or electrolyte (Na or K). Awareness of the systemic effects of various neoplasms may lead to an early diagnosis and proper treatment of these manifestations. PMID:14204555

  13. Endocrine Function In Naturally Long-Living Small Mammals

    PubMed Central

    Buffenstein, Rochelle; Pinto, Mario

    2015-01-01

    The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here we examine the available endocrine data associated with the vitamin D, insulin, grlucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter-lived rodents. Similarities with genetically manipulated suggest that evolutionarily wellconserved hormonal mechanisms are integrally involved in lifespan determination. PMID:18674586

  14. In vitro steroid profiling system for the evaluation of endocrine disruptors.

    PubMed

    Nakano, Yosuke; Yamashita, Toshiyuki; Okuno, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-09-01

    Endocrine disruptors (ED) are chemicals that affect various aspects of the endocrine system, often leading to the inhibition of steroidogenesis. Current chemical safety policies that restrict human exposure to such chemicals describe often time-consuming and costly methods for the evaluation of ED effects. We aimed to develop an effective tool for accurate phenotypic chemical toxicology studies. We developed an in vitro ED evaluation system using gas chromatography/mass spectrometry (GC/MS/MS) methods for metabolomic analysis of multi-marker profiles. Accounting for sample preparation and GC/MS/MS conditions, we established a screening method that allowed the simultaneous analysis of 17 steroids with good reproducibility and a linear calibration curve. Moreover, we applied the developed system to H295R human adrenocortical cells exposed to forskolin and prochloraz in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines and observed dose-dependent variations in steroid profiles. While the OECD guidelines include only testosterone and 17β-estradiol, our system enabled a comprehensive and highly sensitive analysis of steroid profile alteration due to ED exposure. The application of our ED evaluation screen could be economical and provide novel insights into the hazards of ED exposure to the endocrine system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  16. Appetite-Controlling Endocrine Systems in Teleosts

    PubMed Central

    Rønnestad, Ivar; Gomes, Ana S.; Murashita, Koji; Angotzi, Rita; Jönsson, Elisabeth; Volkoff, Hélène

    2017-01-01

    Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms. PMID:28458653

  17. Ten steps to plan, design, and implement an endocrinology and endocrine surgery module for the Faculty of Medicine, Al-Baha University.

    PubMed

    Elfakey, Walyeldin Em; Al-Ghamdi, Ahmed H

    2016-01-01

    The Faculty of Medicine, Al-Baha University (FMBU), is a newly established medical school that implements a community-oriented and integrated system-based curriculum which is suitable for both medical students and serving the needs of the local community. The aim of this study is to describe the steps that were followed to plan, design, and implement an endocrinology and endocrine surgery module (EESM) for the fourth-year medical students, as an example of how system-based modules are designed at FMBU. Ten questions based on Harden's methodolgy were asked in order to design, plan, and implement an endocrinology and endocrine surgery module. The module committee determined the needs of the module and accordingly stated the aims and objectives of the module. The module planners selected the relevant contents, teaching methods, and assessment strategies and organized them. After addressing each of the ten questions, the results indicated the need, aim, objectives, and contents for the endocrinology and endocrine surgery module at FMBU. The implementation strategies were chosen according to the SPICES model. The teaching methods and the assessment strategies were selected and arranged. The module is well communicated at all levels, and the module committee used every effort to create a productive teaching environment. The module is well managed and follows the hierarchy of FMBU. Implementing Harden's ten steps methodology resulted in an integrated module of endocrinology and endocrine surgery where related disciplines and systems were merged and medical and surgical endocrine topics were included.

  18. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

    PubMed Central

    2012-01-01

    Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. Results At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. Conclusions In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors. PMID:22546201

  19. The impact of opioids on the endocrine system.

    PubMed

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  20. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    PubMed

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  1. [Diabetes and prediabetes in endocrine disorders].

    PubMed

    Krysiak, Robert; Rudzki, Henryk; Okopień, Bogusław

    2012-01-01

    Complex hormonal regulation of carbohydrate metabolism causes that presence of many endocrine disorders may disturb glucose homeostasis. Impaired fasting glucose, impaired glucose tolerance and frank diabetes are observed in patients with both common and rare endocrine disorders, particularly in patients with polycystic ovary syndrome, hyperthyroidism, Cushing's syndrome, pheochromocytoma, primary aldosteronism, acromegaly, growth hormone deficiency and endocrine tumors of the digestive system. Because most of these disorders may be effectively treated and the treatment often results in a restoration of normal insulin secretion and receptor action as well as glucose absorption, production and metabolism, it is important to differentiate these disorders from other more common types of diabetes. This article reviews the etiology, clinical manifestation, diagnosis and management of endocrine disorders leading to diabetes and prediabetic states with special emphasis on the pathogenesis and clinical consequences of these disorders.

  2. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours

    PubMed Central

    Patisaul, Heather B.

    2017-01-01

    A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is ‘synthetic’ v. what is ‘natural,’ shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour. PMID:27389644

  3. Evaluation of Ocoxin-Viusid® in Advanced or Metastatic Ovarian Epithelial Cancer

    ClinicalTrials.gov

    2018-06-08

    Carcinoma; Ovarian Neoplasm; Endocrine Gland Neoplasm; Urogenital Neoplasms; Ovarian Diseases; Adnexal Diseases; Genital Diseases, Female; Female Urogenital Diseases; Female Urogenital Diseases and Pregnancy Complications; Endocrine System Diseases; Gonadal Disorders; Genital Neoplasm, Female; Neoplasms, Glandular and Epithelial

  4. The Endocrine Machinery.

    ERIC Educational Resources Information Center

    Fillman, David

    1987-01-01

    Promotes a reductionist approach to teaching about the endocrine system in high school biology and anatomy courses. Encourages the study of how hormones travel to the cells and affect them. Provides suggestions for activities and discussion questions, along with sample diagrams and flow charts. (TW)

  5. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    EPA Science Inventory

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  6. The unique endocrine milieu of the fetus.

    PubMed Central

    Fisher, D A

    1986-01-01

    Table II summarizes in tabular form the major features of the fetal endocrine milieu discussed in the foregoing pages. The mammalian fetus develops in an environment where respiration, alimentation, and excretory functions are provided by the placenta. Fetal tissue metabolism is oriented largely to anabolism; body temperature is modulated by maternal metabolism, and fetal tissue thermogenesis is maintained at a basal level. Tissue and organ growth appear to be regulated by growth factors which probably function by autocrine or paracrine mechanisms during most of gestation (72, 146-148). In this milieu conventional endocrine control systems are largely redundant, and other transient systems more appropriate to the intrauterine environment have evolved. We have developed some insights into these systems, but much more information is necessary before we can truly understand this fascinating environment. PMID:3018041

  7. Financial burden is associated with worse health-related quality of life in adults with multiple endocrine neoplasia type 1.

    PubMed

    Peipert, Benjamin J; Goswami, Sneha; Helenowski, Irene; Yount, Susan E; Sturgeon, Cord

    2017-12-01

    Health-related quality of life and financial burden among patients with multiple endocrine neoplasia type 1 is poorly described. It is not known how financial burden influences health-related quality of life in this population. We hypothesized that the financial burden attributable to multiple endocrine neoplasia type 1 is associated with worse health-related quality of life. United States adults (≥18 years) with multiple endocrine neoplasia type 1 were recruited from the AMENSupport MEN online support group. Patient demographics, clinical characteristics, and financial burden were assessed via an online survey. The instrument Patient-Reported Outcomes Measurement Information System 29-item profile measure was used to assess health-related quality of life. Multivariable linear regression was used to identify significant variables in each Patient-Reported Outcomes Measurement Information System domain. Out of 1,378 members in AMENSupport, our survey link was accessed 449 times (33%). Of 153 US respondents who completed our survey, 84% reported financial burden attributable to multiple endocrine neoplasia type 1. The degree of financial burden had a linear relationship with worse health-related quality of life across all Patient-Reported Outcomes Measurement Information System domains (r = 0.36-0.55, P < .001); 63% reported experiencing ≥1 negative financial event(s). Borrowing money from friends/family (30%), unemployment (13%), and spending >$100/month out-of-pocket on prescription medications (46%) were associated consistently with impaired health-related quality of life (ß = 3.75-6.77, P < .05). Respondents were 3- and 34-times more likely to be unemployed and declare bankruptcy than the US population, respectively. This study characterizes the financial burden in patients with multiple endocrine neoplasia type 1. Individuals with multiple endocrine neoplasia type 1 report a high degree of financial burden, negative financial events, and unemployment. Each of these factors was associated with worse health-related quality of life. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    EPA Science Inventory

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizatio...

  10. Unmasking the truth behind endocrine disruptors.

    PubMed

    DiDiego, Michele Lamse; Eggert, Julia A; Pruitt, Rosanne H; Larcom, Lyndon L

    2005-10-01

    The increase in reproductive cancers and developmental problems over the past 70 years has led researchers to suspect environmental influences as a root cause. Evidence from wildlife and laboratory studies suggests that exposure to endocrine disruptors (EnDs) may be the cause. An EnD is a foreign substance or mixture that alters the function of the endocrine system. They can be found in food, water, soil, or air. Research into their possible role provides an opportunity to decrease modifiable risk factors.

  11. A short history of pediatric endocrinology in North America.

    PubMed

    Fisher, Delbert A

    2004-04-01

    Pediatric endocrinology evolved as a subspecialty from the era of biochemical and metabolic clinical investigation led by John Howland, Edwards Park, and James Gamble at Johns Hopkins; Allan Butler at Boston University and Harvard University; Daniel Darrow at Yale University; and Irving McQuarrie at the University of Rochester and the University of Minnesota during the early 20th century. The father of the new subspecialty was Lawson Wilkins, a private pediatric practitioner in Baltimore, Maryland, who was invited by Dr. Edwards Park to establish an endocrine clinic at the Harriet Lane Home at Johns Hopkins in 1935. Dr. Wilkins managed his practice and the clinic until 1946, when, at the age of 52, he accepted a full-time position at the University. Dr. Nathan Talbot was invited to develop a pediatric endocrine clinic at Massachusetts General Hospital by Allan Butler in 1942. These units and their associated subspecialty training programs during the 1950s and 1960s provided the large majority of the second-generation pediatric endocrinologists who went on to establish endocrine subspecialty programs in university medical centers in North America as well as Europe and South America. Diabetes as a clinical pediatric discipline evolved in parallel from the early clinics of Elliott Joslin and Priscilla White in Boston, M.C. Hardin and Robert Jackson at the University of Iowa, George Guest at the University of Cincinnati Children's Hospital, and Alex Hartman at the St. Louis Children's Hospital. The Lawson Wilkins Pediatric Endocrine Society was founded in 1971, and the Council on Diabetes and Youth was established within the American Diabetes Association in 1980. Medical and economic factors led to increasing integration of pediatric diabetes and general endocrine care and training, and diabetes care now is a major activity within the subspecialty of pediatric endocrinology. The growth of pediatric endocrinology in North America has paralleled the growth of academic medicine during the past half-century. In 2002, there were 72 training programs in North America: 65 in the United States and seven in Canada. The endocrinology sub-board of the American Board of Pediatrics was established in 1978 to certify training and competence in endocrinology, including diabetes. By 2002, the board had certified 927 pediatric endocrinologists. Pediatric endocrine subspecialists during the past half-century have contributed major advances in our understanding of the ontogeny of endocrine systems and the diagnosis and treatment of fetal-perinatal endocrine disorders; newborn screening for endocrine and metabolic disorders; the physiology and therapies for disorders of sexual differentiation and pubertal maturation; the development of anthropometric standards for childhood growth and development; the characterization and physiology of hormone systems, including receptors and hormone actions; the molecular genetics of a number of congenital endocrine disorders and heritable endocrine diseases; development of pediatric endocrine diagnostics and reference standards; the pathophysiology and management of autoimmune endocrine disease; and development of a growing armamentarium of therapeutic agents for treatment of endocrine and metabolic diseases.

  12. Fifteen Years after “Wingspread”—Environmental Endocrine Disrupters and Human and Wildlife Health: Where We are Today and Where We Need to Go

    PubMed Central

    Hotchkiss, Andrew K.; Rider, Cynthia V.; Blystone, Chad R.; Wilson, Vickie S.; Hartig, Phillip C.; Ankley, Gerald T.; Foster, Paul M.; Gray, Clark L.; Gray, L. Earl

    2008-01-01

    In 1991, a group of expert scientists at a Wingspread work session on endocrine-disrupting chemicals (EDCs) concluded that “Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and humans. Endocrine disruption can be profound because of the crucial role hormones play in controlling development.” Since that time, there have been numerous documented examples of adverse effects of EDCs in invertebrates, fish, wildlife, domestic animals, and humans. Hormonal systems can be disrupted by numerous different anthropogenic chemicals including antiandrogens, androgens, estrogens, AhR agonists, inhibitors of steroid hormone synthesis, antithyroid substances, and retinoid agonists. In addition, pathways and targets for endocrine disruption extend beyond the traditional estrogen/androgen/thyroid receptor–mediated reproductive and developmental systems. For example, scientists have expressed concern about the potential role of EDCs in increasing trends in early puberty in girls, obesity and type II diabetes in the United States and other populations. New concerns include complex endocrine alterations induced by mixtures of chemicals, an issue broadened due to the growing awareness that EDCs present in the environment include a variety of potent human and veterinary pharmaceutical products, personal care products, nutraceuticals and phytosterols. In this review we (1) address what have we learned about the effects of EDCs on fish, wildlife, and human health, (2) discuss representative animal studies on (anti)androgens, estrogens and 2,3,7,8-tetrachlorodibenzo-p-dioxin–like chemicals, and (3) evaluate regulatory proposals being considered for screening and testing these chemicals. PMID:18281716

  13. PLASMA DIHYDROTESTOSTERONE CONCENTRATIONS AND PHALLUS SIZE IN JUVENILE AMERICAN ALLIGATORS (A. MISSISSIPPIENSIS) FROM CONTAMINATED AND REFERENCE POPULATIONS.

    EPA Science Inventory

    Evidence increasingly suggests that some environmental pollutants are able to permanently affect development of the endocrine system in wildlife. Embryonic and neonatal exposure to these "endocrine-disrupting contaminants" can cause structural and functional abnormalities of the ...

  14. Endocrine Disruptor Screening Program: Tier I Screening Battery

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system,' the Food Quality Protection Act and subsequent amendments to the Safe Drinking Water Act and Federal Food, Drug and Cosmetic A...

  15. Endocrine Disorders in Childhood: A Selective Survey of Intellectual and Educational Sequelae.

    ERIC Educational Resources Information Center

    Sandberg, David E.; Barrick, Christopher

    1995-01-01

    Examines intellectual and educational sequelae of selected endocrine systems and the psychosocial impact of their medical conditions. Many conditions are named including: Growth Hormone Deficiency, Turner Syndrome, Precocious Puberty, Klinefelters Syndrome, Congenital Hypothyroidism, and Insulin-Dependent Diabetes Mellitus. Gives psychoeducational…

  16. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system.

    PubMed

    Maqdasy, Salwan; Trousson, Amalia; Tauveron, Igor; Volle, David H; Baron, Silvère; Lobaccaro, Jean-Marc A

    2016-06-01

    Liver X receptors (LXRs) α and β are nuclear receptors whose transcriptional activity is regulated by oxysterols, the oxidized forms of cholesterol. Described in the late 1990s as lipid sensors, both LXRs regulate cholesterol and fatty acid homeostasis. Over the years, deep phenotypic analyses of mouse models deficient for LXRα and/or LXRβ have pointed out various other physiological functions including glucose homeostasis, immunology, and neuroprotection. This review enlightens the "endocrine" functions of LXRs; they deeply impact plasma glucose directly and by modulating insulin signaling, renin-angiotensin-aldosterone axis, thyroid and pituitary hormone levels, and bone homeostasis. Besides, LXR signaling is also involved in adrenal physiology, steroid synthesis, and male and female reproduction. Hence, LXRs are definitely involved in the endocrine system and could thus be considered as endocrine receptors, even though oxysterols do not fully correspond to the definition of hormones. Finally, because they are ligand-regulated transcription factors, LXRs are potential pharmacological targets with promising beneficial metabolic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015. Published by Elsevier B.V.

  18. Endocrine system on chip for a diabetes treatment model.

    PubMed

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  19. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  20. Amenorrhoea and reversible infertility due to obstructive hydrocephalus: literature review and case report.

    PubMed

    Hamilton, Kimberly; Iskandar, Bermans

    2018-02-12

    Endocrine abnormalities are well-recognized consequences of intracranial pathology such as pituitary tumours. Less commonly, hydrocephalus may lead to dysfunction of the endocrine system, presenting as amenorrhoea or precocious puberty. We present a case report and literature review of hydrocephalus causing endocrine abnormalities including reversible infertility. A 34 year-old female presented with amenorrhoea and infertility. MRI showed a third ventricular mass and hydrocephalus. The amenorrhoea resolved within weeks of endoscopic third ventriculostomy and tumour biopsy; pregnancy ensued within 6 months. Thirty-two cases of hydrocephalus-related amenorrhoea were reported between 1915 and 2007. All patients who underwent modern hydrocephalus treatment experienced partial or complete resolution of endocrine dysfunction. Successful pregnancy was reported in three patients, as in our case presentation. While mechanisms of dysfunction have not been completely elucidated, studies point toward loss of GnRH pulsatility due to compression of the medio-basal hypothalamic structures. Hydrocephalus can cause endocrine dysfunction, including amenorrhoea, which may reverse with CSF diversion. Therefore, cranial imaging is an important component in the evaluation of such endocrine abnormalities.

  1. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In vitro metabolism and bioavailability tests for the predictive toxicology of endocrine active substances

    EPA Science Inventory

    Legislation and prospective legislative proposals internationally (may) require that chemicals are tested for their ability to disrupt the hormonal systems of animals. Chemicals found to test positive in vitro are considered to be endocrine active substances (EAS) and may be puta...

  3. EVALUATION OF DRINKING WATER TREATMENT TECHNOLOGIES FOR REMOVAL OF ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting compounds (EDCs) may be present in surface or ground waters used as drinking water sources due to their introduction from domestic and industrial sewage treatment systems and wet-weather runoff. In order to dec...

  4. A GLOBAL PERSPECTIVE ON ENDOCRINE DISRUPTION, WITH COMMENTS ON THE US EXPERIENCE

    EPA Science Inventory

    The last two decades have witnessed a growing concern for chemicals that have the potential to adversely affect the normal functioning of the endocrine system. The International Programme on Chemical Safety (IPCS) of the World Health Organization has recently reviewed the curren...

  5. Method and data evaluation at NASA endocrine laboratory. [Skylab 3 experiments

    NASA Technical Reports Server (NTRS)

    Johnston, D. A.

    1974-01-01

    The biomedical data of the astronauts on Skylab 3 were analyzed to evaluate the univariate statistical methods for comparing endocrine series experiments in relation to other medical experiments. It was found that an information storage and retrieval system was needed to facilitate statistical analyses.

  6. VALUING REDUCTIONS IN ENVIRONMENTAL SOURCES OF INFERTILITY RISK USING THE EFFICIENT HOUSEHOLD FRAMEWORK

    EPA Science Inventory

    There is an increasing body evidence suggesting that a broad range of pollutants have the potential to alter human endocrine systems. One disturbing consequence of exposures to these endocrine disruptors is that they may significantly increase the incidence of infertility in exp...

  7. Endocrine disrupters--testing strategies to assess human hazard.

    PubMed

    Baker, V A

    2001-01-01

    During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non-receptor mediated mechanisms of action) seems the most appropriate way at present of assessing the potential endocrine disrupting activities of chemicals. At Unilever we have used a combination of in vitro assays (receptor binding, reporter gene and cell proliferation assays) together with short-term in vivo tests (uterotrophic assay in immature rodents) to examine the oestrogenic potential of a large number of chemicals. An evaluation of the advantages and limitations of these methods is provided. Finally, any potential test system needs to be validated and standardized before the information generated can be for the identification of hazard, and possibly for risk assessment purposes.

  8. Overview of air pollution and endocrine disorders

    PubMed Central

    Darbre, Philippa D

    2018-01-01

    Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health. PMID:29872334

  9. Endocrine Glands and Hearing: Auditory Manifestations of Various Endocrine and Metabolic Conditions

    PubMed Central

    Cherian, Kripa Elizabeth; Kapoor, Nitin; Mathews, Suma Susan; Paul, Thomas Vizhalil

    2017-01-01

    The aetiology of hearing loss in humans is multifactorial. Besides genetic, environmental and infectious causes, several endocrine and metabolic abnormalities are associated with varying degrees of hearing impairment. The pattern of hearing loss may be conductive, sensori-neural or mixed. The neurophysiology of hearing as well as the anatomical structure of the auditory system may be influenced by changes in the hormonal and metabolic milieu. Optimal management of these conditions requires the integrated efforts of the otolaryngologist and the endocrinologist. The presence of hearing loss especially in the young age group should prompt the clinician to explore the possibility of an associated endocrine or metabolic disorder for timely referral and early initiation of treatment. PMID:28553606

  10. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction.

    PubMed

    Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás

    2016-09-01

    Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.

  11. Simultaneous profiling of 17 steroid hormones for the evaluation of endocrine-disrupting chemicals in H295R cells.

    PubMed

    Jumhawan, Udi; Yamashita, Toshiyuki; Ishida, Kazuya; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-01-01

    There is urgent need to develop a new protocol for the evaluation of chemical substances to potentially interact with the endocrine system and induce numerous pathological issues. The recently validated in vitro screening assay is limited on monitoring two steroid hormones. Methodology & results: The H295R model cell was exposed to seven endocrine disrupting chemicals (EDCs). The levels of 17 steroid hormones in cell extracts were subsequently determined by a quantitative targeted GC/MS/MS method. Through wide coverage, this system managed to capture the effects of exposure to increasing EDCs concentrations in the entire steroidogenic pathways. The developed approach could be beneficial for the mechanistic investigation of EDCs.

  12. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    This Executive Summary to the Endocrine Society's second Scientific Statement on environmental endocrine-disrupting chemicals (EDCs) provides a synthesis of the key points of the complete statement. The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information. The Statement also included thorough coverage of studies of developmental exposures to EDCs, especially in the fetus and infant, because these are critical life stages during which perturbations of hormones can increase the probability of a disease or dysfunction later in life. A conclusion of the Statement is that publications over the past 5 years have led to a much fuller understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability. These findings will prove useful to researchers, physicians, and other healthcare providers in translating the science of endocrine disruption to improved public health. PMID:26414233

  13. Are In Vitro Methods for the Detection of Endocrine Potentials in the Aquatic Environment Predictive for In Vivo Effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany

    PubMed Central

    Henneberg, Anja; Bender, Katrin; Blaha, Ludek; Giebner, Sabrina; Kuch, Bertram; Köhler, Heinz-R.; Maier, Diana; Oehlmann, Jörg; Richter, Doreen; Scheurer, Marco; Schulte-Oehlmann, Ulrike; Sieratowicz, Agnes; Ziebart, Simone; Triebskorn, Rita

    2014-01-01

    Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively. PMID:24901835

  14. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.

    PubMed

    Reichrath, Jörg; Saternus, Roman; Vogt, Thomas

    2017-09-15

    The skin represents a pivotal organ for the human body's vitamin D endocrine system, being both the site of ultraviolet (UV)-B-induced vitamin D synthesis and a target tissue for the pluripotent effects of 1,25(OH) 2 D 3 and other biologically active vitamin D metabolites. As many other steroid hormones, 1,25(OH) 2 D 3 exerts its effects via two independent signal transduction pathways: the classical genomic and the non-genomic pathway. While non-genomic effects of 1,25(OH) 2 D 3 are in part exerted via effects on intracellular calcium, genomic effects are mediated by the vitamin D receptor (VDR). Recent findings convincingly support the concept of a new function of the VDR as a tumor suppressor in skin, with key components of the vitamin D endocrine system, including VDR, CYP24A1, CYP27A1, and CYP27B1 being strongly expressed in non-melanoma skin cancer (NMSC). It has now been shown that anti-tumor effects of VDR, that include some of its ligand-induced growth-regulatory effects, are at least in part mediated by interacting in a highly coordinated manner with the p53 family (p53/p63/p73) in response to a large number of alterations in cell homeostasis, including UV-induced DNA damage, a hallmark for skin photocarcinogenesis. Considering the relevance of the vitamin D endocrine system for carcinogenesis of skin cancer, it is not surprising that low 25(OH)D serum concentrations and genetic variants (SNPs) of the vitamin D endocrine system have been identified as potential risk factors for occurrence and prognosis of skin malignancies. In conclusion, an increasing body of evidence now convincingly supports the concept that the vitamin D endocrine system is of relevance for photocarcinogenesis and progression of NMSC and that its pharmacologic modulation by vitamin D, 1,25(OH) 2 D 3, and analogs represents a promising new strategy for prevention and/or treatment of these malignancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    PubMed

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  16. Survey of ecotoxicologically-relevant reproductive endpoint coverage within the ECOTOX database across ToxCast ER agonists (SETAC)

    EPA Science Inventory

    Adipose tissue represents an important and understudied component of the endocrine system. Recent evidence suggests that endocrine-disrupting chemicals (EDCs) may be able to alter lipid development (e.g., adipogenesis) and/or the balance of lipid metabolism. The environmentally a...

  17. In vitro metabolism and bioavailability tests for endocrine active substances: What is needed next for regulatory purposes?

    EPA Science Inventory

    Legistation and prospective legislative proposals internationally (may) require that chemicals be tested for their ability to disrupt the hormonal systems of mammals. Chemicals found to test positive in vitro are considered to be endocrine active substances (EAS) and may be puta...

  18. The development and endocrine functions of adipose tissue

    USDA-ARS?s Scientific Manuscript database

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  19. DEVELOPMENT OF A TEST SYSTEM TO EVALUATE ENDOCRINE EFFECTS IN BIRDS

    EPA Science Inventory

    An overview of the process and status of the development of one and two generation Japanese quail reproduction studies for regulatory use will be presented from the perspective of members of the subgroup of the OECD Expert Group on Assessment of Endocrine Disrupting Effects in Bi...

  20. Identification, localization and morphology of APUD cells in gastroenteropancreatic system of stomach-containing teleosts

    PubMed Central

    Pan, Qian Sheng; Fang, Zhi Ping; Huang, Feng Jie

    2000-01-01

    AIM: To identify the type localization and morphology of APUD endocrine cells in the gastroenteropancreatic (GEP) system of stomach-containing teleosts, and study APUD endocrine system in the stomach, intestine and pancreas of fish species. METHODS: Two kinds of immunocytochemical (ICC) techniques of the streptavidin biotin-peroxidase complex (SABC) and streptavidin-peroxidase (S-P) method were used. The identification, localization and morphology of APUD endocrine cells scattered in the mucosa of digestive tract, intermuscular nerve plexus and glandular body of northern snakehead (Channa argus), ricefield eel (Monopterus albus), yellow catfish (Pelteobagrus ful vidraco), mandarinfish (Siniperca chuatsi), largemouth bass (Micropterus salmoides), oriental sheatfish (Silurus asotus), freshwater pomfret (Colossoma brachypomum) and nile tilapia (Tilapia nilotica) were investigated with 8 kinds of antisera. RESULTS: The positive reaction of 5-hydroxytryptamine (5-HT) immunoreactive endocrine (IRE) cells was found in the digestive tract and glandular body of 8 fish species in different degree. Only a few gastrin (GAS)-IRE cells were seen in C. argus, M. albus and P. fulvidraco. Glucagon (GLU)-IRE cells were not found in the digestive tract and glandular body but existed in pancreatic island of most fish species. The positive reaction of growth hormone (GH)-IRE cells was found only in pancreatic island of S. Chuatsi and S. Asotus, no positive reaction in the other 6 fish species. Somatostatin (SOM), calcitonin (CAL), neurofilament (NF) and insulin (INS)-IRE cells in the stomach, intestine and pancreas of 8 kinds of fish were different in distribution and types. The distribution of all 8 APUD cells was the most in gastrointestinal epithelium mucosa and then in digestive glands. The positive reaction of SOM- and 5-HT-IRE cells was found in intermuscular nerve plexus of intestine of P. fulvidraco and S.chuatsi. Only GH-IRE cells were densely scattered in the pancreatic islands of S. chuatsi and S. asotus, and odd distribution in the pancreas of S. asotus. SOM-IRE cells were distributed in the pancreatic islands of S. asotus, C. Brachypomum and T. nilotica. There were INS-IRE cells in the pancreatic islands of S. chuatsi and S. asolus. Eight kinds of APUD cells had longer cell body and cytoplasmic process when they were located in the gastrointestinal epithelium, and had shorter cell body and cytoplasmic process in the gastric gland, and irregular shape in the esophagus and pancreatic island. CONCLUSION: Eight kinds of IRE cells were identified in the GEP system of stomach-containing teleosts. These endocrine cells were scattered in gastrointestinal mucosa, intermuscular nerve plexus, gland body, pancreatic gland and islands under APUD system. CAL- and GH-IRE cells in the pancreatic islands of fishes showed functional diversity for these two hormones. Their morphological feature provides evidence of endocrine-paracrine and endocrine-exocrine acting mode. This research can morphologically prove that the GEP endocrine system of fish (the lowest vertebrate) is almost the same as of mammal and human. PMID:11819706

  1. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  2. Influence of Melatonin on the Immune System of Fish: A Review

    PubMed Central

    Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-01-01

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958

  3. Influence of melatonin on the immune system of fish: a review.

    PubMed

    Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-04-11

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.

  4. Methods to assess the effects of environmental chemicals on the brain-pituitary-gonad axis of the reproductive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magliulo-Cepriano, L.; Schreibman, M.P.

    1999-07-01

    In all vertebrates, the neuroendocrine system serves as the primary and essential link between the external and internal environments and a multitude of physiological systems, including the reproductive system. In response to changes in the environment and fluctuations in levels of circulating humoral agents, the neuroendocrine system is able to reverse, maintain or advance physiological events. Endocrine disrupting compounds are believed to wreak havoc on reproduction and development by interfering in the normal flow of information along the brain-pituitary-gonad axis. While the final effects of these compounds may be easily determined in a number of species, utilization of non-traditional researchmore » animals, such as some fishes in which the pattern of information flow along the brain-pituitary-gonad axis has been meticulously detailed and documented, will provide excellent and novel means of elucidating not only the final effects but the cytological, histological and systemic mechanisms of action of these endocrine disruptors. This report presents methods of assessing the effects of endocrine disrupting compounds on a variety of physiological and morphological parameters in fishes.« less

  5. Hormones in the immune system and their possible role. A critical review.

    PubMed

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  6. Suppressing the endocrine and autonomic stress systems does not impact the emotional stress experience after psychosocial stress.

    PubMed

    Ali, Nida; Nitschke, Jonas P; Cooperman, Cory; Pruessner, Jens C

    2017-04-01

    Acute psychosocial stress activates the physiological and endocrine stress systems and increases the subjective emotional experience of stress. While considerable efforts have been made to link changes in the activity of the biological stress systems with changes in the subjective emotional experience of stress, results so far have been mixed, at best. To investigate this association in a study employing experimental manipulation, we pharmacologically suppressed both the autonomic and the endocrine stress responses, and investigated the effects of acute psychosocial stress on the emotional stress experience. 22 healthy men and women received dexamethasone (2mg) the day before, and propranolol (80mg) one hour before psychosocial stress induction. A control group (n=24) received placebo pills on each occasion. Salivary cortisol, alpha-amylase and heart-rate responses to stress were assessed before, during and after stress induction. Subjective stress, mood, and state self-esteem assessments were made before and after stress. In the pharmacological manipulation group, subjects demonstrated no increase in autonomic or endocrine stress response, after exposure to psychosocial stress. Despite these effects, the emotional stress experience was intact in this group and identical to the control group. Participants in the experimental group showed an increase in subjective stress, greater mood dysregulation, and lower state self-esteem following stress exposure, with the response magnitude comparable to the control group. Our findings suggest that at least acutely, the physiological stress arousal systems and the emotional experience of stress are dissociated. This raises important questions about the efficacy of our measurement of subjective stress, and the unique contributions of the autonomic and endocrine responses in the subjective stress experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS

    PubMed Central

    Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503

  8. Conserved Genetic Pathways Controlling the Development of the Diffuse Endocrine System in Vertebrates and Drosophila

    PubMed Central

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina

    2014-01-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. PMID:20005229

  9. [Depression and neuroplasticity. Interaction of nervous, endocrine and immune systems].

