Sample records for endocrine system organs

  1. The clandestine organs of the endocrine system.

    PubMed

    Garcia-Reyero, Natàlia

    2018-02-01

    This review analyzes what could be regarded as the "clandestine organs" of the endocrine system: the gut microbiome, the immune system, and the stress system. The immune system is very closely related to the endocrine system, with many intertwined processes and signals. Many researchers now consider the microbiome as an 'organ' that affects the organism at many different levels. While stress is certainly not an organ, it affects so many processes, including endocrine-related processes, that the stress response system deserved a special section in this review. Understanding the connections, effects, and feedback mechanisms between the different "clandestine organs" and the endocrine system will provide us with a better understanding of how an organism functions, as well as reinforce the idea that there are no independent organs or systems, but a complex, interacting network of molecules, cells, tissues, signaling pathways, and mechanisms that constitute an individual. Published by Elsevier Inc.

  2. Endocrine system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  3. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  4. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  5. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  6. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  8. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  9. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  10. Syndromes that Link the Endocrine System and Genitourinary Tract.

    PubMed

    Özlük, Yasemin; Kılıçaslan, Işın

    2015-01-01

    The endocrine system and genitourinary tract unite in various syndromes. Genitourinary malignancies may cause paraneoplastic endocrine syndromes by secreting hormonal substances. These entities include Cushing`s syndrome, hypercalcemia, hyperglycemia, polycythemia, hypertension, and inappropriate ADH or HCG production. The most important syndromic scenarios that links these two systems are hereditary renal cancer syndromes with specific genotype/phenotype correlation. There are also some very rare entities in which endocrine and genitourinary systems are involved such as Carney complex, congenital adrenal hyperplasia and Beckwith-Wiedemann syndrome. We will review all the syndromes regarding manifestations present in endocrine and genitourinary organs.

  11. Introduction to the Endocrine System

    MedlinePlus

    ... by downloading the Hormone Health Network's 3D Patient Education mobile app ! The endocrine system is a series of glands that produce and ... Network partners with other organizations to further patient education on hormone related issues. Network Sponsors The Hormone Health ... Disrupting Chemicals (EDCs) Steroid and Hormone ...

  12. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  13. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  14. Information analysis of immune and endocrine organs. Morphological changes in the course of infection.

    PubMed

    Avtandilov, G G; Barsukov, V S

    1992-11-01

    Morphological and morphometric studies were conducted into lymphoid and endocrine organs of 259 human adults and infants with pyoinflammatory diseases (PID) and of 300 experimental mice. Informative and correlation analyses of the data thus recorded provided evidence to the effect that in the course of an infection process adaptation and compensation responses were characterized by intensified exchange of information within the immune-endocrine system (IES). Septic courses of PID were found to be accompanied by impairment of inter-organ correlations, increase in information entropy and progressive structural disorganization of the IES.

  15. Endocrine system and obesity.

    PubMed

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients. Copyright © 2010. Published by Elsevier Inc.

  16. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  17. Endocrine system: part 2.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-03

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  18. Tumors of the endocrine/neuroendocrine system: an overview.

    PubMed

    Erlandson, R A; Nesland, J M

    1994-01-01

    For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.

  19. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  20. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  1. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  2. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nanotoxicity: a growing need for study in the endocrine system.

    PubMed

    Lu, Xuefei; Liu, Ying; Kong, Xiangjun; Lobie, Peter E; Chen, Chunying; Zhu, Tao

    2013-05-27

    Nanomaterials (NMs) are engineered for commercial purposes such as semiconductors, building materials, cosmetics, and drug carriers, while natural nanoparticles (NPs) already exist in the environment. Due to their unique physicochemical properties, they may interact actively with biological systems. Some of these interactions might be detrimental to human health, and therefore studies on the potential 'nanotoxicity' of these materials in different organ systems are warranted. The purpose of developing the concept of nanotoxicity is to recognize and evaluate the hazards and risks of NMs and evaluate safety. This review will summarize and discuss recent reports derived from cell lines or animal models concerning the effects of NMs on, and their application in, the endocrine system of mammalian and other species. It will present an update on current studies of the effects of some typical NMs-such as metal-based NMs, carbon-based NMs, and dendrimers-on endocrine functions, in which some effects are adverse or unwanted and others are favorable or intended. Disruption of endocrine function is associated with adverse health outcomes including reproductive failure, metabolic syndrome, and some types of cancer. Further investigations are therefore required to obtain a thorough understanding of any potential risk of pathological endocrine disruption from products containing NMs. This review aims to provide impetus for further studies on the interactions of NMs with endocrine functions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Trauma and the endocrine system.

    PubMed

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma. Copyright © 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  5. Skeletal muscle as a gene regulatory endocrine organ.

    PubMed

    Karstoft, Kristian; Pedersen, Bente K

    2016-07-01

    Skeletal muscle is gaining increased attention as an endocrine organ. Recently, novel myokines and new effects of already established myokines have been identified. The objective of this review is to give an update on the recent advances in the field. Several hundred putative myokines have been described, some of which are induced by contraction and differentially regulated between healthy and metabolically diseased individuals. Interleukin-6 (IL-6) is the prototype myokine, which was identified as a muscle-derived cytokine 15 years ago. Recently, IL-6 has been linked to β-cell survival and inhibition of cancer-cell growth. Moreover, trans-signaling appears to determine whether IL-6 acts as a proinflammatory or an anti-inflammatory cytokine. Irisin has been shown to be a secreted myokine, which contribute to circulating concentrations dependent on training status. IL-15 has been established as a cytokine mediating cross-talk between skeletal muscle and skin tissue, and decorin has been characterized as a contraction-induced myokine which apparently is differentially regulated between healthy and dysglycemic individuals. Skeletal muscle is an endocrine organ which, by the release of myokines, may influence metabolism in virtually all organs in the body. This knowledge may potentially open up for the possibility of designing new drugs that mimic the effects of myokine signaling.

  6. Environmental endocrine disruptors: Effects on the human male reproductive system.

    PubMed

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  7. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

    PubMed

    Kang, Jeong-Hun; Asai, Daisuke; Aasi, Daisuke; Katayama, Yoshiki

    2007-01-01

    Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.

  8. Endocrine glands

    MedlinePlus Videos and Cool Tools

    ... the pancreas, ovaries and testes. The endocrine and nervous systems work very closely together. The brain continuously sends ... endocrine glands. Because of this intimate relationship, the nervous and endocrine systems are referred to as the neuroendocrine system. The ...

  9. Minireview: Gut Microbiota: The Neglected Endocrine Organ

    PubMed Central

    Clarke, Gerard; Stilling, Roman M.; Kennedy, Paul J.; Stanton, Catherine; Cryan, John F.

    2014-01-01

    The concept that the gut microbiota serves as a virtual endocrine organ arises from a number of important observations. Evidence for a direct role arises from its metabolic capacity to produce and regulate multiple compounds that reach the circulation and act to influence the function of distal organs and systems. For example, metabolism of carbohydrates results in the production of short-chain fatty acids, such as butyrate and propionate, which provide an important source of nutrients as well as regulatory control of the host digestive system. This influence over host metabolism is also seen in the ability of the prebiotic inulin to influence production of relevant hormones such as glucagon-like peptide-1, peptide YY, ghrelin, and leptin. Moreover, the probiotic Lactobacillus rhamnosus PL60, which produces conjugated linoleic acid, has been shown to reduce body-weight gain and white adipose tissue without effects on food intake. Manipulating the microbial composition of the gastrointestinal tract modulates plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Indirectly and through as yet unknown mechanisms, the gut microbiota exerts control over the hypothalamic-pituitary-adrenal axis. This is clear from studies on animals raised in a germ-free environment, who show exaggerated responses to psychological stress, which normalizes after monocolonization by certain bacterial species including Bifidobacterium infantis. It is tempting to speculate that therapeutic targeting of the gut microbiota may be useful in treating stress-related disorders and metabolic diseases. PMID:24892638

  10. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    PubMed

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  11. Appetite-Controlling Endocrine Systems in Teleosts

    PubMed Central

    Rønnestad, Ivar; Gomes, Ana S.; Murashita, Koji; Angotzi, Rita; Jönsson, Elisabeth; Volkoff, Hélène

    2017-01-01

    Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms. PMID:28458653

  12. [Novel concepts in biology of diffuse endocrine system: results and future investigations].

    PubMed

    Iaglov, V V; Iaglova, N V

    2012-01-01

    Diffuse endocrine system is a largest part of endocrine system of vertebrates. Recend findings showed that DES-cells are not neuroectodermal but have ectodermal, mesodermal, and entodermal ontogeny. The article reviews novel concept of diffuse endocrine system anatomy and physiology, functional role of DES hormones and poorly investigated aspects like DES-cell morphology, hormones secretion in normal and pathologic conditions. Further research of diffuse endocrine system has a great significance for biochemistry, morphology, and clinical medicine.

  13. Parabens and their effects on the endocrine system.

    PubMed

    Nowak, Karolina; Ratajczak-Wrona, Wioletta; Górska, Maria; Jabłońska, Ewa

    2018-03-27

    Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. In vitro steroid profiling system for the evaluation of endocrine disruptors.

    PubMed

    Nakano, Yosuke; Yamashita, Toshiyuki; Okuno, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-09-01

    Endocrine disruptors (ED) are chemicals that affect various aspects of the endocrine system, often leading to the inhibition of steroidogenesis. Current chemical safety policies that restrict human exposure to such chemicals describe often time-consuming and costly methods for the evaluation of ED effects. We aimed to develop an effective tool for accurate phenotypic chemical toxicology studies. We developed an in vitro ED evaluation system using gas chromatography/mass spectrometry (GC/MS/MS) methods for metabolomic analysis of multi-marker profiles. Accounting for sample preparation and GC/MS/MS conditions, we established a screening method that allowed the simultaneous analysis of 17 steroids with good reproducibility and a linear calibration curve. Moreover, we applied the developed system to H295R human adrenocortical cells exposed to forskolin and prochloraz in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines and observed dose-dependent variations in steroid profiles. While the OECD guidelines include only testosterone and 17β-estradiol, our system enabled a comprehensive and highly sensitive analysis of steroid profile alteration due to ED exposure. The application of our ED evaluation screen could be economical and provide novel insights into the hazards of ED exposure to the endocrine system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  16. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  19. ALTERATIONS IN DEVELOPMENT OF REPRODUCTIVE AND ENDOCRINE SYSTEMS OF WILDLIFE POPULATIONS EXPOSED TO ENDOCRINE-DISRUPTING CONTAMINANTS.

    EPA Science Inventory

    Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target ...

  20. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication

    PubMed Central

    Karsenty, Gerard; Olson, Eric N.

    2016-01-01

    Most physiological functions originate with the communication between organs. Mouse genetics has revived this holistic view of physiology through the identification of inter-organ communications that are unanticipated, functionally important and would have been difficult to uncover otherwise. This review highlights this point by showing how two tissues usually not seen as endocrine ones, bone and striated muscles, influence in a significant manner several physiological processes. PMID:26967290

  2. Systemic Effects of Non-Endocrine Tumours

    PubMed Central

    Sullivan, James D.; Rona, George

    1964-01-01

    Tumours of non-endocrine origin may exert deleterious effects by elaborating active principles which disturb body regulation. Systemic manifestations are fairly common with neoplasms of the lung, kidney, gastro-intestinal tract and thymus. The secretion of these tumours may have a known chemical structure (serotonin), may present hormone-like action (parathormone, antidiuretic hormone, insulinoid), or have well-defined biological properties (erythropoietin, gastrin-like principle). Tumours may stimulate endocrine glands by an unknown mechanism, producing disorders such as Cushing's syndrome, hypercalcemia, gynecomastia and hypoglycemia. Thymomas may be associated with autoimmune diseases. Tumours may extensively utilize or excrete some metabolite (glucose) or electrolyte (Na or K). Awareness of the systemic effects of various neoplasms may lead to an early diagnosis and proper treatment of these manifestations. PMID:14204555

  3. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  4. The Heart of the Matter: Cardiac Manifestations of Endocrine Disease

    PubMed Central

    Binu, Aditya John; Cherian, Kripa Elizabeth; Kapoor, Nitin; Chacko, Sujith Thomas; George, Oommen; Paul, Thomas Vizhalil

    2017-01-01

    Endocrine disorders manifest as a disturbance in the milieu of multiple organ systems. The cardiovascular system may be directly affected or alter its function to maintain the state of homeostasis. In this article, we aim to review the pathophysiology, diagnosis, clinical features and management of cardiac manifestations of various endocrine disorders. PMID:29285459

  5. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  6. Endocannabinoids and the Endocrine System in Health and Disease.

    PubMed

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  7. The Effects of Nanomaterials as Endocrine Disruptors

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  8. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  9. How does obesity affect the endocrine system? A narrative review.

    PubMed

    Poddar, M; Chetty, Y; Chetty, V T

    2017-06-01

    Obesity is a chronic, relapsing medical condition that results from an imbalance of energy expenditure and consumption. It is a leading cause of preventable illness, disability and premature death. The causes of obesity are multifactorial and include behavioural, socioeconomic, genetic, environmental and psychosocial factors. Rarely are endocrine diseases, e.g., hypothyroidism or Cushing's syndrome, the cause of obesity. What is less understood is how obesity affects the endocrine system. In this review, we will discuss the impact of obesity on multiple endocrine systems, including the hypothalamic-pituitary axis, changes in vitamin D homeostasis, gender steroids and thyroid hormones. We will also examine the renin angiotensin aldosterone system and insulin pathophysiology associated with obesity. We will provide a general overview of the biochemical changes that can be seen in patients with obesity, review possible aetiologies of these changes and briefly consider current guidelines on their management. This review will not discuss endocrine causes of obesity. © 2017 World Obesity Federation.

  10. Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours

    PubMed Central

    Patisaul, Heather B.

    2017-01-01

    A wide range of health benefits have been ascribed to soya intake including a lowered risk of osteoporosis, heart disease, breast cancer, and menopausal symptoms. Because it is a hormonally active diet, however, soya can also be endocrine disrupting, suggesting that intake has the potential to cause adverse health effects in certain circumstances, particularly when exposure occurs during development. Consequently, the question of whether or not soya phyto-oestrogens are beneficial or harmful to human health is neither straightforward nor universally applicable to all groups. Possible benefits and risks depend on age, health status, and even the presence or absence of specific gut microflora. As global consumption increases, greater awareness and consideration of the endocrine-disrupting properties of soya by nutrition specialists and other health practitioners is needed. Consumption by infants and small children is of particular concern because their hormone-sensitive organs, including the brain and reproductive system, are still undergoing sexual differentiation and maturation. Thus, their susceptibility to the endocrine-disrupting activities of soya phyto-oestrogens may be especially high. As oestrogen receptor partial agonists with molecular and cellular properties similar to anthropogenic endocrine disruptors such as bisphenol A, the soya phyto-oestrogens provide an interesting model for how attitudes about what is ‘synthetic’ v. what is ‘natural,’ shapes understanding and perception of what it means for a compound to be endocrine disrupting and/or potentially harmful. This review describes the endocrine-disrupting properties of soya phyto-oestrogens with a focus on neuroendocrine development and behaviour. PMID:27389644

  11. Syndrome-Associated Tumors by Organ System

    PubMed Central

    Gonzalez, Raul S.; Riddle, Nicole D.

    2016-01-01

    Certain tumors suggest the possibility of a patient harboring a genetic syndrome, particularly in children. Syndrome-associated tumors of the gastrointestinal tract, genitourinary tract, gynecologic tract, heart, lungs, brain, eye, endocrine organs, and hematopoietic system will be briefly discussed. PMID:27617151

  12. The impact of opioids on the endocrine system.

    PubMed

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  13. Endocrine Function In Naturally Long-Living Small Mammals

    PubMed Central

    Buffenstein, Rochelle; Pinto, Mario

    2015-01-01

    The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here we examine the available endocrine data associated with the vitamin D, insulin, grlucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter-lived rodents. Similarities with genetically manipulated suggest that evolutionarily wellconserved hormonal mechanisms are integrally involved in lifespan determination. PMID:18674586

  14. The immune-neuro-endocrine interactions.

    PubMed

    Tomaszewska, D; Przekop, F

    1997-06-01

    This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.

  15. Endocrine system on chip for a diabetes treatment model.

    PubMed

    Nguyen, Dao Thi Thuy; van Noort, Danny; Jeong, In-Kyung; Park, Sungsu

    2017-02-21

    The endocrine system is a collection of glands producing hormones which, among others, regulates metabolism, growth and development. One important group of endocrine diseases is diabetes, which is caused by a deficiency or diminished effectiveness of endogenous insulin. By using a microfluidic perfused 3D cell-culture chip, we developed an 'endocrine system on chip' to potentially be able to screen drugs for the treatment of diabetes by measuring insulin release over time. Insulin-secreting β-cells are located in the pancreas, while L-cells, located in the small intestines, stimulate insulin secretion. Thus, we constructed a co-culture of intestinal-pancreatic cells to measure the effect of glucose on the production of glucagon-like peptide-1 (GLP-1) from the L-cell line (GLUTag) and insulin from the pancreatic β-cell line (INS-1). After three days of culture, both cell lines formed aggregates, exhibited 3D cell morphology, and showed good viability (>95%). We separately measured the dynamic profile of GLP-1 and insulin release at glucose concentrations of 0.5 and 20 mM, as well as the combined effect of GLP-1 on insulin production at these glucose concentrations. In response to glucose stimuli, GLUTag and INS-1 cells produced higher amounts of GLP-1 and insulin, respectively, compared to a static 2D cell culture. INS-1 combined with GLUTag cells exhibited an even higher insulin production in response to glucose stimulation. At higher glucose concentrations, the diabetes model on chip showed faster saturation of the insulin level. Our results suggest that the endocrine system developed in this study is a useful tool for observing dynamical changes in endocrine hormones (GLP-1 and insulin) in a glucose-dependent environment. Moreover, it can potentially be used to screen GLP-1 analogues and natural insulin and GLP-1 stimulants for diabetes treatment.

  16. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    This Executive Summary to the Endocrine Society's second Scientific Statement on environmental endocrine-disrupting chemicals (EDCs) provides a synthesis of the key points of the complete statement. The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information. The Statement also included thorough coverage of studies of developmental exposures to EDCs, especially in the fetus and infant, because these are critical life stages during which perturbations of hormones can increase the probability of a disease or dysfunction later in life. A conclusion of the Statement is that publications over the past 5 years have led to a much fuller understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability. These findings will prove useful to researchers, physicians, and other healthcare providers in translating the science of endocrine disruption to improved public health. PMID:26414233

  17. Review: the role of neural crest cells in the endocrine system.

    PubMed

    Adams, Meghan Sara; Bronner-Fraser, Marianne

    2009-01-01

    The neural crest is a pluripotent population of cells that arises at the junction of the neural tube and the dorsal ectoderm. These highly migratory cells form diverse derivatives including neurons and glia of the sensory, sympathetic, and enteric nervous systems, melanocytes, and the bones, cartilage, and connective tissues of the face. The neural crest has long been associated with the endocrine system, although not always correctly. According to current understanding, neural crest cells give rise to the chromaffin cells of the adrenal medulla, chief cells of the extra-adrenal paraganglia, and thyroid C cells. The endocrine tumors that correspond to these cell types are pheochromocytomas, extra-adrenal paragangliomas, and medullary thyroid carcinomas. Although controversies concerning embryological origin appear to have mostly been resolved, questions persist concerning the pathobiology of each tumor type and its basis in neural crest embryology. Here we present a brief history of the work on neural crest development, both in general and in application to the endocrine system. In particular, we present findings related to the plasticity and pluripotency of neural crest cells as well as a discussion of several different neural crest tumors in the endocrine system.

  18. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  19. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review.

    PubMed

    Giulivo, Monica; Lopez de Alda, Miren; Capri, Ettore; Barceló, Damià

    2016-11-01

    Endocrine disrupting chemicals (EDCs) are released into the environment from different sources. They are mainly used in packaging industries, pesticides and food constituents. Clinical evidence, experimental models, and epidemiological studies suggest that EDCs have major risks for humans by targeting different organs and systems in the body (e.g. reproductive system, breast tissue, adipose tissue, pancreas, etc.). Due to the ubiquity of human exposure to these compounds the aim of this review is to describe the most recent data on the effects induced by phthalates, bisphenol A and parabens in a critical window of exposure: in utero, during pregnancy, infants, and children. The interactions and mechanisms of toxicity of EDCs in relation to human general health problems, especially those broadening the term of endocrine disruption to 'metabolic disruption', should be deeply investigated. These include endocrine disturbances, with particular reference to reproductive problems and breast, testicular and ovarian cancers, and metabolic diseases such as obesity or diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system.

    PubMed

    Sidorkiewicz, Iwona; Zaręba, Kamil; Wołczyński, Sławomir; Czerniecki, Jan

    2017-07-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.

  1. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    PubMed Central

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-01-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a “diffuse sensory organ” that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this “pan-endocrine illness” is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death. PMID:25763364

  2. Traumatic Brain Injury: Effects on the Endocrine System

    MedlinePlus

    Fact Sheet BTrarainumInajutircy: Effects on the Endocrine System What is traumatic brain injury? Traumatic brain injury, also called TBI, is sudden damage to the brain. It happens when the head hits ...

  3. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  4. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  5. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  6. 38 CFR 4.119 - Schedule of ratings-endocrine system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... minute), eye involvement, muscular weakness, loss of weight, and sympathetic nervous system..., loss of weight, and sympathetic nervous system, cardiovascular, or gastrointestinal symptoms 100...-endocrine system. 4.119 Section 4.119 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS...

  7. ENDOCRINE DISRUPTORS IN THE ENVIRONMENT

    EPA Science Inventory

    The endocrine system produces hormones which are powerful natural chemicals that regulate important life processes. Endocrine disruptors are human-made chemicals distributed globally which have the potential to interfere with the endocrine system and produce serious biological e...

  8. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  9. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Gordon, Catherine M; Ackerman, Kathryn E; Berga, Sarah L; Kaplan, Jay R; Mastorakos, George; Misra, Madhusmita; Murad, M Hassan; Santoro, Nanette F; Warren, Michelle P

    2017-05-01

    The American Society for Reproductive Medicine, the European Society of Endocrinology, and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the diagnosis and treatment of functional hypothalamic amenorrhea (FHA). The participants include an Endocrine Society-appointed task force of eight experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and cosponsoring organizations reviewed and commented on preliminary drafts of this guideline. FHA is a form of chronic anovulation, not due to identifiable organic causes, but often associated with stress, weight loss, excessive exercise, or a combination thereof. Investigations should include assessment of systemic and endocrinologic etiologies, as FHA is a diagnosis of exclusion. A multidisciplinary treatment approach is necessary, including medical, dietary, and mental health support. Medical complications include, among others, bone loss and infertility, and appropriate therapies are under debate and investigation. Copyright © 2017 Endocrine Society

  10. Proteomic analysis of the reproductive organs of the hermaphroditic gastropod Lymnaea stagnalis exposed to different endocrine disrupting chemicals.

    PubMed

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  11. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

    PubMed Central

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  12. The unique endocrine milieu of the fetus.

    PubMed Central

    Fisher, D A

    1986-01-01

    Table II summarizes in tabular form the major features of the fetal endocrine milieu discussed in the foregoing pages. The mammalian fetus develops in an environment where respiration, alimentation, and excretory functions are provided by the placenta. Fetal tissue metabolism is oriented largely to anabolism; body temperature is modulated by maternal metabolism, and fetal tissue thermogenesis is maintained at a basal level. Tissue and organ growth appear to be regulated by growth factors which probably function by autocrine or paracrine mechanisms during most of gestation (72, 146-148). In this milieu conventional endocrine control systems are largely redundant, and other transient systems more appropriate to the intrauterine environment have evolved. We have developed some insights into these systems, but much more information is necessary before we can truly understand this fascinating environment. PMID:3018041

  13. The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology.

    PubMed

    O'Callaghan, T F; Ross, R P; Stanton, C; Clarke, G

    2016-07-01

    The gut microbiome exerts a marked influence on host physiology, and manipulation of its composition has repeatedly been shown to influence host metabolism and body composition. This virtual endocrine organ also has a role in the regulation of the plasma concentrations of tryptophan, an essential amino acid and precursor to serotonin, a key neurotransmitter within both the enteric and central nervous systems. Control over the hypothalamic-pituitary-adrenal axis also appears to be under the influence of the gut microbiota. This is clear from studies in microbiota-deficient germ-free animals with exaggerated responses to psychological stress that can be normalized by monocolonization with certain bacterial species including Bifidobacterium infantis. Therapeutic targeting of the gut microbiota may thus be useful in treating or preventing stress-related microbiome-gut-brain axis disorders and metabolic diseases, much the same way as redirections of metabolopathies can be achieved through more traditional endocrine hormone-based interventions. Moreover, the implications of these findings need to be considered in the context of farm and domestic animal physiology, behavior, and food safety. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. MYSID CRUSTACEANS AS POTENTIAL TEST ORGANISMS FOR THE EVALUATION OF ENVIRONMENTAL ENDOCRINE DISRUPTORS: A REVIEW

    EPA Science Inventory

    Verslycke, Tim A., Nancy Fockedey, Charles L. McKenney, Jr., Stephen D. Roast, Malcolm B. Jones, Jan Mees and Colin R. Janssen. 2004. Mysid Crustaceans as Potential Test Organisms for the Evaluation of Environmental Endocrine Disruption: A Review. Environ. Toxicol. Chem. 23(5):12...

  15. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models.

    PubMed

    Wolf, Jeffrey C; Wheeler, James R

    2018-04-01

    Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Endocrine-Disrupting Activities and Organic Contaminants Associated with Oil and Gas Operations in Wyoming Groundwater.

    PubMed

    Kassotis, Christopher D; Vu, Danh C; Vo, Phuc H; Lin, Chung-Ho; Cornelius-Green, Jennifer N; Patton, Sharyle; Nagel, Susan C

    2018-04-05

    Unconventional oil and natural gas (UOG) operations couple horizontal drilling with hydraulic fracturing to access previously inaccessible fossil fuel deposits. Hydraulic fracturing, a common form of stimulation, involves the high-pressure injection of water, chemicals, and sand to fracture the target layer and release trapped natural gas and/or oil. Spills and/or discharges of wastewater have been shown to impact surface, ground, and drinking water. The goals of this study were to characterize the endocrine activities and measure select organic contaminants in groundwater from conventional oil and gas (COG) and UOG production regions of Wyoming. Groundwater samples were collected from each region, solid-phase extracted, and assessed for endocrine activities (estrogen, androgen, progesterone, glucocorticoid, and thyroid receptor agonism and antagonism), using reporter gene assays in human endometrial cells. Water samples from UOG and conventional oil areas exhibited greater ER antagonist activities than water samples from conventional gas areas. Samples from UOG areas tended to exhibit progesterone receptor antagonism more often, suggesting there may be a UOG-related impact on these endocrine activities. We also report UOG-specific contaminants in Pavillion groundwater extracts, and these same chemicals at high concentrations in a local UOG wastewater sample. A unique suite of contaminants was observed in groundwater from a permitted drinking water well at a COG well pad and not at any UOG sites; high levels of endocrine activities (most notably, maximal estrogenic activity) were noted there, suggesting putative impacts on endocrine bioactivities by COG. As such, we report two levels of evidence for groundwater contamination by both UOG and COG operations in Wyoming.

  17. [Outstanding problems of normal and pathological morphology of the diffuse endocrine system].

    PubMed

    Iaglov, V V; Iaglova, N V

    2011-01-01

    The diffuse endocrine system (DES)--a mosaic-cellular endoepithelial gland--is the biggest part of the human endocrine system. Scientists used to consider cells of DES as neuroectodermal. According to modem data cells of DES are different cytogenetic types because they develop from the different embryonic blastophyllum. So that any hormone-active tumors originated from DES of the digestive, respiratory and urogenital system shouldn't be considered as neuroendocrinal tumors. The basic problems of DES morphology and pathology are the creation of scientifically substantiated histogenetic classification of DES tumors.

  18. Update on the biologic role of the vitamin D endocrine system.

    PubMed

    Dusso, Adriana S

    2014-03-01

    The integrity of the vitamin D endocrine system is essential for human health. Nutritional vitamin D deficiency in otherwise healthy individuals, associates with a higher risk of mortality for all causes, despite normal serum calcitriol. These deadly causes extend beyond the recognized adverse impact of vitamin D deficiency on calcium and phosphate homeostasis predisposing to secondary hyperparathyroidism, bone loss and vascular calcification. Vitamin D deficiency also associates with an early onset of disorders of aging, including hypertension, proteinuria, insulin resistance, immune abnormalities that enhance the propensity for viral and bacterial infections, autoimmune disorders, cancer, and multiple organ damage due to excessive systemic inflammation causing atherosclerosis, vascular stiffness, renal lesions, and impaired DNA-damage responses. The frequency and severity of all of these disorders markedly increase in chronic kidney disease (CKD) because the kidney is essential to maintain serum levels of calcitriol, the most potent endogenous endocrine activator of the vitamin D receptor (VDR), and also of 25-hydroxyvitamin D, for local rather than systemic VDR activation. The goal of this review is to update the current understanding of the pathophysiology behind the classical and non-classical actions of VDR activation that help prevent the onset and/or attenuate the progression of renal and cardiovascular damage in CKD. This knowledge is essential to identify non-invasive, sensitive and accurate biomarkers of the severity of these disorders, a first step to generate evidence-based recommendations for a safe correction of vitamin D and/or calcitriol deficiency in the course of CKD that effectively improves outcomes.

  19. The development and endocrine functions of adipose tissue

    USDA-ARS?s Scientific Manuscript database

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  20. Immunologic Endocrine Disorders

    PubMed Central

    Michels, Aaron W.; Eisenbarth, George S.

    2010-01-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA (human leukocyte antigen)-like molecules determining tissue specific targeting that with the loss of tolerance leads to organ specific autoimmunity. Disorders such as type 1A diabetes, Grave's disease, Hashimoto's thyroiditis, Addison's disease, and many others result from autoimmune mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. While therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies. PMID:20176260

  1. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment.

    PubMed

    Smitka, Kvido; Marešová, Dana

    2015-01-01

    Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  2. Obesity: an endocrine tumor?

    PubMed

    Dizdar, Omer; Alyamaç, Evrim

    2004-01-01

    Obesity is one of the most common disorders in clinical practice. The prevalance of obesity has increased by more than 60% since 1990. Adipose tissue acts as an endocrine organ secreting many factors into the blood, known as adipokines, including leptin, adipsin, acylation-stimulating protein, adiponectin, etc. This article examines the hypothesis that obesity may be evaluated as an endocrine tumor, regarding its genetic basis, hyperplasia and hypertrophy of adipocytes, neovascularisation within the adipose tissue associated with growth, and beneficisal metabolic effects of surgical removal of excess adipose tissue by liposuction. Assuming obesity as an endocrine tumor may bring out new treatment modalities. Liposuction as "cytoreductive surgery", antiangiogenic teraphy or anti-neoplastic drugs may be important components of obesity treatment in future.

  3. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-01-01

    The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    PubMed

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  5. How UV Light Touches the Brain and Endocrine System Through Skin, and Why.

    PubMed

    Slominski, Andrzej T; Zmijewski, Michal A; Plonka, Przemyslaw M; Szaflarski, Jerzy P; Paus, Ralf

    2018-05-01

    The skin, a self-regulating protective barrier organ, is empowered with sensory and computing capabilities to counteract the environmental stressors to maintain and restore disrupted cutaneous homeostasis. These complex functions are coordinated by a cutaneous neuro-endocrine system that also communicates in a bidirectional fashion with the central nervous, endocrine, and immune systems, all acting in concert to control body homeostasis. Although UV energy has played an important role in the origin and evolution of life, UV absorption by the skin not only triggers mechanisms that defend skin integrity and regulate global homeostasis but also induces skin pathology (e.g., cancer, aging, autoimmune responses). These effects are secondary to the transduction of UV electromagnetic energy into chemical, hormonal, and neural signals, defined by the nature of the chromophores and tissue compartments receiving specific UV wavelength. UV radiation can upregulate local neuroendocrine axes, with UVB being markedly more efficient than UVA. The locally induced cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides, enkephalins, or others can be released into circulation to exert systemic effects, including activation of the central hypothalamic-pituitary-adrenal axis, opioidogenic effects, and immunosuppression, independent of vitamin D synthesis. Similar effects are seen after exposure of the eyes and skin to UV, through which UVB activates hypothalamic paraventricular and arcuate nuclei and exerts very rapid stimulatory effects on the brain. Thus, UV touches the brain and central neuroendocrine system to reset body homeostasis. This invites multiple therapeutic applications of UV radiation, for example, in the management of autoimmune and mood disorders, addiction, and obesity.

  6. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  7. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  8. Contaminant impacts to the endocrine system in largemouth bass in northeast U.S. rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.B.; Sorenson, S.K.

    1995-12-31

    The National Biological Service (NBS) in cooperation with the USGS-National Water Quality Assessment (NAWQA) program conducted a reconnaissance investigation of potential disruption of the endocrine system in carp and largemouth bass (LMB) from streams and rivers across the US. Chemical analysis of sediment and fish tissue, from agricultural and industrial sites in NAWQA study units, indicated the potential for impacts to the endocrine system of fish. Collections of 39 male and 28 female LMB were made in fall 1994 from contaminated and reference sites in three major river systems in the Northeast US (Potomac, Hudson, and Connecticut rivers). Additional fishmore » collections will be made at these same sites in Spring 1995. Blood and gonadal tissue samples will give a triad of bioindicators (17B-estradiol/11-ketotestosterone ratios, vitellogenin, and gonad histopathology) of potential endocrine disruption. Chemical residue for tissue will also be made from selected LMB to compare with the bioindicators. Comparisons of contaminated sites and reference site indicated a significantly lower E/T ratio in female LMB from two contaminated sites (Housatonic River in the Connecticut River system and the Anacostia River in the Potomac River system). Additionally, significantly higher E/T ratios in male LMB were found from each of the three river systems. These E/T ratios indicate that endocrine disruption is both estrogenic to male LMB (feminization) and potentially androgenic to the female LMB (masculinization).« less

  9. [Depression and neuroplasticity. Interaction of nervous, endocrine and immune systems].

    PubMed

    Cassano, Paola; Argibay, Pablo

    2010-01-01

    Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of the mechanisms involved in the action of antidepressants. The new hypothesis proposed to explain the action of antidepressant is the neuro-plasticity hypothesis. This hypothesis suggests that the effects of antidepressants on nervous, immune and endocrine systems are able to induce neuroadaptative changes in the brain. The neuroplasticity have been described as the ability of the brain to reorganize itself and form new neuronal connections throughout life. It is proposed that antidepressants influence neuroplasticity inducing improvements in the symptoms of this illness.

  10. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    PubMed

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  11. Do endocrine disruptors cause hypospadias?

    PubMed Central

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  12. Medical Consequences of Chernobyl with Focus on the Endocrine System - Part 2.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  13. Medical consequences of Chernobyl with focus on the endocrine system: Part 1.

    PubMed

    Foley, Thomas P; Límanová, Zdeňka; Potluková, Eliška

    2015-01-01

    In the last 70 years, atomic disasters have occurred several times. The nuclear power plant accident at Chernobyl in 1986 in North-Central Ukraine was a unique experience in population exposures to radiation by all ages, and ongoing studies have brought a large amount of information on effects of radiation on human organism. Concerning the deteriorating global security situation and the strong rhetoric of some of the world leaders, the knowledge on the biological effects of ionizing radiation and the preventive measures designed to decrease the detrimental effects of radiation gains a new dimension, and involves all of us. This review focuses on the long-term effects of Chernobyl catastrophe especially on the endocrine system in children and in adults, and includes a summary of preventive measures in case of an atomic disaster.

  14. A GLOBAL PERSPECTIVE ON ENDOCRINE DISRUPTION, WITH COMMENTS ON THE US EXPERIENCE

    EPA Science Inventory

    The last two decades have witnessed a growing concern for chemicals that have the potential to adversely affect the normal functioning of the endocrine system. The International Programme on Chemical Safety (IPCS) of the World Health Organization has recently reviewed the curren...

  15. The Endocrine System [and] Instructor's Guide: The Endocrine System. Health Occupations Education Module: Instructional Materials in Anatomy and Physiology for Pennsylvania Health Occupations Programs.

    ERIC Educational Resources Information Center

    National Evaluation Systems, Inc., Amherst, MA.

    This module on the endocrine system is one of 17 modules designed for individualized instruction in health occupations education programs at both the secondary and postsecondary levels. It is part of an eight-unit miniseries on anatomy and physiology within the series of 17 modules. Following a preface which explains to the student how to use the…

  16. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management.