    PubMed

    Cassano, Paola; Argibay, Pablo

    2010-01-01

    Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of the mechanisms involved in the action of antidepressants. The new hypothesis proposed to explain the action of antidepressant is the neuro-plasticity hypothesis. This hypothesis suggests that the effects of antidepressants on nervous, immune and endocrine systems are able to induce neuroadaptative changes in the brain. The neuroplasticity have been described as the ability of the brain to reorganize itself and form new neuronal connections throughout life. It is proposed that antidepressants influence neuroplasticity inducing improvements in the symptoms of this illness.

  10. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models.

    PubMed

    Wolf, Jeffrey C; Wheeler, James R

    2018-04-01

    Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  11. NASH in Nondiabetic Endocrine Disorders.

    PubMed

    Wang, Timothy; Yang, Wei; Karakas, Sidika; Sarkar, Souvik

    2018-06-06

    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease, including hepatic steatosis, inflammation, and fibrosis. NAFLD carries the risk of progression to cirrhosis with its associated complications and hepatocellular carcinoma. It is now the most common liver disease in the Western world and its prevalence is increasing. While the association between NAFLD and type 2 diabetes has been well documented, there is significantly less understanding of the pathophysiology and progression of NAFLD in patients with other endocrine disorders affecting metabolism in various ways. Some of the more common endocrine disorders such as polycystic ovarian syndrome, growth hormone deficiency, hypothyroidism, and hypogonadism are known in clinical practice to be associated with NAFLD. Medications that alter the endocrine system such as tamoxifen and adrenal steroids have also been attributed to significant NAFLD. The key to management of NAFLD at this time are dietary changes and exercise to achieve weight loss. Unfortunately, a large proportion of the patients with these endocrine disorders are unable to achieve either. This review aims to examine and summarize the current published literature that have evaluated the association between NAFLD and the above endocrine disorders and potential therapeutic interventions in each case.

  12. Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary.

    PubMed

    Schaeffer, Marie; Hodson, David J; Lafont, Chrystel; Mollard, Patrice

    2010-12-01

    The pulsatile release of hormone is obligatory for the control of a range of important body homeostatic functions. To generate these pulses, endocrine organs have developed finely regulated mechanisms to modulate blood flow both to meet the metabolic demand associated with intense endocrine cell activity and to ensure the temporally precise uptake of secreted hormone into the bloodstream. With a particular focus on the pituitary gland as a model system, we review here the importance of the interplay between blood flow regulation and oxygen tensions in the functioning of endocrine systems, and the known regulatory signals involved in the modification of flow patterns under both normal physiological and pathological conditions. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  13. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  14. Survey of ecotoxicologically-relevant reproductive endpoint coverage within the ECOTOX database across ToxCast ER agonists (ASCCT)

    EPA Science Inventory

    The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening thousands of chemicals for their potential to affect the endocrine systems of humans and wildlife. In vitro high throughput screening (HTS) assays have been proposed as a way to prioritize...

  15. Computational Model of the Fathead Minnow Hypothalamic-Pituitary-Gonadal Axis: Incorporating Protein Synthesis in Improving Predictability of Responses to Endocrine Active Chemicals

    EPA Science Inventory

    There is international concern about chemicals that alter endocrine system function in humans and/or wildlife and subsequently cause adverse effects. We previously developed a mechanistic computational model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minno...

  16. DIFFERENCES IN THE STRUCTURE AND FUNCTION OF FATHEAD MINNOW AND HUMAN ERA: IMPLICATIONS FOR IN VITRO TESTING OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Mammalian receptors and assay systems are generally used for in vitro analysis of endocrine disrupting chemicals (EDC) with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. We have fou...

  17. STATUS OF ENDOCRINE DISRUPTOR SCREENING AND TESTING ACTIVITIES IN THE US: IMPLEMENTATION OF THE EDSTAC RECOMMENDATIONS

    EPA Science Inventory

    The last two decades have witnessed a growing concern for chemicals that have the potential to adversely affect the normal functioning of the endocrine system. In 1996, the US Congress passed the Food Quality Protection Act (FQPA) that mandated the US Environmental Protection Ag...

  18. EFFECT OF THE ANTI-ANDROGENIC ENDOCRINE DISRUPTOR VINCLOZOLIN ON EMBRYONIC TESTIS CORD FORMATION AND POSTNATAL TESTIS DEVELOPMENT AND FUNCTION. (R827405)

    EPA Science Inventory

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is...

  19. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    PubMed

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  20. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  1. Information analysis of immune and endocrine organs. Morphological changes in the course of infection.

    PubMed

    Avtandilov, G G; Barsukov, V S

    1992-11-01

    Morphological and morphometric studies were conducted into lymphoid and endocrine organs of 259 human adults and infants with pyoinflammatory diseases (PID) and of 300 experimental mice. Informative and correlation analyses of the data thus recorded provided evidence to the effect that in the course of an infection process adaptation and compensation responses were characterized by intensified exchange of information within the immune-endocrine system (IES). Septic courses of PID were found to be accompanied by impairment of inter-organ correlations, increase in information entropy and progressive structural disorganization of the IES.

  2. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    PubMed

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  3. An epistemological inquiry into the endocrine disruptor thesis.

    PubMed

    Krimsky, S

    2001-12-01

    For about a decade the term endocrine disruptor has become synonymous with a new research initiative that has been investigating the effects of hormonally active xenobiotics on biological systems. The scientific thesis behind the new research initiative is discussed and it is argued that there is a need for more emphasis on theory development and conceptual clarification that will give coherence to a field experiencing a rapid growth of empirical studies. Reflections on scientific methodology in this field will also help clarify whether endocrine disruptors symbolize a new etiology of chemically induced disease or represent variations of traditional chemical toxicology.

  4. [The indices of water-salt metabolism and of the endocrine status in monkeys after flights on the Kosmos biological satellites].

    PubMed

    Korol'kov, V I; Dotsenko, M A; Larina, I M; Shakhmatova, E I; Natochin, Iu V

    1996-01-01

    Findings of studying the indices of water-salt metabolism and endocrine status of monkeys after their exposure in the weightless environment onboard the biological satellites of Earth have revealed a change in the blood serum concentrations of electrolytes which is indicative of instability of the system responsible for maintenance of the fluid-mineral homeostasis during readaptation. Results of studying the endocrine status of monkeys infer alteration in calcium metabolism, i.e. decreased levels of parathyroid hormone, calcitonin and the transport form of vitamin D3.

  5. Epigenetics meets endocrinology

    PubMed Central

    Zhang, Xiang; Ho, Shuk-Mei

    2014-01-01

    Although genetics determines endocrine phenotypes, it cannot fully explain the great variability and reversibility of the system in response to environmental changes. Evidence now suggests that epigenetics, i.e. heritable but reversible changes in gene function without changes in nucleotide sequence, links genetics and environment in shaping endocrine function. Epigenetic mechanisms, including DNA methylation, histone modification, and microRNA, partition the genome into active and inactive domains based on endogenous and exogenous environmental changes and developmental stages, creating phenotype plasticity that can explain interindividual and population endocrine variability. We will review the current understanding of epigenetics in endocrinology, specifically, the regulation by epigenetics of the three levels of hormone action (synthesis and release, circulating and target tissue levels, and target-organ responsiveness) and the epigenetic action of endocrine disruptors. We will also discuss the impacts of hormones on epigenetics. We propose a three-dimensional model (genetics, environment, and developmental stage) to explain the phenomena related to progressive changes in endocrine functions with age, the early origin of endocrine disorders, phenotype discordance between monozygotic twins, rapid shifts in disease patterns among populations experiencing major lifestyle changes such as immigration, and the many endocrine disruptions in contemporary life. We emphasize that the key for understanding epigenetics in endocrinology is the identification, through advanced high-throughput screening technologies, of plasticity genes or loci that respond directly to a specific environmental stimulus. Investigations to determine whether epigenetic changes induced by today's lifestyles or environmental `exposures' can be inherited and are reversible should open doors for applying epigenetics to the prevention and treatment of endocrine disorders. PMID:21322125

  6. Career Advancement: Meeting the Challenges Confronting the Next Generation of Endocrinologists and Endocrine Researchers.

    PubMed

    Santen, Richard J; Joham, Anju; Fishbein, Lauren; Vella, Kristen R; Ebeling, Peter R; Gibson-Helm, Melanie; Teede, Helena

    2016-12-01

    Challenges and opportunities face the next generation (Next-Gen) of endocrine researchers and clinicians, the lifeblood of the field of endocrinology for the future. A symposium jointly sponsored by The Endocrine Society and the Endocrine Society of Australia was convened to discuss approaches to addressing the present and future Next-Gen needs. Data collection by literature review, assessment of previously completed questionnaires, commissioning of a new questionnaire, and summarization of symposium discussions were studied. Next-Gen endocrine researchers face diminishing grant funding in inflation-adjusted terms. The average age of individuals being awarded their first independent investigator funding has increased to age 45 years. For clinicians, a workforce gap exists between endocrinologists needed and those currently trained. Clinicians in practice are increasingly becoming employees of integrated hospital systems, resulting in greater time spent on nonclinical issues. Workforce data and published reviews identify challenges specifically related to early career women in endocrinology. Strategies to Address Issues: Recommendations encompassed the areas of grant support for research, mentoring, education, templates for career development, specific programs for Next-Gen members by senior colleagues as outlined in the text, networking, team science, and life/work integration. Endocrine societies focusing on Next-Gen members provide a powerful mechanism to support these critical areas. A concerted effort to empower, train, and support the next generation of clinical endocrinologists and endocrine researchers is necessary to ensure the viability and vibrancy of our discipline and to optimize our contributions to improving health outcomes. Collaborative engagement of endocrine societies globally will be necessary to support our next generation moving forward.

  7. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study.

    PubMed

    Nagy, Katalin; Berhés, István; Kovács, Tibor; Kávási, Norbert; Somlai, János; Bender, Tamás

    2009-08-01

    Radon bath is a well-established modality of balneotherapy for the management of degenerative musculoskeletal disorders. The present study was conducted to ascertain whether baths of relatively low (80 Bq/l) radon concentration have any influence on the functioning of the endocrine system. In the study, a non-randomized pilot study, 27 patients with degenerative musculoskeletal disorders received 30-min radon baths (of 31-32 degrees C temperature and 80 Bq/l average radon concentration) daily, for 15 days. Twenty-five patients with matching pathologies were subjected to balneotherapy according to the same protocol, using thermal water with negligible radon content (6 Bq/l). Serum thyroid stimulating hormone, prolactin, cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone levels were measured before and after a balneotherapy course of 15 sessions. Comparison of the accumulated data using the Wilcoxon test did not reveal any significant difference between pre- and post-treatment values or between the two patient groups. It is noted that while the beneficial effects of balneotherapy with radon-containing water on degenerative disorders is widely known, only few data have been published in the literature on its effect on endocrine functions. The present study failed to demonstrate any substantial effect of thermal water with relatively low radon content on the functioning of the endocrine system.

  8. Effluents from oil production activities contain chemicals that interfere with normal function of intra- and extra-cellular estrogen binding proteins.

    PubMed

    Tollefsen, Knut-Erik; Finne, Eivind Farmen; Romstad, Randi; Sandberg, Cecilie

    2006-07-01

    Some environmental pollutants have the ability to alter the endocrine function in fish through interaction with the estrogen receptor (ER). Many of these chemicals are also able to interfere with the endocrine system through other mechanisms of action, however. The plasma sex steroid-binding protein (SBP), which is involved in regulating circulating levels of endogenous sex steroids, has recently been proposed to contribute to pollutant induced disruption of endocrine homeostasis. The objective of the present work was to determine whether industrial effluents contain chemicals that are able to modulate the endocrine system through interference with the function of the ER and SBP using in vitro biological assays (bioassays) from rainbow trout. The results show that solid phase extracts of process water (produced water) from an oil production facility in the North Sea and a land-based oil refinery contain chemicals that are able to induce estrogenic effects as well as displace natural sex steroid 17beta-estradiol from the SBP. The bioactive chemicals were found to be partly resistant to biological degradation, but the identity of the chemicals was not determined. The alkylphenol 4-tert-butylphenol, which is known to occur in effluents from various oil production facilities, was found to be estrogenic and displace 17beta-estradiol from the SBP and may thus contribute to the observed endocrine disrupting activity.

  9. Central control of glucose homeostasis: the brain--endocrine pancreas axis.

    PubMed

    Thorens, B

    2010-10-01

    A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  10. The anatomy and physiology of the avian endocrine system.

    PubMed

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  11. GONADAL DEVELOPMENT AND ENDOCRINE RESPONSES IN JAPANESE MEDAKA (ORYZIAS LATIPES) EXPOSED TO O,P'-DDT IN WATER OR THROUGH MATERNAL TRANSFER

    EPA Science Inventory

    Various isomers and metabolites of DDT disrupt endocrine systems and gonadal development in fish andxwildlife and o,p'-DDT has been shown to be a relatively potent estrogen agonist. In this study, we exposed Japanese medaka (Oryzias latipes) to o,p'-DDT using two exposure protoco...

  12. Endobiogeny: a global approach to systems biology (part 2 of 2).

    PubMed

    Lapraz, Jean-Claude; Hedayat, Kamyar M; Pauly, Patrice

    2013-03-01

    ENDOBIOGENY AND THE BIOLOGY OF FUNCTIONS ARE BASED ON FOUR SCIENTIFIC CONCEPTS THAT ARE KNOWN AND GENERALLY ACCEPTED: (1) human physiology is complex and multifactorial and exhibits the properties of a system; (2) the endocrine system manages metabolism, which is the basis of the continuity of life; (3) the metabolic activity managed by the endocrine system results in the output of biomarkers that reflect the functional achievement of specific aspects of metabolism; and (4) when biomarkers are related to each other in ratios, it contextualizes one type of function relative to another to which is it linked anatomically, sequentially, chronologically, biochemically, etc.

  13. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management.

    PubMed

    Sznol, Mario; Postow, Michael A; Davies, Marianne J; Pavlick, Anna C; Plimack, Elizabeth R; Shaheen, Montaser; Veloski, Colleen; Robert, Caroline

    2017-07-01

    Agents that modulate immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death receptor-1 (PD-1), have become a mainstay in cancer treatment. The clinical benefit afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events (irAE) that affect the skin, gastrointestinal tract, liver, and endocrine system. The types of irAEs associated with immune checkpoint inhibitors are generally consistent across tumor types. Immune-related endocrine events can affect the pituitary, thyroid, and adrenal glands, as well as other downstream target organs. These events are unique when compared with other irAEs because the manifestations are often irreversible. Immune-related endocrine events are typically grade 1/2 in severity and often present with non-specific symptoms, making them difficult to diagnose. The mechanisms underlying immune-related target organ damage in select individuals remain mostly undefined. Management includes close patient monitoring, appropriate laboratory testing for endocrine function, replacement of hormones, and consultation with an endocrinologist when appropriate. An awareness of the symptoms and management of immune-related endocrine events may aid in the safe and appropriate use of immune checkpoint inhibitors in clinical practice. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Gordon, Catherine M; Ackerman, Kathryn E; Berga, Sarah L; Kaplan, Jay R; Mastorakos, George; Misra, Madhusmita; Murad, M Hassan; Santoro, Nanette F; Warren, Michelle P

    2017-05-01

    The American Society for Reproductive Medicine, the European Society of Endocrinology, and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the diagnosis and treatment of functional hypothalamic amenorrhea (FHA). The participants include an Endocrine Society-appointed task force of eight experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and cosponsoring organizations reviewed and commented on preliminary drafts of this guideline. FHA is a form of chronic anovulation, not due to identifiable organic causes, but often associated with stress, weight loss, excessive exercise, or a combination thereof. Investigations should include assessment of systemic and endocrinologic etiologies, as FHA is a diagnosis of exclusion. A multidisciplinary treatment approach is necessary, including medical, dietary, and mental health support. Medical complications include, among others, bone loss and infertility, and appropriate therapies are under debate and investigation. Copyright © 2017 Endocrine Society

  15. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila.

    PubMed

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina L

    2010-05-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. Copyright 2009. Published by Elsevier Inc.

  16. Circadian rhythm asynchrony in man during hypokinesis.

    NASA Technical Reports Server (NTRS)

    Winget, C. M.; Vernikos-Danellis, J.; Cronin, S. E.; Leach, C. S.; Rambaut, P. C.; Mack, P. B.

    1972-01-01

    Posture and exercise were investigated as synchronizers of certain physiologic rhythms in eight healthy male subjects in a defined environment. Four subjects exercised during bed rest. Body temperature (BT), heart rate, plasma thyroid hormone, and plasma steroid data were obtained from the subjects for a 6-day ambulatory equilibration period before bed rest, 56 days of bed rest, and a 10-day recovery period after bed rest. The results indicate that the mechanism regulating the circadian rhythmicity of the cardiovascular system is rigorously controlled and independent of the endocrine system, while the BT rhythm is more closely aligned to the endocrine system.

  17. A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems.

    PubMed

    LaFleur, Alesha D; Schug, Kevin A

    2011-06-24

    Recent methods of separation and detection for the quantification of trace-level concentrations of selected endocrine disrupting compounds (EDCs) from aqueous systems are reviewed. A brief introduction of the selected EDCs (natural and synthetic estrogens and plastics-derived xenoestrogens), including their characteristics and importance, is presented. Sample preparation and extraction trends are discussed. Various types of separation techniques are presented, with the express goal of emphasizing time and cost-effective methods that isolate and quantify trace-levels of multiple endocrine disruptors from aqueous systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. The Historical Development of Immunoendocrine Concepts of Psychiatric Disorders and Their Therapy.

    PubMed

    Steinberg, Holger; Kirkby, Kenneth C; Himmerich, Hubertus

    2015-12-04

    Relationships between the central nervous, immune and endocrine systems are a focus of psychiatric research, particularly in depression and schizophrenia. The field has long antecedents. Observed phenomena attributable to these relationships date back to the Neolithic era. Immunoendocrine theories in the broadest sense are recorded in antiquity. In the 19th century, Kraepelin and Wagner-Jauregg reported pioneering clinical observations in psychiatric patients. Von Basedow, Addison and Cushing described psychiatric symptoms in patients suffering from endocrine diseases. The 20th century opened with the identification of hormones, the first, adrenaline, chemically isolated independently by Aldrich und Takamine in 1901. Berson and Yalow developed the radioimmunoassay (RIA) technique in 1959 making it possible to measure levels of hormones and cytokines. These developments have enabled great strides in psychoimmunoendocrinology. Contemporary research is investigating diagnostic and therapeutic applications of these concepts, for example by identifying biomarkers within the endocrine and immune systems and by synthesizing and testing drugs that modulate these systems and show antidepressant or antipsychotic properties.

  19. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle

    PubMed Central

    Xiao, Shuo; Coppeta, Jonathan R.; Rogers, Hunter B.; Isenberg, Brett C.; Zhu, Jie; Olalekan, Susan A.; McKinnon, Kelly E.; Dokic, Danijela; Rashedi, Alexandra S.; Haisenleder, Daniel J.; Malpani, Saurabh S.; Arnold-Murray, Chanel A.; Chen, Kuanwei; Jiang, Mingyang; Bai, Lu; Nguyen, Catherine T.; Zhang, Jiyang; Laronda, Monica M.; Hope, Thomas J.; Maniar, Kruti P.; Pavone, Mary Ellen; Avram, Michael J.; Sefton, Elizabeth C.; Getsios, Spiro; Burdette, Joanna E.; Kim, J. Julie; Borenstein, Jeffrey T.; Woodruff, Teresa K.

    2017-01-01

    The endocrine system dynamically controls tissue differentiation and homeostasis, but has not been studied using dynamic tissue culture paradigms. Here we show that a microfluidic system supports murine ovarian follicles to produce the human 28-day menstrual cycle hormone profile, which controls human female reproductive tract and peripheral tissue dynamics in single, dual and multiple unit microfluidic platforms (Solo-MFP, Duet-MFP and Quintet-MPF, respectively). These systems simulate the in vivo female reproductive tract and the endocrine loops between organ modules for the ovary, fallopian tube, uterus, cervix and liver, with a sustained circulating flow between all tissues. The reproductive tract tissues and peripheral organs integrated into a microfluidic platform, termed EVATAR, represents a powerful new in vitro tool that allows organ–organ integration of hormonal signalling as a phenocopy of menstrual cycle and pregnancy-like endocrine loops and has great potential to be used in drug discovery and toxicology studies. PMID:28350383

  20. The Historical Development of Immunoendocrine Concepts of Psychiatric Disorders and Their Therapy

    PubMed Central

    Steinberg, Holger; Kirkby, Kenneth C.; Himmerich, Hubertus

    2015-01-01

    Relationships between the central nervous, immune and endocrine systems are a focus of psychiatric research, particularly in depression and schizophrenia. The field has long antecedents. Observed phenomena attributable to these relationships date back to the Neolithic era. Immunoendocrine theories in the broadest sense are recorded in antiquity. In the 19th century, Kraepelin and Wagner-Jauregg reported pioneering clinical observations in psychiatric patients. Von Basedow, Addison and Cushing described psychiatric symptoms in patients suffering from endocrine diseases. The 20th century opened with the identification of hormones, the first, adrenaline, chemically isolated independently by Aldrich und Takamine in 1901. Berson and Yalow developed the radioimmunoassay (RIA) technique in 1959 making it possible to measure levels of hormones and cytokines. These developments have enabled great strides in psychoimmunoendocrinology. Contemporary research is investigating diagnostic and therapeutic applications of these concepts, for example by identifying biomarkers within the endocrine and immune systems and by synthesizing and testing drugs that modulate these systems and show antidepressant or antipsychotic properties. PMID:26690116

  1. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society

    PubMed Central

    Brown, T. R.; Doan, L. L.; Gore, A. C.; Skakkebaek, N. E.; Soto, A. M.; Woodruff, T. J.; Vom Saal, F. S.

    2012-01-01

    An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive “safe” dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures. PMID:22733974

  2. Key Lessons from Performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 Male and Female Pubertal Assays

    PubMed Central

    Stump, Donald G; O'Connor, John C; Lewis, Joseph M; Marty, M Sue

    2014-01-01

    The male and female pubertal assays, which are included in the U.S. Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) Tier 1 battery, can detect endocrine-active compounds operating by various modes of action. This article uses the collective experience of three laboratories to provide information on pubertal assay conduct, interlaboratory reproducibility, endpoint redundancy, and data interpretation. The various criteria used to select the maximum tolerated dose are described. A comparison of historical control data across laboratories confirmed reasonably good interlaboratory reproducibility. With a reliance on apical endpoints, interpretation of pubertal assay effects as specifically endocrine-mediated or secondary to other systemic effects can be problematic and mode of action may be difficult to discern. Across 21–23 data sets, relative liver weight, a nonspecific endocrine endpoint, was the most commonly affected endpoint in male and female assays. For endocrine endpoints, patterns of effects were generally seen; rarely was an endocrine-sensitive endpoint affected in isolation. In males, most frequently missed EPA-established performance criteria included mean weights for kidney and thyroid, and the coefficient of variation for age and body weight at preputial separation, seminal vesicle weight, and final body weight. In females, the frequently missed EPA-established performance criteria included mean adrenal weight and mean age at vaginal opening. To ensure specificity for endocrine effects, the pubertal assays should be interpreted using a weight-of-evidence approach as part of the entire EDSP battery. Based on the frequency with which certain performance criteria were missed, an EPA review of these criteria is warranted. PMID:24510766

  3. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor.

    PubMed

    Blakley, Gregory G; Pohorecky, Larissa A; Benjamin, Daniel

    2004-02-01

    Compared with the use of classic receptor ligands, antisense oligonucleotides (ASO) targeted at specific central nervous system receptors are an effective alternative in experiments designed to examine the behavioral role of such systems. The nociception/orphaninFQ (N/OFQ) system has been implicated in mediating endocrine function, feeding, stress, pain, anxiety, and the rewarding effects of drugs of abuse. The objective of the current study was to examine whether long-term ASO-induced downregulation of N/OFQ's receptor (NOP) produced changes in endocrine, anxiety, nociception and ethanol's (EtOH's) locomotor activating properties. Male Long Evans rats were implanted with osmotic mini-pumps containing ASO for the NOP receptor. ASO was chronically infused for 26 days and, during this time, multiple behavioral and physiological measurements were conducted. ASO infusion significantly reduced expression of the NOP receptor in brain, confirmed by significant reductions of OFQ-stimulated [(35)S]-GTPgammaS binding in the paraventricular nucleus, prefrontal cortex, and septum. Behavioral changes were observed in ASO-treated animals including higher body temperature, increased water intake, decreased corticosterone (CORT) levels, decreased grooming in the open field, increased tail-flick latency, shorter durations on the open arms of the elevated plus maze, and heightened locomotor activity following EtOH. These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.

  4. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    PubMed

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Workshop on perinatal exposure to dioxin-like compounds. I. Summary.

    PubMed Central

    Lindström, G; Hooper, K; Petreas, M; Stephens, R; Gilman, A

    1995-01-01

    An international workshop reviewed 20 ongoing or recently completed studies of the effects of perinatal exposures to dioxins, dibenzofurans, and PCBs on the reproductive, endocrine, neurodevelopmental, and immune systems. Many of the observed effects are consistent with these compounds acting as "environmental hormones" or endocrine disrupters. This report summarizes the conclusions and future directions described at the workshop. PMID:7614935

  7. Student Perceptions of the Use of Presentations as a Method of Learning Endocrine and Gastrointestinal Pathophysiology

    ERIC Educational Resources Information Center

    Higgins-Opitz, Susan B.; Tufts, Mark

    2010-01-01

    Second-year medical students at the Nelson R. Mandela School of Medicine (Durban, South Africa) were given a brief to prepare oral presentations on topics related to disorders of the gastrointestinal tract and endocrine system in the form of "patient-doctor" role play and to submit written documents about their topics. This initiative…

  8. Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer.

    PubMed

    Scsukova, Sona; Rollerova, Eva; Bujnakova Mlynarcikova, Alzbeta

    2016-12-01

    A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes). Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  9. Periodontal Disease and Dental Caries among children and Adolescents Suffering from Endocrine Disorders - A Literature Review.

    PubMed

    Saminsky, Michael

    2017-12-01

    Dental caries and periodontal disease are the most common oral diseases. Their link to disorders of endocrine system is of high interest. Most of the available data relates to the adult population, though its importance among children and adolescents is paramount. To review the existing evidence examining the link between these clinical conditions among children and adolescents. Electronic bibliographic databases and hand searches of relevant publications, based on prepared list of relevant key-words was performed. Paucity of existing data leaves the question of association between most endocrine disorders of the youth with dental caries and periodontal disease, inconclusive, apart from obesity and diabetes mellitus, where it seems to be elucidated. A profound research should be done in order to amend our understanding to what extent, if at all, exists the link between these oral maladies and different pediatric endocrine disorders. Copyright© of YS Medical Media ltd.

  10. Attitude of medical students towards Early Clinical Exposure in learning endocrine physiology

    PubMed Central

    Sathishkumar, Solomon; Thomas, Nihal; Tharion, Elizabeth; Neelakantan, Nithya; Vyas, Rashmi

    2007-01-01

    Background Different teaching-learning methods have been used in teaching endocrine physiology for the medical students, so as to increase their interest and enhance their learning. This paper describes the pros and cons of the various approaches used to reinforce didactic instruction in endocrine physiology and goes on to describe the value of adding an Early Clinical Exposure program (ECE) to didactic instruction in endocrine physiology, as well as student reactions to it as an alternative approach. Discussion Various methods have been used to reinforce didactic instruction in endocrine physiology such as case-stimulated learning, problem-based learning, patient-centred learning and multiple-format sessions. We devised a teaching-learning intervention in endocrine physiology, which comprised of traditional didactic lectures, supplemented with an ECE program consisting of case based lectures and a hospital visit to see patients. A focus group discussion was conducted with the medical students and, based on the themes that emerged from it, a questionnaire was developed and administered to further enquire into the attitude of all the students towards ECE in learning endocrine physiology. The students in their feedback commented that ECE increased their interest for the subject and motivated them to read more. They also felt that ECE enhanced their understanding of endocrine physiology, enabled them to remember the subject better, contributed to their knowledge of the subject and also helped them to integrate their knowledge. Many students said that ECE increased their sensitivity toward patient problems and needs. They expressed a desire and a need for ECE to be continued in teaching endocrine physiology for future groups of students and also be extended for teaching other systems as well. The majority of the students (96.4%) in their feedback gave an overall rating of the program as good to excellent on a 5 point Likert scale. Summary The ECE program was introduced as an alternative approach to reinforce didactic instruction in endocrine physiology for the first year medical students. The study demonstrated that students clearly enjoyed the experience and perceived that it was valuable. This method could potentially be used for other basic science topics as well. PMID:17784967

  11. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health. PMID:25110461

  12. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via different endocrinological mechanisms through the protocol using published literature. Each was identified as endocrine active by one or more tiers. We believe that this voluntary testing protocol will be a dynamic tool to facilitate efficient and early identification of potentially problematic chemicals, while ultimately reducing the risks to public health.

  13. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    PubMed

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  14. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    PubMed

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification of endocrine disrupting chemicals acting on human aromatase.

    PubMed

    Baravalle, Roberta; Ciaramella, Alberto; Baj, Francesca; Di Nardo, Giovanna; Gilardi, Gianfranco

    2018-01-01

    Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP + released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting chemicals. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Scientific and Regulatory Policy Committee (SRPC) Points to Consider*: Histopathology Evaluation of the Pubertal Development and Thyroid Function Assay (OPPTS 890.1450, OPPTS 890.1500) in Rats to Screen for Endocrine Disruptors

    PubMed Central

    Keane, Kevin A.; Parker, George A.; Regan, Karen S.; Picut, Catherine; Dixon, Darlene; Creasy, Dianne; Giri, Dipak; Hukkanen, Renee R.

    2015-01-01

    The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a multitiered approach to determine the potential for environmental chemicals to alter the endocrine system. The Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female and Male Rats (OPPTS 890.1450, 890.1500) are 2 of the 9 EDSP tier 1 test Guidelines, which assess upstream mechanistic pathways along with downstream morphological end points including histological evaluation of the kidneys, thyroid, and select male/female reproductive tissues (ovaries, uterus, testes, and epididymides). These assays are part of a battery of in vivo and in vitro screens used for initial detection of test article endocrine activity. In this Points to Consider article, we describe tissue processing, evaluation, and nomenclature to aid in standardization of assay results across laboratories. Pubertal assay end points addressed include organ weights, estrous cyclicity, clinical pathology, hormonal assays, and histological evaluation. Potential treatment-related findings that may indicate endocrine disruption are reviewed. Additional tissues that may be useful in assessment of endocrine disruption (vagina, mammary glands, and liver) are discussed. This Points to Consider article is intended to provide information for evaluating peripubertal tissues within the context of individual assay end points, the overall pubertal assay, and tier I assays of the EDSP program. PMID:25948506

  17. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment

    PubMed Central

    Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.

    2015-01-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811

  18. Review of Prader-Willi syndrome: the endocrine approach

    PubMed Central

    Heksch, Ryan; Kamboj, Manmohan; Anglin, Kathryn

    2017-01-01

    Prader-Willi syndrome (PWS) is a complex genetic disorder with implications on the endocrine and neurologic systems, metabolism, and behavior. Early in life, PWS is characterized by hypotonia and failure to thrive, followed by obesity and hyperphagia. Patients with PWS develop hypothalamic dysfunction which may lead growth hormone deficiency (GHD), hypogonadism, hypothyroidism, adrenal insufficiency, and poor bone mineral density (BMD). In addition to hypothalamic dysfunction, individuals with PWS have increased risk for obesity which may be complicated by metabolic syndrome and type 2 diabetes mellitus (T2DM). In this paper, we will review the current literature pertaining to the endocrine concerns of PWS and current recommendations for screening and management of these conditions. PMID:29184809

  19. Current Knowledge on Endocrine Disrupting Chemicals (EDCs) from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting.

    PubMed

    Street, Maria Elisabeth; Angelini, Sabrina; Bernasconi, Sergio; Burgio, Ernesto; Cassio, Alessandra; Catellani, Cecilia; Cirillo, Francesca; Deodati, Annalisa; Fabbrizi, Enrica; Fanos, Vassilios; Gargano, Giancarlo; Grossi, Enzo; Iughetti, Lorenzo; Lazzeroni, Pietro; Mantovani, Alberto; Migliore, Lucia; Palanza, Paola; Panzica, Giancarlo; Papini, Anna Maria; Parmigiani, Stefano; Predieri, Barbara; Sartori, Chiara; Tridenti, Gabriele; Amarri, Sergio

    2018-06-02

    Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs). Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.