    PubMed

    Sznol, Mario; Postow, Michael A; Davies, Marianne J; Pavlick, Anna C; Plimack, Elizabeth R; Shaheen, Montaser; Veloski, Colleen; Robert, Caroline

    2017-07-01

    Agents that modulate immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death receptor-1 (PD-1), have become a mainstay in cancer treatment. The clinical benefit afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events (irAE) that affect the skin, gastrointestinal tract, liver, and endocrine system. The types of irAEs associated with immune checkpoint inhibitors are generally consistent across tumor types. Immune-related endocrine events can affect the pituitary, thyroid, and adrenal glands, as well as other downstream target organs. These events are unique when compared with other irAEs because the manifestations are often irreversible. Immune-related endocrine events are typically grade 1/2 in severity and often present with non-specific symptoms, making them difficult to diagnose. The mechanisms underlying immune-related target organ damage in select individuals remain mostly undefined. Management includes close patient monitoring, appropriate laboratory testing for endocrine function, replacement of hormones, and consultation with an endocrinologist when appropriate. An awareness of the symptoms and management of immune-related endocrine events may aid in the safe and appropriate use of immune checkpoint inhibitors in clinical practice. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Effects of 4-Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) Exposure on Reproduction and Endocrine System of Zebrafish.

    PubMed

    Lee, Jiyun; Park, Na-Youn; Kho, Younglim; Ji, Kyunghee

    2018-02-06

    The compound 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP), a derivative of bisphenol S (BPS), has been detected in thermal paper and human urine samples; however, its potential effects on the endocrine system are largely unknown. The present study was conducted to determine the adverse effects of BPSIP on egg production, relative organ weights, plasma levels of sex hormones, and transcription of genes related to the hypothalamus-pituitary-gonad (HPG) axis in zebrafish (Danio rerio). In male fish, the gonadosomatic index was significantly decreased at concentrations of 5 and 50 μg/L BPSIP. The estrogenic (increase in the 17β-estradiol/testosterone [E2/T] ratio) and antiandrogenic (decrease in T) effects were observed in fish exposed to BPSIP and males were more sensitive to the adverse effects than females. The changes in sex hormones were supported by the regulation of genes along the HPG axis, such as cyp19, 17βhsd, and cyp17 transcripts. Although the effective concentration for endocrine disruption was greater than that of BPS, the actions of BPSIP on the steroidogenic pathway were similar to the effects of BPS exposure.

  18. Environmental endocrine disruption: an effects assessment and analysis.

    PubMed Central

    Crisp, T M; Clegg, E D; Cooper, R L; Wood, W P; Anderson, D G; Baetcke, K P; Hoffmann, J L; Morrow, M S; Rodier, D J; Schaeffer, J E; Touart, L W; Zeeman, M G; Patel, Y M

    1998-01-01

    This report is an overview of the current state of the science relative to environmental endocrine disruption in humans, laboratory testing, and wildlife species. Background information is presented on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption, with specific examples of chemicals affecting these sites. An attempt is made to present objectively the issue of endocrine disruption, consider working hypotheses, offer opposing viewpoints, analyze the available information, and provide a reasonable assessment of the problem. Emphasis is placed on disruption of central nervous system--pituitary integration of hormonal and sexual behavioral activity, female and male reproductive system development and function, and thyroid function. In addition, the potential role of environmental endocrine disruption in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated. The interrelationship of the endocrine and immune system is documented. With respect to endocrine-related ecological effects, specific case examples from the peer-reviewed literature of marine invertebrates and representatives of the five classes of vertebrates are presented and discussed. The report identifies some data gaps in our understanding of the environmental endocrine disruption issue and recommends a few research needs. Finally, the report states the U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine disruption and lists some of the ongoing activities to deal with this matter. PMID:9539004

  19. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences.

    PubMed

    Windsor, Fredric M; Ormerod, Steve J; Tyler, Charles R

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub-lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual-based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co-operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field-based assessments at population-, community- and food-web levels. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  20. The endocrine effects of nicotine and cigarette smoke

    PubMed Central

    Tweed, Jesse Oliver; Hsia, Stanley H.; Lutfy, Kabirullah; Friedman, Theodore C.

    2012-01-01

    With a current prevalence of approximately 20%, smoking continues to impact negatively upon health. Tobacco or nicotine use influences the endocrine system, with important clinical implications. In this review we critically evaluate the literature concerning the impact of nicotine as well as tobacco use on several parameters of the endocrine system and on glucose and lipid homeostasis. Emphasis is on the effect of smoking on diabetes mellitus and obesity and the consequences of smoking cessation on these disorders. Understanding the effects of nicotine and cigarettes on the endocrine system and how these changes contribute to the pathogenesis of various endocrine diseases will allow for targeted therapies and more effective approaches for smoking cessation. PMID:22561025

  1. Hormones in the city: endocrine ecology of urban birds.

    PubMed

    Bonier, Frances

    2012-05-01

    Urbanization dramatically changes the landscape, presenting organisms with novel challenges and often leading to reduced species diversity. Urban ecologists have documented numerous biotic and abiotic consequences of urbanization, such as altered climate, species interactions, and community composition, but we lack an understanding of the mechanisms underlying organisms' responses to urbanization. Here, I review findings from the nascent field of study of the endocrine ecology of urban birds. Thus far, no clear or consistent patterns have been revealed, but we do have evidence that urban habitat can shape endocrine traits, and that those traits might contribute to adaptation to the urban environment. I suggest strong approaches for future work addressing exciting questions about the role of endocrine traits in mediating responses to urbanization within species across the globe. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Recent Advances on Endocrine Disrupting Effects of UV Filters.

    PubMed

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-08-03

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  3. The bioartificial thyroid: a biotechnological perspective in endocrine organ engineering for transplantation replacement.

    PubMed

    Toni, Roberto; Casa, Claudia Della; Spaletta, Giulia; Marchetti, Giacomo; Mazzoni, Perseo; Bodria, Monica; Ravera, Simone; Dallatana, Davide; Castorina, Sergio; Riccioli, Vincenzo; Castorina, Emilio Giovanni; Antoci, Salvatore; Campanile, Enrico; Raise, Gabriella; Scalise, Gabriella; Rossi, Raffaella; Rossio, Raffaella; Ugolotti, Giorgio; Ugolottio, Giorgio; Martorella, Andrew; Roti, Elio; Rot, Elio; Sgallari, Fiorella; Pinchera, Aldo

    2007-01-01

    A new concept for ex situ endocrine organ bioengineering is presented, focused on the realization of a human bioartificial thyroid gland. It is based on the theoretical assumption and experimental evidence that symmetries in geometrical coordinates of the thyroid tissue remain invariant with respect to developmental, physiological or pathophysiological transformations occuring in the gland architecture. This topological arrangement is dependent upon physical connections established between cells, cell adhesion molecules and extracellular matrix, leading to the view that the thyroid parenchyma behaves like a deformable "putty", moulded onto an elastic stromal/vascular scaffold (SVS) dictating the final morphology of the gland. In particular, we have raised the idea that the geometry of the SVS per se provides pivotal epigenetic information to address the genetically-programmed, thyrocyte and endothelial/vascular proliferation and differentiation towards a functionally mature gland, making organ form a pre-requirementfor organ function. A number of experimental approaches are explored to obtain a reliable replica of a human thyroid SVS, and an informatic simulation is designed based on fractal growth of the thyroid intraparenchymal arterial tree. Various tissue-compatible and degradable synthetic or biomimetic polymers are discussed to act as a template of the thyroid SVS, onto which to co-seed autologous human thyrocyte (TPC) and endothelial/vascular (EVPC) progenitor cells. Harvest and expansion of both TPC and EVPC in primary culture are considered, with specific attention to the selection of normal thyrocytes growing at a satisfactory rate to colonize the synthetic matrix. In addition, both in vitro and in vivo techniques to authenticate TPC and EVPC lineage differentiation are reviewed, including immunocytochemistry, reverse trascriptase-polymerase chain reaction, flow cytomery and proteomics. Finally, analysis of viability of the thyroid construct following

  4. Endocrine Disruptors in Domestic Animal Reproduction: A Clinical Issue?

    PubMed Central

    Magnusson, Ulf; Persson, Sara

    2015-01-01

    Contents The objective of this review was to discuss whether endocrine disruption is a clinical concern in domestic animal reproduction. To that end, we firstly summarize the phenomenon of endocrine disruption, giving examples of the agents of concern and their effects on the mammalian reproductive system. Then there is a brief overview of the literature on endocrine disruptors and domestic animal reproduction. Finally, the clinical implications of endocrine disruptors on the reproductive system of farm animals as well as in dogs and cats are discussed. It is concluded that the evidence for clinical cases of endocrine disruption by chemical pollutants is weak, whereas for phytooestrogens, it is well established. However, there is concern that particular dogs and cats may be exposed to man-made endocrine disruptors. PMID:26382024

  5. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model

    PubMed Central

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L.

    2016-01-01

    The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed. PMID:28217008

  6. Recent Advances on Endocrine Disrupting Effects of UV Filters

    PubMed Central

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-01-01

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194

  7. The Use of Metabolising Systems for In Vitro Testing of Endocrine Disruptors

    EPA Science Inventory

    Legislation and prospective proposals in for instance the USA, Europe, and Japan require, or may require that chemicals are tested for their ability to disrupt the hormonal systems of mammals. Chemicals found to test positive are considered to be endocrine active substances (EAS...

  8. A MATHEMATICAL MODEL FOR THE KINETICS OF THE MALE REPRODUCTIVE ENDOCRINE SYSTEM

    EPA Science Inventory

    In this presentation a model for the hormonal regulation of the reproductive endocrine system in the adult male rat will be discussed. The model includes a description of the kinetics of the androgenic hormones testosterone and dihydrotestosterone, as well as the receptor-mediate...

  9. Chemical communication threatened by endocrine-disrupting chemicals.

    PubMed Central

    Fox, Jennifer E

    2004-01-01

    Communication on a cellular level--defined as chemical signaling, sensing, and response--is an essential and universal component of all living organisms and the framework that unites all ecosystems. Evolutionarily conserved signaling "webs," existing both within an organism and between organisms, rely on efficient and accurate interpretation of chemical signals by receptors. Therefore, endocrine-disrupting chemicals (EDCs), which have been shown to disrupt hormone signaling in laboratory animals and exposed wildlife, may have broader implications for disrupting signaling webs that have yet to be identified as possible targets. In this article, I explore common evolutionary themes of chemical signaling (e.g., estrogen signaling in vertebrates and phytoestrogen signaling from plants to symbiotic soil bacteria) and show that such signaling systems are targets of disruption by EDCs. Recent evolutionary phylogenetic data have shown that the estrogen receptor (ER) is the ancestral receptor from which all other steroid receptors have evolved. In addition to binding endogenous estrogens, ERs also bind phytoestrogens, an ability shared in common with nodulation D protein (NodD) receptors found in Rhizobium soil bacteria. Recent data have shown that many of the same synthetic and natural environmental chemicals that disrupt endocrine signaling in vertebrates also disrupt phytoestrogen-NodD receptor signaling in soil bacteria, which is necessary for nitrogen-fixing symbiosis. Bacteria-plant symbiosis is an unexpected target of EDCs, and other unexpected nontarget species may also be vulnerable to EDCs found in the environment. PMID:15121505

  10. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  11. Endocrine-Active Pharmaceuticals: An Environmental Concern?

    EPA Science Inventory

    Recently, there has been growing interest in pharmaceuticals that are specifically designed to have endocrine activity, such as the estrogens used in birth control pills, exerting unintended effects on fish and other aquatic organisms. These pharmaceuticals may not be persistent...

  12. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system

    PubMed Central

    Klöppel, G.; Alhman, H.; Caplin, M.; Couvelard, A.; de Herder, W. W.; Erikssson, B.; Falchetti, A.; Falconi, M.; Komminoth, P.; Körner, M.; Lopes, J. M.; McNicol, A-M.; Nilsson, O.; Perren, A.; Scarpa, A.; Scoazec, J-Y.; Wiedenmann, B.

    2006-01-01

    The need for standards in the management of patients with endocrine tumors of the digestive system prompted the European Neuroendocrine Tumor Society (ENETS) to organize a first Consensus Conference, which was held in Frascati (Rome) and was based on the recently published ENETS guidelines on the diagnosis and treatment of digestive neuroendocrine tumors (NET). Here, we report the tumor–node–metastasis proposal for foregut NETs of the stomach, duodenum, and pancreas that was designed, discussed, and consensually approved at this conference. In addition, we report the proposal for a working formulation for the grading of digestive NETs based on mitotic count and Ki-67 index. This proposal, which needs to be validated, is meant to help clinicians in the stratification, treatment, and follow-up of patients. PMID:16967267

  13. Bilingual Skills Training Program. Barbering/Cosmetology. Module 7.0: Endocrine System.

    ERIC Educational Resources Information Center

    Northern New Mexico Community Coll., El Rito.

    This module on the endocrine system is the seventh of ten (CE 028 308-318) in the barbering/cosmetology course of a bilingual skills training program. (A Vocabulary Development Workbook for modules 6-10 is available as CE 028 313.) The course is designed to furnish theoretical and laboratory epxerience. Module objectives are for students to…

  14. Possible Involvement of Photoperiodic Regulation in Reproductive Endocrine System of Female Olive Flounder Paralichthys olivaceus.

    PubMed

    Kim, Hyun Chul; Lee, Chi Hoon; Hur, Sung Pyu; Kim, Byeong Hoon; Park, Jun Young; Lee, Young Don

    2015-03-01

    This study investigated possible involvement of photoperiodic regulation in reproductive endocrine system of female olive flounder. To investigate the influence on brain-pituitary axis in endocrine system by regulating photoperiod, compared expression level of Kisspeptin and sbGnRH mRNA in brain and FSH-β, LH-β and GH mRNA in pituitary before and after spawning. Photoperiod was treated natural photoperiod and long photoperiod (15L:9D) conditions from Aug. 2013 to Jun. 2014. Continuous long photoperiod treatment from Aug. (post-spawning phase) was inhibited gonadal development of female olive flounder. In natural photoperiod group, the Kiss2 expression level a significant declined in Mar. (spawning period). And also, FSH-β, LH-β and GH mRNA expression levels were increasing at this period. However, in long photoperiod group, hypothalamic Kiss2, FSH-β, LH-β and GH mRNA expression levels did not show any significant fluctuation. These results suggest that expression of hypothalamic Kiss2, GtH and GH in the pituitary would change in response to photoperiod and their possible involvement of photoperiodic regulation in reproductive endocrine system of the BPG axis.

  15. NASH in Nondiabetic Endocrine Disorders.

    PubMed

    Wang, Timothy; Yang, Wei; Karakas, Sidika; Sarkar, Souvik

    2018-06-06

    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease, including hepatic steatosis, inflammation, and fibrosis. NAFLD carries the risk of progression to cirrhosis with its associated complications and hepatocellular carcinoma. It is now the most common liver disease in the Western world and its prevalence is increasing. While the association between NAFLD and type 2 diabetes has been well documented, there is significantly less understanding of the pathophysiology and progression of NAFLD in patients with other endocrine disorders affecting metabolism in various ways. Some of the more common endocrine disorders such as polycystic ovarian syndrome, growth hormone deficiency, hypothyroidism, and hypogonadism are known in clinical practice to be associated with NAFLD. Medications that alter the endocrine system such as tamoxifen and adrenal steroids have also been attributed to significant NAFLD. The key to management of NAFLD at this time are dietary changes and exercise to achieve weight loss. Unfortunately, a large proportion of the patients with these endocrine disorders are unable to achieve either. This review aims to examine and summarize the current published literature that have evaluated the association between NAFLD and the above endocrine disorders and potential therapeutic interventions in each case.

  16. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via

  17. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act

  18. Endocrine and Local IGF-I in the Bony Fish Immune System.

    PubMed

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  19. Endocrine Disrupting Chemicals and Disease Susceptibility

    PubMed Central

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  20. Endocrine disrupting chemicals and disease susceptibility.

    PubMed

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J

    2011-11-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. Published by Elsevier Ltd.

  1. The anatomy and physiology of the avian endocrine system.

    PubMed

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  2. Isohormonal therapy of endocrine autoimmunity.

    PubMed

    Schloot, N; Eisenbarth, G S

    1995-06-01

    For most autoimmune disorders, the site (if any) of chronic immunization required for perpetuation of autoimmunity is unknown. However, one possible site is the target organ itself. If this were the case, feedback regulation of target cell activity might influence autoimmunity. Here, Nanette Schloot and George Eisenbarth review several recent studies suggesting that therapies that inhibit hormonal secretion of target endocrine organs, and/or modulate immunity by therapy with the isohormone, are associated with disease suppression.

  3. The eye as a window to rare endocrine disorders

    PubMed Central

    Chopra, Rupali; Chander, Ashish; Jacob, Jubbin J.

    2012-01-01

    The human eye, as an organ, can offer critical clues to the diagnosis of various systemic illnesses. Ocular changes are common in various endocrine disorders such as diabetes mellitus and Graves’ disease. However there exist a large number of lesser known endocrine disorders where ocular involvement is significant. Awareness of these associations is the first step in the diagnosis and management of these complex patients. The rare syndromes involving the pituitary hypothalamic axis with significant ocular involvement include Septo-optic dysplasia, Kallman's syndrome, and Empty Sella syndrome all affecting the optic nerve at the optic chiasa. The syndromes involving the thyroid and parathyroid glands that have ocular manifestations and are rare include Mc Cune Albright syndrome wherein optic nerve decompression may occur due to fibrous dysplasia, primary hyperparathyroidism that may present as red eye due to scleritis and Ascher syndrome wherein ptosis occurs. Allgrove's syndrome, Cushing's disease, and Addison's disease are the rare endocrine syndromes discussed involving the adrenals and eye. Ocular involvement is also seen in gonadal syndromes such as Bardet Biedl, Turner's, Rothmund's, and Klinefelter's syndrome. This review also highlights the ocular manifestation of miscellaneous syndromes such as Werner's, Cockayne's, Wolfram's, Kearns Sayre's, and Autoimmune polyendocrine syndrome. The knowledge of these relatively uncommon endocrine disorders and their ocular manifestations will help an endocrinologist reach a diagnosis and will alert an ophthalmologist to seek specialty consultation of an endocrinologist when encountered with such cases. PMID:22629495

  4. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system.

    PubMed

    Maqdasy, Salwan; Trousson, Amalia; Tauveron, Igor; Volle, David H; Baron, Silvère; Lobaccaro, Jean-Marc A

    2016-06-01

    Liver X receptors (LXRs) α and β are nuclear receptors whose transcriptional activity is regulated by oxysterols, the oxidized forms of cholesterol. Described in the late 1990s as lipid sensors, both LXRs regulate cholesterol and fatty acid homeostasis. Over the years, deep phenotypic analyses of mouse models deficient for LXRα and/or LXRβ have pointed out various other physiological functions including glucose homeostasis, immunology, and neuroprotection. This review enlightens the "endocrine" functions of LXRs; they deeply impact plasma glucose directly and by modulating insulin signaling, renin-angiotensin-aldosterone axis, thyroid and pituitary hormone levels, and bone homeostasis. Besides, LXR signaling is also involved in adrenal physiology, steroid synthesis, and male and female reproduction. Hence, LXRs are definitely involved in the endocrine system and could thus be considered as endocrine receptors, even though oxysterols do not fully correspond to the definition of hormones. Finally, because they are ligand-regulated transcription factors, LXRs are potential pharmacological targets with promising beneficial metabolic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Affective disorders and endocrine disease. New insights from psychosomatic studies.

    PubMed

    Fava, G A

    1994-01-01

    This is a review of psychosomatic interactions between affective disorders (depressive and anxiety disturbances, irritable mood) and endocrine disease. Particular reference is made to stressful life events in the pathogenesis of endocrine disease, psychopathology of hormonal disturbances, and pathophysiology of hypothalamic-pituitary-adrenal axis function in depression and Cushing's disease. These psychosomatic interactions may lead to appraisal of common etiological mechanisms in endocrine and psychiatric disorders, of the value of retaining the category of organic affective syndromes in psychiatric classification, and of the need for research on quality-of-life measures in endocrine disease. The establishment of "psychoendocrine units," where both endocrinologists and psychiatrists should work, is advocated. Such psychoendocrine units may serve and benefit clinical populations who currently defy traditional medical subdivisions.

  6. High School Students' Written Argumentation Qualities with Problem-Based Computer-Aided Material (PBCAM) Designed about Human Endocrine System

    ERIC Educational Resources Information Center

    Vekli, Gülsah Sezen; Çimer, Atilla

    2017-01-01

    This study investigated development of students' scientific argumentation levels in the applications made with Problem-Based Computer-Aided Material (PBCAM) designed about Human Endocrine System. The case study method was used: The study group was formed of 43 students in the 11th grade of the science high school in Rize. Human Endocrine System…

  7. Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer.

    PubMed

    Scsukova, Sona; Rollerova, Eva; Bujnakova Mlynarcikova, Alzbeta

    2016-12-01

    A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes). Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  8. European endocrine surgery in the 150-year history of Langenbeck's Archives of Surgery.

    PubMed

    Dralle, Henning; Machens, A

    2010-04-01

    Founded in 1861 as a German language scientific forum of exchange for European surgeons, Langenbeck's Archives of Surgery quickly advanced to become the premier journal of thyroid surgery before World War I, serving as a point of crystallization for the emerging discipline of endocrine surgery. During the interwar period and, in particular, in the first decades after World War II, Langenbeck's Archives of Surgery lost its dominant position as an international and European medium of publication of top quality articles in the area of endocrine surgery. Nevertheless, the journal remained the chief publication organ of German language articles in the field of endocrine surgery. After a series of key events, Langenbeck's Archives of Surgery managed to reclaim its former position as the leading European journal of endocrine surgery: (1) the formation of endocrine surgery in the early 1980s as a subdiscipline of general and visceral surgery; (2) the change of the language of publication from German to English in 1998; and (3) the journal's appointment in 2004 as the official organ of publication of the European Society of Endocrine Surgeons. All in all, the 150-year publication record of Langenbeck's Archives of Surgery closely reflects the history of European Endocrine Surgery. Following the path of seminal articles from Billroth, Kocher, and many other surgical luminaries published in the journal more than 100 years ago, Langenbeck's Archives of Surgery today stands out as the principal European journal in the field of endocrine surgery.

  9. Research on Endocrine Disruptors

    EPA Pesticide Factsheets

    EPA researchers are developing innovative approaches, tools, models and data to improve the understanding of potential risks to human health and wildlife from chemicals that could disrupt the endocrine system.

  10. Monogenic autoimmune diseases of the endocrine system.

    PubMed

    Johnson, Matthew B; Hattersley, Andrew T; Flanagan, Sarah E

    2016-10-01

    The most common endocrine diseases, type 1 diabetes, hyperthyroidism, and hypothyroidism, are the result of autoimmunity. Clustering of autoimmune endocrinopathies can result from polygenic predisposition, or more rarely, may present as part of a wider syndrome due to a mutation within one of seven genes. These monogenic autoimmune diseases show highly variable phenotypes both within and between families with the same mutations. The average age of onset of the monogenic forms of autoimmune endocrine disease is younger than that of the common polygenic forms, and this feature combined with the manifestation of other autoimmune diseases, specific hallmark features, or both, can inform clinicians as to the relevance of genetic testing. A genetic diagnosis can guide medical management, give an insight into prognosis, inform families of recurrence risk, and facilitate prenatal diagnoses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. [Diabetes and prediabetes in endocrine disorders].

    PubMed

    Krysiak, Robert; Rudzki, Henryk; Okopień, Bogusław

    2012-01-01

    Complex hormonal regulation of carbohydrate metabolism causes that presence of many endocrine disorders may disturb glucose homeostasis. Impaired fasting glucose, impaired glucose tolerance and frank diabetes are observed in patients with both common and rare endocrine disorders, particularly in patients with polycystic ovary syndrome, hyperthyroidism, Cushing's syndrome, pheochromocytoma, primary aldosteronism, acromegaly, growth hormone deficiency and endocrine tumors of the digestive system. Because most of these disorders may be effectively treated and the treatment often results in a restoration of normal insulin secretion and receptor action as well as glucose absorption, production and metabolism, it is important to differentiate these disorders from other more common types of diabetes. This article reviews the etiology, clinical manifestation, diagnosis and management of endocrine disorders leading to diabetes and prediabetic states with special emphasis on the pathogenesis and clinical consequences of these disorders.

  12. Microbial endocrinology: the interplay between the microbiota and the endocrine system.

    PubMed

    Neuman, Hadar; Debelius, Justine W; Knight, Rob; Koren, Omry

    2015-07-01

    The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. IDENTIFYING ENDOCRINE DISRUPTORS BY HIGH-RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    The EPA is currently interested in human and ecosystem exposure to endocrine disruptors (1)-compounds that interfere with endogenous hormone systems. Possible endocrine disruptors in the environment include certain pesticides, industrial by-products, and pharmaceuticals. Such c...

  14. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb.

    PubMed

    Spirhanzlova, Petra; De Groef, Bert; Nicholson, Freda E; Grommen, Sylvia V H; Marras, Giulia; Sébillot, Anthony; Demeneix, Barbara A; Pallud-Mothré, Sophie; Lemkine, Gregory F; Tindall, Andrew J; Du Pasquier, David

    2017-10-01

    Several short-term whole-organism bioassays based on transgenic aquatic models are now under validation by the OECD (Organization for Economic Co-operation and Development) to become standardized test guidelines for the evaluation of the endocrine activity of substances. Evaluation of the endocrine disrupting capacity of pesticides will be a domain of applicability of these future reference tests. The herbicide linuron and the insecticide fenoxycarb are two chemicals commonly used in agricultural practices. While numerous studies indicate that linuron is likely to be an endocrine disruptor, there is little information available on the effect of fenoxycarb on vertebrate endocrine systems. Using whole-organism bioassays based on transgenic Xenopus laevis tadpoles and medaka fry we assessed the potential of fenoxycarb and linuron to disrupt thyroid, androgen and estrogen signaling. In addition we used in silico approach to simulate the affinity of these two pesticides to human hormone receptors. Linuron elicited thyroid hormone-like activity in tadpoles at all concentrations tested and, showed an anti-estrogenic activity in medaka at concentrations 2.5mg/L and higher. Our experiments suggest that, in addition to its previously established anti-androgenic action, linuron exhibits thyroid hormone-like responses, as well as acting at the estrogen receptor level to inhibit estrogen signaling. Fenoxycarb on the other hand, did not cause any changes in thyroid, androgen or estrogen signaling at the concentrations tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Influence of allogeneic bone marrow transplantation on the endocrine system in children.

    PubMed

    Dopfer, R; Ranke, M B; Einsele, H; Ehninger, G; Blum, W F; Niethammer, D

    1989-01-01

    With increasing survival rates of children grafted for different malignancies concerns about the longterm side effects of this treatment are growing. Therefore, investigations on the function of endocrine systems were conducted in a total 28 patients grafted for various reasons: ALL (N = 18), AML (N = 1), SAA (N = 3), CML(N = 4), neuroblastoma (N = 2). The results can be summarized as follows: 1. The extent of hormonal derangements is primarily dependent on the extent of irradiation prior to BMT. Integrity of hormonal systems was found in cases without irradiation (SAA) or if TBI did not exceed 3 Gy. 2. Primary hypogonadism was present in 18 patients. 3. Primary hypothyroidism was present in 2 patients. 4. Growth impairment was observed in 8 patients. In four of these cases growth hormone deficiency was the cause. In four other cases with graft-versus-host-disease and hepatic involvement SmC/IGF I levels were severely diminished. The data suggest that in most cases BMT itself has relatively few negative effects on the endocrine regulatory system. However, more detailed investigations before and after BMT will be needed to further validate these observations.

  16. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Hembree, Wylie C; Cohen-Kettenis, Peggy T; Gooren, Louis; Hannema, Sabine E; Meyer, Walter J; Murad, M Hassan; Rosenthal, Stephen M; Safer, Joshua D; Tangpricha, Vin; T'Sjoen, Guy G

    2017-11-01

    To update the "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline," published by the Endocrine Society in 2009. The participants include an Endocrine Society-appointed task force of nine experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Group meetings, conference calls, and e-mail communications enabled consensus. Endocrine Society committees, members and cosponsoring organizations reviewed and commented on preliminary drafts of the guidelines. Gender affirmation is multidisciplinary treatment in which endocrinologists play an important role. Gender-dysphoric/gender-incongruent persons seek and/or are referred to endocrinologists to develop the physical characteristics of the affirmed gender. They require a safe and effective hormone regimen that will (1) suppress endogenous sex hormone secretion determined by the person's genetic/gonadal sex and (2) maintain sex hormone levels within the normal range for the person's affirmed gender. Hormone treatment is not recommended for prepubertal gender-dysphoric/gender-incongruent persons. Those clinicians who recommend gender-affirming endocrine treatments-appropriately trained diagnosing clinicians (required), a mental health provider for adolescents (required) and mental health professional for adults (recommended)-should be knowledgeable about the diagnostic criteria and criteria for gender-affirming treatment, have sufficient training and experience in assessing psychopathology, and be willing to participate in the ongoing care throughout the endocrine transition. We recommend treating gender

  17. The Endocrine Machinery.

    ERIC Educational Resources Information Center

    Fillman, David

    1987-01-01

    Promotes a reductionist approach to teaching about the endocrine system in high school biology and anatomy courses. Encourages the study of how hormones travel to the cells and affect them. Provides suggestions for activities and discussion questions, along with sample diagrams and flow charts. (TW)

  18. Endocrine Profiling and Prioritization Using ToxCast Assays

    EPA Science Inventory

    The U.S. EPA's Endocrine Disruptor Screening Program (EDSP) is charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife (http://www.epa.gov/endo/). The prioritization of chemicals for test...

  19. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  20. Endocrine Aspects of Environmental “Obesogen” Pollutants

    PubMed Central

    Nappi, Francesca; Barrea, Luigi; Di Somma, Carolina; Savanelli, Maria Cristina; Muscogiuri, Giovanna; Orio, Francesco; Savastano, Silvia

    2016-01-01

    Growing evidence suggests the causal link between the endocrine-disrupting chemicals (EDCs) and the global obesity epidemics, in the context in the so-called “obesogenic environment”. Dietary intake of contaminated foods and water, especially in association with unhealthy eating pattern, and inhalation of airborne pollutants represent the major sources of human exposure to EDCs. This is of particular concern in view of the potential impact of obesity on chronic non-transmissible diseases, such as type 2 diabetes, cardiovascular disease, and hormone-sensitive cancers. The key concept is the identification of adipose tissue not only as a preferential site of storage of EDCs, but also as an endocrine organ and, as such, susceptible to endocrine disruption. The timing of exposure to EDCs is critical to the outcome of that exposure, with early lifetime exposures (e.g., fetal or early postnatal) particularly detrimental because of their permanent effects on obesity later in life. Despite that the mechanisms operating in EDCs effects might vary enormously, this minireview is aimed to provide a general overview on the possible association between the pandemics of obesity and EDCs, briefly describing the endocrine mechanisms linking EDCs exposure and latent onset of obesity. PMID:27483295

  1. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    PubMed

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement

    PubMed Central

    Brown, Arleen; Cauley, Jane A.; Chin, Marshall H.; Gary-Webb, Tiffany L.; Kim, Catherine; Sosa, Julie Ann; Sumner, Anne E.; Anton, Blair

    2012-01-01

    Objective: The aim was to provide a scholarly review of the published literature on biological, clinical, and nonclinical contributors to race/ethnic and sex disparities in endocrine disorders and to identify current gaps in knowledge as a focus for future research needs. Participants in Development of Scientific Statement: The Endocrine Society's Scientific Statement Task Force (SSTF) selected the leader of the statement development group (S.H.G.). She selected an eight-member writing group with expertise in endocrinology and health disparities, which was approved by the Society. All discussions regarding the scientific statement content occurred via teleconference or written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. Evidence: The primary sources of data on global disease prevalence are from the World Health Organization. A comprehensive literature search of PubMed identified U.S. population-based studies. Search strategies combining Medical Subject Headings terms and keyword terms and phrases defined two concepts: 1) racial, ethnic, and sex differences including specific populations; and 2) the specific endocrine disorder or condition. The search identified systematic reviews, meta-analyses, large cohort and population-based studies, and original studies focusing on the prevalence and determinants of disparities in endocrine disorders. Consensus Process: The writing group focused on population differences in the highly prevalent endocrine diseases of type 2 diabetes mellitus and related conditions (prediabetes and diabetic complications), gestational diabetes, metabolic syndrome with a focus on obesity and dyslipidemia, thyroid disorders, osteoporosis, and vitamin D deficiency. Authors reviewed and synthesized evidence in their areas of expertise. The final statement incorporated responses to several levels of review: 1) comments of the SSTF and the

  3. Septin functions in organ system physiology and pathology

    PubMed Central

    Dolat, Lee; Hu, Qicong

    2015-01-01

    Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910

  4. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  5. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  6. Update on the Mammalian Tier 1 Endocrine Disruptor Screening Protocols

    EPA Science Inventory

    The endocrine system provides a number of target sites that may be susceptible to disruption by environmental agents. In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system (http://w...

  7. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    PubMed Central

    Matisová, Eva; Hrouzková, Svetlana

    2012-01-01

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677

  8. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    PubMed

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    PubMed Central

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  10. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  11. Endocrine Glands and Hearing: Auditory Manifestations of Various Endocrine and Metabolic Conditions

    PubMed Central

    Cherian, Kripa Elizabeth; Kapoor, Nitin; Mathews, Suma Susan; Paul, Thomas Vizhalil

    2017-01-01

    The aetiology of hearing loss in humans is multifactorial. Besides genetic, environmental and infectious causes, several endocrine and metabolic abnormalities are associated with varying degrees of hearing impairment. The pattern of hearing loss may be conductive, sensori-neural or mixed. The neurophysiology of hearing as well as the anatomical structure of the auditory system may be influenced by changes in the hormonal and metabolic milieu. Optimal management of these conditions requires the integrated efforts of the otolaryngologist and the endocrinologist. The presence of hearing loss especially in the young age group should prompt the clinician to explore the possibility of an associated endocrine or metabolic disorder for timely referral and early initiation of treatment. PMID:28553606

  12. A COMPUTATIONAL LIBRARY OF THE BIOMOLECULAR TARGETS FOR TOXICITY: RECEPTORS IN THE ENDOCRINE SYSTEM

    EPA Science Inventory

    A Computational Library of the Biomolecular Targets for Toxicity: Receptors in the Endocrine System

    Authors: James R. Rabinowitz and Stephen B. Little, MTB/ECD/NHEERL/ORD, and Huajun Fan, Curriculum in Toxicology, University of North Carolina
    Structure activity models ...

  13. [Effects of magnesium valproate on endocrine system and reproductive functions of female epileptics].

    PubMed

    Xiang, Li; Ding, Jun-Qing; Huang, Xi-Shun

    2011-08-09

    To explore the effects of valproate (VPA) on endocrine system in adolescent and reproductive female patients with epilepsy. A total of 30 adolescent and reproductive female patients with a diagnosis of epilepsy at our hospital during July 2009 to March 2010 were recruited. All cases with magnesium VPA alone were included. The levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol (E2), progesterone (P) and testosterone (T) were detected respectively at pre-therapy and 3, 6 and 12 months post-therapy. And the changes of menstruation and ovaries were recorded. The serum concentration of PRL was lower at 3 and 6 months post-therapy than that at pre-therapy. There was significant difference (P = 0.010 and 0.014). The serum concentration of E2 significantly decreased after a 3-month therapy of valproate (P < 0.05). While comparing the parameter's level between the initial test and at a 3, 6 and 12-month follow-up, the level of P significantly decreased in the later groups than that of the former one while the level of T showed a marked increase. The levels of FSH and LH were not significantly different at pre- and post-therapy. And 6 (20%) of them presented with menstrual dysfunctions and 3 (10%) polycystic ovary. The valproate therapy can not only cause the changes of endocrine system and hormonal levels, but also induce such endocrine dysfunction syndromes as menstrual suspension and polycystic ovary. It eventually causes polycystic ovary syndrome.

  14. Spatial and temporal patterns of endocrine active chemicals in small streams indicate differential exposure to aquatic organisms

    USGS Publications Warehouse

    Lee, K.E.; Barber, L.B.; Schoenfuss, H.L.

    2014-01-01

    Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4-tert-octylphenol and 4-nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000-140,000 ng/l), followed by 4-nonlylphenol and 4-nonylphenolethoxylates (50-880 ng/l), 4-tert-octylphenol and 4-tert-octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1-54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.