  20. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  1. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  2. New insights into the endocrine disrupting effects of brominated flame retardants.

    PubMed

    Legler, Juliette

    2008-09-01

    The objective of this review is to provide an overview of recent studies demonstrating the endocrine disrupting (ED) effects of brominated flame retardants (BFRs), while highlighting interesting data presented at the recent international BFR workshop in Amsterdam in April, 2007. A review written in 2002 was used as a starting point and about 60 publications published since 2003 were reviewed. New insights into the in vivo effects of BFRs on thyroid hormone, estrogen and androgen pathways in both mammalian and non-mammalian models are provided, and novel (in vitro) findings on the mechanisms underlying ED effects are highlighted. Special attention is also given to reports on neurotoxicological effects at relatively low doses of BFRs, although an endocrine-related mechanism is disputable. Convincing evidence has been published showing that BFRs and importantly, BFR metabolites, have the potential to disrupt endocrine systems at multiple target sites. While some studies suggest a wide margin of safety between effect concentrations in rodent models and levels encountered in humans and the environment, other studies demonstrate that exposure to low doses relevant for humans and wildlife at critical time points in development can result in profound effects on both endocrine pathways and (neuro)development.

  3. Cosmetics as endocrine disruptors: are they a health risk?

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Hens, Luc; Sasco, Annie J

    2015-12-01

    Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility".

  4. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  5. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  6. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms

    PubMed Central

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Background: Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. Methods: It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. Results: There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. Conclusions: The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands. PMID:27833725

  7. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms.

    PubMed

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands.

  8. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.

    2002-01-01

    The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P < 0.05). Decreases in parathyroid hormone did not reach significance. Calcitonin showed modest decreases postflight (P < 0.02). Overall, effects of spaceflight on the calcium endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.

  9. Microbial endocrinology: the interplay between the microbiota and the endocrine system.

    PubMed

    Neuman, Hadar; Debelius, Justine W; Knight, Rob; Koren, Omry

    2015-07-01

    The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Development and Validation of Decision Forest Model for Estrogen Receptor Binding Prediction of Chemicals Using Large Data Sets.

    PubMed

    Ng, Hui Wen; Doughty, Stephen W; Luo, Heng; Ye, Hao; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2015-12-21

    Some chemicals in the environment possess the potential to interact with the endocrine system in the human body. Multiple receptors are involved in the endocrine system; estrogen receptor α (ERα) plays very important roles in endocrine activity and is the most studied receptor. Understanding and predicting estrogenic activity of chemicals facilitates the evaluation of their endocrine activity. Hence, we have developed a decision forest classification model to predict chemical binding to ERα using a large training data set of 3308 chemicals obtained from the U.S. Food and Drug Administration's Estrogenic Activity Database. We tested the model using cross validations and external data sets of 1641 chemicals obtained from the U.S. Environmental Protection Agency's ToxCast project. The model showed good performance in both internal (92% accuracy) and external validations (∼ 70-89% relative balanced accuracies), where the latter involved the validations of the model across different ER pathway-related assays in ToxCast. The important features that contribute to the prediction ability of the model were identified through informative descriptor analysis and were related to current knowledge of ER binding. Prediction confidence analysis revealed that the model had both high prediction confidence and accuracy for most predicted chemicals. The results demonstrated that the model constructed based on the large training data set is more accurate and robust for predicting ER binding of chemicals than the published models that have been developed using much smaller data sets. The model could be useful for the evaluation of ERα-mediated endocrine activity potential of environmental chemicals.

  11. Osteoporosis in celiac disease and in endocrine and reproductive disorders

    PubMed Central

    Stazi, Anna Velia; Trecca, Antonello; Trinti, Biagino

    2008-01-01

    As the increase in lifespan brings to light diseases that were previously not clinically detectable, osteoporosis has become an issue of worldwide significance. The disease is marked by a loss of bone mass; the bones become less dense, fragile and more prone to fracturing. Because it is regulated by endocrine and environmental factors, osteoporosis presents a multifactorial etiopathogenesis, with the genetic component accounting for 70% of an individual variation in bone mass density (BMD), the principal determinant, with age, of fracture risk. Pathological conditions such as celiac disease (CD) exacerbate the process of bone loss, so that the occurrence of osteoporosis in celiac subjects is of particular note: indeed, the screening of osteoporosis patients for this disease is advisable, since it may be the only sign of undiagnosed CD. An increase in interleukin IL-1β, of the IL-1 system, in the relatives of celiac patients confirms the genetic predisposition to osteoporosis and its presence is evidence of an association between the two conditions. The direct effect on the bones of CD is secondary to poor absorption of calcium and vitamin D. In women osteoporosis is indirectly associated with early menopause and amenorrhea, and it may follow prolonged breast-feeding and frequent pregnancies, while in men it is associated with hypogonadism and GH deficit. These endocrine and non-endocrine factors exert their effects on bones by modulating the RANK/RANK-L/OPG system. An appropriate lifestyle from adolescence onwards, together with early diagnosis of and treatment for CD and primary and secondary endocrine pathologies are important for the prevention of damage to the bones. PMID:18203279

  12. Health Effects in Fish of Long-Term Exposure to Effluents from Wastewater Treatment Works

    PubMed Central

    Liney, Katherine E.; Hagger, Josephine A.; Tyler, Charles R.; Depledge, Michael H.; Galloway, Tamara S.; Jobling, Susan

    2006-01-01

    Concern has been raised in recent years that exposure to wastewater treatment effluents containing estrogenic chemicals can disrupt the endocrine functioning of riverine fish and cause permanent alterations in the structure and function of the reproductive system. Reproductive disorders may not necessarily arise as a result of estrogenic effects alone, and there is a need for a better understanding of the relative importance of endocrine disruption in relation to other forms of toxicity. Here, the integrated health effects of long-term effluent exposure are reported (reproductive, endocrine, immune, genotoxic, nephrotoxic). Early life-stage roach, Rutilus rutilus, were exposed for 300 days to treated wastewater effluent at concentrations of 0, 15.2, 34.8, and 78.7% (with dechlorinated tap water as diluent). Concentrations of treated effluents that induced feminization of male roach, measured as vitellogenin induction and histological alteration to gonads, also caused statistically significant alterations in kidney development (tubule diameter), modulated immune function (differential cell count, total number of thrombocytes), and caused genotoxic damage (micronucleus induction and single-strand breaks in gill and blood cells). Genotoxic and immunotoxic effects occurred at concentrations of wastewater effluent lower than those required to induce recognizable changes in the structure and function of the reproductive endocrine system. These findings emphasize the need for multiple biological end points in tests that assess the potential health effects of wastewater effluents. They also suggest that for some effluents, genotoxic and immune end points may be more sensitive than estrogenic (endocrine-mediated) end points as indicators of exposure in fish. PMID:16818251

  13. Influence of allogeneic bone marrow transplantation on the endocrine system in children.

    PubMed

    Dopfer, R; Ranke, M B; Einsele, H; Ehninger, G; Blum, W F; Niethammer, D

    1989-01-01

    With increasing survival rates of children grafted for different malignancies concerns about the longterm side effects of this treatment are growing. Therefore, investigations on the function of endocrine systems were conducted in a total 28 patients grafted for various reasons: ALL (N = 18), AML (N = 1), SAA (N = 3), CML(N = 4), neuroblastoma (N = 2). The results can be summarized as follows: 1. The extent of hormonal derangements is primarily dependent on the extent of irradiation prior to BMT. Integrity of hormonal systems was found in cases without irradiation (SAA) or if TBI did not exceed 3 Gy. 2. Primary hypogonadism was present in 18 patients. 3. Primary hypothyroidism was present in 2 patients. 4. Growth impairment was observed in 8 patients. In four of these cases growth hormone deficiency was the cause. In four other cases with graft-versus-host-disease and hepatic involvement SmC/IGF I levels were severely diminished. The data suggest that in most cases BMT itself has relatively few negative effects on the endocrine regulatory system. However, more detailed investigations before and after BMT will be needed to further validate these observations.

  14. Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research

    Cancer.gov

    The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be

  15. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  16. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta.

    PubMed

    Morales, Mónica; Martínez-Paz, Pedro; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2018-05-15

    Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology

    PubMed Central

    Narayan, E. J.

    2013-01-01

    Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo–pituitary–interrenal axis) and the reproductive endocrine system (the hypothalamo–pituitary–gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology. PMID:27293595

  18. [Effects of magnesium valproate on endocrine system and reproductive functions of female epileptics].

    PubMed

    Xiang, Li; Ding, Jun-Qing; Huang, Xi-Shun

    2011-08-09

    To explore the effects of valproate (VPA) on endocrine system in adolescent and reproductive female patients with epilepsy. A total of 30 adolescent and reproductive female patients with a diagnosis of epilepsy at our hospital during July 2009 to March 2010 were recruited. All cases with magnesium VPA alone were included. The levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol (E2), progesterone (P) and testosterone (T) were detected respectively at pre-therapy and 3, 6 and 12 months post-therapy. And the changes of menstruation and ovaries were recorded. The serum concentration of PRL was lower at 3 and 6 months post-therapy than that at pre-therapy. There was significant difference (P = 0.010 and 0.014). The serum concentration of E2 significantly decreased after a 3-month therapy of valproate (P < 0.05). While comparing the parameter's level between the initial test and at a 3, 6 and 12-month follow-up, the level of P significantly decreased in the later groups than that of the former one while the level of T showed a marked increase. The levels of FSH and LH were not significantly different at pre- and post-therapy. And 6 (20%) of them presented with menstrual dysfunctions and 3 (10%) polycystic ovary. The valproate therapy can not only cause the changes of endocrine system and hormonal levels, but also induce such endocrine dysfunction syndromes as menstrual suspension and polycystic ovary. It eventually causes polycystic ovary syndrome.

  19. A path forward in the debate over health impacts of endocrine disrupting chemicals.

    PubMed

    Zoeller, R Thomas; Bergman, Åke; Becher, Georg; Bjerregaard, Poul; Bornman, Riana; Brandt, Ingvar; Iguchi, Taisen; Jobling, Susan; Kidd, Karen A; Kortenkamp, Andreas; Skakkebaek, Niels E; Toppari, Jorma; Vandenberg, Laura N

    2014-12-22

    Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.

  20. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    PubMed Central

    Matisová, Eva; Hrouzková, Svetlana

    2012-01-01

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677

  1. Effects of DDT on bobwhite quail adrenal gland

    USGS Publications Warehouse

    Lehman, J.W.; Peterle, T.J.; Mulls, C.M.

    1974-01-01

    A wide range of responses to sublethal levels of DDT exist, many of which are species specific and vary within each species depending upon age, sex, and physiological state. Sublethal levels of DDT do cause an increase in the adrenal cortical tissue of bobwhite quail, which may cause increased secretion of corticosteroids, and in turn affect reproduction. A delicate homeostatic balance exists within the avian endocrine system which may be disturbed by feeding sublethal levels of chlorinated hydrocarbon pesticides. This adverse effect on the endocrine system may cause subtle reproductive failures which go unnoticed until the population is greatly reduced.

  2. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    PubMed Central

    Reif, David M.; Martin, Matthew T.; Tan, Shirlee W.; Houck, Keith A.; Judson, Richard S.; Richard, Ann M.; Knudsen, Thomas B.; Dix, David J.; Kavlock, Robert J.

    2010-01-01

    Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks. PMID:20826373

  3. Application of Adverse Outcome Pathways to U.S. EPA’s Endocrine Disruptor Screening Program

    PubMed Central

    Noyes, Pamela D.; Casey, Warren M.; Dix, David J.

    2017-01-01

    Background: The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) screens and tests environmental chemicals for potential effects in estrogen, androgen, and thyroid hormone pathways, and it is one of the only regulatory programs designed around chemical mode of action. Objectives: This review describes the EDSP’s use of adverse outcome pathway (AOP) and toxicity pathway frameworks to organize and integrate diverse biological data for evaluating the endocrine activity of chemicals. Using these frameworks helps to establish biologically plausible links between endocrine mechanisms and apical responses when those end points are not measured in the same assay. Results: Pathway frameworks can facilitate a weight of evidence determination of a chemical’s potential endocrine activity, identify data gaps, aid study design, direct assay development, and guide testing strategies. Pathway frameworks also can be used to evaluate the performance of computational approaches as alternatives for low-throughput and animal-based assays and predict downstream key events. In cases where computational methods can be validated based on performance, they may be considered as alternatives to specific assays or end points. Conclusions: A variety of biological systems affect apical end points used in regulatory risk assessments, and without mechanistic data, an endocrine mode of action cannot be determined. Because the EDSP was designed to consider mode of action, toxicity pathway and AOP concepts are a natural fit. Pathway frameworks have diverse applications to endocrine screening and testing. An estrogen pathway example is presented, and similar approaches are being used to evaluate alternative methods and develop predictive models for androgen and thyroid pathways. https://doi.org/10.1289/EHP1304 PMID:28934726

  4. Systemic control of brown fat thermogenesis: integration of peripheral and central signals.

    PubMed

    Schulz, Tim J; Tseng, Yu-Hua

    2013-10-01

    Brown adipose tissue (BAT) is of great scientific interest as a potential target to treat obesity. The development of novel strategies to quantify brown fat thermogenesis in adult humans now enables minimally invasive assessment of novel pharmacotherapeutics. Input from the central nervous system via sympathetic efferents is widely regarded as the key controller of BAT-mediated thermogenesis in response to changes in body temperature or nutrient availability. More recently, however, it has become clear that locally secreted signals and endocrine factors originating from multiple organs can control the recruitment of brown adipocytes and, more importantly, induce thermogenesis in brown fat. Thus, they provide an attractive strategy to fine-tune brown fat thermogenesis independent of classical temperature sensing. Here, we summarize recent findings on bone morphogenetic protein signaling as an example of secreted factors in the regulation of brown adipocyte formation and systemic control of energy metabolism. We further highlight endocrine communication routes between the different types of brown adipocytes and other organs that contribute to regulation of thermogenesis. Thus, emerging evidence suggests that the classical mechanisms of central temperature sensing and sympathetic nervous system-driven thermogenesis are complemented by local and endocrine signals to determine systemic energy homeostasis. © 2013 New York Academy of Sciences.

  5. Endocrine and metabolic changes in payload specialist (L-1)

    NASA Technical Reports Server (NTRS)

    Matsui, Nobuo

    1993-01-01

    The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.

  6. EPIGENETIC TRANSGENERATIONAL ACTIONS OF ENDOCRINE DISRUPTORS

    PubMed Central

    Skinner, Michael K.; Manikkam, Mohan; Guerrero-Bosagna, Carlos

    2010-01-01

    Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes. PMID:21055462

  7. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-01-01

    The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Perspectives on endocrine disruption].

    PubMed

    Olea, N; Fernández, M F; Araque, P; Olea-Serrano, F

    2002-01-01

    Two decades ago, reports of alterations in the reproductive function of some wild animal species and clear evidence of human and animal exposure to chemical substances with hormonal activity agonist and antagonist generated what is known now as the hypothesis of endocrine disruption. This is an emerging environmental health problem that has challenged some of the paradigms on which the control and regulation of the use of chemical compounds is based. The need to include in routine toxicology tests new research objectives that specifically refer to the development and growth of species and to the homeostasis and functionality of hormonal systems, has served to complicate both the evaluation of new compounds and the re-evaluation of existing ones. The repercussions on regulation and international trade have not taken long to be felt. On both sides of the Atlantic, screening systems for endocrine disrupters have been designed and established, and research programmes have been launched to characterise and quantify adverse effects on human and animal health and to develop preventive measures.

  9. The pituitary gland: a brief history.

    PubMed

    Kaplan, Solomon Alexander

    2007-01-01

    The functions of the pituitary gland as an important constituent of the endocrine system were not understood until the latter part of the nineteenth century and the first half of the 20th century. At one time, the pituitary was deemed to be the "leader of the endocrine orchestra," but more recent studies have shown that its secretions are influenced by external stimuli and that it is largely under the control of the hypothalamus.

  10. How Humans Adapt To Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Kaciuba-Uscilko, Hanna

    1992-01-01

    Report discusses adaptive responses of humans to hot environment. Describes thermoregulation by integrated responses of nervous system, vascular/fluid/electrolyte system, and endocrine system. Considers disorders resulting from failure of thermoregulation and less serious heat stress.

  11. Sociodemographic disparities in the occurrence of medical conditions among adolescent and young adult Hodgkin lymphoma survivors.

    PubMed

    Keegan, Theresa H M; Li, Qian; Steele, Amy; Alvarez, Elysia M; Brunson, Ann; Flowers, Christopher R; Glaser, Sally L; Wun, Ted

    2018-06-01

    Hodgkin lymphoma (HL) survivors experience high risks of second cancers and cardiovascular disease, but no studies have considered whether the occurrence of these and other medical conditions differ by sociodemographic factors in adolescent and young adult (AYA) survivors. Data for 5,085 patients aged 15-39 when diagnosed with HL during 1996-2012 and surviving ≥ 2 years were obtained from the California Cancer Registry and linked to hospitalization data. We examined the impact of race/ethnicity, neighborhood socioeconomic status (SES), and health insurance on the occurrence of medical conditions (≥ 2 years after diagnosis) and the impact of medical conditions on survival using multivariable Cox proportional hazards regression. Twenty-six percent of AYAs experienced at least one medical condition and 15% had ≥ 2 medical conditions after treatment for HL. In multivariable analyses, Black HL survivors had a higher likelihood (vs. non-Hispanic Whites) of endocrine [hazard ratio (HR) = 1.37, 95% confidence interval (CI) 1.05-1.78] and circulatory system diseases (HR = 1.58, CI 1.17-2.14); Hispanics had a higher likelihood of endocrine diseases [HR = 1.24 (1.04-1.48)]. AYAs with public or no insurance (vs. private/military) had higher likelihood of circulatory system diseases, respiratory system diseases, chronic kidney disease/renal failure, liver disease, and endocrine diseases. AYAs residing in low SES neighborhoods (vs. high) had higher likelihood of respiratory system and endocrine diseases. AYAs with these medical conditions or second cancers had an over twofold increased risk of death. Strategies to improve health care utilization for surveillance and secondary prevention among AYA HL survivors at increased risk of medical conditions may improve outcomes.

  12. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. The scaffold protein RACK1 is a target of endocrine disrupting chemicals (EDCs) with important implication in immunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buoso, Erica; Galasso, Marilisa; Ronfani, Melania

    We recently demonstrated the existence of a complex hormonal balance between steroid hormones in the control of RACK1 (Receptor for Activated C Kinase 1) expression and immune activation, suggesting that this scaffold protein may also be targeted by endocrine disrupting chemicals (EDCs). As a proof of concept, we investigated the effect of the doping agent nandrolone, an androgen receptor (AR) agonist, and of p,p′DDT (dichlorodiphenyltrichloroethane) and its main metabolite p,p′DDE (dichlorodiphenyldichloroethylene), a weak and strong AR antagonist, respectively, on RACK1 expression and innate immune response. In analogy to endogenous androgens, nandrolone induced a dose-related increase in RACK1 transcriptional activity andmore » protein expression, resulting in increased LPS-induced IL-8 and TNF-α production and proliferation in THP-1 cells. Conversely, p,p′DDT and p,p′DDE significantly decrease RACK1 expression, LPS-induced cytokine production and CD86 expression; with p,p′DDE exerting a stronger repressor effect than p,p′DDT, consistent with its stronger AR antagonistic effect. These results indicate that RACK1 could be a relevant target of EDCs, responding in opposite ways to agonist or antagonist of AR, representing a bridge between the endocrine system and the innate immune system. - Highlights: • RACK1 expression can be induced by AR agonists with a consequent enhancement of the response to LPS. • RACK1 can be negatively modulated by the AR antagonists DDT and its main metabolite p,p′DDE. • RACK1 can be a relevant target of EDCs, representing a bridge between the endocrine system and the immune system.« less

  14. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  15. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  16. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.

    PubMed

    Johnston, Theresa K; Perkins, Edward; Ferguson, Duncan C; Cropek, Donald M

    2016-10-01

    Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results. Brain (hypothalamus), pituitary, gonad, and liver tissue explants from adult fish were examined for function both individually and in coculture to determine combinations and conditions that could replicate in vivo behavior. Only cocultures had the ability to respond to an EDC, trenbolone, similarly to in vivo studies, based on estradiol, testosterone, and vitellogenin production trends, where lower exposure doses suppressed hormone production but higher doses increased production, resulting in distinctive U-shaped curves. These data suggest that a coculture system with all components of the HPG-L axis can be used as a link between in vitro and in vivo studies to predict endocrine system disruption in whole organisms. This tissue-based HPG-L system acts as a flexible deconstructed version of the in vivo system for better control and examination of the minute changes in system operation and response on EDC exposure with options to isolate, interrogate, and recombine desired components. Environ Toxicol Chem 2016;35:2530-2541. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  17. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior

    PubMed Central

    Garland, Theodore; Zhao, Meng; Saltzman, Wendy

    2016-01-01

    Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often “used” as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which—corticosterone, leptin, and adiponectin—differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels. PMID:27252193

  18. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2008-05-01

    Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.

  19. Hormone profiling, WHO 2010 grading, and AJCC/UICC staging in pancreatic neuroendocrine tumor behavior

    PubMed Central

    Morin, Emilie; Cheng, Sonia; Mete, Ozgur; Serra, Stefano; Araujo, Paula B; Temple, Sara; Cleary, Sean; Gallinger, Steven; Greig, Paul D; McGilvray, Ian; Wei, Alice; Asa, Sylvia L; Ezzat, Shereen

    2013-01-01

    Pancreatic neuroendocrine tumors (pNETs) are the second most common pancreatic neoplasms, exhibiting a complex spectrum of clinical behaviors. To examine the clinico-pathological characteristics associated with long-term prognosis we reviewed 119 patients with pNETs treated in a tertiary referral center using the WHO 2010 grading and the American Joint Committee on Cancer/International Union Against Cancer (AJCC/UICC) staging systems, with a median follow-up of 38 months. Tumor size, immunohistochemistry (IHC) profiling and patient characteristics-determining stage were analyzed. Primary clinical outcomes were disease progression or death. The mean age at presentation was 52 years; 55% were female patients, 11% were associated with MEN1 (multiple endocrine neoplasia 1) or VHL (Von Hippel–Lindau); mean tumor diameter was 3.3 cm (standard deviation, SD) (2.92). The clinical presentation was incidental in 39% with endocrine hypersecretion syndromes in only 24% of cases. Nevertheless, endocrine hormone tissue immunoreactivity was identified in 67 (56.3%) cases. According to WHO 2010 grading, 50 (42%), 38 (31.9%), and 3 (2.5%) of tumors were low grade (G1), intermediate grade (G2), and high grade (G3), respectively. Disease progression occurred more frequently in higher WHO grades (G1: 6%, G2: 10.5%, G3: 67%, P = 0.026) and in more advanced AJCC stages (I: 2%, IV: 63%, P = 0.033). Shorter progression free survival (PFS) was noted in higher grades (G3 vs. G2; 21 vs. 144 months; P = 0.015) and in more advanced AJCC stages (stage I: 218 months, IV: 24 months, P < 0.001). Liver involvement (20 vs. 173 months, P < 0.001) or histologically positive lymph nodes (33 vs. 208 months, P < 0.001) were independently associated with shorter PFS. Conversely, tissue endocrine hormone immunoreactivity, independent of circulating levels was significantly associated with less aggressive disease. Age, gender, number of primary tumors, and heredity were not significantly associated with prognosis. Although the AJCC staging and WHO 2010 grading systems are useful in predicting disease progression, tissue endocrine hormone profiling provides additional information of potentially important prognostic value. Although the AJCC staging and WHO 2010 grading systems are useful in predicting disease progression, tissue endocrine hormone profiling provides additional information of potentially important prognostic value. PMID:24403235

  20. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors.more » Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between nitrogen fixing rhizobial bacteria and leguminous plants. This research will form the foundation for future experiments into the genetic manipulation of plants to potentially promote greater or more specific symbiotic relationships between plant and Rhizobium allowing this biological phenomenon to be used in a greater number of crop types. Future technology developments could include the genetic engineering of crops suitable for in situ vadose zone 2 bioremediation (via microbes) and phytoremediation (through the crop, itself) in contaminated DOE sites.« less

  1. Hormonal regulation of longevity in mammals

    PubMed Central

    Brown-Borg, Holly M.

    2007-01-01

    Multiple biological and environmental factors impact the life span of an organism. The endocrine system is a highly integrated physiological system in mammals that regulates metabolism, growth, reproduction, and response to stress, among other functions. As such, this pervasive entity has a major influence on aging and longevity. The growth hormone, insulin-like growth factor-1 and insulin pathways have been at the forefront of hormonal control of aging research in the last few years. Other hormones, including those from the thyroid and reproductive system have also been studied in terms of life span regulation. The relevance of these hormones to human longevity remains to be established, however the evidence from other species including yeast, nematodes, and flies suggest that evolutionarily well-conserved mechanisms are at play and the endocrine system is a key determinant. PMID:17360245

  2. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  3. Evolving Concepts and Translational Relevance of Enteroendocrine Cell Biology.

    PubMed

    Drucker, Daniel J

    2016-03-01

    Classical enteroenteroendocrine cell (EEC) biology evolved historically from identification of scattered hormone-producing endocrine cells within the epithelial mucosa of the stomach, small and large intestine. Purification of functional EEC hormones from intestinal extracts, coupled with molecular cloning of cDNAs and genes expressed within EECs has greatly expanded the complexity of EEC endocrinology, with implications for understanding the contribution of EECs to disease pathophysiology. Pubmed searches identified manuscripts highlighting new concepts illuminating the molecular biology, classification and functional role(s) of EECs and their hormonal products. Molecular interrogation of EECs has been transformed over the past decade, raising multiple new questions that challenge historical concepts of EEC biology. Evidence for evolution of the EEC from a unihormonal cell type with classical endocrine actions, to a complex plurihormonal dynamic cell with pleiotropic interactive functional networks within the gastrointestinal mucosa is critically assessed. We discuss gaps in understanding how EECs sense and respond to nutrients, cytokines, toxins, pathogens, the microbiota, and the microbial metabolome, and highlight the expanding translational relevance of EECs in the pathophysiology and therapy of metabolic and inflammatory disorders. The EEC system represents the largest specialized endocrine network in human physiology, integrating environmental and nutrient cues, enabling neural and hormonal control of metabolic homeostasis. Updating EEC classification systems will enable more accurate comparative analyses of EEC subpopulations and endocrine networks in multiple regions of the gastrointestinal tract.

  4. Endocrine-immune interactions in human endometrium.

    PubMed

    Kayisli, U A; Guzeloglu-Kayisli, O; Arici, A

    2004-12-01

    The immune system is a complex entity designed to eliminate foreign intruding antigens and is influenced by and, in turn, influences the function of the reproductive system. Despite the widespread associations between immunology and reproductive medicine, the study of system interactions remains in its infancy. Many diverse facts are accumulating, and pieces of the puzzle are becoming available to provide a clearer picture. In this review article, we focus on the interactions between endocrine and immune systems in the human endometrium. Understanding the molecular pathways in endocrine-immune interactions in the human endometrium is crucial to understand events such as menstrual bleeding, tissue repair and regeneration, inflammation, angiogenesis, blastocyst implantation, and progression of pregnancy. These events require a balanced regulation of endometrial differentiation, proliferation, cell survival, leukocyte recruitment, apoptosis, and angiogenesis by sex steroids. In this review, we first outline the role of survival factors such as phosphoinositol 3-kinase/protein kinase B, PTEN, NFkappaB, and apoptotic molecules (Fas-FasL, Bcl-2). We then discuss their regulation by estrogen and progesterone in the endometrium. We present evidence for direct and/or indirect roles of steroid hormones on the expression of chemotactic cytokines (interleukin-8 and monocyte chemotactic protein-1) and on the survival versus apoptosis of resident endometrial cells (stromal, epithelial, and endothelial cells) and nonresident cells (leukocytes).

  5. Functional and Anatomic Correlates of Neural Aging in Birds.

    PubMed

    Ottinger, Mary Ann

    2018-01-01

    Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.

    PubMed

    Hofmann, Lars; Forschner, Andrea; Loquai, Carmen; Goldinger, Simone M; Zimmer, Lisa; Ugurel, Selma; Schmidgen, Maria I; Gutzmer, Ralf; Utikal, Jochen S; Göppner, Daniela; Hassel, Jessica C; Meier, Friedegund; Tietze, Julia K; Thomas, Ioannis; Weishaupt, Carsten; Leverkus, Martin; Wahl, Renate; Dietrich, Ursula; Garbe, Claus; Kirchberger, Michael C; Eigentler, Thomas; Berking, Carola; Gesierich, Anja; Krackhardt, Angela M; Schadendorf, Dirk; Schuler, Gerold; Dummer, Reinhard; Heinzerling, Lucie M

    2016-06-01

    Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A journey through the pituitary gland: Development, structure and function, with emphasis on embryo-foetal and later development.

    PubMed

    Musumeci, Giuseppe; Castorina, Sergio; Castrogiovanni, Paola; Loreto, Carla; Leonardi, Rosi; Aiello, Flavia Concetta; Magro, Gaetano; Imbesi, Rosa

    2015-01-01

    The pituitary gland and the hypothalamus are morphologically and functionally associated in the endocrine and neuroendocrine control of other endocrine glands. They therefore play a key role in a number of regulatory feedback processes that co-ordinate the whole endocrine system. Here we review the neuroendocrine system, from the discoveries that led to its identification to some recently clarified embryological, functional, and morphological aspects. In particular we review the pituitary gland and the main notions related to its development, organization, cell differentiation, and vascularization. Given the crucial importance of the factors controlling neuroendocrine system development to understand parvocellular neuron function and the aetiology of the congenital disorders related to hypothalamic-pituitary axis dysfunction, we also provide an overview of the molecular and genetic studies that have advanced our knowledge in the field. Through the action of the hypothalamus, the pituitary gland is involved in the control of a broad range of key aspects of our lives: the review focuses on the hypothalamic-pituitary-gonadal axis, particularly GnRH, whose abnormal secretion is associated with clinical conditions involving delayed or absent puberty and reproductive dysfunction. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. [Perioperative fluid therapy for surgical patients with chronic kidney disease].

    PubMed

    Iijima, Takehiko

    2013-11-01

    Chronic kidney disease (CKD) often accompanies cardiovascular complications, causing postoperative morbidity and even mortality. Since fluid and electrolyte homeostasis is deregulated in CKD patients, fluid therapy itself may cause postoperative morbidity. Recent studies have shown that forced diuresis through fluid overload offers no renoprotective effect and instead has harmful consequences. Fluid overload should be avoided, and the volume load should be used as the rationale for controlling hemodynamics. The emerging concept of a "zero-fluid balance policy" may be beneficial even for CKD patients. Hydroxyethylstarch might not be preferentially used for CKD patients. Hydroxyethylstarch is not contraindicated for CKD patients except in cases with long-term accumulation caused by increased vascular permeability, such as cases with sepsis, as long as an efficient volume expansion is beneficial to the patient. The regulation of renal function through the endocrine system (i.e., renin-angiotensin-aldosterone and vasopressin) is a key target for protecting the kidney in CKD. The recent development of a receptor blocker targeting these endocrine systems may be beneficial for correcting the fluid balance caused by excess intraoperative fluid therapy. The main issue for fluid therapy in surgical CKD patients may not be the quantity of fluid, but rational intervention affecting the endocrine system.

  9. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  10. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Immunohistochemical study on gastrointestinal endocrine cells of four reptiles

    PubMed Central

    Huang, Xu-Gen; Wu, Xiao-Bing

    2005-01-01

    AIM: To clarify the types, regional distributions and distribution densities as well as morphological features of gastrointestinal (GI) endocrine cells in various parts of the gastrointestinal track (GIT) of four reptiles, Gekko japonicus, Eumeces chinensis, Sphenomorphus indicus and Eumeces elegans. METHODS: Paraffin-embedded sections (5 μm) of seven parts (cardia, fundus, pylorus, duodenum, jejunum, ileum, rectum) of GIT dissected from the four reptiles were prepared. GI endocrine cells were revealed by using immunohistochemical techniques of streptavidin-peroxidase (S-P) method. Seven types of antisera against 5-hydroxy-tryptamine (5-HT), somatostatin (SS), gastrin (GAS), glucagon (GLU), substance P (SP), insulin and pancreatic polypeptide were identified and then GI endocrine cells were photomicrographed and counted. RESULTS: The GI endocrine system of four reptiles was a complex structure containing many endocrine cell types similar in morphology to those found in higher vertebrates. Five types of GI endocrine cells, namely 5-HT, SS, GAS, SP and GLU immunoreactive (IR) cells were identified in the GIT of G. japonicus, E. chinensis and S. indicus; while in the GIT of E. elegans only the former three types of endocrine cells were observed. No PP- and INS- IR cells were found in all four reptiles. 5-HT-IR cells, which were most commonly found in the pylorus or duodenum, distributed throughout the whole GIT of four reptiles. However, their distribution patterns varied from each other. SS-IR cells, which were mainly found in the stomach especially in the pylorus and/or fundus, were demonstrated in the whole GIT of E. chinensis, only showed restricted distribution in the other three species. GAS-IR cells, with a much restricted distribution, were mainly demonstrated in the pylorus and/or the proximal small intestine of four reptiles. GLU-IR cells exhibited a limited and species-dependent variant distribution in the GIT of four reptiles. SP-IR cells were found throughout the GIT except for jejunum in E. elegans and showed a restricted distribution in the GIT of G. japonicus and S. indicus. In the GIT of four reptiles the region with the highest degree of cell type heterogeneity was pylorus and most types of GI endocrine cells along the GIT showed the peak density in pylorus as well. CONCLUSION: Some common and unique features of the distribution and morphology of different types of GI endocrine cells are found in four reptiles. This common trait may reflect the similarity in digestive physiology of various vertebrates. PMID:16222743

  12. Exploring the Halal Status of Cardiovascular, Endocrine, and Respiratory Group of Medications

    PubMed Central

    Sarriff, Azmi; Abdul razzaq, Hadeer Akram

    2013-01-01

    Muslim consumers have special needs in medical treatment that differ from non-Muslim consumers. In particular, there is a growing demand among Muslim consumers for Halal medications. This descriptive exploratory study aims to determine the Halal status of selected cardiovascular, endocrine, and respiratory medications stored in an out-patient pharmacy in a Malaysian governmental hospital. Sources of active ingredients and excipients for each product were assessed for Halal status based on available information obtained from product leaflets, the Medical Information Management System (MIMS) website, or manufacturers. Halal status was based on the products’ sources and categorized into Halal, Mushbooh, or Haram. The proportions of Halal, Mushbooh, and Haram products were at 19.1%, 57.1%, and 23.8%, respectively. The percentage of active ingredients for cardiovascular/endocrine products that were assessed as Haram was 5.3%; for respiratory medications, it was only 1.1%. For excipients, 1.7% and 4.8% fall under the category of Haram for cardiovascular/endocrine products and respiratory products, respectively. Ethanol and magnesium stearate were found to be the common substances that were categorized as Haram and Mushbooh. PMID:23785257

  13. Hair Measurements of Cortisol, DHEA, and DHEA to Cortisol Ratio as Biomarkers of Chronic Stress among People Living with HIV in China: Known-Group Validation

    PubMed Central

    Li, Xiaoming; Zilioli, Samuele; Chen, Zheng; Deng, Huihua; Pan, Juxian

    2017-01-01

    Background Existing literature suggests that endocrine measures, including the steroid hormones of cortisol and Dehydroepiandrosterone (DHEA), as well as the DHEA to cortisol ratio in the human hair can be used as promising biomarkers of chronic stress among humans. However, data are limited regarding the validity of these measures as biomarkers of chronic stress among people living with HIV (PLWH), whose endocrine system or hypothalamic pituitary adrenal (HPA) axis may be affected by HIV infection and/or antiretroviral therapy (ART) medications. Method Using hair sample data and self-reported survey from 60 PLWH in China, we examined the validity of three endocrine measures among Chinese PLWH using a known-groups validation strategy. High-stress group (n = 30) and low-stress group (n = 30) of PLWH were recruited through individual assessment interviews by a local licensed psychologist. The endocrine measures in hair were extracted and assessed by LC-APCI-MS/MS method. Both bivariate and multivariate analyses were conducted to examine the associations between the endocrine measures and the stress level, and to investigate if the associations differ by ART status. Results The levels of endocrine measures among Chinese PLWH were consistent with existing studies among PLWH. Generally, this pilot study confirmed the association between endocrine measures and chronic stress. The high stress group showed higher level hair cortisol and lower DHEA to cortisol ratio. The higher stress group also reported higher scores of stressful life events, perceived stress, anxiety and depression. Hair cortisol level was positively related to anxiety; DHEA was negatively associated with stressful life events; and the DHEA to cortisol ratio was positively related to stressful life events and perceived stress. ART did not affect the associations between the endocrine measures and stress level. Conclusions Our findings suggest that hair cortisol and DHEA to cortisol ratio can be used as promising biomarkers of chronic stress among PLWH. Clarifying the role of steroid hormones in the psychoimmunology of PLWH may yield important implications for clinical practice and psychological intervention. PMID:28095431

  14. 45 CFR 675.3 - Medical clearance criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... following major organ systems: (1) Lungs and chest wall. (2) Heart and vascular system. (3) Abdominal organs and gastrointestinal system. (4) Endocrine or metabolic system. (5) Genitalia and urinary system. (6) Musculoskeletal. (7) Skin and cellular tissues. (8) Neurological Disorders. (9) Psychiatric or psychological. (10...

  15. Circadian and sleep-dependent regulation of hormone release in humans

    NASA Technical Reports Server (NTRS)

    Czeisler, C. A.; Klerman, E. B.

    1999-01-01

    Daily oscillations characterize the release of nearly every hormone. The circadian pacemaker, located in the suprachiasmatic nucleus of the hypothalamus, generates circadian, approximately 24-hour rhythms in many physiologic functions. However, the observed hormonal oscillations do not simply reflect the output of this internal clock. Instead, daily hormonal profiles are the product of a complex interaction between the output of the circadian pacemaker, periodic changes in behavior, light exposure, neuroendocrine feedback mechanisms, gender, age, and the timing of sleep and wakefulness. The interaction of these factors can affect hormonal secretory pulse frequency and amplitude, with each endocrine system differentially affected by these factors. This chapter examines recent advances in understanding the effects on endocrine rhythms of a number of these factors. Sleep exerts a profound effect on endocrine secretion. Sleep is a dynamic process that is characterized by periodic changes in electrophysiologic activity. These electrophysiologic changes, which are used to mark the state and depth of sleep, are associated with periodic, short-term variations in hormonal levels. The secretion of hormones such as renin and human growth hormone are strongly influenced by sleep or wake state, while melatonin and cortisol levels are relatively unaffected by sleep or wake state. In addition, sleep is associated with changes in posture, behavior, and light exposure, each of which is known to affect endocrine secretion. Furthermore, the tight concordance of habitual sleep and wake times with certain circadian phases has made it difficult to distinguish sleep and circadian effects on these hormones. Specific protocols, designed to extract circadian and sleep information semi-independently, have been developed and have yielded important insights into the effects of these regulatory processes. These results may help to account for changes in endocrine rhythms observed in circadian rhythm sleep disorders, including the dyssomnia of shift work and visual impairment. Yet to be fully investigated are the interactions of these factors with age and gender. Characterization of the factors governing hormone secretion is critical to understanding the temporal regulation of endocrine systems and presents many exciting areas for future research.

  16. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

    USGS Publications Warehouse

    Matthiessen, Peter; Ankley, Gerald T.; Biever, Ronald C.; Bjerregaard, Poul; Borgert, Christopher; Brugger, Kristin; Blankinship, Amy; Chambers, Janice; Coady, Katherine K.; Constantine, Lisa; Dang, Zhichao; Denslow, Nancy D.; Dreier, David; Dungey, Steve; Gray, L. Earl; Gross, Melanie; Guiney, Patrick D.; Hecker, Markus; Holbech, Henrik; Iguchi, Taisen; Kadlec, Sarah; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Kawashima, Yukio; Kloas, Werner; Krueger, Henry; Kumar, Anu; Lagadic, Laurent; Leopold, Annegaaike; Levine, Steven L.; Maack, Gerd; Marty, Sue; Meador, James P.; Mihaich, Ellen; Odum, Jenny; Ortego, Lisa; Parrott, Joanne L.; Pickford, Daniel; Roberts, Mike; Schaefers, Christoph; Schwarz, Tamar; Solomon, Keith; Verslycke, Tim; Weltje, Lennart; Wheeler, James R.; Williams, Mike; Wolf, Jeffery C.; Yamazaki, Kunihiko

    2017-01-01

    A SETAC Pellston Workshop® “Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)” was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS—not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk assessment of EDS is scientifically sound and sufficiently reliable and protective of the environment. In the absence of such data, assessment on the basis of hazard is scientifically justified until such time as relevant new information is available.

  17. Anatomy and Physiology. Health Occupations Education. Teacher's Guide.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Nine units on anatomy and physiology are presented in this teacher's guide. The units are the following: organization and general plan of the body; skeletal and muscular systems; digestive system; circulatory system; respiratory system; nervous system and special senses; urinary system; reproductive system; and endocrine glands. Each instructional…

  18. 12 CFR 268.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM (CONTINUED..., cosmetic disfigurement, or anatomical loss affecting one of more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  19. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  20. The eye as a window to rare endocrine disorders

    PubMed Central

    Chopra, Rupali; Chander, Ashish; Jacob, Jubbin J.

    2012-01-01

    The human eye, as an organ, can offer critical clues to the diagnosis of various systemic illnesses. Ocular changes are common in various endocrine disorders such as diabetes mellitus and Graves’ disease. However there exist a large number of lesser known endocrine disorders where ocular involvement is significant. Awareness of these associations is the first step in the diagnosis and management of these complex patients. The rare syndromes involving the pituitary hypothalamic axis with significant ocular involvement include Septo-optic dysplasia, Kallman's syndrome, and Empty Sella syndrome all affecting the optic nerve at the optic chiasa. The syndromes involving the thyroid and parathyroid glands that have ocular manifestations and are rare include Mc Cune Albright syndrome wherein optic nerve decompression may occur due to fibrous dysplasia, primary hyperparathyroidism that may present as red eye due to scleritis and Ascher syndrome wherein ptosis occurs. Allgrove's syndrome, Cushing's disease, and Addison's disease are the rare endocrine syndromes discussed involving the adrenals and eye. Ocular involvement is also seen in gonadal syndromes such as Bardet Biedl, Turner's, Rothmund's, and Klinefelter's syndrome. This review also highlights the ocular manifestation of miscellaneous syndromes such as Werner's, Cockayne's, Wolfram's, Kearns Sayre's, and Autoimmune polyendocrine syndrome. The knowledge of these relatively uncommon endocrine disorders and their ocular manifestations will help an endocrinologist reach a diagnosis and will alert an ophthalmologist to seek specialty consultation of an endocrinologist when encountered with such cases. PMID:22629495

  1. 45 CFR 2104.103 - Definition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs; cardiovascular; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine...

  2. 22 CFR 1600.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs; cardiovascular; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine...

  3. 45 CFR 1181.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs; cardiovascular; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine...

  4. 22 CFR 219.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs; cardiovascular; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine...

  5. Expression of VGF mRNA in developing neuroendocrine and endocrine tissues.

    PubMed

    Snyder, S E; Peng, B; Pintar, J E; Salton, S R J

    2003-11-01

    Analysis of knockout mice suggests that the neurotropin-inducible secreted polypeptide VGF (non-acronymic) plays an important role in the regulation of energy balance. VGF is synthesized by neurons in the central and peripheral nervous systems (CNS, PNS), as well as in the adult pituitary, adrenal medulla, endocrine cells of the stomach and pancreatic beta cells. Thus VGF, like cholecystokinin, leptin, ghrelin and other peptide hormones that have been shown to regulate feeding and energy expenditure, is synthesized in both the gut and the brain. Although detailed developmental studies of VGF localization in the CNS and PNS have been completed, little is known about the ontogeny of VGF expression in endocrine and neuroendocrine tIssues. Here, we report that VGF mRNA is detectable as early as embryonic day 15.5 in the developing rat gastrointestinal and esophageal lumen, pancreas, adrenal, and pituitary, and we further demonstrate that VGF mRNA is synthesized in the gravid rat uterus, together supporting possible functional roles for this polypeptide outside the nervous system and in the enteric plexus.

  6. Early-life exposure to Tris(1,3-dichloroisopropyl) phosphate induces dose-dependent suppression of sexual behavior in male rats.

    PubMed

    Kamishima, Manami; Hattori, Tatsuya; Suzuki, Go; Matsukami, Hidenori; Komine, Chiaki; Horii, Yasuyuki; Watanabe, Gen; Oti, Takumi; Sakamoto, Hirotaka; Soga, Tomoko; Parhar, Ishwar S; Kondo, Yasuhiko; Takigami, Hidetaka; Kawaguchi, Maiko

    2018-05-01

    Exposure to endocrine-disrupting chemicals may adversely affect animals, particularly during development. Tris(1,3-dichloroisopropyl) phosphate (TDCIPP) is an organophosphate with anti-androgen function in vitro that is present in indoor dust at relatively high concentrations. In male rats, androgens are necessary for the development of reproductive organs, as well as the endocrine and central nervous systems. However, we currently do not know the exact effects of TDCIPP exposure through suckling on subsequent reproductive behavior in males. Here, we show that TDCIPP exposure (25-250 mg kg -1 via oral administration over 28 consecutive days post-birth) suppressed male sexual behavior and reduced testes size. These changes were dose-dependent and appeared first in adults rather than in juveniles. These results demonstrate that TDCIPP exposure led to normal body growth and appearance in juveniles, but disrupted the endocrine system and physiology in adults. Therefore, assays should be performed using adult animals to ensure accuracy, and to confirm the influence of chemical substances given during early mammalian life. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Colocalization of numerous immunoreactivities in endocrine cells of the chicken proventriculus at hatching.

    PubMed

    Martínez, A; Buchan, A M; López, J; Sesma, P

    2000-05-01

    The colocalization of regulatory peptide immunoreactivities in endocrine cells of the chicken proventriculus at hatching has been investigated using the avidin-biotin technique in serial sections and double immunofluorescence in the same section for light microscopy, and double immunogold staining for electron microscopy. In addition to the eight immunoreactivities previously described in this organ, cells immunoreactive for peptide histidine isoleucine (PHI), peptide gene product 9.5 (PGP), and the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM) were observed. All the cells immunoreactive to glucagon were also immunostained by the PHI antiserum. In addition, all the glucagon-like peptide 1, avian pancreatic polypeptide, and some of the neurotensin-like cells costored also glucagon- and PHI-immunoreactive substances. PGP- and PAM-immunoreactivities were also found in the glucagon-positive cells. A small proportion of the somatostatin-containing cells were positive for PHI but not for other regulatory peptides. These results could suggest either the existence of a very complex regulatory system or that the endocrine system of the newborn chickens is not yet fully developed.

  8. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    PubMed Central

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  9. Adrenomedullin and endocrine control of immune cells during pregnancy.

    PubMed

    Matson, Brooke C; Caron, Kathleen M

    2014-09-01

    The immunology of pregnancy is complex and incompletely understood. Aberrant immune activity in the decidua and in the placenta is believed to play a role in diseases of pregnancy, such as infertility, miscarriage, fetal growth restriction and preeclampsia. Here, we briefly review the endocrine control of uterine natural killer cell populations and their functions by the peptide hormone adrenomedullin. Studies in genetic animal models have revealed the critical importance of adrenomedullin dosage at the maternal-fetal interface, with cells from both the maternal and fetal compartments contributing to essential aspects underlying appropriate uterine receptivity, implantation and vascular remodeling of spiral arteries. These basic insights into the crosstalk between the endocrine and immune systems within the maternal-fetal interface may ultimately translate to a better understanding of the functions and consequences of dysregulated adrenomedullin levels in clinically complicated pregnancies.

  10. Monogenic autoimmune diseases of the endocrine system.

    PubMed

    Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E

    2016-10-01

    The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparative Endocrinology of Aging and Longevity Regulation

    PubMed Central

    Allard, John B.; Duan, Cunming

    2011-01-01

    Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, “regulate” the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway’s involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms. PMID:22654825

  12. Endocrine surgery as a model for value-based health care delivery.

    PubMed

    Abdulla, Amer G; Ituarte, Philip H G; Wiggins, Randi; Teisberg, Elizabeth O; Harari, Avital; Yeh, Michael W

    2012-01-01

    Experts advocate restructuring health care in the United States into a value-based system that maximizes positive health outcomes achieved per dollar spent. We describe how a value-based system implemented by the University of California, Los Angeles UCLA Section of Endocrine Surgery (SES) has optimized both quality and costs while increasing patient volume. Two SES clinical pathways were studied, one allocating patients to the most appropriate surgical care setting based on clinical complexity, and another standardizing initial management of papillary thyroid carcinoma (PTC). The mean cost per endocrine case performed from 2005 to 2010 was determined at each of three care settings: A tertiary care inpatient facility, a community inpatient facility, and an ambulatory facility. Blood tumor marker levels (thyroglobulin, Tg) and reoperation rates were compared between PTC patients who underwent routine central neck dissection (CND) and those who did not. Surgical patient volume and regional market share were analyzed over time. The cost of care was substantially lower in both the community inpatient facility (14% cost savings) and the ambulatory facility (58% cost savings) in comparison with the tertiary care inpatient facility. Patients who underwent CND had lower Tg levels (6.6 vs 15.0 ng/mL; P = 0.024) and a reduced need for re-operation (1.5 vs 6.1%; P = 0.004) compared with those who did not undergo CND. UCLA maintained its position as the market leader in endocrine procedures while expanding its market share by 151% from 4.9% in 2003 to 7.4% in 2010. A value-driven health care delivery system can deliver improved clinical outcomes while reducing costs within a subspecialty surgical service. Broader application of these principles may contribute to resolving current dilemmas in the provision of care nationally.

  13. Gigantism

    MedlinePlus

    Pituitary giant; Overproduction of growth hormone; Growth hormone - excess production ... benign tumors of the skin, heart, and endocrine (hormone) system (Carney complex) Genetic disease that affects the ...

  14. Arc and resistance welding and tumours of the endocrine glands: a Swedish case-control study with focus on extremely low frequency magnetic fields.

    PubMed

    Håkansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B

    2005-05-01

    Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985-94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields.

  15. Arc and resistance welding and tumours of the endocrine glands: a Swedish case-control study with focus on extremely low frequency magnetic fields

    PubMed Central

    Hakansson, N; Stenlund, C; Gustavsson, P; Johansen, C; Floderus, B

    2005-01-01

    Background: Mechanisms for potential effects of extremely low frequency (ELF) magnetic fields on carcinogenesis have not been identified. A potential pathway could be an interaction with the endocrine system. Aims: To analyse occupational exposure to ELF magnetic fields from welding, and tumours of the endocrine glands. Methods: This case-control study was based on a cohort with an increased prevalence of high exposed individuals. A total of 174 incident cases of tumours of the endocrine glands, 1985–94, were identified and data were obtained from 140 (80%) of these cases; 1692 controls frequency matched on sex and age were selected, and information on 1306 (77%) individuals was obtained. A short questionnaire was sent to a work administrator at the workplaces of the cases and controls. The exposure assessment was based on questions about job tasks, exposure to different types of welding, and exposure to solvents. Results: There was an overall increased risk for all tumours of the endocrine glands for individuals who had been welding sometime during the follow up. The increased risk was attributable to arc welding; for resistance welding there was no clear evidence of an association. We found an increased risk for the adrenal glands in relation to arc welding, and for the parathyroid glands in relation to both arc welding and resistance welding. An imprecise increase in risk was also noted for tumours of the pituitary gland for arc welding. No confounding effect was found for solvent exposure, and there was no sign of biological interaction. Conclusion: The increased risks of endocrine gland tumours related to welding might be explained by exposure to high levels of ELF magnetic fields. PMID:15837851

  16. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    PubMed

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy from CT, translating to improved diagnostic accuracy and meaningful impact on patient care. PMID:27358692

  18. Endocrine check-up in adolescents and indications for referral: A guide for health care providers

    PubMed Central

    De Sanctis, Vincenzo; Soliman, Ashraf T; Fiscina, Bernadette; Elsedfy, Heba; Elalaily, Rania; Yassin, Mohamed; Skordis, Nicos; Di Maio, Salvatore; Piacentini, Giorgio; Kholy, Mohamed El

    2014-01-01

    The American Academy of Pediatrics recommends that young people between the ages of 11 and 21 years should be seen annually by their pediatricians, since annual checkups can be an important opportunity for health evaluation and anticipatory guidance. Parents of infants and young children are accustomed to regularly visiting a pediatrician for their child's checkups. Unfortunately, when children reach the teen years, these annual checkups may decrease in frequency. In routine check-ups and medical office visits, particular attention should be paid to the possibility of a developmental or endocrine disorder. Early diagnosis and treatment may prevent medical complications in adulthood and foster age-appropriate development. Our purpose is to acquaint readers with the concept, based on current scientific understanding, that some endocrine disorders may be associated with a wide range of deleterious health consequences including an increased risk of hypertension and hyperlipidemia, increased risk of coronary artery disease, type 2 diabetes, significant anxiety and lack of self-esteem. Understanding the milestones and developmental stages of adolescence is essential for pediatricians and all other health providers who care for adolescents. Treating adolescents involves knowledge of a variety of medical, social and legal information; in addition, close working relationships must be established within the adolescent's network to create an effective care system. In summary, we underline the importance of a periodic endocrine checkup in adolescents in order to identify endocrine problems early and develop an approach to treatment for those patients who need help during this time. Indications for endocrine referral for professional and other healthcare providers are also included. These lists are clearly not intended to be comprehensive, but will hopefully serve as a guide for specific clinical circumstances. PMID:25538875

  19. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active.

    PubMed

    Fort, Douglas J; Fort, Troy D; Mathis, Michael B; Ball, R Wayne

    2016-11-01

    The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    PubMed

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  1. Endocrine resistance in breast cancer – an overview and update

    PubMed Central

    Clarke, Robert; Tyson, John J.; Dixon, J. Michael

    2015-01-01

    Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects. PMID:26455641

  2. The Incidence and Survival of Rare Cancers of the Thyroid, Parathyroid, Adrenal, and Pancreas.

    PubMed

    James, Benjamin C; Aschebrook-Kilfoy, Briseis; Cipriani, Nicole; Kaplan, Edwin L; Angelos, Peter; Grogan, Raymon H

    2016-02-01

    With the exception of papillary and follicular thyroid cancer, malignant cancers of the thyroid, parathyroid, adrenal, and endocrine pancreas are uncommon. These rare malignancies present a challenge to both the clinician and patient, because few data exist on their incidence or survival. We analyzed the incidence and survival of these rare endocrine cancers (RECs), as well as the trends in incidence over time. We used the NCI's SEER 18 database (2000-2012) to investigate incidence and survival of rare cancers of the thyroid, parathyroid, adrenal, and endocrine pancreas. Cancers were categorized using the WHO classification systems. We collected data on incidence, gender, stage, size, and survival. Time trends were evaluated from 2000-2002 to 2010-2012. We identified 36 types of rare cancers in the endocrine organs captured in the SEER database. RECs of the thyroid had the highest combined incidence rate (IR8.26), followed by pancreas (IR 3.24), adrenal (IR 2.71), and parathyroid (IR 0.41). The incidence rate for all rare endocrine organs combined increased 32.4 % during the study period. The majority of the increase was attributable to rare cancers of thyroid, which increased in not only microcarcinomas, but in all sizes. The mean 5-year survival for RECs is 59.56 % (range 2.49–100 %). This study is a comprehensive analysis ofthe incidence and survival for rare malignant endocrine cancers. There has been an increase in incidence rate of almost all RECs and their survival is low. We hope that our data will serve as a source of information for clinicians as well as bring awareness regarding these uncommon cancers.

  3. Endocrine hormones and local signals during the development of the mouse mammary gland.

    PubMed

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  4. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.

    PubMed

    Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina

    2013-01-01

    Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Pituitary tumor

    MedlinePlus

    ... during the person's lifetime. The pituitary is part of the endocrine system. The pituitary helps control the release of hormones ... Hollander AB, Alonso-Basanta M, et al. Cancer of the central nervous system. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan ...

  6. Impact of Early Sport Specialization: A Physiological Perspective

    ERIC Educational Resources Information Center

    Kaleth, Anthony S.; Mikesky, Alan E.

    2010-01-01

    This article addresses the question of whether early sport specialization provides a "physiological" advantage for future athletic success. It examines the limited literature related to the effects of early specialization on the body's organ systems: the endocrine system, the muscular system, the nervous system, and the cardiovascular system. The…

  7. Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes.

    PubMed

    Planelló, Rosario; Herrero, Oscar; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2011-09-01

    In this work, the effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP), two of the most extensively used phthalates, were studied in Chironomus riparius under acute short-term treatments, to compare their relative toxicities and identify genes sensitive to exposure. The ecotoxicity of these phthalates was assessed by analysis of the alterations in gene expression profiles of selected inducible and constitutive genes related to the endocrine system, the cellular stress response and the ribosomal machinery. Fourth instar larvae, a model system in aquatic toxicology, were experimentally exposed to five increasing concentrations (0.01, 0.1, 1, 10, and 100mg/L) of DEHP and BBP for 24h. Gene expression was analysed by the changes in levels of transcripts, using RT-PCR techniques with specific gene probes. The exposures to DEHP or BBP were able to rapidly induce the hsp70 gene in a concentration-dependent manner, whereas the cognate form hsc70 was not altered by either of these chemicals. Transcription of ribosomal RNA as a measure of cell viability, quantified by the levels of ITS2, was not affected by DEHP, but was slightly, yet significantly, downregulated by BBP at the highest concentrations tested. Finally, as these phthalates are classified as endocrine disruptor chemicals (EDCs), their potential effect on the ecdysone endocrine system was studied by analysing the two genes, EcR and usp, of the heterodimeric ecdysone receptor complex. It was found that BBP provoked the overexpression of the EcR gene, with significant increases from exposures of 0.1mg/L and above, while DEHP significantly decreased the activity of this gene at the highest concentration. These data are relevant as they show for the first time the ability of phthalates to interfere with endocrine marker genes in invertebrates, demonstrating their potential capacity to alter the ecdysone signalling pathway. Overall, the study clearly shows a differential gene-toxin interaction for these two phthalates and adds novel genomic tools for biomonitoring environmental xenobiotics in insects. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system.

    PubMed

    Sidorkiewicz, Iwona; Zaręba, Kamil; Wołczyński, Sławomir; Czerniecki, Jan

    2017-07-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.

  9. Endocrine Disruptor Screening Program Reports to Congress

    EPA Pesticide Factsheets

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  10. ADVANCES IN SALIVARY GLAND GENE THERAPY – ORAL AND SYSTEMIC IMPLICATIONS

    PubMed Central

    Baum, Bruce J.; Alevizos, Ilias; Chiorini, John A.; Cotrim, Ana P.; Zheng, Changyu

    2016-01-01

    Introduction Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. Areas covered There are two major disorders affecting salivary glands; radiation damage following treatment for head and neck cancers and Sjögren’s syndrome. Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. Expert opinion Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on Sjögren’s syndrome suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding of how secretory proteins are sorted. Future studies will likely employ ultrasound assisted and pseudotyped adenoassociated viral vector-mediated gene. PMID:26149284

  11. NCI, NHLBI/PBMTC First International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Endocrine Challenges--Thyroid Dysfunction, Growth Impairment, Bone Health, & Reproductive Risks

    PubMed Central

    Dvorak, Christopher C.; Gracia, Clarisa R.; Sanders, Jean E.; Cheng, Edward Y.; Baker, K. Scott; Pulsipher, Michael A.; Petryk, Anna

    2011-01-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation prior to hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is one of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary’s production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient’s gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, while methods of fertility preservation are limited in all but post-pubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. PMID:22005649

  12. Hormones and immunity in cancer: are thyroid hormones endocrine players in the microglia/glioma cross-talk?

    PubMed Central

    Perrotta, Cristiana; De Palma, Clara; Clementi, Emilio; Cervia, Davide

    2015-01-01

    Accumulating evidence indicates that the endocrine and immune systems engage in complex cross-talks in which a prominent role is played by thyroid hormones (THs). The increase of resident vs. monocyte recruited macrophages was shown to be an important effector of the TH 3,3′,5′-Triiodo-L-thyronine (T3)-induced protection against inflammation and a key role of T3 in inhibiting the differentiation of peripheral monocytes into macrophages was observed. Herein, we report on the role of T3 as a modulator of microglia, the specialized macrophages of the central nervous system (CNS). Mounting evidence supports a role of microglia and macrophages in the growth and invasion of malignant glioma. In this respect, we unveil the putative involvement of T3 in the microglia/glioma cell communication. Since THs are known to cross the blood-brain barrier, we suggest that T3 not only exerts a direct modulation of brain cancer cell itself but also indirectly promotes glioma growth through a modulation of microglia. Our observations expand available information on the role of TH system in glioma and its microenvironment and highlight the endocrine modulation of microglia as an important target for future therapeutic development of glioma treatments. PMID:26157361

  13. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    PubMed

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.

    PubMed

    Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A

    2004-01-01

    To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.

  15. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi.

    PubMed

    Mohamed, Ahmed A M; Wang, Qiushi; Bembenek, Jadwiga; Ichihara, Naoyuki; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4 °C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNA(NAT) caused dysfunction of photoperiodism. dsRNA(PER) upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNA(NAT) decreased melatonin while dsRNA(PER) increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNA(NAT), to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.

  16. N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi

    PubMed Central

    Bembenek, Jadwiga; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16∶8 (LD) and LD12∶12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4°C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNANAT caused dysfunction of photoperiodism. dsRNAPER upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNANAT decreased melatonin while dsRNAPER increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNANAT, to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism. PMID:24667367

  17. Message-adjusted network (MAN) hypothesis in gastro-entero-pancreatic (GEP) endocrine system.

    PubMed

    Aykan, N Faruk

    2007-01-01

    Several types of communication coordinate body functions to maintain homeostasis. Clarifying intercellular communication systems is as important as intracellular signal mechanisms. In this study, we propose an intercellular network model to establish novel targets in GEP-endocrine system, based on up-to-date information from medical publications. As materials, two physiologic events which are Pavlov's sham-feeding assay and bicarbonate secretion into the duodenum from pancreas were explored by new biologic data from the literature. Major key words used in Pub-Med were modes of regulations (autocrine, paracrine, endocrine, neurocrine, juxtacrine, lumencrine), GEP cells, hormones, peptides and neuro-transmitters. In these two examples of physiologic events, we can design a model of network to clarify transmission of a message. When we take a simple, unique message, we can observe a complete intercellular network. In our examples, these messages are "food is coming" and "hydrogen ions are increasing" in human language (humanese). We need to find molecular counterparts of these unique messages in cell language (cellese). In this network (message-adjusted network; MAN), message is an input which can affect the physiologic equilibrium, mission is an output to improve the disequilibrium and aim is always maintenance of homeostasis. If we orientate to a transmission of a unique message we can distinguish that different cells use different chemical messengers in different modes of regulations to transmit the same message. This study also supports Shannon's information theory and cell language theories such as von Neumann-Patte principles. After human genome project (HU-GO) and protein organisations (HU-PO), finding true messages and the establishment of their networks (in our model HU-MAN project) can be a novel and exciting field in cell biology. We established an intercellular network model to understand intercellular communication in the physiology of GEP endocrine system. This model could help to explain complex physiologic events as well as to generate new treatment concepts.

  18. 45 CFR 1232.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... body systems: Neurological; musculoskeletal; special sense organs; respiratory, including speech organs; cardiovascular; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (B) any... postsecondary institution, or a public system of higher education; or (ii) A local educational agency (as...

  19. Heart failure: not a single organ disease but a multisystem syndrome.

    PubMed

    Warriner, David; Sheridan, Paul; Lawford, Patricia

    2015-06-01

    Heart failure is not simply a single organ disease; rather it is a complex multi-system clinical syndrome, with impairment of endocrine, haematological, musculoskeletal, renal, respiratory and vascular systems, which influence morbidity and mortality.