  15. Endocrine disruption, parasites and pollutants in wild freshwater fish.

    PubMed

    Jobling, S; Tyler, C R

    2003-01-01

    Disruption of the endocrine system has been shown to occur in wild freshwater fish populations across the globe. Effects range from subtle changes in the physiology and sexual behaviour of fish to permanently altered sexual differentiation, impairment of gonad development and/or altered fertility. A wide variety of adverse environmental conditions may induce endocrine disruption, including sub-optimal temperatures, restricted food supply, low pH, environmental pollutants, and/or parasites. Furthermore, it is conceivable that any/all of these factors could act simultaneously to cause a range of disparate or inter-related effects. Some of the strongest evidence for a link between an adverse health effect, as a consequence of endocrine disruption, and a causative agent(s) is between the condition of intersex in wild roach (Rutlius rutilus) in UK rivers and exposure to effluents from sewage treatment works. The evidence to indicate that intersex in roach (and other cyprinid fish living in these rivers) is caused by chemicals that mimic and/or disrupt hormone function/balance in treated sewage effluent is substantial. There are a few parasites that affect the endocrine system directly in fish, including the tape worm Ligula intestinalis and a few parasites from the micropsora phylum. L. intestinalis acts at the level of the hypothalamus restricting GnRH secretion (resulting in poorly developed gonads) and is one of the very few examples where an endocrine disrupting event has been shown to result in a population-level effect (reducing it). It is well established that many parasites affect the immune system and thus the most common effect of parasites on the endocrine system in fish is likely to be an indirect one.

  16. Message-adjusted network (MAN) hypothesis in gastro-entero-pancreatic (GEP) endocrine system.

    PubMed

    Aykan, N Faruk

    2007-01-01

    Several types of communication coordinate body functions to maintain homeostasis. Clarifying intercellular communication systems is as important as intracellular signal mechanisms. In this study, we propose an intercellular network model to establish novel targets in GEP-endocrine system, based on up-to-date information from medical publications. As materials, two physiologic events which are Pavlov's sham-feeding assay and bicarbonate secretion into the duodenum from pancreas were explored by new biologic data from the literature. Major key words used in Pub-Med were modes of regulations (autocrine, paracrine, endocrine, neurocrine, juxtacrine, lumencrine), GEP cells, hormones, peptides and neuro-transmitters. In these two examples of physiologic events, we can design a model of network to clarify transmission of a message. When we take a simple, unique message, we can observe a complete intercellular network. In our examples, these messages are "food is coming" and "hydrogen ions are increasing" in human language (humanese). We need to find molecular counterparts of these unique messages in cell language (cellese). In this network (message-adjusted network; MAN), message is an input which can affect the physiologic equilibrium, mission is an output to improve the disequilibrium and aim is always maintenance of homeostasis. If we orientate to a transmission of a unique message we can distinguish that different cells use different chemical messengers in different modes of regulations to transmit the same message. This study also supports Shannon's information theory and cell language theories such as von Neumann-Patte principles. After human genome project (HU-GO) and protein organisations (HU-PO), finding true messages and the establishment of their networks (in our model HU-MAN project) can be a novel and exciting field in cell biology. We established an intercellular network model to understand intercellular communication in the physiology of GEP endocrine

  17. Endocrine and metabolic disorders associated with human immune deficiency virus infection.

    PubMed

    Unachukwu, C N; Uchenna, D I; Young, E E

    2009-01-01

    Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection. This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. Data were obtained from MEDLINE, Google search and otherjournals on 'HIV, Endocrinopathies/Metabolic Disorders' from 1985 till 2007. Studies related to HIV associated endocrinopathies and metabolic disorders in the last two decades were reviewed. Information on epidemiology, pathogenesis, diagnosis and treatment of the target organ endocrinopathies and metabolic disorders in HIV/AIDS were extracted from relevant literature. Endocrine and metabolic disturbances occur in the course of HIV infection. Pathogenesis includes direct infection of endocrine glands by HIV or opportunistic organisms, infiltration by neoplasms and side effects of drugs. Adrenal insufficiency is the commonest HIV endocrinopathy with cytomegalovirus adrenalitis occurring in 40-88% of cases. Thyroid dysfunction may occur as euthyroid sick syndrome or sub-clinical hypothyroidism. Hypogonadotrophic dysfunction accounts for 75% of HIV-associated hypogonadism, with prolonged amenorrhoea being three times more likely in the women. Pancreatic dysfunction may result in hypoglycaemia or diabetes mellitus (DM). Highly active antiretroviral therapy (HAART) especially protease inhibitors has been noted to result in insulin resistance and lipodystrophy. Virtually every endocrine organ is involved in the course of HIV infection. Detailed endocrinological and metabolic evaluation and appropriate treatment is necessary in the optimal management of patients with HIV infection in our environment.

  18. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society

    PubMed Central

    Brown, T. R.; Doan, L. L.; Gore, A. C.; Skakkebaek, N. E.; Soto, A. M.; Woodruff, T. J.; Vom Saal, F. S.

    2012-01-01

    An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive “safe” dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures. PMID:22733974

  19. Endocrine and metabolic assessment in adults with Langerhans cell histiocytosis.

    PubMed

    Montefusco, L; Harari, S; Elia, D; Rossi, A; Specchia, C; Torre, O; Adda, G; Arosio, M

    2018-05-01

    Diabetes insipidus (DI) is one of most common complications of Langerhans cell histiocytosis (LCH) but prevalence of anterior pituitary deficiencies and metabolic alterations have not been clearly defined yet. Evaluate prevalence of endocrine and metabolic manifestations in a cohort of patients affected by Pulmonary LCH. Observational cross-sectional study on 18 adults (7 M/11 F, 42±12years) studied for complete basal and dynamic endocrine lab tests and glucose metabolism. Hypothalamic-pituitary endocrine alterations were found in 9 patients: 9 had DI, 5 Growth Hormone Deficiency (GHD), 5 central hypogonadism, 3 central hypothyroidism and 1 central hypoadrenalism. Hyperprolactinemia and hypothalamic syndrome were found in 2 patients each. All these central endocrine alterations were always associated to DI. Five of the 10 MRI performed showed abnormalities. Prevalence of obesity and glucose alterations (either DM or IFG/IGT) were respectively 39% and 33%, higher than expected basing on epidemiological data on general Italian population. Multi-system-LCH without risk-organ involvement (LCH MS-RO - ) seems to have slightly higher prevalence of insulin resistance, glucose alterations and metabolic syndrome than LCH with isolated lung involvement (LCH SS lung + ). A papillary BRAFV600E positive thyroid carcinoma was diagnosed in one patient. The presence of anterior pituitary deficiencies should be systematically sought in all LCH patients with DI both at diagnosis and during the follow-up by basal and dynamic hormonal assessment. Patients with pulmonary LCH, particularly those with MS disease, have a worse metabolic profile than general population. Occurrence of papillary thyroid carcinoma has been reported. Copyright © 2017. Published by Elsevier B.V.

  20. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta.

    PubMed

    Morales, Mónica; Martínez-Paz, Pedro; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2018-05-15

    Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Unmasking the truth behind endocrine disruptors.

    PubMed

    DiDiego, Michele Lamse; Eggert, Julia A; Pruitt, Rosanne H; Larcom, Lyndon L

    2005-10-01

    The increase in reproductive cancers and developmental problems over the past 70 years has led researchers to suspect environmental influences as a root cause. Evidence from wildlife and laboratory studies suggests that exposure to endocrine disruptors (EnDs) may be the cause. An EnD is a foreign substance or mixture that alters the function of the endocrine system. They can be found in food, water, soil, or air. Research into their possible role provides an opportunity to decrease modifiable risk factors.

  2. Effects of Tribulus terrestris on endocrine sensitive organs in male and female Wistar rats.

    PubMed

    Martino-Andrade, Anderson J; Morais, Rosana N; Spercoski, Katherinne M; Rossi, Stefani C; Vechi, Marina F; Golin, Munisa; Lombardi, Natália F; Greca, Cláudio S; Dalsenter, Paulo R

    2010-01-08

    Investigate the possible effects of Tribulus terrestris (TT) on endocrine sensitive organs in intact and castrated male rats as well as in a post-menopausal rat model using ovariectomized females. Three different dose levels of TT (11, 42 and 110 mg/kg/day) were administered to castrated males for 7 days and to intact males and castrated females for 28 days. In addition to TT treatment, all experiments also included a group of rats treated with dehydroepiandrosterone (DHEA). In experiments using castrated males and females we also used testosterone and 17 alpha-ethynylestradiol, respectively, as positive controls for androgenicity and estrogenicity. Neither DHEA nor TT was able to stimulate androgen sensitive tissues like the prostate and seminal vesicle in both intact and castrated male rats. In addition, administration of TT to intact male rats for 28 days did not change serum testosterone levels as well as did not produce any quantitative change in the fecal excretion of androgenic metabolites. However, a slight increase in the number of homogenization-resistant spermatids was observed in rats treated with 11 mg/kg/day of TT extract. In ovariectomized females, TT did not produce any stimulatory effects in uterine and vaginal epithelia. Tribulus terrestris was not able to stimulate endocrine sensitive tissues such as the prostate, seminal vesicle, uterus and vagina in Wistar rats, indicating lack of androgenic and estrogenic activity in vivo. We also showed a positive effect of TT administration on rat sperm production, associated with unchanged levels of circulating androgens. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Suppressing the endocrine and autonomic stress systems does not impact the emotional stress experience after psychosocial stress.

    PubMed

    Ali, Nida; Nitschke, Jonas P; Cooperman, Cory; Pruessner, Jens C

    2017-04-01

    Acute psychosocial stress activates the physiological and endocrine stress systems and increases the subjective emotional experience of stress. While considerable efforts have been made to link changes in the activity of the biological stress systems with changes in the subjective emotional experience of stress, results so far have been mixed, at best. To investigate this association in a study employing experimental manipulation, we pharmacologically suppressed both the autonomic and the endocrine stress responses, and investigated the effects of acute psychosocial stress on the emotional stress experience. 22 healthy men and women received dexamethasone (2mg) the day before, and propranolol (80mg) one hour before psychosocial stress induction. A control group (n=24) received placebo pills on each occasion. Salivary cortisol, alpha-amylase and heart-rate responses to stress were assessed before, during and after stress induction. Subjective stress, mood, and state self-esteem assessments were made before and after stress. In the pharmacological manipulation group, subjects demonstrated no increase in autonomic or endocrine stress response, after exposure to psychosocial stress. Despite these effects, the emotional stress experience was intact in this group and identical to the control group. Participants in the experimental group showed an increase in subjective stress, greater mood dysregulation, and lower state self-esteem following stress exposure, with the response magnitude comparable to the control group. Our findings suggest that at least acutely, the physiological stress arousal systems and the emotional experience of stress are dissociated. This raises important questions about the efficacy of our measurement of subjective stress, and the unique contributions of the autonomic and endocrine responses in the subjective stress experience. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Life-cycle exposure to microcystin-LR interferes with the reproductive endocrine system of male zebrafish.

    PubMed

    Su, Yujing; Li, Li; Hou, Jie; Wu, Ning; Lin, Wang; Li, Guangyu

    2016-06-01

    Recently, MC-LR reproductive toxicity drew great attention. Limited information was available on endocrine-disrupting effects of MC-LR on the reproduction system in fish. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30μg/L MC-LR for 90 d until they reached sexual maturity. Male zebrafish were selected, and changes in growth and developmental parameters, testicular histological structure as well as the levels of gonadal steroid hormones were studied along with the related-gene transcriptional responses in the hypothalamic-pituitary-gonadal axis (HPG-axis). The results, for the first time, show a life cycle exposure to MC-LR causes growth inhibition, testicular damage and delayed sperm maturation. A significant decrease in T/E2 ratio indicated that MC-LR disrupted sex steroid hormones balance. The changes in transcriptional responses of HPG-axis related genes revealed that MC-LR promoted the conversion of T to E2 in circulating blood. It was also noted that vtg1 mRNA expression in the liver was up-regulated, which implied that MC-LR could induce estrogenic-like effects at environmentally relevant concentrations and long-term exposure. Our findings indicated that a life cycle exposure to MC-LR causes endocrine disruption with organic and functional damage of the testis, which might compromise the quality of life for the survivors and pose a potent threat on fish reproduction and thus population dynamics in MCs-contaminated aquatic environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents.

    PubMed

    Sangün, Özlem; Dündar, Bumin; Çömlekçi, Selçuk; Büyükgebiz, Attila

    2015-12-01

    Children are exposed to various kind of non-ionizan radiation in their daily life involuntarily. The potential sensitivity of developing organism to the effects of radiofrequency (RF) signals, the higher estimated specific absorption rate (SAR) values of children and greater lifetime cumulative risk raised the scientific interest for children's vulnerability to electromagnetic fields (EMFs). In modern societies, children are being exposed to EMFs in very early ages. There are many researches in scientific literature investigating the alterations of biological parameters in living organisms after EMFs. Although the international guidelines did not report definite, convincing data about the causality, there are unignorable amount of studies indicating the increased risk of cancer, hematologic effects and cognitive impairment. Although they are less in amount; growing number of studies reveal the impacts on metabolism and endocrine function. Reproductive system and growth look like the most challenging fields. However there are also some concerns on detrimental effects of EMFs on thyroid functions, adrenal hormones, glucose homeostasis and melatonin levels. It is not easy to conduct a study investigating the effects of EMFs on a fetus or child due to ethical issues. Hence, the studies are usually performed on virtual models or animals. Although the results are conflicting and cannot be totally matched with humans; there is growing evidence to distress us about the threats of EMF on children.

  6. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    PubMed

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  7. Endocrine disrupters--testing strategies to assess human hazard.

    PubMed

    Baker, V A

    2001-01-01

    During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non

  8. Application of Adverse Outcome Pathways to U.S. EPA’s Endocrine Disruptor Screening Program

    PubMed Central

    Noyes, Pamela D.; Casey, Warren M.; Dix, David J.

    2017-01-01

    Background: The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) screens and tests environmental chemicals for potential effects in estrogen, androgen, and thyroid hormone pathways, and it is one of the only regulatory programs designed around chemical mode of action. Objectives: This review describes the EDSP’s use of adverse outcome pathway (AOP) and toxicity pathway frameworks to organize and integrate diverse biological data for evaluating the endocrine activity of chemicals. Using these frameworks helps to establish biologically plausible links between endocrine mechanisms and apical responses when those end points are not measured in the same assay. Results: Pathway frameworks can facilitate a weight of evidence determination of a chemical’s potential endocrine activity, identify data gaps, aid study design, direct assay development, and guide testing strategies. Pathway frameworks also can be used to evaluate the performance of computational approaches as alternatives for low-throughput and animal-based assays and predict downstream key events. In cases where computational methods can be validated based on performance, they may be considered as alternatives to specific assays or end points. Conclusions: A variety of biological systems affect apical end points used in regulatory risk assessments, and without mechanistic data, an endocrine mode of action cannot be determined. Because the EDSP was designed to consider mode of action, toxicity pathway and AOP concepts are a natural fit. Pathway frameworks have diverse applications to endocrine screening and testing. An estrogen pathway example is presented, and similar approaches are being used to evaluate alternative methods and develop predictive models for androgen and thyroid pathways. https://doi.org/10.1289/EHP1304 PMID:28934726

  9. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Overview of air pollution and endocrine disorders

    PubMed Central

    Darbre, Philippa D

    2018-01-01

    Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health. PMID:29872334

  11. EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

    EPA Science Inventory

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many ...

  12. Tributyltin: Advancing the science on assessing endocrine disruption with an unconventional endocrine-disrupting compound

    USGS Publications Warehouse

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ronald C.; Guiney, Patrick; Karouna-Renier, Natalie K.; Schwarz, Tamar; Meador, James P.

    2018-01-01

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated—interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions

  13. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound.

    PubMed

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ron; Guiney, Patrick D; Karouna-Renier, Natalie; Schwarz, Tamar; Meador, James P

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions

  14. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.

    2002-01-01

    The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P < 0.05). Decreases in parathyroid hormone did not reach significance. Calcitonin showed modest decreases postflight (P < 0.02). Overall, effects of spaceflight on the calcium endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.

  15. The utilization of the climatic chamber to evaluate the influence of ambient conditions on endocrine, nervous and immune systems of rats.

    PubMed

    Baran, Arkadiusz; Jakiel, Grzegorz; Wójcik, Grazyna

    2008-01-01

    The adaptation of an organism to a change in environmental conditions is a complex and in some aspects a poorly understood physiological process. The activating influence of stress on the sympathetic nervous system, the hypothalamic - pituitary - adrenal axis and the suppression of TSH, LH, FSH release is well known. The interplay of communication between the endocrine and immune systems plays an essential role in modulating the response to stress related mediators. The basis of many contradictory and incoherent results of experiments is due to the various methodologies of creating changes in environmental conditions, the way of collecting blood samples which influence stress mediators, the case of assessing the influence of many factors on reproductive functions and the performance of experiments without synchronization with the reproductive cycle. The review will focus on the presentation of simple and repeatable methods of development of an adaptation stress to changed environmental conditions (temperature, oxygenation, humidity) and the technique of blood collection during hour-long estimation of interactions between the endocrine, nervous and immune systems. We would like to place emphasis on appropriate ways of performing experiments on female rats, with regards to the choice of a suitable phase of the reproductive cycle. Also on ways of anaesthesia and microsurgical techniques of vein catheterisation for repeated blood sampling. The performance of all phases of the experiment allow us to estimate only the influence of environmental conditions and eliminate interfering factors during the process of preparing animal for the experiment.

  16. Psycho-Neuro-Endocrine-Immunology: A Psychobiological Concept.

    PubMed

    França, Katlein; Lotti, Torello M

    2017-01-01

    Psycho-Neuro-Endocrine-Immunology (P.N.E.I.) is a scientific field of study that investigates the link between bidirectional communications among the nervous system, the endocrine system, and the immune system and the correlations of this cross-talk with physical health. The P.N.E.I. innovative medical approach represents a paradigm shift from a strictly biomedical view of health and disease taken as hermetically sealed compartments to a more interdisciplinary one. The key element of P.N.E.I. approach is represented by the concept of bidirectional cross-talk between the psychoneuroendocrine and immune systems. The Low Dose Medicine is one of the most promising approaches able to allow the researchers to design innovative therapeutic strategies for the treatment of skin diseases based on the rebalance of the immune response.

  17. Characterization of Insulin-Immunoreactive Cells and Endocrine Cells Within the Duct System of the Adult Human Pancreas.

    PubMed

    Li, Rong; Zhang, Xiaoxi; Yu, Lan; Zou, Xia; Zhao, Hailu

    2016-01-01

    The adult pancreatic duct system accommodates endocrine cells that have the potential to produce insulin. Here we report the characterization and distribution of insulin-immunoreactive cells and endocrine cells within the ductal units of adult human pancreas. Sequential pancreas sections from 12 nondiabetic adults were stained with biomarkers of ductal epithelial cells (cytokeratin 19), acinar cells (amylase), endocrine cells (chromogranin A; neuron-specific enolase), islet hormones (insulin, glucagon, somatostatin, pancreatic polypeptide), cell proliferation (Ki-67), and neogenesis (CD29). The number of islet hormone-immunoreactive cells increased from large ducts to the terminal branches. The insulin-producing cells outnumbered endocrine cells reactive for glucagon, somatostatin, or pancreatic polypeptide. The proportions of insulin-immunoreactive count compared with local islets (100% as a baseline) were 1.5% for the main ducts, 7.2% for interlobular ducts, 24.8% for intralobular ducts, 67.9% for intercalated ducts, and 348.9% for centroacinar cells. Both Ki-67- and CD29-labeled cells were predominantly localized in the terminal branches around the islets. The terminal branches also showed cells coexpressing islet hormones and cytokeratin 19. The adult human pancreatic ducts showed islet hormone-producing cells. The insulin-reactive cells predominantly localized in terminal branches where they may retain potential capability for β-cell neogenesis.

  18. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  19. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Hedgehog signaling: endocrine gland development and function.

    PubMed

    Cohen, M Michael

    2010-01-01

    The role of hedgehog signaling is analyzed in relation to the developing endocrine glands: pituitary, ovary, testis, adrenal cortex, pancreas, prostate, and epiphyseal growth. Experimental and pathological correlates of these organs are also discussed. The second section addresses a number of topics. First, the pituitary gland, no matter how hypoplastic, is present in most cases of human holoprosencephaly, unlike animals in which it is always said to be absent. The difference appears to be that animal mutations and teratogenic models involve both copies of the gene in question, whereas in humans the condition is most commonly heterozygous. Second, tests of endocrine function are not reported with great frequency, and an early demise in severe cases of holoprosencephaly accounts for this trend. Reported tests of endocrine function are reviewed. Third, diabetes insipidus has been recorded in a number of cases of holoprosencephaly. Its frequency is unknown because it could be masked by adrenal insufficiency in some cases and may not be recognized in others. Because of the abnormal hypothalamic-infundibular region in holoprosencephaly, diabetes insipidus could be caused by a defect in the supra-optic or paraventricular hypothalamic nuclei or in release of ADH via the infundibulum and posterior pituitary.

  1. Endocrine disruptive effects of chemicals eluted from nitrile-butadiene rubber gloves using reporter gene assay systems.

    PubMed

    Satoh, Kanako; Nonaka, Ryouichi; Ohyama, Ken-ichi; Nagai, Fumiko; Ogata, Akio; Iida, Mitsuru

    2008-03-01

    Disposable gloves made of nitrile-butadiene rubber (NBR) are used for contact with foodstuffs rather than polyvinyl chloride gloves containing di(2-ethylhexyl)phthalate (DEHP), because endocrine-disruptive effects are suspected for phthalate diesters including DEHP. However, 4,4'-butylidenebis(6-t-butyl-m-cresol) (BBBC), 2,4-di-t-butylphenol, and 2,2,4-trimetyl-1,3-pentanediol diisobutyrate can be eluted from NBR gloves, and possibly also detected in food. In this study, we examined the endocrine-disrupting effects of these chemicals via androgen receptor (AR) and estrogen receptor (ER)-mediated pathways using stably transfected reporter gene cell lines expressing AR (AR-EcoScreen system) and ER (MVLN cells), respectively. We also examined the binding activities of these chemicals to AR and ER. The IC50 value of BBBC for antagonistic androgen was in the range of 10(-6)M. The strength of inhibition was about 5 times that of a known androgen antagonist, 1,1'-(2,2-dichloroethylidene)bis[4-chlorobenzene] (p,p'-DDE), and similar to that of bisphenol A. The IC50 value of BBBC for antagonistic estrogen was in the range of 10(-6)M. These results suggest that BBBC and its structural homologue, 4,4'-thiobis(6-t-butyl-m-cresol) are androgen and estrogen antagonists. It is therefore necessary to study these chemicals in vivo, and clarify their effect on the endocrine system.

  2. Ten steps to plan, design, and implement an endocrinology and endocrine surgery module for the Faculty of Medicine, Al-Baha University.

    PubMed

    Elfakey, Walyeldin Em; Al-Ghamdi, Ahmed H

    2016-01-01

    The Faculty of Medicine, Al-Baha University (FMBU), is a newly established medical school that implements a community-oriented and integrated system-based curriculum which is suitable for both medical students and serving the needs of the local community. The aim of this study is to describe the steps that were followed to plan, design, and implement an endocrinology and endocrine surgery module (EESM) for the fourth-year medical students, as an example of how system-based modules are designed at FMBU. Ten questions based on Harden's methodolgy were asked in order to design, plan, and implement an endocrinology and endocrine surgery module. The module committee determined the needs of the module and accordingly stated the aims and objectives of the module. The module planners selected the relevant contents, teaching methods, and assessment strategies and organized them. After addressing each of the ten questions, the results indicated the need, aim, objectives, and contents for the endocrinology and endocrine surgery module at FMBU. The implementation strategies were chosen according to the SPICES model. The teaching methods and the assessment strategies were selected and arranged. The module is well communicated at all levels, and the module committee used every effort to create a productive teaching environment. The module is well managed and follows the hierarchy of FMBU. Implementing Harden's ten steps methodology resulted in an integrated module of endocrinology and endocrine surgery where related disciplines and systems were merged and medical and surgical endocrine topics were included.

  3. Endocrine Crosstalk Between Muscle and Bone

    PubMed Central

    Brotto, Marco; Johnson, Mark L.

    2015-01-01

    The musculoskeletal system is a complex organ comprised of the skeletal bones, skeletal muscles, tendons, ligaments, cartilage, joints, and other connective tissue that physically and mechanically interact to provide animals and humans with the essential ability of locomotion. This mechanical interaction is undoubtedly essential for much of the diverse shape and forms observed in vertebrates and even in invertebrates with rudimentary musculoskeletal systems such as fish. It makes sense from a historical point of view that the mechanical theories of musculoskeletal development have had tremendous influence of our understanding of biology, because these relationships are clear and palpable. Less visible to the naked eye or even to the microscope is the biochemical interaction among the individual players of the musculoskeletal system. It was only in recent years that we have begun to appreciate that beyond this mechanical coupling of muscle and bones, these 2 tissues function at a higher level through crosstalk signaling mechanisms that are important for the function of the concomitant tissue. Our brief review attempts to present some of the key concepts of these new concepts and is outline to present muscles and bones as secretory/endocrine organs, the evidence for mutual genetic and tissue interactions, pathophysiological examples of crosstalk, and the exciting new directions for this promising field of research aimed at understanding the biochemical/molecular coupling of these 2 intimately associated tissues. PMID:24667990

  4. Endocrine crosstalk between muscle and bone.

    PubMed

    Brotto, Marco; Johnson, Mark L

    2014-06-01

    The musculoskeletal system is a complex organ comprised of the skeletal bones, skeletal muscles, tendons, ligaments, cartilage, joints, and other connective tissue that physically and mechanically interact to provide animals and humans with the essential ability of locomotion. This mechanical interaction is undoubtedly essential for much of the diverse shape and forms observed in vertebrates and even in invertebrates with rudimentary musculoskeletal systems such as fish. It makes sense from a historical point of view that the mechanical theories of musculoskeletal development have had tremendous influence of our understanding of biology, because these relationships are clear and palpable. Less visible to the naked eye or even to the microscope is the biochemical interaction among the individual players of the musculoskeletal system. It was only in recent years that we have begun to appreciate that beyond this mechanical coupling of muscle and bones, these 2 tissues function at a higher level through crosstalk signaling mechanisms that are important for the function of the concomitant tissue. Our brief review attempts to present some of the key concepts of these new concepts and is outline to present muscles and bones as secretory/endocrine organs, the evidence for mutual genetic and tissue interactions, pathophysiological examples of crosstalk, and the exciting new directions for this promising field of research aimed at understanding the biochemical/molecular coupling of these 2 intimately associated tissues.

  5. [Perspectives on endocrine disruption].

    PubMed

    Olea, N; Fernández, M F; Araque, P; Olea-Serrano, F

    2002-01-01

    Two decades ago, reports of alterations in the reproductive function of some wild animal species and clear evidence of human and animal exposure to chemical substances with hormonal activity agonist and antagonist generated what is known now as the hypothesis of endocrine disruption. This is an emerging environmental health problem that has challenged some of the paradigms on which the control and regulation of the use of chemical compounds is based. The need to include in routine toxicology tests new research objectives that specifically refer to the development and growth of species and to the homeostasis and functionality of hormonal systems, has served to complicate both the evaluation of new compounds and the re-evaluation of existing ones. The repercussions on regulation and international trade have not taken long to be felt. On both sides of the Atlantic, screening systems for endocrine disrupters have been designed and established, and research programmes have been launched to characterise and quantify adverse effects on human and animal health and to develop preventive measures.

  6. A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system.

    PubMed

    Zielonka, Matthias; Xia, Jingjing; Friedel, Roland H; Offermanns, Stefan; Worzfeld, Thomas

    2010-09-10

    Plexins serve as receptors for semaphorins and play important roles in the developing nervous system. Plexin-B2 controls decisive developmental programs in the neural tube and cerebellum. However, whether Plexin-B2 also regulates biological functions in adult nonneuronal tissues is unknown. Here we show by two methodologically independent approaches that Plexin-B2 is expressed in discrete cell types of several nonneuronal tissues in the adult mouse. In the vasculature, Plexin-B2 is selectively expressed in functionally specialized endothelial cells. In endocrine organs, Plexin-B2 localizes to the pancreatic islets of Langerhans and to both cortex and medulla of the adrenal gland. Plexin-B2 expression is also detected in certain types of immune and epithelial cells. In addition, we report on a systematic comparison of the expression patterns of Plexin-B2 and its ligand Sema4C, which show complementarity or overlap in some but not all tissues. Furthermore, we demonstrate that Plexin-B2 and its family member Plexin-B1 display largely nonredundant expression patterns. This work establishes Plexin-B2 and Sema4C as potential regulators of the vascular and endocrine system and provides an anatomical basis to understand the biological functions of this ligand-receptor pair. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Endocrine disrupting chemicals in Minnesota lakes - Water-quality and hydrological data from 2008 and 2010

    USGS Publications Warehouse

    Barber, Larry B.; Writer, Jeffrey H.; Keefe, Steffanie K.; Brown, Greg K.; Ferrey, Mark L.; Jahns, Nathan D.; Kiesling, Richard L.; Lundy, James R.; Poganski, Beth H.; Rosenberry, Donald O.; Taylor, Howard E.; Woodruff, Olivia P.; Schoenfuss, Heiko L.

    2012-01-01

    Understanding the sources, fate, and effects of endocrine disrupting chemicals in aquatic ecosystems is important for water-resource management. This study was conducted during 2008 and 2010 to establish a framework for assessing endocrine disrupting chemicals, and involved a statewide survey of their occurrence in 14 Minnesota lakes and a targeted study of different microhabitats on a single lake. The lakes ranged in size from about 0.1 to 100 square kilometers, varied in trophic status from oligotrophic to eutrophic, and spanned a range of land-uses from wetlands and forest to agricultural and urban use. Water and sediment samples were collected from the near-shore littoral environment and analyzed for endocrine disrupting chemicals, including trace elements, acidic organic compounds, neutral organic compounds, and steroidal hormones. In addition, polar organic compound integrative samplers were deployed for 21 days and analyzed for the same organic compounds. One lake was selected for a detailed microhabitat study of multiple near-shore environments. This report compiles the results from the field measurements and laboratory chemical analysis of water, sediment, and polar organic compound integrative sampler samples collected during 2008 and 2010. Most of the organic compounds measured were not detected in any of the water samples, although a few compounds were detected in several of the lakes.

  8. Endocrine actions of vitamin D in skin: Relevance for photocarcinogenesis of non-melanoma skin cancer, and beyond.

    PubMed

    Reichrath, Jörg; Saternus, Roman; Vogt, Thomas

    2017-09-15

    The skin represents a pivotal organ for the human body's vitamin D endocrine system, being both the site of ultraviolet (UV)-B-induced vitamin D synthesis and a target tissue for the pluripotent effects of 1,25(OH) 2 D 3 and other biologically active vitamin D metabolites. As many other steroid hormones, 1,25(OH) 2 D 3 exerts its effects via two independent signal transduction pathways: the classical genomic and the non-genomic pathway. While non-genomic effects of 1,25(OH) 2 D 3 are in part exerted via effects on intracellular calcium, genomic effects are mediated by the vitamin D receptor (VDR). Recent findings convincingly support the concept of a new function of the VDR as a tumor suppressor in skin, with key components of the vitamin D endocrine system, including VDR, CYP24A1, CYP27A1, and CYP27B1 being strongly expressed in non-melanoma skin cancer (NMSC). It has now been shown that anti-tumor effects of VDR, that include some of its ligand-induced growth-regulatory effects, are at least in part mediated by interacting in a highly coordinated manner with the p53 family (p53/p63/p73) in response to a large number of alterations in cell homeostasis, including UV-induced DNA damage, a hallmark for skin photocarcinogenesis. Considering the relevance of the vitamin D endocrine system for carcinogenesis of skin cancer, it is not surprising that low 25(OH)D serum concentrations and genetic variants (SNPs) of the vitamin D endocrine system have been identified as potential risk factors for occurrence and prognosis of skin malignancies. In conclusion, an increasing body of evidence now convincingly supports the concept that the vitamin D endocrine system is of relevance for photocarcinogenesis and progression of NMSC and that its pharmacologic modulation by vitamin D, 1,25(OH) 2 D 3, and analogs represents a promising new strategy for prevention and/or treatment of these malignancies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Neonatal endocrine emergencies: a primer for the emergency physician.

    PubMed

    Park, Elizabeth; Pearson, Nadia M; Pillow, M Tyson; Toledo, Alexander

    2014-05-01

    The resuscitation principles of securing the airway and stabilizing hemodynamics remain the same in any neonatal emergency. However, stabilizing endocrine disorders may prove especially challenging. Several organ systems are affected simultaneously and the clinical presentation can be subtle. Although not all-inclusive, the implementation of newborn screening tests has significantly reduced morbidity and mortality in neonates. Implementing routine screening tests worldwide and improving the accuracy of present tests remains the challenge for healthcare providers. With further study of these disorders and best treatment practices we can provide neonates presenting to the emergency department with the best possible outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The endocrine cells in the gastroenteropancreatic system of the bowfin, Amia calva L.: an immunohistochemical, ultrastructural, and immunocytochemical analysis.

    PubMed

    Youson, J H; Al-Mahrouki, A A; Naumovski, D; Conlon, J M

    2001-12-01

    The gastroenteropancreatic (GEP) endocrine system of bowfin (Amia calva) was described using light and electron microscopy and immunological methods. The islet organ (endocrine pancreas) consists of diffusely scattered, mostly small islets and isolated patches of cells among and within the exocrine acini. The islets are composed of abundant, centrally located B cells immunoreactive to bovine and lamprey insulin antisera and D cells showing a widespread distribution and specificity to somatostatin antibodies. A and F cells are present at the very periphery of the islets and are immunoreactive with antisera against glucagon (and glucagon-like peptide) and several peptides of the pancreatic polypeptide (PP)-family, respectively. The peptides of the two families usually collocates within the same peripheral islet cells and are the most common immunoreactive peptides present in the extra-islet tissue. Immunocytochemistry and fine structural observations characterised the granule morphology for B and D cells and identified two cell types with granules immunoreactive to glucagon antisera. These two putative A cells had similar granules, which were distinct from either B or D cells, but one of the cells had rod-shaped cytoplasmic inclusions within cisternae of what appeared to be rough endoplasmic reticulum. The inclusions were not immunoreactive to either insulin or glucagon antisera. Only small numbers of cells in the stomach and intestine immunoreacted to antisera against somatostatin, glucagon, and PP-family peptides. The paucity of these cells was reflected in the low concentrations of these peptides in intestinal extracts. The GEP system of bowfin is not unlike that of other actinopterygian fishes, but there are some marked differences that may reflect the antiquity of this system and/or may be a consequence of the ontogeny of this system in this species. Copyright 2001 Wiley-Liss, Inc.

  11. Integrated Neural and Endocrine Control of Gastrointestinal Function.

    PubMed

    Furness, John B

    The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and

  12. Computational Model of the Hypothalamic-pituitary-gonadal Axis to Predict Biochemical Adaptive Response to Endocrine Disrupting Fungicide Prochloraz

    EPA Science Inventory

    There is increasing evidence that exposure to endocrine disrupting chemicals can induce adverse effects on reproduction and development in both humans and wildlife. Recent studies report adaptive changes within exposed organisms in response to endocrine disrupting chemicals, and ...

  13. PHEOCHROMOCYTOMA: AN ENDOCRINE STRESS MIMICKING DISORDER

    PubMed Central

    Kantorovich, Vitaly; Eisenhofer, Graeme; Pacak, Karel

    2008-01-01

    Pheochromocytoma is an endocrine tumor that can uniquely mimic numerous stress-associated disorders, with variations in clinical manifestations resulting from different patterns of catecholamine secretion and actions of released catecholamines on physiological systems. PMID:19120142

  14. Colocalization of numerous immunoreactivities in endocrine cells of the chicken proventriculus at hatching.

    PubMed

    Martínez, A; Buchan, A M; López, J; Sesma, P

    2000-05-01

    The colocalization of regulatory peptide immunoreactivities in endocrine cells of the chicken proventriculus at hatching has been investigated using the avidin-biotin technique in serial sections and double immunofluorescence in the same section for light microscopy, and double immunogold staining for electron microscopy. In addition to the eight immunoreactivities previously described in this organ, cells immunoreactive for peptide histidine isoleucine (PHI), peptide gene product 9.5 (PGP), and the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM) were observed. All the cells immunoreactive to glucagon were also immunostained by the PHI antiserum. In addition, all the glucagon-like peptide 1, avian pancreatic polypeptide, and some of the neurotensin-like cells costored also glucagon- and PHI-immunoreactive substances. PGP- and PAM-immunoreactivities were also found in the glucagon-positive cells. A small proportion of the somatostatin-containing cells were positive for PHI but not for other regulatory peptides. These results could suggest either the existence of a very complex regulatory system or that the endocrine system of the newborn chickens is not yet fully developed.