  20. Olfaction Under Metabolic Influences

    PubMed Central

    2012-01-01

    Recently published work and emerging research efforts have suggested that the olfactory system is intimately linked with the endocrine systems that regulate or modify energy balance. Although much attention has been focused on the parallels between taste transduction and neuroendocrine controls of digestion due to the novel discovery of taste receptors and molecular components shared by the tongue and gut, the equivalent body of knowledge that has accumulated for the olfactory system, has largely been overlooked. During regular cycles of food intake or disorders of endocrine function, olfaction is modulated in response to changing levels of various molecules, such as ghrelin, orexins, neuropeptide Y, insulin, leptin, and cholecystokinin. In view of the worldwide health concern regarding the rising incidence of diabetes, obesity, and related metabolic disorders, we present a comprehensive review that addresses the current knowledge of hormonal modulation of olfactory perception and how disruption of hormonal signaling in the olfactory system can affect energy homeostasis. PMID:22832483

  1. Convergent genetic modulation of the endocrine stress response involves polymorphic variations of 5-HTT, COMT and MAOA.

    PubMed

    Jabbi, M; Korf, J; Kema, I P; Hartman, C; van der Pompe, G; Minderaa, R B; Ormel, J; den Boer, J A

    2007-05-01

    Highly prevalent stress-related disorders such as major depression (MD) are characterised by a dysregulation of the neuroendocrine system. Although heritability for these disorders is high, the role of genes in the underlying pathophysiology is poorly understood. Here, we show that polymorphic variations in genes coding for serotonin transporter (5-HTT), catechol-O-methyl transferase (COMT) and monoamine oxidase A (MAOA) as well as sex differences influence the regulation of hypothalamic-pituitary-adrenal (HPA)-axis response to acute psychological and endocrine challenges. In our sample, the effects of COMT on the release of adrenocorticotrophin hormone (ACTH) depend on the presence of the low-expression MAOA variant in the same individual. By including individuals varying in their degree of susceptibility to MD, we showed evidence of interactions between 5-HTT and MD susceptibility in baseline cortisol, and between MAOA and MD susceptibility in baseline ACTH measures, indicating a role for these genotypes in stable-state endocrine regulation. Collectively, these results indicate that the simultaneous investigation of multiple monoaminergic genes in interaction with gender have to be measured to understand the endocrine regulation of stress. These findings point towards a genetic susceptibility to stress-related disorders.

  2. Peer-reviewed and unbiased research, rather than ‘sound science’, should be used to evaluate endocrine-disrupting chemicals

    PubMed Central

    Trasande, Leonardo; Vandenberg, Laura N; Bourguignon, Jean-Pierre; Myers, John Peterson; Slama, Remy; Saal, Frederick vom; Zoeller, Robert Thomas

    2017-01-01

    Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, ‘manufactured doubt’ continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. ‘Good laboratory practice’ (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than ‘sound science’, should be used to evaluate endocrine-disrupting chemicals. PMID:27417427

  3. Psychosocial influences on HIV-1 disease progression: neural, endocrine, and virologic mechanisms.

    PubMed

    Cole, Steve W

    2008-06-01

    This review surveys empirical research pertinent to the hypothesis that activity of the hypothalamus-pituitary-adrenal (HPA) axis and/or the sympathetic nervous system (SNS) might mediate biobehavioral influences on HIV-1 pathogenesis and disease progression. Data are considered based on causal effects of neuroeffector molecules on HIV-1 replication, prospective relationships between neural/endocrine parameters and HIV-relevant biological or clinical markers, and correlational data consistent with in vivo neural/endocrine mediation in human or animal studies. Results show that HPA and SNS effector molecules can enhance HIV-1 replication in cellular models via effects on viral infectivity, viral gene expression, and the innate immune response to infection. Animal models and human clinical studies both provide evidence consistent with SNS regulation of viral replication, but data on HPA mediation are less clear. Regulation of leukocyte biology by neuroeffector molecules provides a plausible biological mechanism by which psychosocial factors might influence HIV-1 pathogenesis, even in the era of effective antiretroviral therapy. As such, neural and endocrine parameters might provide useful biomarkers for gauging the promise of behavioral interventions and suggest novel adjunctive strategies for controlling HIV-1 disease progression.

  4. Traumatic Brain Injury: At the Crossroads of Neuropathology and Common Metabolic Endocrinopathies

    PubMed Central

    Li, Melanie

    2018-01-01

    Building on the seminal work by Geoffrey Harris in the 1970s, the neuroendocrinology field, having undergone spectacular growth, has endeavored to understand the mechanisms of hormonal connectivity between the brain and the rest of the body. Given the fundamental role of the brain in the orchestration of endocrine processes through interactions among neurohormones, it is thus not surprising that the structural and/or functional alterations following traumatic brain injury (TBI) can lead to endocrine changes affecting the whole organism. Taking into account that systemic hormones also act on the brain, modifying its structure and biochemistry, and can acutely and chronically affect several neurophysiological endpoints, the question is to what extent preexisting endocrine dysfunction may set the stage for an adverse outcome after TBI. In this review, we provide an overview of some aspects of three common metabolic endocrinopathies, e.g., diabetes mellitus, obesity, and thyroid dysfunction, and how these could be triggered by TBI. In addition, we discuss how the complex endocrine networks are woven into the responses to sudden changes after TBI, as well as some of the potential mechanisms that, separately or synergistically, can influence outcomes after TBI. PMID:29538298

  5. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hormones and the Evolution of Complex Traits: Insights from Artificial Selection on Behavior.

    PubMed

    Garland, Theodore; Zhao, Meng; Saltzman, Wendy

    2016-08-01

    Although behavior may often be a fairly direct target of natural or sexual selection, it cannot evolve without changes in subordinate traits that cause or permit its expression. In principle, changes in endocrine function could be a common mechanism underlying behavioral evolution because they are well positioned to mediate integrated responses to behavioral selection. More specifically, hormones can influence both motivational (e.g., brain) and performance (e.g., muscles) components of behavior simultaneously and in a coordinated fashion. If the endocrine system is often "used" as a general mechanism to effect responses to selection, then correlated responses in other aspects of behavior, life history, and organismal performance (e.g., locomotor abilities) should commonly occur because any cell with appropriate receptors could be affected. Ways in which behavior coadapts with other aspects of the phenotype can be studied directly through artificial selection and experimental evolution. Several studies have targeted rodent behavior for selective breeding and reported changes in other aspects of behavior, life history, and lower-level effectors of these organismal traits, including endocrine function. One example involves selection for high levels of voluntary wheel running, one aspect of physical activity, in four replicate High Runner (HR) lines of mice. Circulating levels of several hormones (including insulin, testosterone, thyroxine, triiodothyronine) have been characterized, three of which-corticosterone, leptin, and adiponectin-differ between HR and control lines, depending on sex, age, and generation. Potential changes in circulating levels of other behaviorally and metabolically relevant hormones, as well as in other components of the endocrine system (e.g., receptors), have yet to be examined. Overall, results to date identify promising avenues for further studies on the endocrine basis of activity levels. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. [Secondary osteoporosis or secondary contributors to bone loss in fracture. Endocrinological aspects of bone metabolism].

    PubMed

    Fukumoto, Seiji

    2013-09-01

    Bone works to play essential roles in mineral metabolism and hematopoiesis as well as to support our body and protect internal organs as a hard tissue. In order to accomplish these multiple functions, bone needs to communicate with other organs. Endocrine system functions as one of the communication pathways between bone and other organs. It has been known that bone is a target organ of many hormones. In addition, it has been established that bone itself produces hormones and works as an endocrine organ.

  8. The Modification of Biocellular Chemical Reactions by Environmental Physicochemicals

    NASA Astrophysics Data System (ADS)

    Ishido, M.

    Environmental risk factors affect human biological system to different extent from modification of biochemical reaction to cellular catastrophe. There are considerable public concerns about electromagnetic fields and endocrine disruptors. Their risk assessments have not been fully achieved because of their scientific uncertainty: electromagnetic fields just modify the bioreaction in the restricted cells and endocrine disruptors are quite unique in that their expression is dependent on the exposure periods throughout a life. Thus, we here describe their molecular characterization to establish the new risk assessments for environmental physicochemicals.

  9. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb.

    PubMed

    Spirhanzlova, Petra; De Groef, Bert; Nicholson, Freda E; Grommen, Sylvia V H; Marras, Giulia; Sébillot, Anthony; Demeneix, Barbara A; Pallud-Mothré, Sophie; Lemkine, Gregory F; Tindall, Andrew J; Du Pasquier, David

    2017-10-01

    Several short-term whole-organism bioassays based on transgenic aquatic models are now under validation by the OECD (Organization for Economic Co-operation and Development) to become standardized test guidelines for the evaluation of the endocrine activity of substances. Evaluation of the endocrine disrupting capacity of pesticides will be a domain of applicability of these future reference tests. The herbicide linuron and the insecticide fenoxycarb are two chemicals commonly used in agricultural practices. While numerous studies indicate that linuron is likely to be an endocrine disruptor, there is little information available on the effect of fenoxycarb on vertebrate endocrine systems. Using whole-organism bioassays based on transgenic Xenopus laevis tadpoles and medaka fry we assessed the potential of fenoxycarb and linuron to disrupt thyroid, androgen and estrogen signaling. In addition we used in silico approach to simulate the affinity of these two pesticides to human hormone receptors. Linuron elicited thyroid hormone-like activity in tadpoles at all concentrations tested and, showed an anti-estrogenic activity in medaka at concentrations 2.5mg/L and higher. Our experiments suggest that, in addition to its previously established anti-androgenic action, linuron exhibits thyroid hormone-like responses, as well as acting at the estrogen receptor level to inhibit estrogen signaling. Fenoxycarb on the other hand, did not cause any changes in thyroid, androgen or estrogen signaling at the concentrations tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    USGS Publications Warehouse

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  11. Exposures, Mechanisms, and Impacts of Endocrine-Active Flame Retardants

    PubMed Central

    Dishaw, Laura; Macaulay, Laura; Roberts, Simon C.; Stapleton, Heather M.

    2014-01-01

    This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster® 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways. PMID:25306433

  12. Effects of Bisphenol A and its Analogs on Reproductive Health: A Mini Review.

    PubMed

    Siracusa, Jacob Steven; Yin, Lei; Measel, Emily; Liang, Shenuxan; Yu, Xiaozhong

    2018-06-17

    Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments. Copyright © 2018. Published by Elsevier Inc.

  13. The hormonal control of ejaculation.

    PubMed

    Corona, Giovanni; Jannini, Emmanuele A; Vignozzi, Linda; Rastrelli, Giulia; Maggi, Mario

    2012-09-01

    Hormones regulate all aspects of male reproduction, from sperm production to sexual drive. Although emerging evidence from animal models and small clinical studies in humans clearly point to a role for several hormones in controlling the ejaculatory process, the exact endocrine mechanisms are unclear. Evidence shows that oxytocin is actively involved in regulating orgasm and ejaculation via peripheral, central and spinal mechanisms. Associations between delayed and premature ejaculation with hypothyroidism and hyperthyroidism, respectively, have also been extensively documented. Some models suggest that glucocorticoids are involved in the regulation of the ejaculatory reflex, but corresponding data from human studies are scant. Oestrogens regulate epididymal motility, whereas testosterone can affect the central and peripheral aspects of the ejaculatory process. Overall, the data of the endocrine system in regulating the ejaculatory reflex suggest that widely available endocrine therapies might be effective in treating sexual disorders in these men. Indeed, substantial evidence has documented that treatments of thyroid diseases are able to improve some ejaculatory difficulties.

  14. Spectrum of Endocrine Disorders in Central Ghana

    PubMed Central

    Sarfo, Fred Stephen; Ansah, Eunice Oparebea; Kyei, Ishmael

    2017-01-01

    Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0) with an overall median age of 54 (IQR, 41–64) years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population. PMID:28326101

  15. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  16. Environmental epigenetics: a role in endocrine disease?

    PubMed

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  17. Syndrome-Associated Tumors by Organ System

    PubMed Central

    Gonzalez, Raul S.; Riddle, Nicole D.

    2016-01-01

    Certain tumors suggest the possibility of a patient harboring a genetic syndrome, particularly in children. Syndrome-associated tumors of the gastrointestinal tract, genitourinary tract, gynecologic tract, heart, lungs, brain, eye, endocrine organs, and hematopoietic system will be briefly discussed. PMID:27617151

  18. Coronary Microvascular Function and Beyond: The Crosstalk between Hormones, Cytokines, and Neurotransmitters

    PubMed Central

    Dal Lin, Carlo; Tona, Francesco

    2015-01-01

    Beyond its hemodynamic function, the heart also acts as a neuroendocrine and immunoregulatory organ. A dynamic communication between the heart and other organs takes place constantly to maintain cardiovascular homeostasis. The current understanding highlights the importance of the endocrine, immune, and nervous factors to fine-tune the crosstalk of the cardiovascular system with the entire body. Once disrupted, this complex interorgan communication may promote the onset and the progression of cardiovascular diseases. Thus, expanding our knowledge on how these factors influence the cardiovascular system can lead to novel therapeutic strategies to improve patient care. In the present paper, we review novel concepts on the role of endocrine, immune, and nervous factors in the modulation of microvascular coronary function. PMID:26124827

  19. Aging of the endocrine system and its potential impact on sarcopenia.

    PubMed

    Vitale, Giovanni; Cesari, Matteo; Mari, Daniela

    2016-11-01

    Sarcopenia, occurring as a primary consequence of aging, is a progressive generalized decline of skeletal muscle mass, strength and function. The pathophysiology of sarcopenia is complex and multifactorial. One major cause of muscle mass and strength loss with aging appears to be the alteration in hormonal networks involved in the inflammatory processes, muscle regeneration and protein synthesis. This review describes the recent findings concerning the role of the aging on the endocrine system in the development of sarcopenia. We also report the benefits and safety of hormone replacement therapy in elderly subjects and discuss future perspectives in the therapy and prevention of skeletal muscle aging. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  20. Effect of acetochlor on transcription of genes associated with oxidative stress, apoptosis, immunotoxicity and endocrine disruption in the early life stage of zebrafish.

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Liu, Xinju; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2015-09-01

    The study presented here aimed to characterize the effects of acetochlor on expression of genes related to endocrine disruption, oxidative stress, apoptosis and immune system in zebrafish during its embryo development. Different trends in gene expression were observed after exposure to 50, 100, 200μg/L acetochlor for 96h. Results demonstrated that the transcription patterns of many key genes involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis (e.g., VTG1, ERβ1, CYP19a and TRα), cell apoptosis pathway (e.g., Bcl2, Bax, P53 and Cas8), as well as innate immunity (e.g., CXCL-C1C, IL-1β and TNFα) were affected in newly hatched zebrafish after exposure to acetochlor. In addition, the up-regulation of CAT, GPX, GPX1a, Cu/Zn-SOD and Ogg1 suggested acetochlor might trigger oxidative stress in zebrafish. These finding indicated that acetochlor could simultaneously induce multiple responses during zebrafish embryonic development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  2. Effect of central and ovarian endocrine disturbances on the female genital tract--clinical signs and symptoms.

    PubMed

    Sillem, M; Rabe, T; Runnebaum, B

    1997-01-01

    Disorders of the female genital tract caused by endocrine disturbances commonly lead to two presenting complaints: dysfunctional uterine bleeding and infertility. In oestrogen deficiency, sequelae of vaginal atrophy may also be present. The common pathogenic "turntable" of these clinical signs is an impaired ovarian function, for which primary (i.e. intraovarian) and secondary (i.e. resulting from dysfunctions of other endocrine systems) causes are known. Primary ovarian failure can be the result of gonadal dysgenesis or premature menopause. Secondary ovarian dysfunction may be caused by hypothalamic-pituitary dysregulation, hyperprolactinaemia, thyroid disorders, and hyperandrogenaemia, which often also has an intraovarian component. For clinical considerations, several severities of ovarian dysfunction can be distinguished, ranging from corpus luteum insufficiency which is only relevant for the selection of infertility treatment to the complete absence of ovarian steroidogenesis leading to severe long term sequelae of the skeletal, cardiovascular and probably central nervous systems. Diagnosis and differential diagnosis are made by clinical examination, vaginal ultrasound, hormone assays, curettage and laparoscopy. Rarely, additional techniques like magnetic resonance imaging of the pituitary or the adrenals, or sequential catheterization of the inferior vena cava are needed.

  3. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  4. Valine Supplementation in a Reduced Protein Diet Regulates Growth Performance Partially through Modulation of Plasma Amino Acids Profile, Metabolic Responses, Endocrine, and Neural Factors in Piglets.

    PubMed

    Zhang, Xiaoya; Liu, Xutong; Jia, Hongmin; He, Pingli; Mao, Xiangbing; Qiao, Shiyan; Zeng, Xiangfang

    2018-03-28

    The objective of this study was to investigate whether valine (Val) supplementation in a reduced protein (RP) diet regulates growth performance associated with the changes in plasma amino acids (AAs) profile, metabolism, endocrine, and neural system in piglets. Piglets or piglets with a catheter in the precaval vein were randomly assigned to two treatments, including two RP diets with standardized ileal digestible (SID) Val:Lysine (Lys) ratio of 0.45 and 0.65, respectively. The results indicated that piglets in the higher Val:Lys ratio treatment had higher average daily feed intake (ADFI) ( P < 0.001), average daily gain (ADG) ( P = 0.001), feed conversion ratio (FCR) ( P = 0.004), lower plasma urea nitrogen ( P = 0.032), expression of gastric cholecystokinin (CCK), and hypothalamic pro-opiomelanocortin (POMC). Plasma AAs profiles including postprandial plasma essential AAs (EAAs) profile and in serum, muscle, and liver involved in metabolism of AAs and fatty acids were significantly different between two treatments. In conclusion, Val influenced growth performance associated with metabolism of AAs and fatty acids and both endocrine and neural system in piglets.

  5. Nervous system regulation of the cancer genome

    PubMed Central

    Cole, Steven W.

    2012-01-01

    Genomics-based analyses have provided deep insight into the basic biology of cancer and are now clarifying the molecular pathways by which psychological and social factors can regulate tumor cell gene expression and genome evolution. This review summarizes basic and clinical research on neural and endocrine regulation of the cancer genome and its interactions with the surrounding tumor microenvironment, including the specific types of genes subject to neural and endocrine regulation, the signal transduction pathways that mediate such effects, and therapeutic approaches that might be deployed to mitigate their impact. Beta-adrenergic signaling from the sympathetic nervous system has been found to up-regulated a diverse array of genes that contribute to tumor progression and metastasis, whereas glucocorticoid-regulated genes can inhibit DNA repair and promote cancer cell survival and resistance to chemotherapy. Relationships between socio-environmental risk factors, neural and endocrine signaling to the tumor microenvironment, and transcriptional responses by cancer cells and surrounding stromal cells are providing new mechanistic insights into the social epidemiology of cancer, new therapeutic approaches for protecting the health of cancer patients, and new molecular biomarkers for assessing the impact of behavioral and pharmacologic interventions. PMID:23207104

  6. Effects of 4-Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) Exposure on Reproduction and Endocrine System of Zebrafish.

    PubMed

    Lee, Jiyun; Park, Na-Youn; Kho, Younglim; Ji, Kyunghee

    2018-02-06

    The compound 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP), a derivative of bisphenol S (BPS), has been detected in thermal paper and human urine samples; however, its potential effects on the endocrine system are largely unknown. The present study was conducted to determine the adverse effects of BPSIP on egg production, relative organ weights, plasma levels of sex hormones, and transcription of genes related to the hypothalamus-pituitary-gonad (HPG) axis in zebrafish (Danio rerio). In male fish, the gonadosomatic index was significantly decreased at concentrations of 5 and 50 μg/L BPSIP. The estrogenic (increase in the 17β-estradiol/testosterone [E2/T] ratio) and antiandrogenic (decrease in T) effects were observed in fish exposed to BPSIP and males were more sensitive to the adverse effects than females. The changes in sex hormones were supported by the regulation of genes along the HPG axis, such as cyp19, 17βhsd, and cyp17 transcripts. Although the effective concentration for endocrine disruption was greater than that of BPS, the actions of BPSIP on the steroidogenic pathway were similar to the effects of BPS exposure.

  7. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    PubMed Central

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  8. 50 CFR 550.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one of more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  9. 45 CFR 2490.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  10. 45 CFR 1153.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  11. 12 CFR 410.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., cosmetic disfigurement, or anatomical loss affecting one of more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  12. 45 CFR 1175.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one of more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  13. 22 CFR 1103.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., cosmetic disfigurement, or anatomical loss affecting one of more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  14. 49 CFR 1014.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  15. 46 CFR 507.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  16. 34 CFR 105.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  17. 22 CFR 530.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  18. International network on endocrine complications in thalassaemia (I-CET): an opportunity to grow.

    PubMed

    De Sanctis, V; Soliman, A T; Angastiniotis, M; Eleftheriou, A; Kattamis, Ch; Karimi, M; El Kholy, M; Elsedfy, H; Yassin, Mohd Abdel Daem Mohd; El Awwa, A; Stoeva, I; Skordis, N; Raiola, G; Fiscina, B

    2012-04-01

    Most of the endocrine complications in thalassaemia are attributable to iron overload which may be the result of economic circumstances (expense of the chelation therapy), late onset of chelation therapy or poor compliance with the iron chelation therapy. The major difficulties reported by hematologists or pediatric endocrinologists experienced in thalassaemias or thalassaemia syndromes in following growth disorders and endocrine complications were: lack of familiarity with medical treatment of endocrine complications (40%), interpretation of endocrine tests (30%), costs (65%), absence of paediatric endocrinologist for consultation on growth disorders and endocrine complications (27%), facilities (27%), other (e.g. lack of collaboration and on-time consultation between thalassaemic Centers supervised by hematologists and endocrinologists) (17%). Because any progress we make in research into growth disorders and endocrine complications in thalassaemia should be passed on to all those suffering from it, guaranteeing them the same therapeutic benefits and the same quality of life, on the 8th of May, 2009 in Ferrara (Italy), the International Network on Endocrine Complications in Thalassemia (I-CET) was founded. The I-CET group is planning to conduct, in Ferrara in May 2012, a workshop, "MRI and Endocrine Complications in Thalassaemia", and in Doha (Qatar) in September 2012, a 3-day intensive course entitled, "Growth disorders and Endocrine Complications in Thalassaemia", to provide interested pediatricians, physicians and hematologists from all over the world with an in-depth approach to the diagnosis and management of growth and endocrine disorders in thalassaemic patients.

  19. 29 CFR 32.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disfigurement, or anatomical loss affecting one or more of the following body systems: neurological...; digestive; genito-urinary; hemic and lymphatic; skin; and endocrine; (ii) Any mental or psychological...)(i) A college, university, or other postsecondary institution, or a public system of higher education...

  20. 29 CFR 32.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disfigurement, or anatomical loss affecting one or more of the following body systems: neurological...; digestive; genito-urinary; hemic and lymphatic; skin; and endocrine; (ii) Any mental or psychological...)(i) A college, university, or other postsecondary institution, or a public system of higher education...

  1. 41 CFR 105-8.103 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 105-8.103 Public Contracts and Property Management Federal Property Management Regulations System... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  2. 41 CFR 105-8.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 105-8.103 Public Contracts and Property Management Federal Property Management Regulations System... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  3. GAD-Alum (Diamyd) Administered Into Lymph Nodes in Combination With Vitamin D in Type 1 Diabetes

    ClinicalTrials.gov

    2018-05-02

    Diabetes Mellitus, Type 1; Diabetes Mellitus; Autoimmune Diseases; Metabolic Disease; Glucose Metabolism Disorders; Immune System Diseases; Endocrine System Diseases; Juvenile Diabetes; Insulin Dependent Diabetes; Autoimmune Diabetes; Vitamin D; Physiological Effects of Drugs

  4. Simultaneous determination of phthalates, their metabolites, alkylphenols and bisphenol A using GC-MS in urine of men with fertility problems.

    PubMed

    Kranvogl, Roman; Knez, Jure; Miuc, Alen; Vončina, Ernest; Vončina, Darinka Brodnjak; Vlaisavljević, Veljko

    2014-01-01

    A GC-MS method was successfully applied to measure simultaneously the concentrations of endocrine disrupting compounds (5 dialkyl phthalates, 9 phthalate monoesters, 3 alkylphenols and bisphenol A) in 136 male urine samples. In the present study the method was validated and concentrations of EDCs were determined. The results were compared with results from other studies. Correlations between endocrine disrupting compounds and also correlations of endocrine disrupting compounds with two semen quality parameters are presented and evaluated. Significant positive correlations were found between almost all the endocrine disrupting compounds. The parameter sum of DEHP (SUM DEHP) was positively correlated to all the endocrine disrupting compounds but negatively to two semen quality parameters. Negative correlations between the endocrine disrupting compounds and the semen quality parameters could indicate that endocrine disrupting compounds could cause reproductive problems by decreasing the semen count and quality. This research will have helped to evaluate human exposure to endocrine disrupting compounds.

  5. 45 CFR 85.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... disfigurement, or anatomical loss affecting one or more of the following body systems: neurological...; digestive; genito-urinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or psychological...

  6. 44 CFR 16.103 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  7. 44 CFR 16.103 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or...

  8. [Structural CNS abnormalities responsible for coincidental occurrence of endocrine disorders, epilepsy and psychoneurologic disorders in children and adolescents].

    PubMed

    Starzyk, Jerzy; Kwiatkowski, Stanisław; Kaciński, Marek; Kroczka, Sławomir; Wójcik, Małgorzata

    2010-01-01

    In the population of children and adolescents, epilepsy affects 0.5-1% of individuals; approximately 3% of general population suffer from non-epileptic seizures, while endocrine disorders are several times more frequent. All of the above factors result in a relatively common non-accidental occurrence of endocrine disorders, epilepsy and neuropsychiatric disorders. However, structural central nervous system (CNS) abnormalities that cause both endocrine and neurologic disorders seem to be markedly less common. No reports addressing this problem are available in the literature. 1) Assessment of the frequency of non-coincidental occurrence of epilepsy and endocrine disorders in inpatients and outpatients with structural CSN abnormalities managed in Department Endocrinology. 2) Presentation of diagnostic and therapeutic difficulties in these patients, and 3) An attempt at defining a common etiology of both disorders. A retrospective analysis of the medical records of the patients with coincidence of endocrine disorders and epilepsy and psycho-neurologic disorders (treated in Chair and Department of Children's and Adolescents Neurology, University Children's Hospital of Krakow or in another pediatric neurology center) and with organic CNS abnormalities (treated or followed up as inpatients and outpatient of Department of Pediatric Surgery, Children's University Hospital of Krakow, was performed. The patients were selected from among several thousands of children treated as inpatients and outpatients of the Department. Various forms of symptomatic and idiopathic epilepsy and other psychoneurological disorders (disorders of behavior and emotions, obsession-compulsion syndromes, stereotypias, aggression, compulsive ideas and movements, anorexia or hypothalamic obesity) coincident with one or more endocrine disorders such as precocious or delayed puberty, multihormonal pituitary deficiency, panhypopituitarism and secondary hypothyroidism were detected in 42 patients with suprasellar arachnoid cyst (7 patients), septo-optic dysplasia (8 patients), craniopharyngioma (15 patients), glioma of the optic chiasm in neurofibromatosis type 1 (NF-1) (12 patients). There were no endocrine disorders in any of the ten patients with hamartoma of the hypothalamus and CPP. Endocrine and/ or neurological disorders did not resolve or were progressive after neurosurgery. Of 42 patients, a group of seven children representative for individual disorders was selected. In those patients, the etiology of both endocrine disorders, epilepsy and neuropsychiatric disorders was suspected to be common. 1. Various structural CNS abnormalities are the cause of concomitant epilepsy and endocrinopathy, although in some cases a direct impact of a genetic factor on the occurrence of both disorders or a mere coincidence cannot be ruled out. 2. Psychoneurological disorders usually precede the onset of endocrinopathy. 3. For this reason, MR or CT CNS imaging should be performed in any case of central neurological disorders, disorders of behavior, epilepsy, obsessive-compulsive syndrome, but also in patients with delayed psycho-motor development, delayed or accelerated growth and pubertal development. All of the above-mentioned manifestations may be symptoms of structural CNS abnormalities and their early treatment determines the child's future.

  9. Integrating Artificial Immune, Neural and Endrocine Systems in Autonomous Sailing Robots

    DTIC Science & Technology

    2010-09-24

    system - Development of an adaptive hormone system capable of changing operation and control of the neural network depending on changing enviromental ...and control of the neural network depending on changing enviromental conditions • First basic design of the MOOP and a simple neural-endocrine based

  10. 75 FR 77869 - Endocrine Disruptor Screening Program; Second List of Chemicals for Tier 1 Screening; Extension...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPPT-2009-0477; FRL-8856-5] Endocrine Disruptor Screening... Federal Register issue of November 17, 2010, concerning the Endocrine Disruptor Screening Program's (EDSP... CONTACT. List of Subjects Environmental protection, Chemicals, Drinking water, Endocrine disruptors...

  11. 77 FR 12297 - Petition To Demonstrate Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening Program; Notice of Availability... chemicals to receive orders under the Endocrine Disruptor Screening Program by demonstrating the information... potential endocrine effects. Potentially affected entities identified by the North American Industrial...

  12. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    PubMed

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. How UV Light Touches the Brain and Endocrine System Through Skin, and Why.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Plonka, Przemyslaw M; Szaflarski, Jerzy P; Paus, Ralf

    2018-05-01

    The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

  14. Diagnostic and therapeutic approach to hypothalamic amenorrhea.

    PubMed

    Genazzani, Alessandro D; Ricchieri, Federica; Lanzoni, Chiara; Strucchi, Claudia; Jasonni, Valerio M

    2006-12-01

    Hypothalamic amenorrhea (HA) is a secondary amenorrhea with no evidence of endocrine/systemic causal factors, mainly related to various stressors affecting neuroendocrine control of the reproductive axis. In clinical practice, HA is mainly associated with metabolic, physical, or psychological stress. Stress is the adaptive response of our body through all its homeostatic systems, to external and/or internal stimuli that activate specific and nonspecific physiological pathways. HA occurs generally after severe stress conditions/situations such as dieting, heavy training, or intense emotional events, all situations that can induce amenorrhea with or without body weight loss and HA is a secondary amenorrhea with a diagnosis of exclusion. In fact, the diagnosis is essentially based on a good anamnestic investigation. It has to be investigated using the clinical history of the patient: occurrence of menarche, menstrual cyclicity, time and modality of amenorrhea, and it has to be exclude any endocrine disease or any metabolic (i.e., diabetes) and systemic disorders. It is necessary to identify any stress situation induced by loss, family or working problems, weight loss or eating disorders, or physical training or agonist activity. Peculiar, though not specific, endocrine investigations might be proposed but no absolute parameter can be proposed since HA is greatly dependent from individual response to stressors and/or the adaptive response to stress. This article tries to give insights into diagnosis and putative therapeutic strategies.

  15. [Hypophysis-adrenal and thyroid secretion at law order staff depending on professional loading].

    PubMed

    Koubassov, R V; Barachevsky, Yu E; Ivanov, A M

    2015-01-01

    A current etiological and pathogenic opinion about human health disturbance thereupon extreme factor effects is shown that this cause is principal mechanism of regulatory system (neuroimmunoendocrine complex) distress. In endocrine link occurs hormonal disbalance in hypothalamus-hypophysis axis, physiological interrelation disturbances in central-peripheral gland system (hypophysis-adrenal, hypophysis-thyroid) and metabolism abnormalities subsequently. Our aim was to determine the particular content of adrenocorticotropic and thyrothrophin hormone, cortisol, thyroxin and triiodthyronine features at law order staff in dependence from professional loading. It's provided two investigation series among law order staff groups--combatants, ordinary policemen and military school students. The investigation period for all people corresponds to combat mission beginning and its finish. In blood serum an adrenocorticotropic (ACTH) and thyrothrophin (TSH) hormone, cortisol, thyroxin (T) and triiodthyronine (T) levels were determined. A higher ACTH and TSH levels detected at combatants in both investigation series. A cortisol, T4 and T3 at combatants before military mission were least in comparative with other groups, but after mission it indexes were largest. Prolonged changes of endocrine secretory function that lead to hormonal disbalance can result to adaptation derangement. In connection with it in medical providing system for person that undergo extreme negative professional factors it's necessary create a special endocrine link with the view of organism resistance and life viability to extreme emergency factors and for prevention of pathological conditions.

  16. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks.

    PubMed

    Dvorak, Christopher C; Gracia, Clarisa R; Sanders, Jean E; Cheng, Edward Y; Baker, K Scott; Pulsipher, Michael A; Petryk, Anna

    2011-12-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation before hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is 1 of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary's production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient's gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, whereas methods of fertility preservation are limited in all but postpubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system.

    PubMed

    Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas

    2010-09-10

    Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.

  18. [Menstruation, inflammation and comorbidities: implications for woman health].

    PubMed

    Graziottin, A; Zanello, P P

    2015-02-01

    Menstruation is the genital sign of systemic endocrine events. Heterogeneity of perimenstrual symptoms is associated with levels of inflammation, triggered by the fall of estrogens at genital and systemic level. Aim of the review is to concisely analyze the evidence on: 1) genital and systemic endocrine and inflammatory events associated with periods and perimenstrual symptoms; 2) rationale of intervention to reduce their intensity and impact on women's lives. This review of the literature, selected with a clinical perspective, supports the inflammatory basis of the menstrual event, triggered by the estrogens' and progesterone' fall. Moreover, the review analyzes the endocrine and inflammatory basis of perimenstrual pelvic and extrapelvic symptoms such as: menstrual pain, menstrual irregularities, premenstrual syndrome, gastrointestinal symptoms, catamenial headache, depression, perimenstrual myalgia, joint pain, allergies and asthma, heavy menstrual bleeding, associated ironless anemia, brain and behavioral consequences. Inflammation, with increase of cytokines and other markers, is modulated by the degranulation of mast cells at the basal level of the endometrium, in the blood, in all the organs where mast-cell are already activated from local pathologies and within the brain. The shift of inflammation from physiological to a pathologic intensity increases the severity of perimenstrual symptoms. Symptoms persist, moderately attenuated, also during the hormone free interval (HFI) in contraception. The HFI reduction from seven to two days significantly reduces menstrual inflammation and associated symptoms.

  19. [Arterial hypertension secondary to endocrine disorders].

    PubMed

    Minder, Anna; Zulewski, Henryk

    2015-06-01

    Endocrine hypertension offers a potentially curative therapy if the underlying cause is identified and treated accordingly. In contrast to the high prevalence of arterial hypertension especially in the elderly, the classical endocrine causes remain a rare entity. Among patients with arterial hypertension the prevalence of Cushing's syndrome or pheochromocytoma is less than 1%. Primary hyperaldosteronism is more frequent with a reported prevalence of up to 9%. In order to avoid unnecessary, costly and potentially harmful evaluations and therapies due to the limited sensitivity and specificity of the critical endocrine tests it is mandatory to limit the exploration for endocrine causes to preselected patients with high pretest probability for an endocrine disorder. Younger age at manifestation of arterial hypertension or drug resistant hypertension together with other clinical signs of an endocrine disorder should raise the suspicion and prompt the appropriate evaluation.

  20. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health

    PubMed Central

    Campbell, Sonya; Eley, Sarah E. A.; McKechanie, Andrew G.; Stanfield, Andrew C.

    2016-01-01

    Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive–compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions. PMID:27869718

  1. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  2. 76 FR 49473 - Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Utility of List 1 Chemicals Screened Through EPA's Endocrine Disruptor Screening Program; Notice of... to the test orders issued under the Endocrine Disruptor Screening Program. DATES: Comments must be... testing of chemical substances for potential endocrine effects. Potentially affected entities, identified...

  3. Application of endocrine disruptor screening program fish short-term reproduction assay: Reproduction and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus) exposed to Bermuda pond sediment.

    PubMed

    Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P

    2015-06-01

    A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.

  4. Development of the Clinic of Endocrinology, diabetes and metabolic disorders.

    PubMed

    Shubeska Stratrova, S

    2013-01-01

    The Clinic of Endocrinology, diabetes and metabolic disorders was founded in 1975 by Prof d-r Alexandar Plashevski. Healthcare, educational and scientific activities in the Clinic of Endocrinology are performed in its departments. The Department for hospitalized diabetic and endocrine patients consists of the metabolic and endocrine intensive care unit, the department for diagnosis and treatment of diabetics and endocrine patients, day hospital, the department for education of diabetic patients, and the national center for insulin pump therapy. The Center for Diabetes was established in 1972 by Prof d-r Dimitar Arsov. In 1975, Prof d-r Alexandar Plasheski broadened the activities of the Center for Diabetes. It was dislocated in 1980, with new accommodation outside the clinic. Since then the Center has consisted of several organized units: two specialist outpatient clinics for diabetic patients, biochemical and endocrine laboratory, sub-departments for: diabetic foot, cardiovascular diagnosis, ophthalmology, and urgent interventions. The Department of Endocrinology and Metabolic Disorders for outclinic endocrine patients was established in 1980, and it integrates the following sub-departments: thyrology, andrology, reproductive endocrinology, obesity and lipid disorders and sub-department for osteoporosis. The educational staff of the Clinic of Endocrinology organizes theoretical and practical education about Clinical Investigation and Internal Medicine with credit transfer system course of study of the Medical Faculty, Faculty of Stomatology, postgraduate studies, specializations and sub-specializations. Symposiums, 3 congresses, schools for diabetes and osteoporosis and continuous medical education were also organized. The Clinic of Endocrinology was initiator, organizer, founder and the seat of several medical associations.

  5. Endocrine and metabolic assessment in adults with Langerhans cell histiocytosis.

    PubMed

    Montefusco, L; Harari, S; Elia, D; Rossi, A; Specchia, C; Torre, O; Adda, G; Arosio, M

    2018-05-01

    Diabetes insipidus (DI) is one of most common complications of Langerhans cell histiocytosis (LCH) but prevalence of anterior pituitary deficiencies and metabolic alterations have not been clearly defined yet. Evaluate prevalence of endocrine and metabolic manifestations in a cohort of patients affected by Pulmonary LCH. Observational cross-sectional study on 18 adults (7 M/11 F, 42±12years) studied for complete basal and dynamic endocrine lab tests and glucose metabolism. Hypothalamic-pituitary endocrine alterations were found in 9 patients: 9 had DI, 5 Growth Hormone Deficiency (GHD), 5 central hypogonadism, 3 central hypothyroidism and 1 central hypoadrenalism. Hyperprolactinemia and hypothalamic syndrome were found in 2 patients each. All these central endocrine alterations were always associated to DI. Five of the 10 MRI performed showed abnormalities. Prevalence of obesity and glucose alterations (either DM or IFG/IGT) were respectively 39% and 33%, higher than expected basing on epidemiological data on general Italian population. Multi-system-LCH without risk-organ involvement (LCH MS-RO - ) seems to have slightly higher prevalence of insulin resistance, glucose alterations and metabolic syndrome than LCH with isolated lung involvement (LCH SS lung + ). A papillary BRAFV600E positive thyroid carcinoma was diagnosed in one patient. The presence of anterior pituitary deficiencies should be systematically sought in all LCH patients with DI both at diagnosis and during the follow-up by basal and dynamic hormonal assessment. Patients with pulmonary LCH, particularly those with MS disease, have a worse metabolic profile than general population. Occurrence of papillary thyroid carcinoma has been reported. Copyright © 2017. Published by Elsevier B.V.

  6. Mutant HABP2 Causes Non-Medullary Thyroid Cancer | Center for Cancer Research

    Cancer.gov

    The thyroid is a butterfly-shaped gland that lies at the base of the throat in front of the windpipe. A member of the endocrine system, the thyroid secretes hormones to regulate heart rate, blood pressure, temperature, and metabolism. Cancer of the thyroid is the most common endocrine cancer and the eighth most common cancer in the U.S. An estimated 63,450 Americans will be diagnosed with thyroid cancer this year. The vast majority is of follicular cell origin, and the remaining cancer originates from parafollicular cells, so called medullary thyroid cancer.

  7. [Role of psychosocial stress in complex diseases].

    PubMed

    Scantamburlo, G; Scheen, A J

    2012-01-01

    Complex diseases are chronic diseases where the interrelations between genetic predisposition and environmental factors play an essential role in the arisen and the maintenance of the pathology. Upon psychological stress, the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system are activated resulting in release of glucocorticoids and catecholamines. Chronic stress may induce complex diseases where alterations of nervous, endocrine and immune systems are involved. Thus, chronic stress is more likely to induce a range of effects, depending on the capacity of the subject to cope with stress. CRH ("Corticotropin Releasing Hormone") is a key factor in the stress-immunity relationship. In this article, we propose an overview of the interrelations between central nervous, endocrine and immune systems and implications for health and diseases. The objective for the clinician is to propose therapeutic strategies targeting changes in human behaviour to cope with a potentially stressful environment.

  8. Microencapsulated cells as hormone delivery systems.

    PubMed

    Sun, A M; Goosen, M F; O'Shea, G

    1987-01-01

    Transplantation of pancreatic islets of Langerhans has been shown to prevent the development of many of the complications associated with diabetes. Transplanted islets, however, are readily rejected by the immune system. The use of artificial membranes to isolate the transplanted islets from the immune system of the host prolongs islet allografts in experimental animals. We have developed a method for encapsulating islets in semipermeable membranes composed of alginate and polylysine. The same technique can be applied to other endocrine cell types. The capsules are 700 to 800 micron in diameter with a hydrogel membrane approximately 4 micron thick. Intraperitoneal allografts of 5 x 10(3) encapsulated islets reversed diabetes in rats for up to 21 months and intact capsules with viable beta cells could be recovered from the recipients. Microencapsulation of endocrine cells for transplantation could potentially be used in the clinical treatment of hormone deficiency diseases.

  9. Socioeconomic conditions across life related to multiple measures of the endocrine system in older adults: Longitudinal findings from a British birth cohort study.

    PubMed

    Bann, David; Hardy, Rebecca; Cooper, Rachel; Lashen, Hany; Keevil, Brian; Wu, Frederick C W; Holly, Jeff M P; Ong, Ken K; Ben-Shlomo, Yoav; Kuh, Diana

    2015-12-01

    Little is known about how socioeconomic position (SEP) across life impacts on different axes of the endocrine system which are thought to underlie the ageing process and its adverse consequences. We examined how indicators of SEP across life related to multiple markers of the endocrine system in late midlife, and hypothesized that lower SEP across life would be associated with an adverse hormone profile across multiple axes. Data were from a British cohort study of 875 men and 905 women followed since their birth in March 1946 with circulating free testosterone and insulin-like growth factor-I (IGF-I) measured at both 53 and 60-64 years, and evening cortisol at 60-64 years. Indicators of SEP were ascertained prospectively across life-paternal occupational class at 4, highest educational attainment at 26, household occupational class at 53, and household income at 60-64 years. Associations between SEP and hormones were investigated using multiple regression and logistic regression models. Lower SEP was associated with lower free testosterone among men, higher free testosterone among women, and lower IGF-I and higher evening cortisol in both sexes. For example, the mean standardised difference in IGF-I comparing the lowest with the highest educational attainment at 26 years (slope index of inequality) was -0.4 in men (95% CI -0.7 to -0.2) and -0.4 in women (-0.6 to -0.2). Associations with each hormone differed by SEP indicator used and sex, and were particularly pronounced when using a composite adverse hormone score. For example, the odds of having 1 additional adverse hormone concentration in the lowest compared with highest education level were 3.7 (95% CI: 2.1, 6.3) among men, and 1.6 (1.0, 2.7) among women (P (sex interaction) = 0.02). We found no evidence that SEP was related to apparent age-related declines in free testosterone or IGF-I. Lower SEP was associated with an adverse hormone profile across multiple endocrine axes. SEP differences in endocrine function may partly underlie inequalities in health and function in later life, and may reflect variations in biological rates of ageing. Further studies are required to assess the likely functional relevance of these associations. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals alter cell differentiation. Since 2010, research has shown that trauma and other behavioral inputs can function as 'environmental signals,' can be encoded in gene regulation networks in a variety of cells and organs, and can be passed on to subsequent generations. So now we come full circle: environmental chemicals mimic hormones or other metabolic signaling molecules and now behavioral experience can be transduced into chemical signals that also modify gene expression. © 2016 American Society of Andrology and European Academy of Andrology.

  11. 45 CFR 84.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive, digestive, genito-urinary; hemic and lymphatic; skin; and endocrine; or (B) any mental or... government; (2)(i) A college, university, or other postsecondary institution, or a public system of higher...

  12. 45 CFR 84.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive, digestive, genito-urinary; hemic and lymphatic; skin; and endocrine; or (B) any mental or... government; (2)(i) A college, university, or other postsecondary institution, or a public system of higher...

  13. 45 CFR 84.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive, digestive, genito-urinary; hemic and lymphatic; skin; and endocrine; or (B) any mental or... government; (2)(i) A college, university, or other postsecondary institution, or a public system of higher...

  14. Multi-factorial influences on sex ratio: a spatio-temporal investigation of endocrine disruptor pollution and neighborhood stress

    PubMed Central

    McDonald, Ewan; Watterson, Andrew; Tyler, Andrew N; McArthur, John; Scott, E Marion

    2014-01-01

    Background: It is suggested the declining male birth proportion in some industrialized countries is linked to ubiquitous endocrine disruptor exposure. Stress and advanced parental age are determinants which frequently present positive findings. Multi-factorial influences on population sex ratio are rarely explored or tested in research. Objectives: To test the hypothesis that dual factors of pollution and population stress affects sex proportion at birth through geographical analysis of Central Scotland. Methods: The study incorporates the use of Geographical Information Systems (GIS) tools to overlay modeled point source endocrine disruptor air emissions with “small-area” data on multiple deprivation (a proxy measurement of stress) and birth sex. Historical review of regional sex ratio trends presents additional data on sex ratio in Scotland to consider. Results: There was no overall concentration in Central Scotland of low sex ratio neighborhoods with areas where endocrine disruptor air pollution and deprivation or economic stress were high. Historical regional trends in Scotland (from 1973), however, do show significantly lower sex ratio values for populations where industrial air pollution is highest (i.e. Eastern Central Scotland). Conclusions: Use of small area data sets and pollution inventories is a potential new method of inquiry for reproductive environmental and health protection monitoring and has produced interesting findings. PMID:25000111

  15. DRAFT METHODOLOGY FOR DERIVATION OF WATER ...

    EPA Pesticide Factsheets

    Development and body functions of many organisms are directed by the endocrine system. Endocrine Disrupting Chemicals (EDCs), are those exogenous (and endogenous) compounds that may interfere with this regulatory function because they may either mimic or suppress the action of the body’s natural hormones. Because these chemicals are increasingly present in the environment as a result of human activities and they only require tiny amounts to disrupt endocrine functions, EDCs may have major impacts on ecology and particularly aquatic life as evidenced by the abundance of field observations verified by both laboratory and controlled in situ experiments. The Clean Water Act § 304(a)(1) authorizes the Administrator to develop and publish criteria for water quality that are protective of aquatic life. Traditionally, ambient water quality criteria for the protection of aquatic life have been derived using the 1985 Guidelines (Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Life and Their Uses). These guidelines have comprehensive data requirements for toxicity tests using a variety of aquatic taxa, thus ensuring protection of the existing aquatic assemblage, and helping to ensure a goal of protecting and restoring “ecological integrity”. Some “Pharmaceuticals and Personal Care Products” (PPCPs), particularly those exhibiting endocrine disrupting activity, have two unique features, which distinguish them from

  16. MODELING THE ENDOCRINE CONTROL OF VITELLOGENIN PRODUCTION IN FEMALE RAINBOW TROUT

    PubMed Central

    Sundling, Kaitlin; Craciun, Gheorghe; Schultz, Irvin; Hook, Sharon; Nagler, James; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Kim, Jonghan; Hayton, William

    2015-01-01

    The rainbow trout endocrine system is sensitive to changes in annual day length, which is likely the principal environmental cue controlling its reproductive cycle. This study focuses on the endocrine regulation of vitellogenin (Vg) protein synthesis, which is the major egg yolk precursor in this fish species. We present a model of Vg production in female rainbow trout which incorporates a biological pathway beginning with sex steroid estradiol-17β levels in the plasma and concluding with Vg secretion by the liver and sequestration in the oocytes. Numerical simulation results based on this model are compared with experimental data for estrogen receptor mRNA, Vg mRNA, and Vg in the plasma from female rainbow trout over a normal annual reproductive cycle. We also analyze the response of the model to parameter changes. The model is subsequently tested against experimental data from female trout under a compressed photoperiod regime. Comparison of numerical and experimental results suggests the possibility of a time-dependent change in oocyte Vg uptake rate. This model is part of a larger effort that is developing a mathematical description of the endocrine control of reproduction in female rainbow trout. We anticipate that these mathematical and computational models will play an important role in future regulatory toxicity assessments and in the prediction of ecological risk. PMID:24506554

  17. Rare diseases in clinical endocrinology: a taxonomic classification system.

    PubMed

    Marcucci, G; Cianferotti, L; Beck-Peccoz, P; Capezzone, M; Cetani, F; Colao, A; Davì, M V; degli Uberti, E; Del Prato, S; Elisei, R; Faggiano, A; Ferone, D; Foresta, C; Fugazzola, L; Ghigo, E; Giacchetti, G; Giorgino, F; Lenzi, A; Malandrino, P; Mannelli, M; Marcocci, C; Masi, L; Pacini, F; Opocher, G; Radicioni, A; Tonacchera, M; Vigneri, R; Zatelli, M C; Brandi, M L

    2015-02-01

    Rare endocrine-metabolic diseases (REMD) represent an important area in the field of medicine and pharmacology. The rare diseases of interest to endocrinologists involve all fields of endocrinology, including rare diseases of the pituitary, thyroid and adrenal glands, paraganglia, ovary and testis, disorders of bone and mineral metabolism, energy and lipid metabolism, water metabolism, and syndromes with possible involvement of multiple endocrine glands, and neuroendocrine tumors. Taking advantage of the constitution of a study group on REMD within the Italian Society of Endocrinology, consisting of basic and clinical scientists, a document on the taxonomy of REMD has been produced. This document has been designed to include mainly REMD manifesting or persisting into adulthood. The taxonomy of REMD of the adult comprises a total of 166 main disorders, 338 including all variants and subtypes, described into 11 tables. This report provides a complete taxonomy to classify REMD of the adult. In the future, the creation of registries of rare endocrine diseases to collect data on cohorts of patients and the development of common and standardized diagnostic and therapeutic pathways for each rare endocrine disease is advisable. This will help planning and performing intervention studies in larger groups of patients to prove the efficacy, effectiveness, and safety of a specific treatment.

  18. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals.

    PubMed

    Trasande, Leonardo; Vandenberg, Laura N; Bourguignon, Jean-Pierre; Myers, John Peterson; Slama, Remy; Vom Saal, Frederick; Zoeller, Robert Thomas

    2016-11-01

    Evidence increasingly confirms that synthetic chemicals disrupt the endocrine system and contribute to disease and disability across the lifespan. Despite a United Nations Environment Programme/WHO report affirmed by over 100 countries at the Fourth International Conference on Chemicals Management, 'manufactured doubt' continues to be cast as a cloud over rigorous, peer-reviewed and independently funded scientific data. This study describes the sources of doubt and their social costs, and suggested courses of action by policymakers to prevent disease and disability. The problem is largely based on the available data, which are all too limited. Rigorous testing programmes should not simply focus on oestrogen, androgen and thyroid. Tests should have proper statistical power. 'Good laboratory practice' (GLP) hardly represents a proper or even gold standard for laboratory studies of endocrine disruption. Studies should be evaluated with regard to the contamination of negative controls, responsiveness to positive controls and dissection techniques. Flaws in many GLP studies have been identified, yet regulatory agencies rely on these flawed studies. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  20. [Advanced luminal breast cancer (hormone receptor-positive, HER2 negative): New therapeutic options in 2015].

    PubMed

    Vanacker, Hélène; Bally, Olivia; Kassem, Loay; Tredan, Olivier; Heudel, Pierre; Bachelot, Thomas

    2015-06-01

    Despite improvements in early detection, surgery and systemic therapy, metastatic breast cancer remains a major cause of death. Luminal type breast cancers expressing hormone estrogen receptor (ER) or progesterone (PR) and without HER2 overexpression are generally sensitive to endocrine therapy, but raise the issue of the occurrence of resistance to treatment, particularly at metastatic stage. A better understanding of hormone resistance may guide the development of new therapeutics. New strategies aim at enhancing and prolonging of endocrine sensitivity, by optimizing existing schemes, or by combining an endocrine therapy with a targeted therapies specific to hormone resistance pathways: ER signaling, PI3K/AKT/mTOR and Cyclin Dependent Kinase (CDK). Key corners of 2014 include confirmation of benefit of high dose fulvestrant, and commercialization of everolimus as the first mTOR inhibitor in this indication. Other strategies are being tested dealing with new endocrine therapies or new molecular targets such as PI3K inhibitors, insulin-like growth factor receptor (IGF-R) and histone deacetylase (HDAC) inhibitors. Coming years may be fruitful and might radically change our way to treat these patients. Copyright © 2015 Société Françise du Cancer. Publié par Elsevier Masson SAS. Tous droits réservés. Published by Elsevier Masson SAS. All rights reserved.

  1. Recommended approaches to the scientific evaluation of ...

    EPA Pesticide Factsheets

    A SETAC Pellston Workshop™ ?‘Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)’ was held from 31st January to 5th February 2016 in Pensacola, Florida, USA. The primary aim of the workshop was to provide objective advice, based on current scientific understanding, to regulators and policy makers, whether in industry, government or academia. The aim being to make considered, informed decisions on whether to select an environmental hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on six endocrine active substances (EAS not necessarily proven EDS), that are representative of a range of endocrine system perturbations and considered to be data-rich in relevant information at multiple biological levels of organisation for one or more ecologically-relevant taxa. The substances selected were 17á-ethinylestradiol, perchlorate, propiconazole, 17â-trenbolone, tributyltin and vinclozolin. The six case studies were not comprehensive safety evaluations, but provided the foundations for clarifying key issues and procedures that should be considered when assessing the environmental hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve

  2. EADB: An Estrogenic Activity Database for Assessing ...

    EPA Pesticide Factsheets

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many endocrine disruptors are estrogenic and affect the normal estrogen signaling pathways. However, ERs can also serve as therapeutic targets for various medical conditions, such as menopausal symptoms, osteoporosis, and ER-positive breast cancer. Because of the decades-long interest in the safety and therapeutic utility of estrogenic chemicals, a large number of chemicals have been assayed for estrogenic activity, but these data exist in various sources and different formats that restrict the ability of regulatory and industry scientists to utilize them fully for assessing risk-benefit. To address this issue, we have developed an Estrogenic Activity Database (EADB; http://www.fda.gov/ScienceResearch/ BioinformaticsTools/EstrogenicActivityDatabaseEADB/default. htm) and made it freely available to the public. EADB contains 18,114 estrogenic activity data points collected for 8212 chemicals tested in 1284 binding, reporter gene, cell proliferation, and in vivo assays in 11 different species. The chemicals cover a broad chemical structure space and the data span a wide range of activities. A set of tools allow users to access EADB and evaluate potential endocrine activity of

  3. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.

  4. Epigenetic effects of endocrine-disrupting chemicals on female reproduction: An ovarian perspective

    PubMed Central

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2010-01-01

    The link between in utero and neonatal exposure to environmental toxicants, such as endocrine-disrupting chemicals (EDCs) and adult female reproductive disorders is well established in both epidemiological and animal studies. Recent studies examining the epigenetic mechanisms involved in mediating the effects of EDCs on female reproduction are gathering momentum. In this review, we describe the developmental processes that are susceptible to EDC exposures in female reproductive system, with a special emphasis on the ovary. We discuss studies with select EDCs that have been shown to have physiological and correlated epigenetic effects in the ovary, neuroendocrine system, and uterus. Importantly, EDCs that can directly target the ovary can alter epigenetic mechanisms in the oocyte, leading to transgenerational epigenetic effects. The potential mechanisms involved in such effects are also discussed. PMID:20609371

  5. Experimental evidence of a dual endocrine control of biosynthesis in the main nidamental glands of Sepia officinalis L. by factors from the central nervous system and the ovary.

    PubMed

    Henry, J; Boucaud-Camou, E

    1993-12-01

    1. A rapid, reliable and quantitative in vitro bioassay was developed to study the endocrine control of the biosynthesis of the egg capsule: incorporation of 14C-labelled D-glucose in polysaccharides and glycoproteins increased in dispersed-cell suspensions of main nidamental glands from maturing females. 2. Brain, optic lobes (OL) and ovary extracts from mature and maturing females stimulated the incorporation of 14C-labelled D-glucose in polysaccharidic and glycoproteic fractions of a nidamental cell suspension, whereas optic gland (OG) had no effect. 3. These results bring the first experimental evidence that one of the spawning events (egg-capsule edification) is controlled by the central nervous system and the ovary in a cephalopod.

  6. Environmental risk factors and male fertility and reproduction.

    PubMed

    Petrelli, Grazia; Mantovani, Alberto

    2002-04-01

    Several environmental substances and pesticides exert a direct, cytotoxic effect on male germ cells. However, an increasing concern has been raised by compounds that may act through more subtle mechanisms, for example, specific pesticides that are potentially capable of modulating or disrupting the endocrine system. Overall, exposure to pesticides with endocrine-disrupting potential raise a particular concern for male fertility because of the possible occurrence of both effects at low concentrations and additive interactions with other environmental risk factors. Delayed reproductive problems deserve special attention, since experimental data consistently indicate a high vulnerability in the developing male reproductive system. Epidemiologic studies have confirmed an increased risk of conception delay associated with occupational exposure to pesticides. Moreover, an increased risk of spontaneous abortion has been noted among wives of exposed workers.

  7. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system

    PubMed Central

    Klöppel, G.; Alhman, H.; Caplin, M.; Couvelard, A.; de Herder, W. W.; Erikssson, B.; Falchetti, A.; Falconi, M.; Komminoth, P.; Körner, M.; Lopes, J. M.; McNicol, A-M.; Nilsson, O.; Perren, A.; Scarpa, A.; Scoazec, J-Y.; Wiedenmann, B.

    2006-01-01

    The need for standards in the management of patients with endocrine tumors of the digestive system prompted the European Neuroendocrine Tumor Society (ENETS) to organize a first Consensus Conference, which was held in Frascati (Rome) and was based on the recently published ENETS guidelines on the diagnosis and treatment of digestive neuroendocrine tumors (NET). Here, we report the tumor–node–metastasis proposal for foregut NETs of the stomach, duodenum, and pancreas that was designed, discussed, and consensually approved at this conference. In addition, we report the proposal for a working formulation for the grading of digestive NETs based on mitotic count and Ki-67 index. This proposal, which needs to be validated, is meant to help clinicians in the stratification, treatment, and follow-up of patients. PMID:16967267

  8. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis.

    PubMed

    Siwamogsatham, Oranan; Alvarez, Jessica A; Tangpricha, Vin

    2014-10-01

    The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis. As life expectancy in cystic fibrosis has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes, cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with cystic fibrosis. This review summarizes the updated screening and management of endocrine diseases in the cystic fibrosis population.

  9. Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians.

    PubMed

    Wong, Katelyn H; Durrani, Timur S

    2017-05-01

    Endocrine disrupting chemicals, a group of exogenous chemicals that can interfere with hormone action in the body, have been implicated in disrupting endocrine function, which negatively affects human health and development. Endocrine disrupting chemicals are ubiquitously detected in consumer products, foods, beverages, personal care products, and household cleaning products. Due to concerns about their negative effects on human health, several professional health provider societies have recommended the reduction of common endocrine disrupting chemical exposures. The purpose of this review is to provide a brief overview of common endocrine disrupting chemicals (bisphenol A, phthalates, triclosan, polybrominated ethers, and parabens) and potential effects on child development and health. In addition, we aim to provide guidance and resources for pediatricians and other health care providers with counseling strategies to help patients to minimize exposures to common endocrine disrupting chemicals. Copyright © 2017 Mosby, Inc. All rights reserved.

  10. 75 FR 67963 - Endocrine Disruptor Screening Program (EDSP); Announcing the Availability of a Draft for Weight...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPPT-2010-0877; FRL-8849-8] Endocrine Disruptor Screening...-tiered paradigm for screening and testing chemicals for endocrine activity (i.e., estrogen, androgen, and... 5417), e.g., persons who conduct testing of chemical substances for endocrine effects. This listing is...

  11. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  12. Tumour suppressor menin is essential for development of the pancreatic endocrine cells.

    PubMed

    Fontanière, Sandra; Duvillié, Bertrand; Scharfmann, Raphaël; Carreira, Christine; Wang, Zhao-Qi; Zhang, Chang-Xian

    2008-11-01

    Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene predispose patients to MEN1 that affects mainly endocrine tissues, suggesting important physiological functions of the gene in adult endocrine cells. Homozygous disruption of Men1 in mice causes embryonic lethality, whereas the eventual involvement of the gene in embryonic development of the endocrine cells remains unknown. Here, we show that homozygous Men1 knockout mice demonstrate a reduced number of glucagon-positive cells in the E12.5 pancreatic bud associated with apoptosis, whereas the exocrine pancreas development in these mice is not affected. Our data suggest that menin is involved in the survival of the early pancreatic endocrine cells during the first developmental transition. Furthermore, chimerism assay revealed that menin has an autonomous and specific effect on the development of islet cells. In addition, using pancreatic bud culture mimicking the differentiation of alpha- and beta-cells during the second transition, we show that loss of menin leads to the failure of endocrine cell development, altered pancreatic structure and a markedly decreased number of cells expressing neurogenin 3, indicating that menin is also required at this stage of the endocrine pancreas development. Taken together, our results suggest that menin plays an indispensable role in the development of the pancreatic endocrine cells.

  13. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    PubMed Central

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  14. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the guidance was advanced further. For human health assessments it is based on the relevance to humans of the endocrine mechanism of toxicity, the specificity of the endocrine effects with respect to other toxic effects, the potency of the chemical to induce endocrine toxicity and consideration of exposure levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Compensatory Response by Late Embryonic Tubular Epithelium to the Reduction in Pancreatic Progenitors

    PubMed Central

    Nishimura, Wataru; Kapoor, Archana; El Khattabi, Ilham; Jin, Wanzhu; Yasuda, Kazuki; Bonner-Weir, Susan; Sharma, Arun

    2015-01-01

    Early in pancreatic development, epithelial cells of pancreatic buds function as primary multipotent progenitor cells (1°MPC) that specify all three pancreatic cell lineages, i.e., endocrine, acinar and duct. Bipotent "Trunk" progenitors derived from 1°MPC are implicated in directly regulating the specification of endocrine progenitors. It is unclear if this specification process is initiated in the 1°MPC where some 1°MPC become competent for later specification of endocrine progenitors. Previously we reported that in Pdx1 tTA/+ ;tetO MafA (bigenic) mice inducing expression of transcription factor MafA in Pdx1-expressing (Pdx1+) cells throughout embryonic development inhibited the proliferation and differentiation of 1°MPC cells, resulting in reduced pancreatic mass and endocrine cells by embryonic day (E) 17.5. Induction of the transgene only until E12.5 in Pdx1+ 1°MPC was sufficient for this inhibition of endocrine cells and pancreatic mass at E17.5. However, by birth (P0), as we now report, such bigenic pups had significantly increased pancreatic and endocrine volumes with endocrine clusters containing all pancreatic endocrine cell types. The increase in endocrine cells resulted from a higher proliferation of tubular epithelial cells expressing the progenitor marker Glut2 in E17.5 bigenic embryos and increased number of Neurog3-expressing cells at E19.5. A BrdU-labeling study demonstrated that inhibiting proliferation of 1°MPC by forced MafA-expression did not lead to retention of those progenitors in E17.5 tubular epithelium. Our data suggest that the forced MafA expression in the 1°MPC inhibits their competency to specify endocrine progenitors only until E17.5, and after that compensatory proliferation of tubular epithelium gives rise to a distinct pool of endocrine progenitors. Thus, these bigenic mice provide a novel way to characterize the competency of 1°MPC for their ability to specify endocrine progenitors, a critical limitation in our understanding of endocrine differentiation. PMID:26540252

  16. Multiscale Systems Modeling of Male Reproductive Tract Defects: from Genes to Populations (SOT)

    EPA Science Inventory

    The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB...

  17. DEVELOPMENT OF A QUANTITATIVE ASSAY FOR VITELLOGENIN TO MONITOR ESTROGEN-LIKE ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Many environmental contaminants have the potential to disrupt endocrine systems of wildlife and humans resulting in impairment of reproductive and other systems. A subset of these contaminants may initiate these effects by binding to the estrogen receptor. In oviparous vertebrate...

  18. 18 CFR 1307.1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) any mental or... building, including but not limited to its load bearing walls and all types of post and beam systems in...

  19. 18 CFR 1307.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) any mental or... building, including but not limited to its load bearing walls and all types of post and beam systems in...

  20. 10 CFR 1040.62 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive, digestive, genito-urinary; hemic and lymphatic; skin; and endocrine; or (ii) Any mental or... all types of post and beam systems in wood, steel, iron or concrete. The definitions set forth in...