  15. Growth and Endocrine Function in Tunisian Thalassemia Major Patients.

    PubMed

    Dhouib, Naouel Guirat; Ben Khaled, Monia; Ouederni, Monia; Besbes, Habib; Kouki, Ridha; Mellouli, Fethi; Bejaoui, Mohamed

    2018-01-01

    β-thalassemia major (β-TM) is among the most common hereditary disorders imposing high expenses on health-care system worldwide. The patient's survival is dependent on lifetime blood transfusion which leads to iron overload and its toxicity in various organs including endocrine glands. This article provides an overview of endocrine disorders in beta-TM patients. This single center investigation enrolled 28 β-TM patients (16 males, 12 females) regularly transfused with packed red cell since early years of life. For each patient were determined: age, sex, number of transfusions received, history of splenectomy and anthropometric parameters. All patients underwent an evaluation of hormonal status including growth, gonadal, thyroid, adrenal cortex, and parathyroid glands. Dual-energy X-ray absorptiometry was used to diagnose low bone mass. Assessment of iron overload status was performed by measuring the serum ferritin concentration and the results of magnetic resonance imaging T 2 *. Growth retardation was found in 16 of the 28 studied patients (57 %). Thirteen among them had delayed puberty. Spontaneous puberty was achieved in 16 cases. Growth hormone (GH) deficiency was found in 10 cases (35 %). Seventeen among the studied patients (60 %) developed disorders of glucose homeostasis. Subclinical hypothyroidism was found in six patients (21 %). Intensive chelation therapy had allowed the reversibility of this complication in five cases. Adrenal Insufficiency was observed in 9 cases (32%). Hypoparathyroidism has occurred in one case. Ten of the 28 studied patients had low bone mass (35%). Twenty-three of the 28 studied patients (82%) had at least one endocrine complication.

  16. [Reproduction, endocrine disorders and celiac disease: risk factors of osteoporosis].

    PubMed

    Stazi, A V; Trinti, B

    2006-04-01

    In genetically predisposed individuals, celiac disease (CD) is permanent intolerance to gluten. Besides the overt enteropathy, there are clinical and subclinical forms which appear later in life; target organs include liver, thyroid, skin and reproductive systems. CD interference is related to the different concurrent genetic-environmental factors, showing multifactorial nature. CD induces malabsorption with consequent deficiencies of micronutrients essential for organogenesis, spermatogenesis and bone structure, such as vitamin D and calcium. In fact, among extraintestinal manifestations of CD, osteoporosis deserves attention because it can be a sign of silent CD. In celiac patients' serum, cytochinic imbalance related to bone loss is present; in vitro these sera act on the osteoblastic activity. The IL-1b is also present in celiac patients' relatives, confirming the genetic predisposition to its etiopathogenesis which is also regulated by endocrine-environmental factors. In females, CD acts indirectly on the bone, determining early menopause and amenorrhea. Even frequent pregnancies and long periods of lactation can bring to bone loss; in such periods, silent CD can appear, suggesting the presence of endocrine-immunology factors. In celiac males, osteoporosis presence, besides calcium and vitamin D deficiencies, is associated to growth hormone deficit and hypogonadism, which is related to hyperprolactinemia, endocrine factors which affect the reproduction. Osteoporosis is relevant among the elderly and vitamin D and calcium supplementations are important to people diagnosed with CD later in life. Thus, to prevent damages such as osteoporosis, early CD screening among people with reproductive problems is necessary.

  17. Use of nuclear receptor luciferase-based bioassays to detect endocrine active chemicals in a biosolids-biochar amended soil.

    PubMed

    Anderson, Carolyn G; Joshi, Geetika; Bair, Daniel A; Oriol, Charlotte; He, Guochun; Parikh, Sanjai J; Denison, Michael S; Scow, Kate M

    2017-08-01

    Biosolids are a potentially valuable source of carbon and nutrients for agricultural soils; however, potential unintended impacts on human health and the environment must be considered. Virtually all biosolids contain trace amounts endocrine-disrupting chemicals derived from human use of pharmaceuticals and personal care products (PPCPs). One potential way to reduce the bioavailability of PPCPs is to co-apply biosolids with biochar to soil, because biochar's chemical (e.g., aromaticity) and physical properties (e.g., surface area) give it a high affinity to bind many organic chemicals in the environment. We developed a soil-specific extraction method and utilized a luciferase-based bioassay (CALUX) to detect endocrine active chemicals in a biosolids-biochar co-amendment soil greenhouse study. Both biochar (walnut shell, 900 °C) and biosolids had positive impacts on carrot and lettuce biomass accumulation over our study period. However, the walnut shell biochar stimulated aryl hydrocarbon receptor activity, suggesting the presence of potential endocrine active chemicals in the biochar. Since the biochar rate tested (100 t ha -1 ) is above the average agronomic rate (10-20 t ha -1 ), endocrine effects would not be expected in most environmental applications. The effect of high temperature biochars on endocrine system pathways must be explored further, using both quantitative analytical tools to identify potential endocrine active chemicals and highly sensitive bioanalytical assays such as CALUX to measure the resulting biological activity of such compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.

    PubMed

    Hofmann, Lars; Forschner, Andrea; Loquai, Carmen; Goldinger, Simone M; Zimmer, Lisa; Ugurel, Selma; Schmidgen, Maria I; Gutzmer, Ralf; Utikal, Jochen S; Göppner, Daniela; Hassel, Jessica C; Meier, Friedegund; Tietze, Julia K; Thomas, Ioannis; Weishaupt, Carsten; Leverkus, Martin; Wahl, Renate; Dietrich, Ursula; Garbe, Claus; Kirchberger, Michael C; Eigentler, Thomas; Berking, Carola; Gesierich, Anja; Krackhardt, Angela M; Schadendorf, Dirk; Schuler, Gerold; Dummer, Reinhard; Heinzerling, Lucie M

    2016-06-01

    Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

    EPA Science Inventory

    During the last decade, concerns have been raised regarding the possible harmful effects of exposure to certain chemicals that are capable of modulating or disrupting the function of the endocrine system. These chemicals, which are referred to as endocrine disrupting chemicals (E...

  20. Endocrine-Disrupting Compounds in Aquatic Ecosystems.

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are a ubiquitous issue of concern in our aquatic systems. Commonly detected EDCs include natural and synthetic hormones, surfactants, plasticizers, disinfectants, herbicides and metals. The potency of these chemicals varies substantially, as ...

  1. Avian genomics lends insights into endocrine function in birds.

    PubMed

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Gastroenteropancreatic (neuro)endocrine neoplasms: the histology report.

    PubMed

    Rindi, Guido; Bordi, C; La Rosa, S; Solcia, E; Delle Fave, Gianfranco

    2011-03-01

    Based on the year 2000 World Health Organization (WHO) classification and the European Neuroendocrine Tumor Society (ENETS) grading and staging proposals, we here define the minimal guidelines for pathology reporting of (neuro)endocrine neoplasms. The macroscopical description is recommended according to standard procedures and the microscopical description according to recognized architectural and cytological features for endocrine lesions. Minimal diagnostic immunohistochemistry entails the use of chromogranin A, synaptophysin and Ki67. Other potentially useful tests are those for CD56 N-CAM, PGP 9.5 and hormones for diagnosis, the somatostatin receptor subtype 2 for potential radiodiagnostics and therapy, and transcription factors like TTF1 and CDX2, for site of origin. Grading definition is always mandatory as well as TNM staging for surgical specimens. Copyright © 2011 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd.. All rights reserved.

  3. Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.

    PubMed Central

    Zacharewski, T

    1998-01-01

    It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705

  4. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  5. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  6. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?

    PubMed

    Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan

    2010-07-01

    Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.

  7. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  8. Space research on organs and tissues

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Morey-Holton, Emily

    1992-01-01

    The effects of microgravity on various physiological systems are reviewed focusing on muscle, bone, cardiovascular, pulmonary, neurovestibular, liver, and endocrine systems. It is noted that certain alterations of organs and tissues caused by microgravity are not reproducible in earth-bound animal or human models. Thus space research on organs and tissues is essential for both validating the earth-bound models used in laboratories and studying the adaptations to weightlessness which cannot be mimicked on earth.

  9. [Arterial hypertension secondary to endocrine disorders].

    PubMed

    Minder, Anna; Zulewski, Henryk

    2015-06-01

    Endocrine hypertension offers a potentially curative therapy if the underlying cause is identified and treated accordingly. In contrast to the high prevalence of arterial hypertension especially in the elderly, the classical endocrine causes remain a rare entity. Among patients with arterial hypertension the prevalence of Cushing's syndrome or pheochromocytoma is less than 1%. Primary hyperaldosteronism is more frequent with a reported prevalence of up to 9%. In order to avoid unnecessary, costly and potentially harmful evaluations and therapies due to the limited sensitivity and specificity of the critical endocrine tests it is mandatory to limit the exploration for endocrine causes to preselected patients with high pretest probability for an endocrine disorder. Younger age at manifestation of arterial hypertension or drug resistant hypertension together with other clinical signs of an endocrine disorder should raise the suspicion and prompt the appropriate evaluation.

  10. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study.

    PubMed

    Nagy, Katalin; Berhés, István; Kovács, Tibor; Kávási, Norbert; Somlai, János; Bender, Tamás

    2009-08-01

    Radon bath is a well-established modality of balneotherapy for the management of degenerative musculoskeletal disorders. The present study was conducted to ascertain whether baths of relatively low (80 Bq/l) radon concentration have any influence on the functioning of the endocrine system. In the study, a non-randomized pilot study, 27 patients with degenerative musculoskeletal disorders received 30-min radon baths (of 31-32 degrees C temperature and 80 Bq/l average radon concentration) daily, for 15 days. Twenty-five patients with matching pathologies were subjected to balneotherapy according to the same protocol, using thermal water with negligible radon content (6 Bq/l). Serum thyroid stimulating hormone, prolactin, cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone levels were measured before and after a balneotherapy course of 15 sessions. Comparison of the accumulated data using the Wilcoxon test did not reveal any significant difference between pre- and post-treatment values or between the two patient groups. It is noted that while the beneficial effects of balneotherapy with radon-containing water on degenerative disorders is widely known, only few data have been published in the literature on its effect on endocrine functions. The present study failed to demonstrate any substantial effect of thermal water with relatively low radon content on the functioning of the endocrine system.

  11. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    PubMed

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Neuro-Modulation of Immuno-Endocrine Response Induced by Kaliotoxin of Androctonus Scorpion Venom.

    PubMed

    Ladjel-Mendil, Amina; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-12-01

    Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs. © 2016 Wiley Periodicals, Inc.

  13. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toxicological assessment of drugs that affect the endocrine system in puberty-related disorders.

    PubMed

    Maranghi, Francesca; Tassinari, Roberta; Mantovani, Alberto

    2013-10-01

    Toxicologists must ensure that clinical risk-to-benefit analysis should be made both for genders and age groups, with any treatment. Puberty concerns physiological changes leading to organism's maturation. Pubertal growth disorders are increasing in last decades: besides causing physical and psychological distress, they may signal underlying endocrine-metabolic abnormalities with serious health consequences later on. Therapeutic approaches for some health conditions in childhood and adolescence are considered. The authors discuss how some diseases and treatments can impact pubertal growth. The authors look at particular immunological disorders such as asthma and how both the disease and treatment affects pubertal growth. They also discuss how the provision of available data can help to assess the dose-response of the drug, in these cases, and minimize the chance of side effects. The authors also discuss pediatric inflammatory bowel disease and how both the disease and treatment can mitigate the growth delay. Last, but not least, the authors discuss how the effects of the drugs used in the treatment of psychiatric disorders may accentuate endocrine issues in juvenile patients. Hyperprolactinemia induction by some antipsychotics is highlighted as an example. Appropriate risk-benefit analysis of drugs prescribed during childhood and adolescence and intended to be used in the long term is required. Furthermore, future treatment strategies and safer compounds development should be supported by the knowledge of mechanisms underlying adverse side effects in pubertal growth and development.

  15. Heart failure: not a single organ disease but a multisystem syndrome.

    PubMed

    Warriner, David; Sheridan, Paul; Lawford, Patricia

    2015-06-01

    Heart failure is not simply a single organ disease; rather it is a complex multi-system clinical syndrome, with impairment of endocrine, haematological, musculoskeletal, renal, respiratory and vascular systems, which influence morbidity and mortality.

  16. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    EPA Science Inventory

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  17. Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Zaugg, S.D.

    2000-01-01

    Select endocrine disrupting organic chemicals were measured in treated wastewater from Chicago, IL, Minneapolis/St. Paul, MN, Detroit, MI, and Milwaukee, WI, and in the Des Plaines, Illinois, and Minnesota Rivers during the fall of 1997 and the spring of 1998. Emphasis was given to alkylphenolpolyethoxylate (APEO) derived compounds, although 17-??-estradiol, bisphenol A, caffeine, total organic carbon, ethylenediaminetetraacetic acid (EDTA), and other compounds also were measured. Contaminants were isolated by continuous liquid-liquid extraction (CLLE) with methylene chloride and analyzed by gas chromatography/mass spectrometry in full scan and selected ion monitoring modes. The extracts were derivatized to form the methyl esters of alkylphenolethoxycarboxylates (APEC), and EDTA was isolated by evaporation and derivatized to form the tetrapropyl ester. The mass spectra of nonylphenol (NP) and octylphenol (OP) compounds are complex and show variations among the different ethoxylate and carboxylate homologs, reflecting variations in the ethylene oxide chain length. Recoveries for target compounds and surrogate standards ranged from 20-130%, with relative standard deviations of 9.9-53%. Detection limits for the various compounds ranged from 0.06-0.35 ??g/L. Analysis of the wastewater effluents detected a number of compounds including NP, NPEO, OP, OPEO, NPEC, caffeine, and EDTA at concentrations ranging from <1-439 ??g/L, with EDTA and NPEC being most abundant. There was variability in compound distributions and concentrations between the various sewage treatment plants, indicating differences in treatment type and influent composition. Several wastewater-derived compounds were detected in the river samples, with EDTA and NPEC persisting for considerable distance downstream from wastewater discharges, and NP and NPEO being attenuated more rapidly.

  18. Spectrum of Endocrine Disorders in Central Ghana

    PubMed Central

    Sarfo, Fred Stephen; Ansah, Eunice Oparebea; Kyei, Ishmael

    2017-01-01

    Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0) with an overall median age of 54 (IQR, 41–64) years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population. PMID:28326101

  19. A review on endocrine disruptors and their possible impacts on human health.

    PubMed

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015

  1. THE ROLE OF THE PINEAL GLAND AND OF ENVIRONMENTAL LIGHTING IN THE REGULATION OF THE ENDOCRINE AND REPRODUCTIVE SYSTEMS OF RODENTS.

    DTIC Science & Technology

    PHOTOPERIODISM, REPRODUCTION(PHYSIOLOGY)), (*ENDOCRINE GLANDS , REPRODUCTION(PHYSIOLOGY)), RODENTS, REPRODUCTIVE SYSTEM, EYE, EXCISION, TESTES, OVARIES, ADRENAL GLANDS , THYROID GLAND , IODINE, THIOUREA, RATS, HAMSTERS

  2. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the

  3. The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na+ pump endocrine system.

    PubMed

    Blaustein, Mordecai P

    2018-01-01

    Two prescient 1953 publications set the stage for the elucidation of a novel endocrine system: Schatzmann's report that cardiotonic steroids (CTSs) are all Na + pump inhibitors, and Szent-Gyorgi's suggestion that there is an endogenous "missing screw" in heart failure that CTSs like digoxin may replace. In 1977 I postulated that an endogenous Na + pump inhibitor acts as a natriuretic hormone and simultaneously elevates blood pressure (BP) in salt-dependent hypertension. This hypothesis was based on the idea that excess renal salt retention promoted the secretion of a CTS-like hormone that inhibits renal Na + pumps and salt reabsorption. The hormone also inhibits arterial Na + pumps, elevates myocyte Na + and promotes Na/Ca exchanger-mediated Ca 2+ gain. This enhances vasoconstriction and arterial tone-the hallmark of hypertension. Here I describe how those ideas led to the discovery that the CTS-like hormone is endogenous ouabain (EO), a key factor in the pathogenesis of hypertension and heart failure. Seminal observations that underlie the still-emerging picture of the EO-Na + pump endocrine system in the physiology and pathophysiology of multiple organ systems are summarized. Milestones include: 1) cloning the Na + pump isoforms and physiological studies of mutated pumps in mice; 2) discovery that Na + pumps are also EO-triggered signaling molecules; 3) demonstration that ouabain, but not digoxin, is hypertensinogenic; 4) elucidation of EO's roles in kidney development and cardiovascular and renal physiology and pathophysiology; 5) discovery of "brain ouabain", a component of a novel hypothalamic neuromodulatory pathway; and 6) finding that EO and its brain receptors modulate behavior and learning.

  4. Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of endocrine-active substances

    USGS Publications Warehouse

    Matthiessen, Peter; Ankley, Gerald T.; Biever, Ronald C.; Bjerregaard, Poul; Borgert, Christopher; Brugger, Kristin; Blankinship, Amy; Chambers, Janice; Coady, Katherine K.; Constantine, Lisa; Dang, Zhichao; Denslow, Nancy D.; Dreier, David; Dungey, Steve; Gray, L. Earl; Gross, Melanie; Guiney, Patrick D.; Hecker, Markus; Holbech, Henrik; Iguchi, Taisen; Kadlec, Sarah; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Kawashima, Yukio; Kloas, Werner; Krueger, Henry; Kumar, Anu; Lagadic, Laurent; Leopold, Annegaaike; Levine, Steven L.; Maack, Gerd; Marty, Sue; Meador, James P.; Mihaich, Ellen; Odum, Jenny; Ortego, Lisa; Parrott, Joanne L.; Pickford, Daniel; Roberts, Mike; Schaefers, Christoph; Schwarz, Tamar; Solomon, Keith; Verslycke, Tim; Weltje, Lennart; Wheeler, James R.; Williams, Mike; Wolf, Jeffery C.; Yamazaki, Kunihiko

    2017-01-01

    A SETAC Pellston Workshop® “Environmental Hazard and Risk Assessment Approaches for Endocrine-Active Substances (EHRA)” was held in February 2016 in Pensacola, Florida, USA. The primary objective of the workshop was to provide advice, based on current scientific understanding, to regulators and policy makers; the aim being to make considered, informed decisions on whether to select an ecotoxicological hazard- or a risk-based approach for regulating a given endocrine-disrupting substance (EDS) under review. The workshop additionally considered recent developments in the identification of EDS. Case studies were undertaken on 6 endocrine-active substances (EAS—not necessarily proven EDS, but substances known to interact directly with the endocrine system) that are representative of a range of perturbations of the endocrine system and considered to be data rich in relevant information at multiple biological levels of organization for 1 or more ecologically relevant taxa. The substances selected were 17α-ethinylestradiol, perchlorate, propiconazole, 17β-trenbolone, tributyltin, and vinclozolin. The 6 case studies were not comprehensive safety evaluations but provided foundations for clarifying key issues and procedures that should be considered when assessing the ecotoxicological hazards and risks of EAS and EDS. The workshop also highlighted areas of scientific uncertainty, and made specific recommendations for research and methods-development to resolve some of the identified issues. The present paper provides broad guidance for scientists in regulatory authorities, industry, and academia on issues likely to arise during the ecotoxicological hazard and risk assessment of EAS and EDS. The primary conclusion of this paper, and of the SETAC Pellston Workshop on which it is based, is that if data on environmental exposure, effects on sensitive species and life-stages, delayed effects, and effects at low concentrations are robust, initiating environmental risk

  5. Switched impulsive control of the endocrine disruptor diethylstilbestrol singular model

    NASA Astrophysics Data System (ADS)

    Zamani, Iman; Shafiee, Masoud; Ibeas, Asier; de la Sen, M.

    2014-12-01

    In this work, a switched and impulsive controller is designed to control the Endocrine Disruptor Diethylstilbestrol mechanism which is usually modeled as a singular system. Then the exponential stabilization property of the proposed switched and impulsive singular model is discussed under matrix inequalities. A design algorithm is given and applied for the physiological process of endocrine disruptor diethylstilbestrol model to illustrate the effectiveness of the results.

  6. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    PubMed

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  7. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    PubMed

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs.

    PubMed Central

    Brouwer, A; Longnecker, M P; Birnbaum, L S; Cogliano, J; Kostyniak, P; Moore, J; Schantz, S; Winneke, G

    1999-01-01

    This article addresses issues related to the characterization of endocrine-related health effects resulting from low-level exposures to polychlorinated biphenyls (PCBs). It is not intended to be a comprehensive review of the literature but reflects workshop discussions. "The Characterizing the Effects of Endocrine Disruptors on Human Health at Environmental Exposure Levels," workshop provided a forum to discuss the methods and data needed to improve risk assessments of endocrine disruptors. This article contains an overview of endocrine-related (estrogen and thyroid system) interactions and other low-dose effects of PCBs. The data set on endocrine effects includes results obtained from mechanistic methods/ and models (receptor based, metabolism based, and transport protein based), as well as from (italic)in vivo(/italic) models, including studies with experimental animals and wildlife species. Other low-dose effects induced by PCBs, such as neurodevelopmental and reproductive effects and endocrine-sensitive tumors, have been evaluated with respect to a possible causative linkage with PCB-induced alterations in endocrine systems. In addition, studies of low-dose exposure and effects in human populations are presented and critically evaluated. A list of conclusions and recommendations is included. PMID:10421775

  9. Endocrine Disruptor Screening Program Reports to Congress

    EPA Pesticide Factsheets

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  10. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  11. Clinical review: kinase inhibitors: adverse effects related to the endocrine system.

    PubMed

    Lodish, Maya B

    2013-04-01

    The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.

  12. Environmental epigenetics: a role in endocrine disease?

    PubMed

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  13. EPIGENETIC TRANSGENERATIONAL ACTIONS OF ENDOCRINE DISRUPTORS

    PubMed Central

    Skinner, Michael K.; Manikkam, Mohan; Guerrero-Bosagna, Carlos

    2010-01-01

    Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes. PMID:21055462

  14. Space research on organs and tissues

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Morey-Holton, Emily

    1993-01-01

    Studies in space on various physiological systems have and will continue to provide valuable information on how they adapt to reduced gravitational conditions, and how living in a 1 g (gravity) environment has guided their development. Muscle and bone are the most notable tissues that respond to unweighting caused by lack of gravity. The function of specific muscles and bones relates directly to mechanical loading, so that removal of 'normal forces' in space, or in bedridden patients, causes dramatic loss of tissue mass. The cardiovascular system is also markedly affected by reduced gravity. Adaptation includes decreased blood flow to the lower extremities, thus decreasing the heart output requirement. Return to 1 g is associated with a period of reconditioning due to the deconditioning that occurs in space. Changes in the cardiovascular system are also related to responses of the kidney and certain endocrine (hormone-producing) organs. Changes in respiratory function may also occur, suggesting an effect on the lungs, though this adaptation is poorly understood. The neurovestibular system, including the brain and organs of the inner ear, must adapt to the disorientation caused by lack of gravity. Preliminary findings have been reported for liver. Additionally, endocrine organs responsible for release of hormones such as insulin, growth hormone, glucocorticoids, and thyroid hormone may respond to spaceflight.

  15. Conserved Genetic Pathways Controlling the Development of the Diffuse Endocrine System in Vertebrates and Drosophila

    PubMed Central

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina

    2014-01-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. PMID:20005229

  16. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2008-05-01

    Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.

  17. ESAM: Endocrine inspired Sensor Activation Mechanism for multi-target tracking in WSNs

    NASA Astrophysics Data System (ADS)

    Adil Mahdi, Omar; Wahab, Ainuddin Wahid Abdul; Idris, Mohd Yamani Idna; Znaid, Ammar Abu; Khan, Suleman; Al-Mayouf, Yusor Rafid Bahar

    2016-10-01

    Target tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocrine system of the human body. Sensor nodes in our network are secreting different hormones according to certain rules. The hormone level enables the nodes to regulate an efficient sleep and wake up cycle of nodes to reduce the energy consumption. It is evident from the simulation results that the proposed ESAM in autonomous sensor network exhibits a stable performance without the need of commands from a central controller. Moreover, the proposed ESAM generates more efficient and persistent results as compared to other algorithms for tracking an invading object.

  18. Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction

    PubMed Central

    Guerrero-Bosagna, Carlos M.; Skinner, Michael K.

    2013-01-01

    Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype. PMID:19711250

  19. Social Interactions and Familial Relationships Preservice Science Teachers Describe during Interviews about Their Drawings of the Endocrine and Gastrointestinal Systems

    ERIC Educational Resources Information Center

    Patrick, Patricia

    2014-01-01

    This study examined preservice science teachers' understandings of the structure and function of the human gastrointestinal and endocrine systems through drawings and interviews. Moreover, the preservice science teachers described where they thought they learned about the systems. The 142 preservice teachers were asked to draw the human…

  20. Endocrine Disrupting Contaminants—Beyond the Dogma

    PubMed Central

    Guillette, Louis J.

    2006-01-01

    Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, antiandrogenic, and antithyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. For example, the DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] metabolite, p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] is known to disrupt prostaglandin synthesis in the uterus of birds, providing part of the explanation for DDT-induced egg shell thinning. Few studies have examined prostaglandin synthesis as a target for endocrine disruption, yet these hormones are active in reproduction, immune responses, and cardiovascular physiology. Future studies must broaden the basic science approach to endocrine disruption, thereby expanding the mechanisms and endocrine end points examined. This goal should be accomplished even if the primary influence and funding continue to emphasize a narrower approach based on regulatory needs. Without this broader approach, research into endocrine disruption will become dominated by a narrow dogma, focusing on a few end points and mechanisms. PMID:16818240

  1. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the

  2. An epistemological inquiry into the endocrine disruptor thesis.

    PubMed

    Krimsky, S

    2001-12-01

    For about a decade the term endocrine disruptor has become synonymous with a new research initiative that has been investigating the effects of hormonally active xenobiotics on biological systems. The scientific thesis behind the new research initiative is discussed and it is argued that there is a need for more emphasis on theory development and conceptual clarification that will give coherence to a field experiencing a rapid growth of empirical studies. Reflections on scientific methodology in this field will also help clarify whether endocrine disruptors symbolize a new etiology of chemically induced disease or represent variations of traditional chemical toxicology.

  3. [Calciotropic actions of parathyroid hormone and vitamin D-endocrine system].

    PubMed

    Avila, Euclides; Barrera, David; Díaz, Lorenza

    2007-01-01

    Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25-(OH)zD] participate in systemic regulation of calcium homeostasis through endocrine effects mediated via the specific receptors PTHR1 and VDR, expressed in bone, kidney, intestine and parathyroid glands. In bone, both hormones PTH and 1,25-(OH)2D promote calcium release into the circulation; however, they also have anabolic effects in this tissue. In kidney, PTH controls 1,25-(OH)2D synthesis, and together both hormones stimulate calcium reabsorption. The most important calciotropic action of 1,25-(OH)2D is stimulation of intestinal calcium absorption. In the parathyroid glands, 1,25-(OH)2D regulates PTH synthesis through a negative feedback mechanism, while modulating the gland growth. Finally, a general overview of the maternal adaptations regarding calcium homeostasis during pregnancy and lactation is presented.

  4. Conserved genetic pathways controlling the development of the diffuse endocrine system in vertebrates and Drosophila.

    PubMed

    Hartenstein, Volker; Takashima, Shigeo; Adams, Katrina L

    2010-05-01

    The midgut epithelium is formed by absorptive enterocytes, secretory cells and endocrine cells. Each of these lineages is derived from the pluripotent progenitors that constitute the embryonic endoderm; the mature midgut retains pools of self-renewing stem cells that continue to produce all lineages. Recent findings in vertebrates and Drosophila shed light on the genetic mechanism that specifies the fate of the different lineages. A pivotal role is played by the Notch signaling pathway that, in a manner that appears to be very similar to the way in which Notch signaling selects neural progenitors within the neurectoderm, distinguishes the fate of secretory/endocrine cells and enterocytes. Proneural genes encoding bHLH transcription factors are expressed and required in prospective endocrine cells; activation of the Notch pathways restricts the number of these cells and promotes enterocyte development. In this review we compare the development of the intestinal endocrine cells in vertebrates and insects and summarize recent findings dealing with genetic pathways controlling this cell type. Copyright 2009. Published by Elsevier Inc.

  5. Aging of the endocrine system and its potential impact on sarcopenia.

    PubMed

    Vitale, Giovanni; Cesari, Matteo; Mari, Daniela

    2016-11-01

    Sarcopenia, occurring as a primary consequence of aging, is a progressive generalized decline of skeletal muscle mass, strength and function. The pathophysiology of sarcopenia is complex and multifactorial. One major cause of muscle mass and strength loss with aging appears to be the alteration in hormonal networks involved in the inflammatory processes, muscle regeneration and protein synthesis. This review describes the recent findings concerning the role of the aging on the endocrine system in the development of sarcopenia. We also report the benefits and safety of hormone replacement therapy in elderly subjects and discuss future perspectives in the therapy and prevention of skeletal muscle aging. Copyright © 2016 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  6. [Hygienic evaluation of immune and endocrine systems and modifications of their relationship in reproductive-age women working under exposure to chemical factors in activated carbon emissions].

    PubMed

    Lanin, D V; Zaĭtseva, N V; Dolgikh, O V; Zemlianova, M A; Kir'ianov, D A

    2013-01-01

    The article presents results of the evaluation the changes in the relationships between immune and endocrine systems in reproductive-age women, working under exposure to chemical factors from activated carbon production. A significant increase of some chemical elements and compounds was found in blood that was associated with changes in the endocrine and immune status, as well as the presence of features in correlation parameters of these systems in reproductive-age women, working under exposure to chemical factors.

  7. Endocrine Dysregulation in Anorexia Nervosa Update

    PubMed Central

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  8. Cosmetics as endocrine disruptors: are they a health risk?

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Hens, Luc; Sasco, Annie J

    2015-12-01

    Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility".

  9. Immunohistochemical study on gastrointestinal endocrine cells of four reptiles

    PubMed Central

    Huang, Xu-Gen; Wu, Xiao-Bing

    2005-01-01

    AIM: To clarify the types, regional distributions and distribution densities as well as morphological features of gastrointestinal (GI) endocrine cells in various parts of the gastrointestinal track (GIT) of four reptiles, Gekko japonicus, Eumeces chinensis, Sphenomorphus indicus and Eumeces elegans. METHODS: Paraffin-embedded sections (5 μm) of seven parts (cardia, fundus, pylorus, duodenum, jejunum, ileum, rectum) of GIT dissected from the four reptiles were prepared. GI endocrine cells were revealed by using immunohistochemical techniques of streptavidin-peroxidase (S-P) method. Seven types of antisera against 5-hydroxy-tryptamine (5-HT), somatostatin (SS), gastrin (GAS), glucagon (GLU), substance P (SP), insulin and pancreatic polypeptide were identified and then GI endocrine cells were photomicrographed and counted. RESULTS: The GI endocrine system of four reptiles was a complex structure containing many endocrine cell types similar in morphology to those found in higher vertebrates. Five types of GI endocrine cells, namely 5-HT, SS, GAS, SP and GLU immunoreactive (IR) cells were identified in the GIT of G. japonicus, E. chinensis and S. indicus; while in the GIT of E. elegans only the former three types of endocrine cells were observed. No PP- and INS- IR cells were found in all four reptiles. 5-HT-IR cells, which were most commonly found in the pylorus or duodenum, distributed throughout the whole GIT of four reptiles. However, their distribution patterns varied from each other. SS-IR cells, which were mainly found in the stomach especially in the pylorus and/or fundus, were demonstrated in the whole GIT of E. chinensis, only showed restricted distribution in the other three species. GAS-IR cells, with a much restricted distribution, were mainly demonstrated in the pylorus and/or the proximal small intestine of four reptiles. GLU-IR cells exhibited a limited and species-dependent variant distribution in the GIT of four reptiles. SP-IR cells were found

  10. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  11. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    USGS Publications Warehouse

    Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.

    2017-01-01

    In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid

  12. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    PubMed

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  13. Defining pancreatic endocrine precursors and their descendants.

    PubMed

    White, Peter; May, Catherine Lee; Lamounier, Rodrigo N; Brestelli, John E; Kaestner, Klaus H

    2008-03-01

    The global incidence of diabetes continues to increase. Cell replacement therapy and islet transplantation offer hope, especially for severely affected patients. Efforts to differentiate insulin-producing beta-cells from progenitor or stem cells require knowledge of the transcriptional programs that regulate the development of the endocrine pancreas. Differentiation toward the endocrine lineage is dependent on the transcription factor Neurogenin 3 (Neurog3, Ngn3). We utilize a Neurog3-enhanced green fluorescent protein knock-in mouse model to isolate endocrine progenitor cells from embryonic pancreata (embryonic day [E]13.5 through E17.5). Using advanced genomic approaches, we generate a comprehensive gene expression profile of these progenitors and their immediate descendants. A total of 1,029 genes were identified as being temporally regulated in the endocrine lineage during fetal development, 237 of which are transcriptional regulators. Through pathway analysis, we have modeled regulatory networks involving these proteins that highlight the complex transcriptional hierarchy governing endocrine differentiation. We have been able to accurately capture the gene expression profile of the pancreatic endocrine progenitors and their descendants. The list of temporally regulated genes identified in fetal endocrine precursors and their immediate descendants provides a novel and important resource for developmental biologists and diabetes researchers alike.

  14. Endocrine Disruptors

    MedlinePlus

    ... cans, detergents, flame retardants, food, toys, cosmetics, and pesticides. NIEHS supports studies to determine whether exposure to endocrine disruptors may result in human health effects including lowered fertility and an increased incidence ...

  15. Multiple endocrine neoplasia type 1

    PubMed Central

    Marini, Francesca; Falchetti, Alberto; Monte, Francesca Del; Sala, Silvia Carbonell; Gozzini, Alessia; Luzi, Ettore; Brandi, Maria Luisa

    2006-01-01

    Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant hereditary cancer syndrome presented mostly by tumours of the parathyroids, endocrine pancreas and anterior pituitary, and characterised by a very high penetrance and an equal sex distribution. It occurs in approximately one in 30,000 individuals. Two different forms, sporadic and familial, have been described. The sporadic form presents with two of the three principal MEN1-related endocrine tumours (parathyroid adenomas, entero-pancreatic tumours and pituitary tumours) within a single patient, while the familial form consists of a MEN1 case with at least one first degree relative showing one of the endocrine characterising tumours. Other endocrine and non-endocrine lesions, such as adrenal cortical tumours, carcinoids of the bronchi, gastrointestinal tract and thymus, lipomas, angiofibromas, collagenomas have been described. The responsible gene, MEN1, maps on chromosome 11q13 and encodes a 610 aminoacid nuclear protein, menin, with no sequence homology to other known human proteins. MEN1 syndrome is caused by inactivating mutations of the MEN1 tumour suppressor gene. This gene is probably involved in the regulation of several cell functions such as DNA replication and repair and transcriptional machinery. The combination of clinical and genetic investigations, together with the improving of molecular genetics knowledge of the syndrome, helps in the clinical management of patients. Treatment consists of surgery and/or drug therapy, often in association with radiotherapy or chemotherapy. Currently, DNA testing allows the early identification of germline mutations in asymptomatic gene carriers, to whom routine surveillance (regular biochemical and/or radiological screenings to detect the development of MEN1-associated tumours and lesions) is recommended. PMID:17014705

  16. Endocrine causes of calcium disorders.

    PubMed

    Greco, Deborah S

    2012-11-01

    Endocrine diseases that may cause hypercalcemia and hypocalcemia include hyperparathyroidism, hypoparathyroidism, thyroid disorders, hyperadrenocorticism, hypoadrenocorticism, and less commonly pheochromocytoma and multiple endocrine neoplasias. The differential diagnosis of hypercalcemia may include malignancy (lymphoma, anal sac carcinoma, and squamous cell carcinoma), hyperparathyroidism, vitamin D intoxication, chronic renal disease, hypoadrenocorticism, granulomatous disorders, osteolysis, or spurious causes. Hypocalcemia may be caused by puerperal tetany, pancreatitis, intestinal malabsorption, ethlyene glycol intoxication, acute renal failure, hypopararthyroidism, hypovitaminosis D, hypomagnesemia, and low albumin. This article focuses on the endocrine causes of calcium imbalance and provides diagnostic and therapeutic guidelines for identifying the cause of hypercalcemia and hypocalcemia in veterinary patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS

    PubMed Central

    Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503

  18. Central control of glucose homeostasis: the brain--endocrine pancreas axis.

    PubMed

    Thorens, B

    2010-10-01

    A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  19. International spinal cord injury endocrine and metabolic extended data set.

    PubMed

    Bauman, W A; Wecht, J M; Biering-Sørensen, F

    2017-05-01

    The objective of this study was to develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Extended Data Set (ISCIEMEDS) within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of endocrine and metabolic findings in the SCI population. This study was conducted in an international setting. The ISCIEMEDS was developed by a working group. The initial ISCIEMEDS was revised based on suggestions from members of the International SCI Data Sets Committee, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations, societies and individual reviewers. The data set was posted for two months on ISCoS and ASIA websites for comments. Variable names were standardized, and a suggested database structure for the ISCIEMEDS was provided by the Common Data Elements (CDEs) project at the National Institute on Neurological Disorders and Stroke (NINDS) of the US National Institute of Health (NIH), and are available at https://commondataelements.ninds.nih.gov/SCI.aspx#tab=Data_Standards. The final ISCIEMEDS contains questions on the endocrine and metabolic conditions related to SCI. Because the information may be collected at any time, the date of data collection is important to determine the time after SCI. ISCIEMEDS includes information on carbohydrate metabolism (6 variables), calcium and bone metabolism (12 variables), thyroid function (9 variables), adrenal function (2 variables), gonadal function (7 variables), pituitary function (6 variables), sympathetic nervous system function (1 variable) and renin-aldosterone axis function (2 variables). The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk/international-sci-data-sets).

  20. Endocrine Diseases

    MedlinePlus

    ... low, you may have a hormone disorder. Hormone diseases also occur if your body does not respond ... In the United States, the most common endocrine disease is diabetes. There are many others. They are ...

  1. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union.

    PubMed

    Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R Thomas

    2016-10-01

    Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose-response function) is combined with exposure levels. There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant

  2. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union

    PubMed Central

    Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R. Thomas

    2016-01-01

    Background: Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. Objectives: We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Discussion: Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose–response function) is combined with exposure levels. Conclusions: There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Citation: Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G

  3. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development

    PubMed Central

    2012-01-01

    Backgrounds Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. Methods Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. Results At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. Conclusions In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors. PMID:22546201

  4. Identification of endocrine disrupting chemicals acting on human aromatase.

    PubMed

    Baravalle, Roberta; Ciaramella, Alberto; Baj, Francesca; Di Nardo, Giovanna; Gilardi, Gianfranco

    2018-01-01

    Human aromatase is the cytochrome P450 catalysing the conversion of androgens into estrogens playing a key role in the endocrine system. Due to this role, it is likely to be a target of the so-called endocrine disrupting chemicals, a series of compounds able to interfere with the hormone system with toxic effects. If on one side the toxicity of some compounds such as bisphenol A is well known, on the other side the toxic concentrations of such compounds as well as the effect of the many other molecules that are in contact with us in everyday life still need a deep investigation. The availability of biological assays able to detect the interaction of chemicals with key molecular targets of the endocrine system represents a possible solution to identify potential endocrine disrupting chemicals. Here the so-called alkali assay previously developed in our laboratory is applied to test the effect of different compounds on the activity of human aromatase. The assay is based on the detection of the alkali product that forms upon strong alkali treatment of the NADP + released upon enzyme turnover. Here it is applied on human aromatase and validated using anastrozole and sildenafil as known aromatase inhibitors. Out of the small library of compounds tested, resveratrol and ketoconazole resulted to inhibit aromatase activity, while bisphenol A and nicotine were found to exert an inhibitory effect at relatively high concentrations (100μM), and other molecules such as lindane and four plasticizers did not show any significant effect. These data are confirmed by quantification of the product estrone in the same reaction mixtures through ELISA. Overall, the results show that the alkali assay is suitable to screen for molecules that interfere with aromatase activity. As a consequence it can also be applied to other molecular targets of EDCs that use NAD(P)H for catalysis in a high throughput format for the fast screening of many different compounds as endocrine disrupting

  5. The relative risk and its distribution of endocrine disrupting chemicals, pharmaceuticals and personal care products to freshwater organisms in the Bohai Rim, China.

    PubMed

    Zhang, Meng; Shi, Yajuan; Lu, Yonglong; Johnson, Andrew C; Sarvajayakesavalu, Suriyanarayanan; Liu, Zhaoyang; Su, Chao; Zhang, Yueqing; Juergens, Monika D; Jin, Xiaowei

    2017-07-15

    In this study, the risks to aquatic organisms posed by 12 commonly detected pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) that are extensively used in Bohai coastal region of China were examined. These were linear alkylbenzene sulfonate (LAS), nonylphenol (NP), diethylhexyl phthalate (DEHP), norfloxacin (NOR), sulfamethoxazole (SMX), erythromycin (ERY), bisphenol A (BPA), ofloxacin (OFL), carbamazepine (CBZ), naproxen (NPX), atenolol (ATL) and metoprolol (MET). Their relative risk was ranked based on the proximity between the medians of the reported effect concentrations and measured river or lake water concentrations. The surfactants (LAS) and endocrine disrupting chemicals NP (a breakdown product of the surfactant nonylphenol polyethoxylate) and DEHP (a plasticizer) were identified as posing the greatest risk from this range of chemicals. LAS had a hundred-fold higher risk than any of the pharmaceuticals. The highest risk ranked pharmaceuticals were all antibiotics. Zinc (Zn) and mercury (Hg) were added to the comparison as representative heavy metals. Zn posed a risk higher than all the organics. The risk posed by Hg was less than the surfactants but greater than the selected pharmaceuticals. Whereas LAS and DEHP could cause harmful effects to all the wildlife groups, NP and BPA posed the greatest risk to fish. Antibiotics showed the highest risk to algae. Spatial and temporal distributions of PPCPs and EDCs were conducted for risk identification, source analysis and seasonal change exploration. Municipal sewage effluent linked to urban areas was considered to be the major source of pharmaceuticals. With regard to seasonal influence the risk posed by LAS to the aquatic organisms was significantly affected by wet and dry seasonal change. The dilution effects were the common feature of LAS and ERY risks. The difference in LAS and ERY risk patterns along the rivers was mainly affected by the elimination process

  6. Endocrine-immune interactions in human endometrium.

    PubMed

    Kayisli, U A; Guzeloglu-Kayisli, O; Arici, A

    2004-12-01

    The immune system is a complex entity designed to eliminate foreign intruding antigens and is influenced by and, in turn, influences the function of the reproductive system. Despite the widespread associations between immunology and reproductive medicine, the study of system interactions remains in its infancy. Many diverse facts are accumulating, and pieces of the puzzle are becoming available to provide a clearer picture. In this review article, we focus on the interactions between endocrine and immune systems in the human endometrium. Understanding the molecular pathways in endocrine-immune interactions in the human endometrium is crucial to understand events such as menstrual bleeding, tissue repair and regeneration, inflammation, angiogenesis, blastocyst implantation, and progression of pregnancy. These events require a balanced regulation of endometrial differentiation, proliferation, cell survival, leukocyte recruitment, apoptosis, and angiogenesis by sex steroids. In this review, we first outline the role of survival factors such as phosphoinositol 3-kinase/protein kinase B, PTEN, NFkappaB, and apoptotic molecules (Fas-FasL, Bcl-2). We then discuss their regulation by estrogen and progesterone in the endometrium. We present evidence for direct and/or indirect roles of steroid hormones on the expression of chemotactic cytokines (interleukin-8 and monocyte chemotactic protein-1) and on the survival versus apoptosis of resident endometrial cells (stromal, epithelial, and endothelial cells) and nonresident cells (leukocytes).

  7. The international spinal cord injury endocrine and metabolic function basic data set.

    PubMed

    Bauman, W A; Biering-Sørensen, F; Krassioukov, A

    2011-10-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  8. Endocrine and Metabolic Aspects of Tuberculosis

    PubMed Central

    Vinnard, Christopher; Blumberg, Emily A.

    2017-01-01

    Endocrine and metabolic derangements are infrequent in patients with tuberculosis, but they are important when they occur. The basis for these abnormalities is complex. While Mycobacterium tuberculosis has been described to infect virtually every endocrine gland, the incidence of gland involvement is low, especially in the era of effective antituberculosis therapy. Furthermore, endocrine and metabolic abnormalities do not always reflect direct infection of the gland but may result from physiological response or as a consequence of therapy. Metabolic disease may also predispose patients to the development of active tuberculosis, particularly in the case of diabetes mellitus. While hormonal therapy may be necessary in some instances, frequently these endocrine complications do not require specific interventions other than antituberculous therapy itself. With the exception of diabetes mellitus, which will be covered elsewhere, this chapter reviews the endocrinologic and metabolic issues related to tuberculosis. PMID:28233510

  9. DEVELOPMENT OF A TEST SYSTEM TO EVALUATE ENDOCRINE EFFECTS IN BIRDS

    EPA Science Inventory

    An overview of the process and status of the development of one and two generation Japanese quail reproduction studies for regulatory use will be presented from the perspective of members of the subgroup of the OECD Expert Group on Assessment of Endocrine Disrupting Effects in Bi...

  10. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  11. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment

    PubMed Central

    Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.

    2015-01-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811

  12. Review of Prader-Willi syndrome: the endocrine approach

    PubMed Central

    Heksch, Ryan; Kamboj, Manmohan; Anglin, Kathryn

    2017-01-01

    Prader-Willi syndrome (PWS) is a complex genetic disorder with implications on the endocrine and neurologic systems, metabolism, and behavior. Early in life, PWS is characterized by hypotonia and failure to thrive, followed by obesity and hyperphagia. Patients with PWS develop hypothalamic dysfunction which may lead growth hormone deficiency (GHD), hypogonadism, hypothyroidism, adrenal insufficiency, and poor bone mineral density (BMD). In addition to hypothalamic dysfunction, individuals with PWS have increased risk for obesity which may be complicated by metabolic syndrome and type 2 diabetes mellitus (T2DM). In this paper, we will review the current literature pertaining to the endocrine concerns of PWS and current recommendations for screening and management of these conditions. PMID:29184809

  13. Sex steroids effects in normal endocrine pancreatic function and diabetes.

    PubMed

    Morimoto, Sumiko; Jiménez-Trejo, Francisco; Cerbón, Marco

    2011-01-01

    Traditionally the role of sexual steroid hormones was focused primarily on reproductive organs: the breast, female reproductive tract (uterus, mammary gland, and ovary), and male reproductive tract (testes, epididymis and prostate), however our current understanding of tissue-specific effects of sex steroids has elucidated new aspects in its functionality. Recent data have shown that many other tissues are targets of those hormones in addition to classical reproductive organs. The pancreas (which performs both endocrine and exocrine functions), has proven to be an extragonadal target of sexual steroid hormone action. The endocrine pancreas has a pivotal role on carbohydrate homeostasis and deterioration in function produces diabetes. Diabetes is a metabolic disorder that has high prevalence worldwide, particularly in developing countries. It has been shown that steroid hormones have an important role in susceptibility and development of diabetes in animal models, in humans its role is less clear, however the most evident effect is on the perimenopausal women, in this stage the decrease in gonadal steroids produces an increase on susceptibility to develop diabetes mellitus; in men, hypoandrogenism is associated with an increased prevalence of insulin resistance. This review focused on the effects of sexual steroids on pancreatic function and diabetes.

  14. [Chronic heart failure and cachexia: role of endocrine system].

    PubMed

    Dei Cas, A; Muoio, A; Zavaroni, I

    2011-12-01

    Chronic heart failure (CHF) is a major health problem that carries a devastating prognosis. The prognosis worsens considerably once cardiac cachexia has been diagnosed. Neurohormonal, metabolic, hemodynamic and immunological alterations are involved in the initiation and progression of cardiac cachexia. Cachexia is characterized by a hypothalamic inappropriate response to the mechanisms controlling energy homeostasis. Levels of the anorexigenic hormone leptin are decreased whereas the orexigenic gherlin hormone levels are normal or elevated. Nevertheless, energy intake is not increased as expected due to a persistent activation of the proopiomelanocortin (POMC) system (anorexigenic) paralleled by a decreased activity of the neuropeptide Y (NPY, orexigenic) neurons. Cachexia is also characterized by an imbalance in anabolic (impairment in the growth hormone/insulin-like growth factor-I axis, insulin resistance) and catabolic (increased levels of catecholamines, increased cortisol/dehydroepiandrosterone ratio and activation of proinflammatory cytokines such as tumor necrosis factor-alpha, interleuchin-6, interleuchin-1') at the basis of the wasting process. This review discusses the complex role of the endocrine system in modulating energy balance, appetite and metabolism in patients with chronic heart failure. A joint multidisciplinary effort of the cardiologists, immunologists and endocrinologists might be useful to identify the precise mechanisms involved in the neuroendocrine alteration and to develop therapeutic strategies able to improve the prognosis of CHF patients.

  15. Endocrine Disruptor Screening Program: Tier I Screening Battery

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system,' the Food Quality Protection Act and subsequent amendments to the Safe Drinking Water Act and Federal Food, Drug and Cosmetic A...

  16. Preliminary study of the role of gastrointestinal endocrine cells in the maintenance of villous structure following X-irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wyatt, M.G.; Hume, S.P.; Carr, K.E.

    The mechanism of gastrointestinal villous damage following ionizing irradiation is complex. Various compartments within the gastrointestinal tract have in turn been considered important for the maintenance of normal villous structure. To date, however, evidence for a single overriding regulator of epithelial well-being is lacking. In this study, the role of the gastro-intestinal (enteroendocrine) cells is explored and comparison made between endocrine cell number and villous structure. Experiments were organized using both control and irradiated groups of mice. Two time points (1 and 3 days) and three radiation doses (6, 10 and 18Gy) were employed. A simple method for endocrine cellmore » identification and subsequent quantification is described. Endocrine cell number was then compared with villous surface detail, as seen with a scanning electron microscope (SEM). Results indicated a decrease in the endocrine cell number at all three radiation doses. Whereas at low doses endocrine cell recovery occurred between 1 and 3 days, at medium and high doses further decline was noticed. A similar pattern was seen when considering villous surface structure. It is suggested that both scanning electron microscopy and endocrine cell number provide a more sensitive indicator of gastrointestinal radiation damage than do current crypt counting techniques. In addition, a link between endocrine cell number and villous structure is proposed.« less

  17. Multi-class of endocrine disrupting compounds in aquaculture ecosystems and health impacts in exposed biota.

    PubMed

    Ismail, Nur Afifah Hanun; Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-12-01

    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Psychosocial approach to endocrine disease.

    PubMed

    Sonino, Nicoletta; Tomba, Elena; Fava, Giovanni A

    2007-01-01

    In recent years, there has been growing interest in the psychosocial aspects of endocrine disease, such as the role of life stress in the pathogenesis of some conditions, their association with affective disorders, and the presence of residual symptoms after adequate treatment. In clinical endocrinology, exploration of psychosocial antecedents may elucidate the temporal relationships between life events and symptom onset, as it has been shown to be relevant for pituitary (Cushing's disease, hyperprolactinemia) or thyroid (Graves' disease) conditions, as well as the role of allostatic load, linked to chronic stress, in uncovering a person's vulnerability. After endocrine abnormalities are established, they are frequently associated with a wide range of psychological symptoms: at times, such symptoms reach the level of psychiatric illness (mainly mood and anxiety disorders); at other times, however, they can only be identified by the subclinical forms of assessment provided by the Diagnostic Criteria for Psychosomatic Research (DCPR). Indeed, in a population study, the majority of patients suffered from at least one of the three DCPR syndromes considered: irritable mood, demoralization, persistent somatization. In particular, irritable mood was found to occur in 46% of 146 patients successfully treated for endocrine conditions, a rate similar to that found in cardiology and higher than in oncology and gastroenterology. Long-standing endocrine disorders may imply a degree of irreversibility of the pathological process and induce highly individualized affective responses. In patients who showed persistence or even worsening of psychological distress upon proper endocrine treatment, the value of appropriate psychiatric interventions was underscored. As it happened in other fields of clinical medicine, a conceptual shift from a merely biomedical care to a psychosomatic consideration of the person and his/her quality of life appears to be necessary for improving

  19. Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    PubMed Central

    Albergotti, Lori C.; Hamlin, Heather J.; McCoy, Michael W.; Guillette,, Louis J.

    2009-01-01

    Background During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. Methodology/Principal Findings We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68 = 89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. Conclusions/Significance Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental

  20. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms.

    PubMed

    Wang, Jiaying; Wang, Jingpeng; Liu, Jinsong; Li, Jianzhi; Zhou, Lihong; Zhang, Huanxin; Sun, Jianteng; Zhuang, Shulin

    2018-05-09

    The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Autoimmunity in endocrine diseases.

    PubMed

    Rose, N R; Burek, C L

    1982-01-01

    The realization that autoimmunity underlies many endocrine disorders of previously unknown etiology has greatly broadened our understanding of the pathogenesis of these diseases. It has provided new explanations for their heredity and their association with particular HLA haplotypes. It has also offered new tools for diagnosing these diseases as well as monitoring their course or predicting their outcome. Finally, establishing the autoimmune basis of these diseases offers new potential for their treatment. The next quarter century of research into immunologic aspects of endocrine diseases promises to be as fruitful as the last.

  2. [Vitamin D and endocrine diseases].

    PubMed

    Schuch, Natielen Jacques; Garcia, Vivian Cristina; Martini, Ligia Araújo

    2009-07-01

    Vitamin D insufficiency/deficiency has been worldwide reported in all age groups in recent years. It has been considered a Public Health matter since decreased levels of vitamin D has been related to several chronic diseases, as type 2 diabetes mellitus (T2DM), obesity and hypertension. Glucose intolerance and insulin secretion has been observed during vitamin D deficiency, both in animals and humans resulting in T2DM. The supposed mechanism underlying these findings is presence of vitamin D receptor in several tissues and cells, including pancreatic beta-cells, adipocyte and muscle cells. In obese individuals, the impaired vitamin D endocrine system, characterized by high levels of PTH and 1,25(OH)(2)D(3) could induce a negative feedback for the hepatic synthesis of 25(OH)D and also contribute to a higher intracellular calcium, which in turn secrete less insulin and deteriorate insulin sensitivity. In hypertension, vitamin D could act on renin-angiotensin system and also in vascular function. Administration of 1,25(OH)(2)D(3) could decreases renin gene expression and inhibit vascular smooth muscle cell proliferation. However, prospective and intervention human studies that clearly demonstrates the benefits of vitamin D status adequacy in the prevention and treatment of endocrine metabolic diseases are lacking. Further research still necessary to assure the maximum benefit of vitamin D in such situations.

  3. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    PubMed

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  4. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders

    PubMed Central

    Ariyasu, Daisuke; Yoshida, Hiderou; Hasegawa, Yukihiro

    2017-01-01

    The endoplasmic reticulum (ER) is the organelle where secretory and membrane proteins are synthesized and folded. Unfolded proteins that are retained within the ER can cause ER stress. Eukaryotic cells have a defense system called the “unfolded protein response” (UPR), which protects cells from ER stress. Cells undergo apoptosis when ER stress exceeds the capacity of the UPR, which has been revealed to cause human diseases. Although neurodegenerative diseases are well-known ER stress-related diseases, it has been discovered that endocrine diseases are also related to ER stress. In this review, we focus on ER stress-related human endocrine disorders. In addition to diabetes mellitus, which is well characterized, several relatively rare genetic disorders such as familial neurohypophyseal diabetes insipidus (FNDI), Wolfram syndrome, and isolated growth hormone deficiency type II (IGHD2) are discussed in this article. PMID:28208663

  5. Epigenetic impacts of endocrine disruptors in the brain☆

    PubMed Central

    Walker, Deena M.; Gore, Andrea C.

    2017-01-01

    The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner. PMID:27663243

  6. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  7. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  8. RESPONSE OF JAPANESE MEDAKA TO 17B-ESTRADIOL: A TIME COURSE OF ENDOCRINE-MEDIATED EFFECTS

    EPA Science Inventory

    Estrogenic compounds have been measured in the aquatic environment in concentrations subsequently found to affect reproduction and development in fish. Further investigations have described several endocrine-mediated events that indicate exposure of organisms to estrogens and/or ...

  9. European Union's strategy on endocrine disrupting chemicals and the current position of Slovenia.

    PubMed

    Perharič, Lucija; Fatur, Tanja; Drofenik, Jernej

    2016-06-01

    In view of the European Union regulations 1107/2009 and 528/2012, which say that basic substances in plant protection and biocidal products marketed in the European Union (EU) should not have an inherent capacity to cause endocrine disruption, an initiative was started to define scientific criteria for the identification of endocrine disruptors (EDs). The objectives of the EU strategy on EDs are to protect human health and the environment, to assure the functioning of the market, and to provide clear and coherent criteria for the identification of EDs that could have broad application in the EU legislation. Policy issues were to be addressed by the Ad-hoc group of Commission Services, EU Agencies and Member States established in 2010, whereas the scientific issues were to be addressed by the Endocrine Disruptors Expert Advisory Group (ED EAG), established in 2011. The ED EAG adopted the 2002 World Health Organization (WHO) definition of endocrine disruptor and agreed that for its identification it is necessary to produce convincing evidence of a biologically plausible causal link between an adverse effect and endocrine disrupting mode of action. In 2014, the European Commission proposed four ED identification criteria options and three regulatory options, which are now being assessed for socio-economic, environmental, and health impact. Slovenia supports the establishing of identification criteria and favours option 4, according to which ED identification should be based on the WHO definition with the addition of potency as an element of hazard characterisation. As for regulatory options, Slovenia favours the risk-based rather than hazard-based regulation.

  10. Hormones and endocrine disruptors in human seminal plasma.

    PubMed

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  11. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water.

    PubMed

    Benotti, Mark J; Trenholm, Rebecca A; Vanderford, Brett J; Holady, Janie C; Stanford, Benjamin D; Snyder, Shane A

    2009-02-01

    The drinking water for more than 28 million people was screened for a diverse group of pharmaceuticals, potential endocrine disrupting compounds (EDCs), and other unregulated organic contaminants. Source water, finished drinking water, and distribution system (tap) water from 19 U.S. water utilities was analyzed for 51 compounds between 2006 and 2007. The 11 most frequently detected compounds were atenolol, atrazine, carbamazepine, estrone, gemfibrozil, meprobamate, naproxen, phenytoin, sulfamethoxazole, TCEP, and trimethoprim. Median concentrations of these compounds were less than 10 ng/L, except for sulfamethoxazole in source water (12 ng/L), TCEP in source water (120 ng/L), and atrazine in source, finished, and distribution system water (32, 49, and 49 ng/L). Atrazine was detected in source waters far removed from agricultural application where wastewater was the only known source of organic contaminants. The occurrence of compounds in finished drinking water was controlled by the type of chemical oxidation (ozone or chlorine) used at each plant. At one drinking water treatment plant, summed monthly concentrations of the detected analytes in source and finished water are reported. Atenolol, atrazine, DEET, estrone, meprobamate, and trimethoprim can serve as indicator compounds representing potential contamination from other pharmaceuticals and EDCs and can gauge the efficacy of treatment processes.

  12. ANALYTICAL CHALLENGES OF ENVIRONMENTAL ENDOCRINE DISRUPTOR MONITORING

    EPA Science Inventory

    Reported increases in the incidence of endocrine-related conditions have led to speculation about environmental causes. Environmental scientists are focusing increased research effort into understanding the mechanisms by which endocrine disruptors affect human and ecological h...

  13. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    PubMed Central

    Reif, David M.; Martin, Matthew T.; Tan, Shirlee W.; Houck, Keith A.; Judson, Richard S.; Richard, Ann M.; Knudsen, Thomas B.; Dix, David J.; Kavlock, Robert J.

    2010-01-01

    Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks. PMID:20826373

  14. Influences of pre- and postnatal nutritional exposures on vascular/endocrine systems in animals.

    PubMed Central

    Hoet, J J; Ozanne, S; Reusens, B

    2000-01-01

    Human epidemiological and animal studies have revealed the long-term effects of malnutrition during gestation and early life on the health of the offspring. The aim of the current review is to survey the different means of achieving fetal malnutrition and its consequences, mainly in animals, and to identify key areas in which to direct future research. We address the impact of various models of a maternal protein-restricted diet and global maternal caloric restriction (either through the reduction of nutrient supply or through mechanic devices), the influence of maternal diabetes, and other maternal causes of fetal damage (maternal infections and toxic food components). More specifically, we enumerate data on how the different insults at different prenatal and early postnatal periods affect and program the development and the function of organs involved in diabetes, hypertension, and cardiovascular disease. Particular emphasis is given to the endocrine pancreas, but insulin-sensitive tissues, kidneys, and vasculature are also analyzed. Where available, the protective effects of maternal food supplementation for fetal organ development and function are discussed. Specific attention is paid to the amino acids profile, and the preventive role of taurine is discussed. Tentative indications about critical time windows for fetal development under different deleterious conditions are presented whenever possible. We also discuss future research and intervention. PMID:10852855

  15. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    PubMed Central

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  16. 2016 Guidelines for the management of thyroid storm from The Japan Thyroid Association and Japan Endocrine Society (First edition).

    PubMed

    Satoh, Tetsurou; Isozaki, Osamu; Suzuki, Atsushi; Wakino, Shu; Iburi, Tadao; Tsuboi, Kumiko; Kanamoto, Naotetsu; Otani, Hajime; Furukawa, Yasushi; Teramukai, Satoshi; Akamizu, Takashi

    2016-12-30

    Thyroid storm is an endocrine emergency which is characterized by multiple organ failure due to severe thyrotoxicosis, often associated with triggering illnesses. Early suspicion, prompt diagnosis and intensive treatment will improve survival in thyroid storm patients. Because of its rarity and high mortality, prospective intervention studies for the treatment of thyroid storm are difficult to carry out. We, the Japan Thyroid Association and Japan Endocrine Society taskforce committee, previously developed new diagnostic criteria and conducted nationwide surveys for thyroid storm in Japan. Detailed analyses of clinical data from 356 patients revealed that the mortality in Japan was still high (∼11%) and that multiple organ failure and acute heart failure were common causes of death. In addition, multimodal treatment with antithyroid drugs, inorganic iodide, corticosteroids and beta-adrenergic antagonists has been suggested to improve mortality of these patients. Based on the evidence obtained by nationwide surveys and additional literature searches, we herein established clinical guidelines for the management of thyroid storm. The present guideline includes 15 recommendations for the treatment of thyrotoxicosis and organ failure in the central nervous system, cardiovascular system, and hepato-gastrointestinal tract, admission criteria for the intensive care unit, and prognostic evaluation. We also proposed preventive approaches to thyroid storm, roles of definitive therapy, and future prospective trial plans for the treatment of thyroid storm. We hope that this guideline will be useful for many physicians all over the world as well as in Japan in the management of thyroid storm and the improvement of its outcome.

  17. Endocrine and metabolic changes in payload specialist (L-1)

    NASA Technical Reports Server (NTRS)

    Matsui, Nobuo

    1993-01-01

    The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.

  18. New insights into the endocrine disrupting effects of brominated flame retardants.

    PubMed

    Legler, Juliette

    2008-09-01

    The objective of this review is to provide an overview of recent studies demonstrating the endocrine disrupting (ED) effects of brominated flame retardants (BFRs), while highlighting interesting data presented at the recent international BFR workshop in Amsterdam in April, 2007. A review written in 2002 was used as a starting point and about 60 publications published since 2003 were reviewed. New insights into the in vivo effects of BFRs on thyroid hormone, estrogen and androgen pathways in both mammalian and non-mammalian models are provided, and novel (in vitro) findings on the mechanisms underlying ED effects are highlighted. Special attention is also given to reports on neurotoxicological effects at relatively low doses of BFRs, although an endocrine-related mechanism is disputable. Convincing evidence has been published showing that BFRs and importantly, BFR metabolites, have the potential to disrupt endocrine systems at multiple target sites. While some studies suggest a wide margin of safety between effect concentrations in rodent models and levels encountered in humans and the environment, other studies demonstrate that exposure to low doses relevant for humans and wildlife at critical time points in development can result in profound effects on both endocrine pathways and (neuro)development.

  19. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction.

    PubMed

    Vela-Soria, Fernando; Jiménez-Díaz, Inmaculada; Díaz, Caridad; Pérez, José; Iribarne-Durán, Luz María; Serrano-López, Laura; Arrebola, Juan Pedro; Fernández, Mariana Fátima; Olea, Nicolás

    2016-09-01

    Human populations are widely exposed to numerous so-called endocrine-disrupting chemicals, exogenous compounds able to interfere with the endocrine system. This exposure has been associated with several health disorders. New analytical procedures are needed for biomonitoring these xenobiotics in human matrices. A quick and inexpensive methodological procedure, based on sample treatment by dispersive liquid-liquid microextraction, is proposed for the determination of bisphenols, parabens and benzophenones in samples. LOQs ranged from 0.4 to 0.7 ng ml(-1) and RSDs from 4.3 to 14.8%. This methodology was satisfactorily applied in the simultaneous determination of a wide range of endocrine-disrupting chemicals in human milk samples and is suitable for application in biomonitoring studies.

  20. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  1. Mate choice, sexual selection, and endocrine-disrupting chemicals.

    PubMed

    Gore, Andrea C; Holley, Amanda M; Crews, David

    2018-05-01

    Humans have disproportionately affected the habitat and survival of species through environmental contamination. Important among these anthropogenic influences is the proliferation of organic chemicals, some of which perturb hormone systems, the latter referred to as endocrine-disrupting chemicals (EDCs). EDCs are widespread in the environment and affect all levels of reproduction, including development of reproductive organs, hormone release and regulation through the life cycle, the development of secondary sexual characteristics, and the maturation and maintenance of adult physiology and behavior. However, what is not well-known is how the confluence of EDC actions on the manifestation of morphological and behavioral sexual traits influences mate choice, a process that requires the reciprocal evaluation of and/or acceptance of a sexual partner. Moreover, the outcomes of EDC-induced perturbations are likely to influence sexual selection; yet this has rarely been directly tested. Here, we provide background on the development and manifestation of sexual traits, reproductive competence, and the neurobiology of sexual behavior, and evidence for their perturbation by EDCs. Selection acts on individuals, with the consequences manifest in populations, and we discuss the implications for EDC contamination of these processes, and the future of species. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pulp and paper mill effluent treatments have differential endocrine-disrupting effects on rainbow trout.

    PubMed

    Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas

    2009-01-01

    Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.

  3. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  4. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.

    PubMed

    Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina

    2013-01-01

    Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    PubMed

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  6. Attitude of medical students towards Early Clinical Exposure in learning endocrine physiology

    PubMed Central

    Sathishkumar, Solomon; Thomas, Nihal; Tharion, Elizabeth; Neelakantan, Nithya; Vyas, Rashmi

    2007-01-01

    Background Different teaching-learning methods have been used in teaching endocrine physiology for the medical students, so as to increase their interest and enhance their learning. This paper describes the pros and cons of the various approaches used to reinforce didactic instruction in endocrine physiology and goes on to describe the value of adding an Early Clinical Exposure program (ECE) to didactic instruction in endocrine physiology, as well as student reactions to it as an alternative approach. Discussion Various methods have been used to reinforce didactic instruction in endocrine physiology such as case-stimulated learning, problem-based learning, patient-centred learning and multiple-format sessions. We devised a teaching-learning intervention in endocrine physiology, which comprised of traditional didactic lectures, supplemented with an ECE program consisting of case based lectures and a hospital visit to see patients. A focus group discussion was conducted with the medical students and, based on the themes that emerged from it, a questionnaire was developed and administered to further enquire into the attitude of all the students towards ECE in learning endocrine physiology. The students in their feedback commented that ECE increased their interest for the subject and motivated them to read more. They also felt that ECE enhanced their understanding of endocrine physiology, enabled them to remember the subject better, contributed to their knowledge of the subject and also helped them to integrate their knowledge. Many students said that ECE increased their sensitivity toward patient problems and needs. They expressed a desire and a need for ECE to be continued in teaching endocrine physiology for future groups of students and also be extended for teaching other systems as well. The majority of the students (96.4%) in their feedback gave an overall rating of the program as good to excellent on a 5 point Likert scale. Summary The ECE program was introduced

  7. Predicting the risk of multiple endocrine neoplasia type 1 for patients with commonly occurring endocrine tumors.

    PubMed

    de Laat, Joanne M; Tham, Emma; Pieterman, Carolina R C; Vriens, Menno R; Dorresteijn, Johannes A N; Bots, Michiel L; Nordenskjöld, Magnus; van der Luijt, Rob B; Valk, Gerlof D

    2012-08-01

    Endocrine diseases that can be part of the rare inheritable syndrome multiple endocrine neoplasia type 1 (MEN1) commonly occur in the general population. Patients at risk for MEN1, and consequently their families, must be identified to prevent morbidity through periodic screening for the detection and treatment of manifestations in an early stage. The aim of the study was to develop a model for predicting MEN1 in individual patients with sporadically occurring endocrine tumors. Cross-sectional study. In a nationwide study in The Netherlands, patients with sporadically occurring endocrine tumors in whom the referring physician suspected the MEN1 syndrome were identified between 1998 and 2011 (n=365). Logistic regression analysis with internal validation using bootstrapping and external validation with a cohort from Sweden was used. A MEN1 mutation was found in 15.9% of 365 patients. Recurrent primary hyperparathyroidism (pHPT; odds ratio (OR) 162.40); nonrecurrent pHPT (OR 25.78); pancreatic neuroendocrine tumors (pNETs) and duodenal NETs (OR 17.94); pituitary tumor (OR 4.71); NET of stomach, thymus, or bronchus (OR 25.84); positive family history of NET (OR 4.53); and age (OR 0.96) predicted MEN1. The c-statistic of the prediction model was 0.86 (95% confidence interval (95% CI) 0.81-0.90) in the derivation cohort and 0.77 (95% CI 0.66-0.88) in the validation cohort. With the prediction model, the risk of MEN1 can be calculated in patients suspected for MEN1 with sporadically occurring endocrine tumors.

  8. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Osteoporosis in celiac disease and in endocrine and reproductive disorders

    PubMed Central

    Stazi, Anna Velia; Trecca, Antonello; Trinti, Biagino

    2008-01-01

    As the increase in lifespan brings to light diseases that were previously not clinically detectable, osteoporosis has become an issue of worldwide significance. The disease is marked by a loss of bone mass; the bones become less dense, fragile and more prone to fracturing. Because it is regulated by endocrine and environmental factors, osteoporosis presents a multifactorial etiopathogenesis, with the genetic component accounting for 70% of an individual variation in bone mass density (BMD), the principal determinant, with age, of fracture risk. Pathological conditions such as celiac disease (CD) exacerbate the process of bone loss, so that the occurrence of osteoporosis in celiac subjects is of particular note: indeed, the screening of osteoporosis patients for this disease is advisable, since it may be the only sign of undiagnosed CD. An increase in interleukin IL-1β, of the IL-1 system, in the relatives of celiac patients confirms the genetic predisposition to osteoporosis and its presence is evidence of an association between the two conditions. The direct effect on the bones of CD is secondary to poor absorption of calcium and vitamin D. In women osteoporosis is indirectly associated with early menopause and amenorrhea, and it may follow prolonged breast-feeding and frequent pregnancies, while in men it is associated with hypogonadism and GH deficit. These endocrine and non-endocrine factors exert their effects on bones by modulating the RANK/RANK-L/OPG system. An appropriate lifestyle from adolescence onwards, together with early diagnosis of and treatment for CD and primary and secondary endocrine pathologies are important for the prevention of damage to the bones. PMID:18203279

  10. The US EPA's Endocrine Disruptor Screening Program: In VItro and In Vivo Mammalian Tier 1 Screening Assays

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system, the Food Quality Protection Act mandated that the U.S. EPA develop and implement an endocrine disruptor screening program (EDSP...

  11. t4 workshop report--lessons learned, challenges, and opportunities: the U.S. Endocrine Disruptor Screening Program.