  1. 18 CFR 1307.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...; reproductive; digestive; genitourinary; hemic and lymphatic; skin; and endocrine; or (ii) any mental or... building, including but not limited to its load bearing walls and all types of post and beam systems in...

  2. A data storage, retrieval and analysis system for endocrine research. [for Skylab

    NASA Technical Reports Server (NTRS)

    Newton, L. E.; Johnston, D. A.

    1975-01-01

    This retrieval system builds, updates, retrieves, and performs basic statistical analyses on blood, urine, and diet parameters for the M071 and M073 Skylab and Apollo experiments. This system permits data entry from cards to build an indexed sequential file. Programs are easily modified for specialized analyses.

  3. Visualizing and Quantifying the Suppressive Effects of Glucocorticoids on the Tadpole Immune System in Vivo

    ERIC Educational Resources Information Center

    Schreiber, Alexander M.

    2011-01-01

    A challenging topic in undergraduate physiology courses is the complex interaction between the vertebrate endocrine system and the immune system. There are relatively few established and accessible laboratory exercises available to instructors to help their students gain a working understanding of these interactions. The present laboratory module…

  4. Failing Health: Pesticide Use in California Schools. CPR Series Report.

    ERIC Educational Resources Information Center

    Kaplan, Jonathan; Marquardt, Sandra; Barber, Wendy

    This report presents a statewide assessment of pesticides used in California's school system. Of the 46 school districts responding to the statewide survey, 40 claimed using one or more of 27 particularly hazardous pesticides that can cause cancer, affect the reproductive system, mimic the endocrine system, or act as nerve toxins. Forty-three…

  5. Immunologic Endocrine Disorders

    PubMed Central

    Michels, Aaron W.; Eisenbarth, George S.

    2010-01-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA (human leukocyte antigen)-like molecules determining tissue specific targeting that with the loss of tolerance leads to organ specific autoimmunity. Disorders such as type 1A diabetes, Grave's disease, Hashimoto's thyroiditis, Addison's disease, and many others result from autoimmune mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. While therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies. PMID:20176260

  6. New Roles of Carboxypeptidase E in Endocrine and Neural Function and Cancer

    PubMed Central

    Cawley, Niamh X.; Wetsel, William C.; Murthy, Saravana R. K.; Park, Joshua J.; Pacak, Karel

    2012-01-01

    Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors. PMID:22402194

  7. Neuro-Modulation of Immuno-Endocrine Response Induced by Kaliotoxin of Androctonus Scorpion Venom.

    PubMed

    Ladjel-Mendil, Amina; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-12-01

    Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs. © 2016 Wiley Periodicals, Inc.

  8. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    PubMed

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  9. Acromegaly: an endocrine society clinical practice guideline.

    PubMed

    Katznelson, Laurence; Laws, Edward R; Melmed, Shlomo; Molitch, Mark E; Murad, Mohammad Hassan; Utz, Andrea; Wass, John A H

    2014-11-01

    The aim was to formulate clinical practice guidelines for acromegaly. The Task Force included a chair selected by the Endocrine Society Clinical Guidelines Subcommittee (CGS), five experts in the field, and a methodologist. The authors received no corporate funding or remuneration. This guideline is cosponsored by the European Society of Endocrinology. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of recommendations and the quality of evidence. The Task Force reviewed primary evidence and commissioned two additional systematic reviews. One group meeting, several conference calls, and e-mail communications enabled consensus. Committees and members of the Endocrine Society and the European Society of Endocrinology reviewed drafts of the guidelines. Using an evidence-based approach, this acromegaly guideline addresses important clinical issues regarding the evaluation and management of acromegaly, including the appropriate biochemical assessment, a therapeutic algorithm, including use of medical monotherapy or combination therapy, and management during pregnancy.

  10. Abraham Lincoln's marfanoid mother: the earliest known case of multiple endocrine neoplasia type 2B?

    PubMed

    Sotos, John G

    2012-07-01

    The nature and cause of President Abraham Lincoln's unusual physical features have long been debated, with the greatest attention directed at two monogenic disorders of the transforming growth factor β system: Marfan syndrome and multiple endocrine neoplasia type 2B. The present report examines newly discovered phenotypic information about Lincoln's biological mother, Nancy Hanks Lincoln, and concludes that (a) Lincoln's mother was skeletally marfanoid, (b) the President and his mother were highly concordant for the presence of numerous facial features found in various transforming growth factor β disorders, and (c) Lincoln's mother, like her son, had hypotonic skeletal muscles, resulting in myopathic facies and 'pseudodepression'. These conclusions establish that mother and son had the same monogenic autosomal dominant marfanoid disorder. A description of Nancy Hanks Lincoln as coarse-featured, and a little-known statement that a wasting disease contributed to her death at age 34, lends support to the multiple endocrine neoplasia type 2B hypothesis.

  11. Effects of endocrine-disrupting contaminants on amphibian oogenesis: methoxychlor inhibits progesterone-induced maturation of Xenopus laevis oocytes in vitro.

    PubMed Central

    Pickford, D B; Morris, I D

    1999-01-01

    There is currently little evidence of pollution-induced endocrine dysfunction in amphibia, in spite of widespread concern over global declines in this ecologically diverse group. Data regarding the potential effects of endocrine-disrupting contaminants (EDCs) on reproductive function in amphibia are particularly lacking. We hypothesized that estrogenic EDCs may disrupt progesterone-induced oocyte maturation in the adult amphibian ovary, and tested this with an in vitro germinal vesicle breakdown assay using defolliculated oocytes from the African clawed frog, Xenopus laevis. While a variety of natural and synthetic estrogens and xenoestrogens were inactive in this system, the proestrogenic pesticide methoxychlor was a surprisingly potent inhibitor of progesterone-induced oocyte maturation (median inhibitive concentration, 72 nM). This inhibitory activity was specific to methoxychlor, rather than to its estrogenic contaminants or metabolites, and was not antagonized by the estrogen receptor antagonist ICI 182,780, suggesting that this activity is not estrogenic per se. The inhibitory activity of methoxychlor was dose dependent, reversible, and early acting. However, washout was unable to reverse the effect of short methoxychlor exposure, and methoxychlor did not competitively displace [3H]progesterone from a specific binding site in the oocyte plasma membrane. Therefore, methoxychlor may exert its action not directly at the site of progesterone action, but downstream on early events in maturational signaling, although the precise mechanism of action is unclear. The activity of methoxychlor in this system indicates that xenobiotics may exert endocrine-disrupting effects through interference with progestin-regulated processes and through mechanisms other than receptor antagonism. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10090707

  12. Long-term follow-up of endocrine function among young children with newly diagnosed malignant central nervous system tumors treated with irradiation-avoiding regimens.

    PubMed

    Cochrane, Anne M; Cheung, Clement; Rangan, Kasey; Freyer, David; Nahata, Leena; Dhall, Girish; Finlay, Jonathan L

    2017-11-01

    The adverse effects of irradiation on endocrine function among patients with pediatric brain tumor are well documented. Intensive induction chemotherapy followed by marrow-ablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) without central nervous system (CNS) irradiation has demonstrated efficacy in a proportion of very young children with some malignant CNS tumors. This study assessed the long-term endocrine function of young children following chemotherapy-only treatment regimens. A retrospective chart review was performed on 99 patients under 6 years of age with malignant brain tumors newly diagnosed between May 1991 and October 2010 treated with irradiation-avoiding strategies. Thirty patients survived post-AuHCR without cranial irradiation for a mean of 8.1 years (range 3.0-22.25 years). The patient cohort included 18 males and 12 females (mean age at AuHCR of 2.5 years, range 0.8-5.1 years). All 30 surviving patients had documented normal age-related thyroid function, insulin-like growth factor binding protein 3 (IGF-BP3), prolactin, testosterone, and estradiol levels. Insulin-like growth factor 1 age-related levels were abnormal in one child with normal height. Ninety-seven percent of patients had normal cortisol levels, while follicle-stimulating hormone and LH levels among females were normal in 83% and 92%, respectively, and in 100% of males. Growth charts demonstrated age-associated growth within 2 standard deviations of the mean in 67% of patients. Of 10 patients (33%) with short stature, 6 had proportional diminutions in both height and weight. These findings demonstrate that the use of relatively brief, intensive chemotherapy regimens including marrow-ablative chemotherapy with AuHCR results in fewer endocrine sequelae than treatment schemes utilizing CNS irradiation. © 2017 Wiley Periodicals, Inc.

  13. Diagnosis and Treatment of Endocrine Co-Morbidities in Patients with Cystic Fibrosis

    PubMed Central

    Siwamogsatham, Oranan; Alvarez, Jessica

    2015-01-01

    Purpose of review The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis (CF). Recent findings As life expectancy in CF has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes (CFRD), cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Summary Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with CF. This review summarizes the updated screening and management of endocrine diseases in the CF population. PMID:25105995

  14. Agent Orange exposure and disease prevalence in Korean Vietnam veterans: the Korean veterans health study.

    PubMed

    Yi, Sang-Wook; Hong, Jae-Seok; Ohrr, Heechoul; Yi, Jee-Jeon

    2014-08-01

    Between 1961 and 1971, military herbicides were used by the United States and allied forces for military purposes. Agent Orange, the most-used herbicide, was a mixture of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid, and contained an impurity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Many Korean Vietnam veterans were exposed to Agent Orange during the Vietnam War. The aim of this study was to evaluate the association between Agent Orange exposure and the prevalence of diseases of the endocrine, nervous, circulatory, respiratory, and digestive systems. The Agent Orange exposure was assessed by a geographic information system-based model. A total of 111,726 Korean Vietnam veterans were analyzed for prevalence using the Korea National Health Insurance claims data from January 2000 to September 2005. After adjusting for covariates, the high exposure group had modestly elevated odds ratios (ORs) for endocrine diseases combined and neurologic diseases combined. The adjusted ORs were significantly higher in the high exposure group than in the low exposure group for hypothyroidism (OR=1.13), autoimmune thyroiditis (OR=1.93), diabetes mellitus (OR=1.04), other endocrine gland disorders including pituitary gland disorders (OR=1.43), amyloidosis (OR=3.02), systemic atrophies affecting the nervous system including spinal muscular atrophy (OR=1.27), Alzheimer disease (OR=1.64), peripheral polyneuropathies (OR=1.09), angina pectoris (OR=1.04), stroke (OR=1.09), chronic obstructive pulmonary diseases (COPD) including chronic bronchitis (OR=1.05) and bronchiectasis (OR=1.16), asthma (OR=1.04), peptic ulcer (OR=1.03), and liver cirrhosis (OR=1.08). In conclusion, Agent Orange exposure increased the prevalence of endocrine disorders, especially in the thyroid and pituitary gland; various neurologic diseases; COPD; and liver cirrhosis. Overall, this study suggests that Agent Orange/2,4-D/TCDD exposure several decades earlier may increase morbidity from various diseases, some of which have rarely been explored in previous epidemiologic studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. [Vitamin D and endocrine diseases].

    PubMed

    Schuch, Natielen Jacques; Garcia, Vivian Cristina; Martini, Ligia Araújo

    2009-07-01

    Vitamin D insufficiency/deficiency has been worldwide reported in all age groups in recent years. It has been considered a Public Health matter since decreased levels of vitamin D has been related to several chronic diseases, as type 2 diabetes mellitus (T2DM), obesity and hypertension. Glucose intolerance and insulin secretion has been observed during vitamin D deficiency, both in animals and humans resulting in T2DM. The supposed mechanism underlying these findings is presence of vitamin D receptor in several tissues and cells, including pancreatic beta-cells, adipocyte and muscle cells. In obese individuals, the impaired vitamin D endocrine system, characterized by high levels of PTH and 1,25(OH)(2)D(3) could induce a negative feedback for the hepatic synthesis of 25(OH)D and also contribute to a higher intracellular calcium, which in turn secrete less insulin and deteriorate insulin sensitivity. In hypertension, vitamin D could act on renin-angiotensin system and also in vascular function. Administration of 1,25(OH)(2)D(3) could decreases renin gene expression and inhibit vascular smooth muscle cell proliferation. However, prospective and intervention human studies that clearly demonstrates the benefits of vitamin D status adequacy in the prevention and treatment of endocrine metabolic diseases are lacking. Further research still necessary to assure the maximum benefit of vitamin D in such situations.

  16. Immunohistochemistry detected and localized cannabinoid receptor type 2 in bovine fetal pancreas at late gestation.

    PubMed

    Dall'Aglio, Cecilia; Polisca, Angela; Cappai, Maria Grazia; Mercati, Francesca; Troisi, Alessandro; Pirino, Carolina; Scocco, Paola; Maranesi, Margherita

    2017-03-07

    At present, data on the endocannabinoid system expression and distribution in the pancreatic gland appear scarce and controversial as descriptions are limited to humans and laboratory animals. Since the bovine pancreas is very similar to the human in endocrine portion development and control, studies on the fetal gland could prove to be very interesting, as an abnormal maternal condition during late pregnancy may be a predisposing trigger for adult metabolic disorders. The present investigation studied cannabinoid receptor type 2 presence and distribution in the bovine fetal pancreas towards the end of gestation. Histological analyses revealed numerous endocrinal cell clusters or islets which were distributed among exocrine adenomeri in connectival tissue. Immunohistochemistry showed that endocrine-islets contained some CB2-positive cells with a very peculiar localization that is a few primarily localized at the edges of islets and some of them also scattered in the center of the cluster. Characteristically, also the epithelium of the excretory ducts and the smooth muscle layers of the smaller arteries, in the interlobular glandular septa, tested positive for the CB2 endocannabinoid receptor. Conse - quently, the endocannabinoid system, via the cannabinoid receptor type 2, was hypothesized to play a major role in controlling pancreas function from normal fetal development to correct metabolic functioning in adulthood.

  17. Endocrine regulation and sexual differentiation of avian copulatory sexually selected characters.

    PubMed

    Brennan, Patricia L R; Adkins-Regan, Elizabeth

    2014-10-01

    Reproductive specializations in birds have provided intriguing model systems to better understand the role of endocrine mechanisms that regulate phenotype expression and the action of sexual selection. A comparative approach can elucidate how endocrine systems associated with control of sexual differentiation, sexual maturation, and reproductive physiology and behavior have diversified. Here we compare the copulatory sexually selected traits of two members of the galloanseriform superfamily: quail and ducks. Japanese quail have a non-intromittent penis, and they have evolved a unique foam gland that is known to be involved in post-copulatory sexual selection. In contrast, ducks have maintained a large intromittent penis that has evolved via copulatory male-male competition and has been elaborated in a sexually antagonistic race due to sexual conflict with females over mating. These adaptations function in concert with sex-specific and, in part, species-specific behaviors. Although the approaches to study these traits have been different, exploring the differences in neuroendocrine regulation of sexual behavior, development and seasonality of the foam gland and the penis side by side, allow us to suggest some areas where future research would be productive to better understand the evolution of novelty in sexually selected traits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation of non-genomic, clinical risk and survival results in endocrine-sensitive, HER-2 negative, node negative breast cancer.

    PubMed

    Baena Cañada, José M; Gámez Casado, Salvador; Rodríguez Pérez, Lourdes; Quílez Cutillas, Alicia; Cortés Carmona, Cristina; Rosado Varela, Petra; Estalella Mendoza, Sara; Ramírez Daffós, Patricia; Benítez Rodríguez, Encarnación

    2018-02-28

    In endocrine-sensitive, HER-2 negative, node negative breast cancer, the presence of a low genomic risk allows treatment with adjuvant endocrine therapy alone, obtaining excellent survival rates. The justification for this study is to show that excellent survival rates are also obtained by treating with adjuvant hormone therapy alone, based on clinical risk assessment. A descriptive, observational and retrospective study was performed between 2006 and 2016 with endocrine-sensitive, HER-2 negative, node negative breast cancer, greater than 1cm or between 0.6 and 1cm with unfavourable features. Retrospective review of health records. Mortality data of the National Registry of Deaths. A total of 203 patients were evaluable for survival. One hundred and twenty-three (60.50%) were treated with adjuvant endocrine therapy alone, 77 (37.90%) with chemotherapy and endocrine therapy, one (0.50%) with chemotherapy alone and 2 (1%) were not treated. The overall survival rate at 5 years was 97% (95% confidence interval [CI] 94-100). Distant recurrence-free interval was 94% (95% CI 90-98). In the subgroup of patients treated with endocrine therapy alone, overall survival and distant recurrence-free interval rates at 5 years were 98% (95% CI 95-100) and 97% (95% CI 93-100), respectively. Patients with endocrine-sensitive, HER-2-negative, node negative breast cancer treated with endocrine therapy alone according to their clinical risk have similar survival outcomes as those treated with endocrine therapy according to their genomic risk. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  19. DETERMINATION OF THE POTENTIAL FOR ANAEROBIC DEGRADATION OF UNUSED PHARMACEUTICALS IN MUNICIPAL SOLID WASTE LANDFILLS

    EPA Science Inventory

    For many years the recommended method of disposal for unused household medications was the sewage system. However, research studies have emerged showing that many pharmaceuticals and endocrine disrupting compounds are not fully removed by wastewater treatment systems and enter t...

  20. The utilization of the climatic chamber to evaluate the influence of ambient conditions on endocrine, nervous and immune systems of rats.

    PubMed

    Baran, Arkadiusz; Jakiel, Grzegorz; Wójcik, Grazyna

    2008-01-01

    The adaptation of an organism to a change in environmental conditions is a complex and in some aspects a poorly understood physiological process. The activating influence of stress on the sympathetic nervous system, the hypothalamic - pituitary - adrenal axis and the suppression of TSH, LH, FSH release is well known. The interplay of communication between the endocrine and immune systems plays an essential role in modulating the response to stress related mediators. The basis of many contradictory and incoherent results of experiments is due to the various methodologies of creating changes in environmental conditions, the way of collecting blood samples which influence stress mediators, the case of assessing the influence of many factors on reproductive functions and the performance of experiments without synchronization with the reproductive cycle. The review will focus on the presentation of simple and repeatable methods of development of an adaptation stress to changed environmental conditions (temperature, oxygenation, humidity) and the technique of blood collection during hour-long estimation of interactions between the endocrine, nervous and immune systems. We would like to place emphasis on appropriate ways of performing experiments on female rats, with regards to the choice of a suitable phase of the reproductive cycle. Also on ways of anaesthesia and microsurgical techniques of vein catheterisation for repeated blood sampling. The performance of all phases of the experiment allow us to estimate only the influence of environmental conditions and eliminate interfering factors during the process of preparing animal for the experiment.

  1. Update on the biologic role of the vitamin D endocrine system.

    PubMed

    Dusso, Adriana S

    2014-03-01

    The integrity of the vitamin D endocrine system is essential for human health. Nutritional vitamin D deficiency in otherwise healthy individuals, associates with a higher risk of mortality for all causes, despite normal serum calcitriol. These deadly causes extend beyond the recognized adverse impact of vitamin D deficiency on calcium and phosphate homeostasis predisposing to secondary hyperparathyroidism, bone loss and vascular calcification. Vitamin D deficiency also associates with an early onset of disorders of aging, including hypertension, proteinuria, insulin resistance, immune abnormalities that enhance the propensity for viral and bacterial infections, autoimmune disorders, cancer, and multiple organ damage due to excessive systemic inflammation causing atherosclerosis, vascular stiffness, renal lesions, and impaired DNA-damage responses. The frequency and severity of all of these disorders markedly increase in chronic kidney disease (CKD) because the kidney is essential to maintain serum levels of calcitriol, the most potent endogenous endocrine activator of the vitamin D receptor (VDR), and also of 25-hydroxyvitamin D, for local rather than systemic VDR activation. The goal of this review is to update the current understanding of the pathophysiology behind the classical and non-classical actions of VDR activation that help prevent the onset and/or attenuate the progression of renal and cardiovascular damage in CKD. This knowledge is essential to identify non-invasive, sensitive and accurate biomarkers of the severity of these disorders, a first step to generate evidence-based recommendations for a safe correction of vitamin D and/or calcitriol deficiency in the course of CKD that effectively improves outcomes.

  2. Endocrine System (For Parents)

    MedlinePlus

    ... the thyroid gland through surgery or radiation treatments. Hypothyroidism. Hypothyroidism is when the levels of thyroid hormones in ... hormone production, is the most common cause of hypothyroidism in kids. Infants can also be born with ...

  3. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  4. Defining pancreatic endocrine precursors and their descendants.

    PubMed

    White, Peter; May, Catherine Lee; Lamounier, Rodrigo N; Brestelli, John E; Kaestner, Klaus H

    2008-03-01

    The global incidence of diabetes continues to increase. Cell replacement therapy and islet transplantation offer hope, especially for severely affected patients. Efforts to differentiate insulin-producing beta-cells from progenitor or stem cells require knowledge of the transcriptional programs that regulate the development of the endocrine pancreas. Differentiation toward the endocrine lineage is dependent on the transcription factor Neurogenin 3 (Neurog3, Ngn3). We utilize a Neurog3-enhanced green fluorescent protein knock-in mouse model to isolate endocrine progenitor cells from embryonic pancreata (embryonic day [E]13.5 through E17.5). Using advanced genomic approaches, we generate a comprehensive gene expression profile of these progenitors and their immediate descendants. A total of 1,029 genes were identified as being temporally regulated in the endocrine lineage during fetal development, 237 of which are transcriptional regulators. Through pathway analysis, we have modeled regulatory networks involving these proteins that highlight the complex transcriptional hierarchy governing endocrine differentiation. We have been able to accurately capture the gene expression profile of the pancreatic endocrine progenitors and their descendants. The list of temporally regulated genes identified in fetal endocrine precursors and their immediate descendants provides a novel and important resource for developmental biologists and diabetes researchers alike.

  5. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  6. The endocrine cells in the gastroenteropancreatic system of the bowfin, Amia calva L.: an immunohistochemical, ultrastructural, and immunocytochemical analysis.

    PubMed

    Youson, J H; Al-Mahrouki, A A; Naumovski, D; Conlon, J M

    2001-12-01

    The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species. Copyright 2001 Wiley-Liss, Inc.

  7. Neoplasia in felids at the Knoxville Zoological Gardens, 1979-2003.

    PubMed

    Owston, Michael A; Ramsay, Edward C; Rotstein, David S

    2008-12-01

    A review of medical records and necropsy reports from 1979-2003 found 40 neoplasms in 26 zoo felids, including five lions (Panthera leo, two males and three females), three leopards (Panthera pardus, two males and one female), one jaguar (Panthera onca, female), 11 tigers (Panthera tigris, three males and eight females), two snow leopards (Panthera uncia, one male and one female), two cougars (Felis concolor, one male and one female), one bobcat (Felis rufus, male), and one cheetah (Acinonyx jubatus, female). Animals that had not reached 3 yr of age or had been housed in the collection less than 3 yrs were not included in the study. Neoplasia rate at necropsy was 51% (24/47), and overall incidence of felid neoplasia during the study period was 25% (26/103). Neoplasia was identified as the cause of death or reason for euthanasia in 28% (13/47) of those necropsied. Neoplasms were observed in the integumentary-mammary (n=11), endocrine (n=10), reproductive (n=8), hematopoietic-lymphoreticular (n=5), digestive (n=3), and hepatobiliary (n=2) systems. One neoplasm was unclassified by system. Multiple neoplasms were observed in 11 animals. Both benign and malignant neoplasms were observed in all systems except for the hematopoietic-lymphoreticular systems where all processes were malignant. Of the endocrine neoplasms, those involving the thyroid and parathyroid glands predominated (n=8) over other endocrine organs and included adenomas and carcinomas. In the integumentary system, 63% (7/11) of neoplasms involved the mammary gland, with mammary carcinoma representing 83% (6/7) of the neoplasms. The rates of neoplasia at this institution, during the given time period, appears to be greater than rates found in the one other published survey of captive felids.

  8. A differential diagnosis of inherited endocrine tumors and their tumor counterparts

    PubMed Central

    Toledo, Sergio P. A.; Lourenço, Delmar M.; Toledo, Rodrigo A.

    2013-01-01

    Inherited endocrine tumors have been increasingly recognized in clinical practice, although some difficulties still exist in differentiating these conditions from their sporadic endocrine tumor counterparts. Here, we list the 12 main topics that could add helpful information and clues for performing an early differential diagnosis to distinguish between these conditions. The early diagnosis of patients with inherited endocrine tumors may be performed either clinically or by mutation analysis in at-risk individuals. Early detection usually has a large impact in tumor management, allowing preventive clinical or surgical therapy in most cases. Advice for the clinical and surgical management of inherited endocrine tumors is also discussed. In addition, recent clinical and genetic advances for 17 different forms of inherited endocrine tumors are briefly reviewed. PMID:23917672

  9. The use and acceptance of Other Scientifically Relevant Information (OSRI) in the U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program.

    PubMed

    Bishop, Patricia L; Willett, Catherine E

    2014-02-01

    The U.S. Environmental Protection Agency (EPA) Endocrine Disruptor Screening Program (EDSP) currently relies on an initial screening battery (Tier 1) consisting of five in vitro and six in vivo assays to evaluate a chemical's potential to interact with the endocrine system. Chemical companies may request test waivers based on Other Scientifically Relevant Information (OSRI) that is functionally equivalent to data gathered in the screening battery or that provides information on a potential endocrine effect. Respondents for 47 of the first 67 chemicals evaluated in the EDSP submitted OSRI in lieu of some or all Tier 1 tests, seeking 412 waivers, of which EPA granted only 93. For 20 of the 47 chemicals, EPA denied all OSRI and required the entire Tier 1 battery. Often, the OSRI accepted was either identical to data generated by the Tier 1 assay or indicated a positive result. Although identified as potential sources of OSRI in EPA guidance, Part 158 guideline studies for pesticide registration were seldom accepted by EPA. The 93 waivers reduced animal use by at least 3325 animals. We estimate 27,731 animals were used in the actual Tier 1 tests, with additional animals being used in preparation for testing. Even with EPA's shift toward applying 21st-century toxicology tools to screening of endocrine disruptors in the future, acceptance of OSRI will remain a primary means for avoiding duplicative testing and reducing use of animals in the EDSP. Therefore, it is essential that EPA develop a consistent and transparent basis for accepting OSRI. © 2013 Wiley Periodicals, Inc.

  10. Coexpression of Nuclear Receptors and Histone Methylation Modifying Genes in the Testis: Implications for Endocrine Disruptor Modes of Action

    PubMed Central

    Anderson, Alison M.; Carter, Kim W.; Anderson, Denise; Wise, Michael J.

    2012-01-01

    Background Endocrine disruptor chemicals elicit adverse health effects by perturbing nuclear receptor signalling systems. It has been speculated that these compounds may also perturb epigenetic mechanisms and thus contribute to the early origin of adult onset disease. We hypothesised that histone methylation may be a component of the epigenome that is susceptible to perturbation. We used coexpression analysis of publicly available data to investigate the combinatorial actions of nuclear receptors and genes involved in histone methylation in normal testis and when faced with endocrine disruptor compounds. Methodology/Principal Findings The expression patterns of a set of genes were profiled across testis tissue in human, rat and mouse, plus control and exposed samples from four toxicity experiments in the rat. Our results indicate that histone methylation events are a more general component of nuclear receptor mediated transcriptional regulation in the testis than previously appreciated. Coexpression patterns support the role of a gatekeeper mechanism involving the histone methylation modifiers Kdm1, Prdm2, and Ehmt1 and indicate that this mechanism is a common determinant of transcriptional integrity for genes critical to diverse physiological endpoints relevant to endocrine disruption. Coexpression patterns following exposure to vinclozolin and dibutyl phthalate suggest that coactivity of the demethylase Kdm1 in particular warrants further investigation in relation to endocrine disruptor mode of action. Conclusions/Significance This study provides proof of concept that a bioinformatics approach that profiles genes related to a specific hypothesis across multiple biological settings can provide powerful insight into coregulatory activity that would be difficult to discern at an individual experiment level or by traditional differential expression analysis methods. PMID:22496781

  11. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures

    PubMed Central

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2015-01-01

    Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476

  12. Environmental analysis of endocrine disrupting effects from hydrocarbon contaminants in the ecosystem. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, J.

    1998-06-01

    'The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones (i.e., environmental hormones) in different species present in aquatic ecosystems. Species of particular focus are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. This reports the progress of 1.5 years of a three-year grant awarded to the Tulane/Xavier Center for Bioenvironmental Research (CBR). A growing body of evidence suggests that chemicals in the environment can disrupt the endocrine system of animalsmore » (i.e., wildlife and humans) and adversely impact the development of these species. Because of the multitude of known endocrine-disrupting chemicals and the numerous industrial and government sectors producing these chemicals, almost every federal agency has initiated research on the endocrine effects of chemicals relevant to their operations. This study represents the Department of Energy (DOE) Basic Energy Sciences'' only research on the impacts of endocrine-disrupting chemicals. The activities employed by this project to determine these impacts include development of biotechnology screens (in vitro), animal screens (in vivo), and other analyses of aquatic ecosystem biomarkers of exposure. The results from this study can elucidate how chemicals in the environment, including those from DOE activities, can signal (and alter) the development of a number of species in aquatic ecosystems. These signals can have detrimental impacts not only on an organismal level, but also on community, population, and entire ecosystem levels, including humans.'« less

  13. Effects of elevated glucocorticoids on reproduction and development: relevance to endocrine disruptor screening.

    PubMed

    Witorsch, Raphael J

    2016-01-01

    This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.

  14. Early Life Exposure to Endocrine-Disrupting Chemicals Causes Lifelong Molecular Reprogramming of the Hypothalamus and Premature Reproductive Aging

    PubMed Central

    Walker, Deena M.; Zama, Aparna M.; Armenti, AnnMarie E.; Uzumcu, Mehmet

    2011-01-01

    Gestational exposure to the estrogenic endocrine disruptor methoxychlor (MXC) disrupts the female reproductive system at the molecular, physiological, and behavioral levels in adulthood. The current study addressed whether perinatal exposure to endocrine disruptors reprograms expression of a suite of genes expressed in the hypothalamus that control reproductive function and related these molecular changes to premature reproductive aging. Fischer rats were exposed daily for 12 consecutive days to vehicle (dimethylsulfoxide), estradiol benzoate (EB) (1 mg/kg), and MXC (low dose, 20 μg/kg or high dose, 100 mg/kg), beginning on embryonic d 19 through postnatal d 7. The perinatally exposed females were aged to 16–17 months and monitored for reproductive senescence. After euthanasia, hypothalamic regions [preoptic area (POA) and medial basal hypothalamus] were dissected for real-time PCR of gene expression or pyrosequencing to assess DNA methylation of the Esr1 gene. Using a 48-gene PCR platform, two genes (Kiss1 and Esr1) were significantly different in the POA of endocrine-disrupting chemical-exposed rats compared with vehicle-exposed rats after Bonferroni correction. Fifteen POA genes were up-regulated by at least 50% in EB or high-dose MXC compared with vehicle. To understand the epigenetic basis of the increased Esr1 gene expression, we performed bisulfite conversion and pyrosequencing of the Esr1 promoter. EB-treated rats had significantly higher percentage of methylation at three CpG sites in the Esr1 promoter compared with control rats. Together with these molecular effects, perinatal MXC and EB altered estrous cyclicity and advanced reproductive senescence. Thus, early life exposure to endocrine disruptors has lifelong effects on neuroendocrine gene expression and DNA methylation, together with causing the advancement of reproductive senescence. PMID:22016562

  15. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  16. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    PubMed

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Race/Ethnic Difference in Diabetes and Diabetic Complications

    PubMed Central

    Spanakis, Elias K.; Golden, Sherita Hill

    2013-01-01

    Health disparities in diabetes and its complications and co-morbidities exist globally. A recent Endocrine Society Scientific Statement described the Health Disparities in several endocrine disorders, including type 2 diabetes. In this review we summarize that statement and provide novel updates on race/ethnic differences in children and adults with type 1 diabetes, children with type 2 diabetes and in Latino subpopulations. We also review race/ethnic differences in the epidemiology of diabetes, prediabetes, and diabetes complications and mortality in the United States and globally. Finally we discuss biological, behavioral, social, environmental, and health system contributors to diabetes disparities in order to identify areas for future preventive interventions. PMID:24037313

  18. Neonatal endocrine emergencies: a primer for the emergency physician.

    PubMed

    Park, Elizabeth; Pearson, Nadia M; Pillow, M Tyson; Toledo, Alexander

    2014-05-01

    The resuscitation principles of securing the airway and stabilizing hemodynamics remain the same in any neonatal emergency. However, stabilizing endocrine disorders may prove especially challenging. Several organ systems are affected simultaneously and the clinical presentation can be subtle. Although not all-inclusive, the implementation of newborn screening tests has significantly reduced morbidity and mortality in neonates. Implementing routine screening tests worldwide and improving the accuracy of present tests remains the challenge for healthcare providers. With further study of these disorders and best treatment practices we can provide neonates presenting to the emergency department with the best possible outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Your Endocrine System (For Kids)

    MedlinePlus

    ... by a wild animal — or even your brother! Insulin Is Essential Your pancreas (say: PAN-kree-us) ... your belly. The pancreas makes several hormones, including insulin (say: IN-suh-lin), which helps glucose (say: ...