    PubMed

    Juberg, Daland R; Borghoff, Susan J; Becker, Richard A; Casey, Warren; Hartung, Thomas; Holsapple, Michael P; Marty, M Sue; Mihaich, Ellen M; Van Der Kraak, Glen; Wade, Michael G; Willett, Catherine E; Andersen, Melvin E; Borgert, Christopher J; Coady, Katherine K; Dourson, Michael L; Fowle, John R; Gray, L Earl; Lamb, James C; Ortego, Lisa S; Schug, Thaddeus T; Toole, Colleen M; Zorrilla, Leah M; Kroner, Oliver L; Patterson, Jacqueline; Rinckel, Lori A; Jones, Brett R

    2014-01-01

    In 1996, the U.S. Congress passed the Food Quality Protection Act and amended the Safe Drinking Water Act (SDWA) requiring the U.S. Environmental Protection Agency (EPA) to implement a screening program to investigate the potential of pesticide chemicals and drinking water contaminants to adversely affect endocrine pathways. Consequently, the EPA launched the Endocrine Disruptor Screening Program (EDSP) to develop and validate estrogen, androgen, and thyroid (EAT) pathway screening assays and to produce standardized and harmonized test guidelines for regulatory application. In 2009, the EPA issued the first set of test orders for EDSP screening and a total of 50 pesticide actives and 2 inert ingredients have been evaluated using the battery of EDSP Tier 1 screening assays (i.e., five in vitro assays and six in vivo assays). To provide a framework for retrospective analysis of the data generated and to collect the insight of multiple stakeholders involved in the testing, more than 240 scientists from government, industry, academia, and non-profit organizations recently participated in a workshop titled "Lessons Learned, Challenges, and Opportunities: The U.S. Endocrine Disruptor Screening Program." The workshop focused on the science and experience to date and was organized into three focal sessions: (a) Performance of the EDSP Tier 1 Screening Assays for Estrogen, Androgen, and Thyroid Pathways; (b) Practical Applications of Tier 1 Data; and (c) Indications and Opportunities for Future Endocrine Testing. A number of key learnings and recommendations related to future EDSP evaluations emanated from the collective sessions.

  12. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    PubMed Central

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  13. Multiple endocrine diseases in dogs: 35 cases (1996-2009).

    PubMed

    Blois, Shauna L; Dickie, Erica; Kruth, Stephen A; Allen, Dana G

    2011-06-15

    To characterize a population of dogs from a tertiary care center with 2 or more endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Retrospective case series. 35 dogs with 2 or more endocrine disorders. Medical records were reviewed, and the following was recorded: clinical signs, physical examination findings, and the results of CBC, serum biochemical analysis, urinalysis, aerobic bacterial culture of urine samples, endocrine testing, diagnostic imaging, and necropsy. 35 dogs with more than 1 endocrine disorder were identified. Seventy-seven percent (27/35) of the dogs were male, and the mean age at the time of diagnosis of the first endocrinopathy was 7.9 years. Miniature Schnauzer was the most common breed. Twenty-eight of 35 (80%) dogs had 2 disorders; 7 (20%) had 3 disorders. The most common combinations of disorders included diabetes mellitus and hyperadrenocorticism in 57.1 % (20/35) of dogs; hypoadrenocorticism and hypothyroidism in 22.9% (8/35) of dogs; and diabetes mellitus and hypothyroidism in 28.6% (10/35) of dogs. A mean of 14.5 months elapsed between diagnosis of the first and second endocrine disorders, whereas there was a mean of 31.1 months between diagnosis of the first and third endocrine disorders. Results suggested that the occurrence of multiple endocrine disorders was uncommon in dogs. The most common combinations of endocrine disorders in this population of dogs were diabetes mellitus and hyperadrenocorticism, followed by hypoadrenocorticism and hypothyroidism.

  14. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  15. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem - Final Report - 09/15/1996 - 09/14/2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    The three major components of the research included: (a) a biotechnology based screening system to identify potential hormone mimics and antagonists (b) an animal screening system to identify biomarkers of endocrine effects and (c) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors. Species of particular interest in this study were those that can serve as sentinel species (e.g., amphibians) and thus provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The objective of this basic research is to characterize the potential of common hydrocarbon contaminantsmore » in ecosystems to act as endocrine disruptors. Although the endocrine disrupting effects of contaminants such as dioxin and PCBs have been well characterized in both animals and humans, little is known about the capacities of other hydrocarbon contaminants to act as endocrine disruptors. Results obtained from this research project have provided information on endocrine disrupting contaminants for consideration in DOE's risk analyses for determining clean-up levels and priorities at contaminated DOE sites.« less

  16. Endocrine pancreatic function changes after acute pancreatitis.

    PubMed

    Wu, Deqing; Xu, Yaping; Zeng, Yue; Wang, Xingpeng

    2011-10-01

    This study aimed to investigate the impairment of pancreatic endocrine function and the associated risk factors after acute pancreatitis (AP). Fifty-nine patients were subjected to tests of pancreatic function after an attack of pancreatitis. The mean time after the event was 3.5 years. Pancreatic endocrine function was evaluated by fasting blood glucose (FBG), glycosylated hemoglobin, fasting blood insulin, and C-peptide. Homeostasis model assessment was used to evaluate insulin resistance and islet β-cell function. Pancreatic exocrine function was evaluated by fecal elastase 1. Factors that could influence endocrine function were also investigated. Nineteen patients (32%) were found to have elevated FBG, whereas 5 (8%) had abnormal glycosylated hemoglobin levels. The levels of FBG, fasting blood insulin, and C-peptide were higher in patients than in controls (P < 0.01). The islet β-cell function of patients was lower than that of controls (P < 0.01), whereas insulin resistance index was higher among patients (P < 0.01). Obesity, hyperlipidemia, and diabetes-related symptoms were found to be associated with endocrine insufficiency. Pancreatic exocrine functional impairment was found at the same time. Endocrine functional impairment with insulin resistance was found in patients after AP. Obesity, hyperlipidemia, and diabetes-related symptoms increased the likelihood of developing functional impairment after AP.

  17. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.

    PubMed

    Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A

    2004-01-01

    To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.

  18. Acromegaly: an endocrine society clinical practice guideline.

    PubMed

    Katznelson, Laurence; Laws, Edward R; Melmed, Shlomo; Molitch, Mark E; Murad, Mohammad Hassan; Utz, Andrea; Wass, John A H

    2014-11-01

    The aim was to formulate clinical practice guidelines for acromegaly. The Task Force included a chair selected by the Endocrine Society Clinical Guidelines Subcommittee (CGS), five experts in the field, and a methodologist. The authors received no corporate funding or remuneration. This guideline is cosponsored by the European Society of Endocrinology. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe both the strength of recommendations and the quality of evidence. The Task Force reviewed primary evidence and commissioned two additional systematic reviews. One group meeting, several conference calls, and e-mail communications enabled consensus. Committees and members of the Endocrine Society and the European Society of Endocrinology reviewed drafts of the guidelines. Using an evidence-based approach, this acromegaly guideline addresses important clinical issues regarding the evaluation and management of acromegaly, including the appropriate biochemical assessment, a therapeutic algorithm, including use of medical monotherapy or combination therapy, and management during pregnancy.

  19. Endocrine causes of nonalcoholic fatty liver disease

    PubMed Central

    Marino, Laura; Jornayvaz, François R

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed. PMID:26494962

  20. Endocrine disorders and diabetes in Japan.

    PubMed

    Seino, Y; Imura, H

    1994-10-01

    The frequency of glucose intolerance including diabetes and IGT in endocrine diseases was compared between Japan and foreign countries. It was revealed that the frequency of diabetes in endocrine diseases is generally higher in Japan than in foreign countries. In addition, plasma insulin response to glucose was exaggerated in Cushing's syndrome with glucose intolerance, but was impaired in acromegaly and pheochromocytoma with glucose intolerance.

  1. N-acetyltransferase (nat) is a critical conjunct of photoperiodism between the circadian system and endocrine axis in Antheraea pernyi.

    PubMed

    Mohamed, Ahmed A M; Wang, Qiushi; Bembenek, Jadwiga; Ichihara, Naoyuki; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16:8 (LD) and LD12:12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4 °C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNA(NAT) caused dysfunction of photoperiodism. dsRNA(PER) upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNA(NAT) decreased melatonin while dsRNA(PER) increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNA(NAT), to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism.

  2. N-acetyltransferase (nat) Is a Critical Conjunct of Photoperiodism between the Circadian System and Endocrine Axis in Antheraea pernyi

    PubMed Central

    Bembenek, Jadwiga; Hiragaki, Susumu; Suzuki, Takeshi; Takeda, Makio

    2014-01-01

    Since its discovery in 1923, the biology of photoperiodism remains a mystery in many ways. We sought the link connecting the circadian system to an endocrine switch, using Antheraea pernyi. PER-, CLK- and CYC-ir were co-expressed in two pairs of dorsolateral neurons of the protocerebrum, suggesting that these are the circadian neurons that also express melatonin-, NAT- and HIOMT-ir. The results suggest that a melatonin pathway is present in the circadian neurons. Melatonin receptor (MT2 or MEL-1B-R)-ir in PTTH-ir neurons juxtaposing clock neurons suggests that melatonin gates PTTH release. RIA showed a melatonin rhythm with a peak four hours after lights off in adult brain both under LD16∶8 (LD) and LD12∶12 (SD), and both the peak and the baseline levels were higher under LD than SD, suggesting a photoperiodic influence. When pupae in diapause were exposed to 10 cycles of LD, or stored at 4°C for 4 months under constant darkness, an increase of NAT activity was observed when PTTH released ecdysone. DNA sequence upstream of nat contained E-boxes to which CYC/CLK could bind, and nat transcription was turned off by clk or cyc dsRNA. dsRNANAT caused dysfunction of photoperiodism. dsRNAPER upregulated nat transcription as anticipated, based on findings in the Drosophila melanogaster circadian system. Transcription of nat, cyc and clk peaked at ZT12. RIA showed that dsRNANAT decreased melatonin while dsRNAPER increased melatonin. Thus nat, a clock controlled gene, is the critical link between the circadian clock and endocrine switch. MT-binding may release PTTH, resulting in termination of diapause. This study thus examined all of the basic functional units from the clock: a photoperiodic counter as an accumulator of mRNANAT, to endocrine switch for photoperiodism in A. pernyi showing this system is self-complete without additional device especially for photoperiodism. PMID:24667367

  3. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    PubMed

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  5. Effects of Two Endocrine-active Pharmaceuticals, Tamoxifen and Anastrozole, on Reproduction in a Marine Fish, Tautogolabrus adspersus

    EPA Science Inventory

    Endocrine-active pharmaceuticals entering the aquatic environment through sewage effluent may have unintended, adverse impacts on the reproduction of aquatic organisms, which in turn may affect the sustainability of exposed populations. Laboratory experiments were conducted with ...

  6. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis.

    PubMed

    Haddad, John J; Saadé, Nayef E; Safieh-Garabedian, Bared

    2002-12-01

    Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.

  7. Career Advancement: Meeting the Challenges Confronting the Next Generation of Endocrinologists and Endocrine Researchers.

    PubMed

    Santen, Richard J; Joham, Anju; Fishbein, Lauren; Vella, Kristen R; Ebeling, Peter R; Gibson-Helm, Melanie; Teede, Helena

    2016-12-01

    Challenges and opportunities face the next generation (Next-Gen) of endocrine researchers and clinicians, the lifeblood of the field of endocrinology for the future. A symposium jointly sponsored by The Endocrine Society and the Endocrine Society of Australia was convened to discuss approaches to addressing the present and future Next-Gen needs. Data collection by literature review, assessment of previously completed questionnaires, commissioning of a new questionnaire, and summarization of symposium discussions were studied. Next-Gen endocrine researchers face diminishing grant funding in inflation-adjusted terms. The average age of individuals being awarded their first independent investigator funding has increased to age 45 years. For clinicians, a workforce gap exists between endocrinologists needed and those currently trained. Clinicians in practice are increasingly becoming employees of integrated hospital systems, resulting in greater time spent on nonclinical issues. Workforce data and published reviews identify challenges specifically related to early career women in endocrinology. Strategies to Address Issues: Recommendations encompassed the areas of grant support for research, mentoring, education, templates for career development, specific programs for Next-Gen members by senior colleagues as outlined in the text, networking, team science, and life/work integration. Endocrine societies focusing on Next-Gen members provide a powerful mechanism to support these critical areas. A concerted effort to empower, train, and support the next generation of clinical endocrinologists and endocrine researchers is necessary to ensure the viability and vibrancy of our discipline and to optimize our contributions to improving health outcomes. Collaborative engagement of endocrine societies globally will be necessary to support our next generation moving forward.

  8. [Structural CNS abnormalities responsible for coincidental occurrence of endocrine disorders, epilepsy and psychoneurologic disorders in children and adolescents].

    PubMed

    Starzyk, Jerzy; Kwiatkowski, Stanisław; Kaciński, Marek; Kroczka, Sławomir; Wójcik, Małgorzata

    2010-01-01

    In the population of children and adolescents, epilepsy affects 0.5-1% of individuals; approximately 3% of general population suffer from non-epileptic seizures, while endocrine disorders are several times more frequent. All of the above factors result in a relatively common non-accidental occurrence of endocrine disorders, epilepsy and neuropsychiatric disorders. However, structural central nervous system (CNS) abnormalities that cause both endocrine and neurologic disorders seem to be markedly less common. No reports addressing this problem are available in the literature. 1) Assessment of the frequency of non-coincidental occurrence of epilepsy and endocrine disorders in inpatients and outpatients with structural CSN abnormalities managed in Department Endocrinology. 2) Presentation of diagnostic and therapeutic difficulties in these patients, and 3) An attempt at defining a common etiology of both disorders. A retrospective analysis of the medical records of the patients with coincidence of endocrine disorders and epilepsy and psycho-neurologic disorders (treated in Chair and Department of Children's and Adolescents Neurology, University Children's Hospital of Krakow or in another pediatric neurology center) and with organic CNS abnormalities (treated or followed up as inpatients and outpatient of Department of Pediatric Surgery, Children's University Hospital of Krakow, was performed. The patients were selected from among several thousands of children treated as inpatients and outpatients of the Department. Various forms of symptomatic and idiopathic epilepsy and other psychoneurological disorders (disorders of behavior and emotions, obsession-compulsion syndromes, stereotypias, aggression, compulsive ideas and movements, anorexia or hypothalamic obesity) coincident with one or more endocrine disorders such as precocious or delayed puberty, multihormonal pituitary deficiency, panhypopituitarism and secondary hypothyroidism were detected in 42 patients with

  9. Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China.

    PubMed

    Gong, Jian; Duan, Dandan; Yang, Yu; Ran, Yong; Chen, Diyun

    2016-12-01

    Endocrine disrupting chemicals (EDCs) were seasonally investigated in surface water, suspended particulate matter, and sediments of the Pearl River Delta (PRD), South China. EDC concentrations in the surface water were generally higher in the summer than in winter. The surface water in the investigated rivers was heavily contaminated by the phenolic xenoestrogens. Moreover, the in-situ log K soc and log K poc values and their regression with log K ow in the field experiments suggest that binding mechanisms other than hydrophobic interaction are present for the sedimentary organic carbon and particulate organic carbon (SOC/POC). The logK soc -logK ow and logK poc -logK ow regression analyses imply that higher complexity of nonhydrophobic interactions with EDCs is present on the SOC samples comparing with the POC samples, which is related to their different sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  11. Highlighting Indication of extracorporeal membrane oxygenation in endocrine emergencies

    PubMed Central

    Chao, Anne; Wang, Chih-Hsien; You, Hao-Chun; Chou, Nai-Kwoun; Yu, Hsi-Yu; Chi, Nai-Hsin; Huang, Shu-Chien; Wu, I-Hui; Tseng, Li-Jung; Lin, Ming-Hsien; Chen, Yih-Sharng

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) has been repeatedly used to rescue patients with cardiopulmonary arrest. However, its clinical utility in endocrine emergencies remains unclear. Herein, we describe a case series of 12 patients presenting with refractory shock secondary to endocrine emergencies who were rescued by ECMO support. Patients were identified between 2005 and 2012 from our ECMO registry. The diagnostic distribution was as follows: pheochromocytoma crisis (n = 4), thyroid storm (n = 5), and diabetic ketoacidosis (n = 3). The initial presentation of pheochromocytoma crisis was indistinguishable from acute myocardial infarction (AMI) and frequently accompanied by paroxysmal hypertension and limb ischemia. Thyroid storm was characterized by hyperbilirubinemia and severe gastrointestinal bleeding, whereas neurological symptoms were common in diabetic ketoacidosis. The clinical outcomes of patients with endocrine emergencies were compared with those of 80 cases with AMI who received ECMO because of cardiogenic shock. The cardiac function and the general conditions showed a significantly faster recovery in patients with endocrine emergencies than in those with AMI. We conclude that ECMO support can be clinically useful in endocrine emergencies. The screening of endocrine diseases should be considered during the resuscitation of patients with refractory circulatory shock. PMID:26299943

  12. Highlighting Indication of extracorporeal membrane oxygenation in endocrine emergencies.

    PubMed

    Chao, Anne; Wang, Chih-Hsien; You, Hao-Chun; Chou, Nai-Kwoun; Yu, Hsi-Yu; Chi, Nai-Hsin; Huang, Shu-Chien; Wu, I-Hui; Tseng, Li-Jung; Lin, Ming-Hsien; Chen, Yih-Sharng

    2015-08-24

    Extracorporeal membrane oxygenation (ECMO) has been repeatedly used to rescue patients with cardiopulmonary arrest. However, its clinical utility in endocrine emergencies remains unclear. Herein, we describe a case series of 12 patients presenting with refractory shock secondary to endocrine emergencies who were rescued by ECMO support. Patients were identified between 2005 and 2012 from our ECMO registry. The diagnostic distribution was as follows: pheochromocytoma crisis (n = 4), thyroid storm (n = 5), and diabetic ketoacidosis (n = 3). The initial presentation of pheochromocytoma crisis was indistinguishable from acute myocardial infarction (AMI) and frequently accompanied by paroxysmal hypertension and limb ischemia. Thyroid storm was characterized by hyperbilirubinemia and severe gastrointestinal bleeding, whereas neurological symptoms were common in diabetic ketoacidosis. The clinical outcomes of patients with endocrine emergencies were compared with those of 80 cases with AMI who received ECMO because of cardiogenic shock. The cardiac function and the general conditions showed a significantly faster recovery in patients with endocrine emergencies than in those with AMI. We conclude that ECMO support can be clinically useful in endocrine emergencies. The screening of endocrine diseases should be considered during the resuscitation of patients with refractory circulatory shock.

  13. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms

    PubMed Central

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Background: Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. Methods: It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. Results: There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. Conclusions: The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands. PMID:27833725

  14. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms.

    PubMed

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands.

  15. Cold-perfusion decellularization of whole-organ porcine pancreas supports human fetal pancreatic cell attachment and expression of endocrine and exocrine markers

    PubMed Central

    Elebring, Erik; Kuna, Vijay K; Kvarnström, Niclas; Sumitran-Holgersson, Suchitra

    2017-01-01

    Despite progress in the field of decellularization and recellularization, the outcome for pancreas has not been adequate. This might be due to the challenging dual nature of pancreas with both endocrine and exocrine tissues. We aimed to develop a novel and efficient cold-perfusion method for decellularization of porcine pancreas and recellularize acellular scaffolds with human fetal pancreatic stem cells. Decellularization of whole porcine pancreas at 4°C with sodium deoxycholate, Triton X-100 and DNase efficiently removed cellular material, while preserving the extracellular matrix structure. Furthermore, recellularization of acellular pieces with human fetal pancreatic stem cells for 14 days showed attached and proliferating cells. Both endocrine (C-peptide and PDX1) and exocrine (glucagon and α-amylase) markers were expressed in recellularized tissues. Thus, cold-perfusion can successfully decellularize porcine pancreas, which when recellularized with human fetal pancreatic stem cells shows relevant endocrine and exocrine phenotypes. Decellularized pancreas is a promising biomaterial and might translate to clinical relevance for treatment of diabetes. PMID:29118967

  16. Endocrine resistance in breast cancer – an overview and update

    PubMed Central

    Clarke, Robert; Tyson, John J.; Dixon, J. Michael

    2015-01-01

    Tumors that express detectable levels of the product of the ESR1 gene (estrogen receptor-α; ERα) represent the single largest molecular subtype of breast cancer. More women eventually die from ERα+ breast cancer than from either HER2+ disease (almost half of which also express ERα) and/or from triple negative breast cancer (ERα-negative, progesterone receptor-negative, and HER2-negative). Antiestrogens and aromatase inhibitors are largely indistinguishable from each other in their abilities to improve overall survival and almost 50% of ERα+ breast cancers will eventually fail one or more of these endocrine interventions. The precise reasons why these therapies fail in ERα+ breast cancer remain largely unknown. Pharmacogenetic explanations for Tamoxifen resistance are controversial. The role of ERα mutations in endocrine resistance remains unclear. Targeting the growth factors and oncogenes most strongly correlated with endocrine resistance has proven mostly disappointing in their abilities to improve overall survival substantially, particularly in the metastatic setting. Nonetheless, there are new concepts in endocrine resistance that integrate molecular signaling, cellular metabolism, and stress responses including endoplasmic reticulum stress and the unfolded protein response (UPR) that provide novel insights and suggest innovative therapeutic targets. Encouraging evidence that drug combinations with CDK4/CDK6 inhibitors can extend recurrence free survival may yet translate to improvements in overall survival. Whether the improvements seen with immunotherapy in other cancers can be achieved in breast cancer remains to be determined, particularly for ERα+ breast cancers. This review explores the basic mechanisms of resistance to endocrine therapies, concluding with some new insights from systems biology approaches further implicating autophagy and the UPR in detail, and a brief discussion of exciting new avenues and future prospects. PMID:26455641

  17. SCREENING CALIFORNIA SURFACE WATERS FOR ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS (EEDC) WITH A JUVENILE RAINBOW TROUT LIVER VITELLOGENIN MRNA PROCEDURE

    EPA Science Inventory

    Concern regarding the occurrence of chemicals that disrupt endocrine system functions in aquatic species has heightened over the last 15 years. However, little attention has been given to monitoring for estrogenic endocrine disrupting chemicals (EEDCs) in California's freshwater ...

  18. Abnormal gastrointestinal endocrine cells in patients with diabetes type 1: relationship to gastric emptying and myoelectrical activity.

    PubMed

    El-Salhy, M; Sitohy, B

    2001-11-01

    Gastrointestinal symptoms in patients with diabetes are believed to be caused by gastrointestinal dysmotility and secretion/absorption disturbances, and the gut endocrine cells play an important part in regulating these two functions. Studies on animal models of human diabetes type I revealed abnormality in these cells, but it is unknown whether abnormality also occurs in patients with diabetes. Eleven patients with long duration of diabetes type I and organ complications, as well as gastrointestinal symptoms, were studied. Endocrine cells in different segments of the gastrointestinal tract were detected by immunocytochemistry and quantified by computerized image analysis. Gastric emptying was measured by scintigraphy and gastric myoelectric activity was determined by electrogastrography. An abnormal density of gastrointestinal endocrine cells was found in patients with diabetes. This abnormality occurred in all segments of the upper and lower gastrointestinal tract investigated, and included most of the endocrine cell types. The patients showed delayed gastric emptying, which correlated closely with the acute glucose level, but did not correlate with HbA1c. Gastric emptying also correlated closely with the density of duodenal serotonin and secretin cells. The patients exhibited bradygastrias and tachygastrias. These dysrhythmias, however, did not differ significantly from controls. The endocrine cells are the anatomical units responsible for the production of gut hormones, and the change in their density would reflect a change in the capacity of producing these hormones. The abnormality in density of the gastrointestinal endocrine cells may contribute to the development of gastrointestinal dysmotility and the symptoms encountered in patients with diabetes.

  19. Consensus models to predict endocrine disruption for all ...

    EPA Pesticide Factsheets

    Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and thus have the potential to be endocrine disruptors. Most of these environmental chemicals have never been tested for their ability to disrupt the endocrine system, in particular, their ability to interact with the estrogen receptor. EPA needs tools to prioritize thousands of chemicals, for instance in the Endocrine Disruptor Screening Program (EDSP). Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) was intended to be a demonstration of the use of predictive computational models on HTS data including ToxCast and Tox21 assays to prioritize a large chemical universe of 32464 unique structures for one specific molecular target – the estrogen receptor. CERAPP combined multiple computational models for prediction of estrogen receptor activity, and used the predicted results to build a unique consensus model. Models were developed in collaboration between 17 groups in the U.S. and Europe and applied to predict the common set of chemicals. Structure-based techniques such as docking and several QSAR modeling approaches were employed, mostly using a common training set of 1677 compounds provided by U.S. EPA, to build a total of 42 classification models and 8 regression models for binding, agonist and antagonist activity. All predictions were evaluated on ToxCast data and on an exte

  20. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish.

    PubMed

    Pradhan, Devaleena S; Solomon-Lane, Tessa K; Grober, Matthew S

    2015-01-01

    Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates.

  1. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  2. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  3. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

    PubMed Central

    De Coster, Sam; van Larebeke, Nicolas

    2012-01-01

    The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand. PMID:22991565

  4. Scientific and Regulatory Policy Committee (SRPC) Points to Consider*: Histopathology Evaluation of the Pubertal Development and Thyroid Function Assay (OPPTS 890.1450, OPPTS 890.1500) in Rats to Screen for Endocrine Disruptors

    PubMed Central

    Keane, Kevin A.; Parker, George A.; Regan, Karen S.; Picut, Catherine; Dixon, Darlene; Creasy, Dianne; Giri, Dipak; Hukkanen, Renee R.

    2015-01-01

    The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a multitiered approach to determine the potential for environmental chemicals to alter the endocrine system. The Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female and Male Rats (OPPTS 890.1450, 890.1500) are 2 of the 9 EDSP tier 1 test Guidelines, which assess upstream mechanistic pathways along with downstream morphological end points including histological evaluation of the kidneys, thyroid, and select male/female reproductive tissues (ovaries, uterus, testes, and epididymides). These assays are part of a battery of in vivo and in vitro screens used for initial detection of test article endocrine activity. In this Points to Consider article, we describe tissue processing, evaluation, and nomenclature to aid in standardization of assay results across laboratories. Pubertal assay end points addressed include organ weights, estrous cyclicity, clinical pathology, hormonal assays, and histological evaluation. Potential treatment-related findings that may indicate endocrine disruption are reviewed. Additional tissues that may be useful in assessment of endocrine disruption (vagina, mammary glands, and liver) are discussed. This Points to Consider article is intended to provide information for evaluating peripubertal tissues within the context of individual assay end points, the overall pubertal assay, and tier I assays of the EDSP program. PMID:25948506

  5. Controversial endocrine interventions for the aged.

    PubMed

    Leow, M K S; Loh, K C

    2006-07-01

    Specific endocrine changes occur with the ageing process. The last decade has witnessed significant progress in the basic and clinical science of ageing, thereby rejuvenating the interest in anti-ageing medicine, especially that of hormone replacement, by medical professionals and the lay public. However, endocrine manipulation as a therapeutic strategy for ageing is still evolving as continuing research attempts to answer the many questions of what it can achieve at the risk of incurring unknown long-term adverse effects. The current day doctor is confronted with a host of options, and will benefit from a synopsis of the latest evidence before making the most appropriate decision for aged patients seeking hormonal replacement therapy as a means to counter the effects of ageing. This review aims to give a rapid overview of the endocrine profile of geriatric population and the studies on the more controversial hormonal replacement therapies for the aged.

  6. Endocrine Disruptor Screening Program (EDSP) 1998 Federal Register Notices

    EPA Pesticide Factsheets

    EPA outlined the Endocrine Disruptor Screening Program (EDSP), which incorporated many of the Endocrine Disruptor Screening and Testing Advisory Committee's (EDSTAC) recommendations, in two Federal Register Notices published in 1998.

  7. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  8. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary.

    USDA-ARS?s Scientific Manuscript database

    It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the ef...

  9. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    PubMed

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  10. Exposures, Mechanisms, and Impacts of Endocrine-Active Flame Retardants

    PubMed Central

    Dishaw, Laura; Macaulay, Laura; Roberts, Simon C.; Stapleton, Heather M.

    2014-01-01

    This review summarizes the endocrine and neurodevelopmental effects of two current-use additive flame retardants (FRs), tris (1,3-dichloro-isopropyl) phosphate (TDCPP) and Firemaster® 550 (FM 550), and the recently phased-out polybrominated diphenyl ethers (PBDEs), all of which were historically or are currently used in polyurethane foam applications. Use of these chemicals in consumer products has led to widespread exposure in indoor environments. PBDEs and their hydroxylated metabolites appear to primarily target the thyroid system, likely due to their structural similarity to endogenous thyroid hormones. In contrast, much less is known about the toxicity of TDCPP and FM550. However, recent in vitro and in vivo studies suggest that both should be considered endocrine disruptors as studies have linked TDCPP exposure with changes in circulating hormone levels, and FM 550 exposure with changes in adipogenic and osteogenic pathways. PMID:25306433

  11. Adrenomedullin and endocrine control of immune cells during pregnancy.

    PubMed

    Matson, Brooke C; Caron, Kathleen M

    2014-09-01

    The immunology of pregnancy is complex and incompletely understood. Aberrant immune activity in the decidua and in the placenta is believed to play a role in diseases of pregnancy, such as infertility, miscarriage, fetal growth restriction and preeclampsia. Here, we briefly review the endocrine control of uterine natural killer cell populations and their functions by the peptide hormone adrenomedullin. Studies in genetic animal models have revealed the critical importance of adrenomedullin dosage at the maternal-fetal interface, with cells from both the maternal and fetal compartments contributing to essential aspects underlying appropriate uterine receptivity, implantation and vascular remodeling of spiral arteries. These basic insights into the crosstalk between the endocrine and immune systems within the maternal-fetal interface may ultimately translate to a better understanding of the functions and consequences of dysregulated adrenomedullin levels in clinically complicated pregnancies.

  12. Occurrence, fate, and ecosystem implications of endocrine active compounds in select rivers of Minnesota

    NASA Astrophysics Data System (ADS)

    Writer, J.; Keefe, S.; Barber, L. B.; Brown, G.; Schoenfuss, H.; Kiesling, R.; Gray, J. L.

    2009-12-01

    Select endocrine active compounds (EACs) were measured in four rivers in southern Minnesota. Additionally, caged and wild fish were assessed for indication of endocrine disruption using plasma vitellogenin and histopathology. Low concentrations of EACs were identified in all rivers, as was elevated plasma vitellogenin in caged and wild fish, indicating potential endocrine disruption. To evaluate the persistence of these compounds in small rivers, a tracer study was performed on one of the rivers (Redwood River) using Lagrangian sampling coupled with hydrologic modeling incorporating transient storage. Mass exchange (transient storage, sorption) and degradation were approximated as pseudo first order processes, and in-stream removal rates were then computed by comparing conservative tracer concentrations to organic compound concentrations. Production of estrone and 4-nonylphenol in the studied reach as a result of biochemical transformation from their parent compounds (17β-estradiol and alkylphenolpolyethoxylates, respectively) was quantified. The distance required for 17β-estradiol and nonylphenol to undergo a 50% reduction in concentration was >2 km and >10 km, respectively. These results indicate that EACs are transported several kilometers downstream from discharge sources and therefore have the potential of adversely impacting the lotic ecosystem over these distances.

  13. Altered time structure of neuro-endocrine-immune system function in lung cancer patients.

    PubMed

    Mazzoccoli, Gianluigi; Vendemiale, Gianluigi; De Cata, Angelo; Carughi, Stefano; Tarquini, Roberto

    2010-06-21

    The onset and the development of neoplastic disease may be influenced by many physiological, biological and immunological factors. The nervous, endocrine and immune system might act as an integrated unit to maintain body defense against this pathological process and reciprocal influences have been evidenced among hypothalamus, pituitary, thyroid, adrenal, pineal gland and immune system. In this study we evaluated differences among healthy subjects and subjects suffering from lung cancer in the 24-hour secretory profile of melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 and circadian variations of lymphocyte subpopulations. In ten healthy male volunteers (age range 45-66) and ten male patients with untreated non small cell lung cancer (age range 46-65) we measured melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 serum levels and percentages of lymphocyte subpopulations on blood samples collected every four hours for 24 hours. One-way ANOVA between the timepoints for each variable and each group was performed to look for a time-effect, the presence of circadian rhythmicity was evaluated, MESOR, amplitude and acrophase values, mean diurnal levels and mean nocturnal levels were compared. A clear circadian rhythm was validated in the control group for hormone serum level and for lymphocyte subsets variation. Melatonin, TRH, TSH, GH, CD3, CD4, HLA-DR, CD20 and CD25 expressing cells presented circadian rhythmicity with acrophase during the night. Cortisol, CD8, CD8(bright), CD8(dim), CD16, TcRdelta1 and deltaTcS1 presented circadian rhythmicity with acrophase in the morning/at noon. FT4, IGF-1 and IL-2 variation did not show circadian rhythmicity. In lung cancer patients cortisol, TRH, TSH and GH serum level and all the lymphocyte subsubsets variation (except for CD4) showed loss of circadian rhythmicity. MESOR of cortisol, TRH, GH, IL-2 and CD16 was increased, whereas MESOR of TSH, IGF-1, CD8, CD8(bright), TcRdelta1 and deltaTcS1 was decreased in cancer

  14. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    PubMed Central

    2010-01-01

    Background The onset and the development of neoplastic disease may be influenced by many physiological, biological and immunological factors. The nervous, endocrine and immune system might act as an integrated unit to mantain body defense against this pathological process and reciprocal influences have been evidenced among hypothalamus, pituitary, thyroid, adrenal, pineal gland and immune system. In this study we evaluated differences among healthy subjects and subjects suffering from lung cancer in the 24-hour secretory profile of melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 and circadian variations of lymphocyte subpopulations. Methods In ten healthy male volunteers (age range 45-66) and ten male patients with untreated non small cell lung cancer (age range 46-65) we measured melatonin, cortisol, TRH, TSH, FT4, GH, IGF-1 and IL-2 serum levels and percentages of lymphocyte subpopulations on blood samples collected every four hours for 24 hours. One-way ANOVA between the timepoints for each variable and each group was performed to look for a time-effect, the presence of circadian rhythmicity was evaluated, MESOR, amplitude and acrophase values, mean diurnal levels and mean nocturnal levels were compared. Results A clear circadian rhythm was validated in the control group for hormone serum level and for lymphocyte subsets variation. Melatonin, TRH, TSH, GH, CD3, CD4, HLA-DR, CD20 and CD25 expressing cells presented circadian rhythmicity with acrophase during the night. Cortisol, CD8, CD8bright, CD8dim, CD16, TcRδ1 and δTcS1 presented circadian rhythmicity with acrophase in the morning/at noon. FT4, IGF-1 and IL-2 variation did not show circadian rhythmicity. In lung cancer patients cortisol, TRH, TSH and GH serum level and all the lymphocyte subsubsets variation (except for CD4) showed loss of circadian rhythmicity. MESOR of cortisol, TRH, GH, IL-2 and CD16 was increased, whereas MESOR of TSH, IGF-1, CD8, CD8bright, TcRδ1 and δTcS1 was decreased in

  15. [Contamination, endocrine disruptors and cancer].

    PubMed

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-03-01

    Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations.

  16. Endocrine Disorders in Cystic Fibrosis.

    PubMed

    Blackman, Scott M; Tangpricha, Vin

    2016-08-01

    Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Training our Future Endocrine Surgeons: A Look at the Endocrine Surgery Operative Experience of U.S. Surgical Residents

    PubMed Central

    Zarebczan, Barbara; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S

    2010-01-01

    Background Over the last 10 years the number of endocrine procedures performed in the US has increased significantly. We sought to determine if this has translated into an increase in operative volume for general surgery and otolaryngology residents. Method We evaluated records from the Resident Statistic Summaries of the RRC for US general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Results Between 2004 and 2008, the average endocrine case volume of US general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed over twice as many operations as US general surgery residents. The growth in case volume was mostly due to increases in the number of thyroidectomies performed by US general surgery and otolaryngology residents (17.9 to 21.8, p=0.007 and 46.5 to 54.4, p=0.04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs. 8.8, p=0.007). Conclusion Although there has been an increase in the number of endocrine cases performed by graduating US general surgery residents, this is significantly smaller than that of otolaryngology residents. In order to remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. PMID:21134536

  18. Mugilid Fish Are Sentinels of Exposure to Endocrine Disrupting Compounds in Coastal and Estuarine Environments

    PubMed Central

    Ortiz-Zarragoitia, Maren; Bizarro, Cristina; Rojo-Bartolomé, Iratxe; Diaz de Cerio, Oihane; Cajaraville, Miren P.; Cancio, Ibon

    2014-01-01

    Effects on fish reproduction can result from a variety of toxicity mechanisms first operating at the molecular level. Notably, the presence in the environment of some compounds termed endocrine disrupting chemicals (EDCs) can cause adverse effects on reproduction by interfering with the endocrine system. In some cases, exposure to EDCs leads to the animal feminization and male fish may develop oocytes in testis (intersex condition). Mugilid fish are well suited sentinel organisms to study the effects of reproductive EDCs in the monitoring of estuarine/marine environments. Up-regulation of aromatases and vitellogenins in males and juveniles and the presence of intersex individuals have been described in a wide array of mullet species worldwide. There is a need to develop new molecular markers to identify early feminization responses and intersex condition in fish populations, studying mechanisms that regulate gonad differentiation under exposure to xenoestrogens. Interestingly, an electrophoresis of gonad RNA, shows a strong expression of 5S rRNA in oocytes, indicating the potential of 5S rRNA and its regulating proteins to become useful molecular makers of oocyte presence in testis. Therefore, the use of these oocyte markers to sex and identify intersex mullets could constitute powerful molecular biomarkers to assess xenoestrogenicity in field conditions. PMID:25222666

  19. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis.

    PubMed

    Siwamogsatham, Oranan; Alvarez, Jessica A; Tangpricha, Vin

    2014-10-01

    The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis. As life expectancy in cystic fibrosis has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes, cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with cystic fibrosis. This review summarizes the updated screening and management of endocrine diseases in the cystic fibrosis population.

  20. Pearson syndrome: unique endocrine manifestations including neonatal diabetes and adrenal insufficiency.

    PubMed

    Williams, T B; Daniels, M; Puthenveetil, G; Chang, R; Wang, R Y; Abdenur, J E

    2012-05-01

    Pearson syndrome is a very rare metabolic disorder that is usually present in infancy with transfusion dependent macrocytic anemia and multiorgan involvement including exocrine pancreas, liver and renal tubular defects. The disease is secondary to a mitochondrial DNA deletion that is variable in size and location. Endocrine abnormalities can develop, but are usually not part of the initial presentation. We report two patients who presented with unusual endocrine manifestations, neonatal diabetes and adrenal insufficiency, who were both later diagnosed with Pearson syndrome. Medical records were reviewed. Confirmatory testing included: mitochondrial DNA deletion testing and sequencing of the breakpoints, muscle biopsy, and bone marrow studies. Case 1 presented with hyperglycemia requiring insulin at birth. She had several episodes of ketoacidosis triggered by stress and labile blood glucose control. Workup for genetic causes of neonatal diabetes was negative. She had transfusion dependent anemia and died at 24 months due to multisystem organ failure. Case 2 presented with adrenal insufficiency and anemia during inturcurrent illness, requiring steroid replacement since 37 months of age. He is currently 4 years old and has mild anemia. Mitochondrial DNA studies confirmed a 4.9 kb deletion in patient 1 and a 5.1 kb deletion in patient 2. The patients reported highlight the importance of considering mitochondrial DNA disorders in patients with early onset endocrine dysfunction, and expand the knowledge about this rare mitochondrial disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.

    PubMed

    Broséus, R; Vincent, S; Aboulfadl, K; Daneshvar, A; Sauvé, S; Barbeau, B; Prévost, M

    2009-10-01

    This study investigates the oxidation of pharmaceuticals, endocrine disrupting compounds and pesticides during ozonation applied in drinking water treatment. In the first step, second-order rate constants for the reactions of selected compounds with molecular ozone (k(O3)) were determined in bench-scale experiments at pH 8.10: caffeine (650+/-22M(-1)s(-1)), progesterone (601+/-9M(-1)s(-1)), medroxyprogesterone (558+/-9M(-1)s(-1)), norethindrone (2215+/-76M(-1)s(-1)) and levonorgestrel (1427+/-62M(-1)s(-1)). Compared to phenolic estrogens (estrone, 17beta-estradiol, estriol and 17alpha-ethinylestradiol), the selected progestogen endocrine disruptors reacted far slower with ozone. In the second part of the study, bench-scale experiments were conducted with surface waters spiked with 16 target compounds to assess their oxidative removal using ozone and determine if bench-scale results would accurately predict full-scale removal data. Overall, the data provided evidence that ozone is effective for removing trace organic contaminants from water with ozone doses typically applied in drinking water treatment. Ozonation removed over 80% of caffeine, pharmaceuticals and endocrine disruptors within the CT value of about 2 mg min L(-1). As expected, pesticides were found to be the most recalcitrant compounds to oxidize. Caffeine can be used as an indicator compound to gauge the efficacy of ozone treatment.

  2. Translational research into species differences of endocrine toxicity via steroidogenesis inhibition by SMP-028 — For human safety in clinical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishizato, Yohei, E-mail: yohei-nishizato@ds-pharma.co.jp; Imai, Satoki; Okahashi, Noriko

    2014-05-01

    SMP-028 is a drug candidate developed for the treatment of asthma. In a 13-week repeated dose toxicity study of SMP-028 in rats and monkeys, differences of endocrine toxicological events between rats and monkeys were observed. In rats, these toxicological events mainly consisted of pathological changes in the adrenal, testis, ovary, and the other endocrine-related organs. On the other hand, in monkeys, no toxicological events were observed. The goal of this study is to try to understand the reason why only rats, but not monkeys, showed toxicological events following treatment with SMP-028 and to eventually predict the possible toxicological effect ofmore » this compound on human endocrine organs. Our results show that SMP-028 inhibits neutral cholesterol esterase more strongly than other steroidogenic enzymes in rats. Although SMP-028 also inhibits monkeys and human neutral cholesterol esterase, this inhibition is much weaker than that of rat neutral cholesterol esterase. These results indicate (1) that the difference in endocrine toxicological events between rats and monkeys is mainly due to inhibition of steroidogenesis by SMP-028 in rats, not in monkeys, and (2) that SMP-028 may not affect steroidogenesis in humans and therefore might cause no endocrine toxicological events in clinical studies. - Highlights: • SMP-028 inhibits neutral CEase more strongly than other steroidogenic enzymes in rats. • Inhibition of neutral CEase in rats by SMP-028 suppresses steroidogenesis in vivo. • SMP-028 does not inhibit neutral CEase in monkeys in vivo. • Steroidogenesis pathway in monkeys treated with SMP-028 was not suppressed. • SMP-028 may not inhibit LIPE in humans in vivo.« less

  3. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  4. Endocrine Regulation of Bone and Energy Metabolism in Hibernating Mammals

    PubMed Central

    Doherty, Alison H.; Florant, Gregory L.; Donahue, Seth W.

    2014-01-01

    Precise coordination among organs is required to maintain homeostasis throughout hibernation. This is particularly true in balancing bone remodeling processes (bone formation and resorption) in hibernators experiencing nutritional deprivation and extreme physical inactivity, two factors normally leading to pronounced bone loss in non-hibernating mammals. In recent years, important relationships between bone, fat, reproductive, and brain tissues have come to light. These systems share interconnected regulatory mechanisms of energy metabolism that potentially protect the skeleton during hibernation. This review focuses on the endocrine and neuroendocrine regulation of bone/fat/energy metabolism in hibernators. Hibernators appear to have unique mechanisms that protect musculoskeletal tissues while catabolizing their abundant stores of fat. Furthermore, the bone remodeling processes that normally cause disuse-induced bone loss in non-hibernators are compared to bone remodeling processes in hibernators, and possible adaptations of the bone signaling pathways that protect the skeleton during hibernation are discussed. Understanding the biological mechanisms that allow hibernators to survive the prolonged disuse and fasting associated with extreme environmental challenges will provide critical information regarding the limit of convergence in mammalian systems and of skeletal plasticity, and may contribute valuable insight into the etiology and treatment of human diseases. PMID:24556365

  5. Determination of a broad spectrum of pharmaceuticals and endocrine disruptors in biofilm from a waste water treatment plant-impacted river.

    PubMed

    Huerta, B; Rodriguez-Mozaz, S; Nannou, C; Nakis, L; Ruhí, A; Acuña, V; Sabater, S; Barcelo, D

    2016-01-01

    Wastewater treatment plants (WWTPs) are one of the main sources of pharmaceuticals and endocrine disrupting compounds in freshwater ecosystems, and several studies have reported bioaccumulation of these compounds in different organisms in those ecosystems. River biofilms are exceptional indicators of pollution, but very few studies have focused on the accumulation of these emerging contaminants. The objectives of this study were first to develop an efficient analytical methodology for the simultaneous analysis of 44 pharmaceuticals and 13 endocrine disrupting compounds in biofilm, and second, to assess persistence, distribution, and bioaccumulation of these contaminants in natural biofilms inhabiting a WWTP-impacted river. The method is based on pressurized liquid extraction, purification by solid-phase extraction, and analysis by ultra performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS) in tandem. Recoveries for pharmaceuticals were 31-137%, and for endocrine disruptors 32-93%. Method detection limits for endocrine disruptors were in the range of 0.2-2.4 ng g(-1), and for pharmaceuticals, 0.07-6.7 ng g(-1). A total of five endocrine disruptors and seven pharmaceuticals were detected in field samples at concentrations up to 100 ng g(-1). Copyright © 2015. Published by Elsevier B.V.

  6. Development of a multiresidue method for the determination of endocrine disrupters in fish fillet using gas chromatography-triple quadrupole tandem mass spectrometry.

    PubMed

    Munaretto, Juliana S; Ferronato, Giovana; Ribeiro, Lucila C; Martins, Manoel L; Adaime, Martha B; Zanella, Renato

    2013-11-15

    Endocrine Disrupter Compounds (EDCs) are responsible for alterations in the endocrine system functions. Aquatic organisms are able to accumulate EDCs residues, being the major source of contamination for top predators and human consumers. This study aimed to develop and validate a method for the determination of 40 EDCs in fish fillet using modified QuEChERS and Gas Chromatography coupled with Mass Spectrometry in tandem (GC-MS/MS). A factorial design was used to optimize the extraction procedure. Method validation presented recoveries from 70.1% to 120.0% with RSD<20% and method limit of detection ranged from 0.3 to 7.5 µg kg(-1), showing good accuracy and precision. This method was successfully applied to the analysis of fish fillet from different species and residues of bisphenol A, chlorpyrifos and bifenthrin were detected. The proposed method proved to be effective for the determination of EDCs in fish fillet at very low concentration levels. © 2013 Elsevier B.V. All rights reserved.

  7. Method and data evaluation at NASA endocrine laboratory. [Skylab 3 experiments

    NASA Technical Reports Server (NTRS)

    Johnston, D. A.

    1974-01-01

    The biomedical data of the astronauts on Skylab 3 were analyzed to evaluate the univariate statistical methods for comparing endocrine series experiments in relation to other medical experiments. It was found that an information storage and retrieval system was needed to facilitate statistical analyses.

  8. A differential diagnosis of inherited endocrine tumors and their tumor counterparts

    PubMed Central

    Toledo, Sergio P. A.; Lourenço, Delmar M.; Toledo, Rodrigo A.

    2013-01-01

    Inherited endocrine tumors have been increasingly recognized in clinical practice, although some difficulties still exist in differentiating these conditions from their sporadic endocrine tumor counterparts. Here, we list the 12 main topics that could add helpful information and clues for performing an early differential diagnosis to distinguish between these conditions. The early diagnosis of patients with inherited endocrine tumors may be performed either clinically or by mutation analysis in at-risk individuals. Early detection usually has a large impact in tumor management, allowing preventive clinical or surgical therapy in most cases. Advice for the clinical and surgical management of inherited endocrine tumors is also discussed. In addition, recent clinical and genetic advances for 17 different forms of inherited endocrine tumors are briefly reviewed. PMID:23917672

  9. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in

  10. Dermatologic manifestations of endocrine disorders

    PubMed Central

    Lause, Michael; Kamboj, Alisha

    2017-01-01

    The skin serves as a window for clinicians to understand, diagnose, and monitor endocrine disease. Dermatologic manifestations of endocrinopathies contribute significantly to an individual’s health and quality of life. In this review, we outline various disorders of the hypothalamic-pituitary axis, thyroid gland, pancreas, adrenal gland, and androgen axis as well as hereditary endocrine syndromes. In acromegaly, glycosaminoglycan deposition contributes to a thickening of skin and soft tissue, which manifests as coarsening and enlargement of facial and acral structures. Stimulation of the thyrotropin receptor in hyperthyroidism results in mesenchymal tissue proliferation and consequent pretibial myxedema; other associated cutaneous features include onycholysis, and hyperhidrosis. Individuals with hypothyroidism exhibit cold, dry skin and brittle hair as well as a jaundice-like appearance due to carotene excess. The cutaneous features of diabetes mellitus (DM), mediated to a large extent by hyperglycemia and hyperinsulinemia, include necrobiosis lipoidica diabeticorum (NLD), diabetic dermopathy, and acanthosis nigricans. Pediatric patients with Cushing’s syndrome almost invariably present with truncal obesity and growth retardation; disruption of collagen formation and the catabolic effects of hypercortisolism result in skin atrophy and purple abdominal striae. In patients with Addison’s disease, generalized hyperpigmentation, secondary to elevated levels of melanocyte-stimulating hormone (MSH), is most prominent in sun-exposed areas. Due to hyperandrogenism, individuals with polycystic ovarian syndrome (PCOS) often exhibit hirsutism, acne vulgaris, and androgenetic alopecia. In multiple endocrine neoplasia (MEN) syndromes, specific gene mutations may lead to angiofibromas, lichen amyloidosis, and ganglioneuromas. Disruptions of immune regulation result in autoimmune polyglandular syndromes (APS) and associated clinical features including chronic mucocutaneous

  11. Treatment of trace organic compounds in common onsite wastewater systems

    USGS Publications Warehouse

    Robert Siegrist,; Conn, Kathleen E.

    2015-01-01

    Onsite wastewater systems (OWS) have historically been relied on to treat conventional pollutants and pathogens in a fashion similar to that expected from centralized wastewater systems. However, based on the occurrence of, and potential effects from, contaminants of emerging concern in wastewaters, OWS as well as centralized systems need to account for these compounds in system design and use. One group of contaminants involves organic compounds such as those associated with consumer product chemicals and pharmaceuticals, which are collectively referred to as trace organic compounds (TOrCs) due to their very low levels (e.g., ng/L to ug/L) relative to other pollutants. The question being confronted today is how best to account for TOrCs in onsite system design and use while also achieving other goals such as system simplicity, limited operation and maintenance requirements, low cost, and sustainability. In contrast to conventional pollutants such as nutrients and pathogens which have specific and achievable treatment goals, there are currently no enforceable treatment standards for TOrCs, which often have non-traditional toxicological endpoints (i.e. endocrine disruption). As highlighted in this paper, there are a large number of TOrCs that can be present in OWS and they have different properties, can be present at different frequencies of occurrence and concentrations, and have different susceptibilities to treatment in OWS. In general, based on the studies summarized in this paper, TOrCs normally should not require additional considerations beyond those for conventional pollutants and pathogens (e.g., nitrogen or bacteria and virus) during design and use of OWS. That said, there are situations where TOrCs could be a serious concern warranting special consideration in system design and use. In this paper, the frequency of occurrence of TOrCs and the range of concentrations encountered are highlighted. An evolving approach is outlined that could help assess the

  12. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury.

    PubMed

    Reifschneider, Kent; Auble, Bethany A; Rose, Susan R

    2015-07-31

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children's quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6-12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  13. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  14. Endocrine disruptors in soil: Effects of bisphenol A on gene expression of the earthworm Eisenia fetida.

    PubMed

    Novo, M; Verdú, I; Trigo, D; Martínez-Guitarte, J L

    2018-04-15

    Xenobiotics such as bisphenol A (BPA), are present in biosolids, which are applied as organic fertilizers in agricultural fields. Their effects on soil life have been poorly assessed, and this is particularly important in the case of earthworms, which represent the main animal biomass in this medium. In the present work we study the impacts of BPA on gene expression of Eisenia fetida, a widely used ecotoxicological model. Chronic soil tests and acute contact tests were performed, and gene expression was analyzed in total tissue and in masculine reproductive organs of the earthworms. The genes studied in this research played a role in endocrine pathways, detoxification mechanisms, stress response, epigenetics, and genotoxicity. Most of the genes were identified for the first time, providing potentially useful biomarkers for future assessments. For chronic exposures, no changes were detected in whole-body tissue; however, masculine reproductive organs showed changes in the expression of genes related to endocrine function (EcR, MAPR, AdipoR), epigenetic mechanisms (DNMTs), genotoxicity (PARP1), and stress responses (HSC70 4). For acute exposures, the expression of one epigenetic-related gene was altered for both whole-body tissues and male reproductive organs (Piwi2). Further changes were detected for whole-body tissues involved in detoxification (Metallothionein), stress (HSC70 4), and genotoxicity (PARP1) mechanisms. Acute exposure effects were also tested in whole-body tissues of juveniles, showing changes in the expression of Metallothionein and Piwi2. The molecular changes found in the analyzed earthworms indicate that exposure to BPA may have negative implications in their populations. Particularly interesting are the alterations related to epigenetic mechanisms, which suggest that future generations may be impacted. This study is the first to evaluate the molecular effects of BPA on soil organisms, and further assays will be necessary to better characterize

  15. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.

    PubMed

    Johnston, Theresa K; Perkins, Edward; Ferguson, Duncan C; Cropek, Donald M

    2016-10-01

    Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results. Brain (hypothalamus), pituitary, gonad, and liver tissue explants from adult fish were examined for function both individually and in coculture to determine combinations and conditions that could replicate in vivo behavior. Only cocultures had the ability to respond to an EDC, trenbolone, similarly to in vivo studies, based on estradiol, testosterone, and vitellogenin production trends, where lower exposure doses suppressed hormone production but higher doses increased production, resulting in distinctive U-shaped curves. These data suggest that a coculture system with all components of the HPG-L axis can be used as a link between in vitro and in vivo studies to predict endocrine system disruption in whole organisms. This tissue-based HPG-L system acts as a flexible deconstructed version of the in vivo system for better control and examination of the minute changes in system operation and response on EDC exposure with options to isolate, interrogate, and recombine desired components. Environ Toxicol Chem 2016;35:2530-2541. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  16. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    PubMed

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Endocrine disruptors: from Wingspread to environmental developmental biology.

    PubMed

    Markey, Caroline M; Rubin, Beverly S; Soto, Ana M; Sonnenschein, Carlos

    2002-12-01

    The production and release of synthetic chemicals into the environment has been a hallmark of the "Second Industrial Revolution" and the "Green Revolution." Soon after the inception of these chemicals, anecdotal evidence began to emerge linking environmental contamination of rivers and lakes with a variety of developmental and reproductive abnormalities in wildlife species. The accumulation of evidence suggesting that these synthetic chemicals were detrimental to wildlife, and potentially humans, as a result of their hormonal activity, led to the proposal of the endocrine disruptor hypothesis at the 1991 Wingspread Conference. Since that time, experimental and epidemiological data have shown that exposure of the developing fetus or neonate to environmentally-relevant concentrations of certain synthetic chemicals causes morphological, biochemical, physiological and behavioral anomalies in both vertebrate and invertebrate species. The ubiquitous use, and subsequent human exposure, of one particular chemical, the estrogen mimic bisphenol A (BPA), is the subject of this present review. We have highlighted this chemical since it provides an arresting model of how chemical exposure impacts developmental processes involved in the morphogenesis of tissues and organs, including those of the male and female reproductive systems, the mammary glands and the brain.

  18. Contextual modulation of social and endocrine correlates of fitness: insights from the life history of a sex changing fish

    PubMed Central

    Pradhan, Devaleena S.; Solomon-Lane, Tessa K.; Grober, Matthew S.

    2015-01-01

    Steroid hormones are critical regulators of reproductive life history, and the steroid sensitive traits (morphology, behavior, physiology) associated with particular life history stages can have substantial fitness consequences for an organism. Hormones, behavior and fitness are reciprocally associated and can be used in an integrative fashion to understand how the environment impacts organismal function. To address the fitness component, we highlight the importance of using reliable proxies of reproductive success when studying proximate regulation of reproductive phenotypes. To understand the mechanisms by which the endocrine system regulates phenotype, we discuss the use of particular endocrine proxies and the need for appropriate functional interpretation of each. Lastly, in any experimental paradigm, the responses of animals vary based on the subtle differences in environmental and social context and this must also be considered. We explore these different levels of analyses by focusing on the fascinating life history transitions exhibited by the bi-directionally hermaphroditic fish, Lythrypnus dalli. Sex changing fish are excellent models for providing a deeper understanding of the fitness consequences associated with behavioral and endocrine variation. We close by proposing that local regulation of steroids is one potential mechanism that allows for the expression of novel phenotypes that can be characteristic of specific life history stages. A comparative species approach will facilitate progress in understanding the diversity of mechanisms underlying the contextual regulation of phenotypes and their associated fitness correlates. PMID:25691855

  19. Effects of Anorexia Nervosa on the Endocrine System.

    PubMed

    Baskaran, Charumathi; Misra, Madhusmita; Klibanski, Anne

    2017-03-01

    Anorexia nervosa (AN) is characterized by severe undernutrition associated with alterations in multiple endocrine axes, which are primarily adaptive to the state of caloric deprivation. Hormonal changes include growth hormone (GH) resistance with low insulin like growth factor-1 (IGF-1) levels, hypothalamic hypogonadism, relative hypercortisolemia and changes in appetite regulating hormones, including leptin, ghrelin, and peptide YY. These alterations contribute to abnormalities in bone metabolism leading to low bone mass, impaired bone microarchitecture, and increased risk for fracture, and may also negatively impact cognition, emotions and mood. The best strategy to improve all biologic outcomes is weight and menstrual recovery. Physiological estrogen replacement improves bone accrual rates and measures of trait anxiety in adolescents with AN. Other therapies including testosterone and IGF-1 replacement, and use of DHEA with oral estrogen-progesterone combination pills, bisphosphonates and teriparatide have also been studied to improve bone outcomes. Copyright© of YS Medical Media ltd.

  20. A patient with a metastatic gastroenteropancreatic endocrine carcinoma causing hyperinsulinaemic hypoglycaemia and the carcinoid syndrome.

    PubMed

    Hinchliffe, E; Allcock, R L; Mansoor, W; Myers, M A

    2011-11-01

    We present the case of a 57-year-old patient who initially presented with a constellation of symptoms including intense pruritis, flushing and diarrhoea. Following several months clinical deterioration, the patient was investigated radiologically, where multiple hepatic tumours were identified. Liver biopsy confirmed the presence of a well-differentiated metastatic gastroenteropancreatic endocrine carcinoma with biochemical evidence of serotonin secretion. Over a period of six months, the clinical course of the patient's disease progressed whereby severe hypoglycaemia became the major manifestation. Subsequent biochemical investigations confirmed the diagnosis of an insulinoma. Extensive radiological investigation revealed a solitary primary pancreatic tumour, indicating the presence of a metastatic pancreatic endocrine tumour (PET) secreting both insulin and serotonin. The patient was treated with a chemotherapy regimen consisting of 12 cycles of 5-fluorouracil/oxaliplatin, responding clinically - improved World Health Organization performance score from 3 to 1, biochemically - significantly reduced plasma chromogranin A and cancer antigen 19-9 concentrations and improved liver function tests, and radiologically - reduced pancreatic and hepatic tumour size. This is the first report of a primary PET secreting insulin and serotonin. Due to the association of serotonin-secreting gastroenteropancreatic endocrine tumours (GEP-ETs) with multiple endocrine neoplasia type-1 (MEN1) and biochemical evidence of an insulinoma, MEN1 should also be considered in such cases. The case provides further evidence for the biological heterogeneity of GEP-ETs and the myriad secretory humoral products and resultant clinical syndromes arising from such tumours.

  1. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors.more » Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between

  2. Training our future endocrine surgeons: a look at the endocrine surgery operative experience of U.S. surgical residents.

    PubMed

    Zarebczan, Barbara; McDonald, Robert; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S

    2010-12-01

    During the last 10 years, the number of endocrine procedures performed in the United States has increased significantly. We sought to determine whether this has translated into an increase in operative volume for general surgery and otolaryngology residents. We evaluated records from the Resident Statistic Summaries of the Residency Review Committee (RRC) for U.S. general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Between 2004 and 2008, the average endocrine case volume of U.S. general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed more than twice as many operations as U.S. general surgery residents. The growth in case volume was mostly from increases in the number of thyroidectomies performed by U.S. general surgery and otolaryngology residents (17.9 to 21.8, P = .007 and 46.5 to 54.4, P = .04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs 8.8, P = .007). Although there has been an increase in the number of endocrine cases performed by graduating U.S. general surgery residents, this is significantly smaller than that of otolaryngology residents. To remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. Copyright © 2010 Mosby, Inc. All rights reserved.

  3. Mapping the Decision-Making Process for Adjuvant Endocrine Therapy for Breast Cancer: The Role of Decisional Resolve.

    PubMed

    Beryl, Louise L; Rendle, Katharine A S; Halley, Meghan C; Gillespie, Katherine A; May, Suepattra G; Glover, Jennifer; Yu, Peter; Chattopadhyay, Runi; Frosch, Dominick L

    2017-01-01

    Studies show adjuvant endocrine therapy increases survival and decreases risk of breast cancer recurrence for hormone receptor-positive tumors. Yet studies also suggest that adherence rates among women taking this therapy may be as low as 50% owing largely to adverse side effects. Despite these rates, research on longitudinal patient decision making regarding this therapy is scant. We sought to map the decision-making process for women considering and initiating adjuvant endocrine therapy, paying particular attention to patterns of uncertainty and decisional change over time. A longitudinal series of semistructured interviews conducted at a multispecialty health care organization in Northern California with 35 newly diagnosed patients eligible for adjuvant endocrine therapy were analyzed. Analysis led to the identification and indexing of 3 new decision-making constructs-decisional phase, decisional direction, and decisional resolve-which were then organized using a visual matrix and examined for patterns characterizing the decision-making process. Our data reveal that most patients do not make a single, discrete decision to take or not take hormone therapy but rather traverse multiple decisional states, characterized by 1) phase, 2) direction, and 3) strength of resolve. Our analysis tracks these decisional states longitudinally using a grayscale-coded matrix. Our data show that decisional resolve wavers not just when considering therapy, as the existing concept of decisional conflict suggests, but even after initiating it, which may signal future decisions to forgo therapy. Adjuvant endocrine therapy, like other chronic care decisions, has a longer decision-making process and implementation period. Thus, theoretical, empirical, and clinical approaches should consider further exploring the new concept and measurement of decisional resolve, as it may help to improve subsequent medication adherence. © The Author(s) 2016.

  4. QSAR PRIORITIZATION OF CHEMICAL INVENTORIES FOR ENDOCRINE DISRUPTOR TESTING

    EPA Science Inventory

    Binding affinity between chemicals and the estrogen receptor (ER) serves as an indicator of the potential to cause endocrine disruption through this receptor-mediated endocrine pathway. Estimating ER binding affinity is, therefore, one strategic approach to reducing the costs of ...

  5. Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation.

    PubMed

    Dickerson, E H; Sathyapalan, T; Knight, R; Maguiness, S M; Killick, S R; Robinson, J; Atkin, S L

    2011-12-01

    There is increasing concern that environmental chemicals have a direct effect on fertility. Heavy metals such as mercury have been shown to affect various organ systems in humans including nervous system and skin, however they could also act as endocrine disrupting chemicals adversely affecting fertility. Metals such as zinc and selenium are essential micronutrients with diverse functions that may be important for reproductive outcomes. We measured mercury, zinc and selenium levels in the hair, a reliable reflection of long term environmental exposure and dietary status, to correlate with the outcome of ovarian hyperstimulation for in vitro fertilisation (IVF) treatment. We analysed the hair of 30 subfertile women for mercury, zinc and selenium using inductively coupled mass spectrometry. Each woman underwent one cycle of IVF treatment. Correlation between the levels of these trace metals and treatment outcomes was investigated. Thirty women were recruited with mean (±SD) age of 32.7(4.4) years and BMI of 25.4(5.0)kg/m(2). Hair mercury concentration showed a negative correlation with oocyte yield (p < 0.05,βcoefficient 0.38) and follicle number (p = 0.03,β coefficient0.19) after ovarian stimulation. Zinc and selenium levels in hair correlated positively with oocyte yield after ovarian stimulation (p < 0.05,β coefficient0.15) and (p = 0.03,β coefficient0.21) respectively. Selenium levels in hair correlated significantly with follicle number following stimulation (p = 0.04, βcoefficient0.22). There was no correlation between mercury, zinc and selenium in hair and their corresponding serum levels. These data suggest that mercury had a deleterious effect whilst there was a positive effect for zinc and selenium in the ovarian response to gonadotrophin therapy for IVF. Hair analysis offers a novel method of investigating the impact of long-term exposure to endocrine disruptors and nutritional status on reproductive outcomes.

  6. Tumour suppressor menin is essential for development of the pancreatic endocrine cells.

    PubMed

    Fontanière, Sandra; Duvillié, Bertrand; Scharfmann, Raphaël; Carreira, Christine; Wang, Zhao-Qi; Zhang, Chang-Xian

    2008-11-01

    Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene predispose patients to MEN1 that affects mainly endocrine tissues, suggesting important physiological functions of the gene in adult endocrine cells. Homozygous disruption of Men1 in mice causes embryonic lethality, whereas the eventual involvement of the gene in embryonic development of the endocrine cells remains unknown. Here, we show that homozygous Men1 knockout mice demonstrate a reduced number of glucagon-positive cells in the E12.5 pancreatic bud associated with apoptosis, whereas the exocrine pancreas development in these mice is not affected. Our data suggest that menin is involved in the survival of the early pancreatic endocrine cells during the first developmental transition. Furthermore, chimerism assay revealed that menin has an autonomous and specific effect on the development of islet cells. In addition, using pancreatic bud culture mimicking the differentiation of alpha- and beta-cells during the second transition, we show that loss of menin leads to the failure of endocrine cell development, altered pancreatic structure and a markedly decreased number of cells expressing neurogenin 3, indicating that menin is also required at this stage of the endocrine pancreas development. Taken together, our results suggest that menin plays an indispensable role in the development of the pancreatic endocrine cells.

  7. Biodegradation of Endocrine-Disrupting Chemicals and Residual Organic Pollutants of Pulp and Paper Mill Effluent by Biostimulation.

    PubMed

    Chandra, Ram; Sharma, Pooja; Yadav, Sangeeta; Tripathi, Sonam

    2018-01-01

    Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.

  8. A path forward in the debate over health impacts of endocrine disrupting chemicals.

    PubMed

    Zoeller, R Thomas; Bergman, Åke; Becher, Georg; Bjerregaard, Poul; Bornman, Riana; Brandt, Ingvar; Iguchi, Taisen; Jobling, Susan; Kidd, Karen A; Kortenkamp, Andreas; Skakkebaek, Niels E; Toppari, Jorma; Vandenberg, Laura N

    2014-12-22

    Several recent publications reflect debate on the issue of "endocrine disrupting chemicals" (EDCs), indicating that two seemingly mutually exclusive perspectives are being articulated separately and independently. Considering this, a group of scientists with expertise in basic science, medicine and risk assessment reviewed the various aspects of the debate to identify the most significant areas of dispute and to propose a path forward. We identified four areas of debate. The first is about the definitions for terms such as "endocrine disrupting chemical", "adverse effects", and "endocrine system". The second is focused on elements of hormone action including "potency", "endpoints", "timing", "dose" and "thresholds". The third addresses the information needed to establish sufficient evidence of harm. Finally, the fourth focuses on the need to develop and the characteristics of transparent, systematic methods to review the EDC literature. Herein we identify areas of general consensus and propose resolutions for these four areas that would allow the field to move beyond the current and, in our opinion, ineffective debate.

  9. Endocrine disorders which manifest in the lower extremity.

    PubMed

    Rubenstein, S A; Boxer, M C

    1985-10-01

    This article has attempted to alert the podiatric medical practitioner to those endocrine disorders which have pedal manifestations. With the clinical information presented here, the podiatrist is in a unique position to identify early signs of endocrine disease. By doing so, the podiatric practitioner may play a vital role as a member of the primary care team.

  10. Fish and wildlife species as sentinels of environmental endocrine disruption

    USGS Publications Warehouse

    Sheffield, S.R.; Matter, J.M.; Rattner, B.A.; Guiney, P.D.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    This chapter provides an overview of the history and criteria for use of captive and free-ranging fish and wildlife (amphibians, reptiles, birds, and mammals) species as sentinels of potential environmental endocrine disruption. Biochemical, behavioral, physiological, immunological, genetic, reproductive, developmental, and ecological correlates of endocrine disruption in these sentinels are presented and reviewed. In addition, data needs to promote better use of sentinel species in the assessment of endocrine disruption are discussed.

  11. Endocrine Disorders in Childhood: A Selective Survey of Intellectual and Educational Sequelae.

    ERIC Educational Resources Information Center

    Sandberg, David E.; Barrick, Christopher

    1995-01-01

    Examines intellectual and educational sequelae of selected endocrine systems and the psychosocial impact of their medical conditions. Many conditions are named including: Growth Hormone Deficiency, Turner Syndrome, Precocious Puberty, Klinefelters Syndrome, Congenital Hypothyroidism, and Insulin-Dependent Diabetes Mellitus. Gives psychoeducational…

  12. ENDOCRINE DISRUPTORS: LESSONS LEARNED

    EPA Science Inventory

    For more than ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; its occurrence in the real world; and in developing tools for screening and prediction of risk. Mu...

  13. Multiple endocrine diseases in cats: 15 cases (1997-2008).

    PubMed

    Blois, Shauna L; Dickie, Erica L; Kruth, Stephen A; Allen, Dana G

    2010-08-01

    The objective of this retrospective study was to characterize a population of cats from a tertiary care center diagnosed with multiple endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Medical records of 15 cats diagnosed with more than one endocrine disorder were reviewed. The majority of cats were domestic shorthairs, and the mean age at the time of diagnosis of the first disorder was 10.3 years. The most common combination of disorders was diabetes mellitus and hyperthyroidism. Two cats had concurrent diabetes mellitus and hyperadrenocorticism, one cat had concurrent central diabetes insipidus and diabetes mellitus. A mean of 25.7 months elapsed between diagnoses of the first and second endocrine disorder, but this was variable. This study suggests the occurrence of multiple endocrine disorders is uncommon in cats. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  14. Meeting report: international workshop on endocrine disruptors: exposure and potential impact on consumers health.

    PubMed

    Rousselle, C; Ormsby, J N; Schaefer, B; Lampen, A; Platzek, T; Hirsch-Ernst, K; Warholm, M; Oskarsson, A; Nielsen, P J; Holmer, M L; Emond, C

    2013-02-01

    The French Agency for Food, Environmental and Occupational Health and Safety (Anses) hosted a two-day workshop on Endocrine Disruptors: Exposure and Potential Impact on Consumers Health, bringing together participants from international organizations, academia, research institutes and from German, Swedish, Danish and French governmental agencies. The main objective of the workshop was to share knowledge and experiences on endocrine disruptors (ED) exposure and potential impact on consumers' health, to identify current risk assessment practices and knowledge gaps and issue recommendations on research needs and future collaboration. The following topics were reviewed: (1) Definition of ED, (2) endpoints to be considered for Risk assessment (RA) of ED, (3) non-monotonic dose response curves, (4) studies to be considered for RA (regulatory versus academic studies), (5) point of departure and uncertainty factors, (6) exposure assessment, (7) regulatory issues related to ED. The opinions expressed during this workshop reflect day-to-day experiences from scientists, regulators, researchers, and others from many different countries in the fields of risk assessment, and were regarded by the attendees as an important basis for further discussions. Accordingly, the participants underlined the need for more exchange in the future to share experiences and improve the methodology related to risk assessment for endocrine disrupters. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Endocrine correlates of susceptibility to motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1985-01-01

    Motion sickness releases ACTH, epinerphrine, and norepinephrine. The endocrine responses to motion sickness, adaptive responses leading to the resolution of the syndrome, and the way in which antimotion-sickness drugs influence the endocrine responses were studied. Susceptible or insusceptible subjects were administered antimotion-sickness drugs prior to stressful stimulation. Insusceptible subjects displayed more pronounced elevations of ACTH, epinephrine, and norepinephrine after stressful motion. Predrug levels of ACTH were higher in insusceptible subjects (p less than 0.01). Acute blockade of hormone responses to stressful motion or alteration of levels of ACTH by drugs were not correlated with individual susceptibility. No correlation was apparent between epinephrine and ACTH release. These endocrine differences may represent neurochemical markers for susceptibility to motion, stress, or general adaptability, and it may be that the chronic modulation of their levels might be more effective in preventing motion sickness than the acute blockage or stimulation of specific receptors.

  16. Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians.