  20. Endocrine System (For Teens)

    MedlinePlus

    ... of nutrients and minerals prolactin (pronounced: pro-LAK-tin), which activates milk production in women who are ... doctor. © 1995- The Nemours Foundation. All rights reserved. Images provided by The Nemours Foundation, iStock, Getty Images, ...

  1. ACTH (Adrenocorticotropic Hormone) Test

    MedlinePlus

    ... Time and International Normalized Ratio (PT/INR) PSEN1 Quantitative Immunoglobulins Red Blood Cell (RBC) Antibody Identification Red ... Health Network KidsHealth.org: Endocrine System Cushing's Support & Research Foundation See More See Less Related Images View ...

  2. Medical Consequences of Chernobyl with Focus on the Endocrine System - Part 2.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  3. Medical consequences of Chernobyl with focus on the endocrine system: Part 1.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information on effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  4. [Calciotropic actions of parathyroid hormone and vitamin D-endocrine system].

    PubMed

    Avila, Euclides; Barrera, David; Díaz, Lorenza

    2007-01-01

    Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25-(OH)zD] participate in systemic regulation of calcium homeostasis through endocrine effects mediated via the specific receptors PTHR1 and VDR, expressed in bone, kidney, intestine and parathyroid glands. In bone, both hormones PTH and 1,25-(OH)2D promote calcium release into the circulation; however, they also have anabolic effects in this tissue. In kidney, PTH controls 1,25-(OH)2D synthesis, and together both hormones stimulate calcium reabsorption. The most important calciotropic action of 1,25-(OH)2D is stimulation of intestinal calcium absorption. In the parathyroid glands, 1,25-(OH)2D regulates PTH synthesis through a negative feedback mechanism, while modulating the gland growth. Finally, a general overview of the maternal adaptations regarding calcium homeostasis during pregnancy and lactation is presented.

  5. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome.

    PubMed

    Raja-Khan, Nazia; Stener-Victorin, Elisabet; Wu, XiaoKe; Legro, Richard S

    2011-07-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder that is characterized by chronic hyperandrogenic anovulation leading to symptoms of hirsutism, acne, irregular menses, and infertility. Multiple metabolic and cardiovascular risk factors are associated with PCOS, including insulin resistance, obesity, type 2 diabetes, hypertension, inflammation, and subclinical atherosclerosis. However, current treatments for PCOS are only moderately effective at controlling symptoms and preventing complications. This article describes how the physiological effects of major complementary and alternative medicine (CAM) treatments could reduce the severity of PCOS and its complications. Acupuncture reduces hyperandrogenism and improves menstrual frequency in PCOS. Acupuncture's clinical effects are mediated via activation of somatic afferent nerves innervating the skin and muscle, which, via modulation of the activity in the somatic and autonomic nervous system, may modulate endocrine and metabolic functions in PCOS. Chinese herbal medicines and dietary supplements may also exert beneficial physiological effects in PCOS, but there is minimal evidence that these CAM treatments are safe and effective. Mindfulness has not been investigated in PCOS, but it has been shown to reduce psychological distress and exert positive effects on the central and autonomic nervous systems, hypothalamic-pituitary-adrenal axis, and immune system, leading to reductions in blood pressure, glucose, and inflammation. In conclusion, CAM treatments may have beneficial endocrine, cardiometabolic, and reproductive effects in PCOS. However, most studies of CAM treatments for PCOS are small, nonrandomized, or uncontrolled. Future well-designed studies are needed to further evaluate the safety, effectiveness, and mechanisms of CAM treatments for PCOS.

  6. Hypothalamic amenorrhea: from diagnosis to therapeutical approach.

    PubMed

    Genazzani, A D; Chierchia, E; Santagni, S; Rattighieri, E; Farinetti, A; Lanzoni, C

    2010-05-01

    Among secondary amenorrheas, hypothalamic amenorrhea (HA) is the one with no evidence of endocrine/systemic causal factors. HA is mainly related to various stressors affecting neuroendocrine control of the reproductive axis. In clinical practice, HA is mainly associated with metabolic, physical, or psychological stress. Stress is the adaptive response of our body through all its homeostatic systems, to external and/or internal stimuli that activate specific and nonspecific physiological pathways. HA occurs generally after severe stressed conditions/situations such as dieting, heavy training, or intense emotional events, all situations that can induce amenorrhea with or without body weight loss and HA is a secondary amenorrhea with a diagnosis of exclusion. In fact, the diagnosis is essentially based on a good anamnestic investigation. It has to be investigated using the clinical history of the patient: occurrence of menarche, menstrual cyclicity, time and modality of amenorrhea, and it has to be excluded any endocrine disease or any metabolic (i.e., diabetes) and systemic disorders. It is necessary to identify any stressed situation induced by loss, family or working problems, weight loss or eating disorders, or physical training or agonist activity. Peculiar, though not specific, endocrine investigations might be proposed but no absolute parameter can be proposed since HA is greatly dependent from individual response to stressors and/or the adaptive response to stress. This chapter aims to give insights into diagnosis and putative therapeutic strategies. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  7. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    PubMed

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  8. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    EPA Science Inventory

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.

    Stoker TE, Parks LG, Gray LE, Cooper RL.

  9. Physiology of Exercise for Physical Education and Athletics. Second Edition.

    ERIC Educational Resources Information Center

    deVries, Herbert A.

    This three-part text, which is concerned with human functions under stress of muscular activity, provides a basis for the study of physical fitness and athletic training. Part 1 reviews pertinent areas of basic physiology. Muscles, the nervous system, the heart, respiratory system, exercise metabolism, and the endocrine system are reviewed. Part 2…

  10. Interactions between the Central Nervous System and Pancreatic Islet Secretions: A Historical Perspective

    ERIC Educational Resources Information Center

    Begg, Denovan P.; Woods, Stephen C.

    2013-01-01

    The endocrine pancreas is richly innervated with sympathetic and parasympathetic projections from the brain. In the mid-20th century, it was established that alpha-adrenergic activation inhibits, whereas cholinergic stimulation promotes, insulin secretion; this demonstrated the importance of the sympathetic and parasympathetic systems in…

  11. Effects of stress on endocrine and metabolic processes and redirection: Crosstalk between subcellular compartments

    USDA-ARS?s Scientific Manuscript database

    Recent advances in genome analysis and biochemical pathway mapping have advanced our understanding of how biological systems have evolved over time. Protein and DNA marker comparisons suggest that several of these systems are both ancient in origin but highly conserved into today’s evolved species. ...

  12. Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to the Fungicide Prochloraz, Presentation

    EPA Science Inventory

    The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms that ideally serve to maintain a dynamic homeostasis of the system in the face of changing environmental conditions, including exposure to chemical stressors. In these stud...

  13. Testing and Risk Assessment of Chemicals that Impact Highly Adaptive Biological Systems: The Case of Endocrine Systems

    EPA Science Inventory

    Animals have evolved a variety of mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. Well-known examples include activation of cellular repair pathways and induction of metabolizing enzymes. From a governmental regulatory perspective, these a...

  14. MEASURING THE TRANSPORT OF ENDOCRINE DISRUPTING DICARBOXIMIDES AND DEGRADATION PRODUCTS FROM THE SOIL TO THE LOWER TROPOSPHERE

    EPA Science Inventory

    A method for measuring the atmospheric flux of a dicarboximide and its degradation products was investigated. A volatile gas laboratory chamber was modified to measure the flux of semi-volatile fungicides. Pesticide application systems and soil incorporation systems were desig...

  15. [Association between single-person households and ambulatory treatment of endocrine and metabolic disease in Japan: analysis of the Comprehensive Survey of Living Conditions].

    PubMed

    Tsukinoki, Rumi; Murakami, Yoshitaka

    2014-01-01

    We examined the association between single-person households and ambulatory treatment of endocrine and metabolic disease in Japan. We used random sample data from the Comprehensive Survey of Living Conditions in 2003. The study included 11,928 participants aged ≥20 years, excluding inpatients and nursing home residents. Household status was categorized in terms of two groups: single-person household or multi-person household. Three age categories were used: 20-49, 50-64, and ≥65 years. Endocrine and metabolic disease was defined as the prevalence of diabetes, obesity, hyperlipidemia, and thyroid diseases. Men and women were analyzed separately. Logistic regression models were used to estimate the odds ratios (ORs) after adjusting for employment status, marital status, disability in activities of daily living, and smoking. The association between age, household, and ambulatory care for endocrine and metabolic disease was examined by a likelihood ratio test. There were 443 male and 529 female outpatients with endocrine and metabolic disease. In male outpatients from single-person households, the ORs for endocrine and metabolic disease were higher than for multi-person households across all age groups [single-person household, 1.62 (95% confidence interval: 1.03-2.56)]. The ORs for outpatients with endocrine and metabolic disease increased with age, and for those aged ≥65 years, these ORs increased gradually. There were no significant associations between age, households, and ambulatory care for endocrine and metabolic disease in men (for the interaction P=0.986). Furthermore, there was no significant association between single-person households and ambulatory care for endocrine and metabolic disease in women. The data from the national survey suggest that single-person households are a risk factor for endocrine and metabolic disease in Japanese men. Our findings indicate the need for management of endocrine and metabolic disease across all age groups.

  16. Endocrine Disruptor Screening Program (EDSP) 1998 Federal Register Notices

    EPA Pesticide Factsheets

    EPA outlined the Endocrine Disruptor Screening Program (EDSP), which incorporated many of the Endocrine Disruptor Screening and Testing Advisory Committee's (EDSTAC) recommendations, in two Federal Register Notices published in 1998.

  17. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model

    PubMed Central

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L.

    2016-01-01

    The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed. PMID:28217008

  18. Immunohistochemical analysis of IA-2 family of protein tyrosine phosphatases in rat gastrointestinal endocrine cells.

    PubMed

    Gomi, Hiroshi; Kubota-Murata, Chisato; Yasui, Tadashi; Tsukise, Azuma; Torii, Seiji

    2013-02-01

    Islet-associated protein-2 (IA-2) and IA-2β (also known as phogrin) are unique neuroendocrine-specific protein tyrosine phosphatases (PTPs). The IA-2 family of PTPs was originally identified from insulinoma cells and discovered to be major autoantigens in type 1 diabetes. Despite its expression in the neural and canonical endocrine tissues, data on expression of the IA-2 family of PTPs in gastrointestinal endocrine cells (GECs) are limited. Therefore, we immunohistochemically investigated the expression of the IA-2 family of PTPs in the rat gastrointestinal tract. In the stomach, IA-2 and IA-2β were expressed in GECs that secrete serotonin, somatostatin, and cholecystokinin/gastrin-1. In addition to these hormones, secretin, gastric inhibitory polypeptide (also known as the glucose-dependent insulinotropic peptide), glucagon-like peptide-1, and glucagon, but not ghrelin were coexpressed with IA-2 or IA-2β in duodenal GECs. Pancreatic islet cells that secrete gut hormones expressed the IA-2 family of PTPs. The expression patterns of IA-2 and IA-2β were comparable. These results reveal that the IA-2 family of PTPs is expressed in a cell type-specific manner in rat GECs. The extensive expression of the IA-2 family of PTPs in pancreo-gastrointestinal endocrine cells and in the enteric plexus suggests their systemic contribution to nutritional control through a neuroendocrine signaling network.

  19. Endocrine-disrupting chemicals and oil and natural gas operations: Potential environmental contamination and recommendations to assess complex environmental mixtures

    USGS Publications Warehouse

    Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.

    2016-01-01

    Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  20. Chronic exposure to low doses bisphenol A interferes with pair-bonding and exploration in female Mongolian gerbils.

    PubMed

    Razzoli, M; Valsecchi, P; Palanza, P

    2005-04-15

    Estrogenic endocrine disruptors, synthetic or naturally occurring substances found in the environment, can interfere with the vertebrate endocrine system and, mimicking estrogens, interact with the neuroendocrine substrates of behavior. Since species vary in their sensitivity to steroids, it is of great interest to widen the range of species included in the researches on neurobehavioral effects of estrogenic endocrine disruptors. We examined socio-sexual and exploratory behavior of Mongolian gerbil females (Meriones unguiculatus), a monogamous rodent, in response to chronic exposure to the estrogenic endocrine disruptor bisphenol A. Paired females were daily administered with one of the following treatments: bisphenol A (2 or 20 microg/kg body weight/day); 17alpha-ethynil estradiol (0.04 microg/kg body weight/day 17alphaE); oil (vehicle). Females were treated for 3 weeks after pairing. Starting on day of pairing, social interactions within pairs were daily recorded. Three weeks after pairing, females were individually tested in a free exploratory paradigm. Bisphenol A and 17alphaE affected male-female social interactions by increasing social investigation. Bisphenol A reduced several exploratory parameters, indicating a decreased exploratory propensity of females. These results highlight the sensitivity of adult female gerbils to bisphenol A during the hormonally sensitive period of pair formation, also considering that the bisphenol A doses tested are well below the suggested human tolerable daily intake.

  1. Endocrine-Disrupting Chemicals and Oil and Natural Gas Operations: Potential Environmental Contamination and Recommendations to Assess Complex Environmental Mixtures.

    PubMed

    Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C

    2016-03-01

    Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.

  2. Consensus models to predict endocrine disruption for all ...

    EPA Pesticide Factsheets

    Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and thus have the potential to be endocrine disruptors. Most of these environmental chemicals have never been tested for their ability to disrupt the endocrine system, in particular, their ability to interact with the estrogen receptor. EPA needs tools to prioritize thousands of chemicals, for instance in the Endocrine Disruptor Screening Program (EDSP). Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) was intended to be a demonstration of the use of predictive computational models on HTS data including ToxCast and Tox21 assays to prioritize a large chemical universe of 32464 unique structures for one specific molecular target – the estrogen receptor. CERAPP combined multiple computational models for prediction of estrogen receptor activity, and used the predicted results to build a unique consensus model. Models were developed in collaboration between 17 groups in the U.S. and Europe and applied to predict the common set of chemicals. Structure-based techniques such as docking and several QSAR modeling approaches were employed, mostly using a common training set of 1677 compounds provided by U.S. EPA, to build a total of 42 classification models and 8 regression models for binding, agonist and antagonist activity. All predictions were evaluated on ToxCast data and on an exte

  3. European endocrine surgery in the 150-year history of Langenbeck's Archives of Surgery.

    PubMed

    Dralle, Henning; Machens, A

    2010-04-01

    Founded in 1861 as a German language scientific forum of exchange for European surgeons, Langenbeck's Archives of Surgery quickly advanced to become the premier journal of thyroid surgery before World War I, serving as a point of crystallization for the emerging discipline of endocrine surgery. During the interwar period and, in particular, in the first decades after World War II, Langenbeck's Archives of Surgery lost its dominant position as an international and European medium of publication of top quality articles in the area of endocrine surgery. Nevertheless, the journal remained the chief publication organ of German language articles in the field of endocrine surgery. After a series of key events, Langenbeck's Archives of Surgery managed to reclaim its former position as the leading European journal of endocrine surgery: (1) the formation of endocrine surgery in the early 1980s as a subdiscipline of general and visceral surgery; (2) the change of the language of publication from German to English in 1998; and (3) the journal's appointment in 2004 as the official organ of publication of the European Society of Endocrine Surgeons. All in all, the 150-year publication record of Langenbeck's Archives of Surgery closely reflects the history of European Endocrine Surgery. Following the path of seminal articles from Billroth, Kocher, and many other surgical luminaries published in the journal more than 100 years ago, Langenbeck's Archives of Surgery today stands out as the principal European journal in the field of endocrine surgery.

  4. Multiple endocrine diseases in dogs: 35 cases (1996-2009).

    PubMed

    Blois, Shauna L; Dickie, Erica; Kruth, Stephen A; Allen, Dana G

    2011-06-15

    To characterize a population of dogs from a tertiary care center with 2 or more endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Retrospective case series. 35 dogs with 2 or more endocrine disorders. Medical records were reviewed, and the following was recorded: clinical signs, physical examination findings, and the results of CBC, serum biochemical analysis, urinalysis, aerobic bacterial culture of urine samples, endocrine testing, diagnostic imaging, and necropsy. 35 dogs with more than 1 endocrine disorder were identified. Seventy-seven percent (27/35) of the dogs were male, and the mean age at the time of diagnosis of the first endocrinopathy was 7.9 years. Miniature Schnauzer was the most common breed. Twenty-eight of 35 (80%) dogs had 2 disorders; 7 (20%) had 3 disorders. The most common combinations of disorders included diabetes mellitus and hyperadrenocorticism in 57.1 % (20/35) of dogs; hypoadrenocorticism and hypothyroidism in 22.9% (8/35) of dogs; and diabetes mellitus and hypothyroidism in 28.6% (10/35) of dogs. A mean of 14.5 months elapsed between diagnosis of the first and second endocrine disorders, whereas there was a mean of 31.1 months between diagnosis of the first and third endocrine disorders. Results suggested that the occurrence of multiple endocrine disorders was uncommon in dogs. The most common combinations of endocrine disorders in this population of dogs were diabetes mellitus and hyperadrenocorticism, followed by hypoadrenocorticism and hypothyroidism.

  5. Pancreatic fibrosis correlates with exocrine pancreatic insufficiency after pancreatoduodenectomy.

    PubMed

    Tran, T C K; van 't Hof, G; Kazemier, G; Hop, W C; Pek, C; van Toorenenbergen, A W; van Dekken, H; van Eijck, C H J

    2008-01-01

    Obstruction of the pancreatic duct can lead to pancreatic fibrosis. We investigated the correlation between the extent of pancreatic fibrosis and the postoperative exocrine and endocrine pancreatic function. Fifty-five patients who were treated for pancreatic and periampullary carcinoma and 19 patients with chronic pancreatitis were evaluated. Exocrine pancreatic function was evaluated by fecal elastase-1 test, while endocrine pancreatic function was assessed by plasma glucose level. The extent of fibrosis, duct dilation and endocrine tissue loss was examined histopathologically. A strong correlation was found between pancreatic fibrosis and elastase-1 level less than 100 microg/g (p < 0.0001), reflecting severe exocrine pancreatic insufficiency. A strong correlation was found between pancreatic fibrosis and endocrine tissue loss (p < 0.0001). Neither pancreatic fibrosis nor endocrine tissue loss were correlated with the development of postoperative diabetes mellitus. Duct dilation alone was neither correlated with exocrine nor with endocrine function loss. The majority of patients develop severe exocrine pancreatic insufficiency after pancreatoduodenectomy. The extent of exocrine pancreatic insufficiency is strongly correlated with preoperative fibrosis. The loss of endocrine tissue does not correlate with postoperative diabetes mellitus. Preoperative dilation of the pancreatic duct per se does not predict exocrine or endocrine pancreatic insufficiency postoperatively. Copyright 2008 S. Karger AG, Basel.

  6. Navigation through inter- and intratumoral heterogeneity of endocrine resistance mechanisms in breast cancer: A potential role for Liquid Biopsies?

    PubMed

    Reinhardt, Florian; Franken, André; Fehm, Tanja; Neubauer, Hans

    2017-11-01

    The majority of breast cancers are hormone receptor positive due to the expression of the estrogen and/or progesterone receptors. Endocrine therapy is a major treatment option for all disease stages of hormone receptor-positive breast cancer and improves overall survival. However, endocrine therapy is limited by de novo and acquired resistance. Several factors have been proposed for endocrine therapy failures, which include molecular alterations in the estrogen receptor pathway, altered expression of cell-cycle regulators, autophagy, and epithelial-to-mesenchymal transition as a consequence of tumor progression and selection pressure. It is essential to reveal and monitor intra- and intertumoral alterations in breast cancer to allow optimal therapy outcome. Endocrine therapy navigation by molecular profiling of tissue biopsies is the current gold standard but limited in many reasons. "Liquid biopsies" such as circulating-tumor cells and circulating-tumor DNA offer hope to fill that gap in allowing non-invasive serial assessment of biomarkers predicting success of endocrine therapy regimen. In this context, this review will provide an overview on inter- and intratumoral heterogeneity of endocrine resistance mechanisms and discuss the potential role of "liquid biopsies" as navigators to personalize treatment methods and prevent endocrine treatment resistance in breast cancer.

  7. Endocrine tumors of the duodenum. A study of 55 cases relative to clinicopathological features and hormone content.

    PubMed

    Heymann, M F; Hamy, A; Triau, S; Miraillé, E; Toquet, C; Chomarat, H; Cohen, C; Maitre, F; Le Bodie, M F

    2004-01-01

    Study of prognosis of duodenal endocrine tumors. Retrospective study concerned 55 duodenal endocrine tumors discovered in biopsy or surgical specimens. Follow-up records available for 49 patients indicated that inconspicuous associated clinical manifestations were often found subsequently. Seven patients were classified as Zollinger-Ellison syndrome and seven as multiple endocrine neoplasia (6 MEN I and 1 MEN II). Tumors were small (mean 1.28cm) and located preferentially in the first and second part of the duodenum. Fifty-four were well-differentiated and one poorly differentiated. Immunochemistry revealed 30 G-cell tumors (54.6%), 15 D-cell (27.3%), two plurihormonal (EC cell and G cell), and one GRH-cell, whereas seven could not be classified. Fifteen patients died (five in relation to their disease). Twenty-one had metastases (liver, nodes, lung), eight of whom are still alive. Eighty-eight percent of duodenal endocrine tumors were gastrinomas, small plurifocal tumors and somatostatinomas preferentially located in the ampullar region and diagnosed because of hematemesis or icterus. Size is an important prognostic factor in determining whether surgery is required. The prognosis is better for D- and G-cell tumors than pancreatic endocrine tumors. Duodenal endocrine tumors in multiple endocrine neoplasia have a good prognosis, but can be associated with pancreatic plurihormonal tumors and metastases.

  8. Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J

    1989-01-01

    Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.

  9. 78 FR 37803 - Agency Information Collection Activities; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-24

    ... identify substances that have the potential to interact with the estrogen, androgen, or thyroid hormone... or thyroid hormone systems may proceed to Tier 2, which is designed to identify any adverse endocrine...

  10. ANALYTICAL CHALLENGES OF ENVIRONMENTAL ENDOCRINE DISRUPTOR MONITORING

    EPA Science Inventory

    Reported increases in the incidence of endocrine-related conditions have led to speculation about environmental causes. Environmental scientists are focusing increased research effort into understanding the mechanisms by which endocrine disruptors affect human and ecological h...

  11. Socioeconomic conditions across life related to multiple measures of the endocrine system in older adults: Longitudinal findings from a British birth cohort study

    PubMed Central

    Bann, David; Hardy, Rebecca; Cooper, Rachel; Lashen, Hany; Keevil, Brian; Wu, Frederick C.W.; Holly, Jeff M.P.; Ong, Ken K.; Ben-Shlomo, Yoav; Kuh, Diana

    2015-01-01

    Background Little is known about how socioeconomic position (SEP) across life impacts on different axes of the endocrine system which are thought to underlie the ageing process and its adverse consequences. We examined how indicators of SEP across life related to multiple markers of the endocrine system in late midlife, and hypothesized that lower SEP across life would be associated with an adverse hormone profile across multiple axes. Methods Data were from a British cohort study of 875 men and 905 women followed since their birth in March 1946 with circulating free testosterone and insulin-like growth factor-I (IGF-I) measured at both 53 and 60–64 years, and evening cortisol at 60–64 years. Indicators of SEP were ascertained prospectively across life—paternal occupational class at 4, highest educational attainment at 26, household occupational class at 53, and household income at 60–64 years. Associations between SEP and hormones were investigated using multiple regression and logistic regression models. Results Lower SEP was associated with lower free testosterone among men, higher free testosterone among women, and lower IGF-I and higher evening cortisol in both sexes. For example, the mean standardised difference in IGF-I comparing the lowest with the highest educational attainment at 26 years (slope index of inequality) was −0.4 in men (95% CI -0.7 to −0.2) and −0.4 in women (−0.6 to −0.2). Associations with each hormone differed by SEP indicator used and sex, and were particularly pronounced when using a composite adverse hormone score. For example, the odds of having 1 additional adverse hormone concentration in the lowest compared with highest education level were 3.7 (95% CI: 2.1, 6.3) among men, and 1.6 (1.0, 2.7) among women (P (sex interaction) = 0.02). We found no evidence that SEP was related to apparent age-related declines in free testosterone or IGF-I. Conclusions Lower SEP was associated with an adverse hormone profile across multiple endocrine axes. SEP differences in endocrine function may partly underlie inequalities in health and function in later life, and may reflect variations in biological rates of ageing. Further studies are required to assess the likely functional relevance of these associations. PMID:26588434

  12. Molecular essence and endocrine responsiveness of estrogen receptor-negative, progesterone receptor-positive, and HER2-negative breast cancer.

    PubMed

    Yu, Ke-Da; Jiang, Yi-Zhou; Hao, Shuang; Shao, Zhi-Ming

    2015-10-05

    The clinical significance of progesterone receptor (PgR) expression in estrogen receptor-negative (ER-) breast cancer is controversial. Herein, we systemically investigate the clinicopathologic features, molecular essence, and endocrine responsiveness of ER-/PgR+/HER2- phenotype. Four study cohorts were included. The first and second cohorts were from the Surveillance, Epidemiology, and End Results database (n = 67,932) and Fudan University Shanghai Cancer Center (n = 2,338), respectively, for clinicopathologic and survival analysis. The third and fourth cohorts were from two independent publicly available microarray datasets including 837 operable cases and 483 cases undergoing neoadjuvant chemotherapy, respectively, for clinicopathologic and gene-expression analysis. Characterized genes defining subgroups within the ER-/PgR+/HER2- phenotype were determined and further validated. Clinicopathologic features and survival outcomes of the ER-/PgR+ phenotype fell in between the ER+/PgR+ and ER-/PgR- phenotypes, but were more similar to ER-/PgR-. Among the ER-/PgR+ phenotype, 30% (95% confidence interval [CI] 17-42%, pooled by a fixed-effects method) were luminal-like and 59% (95% CI 45-72%, pooled by a fixed-effects method) were basal-like. We further refined the characterized genes for subtypes within the ER-/PgR+ phenotype and developed an immunohistochemistry-based method that could determine the molecular essence of ER-/PgR+ using three markers, TFF1, CK5, and EGFR. Either PAM50-defined or immunohistochemistry-defined basal-like ER-/PgR+ cases have a lower endocrine therapy sensitivity score compared with luminal-like ER-/PgR+ cases (P <0.0001 by Mann-Whitney test for each study set and P <0.0001 for pooled standardized mean difference in meta-analysis). Immunohistochemistry-defined basal-like ER-/PgR+ cases might not benefit from adjuvant endocrine therapy (log-rank P = 0.61 for sufficient versus insufficient endocrine therapy). The majority of ER-/PgR+/HER2- phenotype breast cancers are basal-like and associated with a lower endocrine therapy sensitivity score. Additional studies are needed to validate these findings.

  13. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions. PMID:26544531

  14. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  15. Fish and wildlife species as sentinels of environmental endocrine disruption

    USGS Publications Warehouse

    Sheffield, S.R.; Matter, J.M.; Rattner, B.A.; Guiney, P.D.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    This chapter provides an overview of the history and criteria for use of captive and free-ranging fish and wildlife (amphibians, reptiles, birds, and mammals) species as sentinels of potential environmental endocrine disruption. Biochemical, behavioral, physiological, immunological, genetic, reproductive, developmental, and ecological correlates of endocrine disruption in these sentinels are presented and reviewed. In addition, data needs to promote better use of sentinel species in the assessment of endocrine disruption are discussed.

  16. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    PubMed

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  17. Hypopituitarism in pediatric survivors of inflicted traumatic brain injury.

    PubMed

    Auble, Bethany A; Bollepalli, Sureka; Makoroff, Kathi; Weis, Tammy; Khoury, Jane; Colliers, Tracy; Rose, Susan R

    2014-02-15

    Endocrine dysfunction is common after accidental traumatic brain injury (TBI). Prevalence of endocrine dysfunction after inflicted traumatic brain injury (iTBI) is not known. The aim of this study was to examine endocrinopathy in children after moderate-to-severe iTBI. Children with previous iTBI (n=14) were evaluated for growth/endocrine dysfunction, including anthropometric measurements and hormonal evaluation (nocturnal growth hormone [GH], thyrotropin surge, morning and low-dose adrenocorticotropin stimulated cortisol, insulin-like growth factor 1, IGF-binding protein 3, free thyroxine, prolactin [PRL], and serum/urine osmolality). Analysis used Fisher's exact test and Wilcoxon's rank-sum test, as appropriate. Eighty-six percent of subjects had endocrine dysfunction with at least one abnormality, whereas 50% had two or more abnormalities, significantly increased compared to an estimated 2.5% with endocrine abnormality in the general population (p<0.001). Elevated prolactin was common (64%), followed by abnormal thyroid function (33%), short stature (29%), and low GH peak (17%). High prolactin was common in subjects with other endocrine abnormalities. Two were treated with thyroid hormone and 2 may require GH therapy. In conclusion, children with a history of iTBI show high risk for endocrine dysfunction, including elevated PRL and growth abnormalities. This effect of iTBI has not been well described in the literature. Larger, multi-center, prospective studies would provide more data to determine the extent of endocrine dysfunction in iTBI. We recommend that any child with a history of iTBI be followed closely for growth velocity and pubertal changes. If growth velocity is slow, PRL level and a full endocrine evaluation should be performed.

  18. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  19. Effects of bedrest 1: cardiovascular, respiratory and haematological systems.

    PubMed

    Knight, John; Nigam, Yamni; Jones, Aled

    This is the first in a three-part series on the physiological effects of bedrest. It discusses what happens to the cardiovascular, respiratory and haematological systems when a person is bedridden. Other articles in the series will cover the effects of immobility on the digestive, endocrine, renal, nervous, immune and musculoskeletal systems and will examine the effects of bedrest on the skin.

  20. Effects of chronic exposure to 12‰ saltwater on the endocrine physiology of juvenile American alligator (Alligator mississippiensis).

    PubMed

    Faulkner, P C; Burleson, M L; Simonitis, L; Marshall, C; Hala, D; Petersen, L H

    2018-05-18

    American alligator ( Alligator mississippiensis , Linnaeus) habitats are prone to saltwater intrusion following major storms, hurricanes or droughts. Anthropogenic impacts affecting hydrology of freshwater systems may exacerbate saltwater intrusion into freshwater habitats. The endocrine system of alligators is susceptible to changes in the environment but it is currently not known how the crocodilian physiological system responds to environmental stressors such as salinity. Juvenile alligators were exposed to 12‰ saltwater for 5 weeks to determine effects of chronic exposure to saline environments. Following 5 weeks, plasma levels of hormones (e.g., progesterone, testosterone, estradiol, corticosterone, aldosterone, angiotensin II) were quantified using LC-MS/MS. Compared to freshwater kept subjects, saltwater exposed alligators had significantly elevated plasma levels of corticosterone, 11-deoxycortisol, 17α-hydroxyprogesterone, testosterone, 17β-estradiol, estrone and estriol while pregnenolone and angiotensin II (ANG II) were significantly depressed and aldosterone (ALDO) levels were unchanged (slightly depressed). However, saltwater exposure did not affect gene expression of renal mineralo- and glucorticoid (MR, GR) and angiotensin type 1 (AT-1) receptors or morphology of lingual glands. On the other hand, saltwater exposure significantly reduced plasma glucose concentrations whereas parameters diagnostic of perturbed liver function (enzymes AST, ALT) and kidney function (creatinine, creatine kinase) were significantly elevated. Except for plasma potassium levels (K + ), plasma ions Na + and Cl - were significantly elevated in saltwater alligators. Overall, this study demonstrated significant endocrine and physiological effects in juvenile alligators chronically exposed to a saline environment. Results provide novel insights into the effects of a natural environmental stressor (salinity) on renin-angiotensin-aldosterone system and steroidogenesis of alligators. © 2018. Published by The Company of Biologists Ltd.

Top