    PubMed

    Wong, Katelyn H; Durrani, Timur S

    2017-05-01

    Endocrine disrupting chemicals, a group of exogenous chemicals that can interfere with hormone action in the body, have been implicated in disrupting endocrine function, which negatively affects human health and development. Endocrine disrupting chemicals are ubiquitously detected in consumer products, foods, beverages, personal care products, and household cleaning products. Due to concerns about their negative effects on human health, several professional health provider societies have recommended the reduction of common endocrine disrupting chemical exposures. The purpose of this review is to provide a brief overview of common endocrine disrupting chemicals (bisphenol A, phthalates, triclosan, polybrominated ethers, and parabens) and potential effects on child development and health. In addition, we aim to provide guidance and resources for pediatricians and other health care providers with counseling strategies to help patients to minimize exposures to common endocrine disrupting chemicals. Copyright © 2017 Mosby, Inc. All rights reserved.

  17. International network on endocrine complications in thalassaemia (I-CET): an opportunity to grow.

    PubMed

    De Sanctis, V; Soliman, A T; Angastiniotis, M; Eleftheriou, A; Kattamis, Ch; Karimi, M; El Kholy, M; Elsedfy, H; Yassin, Mohd Abdel Daem Mohd; El Awwa, A; Stoeva, I; Skordis, N; Raiola, G; Fiscina, B

    2012-04-01

    Most of the endocrine complications in thalassaemia are attributable to iron overload which may be the result of economic circumstances (expense of the chelation therapy), late onset of chelation therapy or poor compliance with the iron chelation therapy. The major difficulties reported by hematologists or pediatric endocrinologists experienced in thalassaemias or thalassaemia syndromes in following growth disorders and endocrine complications were: lack of familiarity with medical treatment of endocrine complications (40%), interpretation of endocrine tests (30%), costs (65%), absence of paediatric endocrinologist for consultation on growth disorders and endocrine complications (27%), facilities (27%), other (e.g. lack of collaboration and on-time consultation between thalassaemic Centers supervised by hematologists and endocrinologists) (17%). Because any progress we make in research into growth disorders and endocrine complications in thalassaemia should be passed on to all those suffering from it, guaranteeing them the same therapeutic benefits and the same quality of life, on the 8th of May, 2009 in Ferrara (Italy), the International Network on Endocrine Complications in Thalassemia (I-CET) was founded. The I-CET group is planning to conduct, in Ferrara in May 2012, a workshop, "MRI and Endocrine Complications in Thalassaemia", and in Doha (Qatar) in September 2012, a 3-day intensive course entitled, "Growth disorders and Endocrine Complications in Thalassaemia", to provide interested pediatricians, physicians and hematologists from all over the world with an in-depth approach to the diagnosis and management of growth and endocrine disorders in thalassaemic patients.

  18. Specifying pancreatic endocrine cell fates.

    PubMed

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  19. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR?

    PubMed

    Stolz, Ailine; Schönfelder, Gilbert; Schneider, Marlon R

    2018-02-01

    Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St. Lawrence River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hontela, A.; Duclos, D.; Fortin, R.

    1995-04-01

    The endocrine and biochemical responses to the acute stress of capture and handling were investigated in sexually mature and in immature male and female yellow perch, Perca flavescens, from a site contaminated by organic contaminants (PAHs and PCBs) and heavy metals (Hg, Cd, As, and Zn) and from a reference site in the St. Lawrence River. Following a standardized capture and handling stress, fish from the contaminated site did not exhibit the expected physiological stress response observed in fish from the reference site. Blood cortisol and thyroxine levels were lower, and liver glycogen stores were greater in mature males andmore » females, as well as in the immature fish from the contaminated site, compared to the reference site. Fish from the contaminated site also had smaller gonads and lower condition factor. The impaired ability to elevate blood cortisol in response to an acute stress may be used as a biomarker of toxic stress in health assessment of feral fish from polluted environments.« less

  1. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila

    PubMed Central

    Reiff, Tobias; Jacobson, Jake; Cognigni, Paola; Antonello, Zeus; Ballesta, Esther; Tan, Kah Junn; Yew, Joanne Y; Dominguez, Maria; Miguel-Aliaga, Irene

    2015-01-01

    The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output. DOI: http://dx.doi.org/10.7554/eLife.06930.001 PMID:26216039

  2. [Histological effects of short term endocrine therapy on prostatic cancer].

    PubMed

    Irisawa, C; Yoshimura, Y; Yokota, T; Yamaguchi, O; Kondou, Y; Hamasaki, T; Yamad, Y; Kurosu, S; Chiba, R

    1996-07-01

    The objective of this study is to investigate the pathological changes which occurred in prostatic cancer shortly after the commencement of endocrine therapy. Fourty-three patients underwent radical prostatectomy immediately after the short term endocrine therapy (treatment period was within one month) and the histological pictures of operative specimens were compared to those obtained from the pretreatment biopsy specimens. Degenerative changes of cancer cells, such as nuclear and cytoplasmic vacuole, collapse of the cytoplasm and the appearance of naked hyperchromatic nucleus were noticed after the short term endocrine therapy. Especially in the cases which were histologically evaluated to be poorly differentiated in the biopsy specimens, not only degenerative changes but also destruction of cancer nests caused by cell death were observed. The histological effects affected by short term endocrine treatment had no relation to the prognosis, but in the cases of stage D2, the pathological grade judged by post-therapeutic specimens were found to be useful for the prediction of prognosis. Endocrine therapy induces remarkable pathological changes in prostatic cancer within a very short time after beginning treatment.

  3. EVALUATION OF DRINKING WATER TREATMENT TECHNOLOGIES FOR REMOVAL OF ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Many of the chemicals identified as potential endocrine disrupting compounds (EDCs) may be present in surface or ground waters used as drinking water sources due to their introduction from domestic and industrial sewage treatment systems and wet-weather runoff. In order to dec...

  4. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  5. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC-MS.

    PubMed

    Azzouz, Abdelmonaim; Rascón, Andrés J; Ballesteros, Evaristo

    2016-06-01

    Humans are exposed to hazardous substances including endocrine-disrupting chemicals (EDCs). These compounds have been associated with some diseases such as cancer and ascribed adverse effects on life-essential organs. The method, which allows the determination of both free and conjugated forms of EDCs, involves the liquid-liquid extraction from the sample with ethyl acetate, followed by its preconcentration and clean-up by SPE in a continuous system for the subsequent determination by GC-MS. The proposed method affords very low LODs and RSD. This allowed its successful application to the determination of EDCs in human urine, blood and breast milk. The most frequently founded were methylparaben, ethylparaben, bisphenol A and triclosan.

  6. Epithelial to mesenchymal transition in human endocrine islet cells

    PubMed Central

    Moreno-Amador, José Luis; Téllez, Noèlia; Marin, Sandra; Aloy-Reverté, Caterina; Semino, Carlos; Nacher, Montserrat

    2018-01-01

    Background β-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. Objective To investigate whether EMT takes place in the endocrine non-β cells of human islets. Methodology Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. Results Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. Conclusions In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype. PMID:29360826

  7. Organic contaminants in African aquatic systems: Current knowledge, health risks, and future research directions.

    PubMed

    Gwenzi, Willis; Chaukura, Nhamo

    2018-04-01

    Organic contaminants (OCs) are increasingly being reported in African aquatic systems, yet a critical evaluation of the literature is still lacking. The objectives of this review were to: (1) identify hotspot reservoirs, transfer pathways and ecological and human risks of OCs, (2) identify potential interventions to minimize the health risks, and (3) highlight knowledge gaps and research constraints. OCs widely reported in aquatic systems include pesticides, pharmaceuticals, plasticizers, solvents, endocrine disrupting compounds, and antimicrobial resistance genes, originating from applications in crop protection, veterinary and animal husbandry, human sanitation and hygiene, human vector and disease control. Potential hotspot reservoirs of OCs include wastewaters, on-site sanitation systems, leachates from non-engineered landfills and contaminated recharge of shallow groundwater systems. OCs could be transferred into humans via drinking of contaminated water, consumption of contaminated crops and aquatic foods, and to a lesser extent, inhalation and dermal contact. Ecological effects including intersex, estrogenicity, and acute and chronic toxicity occur in avian and aquatic species. Although the evidence base of human ecotoxicological effects of OC remains weak, pesticides have been reported in human milk, serum and sperms, pointing to potential chronic and acute toxicity and endocrine disruption. The prevalence of antimicrobials and their resistance genes could in turn lead to antimicrobial resistance in humans. The lack of OC monitoring in drinking water, coupled with over-reliance on untreated drinking water vulnerable to OC contamination predisposes humans to OC health risks. Appropriate water treatment methods, were identified, and a conceptual framework developed to minimize the ecological and human health risks. Future research directions on OC hotspot reservoirs, environmental behaviour and fate, ecotoxicology, epidemiology and interventions to minimize

  8. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Styne, Dennis M; Arslanian, Silva A; Connor, Ellen L; Farooqi, Ismaa Sadaf; Murad, M Hassan; Silverstein, Janet H; Yanovski, Jack A

    2017-03-01

    The European Society of Endocrinology and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the assessment, treatment, and prevention of pediatric obesity. The participants include an Endocrine Society-appointed Task Force of 6 experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The Task Force commissioned 2 systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and co-sponsoring organizations reviewed and commented on preliminary drafts of this guideline. Pediatric obesity remains an ongoing serious international health concern affecting ∼17% of US children and adolescents, threatening their adult health and longevity. Pediatric obesity has its basis in genetic susceptibilities influenced by a permissive environment starting in utero and extending through childhood and adolescence. Endocrine etiologies for obesity are rare and usually are accompanied by attenuated growth patterns. Pediatric comorbidities are common and long-term health complications often result; screening for comorbidities of obesity should be applied in a hierarchal, logical manner for early identification before more serious complications result. Genetic screening for rare syndromes is indicated only in the presence of specific historical or physical features. The psychological toll of pediatric obesity on the individual and family necessitates screening for mental health issues and counseling as indicated. The prevention of pediatric obesity by promoting healthful diet, activity, and environment should be a primary goal, as

  9. Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J

    1989-01-01

    Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.

  10. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor.

    PubMed

    Blakley, Gregory G; Pohorecky, Larissa A; Benjamin, Daniel

    2004-02-01

    Compared with the use of classic receptor ligands, antisense oligonucleotides (ASO) targeted at specific central nervous system receptors are an effective alternative in experiments designed to examine the behavioral role of such systems. The nociception/orphaninFQ (N/OFQ) system has been implicated in mediating endocrine function, feeding, stress, pain, anxiety, and the rewarding effects of drugs of abuse. The objective of the current study was to examine whether long-term ASO-induced downregulation of N/OFQ's receptor (NOP) produced changes in endocrine, anxiety, nociception and ethanol's (EtOH's) locomotor activating properties. Male Long Evans rats were implanted with osmotic mini-pumps containing ASO for the NOP receptor. ASO was chronically infused for 26 days and, during this time, multiple behavioral and physiological measurements were conducted. ASO infusion significantly reduced expression of the NOP receptor in brain, confirmed by significant reductions of OFQ-stimulated [(35)S]-GTPgammaS binding in the paraventricular nucleus, prefrontal cortex, and septum. Behavioral changes were observed in ASO-treated animals including higher body temperature, increased water intake, decreased corticosterone (CORT) levels, decreased grooming in the open field, increased tail-flick latency, shorter durations on the open arms of the elevated plus maze, and heightened locomotor activity following EtOH. These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.

  11. Diagnosis and Treatment of Endocrine Co-Morbidities in Patients with Cystic Fibrosis

    PubMed Central

    Siwamogsatham, Oranan; Alvarez, Jessica

    2015-01-01

    Purpose of review The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis (CF). Recent findings As life expectancy in CF has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes (CFRD), cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Summary Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with CF. This review summarizes the updated screening and management of endocrine diseases in the CF population. PMID:25105995

  12. Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking?

    PubMed

    Bliatka, D; Lymperi, S; Mastorakos, G; Goulis, D G

    2017-05-01

    The so-called "endocrine disruption hypothesis" suggests that exposures to endocrine disruption (EDs) during fetal, neonatal and adult life may interfere with the development of reproductive organs and alter semen quality and reproductive hormone production. Even though animal studies provide substantial evidence of adverse effects of EDs on male reproductive system, epidemiological studies in humans arrive at conflicting results. The aim of the present study was to systematically review the literature to locate methodological characteristics of the studies that struggle the formation of an association between EDs and human male reproduction. Such characteristics include: (i) definition of the exposed and the non-exposed population, (ii) age, (iii) insufficient control for confounders, (iv) ED assay and threshold, (v) time parameters of ED exposure, and (vi) study outcomes. Additional issues are: (i) the late effect of an early exposure, (ii) the multiple exposure effect, and (iii) the fact the same ED may exhibit different modes of action. Unfortunately, the nature of the field precludes the conduction of randomized-controlled trials, which could result to etiological associations between EDs and human male reproduction. Consequently, there is a great need to conduct well-designed studies of case-control or cohort type to evaluate EDs effects on human male reproductive health, and apply possible measures that could limit dangerous exposures. © 2017 American Society of Andrology and European Academy of Andrology.

  13. Fifteen years after "Wingspread"- Environmental Endocrine Disrupters and human and wildlife health: Where we are today and where we need to go.

    EPA Science Inventory

    In 1991 a group of expert scientists at a Wingspread work session on endocrine disrupting chemicals (EDCs) concluded that "Many compounds introduced into the environment by human activity are capable of disrupting the endocrine system of animals, including fish, wildlife, and hum...

  14. Occurrence of Endocrine-Disrupting and Other Wastewater Compounds during Water Treatment with Case Studies from Lincoln, Nebraska and Berlin, Germany

    EPA Science Inventory

    Except for herbicides, research on the fate and transport of endocrine disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Analytical methods still are being developed, evalua...

  15. The influence of natural organic matter and cations on the rejection of endocrine disrupting and pharmaceutically active compounds by nanofiltration.

    PubMed

    Comerton, Anna M; Andrews, Robert C; Bagley, David M

    2009-02-01

    The impact of natural organic matter (NOM) and cations on the rejection of five endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs) (acetaminophen, carbamazepine, estrone, gemfibrozil, oxybenzone) by nanofiltration (NF) was examined. The water matrices included membrane bioreactor (MBR) effluent, Lake Ontario water and laboratory-prepared waters modelled to represent the characteristics of the Lake Ontario water. The impact of cations in natural waters on compound rejection was also examined by doubling the natural cation concentration (calcium, magnesium, sodium) in both the Lake Ontario water and the MBR effluent. The presence of Suwannee River NOM spiked into laboratory-grade water was found to cause an increase in compound NF rejection. In addition, the presence of cations alone in laboratory-grade water did not have a significant impact on rejection with the exception of the polar compound gemfibrozil. However, when cation concentration in natural waters was increased, a significant decrease in the rejection of EDCs and PhACs was observed. This suggests that the presence of cations may result in a reduction in the association of EDCs and PhACs with NOM.

  16. Pineal gland as an endocrine gravitational lunasensor: manifestation of moon-phase dependent morphological changes in mice.

    PubMed

    Gerasimov, A V; Kostyuchenko, V P; Solovieva, A S; Olovnikov, A M

    2014-10-01

    We found that some morphological properties of the pineal gland and submandibular salivary gland of mice are significantly distinct at the new and full moon. We suppose that the differences are initiated by the displacements of the electron-dense concretions in the secretory vesicles of pinealocytes. This presumably occurs under the influence of the gravitational field, which periodically changes during different phases of the moon. It seems that the pinealocyte is both an endocrine and gravisensory cell. A periodic secretion of the pineal gland probably stimulates, in a lunaphasic mode, the neuroendocrine system that, in turn, periodically exerts influence on different organs of the body. The observed effect probably serves, within the lifelong clock of a brain, to control development and aging in time.

  17. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    PubMed

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  18. Development of a Multidisciplinary, Multicampus Subspecialty Practice in Endocrine Cancers

    PubMed Central

    Bible, Keith C.; Smallridge, Robert C.; Morris, John C.; Molina, Julian R.; Suman, Vera J.; Copland, John A.; Rubin, Joseph; Menefee, Michael E.; Sideras, Kostandinos; Maples, William J.; McIver, Bryan; Fatourechi, Vahab; Hay, Ian; Foote, Robert L.; Garces, Yolanda I.; Kasperbauer, Jan L.; Thompson, Geoffrey B.; Grant, Clive S.; Richards, Melanie L.; Sebo, Thomas; Lloyd, Ricardo; Eberhardt, Norman L.; Reddi, Honey V.; Casler, John D.; Karlin, Nina J.; Westphal, Sydney A.; Richardson, Ronald L.; Buckner, Jan C.; Erlichman, Charles

    2012-01-01

    Purpose: Relative to more abundant neoplasms, endocrine cancers have been historically neglected, yet their incidence is increasing. We therefore sought to build interest in endocrine cancers, improve physician experience, and develop innovative approaches to treating patients with these neoplasms. Methods: Between 2005 and 2010, we developed a multidisciplinary Endocrine Malignancies Disease Oriented Group involving all three Mayo Clinic campuses (Rochester, MN; Jacksonville, FL; and Scottsdale, AZ). In response to higher demand at the Rochester campus, we sought to develop a Subspecialty Tumor Group and an Endocrine Malignancies Tumor Clinic within the Division of Medical Oncology. Results: The intended groups were successfully formed. We experienced difficulty in integration of the Mayo Scottsdale campus resulting from local uncertainty as to whether patient volumes would be sufficient to sustain the effort at that campus and difficulty in developing enthusiasm among clinicians otherwise engaged in a busy clinical practice. But these obstacles were ultimately overcome. In addition, with respect to the newly formed medical oncology subspecialty endocrine malignancies group, appointment volumes quadrupled within the first year and increased seven times within two years. The number of active therapeutic endocrine malignancies clinical trials also increased from one in 2005 to five in 2009, with all three Mayo campuses participating. Conclusion: The development of subspecialty tumor groups for uncommon malignancies represents an effective approach to building experience, increasing patient volumes and referrals, and fostering development of increased therapeutic options and clinical trials for patients afflicted with otherwise historically neglected cancers. PMID:22942830

  19. Practice patterns and job satisfaction in fellowship-trained endocrine surgeons.

    PubMed

    Tsinberg, Michael; Duh, Quan-Yang; Cisco, Robin M; Gosnell, Jessica E; Scholten, Anouk; Clark, Orlo H; Shen, Wen T

    2012-12-01

    Debates about the difficult job market for young endocrine surgeons are ongoing. This study aimed to analyze the practice patterns and work-related satisfaction levels of recently trained endocrine surgeons. An anonymous survey was utilized. Participants were divided into 3 groups: "Young" (<3 years in practice), "middle" (3-5 years), and "older" (>5 years). Fifty-six of 78 surgeons (72%) responded to the survey. Time in practice ranged from 1 to 9 years (mean, 3.9 ± 0.28). Forty-five (80%) described their practice as academic. Participants performed 244.1 ± 17.8 operations within the last year; 75.4 ± 3.3% were endocrine cases. More surgeons in the "young" group have academic practices (92%) and joined established endocrine surgery groups (54%) versus older surgeons (67% and 42%; P = .05). Of surgeons in the "young" group, 4% started their own practice versus 33% in the "older" group (P = .04). Level of satisfaction with financial compensation (3.2 on a 4-point scale versus 2.9) and lifestyle (3.6 vs 3.1) was also higher in the younger group (P = .009). Despite widespread speculation about scarcity of academic jobs after fellowship, recently trained endocrine surgeons are more likely to practice in academic settings and join established endocrine surgery practices when compared with older surgeons. Overall satisfaction level is higher among recently trained surgeons. Copyright © 2012 Mosby, Inc. All rights reserved.

  20. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    PubMed

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  1. Systemic control of brown fat thermogenesis: integration of peripheral and central signals.

    PubMed

    Schulz, Tim J; Tseng, Yu-Hua

    2013-10-01

    Brown adipose tissue (BAT) is of great scientific interest as a potential target to treat obesity. The development of novel strategies to quantify brown fat thermogenesis in adult humans now enables minimally invasive assessment of novel pharmacotherapeutics. Input from the central nervous system via sympathetic efferents is widely regarded as the key controller of BAT-mediated thermogenesis in response to changes in body temperature or nutrient availability. More recently, however, it has become clear that locally secreted signals and endocrine factors originating from multiple organs can control the recruitment of brown adipocytes and, more importantly, induce thermogenesis in brown fat. Thus, they provide an attractive strategy to fine-tune brown fat thermogenesis independent of classical temperature sensing. Here, we summarize recent findings on bone morphogenetic protein signaling as an example of secreted factors in the regulation of brown adipocyte formation and systemic control of energy metabolism. We further highlight endocrine communication routes between the different types of brown adipocytes and other organs that contribute to regulation of thermogenesis. Thus, emerging evidence suggests that the classical mechanisms of central temperature sensing and sympathetic nervous system-driven thermogenesis are complemented by local and endocrine signals to determine systemic energy homeostasis. © 2013 New York Academy of Sciences.

  2. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  3. Endocrine disrupting compounds in drinking water supply system and human health risk implication.

    PubMed

    Wee, Sze Yee; Aris, Ahmad Zaharin

    2017-09-01

    To date, experimental and epidemiological evidence of endocrine disrupting compounds (EDCs) adversely affecting human and animal populations has been widely debated. Notably, human health risk assessment is required for risk mitigation. The lack of human health risk assessment and management may thus unreliably regulate the quality of water resources and efficiency of treatment processes. Therefore, drinking water supply systems (DWSSs) may be still unwarranted in assuring safe access to potable drinking water. Drinking water supply, such as tap water, is an additional and crucial route of human exposure to the health risks associated with EDCs. A holistic system, incorporating continuous research in DWSS monitoring and management using multi-barrier approach, is proposed as a preventive measure to reduce human exposure to the risks associated with EDCs through drinking water consumption. The occurrence of EDCs in DWSSs and corresponding human health risk implications are analyzed using the Needs, Approaches, Benefits, and Challenges (NABC) method. Therefore, this review may act as a supportive tool in protecting human health and environmental quality from EDCs, which is essential for decision-making regarding environmental monitoring and management purposes. Subsequently, the public could have sustainable access to safer and more reliable drinking water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Endocrine surgery as a model for value-based health care delivery.

    PubMed

    Abdulla, Amer G; Ituarte, Philip H G; Wiggins, Randi; Teisberg, Elizabeth O; Harari, Avital; Yeh, Michael W

    2012-01-01

    Experts advocate restructuring health care in the United States into a value-based system that maximizes positive health outcomes achieved per dollar spent. We describe how a value-based system implemented by the University of California, Los Angeles UCLA Section of Endocrine Surgery (SES) has optimized both quality and costs while increasing patient volume. Two SES clinical pathways were studied, one allocating patients to the most appropriate surgical care setting based on clinical complexity, and another standardizing initial management of papillary thyroid carcinoma (PTC). The mean cost per endocrine case performed from 2005 to 2010 was determined at each of three care settings: A tertiary care inpatient facility, a community inpatient facility, and an ambulatory facility. Blood tumor marker levels (thyroglobulin, Tg) and reoperation rates were compared between PTC patients who underwent routine central neck dissection (CND) and those who did not. Surgical patient volume and regional market share were analyzed over time. The cost of care was substantially lower in both the community inpatient facility (14% cost savings) and the ambulatory facility (58% cost savings) in comparison with the tertiary care inpatient facility. Patients who underwent CND had lower Tg levels (6.6 vs 15.0 ng/mL; P = 0.024) and a reduced need for re-operation (1.5 vs 6.1%; P = 0.004) compared with those who did not undergo CND. UCLA maintained its position as the market leader in endocrine procedures while expanding its market share by 151% from 4.9% in 2003 to 7.4% in 2010. A value-driven health care delivery system can deliver improved clinical outcomes while reducing costs within a subspecialty surgical service. Broader application of these principles may contribute to resolving current dilemmas in the provision of care nationally.

  5. A RESEARCH AGENDA FOR RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    To date, research on suspected endocrine disrupting chemicals (EDCs) has focused on determining health effects in humans and wildlife and on occurrence of these chemicals in the environment. There is strong evidence that certain chemicals are causing endocrine-related effects in...

  6. Exploring the Halal Status of Cardiovascular, Endocrine, and Respiratory Group of Medications

    PubMed Central

    Sarriff, Azmi; Abdul razzaq, Hadeer Akram

    2013-01-01

    Muslim consumers have special needs in medical treatment that differ from non-Muslim consumers. In particular, there is a growing demand among Muslim consumers for Halal medications. This descriptive exploratory study aims to determine the Halal status of selected cardiovascular, endocrine, and respiratory medications stored in an out-patient pharmacy in a Malaysian governmental hospital. Sources of active ingredients and excipients for each product were assessed for Halal status based on available information obtained from product leaflets, the Medical Information Management System (MIMS) website, or manufacturers. Halal status was based on the products’ sources and categorized into Halal, Mushbooh, or Haram. The proportions of Halal, Mushbooh, and Haram products were at 19.1%, 57.1%, and 23.8%, respectively. The percentage of active ingredients for cardiovascular/endocrine products that were assessed as Haram was 5.3%; for respiratory medications, it was only 1.1%. For excipients, 1.7% and 4.8% fall under the category of Haram for cardiovascular/endocrine products and respiratory products, respectively. Ethanol and magnesium stearate were found to be the common substances that were categorized as Haram and Mushbooh. PMID:23785257

  7. Psychosocial influences on HIV-1 disease progression: neural, endocrine, and virologic mechanisms.

    PubMed

    Cole, Steve W

    2008-06-01

    This review surveys empirical research pertinent to the hypothesis that activity of the hypothalamus-pituitary-adrenal (HPA) axis and/or the sympathetic nervous system (SNS) might mediate biobehavioral influences on HIV-1 pathogenesis and disease progression. Data are considered based on causal effects of neuroeffector molecules on HIV-1 replication, prospective relationships between neural/endocrine parameters and HIV-relevant biological or clinical markers, and correlational data consistent with in vivo neural/endocrine mediation in human or animal studies. Results show that HPA and SNS effector molecules can enhance HIV-1 replication in cellular models via effects on viral infectivity, viral gene expression, and the innate immune response to infection. Animal models and human clinical studies both provide evidence consistent with SNS regulation of viral replication, but data on HPA mediation are less clear. Regulation of leukocyte biology by neuroeffector molecules provides a plausible biological mechanism by which psychosocial factors might influence HIV-1 pathogenesis, even in the era of effective antiretroviral therapy. As such, neural and endocrine parameters might provide useful biomarkers for gauging the promise of behavioral interventions and suggest novel adjunctive strategies for controlling HIV-1 disease progression.

  8. Expression of VGF mRNA in developing neuroendocrine and endocrine tissues.

    PubMed

    Snyder, S E; Peng, B; Pintar, J E; Salton, S R J

    2003-11-01

    Analysis of knockout mice suggests that the neurotropin-inducible secreted polypeptide VGF (non-acronymic) plays an important role in the regulation of energy balance. VGF is synthesized by neurons in the central and peripheral nervous systems (CNS, PNS), as well as in the adult pituitary, adrenal medulla, endocrine cells of the stomach and pancreatic beta cells. Thus VGF, like cholecystokinin, leptin, ghrelin and other peptide hormones that have been shown to regulate feeding and energy expenditure, is synthesized in both the gut and the brain. Although detailed developmental studies of VGF localization in the CNS and PNS have been completed, little is known about the ontogeny of VGF expression in endocrine and neuroendocrine tIssues. Here, we report that VGF mRNA is detectable as early as embryonic day 15.5 in the developing rat gastrointestinal and esophageal lumen, pancreas, adrenal, and pituitary, and we further demonstrate that VGF mRNA is synthesized in the gravid rat uterus, together supporting possible functional roles for this polypeptide outside the nervous system and in the enteric plexus.

  9. Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

    PubMed Central

    Delaspre, Fabien; Beer, Rebecca L.; Rovira, Meritxell; Huang, Wei; Wang, Guangliang; Gee, Stephen; Vitery, Maria del Carmen; Wheelan, Sarah J.

    2015-01-01

    Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsive progenitors that during development give rise to adult ductal, endocrine, and centroacinar cells (CACs). Adult CACs are also Notch responsive and are morphologically similar to their larval predecessors. To test our hypothesis that adult CACs are also progenitors, we took two complementary approaches: 1) We established the transcriptome for adult CACs. Using gene ontology, transgenic lines, and in situ hybridization, we found that the CAC transcriptome is enriched for progenitor markers. 2) Using lineage tracing, we demonstrated that CACs do form new endocrine cells after β-cell ablation or partial pancreatectomy. We concluded that CACs and their larval predecessors are the same cell type and represent an opportune model to study both β-cell neogenesis and β-cell regeneration. Furthermore, we show that in cftr loss-of-function mutants, there is a deficiency of larval CACs, providing a possible explanation for pancreatic complications associated with cystic fibrosis. PMID:26153247

  10. NCI, NHLBI/PBMTC First International Conference on Late Effects after Pediatric Hematopoietic Cell Transplantation: Endocrine Challenges--Thyroid Dysfunction, Growth Impairment, Bone Health, & Reproductive Risks

    PubMed Central

    Dvorak, Christopher C.; Gracia, Clarisa R.; Sanders, Jean E.; Cheng, Edward Y.; Baker, K. Scott; Pulsipher, Michael A.; Petryk, Anna

    2011-01-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation prior to hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is one of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary’s production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient’s gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, while methods of fertility preservation are limited in all but post-pubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. PMID:22005649

  11. NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: endocrine challenges-thyroid dysfunction, growth impairment, bone health, & reproductive risks.

    PubMed

    Dvorak, Christopher C; Gracia, Clarisa R; Sanders, Jean E; Cheng, Edward Y; Baker, K Scott; Pulsipher, Michael A; Petryk, Anna

    2011-12-01

    The endocrine system is highly susceptible to damage by high-dose chemotherapy and/or irradiation before hematopoietic cell transplantation (HCT) during childhood. The specific endocrine organs most affected by HCT include the thyroid gland, the pituitary, and the gonads. In addition, hormones that support development and stability of the skeletal system are also affected. Insufficiency of thyroid hormone is 1 of the most common late sequelae of HCT, and occurs more often in young children. Deficiency in the pituitary's production of growth hormone is a problem of unique concern to the pediatric population. The reproductive risks of HCT depend on the patient's gender and pubertal status at the time of HCT. Pubertal or gonadal failure frequently occurs, especially in females. Infertility risks for both genders remain high, whereas methods of fertility preservation are limited in all but postpubertal males. Bone health post-HCT can be compromised by low bone mineral density as well as avascular necrosis, but the data on both problems in the pediatric HCT population are limited. In this paper, the current state of knowledge, gaps in that knowledge, and recommendations for future research are addressed in detail for each of these systems. Copyright © 2011 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  12. Endocrine and metabolic characteristics in polycystic ovary syndrome.

    PubMed

    Glintborg, Dorte

    2016-04-01

    Hirsutism affects 5-25% women, and the condition is most often caused by polycystic ovary syndrome (PCOS). The initial evaluation of hirsute patients should include a thorough medical history, clinical evaluation, and standardized blood samples to diagnose the 5% hirsute patients with rare endocrine disorders. The majority of these examinations can be performed by the patient's general practitioner. PCOS is a diagnosis of exclusion and is a multiorgan disease affecting most endocrine organs including ovaries, adrenals, pituitary, fat cells, and endocrine pancreas. The manifestations of PCOS are diverse, and up to 50% patients are normal weight. In most cases, however, the severity of symptoms can be related to abdominal obesity. Increased inflammation in PCOS can be measured as decreased adiponectin levels and increased levels of adipokines, chemokines, and interleukins. In the present thesis the use of these inflammatory markers is reviewed, but more data including hard end points are needed to determine which of these markers that should be introduced to the daily clinic. Abdominal obesity and insulin resistance stimulates ovarian and adrenal androgen production, whereas SHBG levels are decreased. Increased testosterone levels may further increase abdominal obesity and inflammation, therefore describing PCOS as a vicious cycle. Abdominal obesity and increased activation of the inflammatory system is seen in both normal weight and obese PCOS patients leading to an increased risk of dyslipidemia, diabetes, and possibly cardiovascular disease. Patients diagnosed with PCOS therefore should be screened for elements in the metabolic syndrome including weight, waist, blood pressure, HbA1c, and lipid status. Our data supported that prolactin and HbA1c levels could be markers of cardiovascular risk and should be confirmed by prospective studies. PCOS is a life-long condition and treatment modalities involve lifestyle modification, insulin sensitizers such as metformin, or

  13. ENDOCRINE ACTIVE SUBSTANCES AND DOSE-RESPONSE FOR INDIVIDUALS AND POPULATIONS

    EPA Science Inventory

    Endocrine Active Substances and Dose-Response for Individuals and Populations
    Hugh A. Barton

    Abstract for IUPAC-SCOPE article

    Dose-response characteristics for endocrine disruption have been major focuses in efforts to understand potential impacts on human and ec...

  14. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Urien, Josune; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-06-01

    Triclosan (TCS) is an antibacterial agent widely used in personal care and consumer products and commonly detected in aquatic ecosystems. In the present study, the effects of TCS on endocrine-related genes of Chironomus riparius aquatic larvae, a reference organism in aquatic toxicology, were evaluated. Twenty-four-hour in vivo exposures at 10µg/L, 100µg/L, and 1000µg/L TCS revealed that this xenobiotic was able to alter the transcriptional activity of ecdysone receptor gene (EcR), the ultraspiracle gene (usp), the estrogen-related receptor gene (ERR), and the E74 early ecdysone-inducible gene, as measured by real-time RT-PCR. Moreover, the hsp70 gene, a heat shock protein gene, was upregulated after exposure to TCS. The results of the present work provide the first evidence of the potential disruptive effects of TCS in endocrine-related genes suggesting a mode of action that mimics ecdysteroid hormones in insects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Endocrine regulation of predator-induced phenotypic plasticity.

    PubMed

    Dennis, Stuart R; LeBlanc, Gerald A; Beckerman, Andrew P

    2014-11-01

    Elucidating the developmental and genetic control of phenotypic plasticity remains a central agenda in evolutionary ecology. Here, we investigate the physiological regulation of phenotypic plasticity induced by another organism, specifically predator-induced phenotypic plasticity in the model ecological and evolutionary organism Daphnia pulex. Our research centres on using molecular tools to test among alternative mechanisms of developmental control tied to hormone titres, receptors and their timing in the life cycle. First, we synthesize detail about predator-induced defenses and the physiological regulation of arthropod somatic growth and morphology, leading to a clear prediction that morphological defences are regulated by juvenile hormone and life-history plasticity by ecdysone and juvenile hormone. We then show how a small network of genes can differentiate phenotype expression between the two primary developmental control pathways in arthropods: juvenoid and ecdysteroid hormone signalling. Then, by applying an experimental gradient of predation risk, we show dose-dependent gene expression linking predator-induced plasticity to the juvenoid hormone pathway. Our data support three conclusions: (1) the juvenoid signalling pathway regulates predator-induced phenotypic plasticity; (2) the hormone titre (ligand), rather than receptor, regulates predator-induced developmental plasticity; (3) evolution has favoured the harnessing of a major, highly conserved endocrine pathway in arthropod development to regulate the response to cues about changing environments (risk) from another organism (predator).

  16. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active.

    PubMed

    Fort, Douglas J; Fort, Troy D; Mathis, Michael B; Ball, R Wayne

    2016-11-01

    The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Financial burden is associated with worse health-related quality of life in adults with multiple endocrine neoplasia type 1.

    PubMed

    Peipert, Benjamin J; Goswami, Sneha; Helenowski, Irene; Yount, Susan E; Sturgeon, Cord

    2017-12-01

    Health-related quality of life and financial burden among patients with multiple endocrine neoplasia type 1 is poorly described. It is not known how financial burden influences health-related quality of life in this population. We hypothesized that the financial burden attributable to multiple endocrine neoplasia type 1 is associated with worse health-related quality of life. United States adults (≥18 years) with multiple endocrine neoplasia type 1 were recruited from the AMENSupport MEN online support group. Patient demographics, clinical characteristics, and financial burden were assessed via an online survey. The instrument Patient-Reported Outcomes Measurement Information System 29-item profile measure was used to assess health-related quality of life. Multivariable linear regression was used to identify significant variables in each Patient-Reported Outcomes Measurement Information System domain. Out of 1,378 members in AMENSupport, our survey link was accessed 449 times (33%). Of 153 US respondents who completed our survey, 84% reported financial burden attributable to multiple endocrine neoplasia type 1. The degree of financial burden had a linear relationship with worse health-related quality of life across all Patient-Reported Outcomes Measurement Information System domains (r = 0.36-0.55, P < .001); 63% reported experiencing ≥1 negative financial event(s). Borrowing money from friends/family (30%), unemployment (13%), and spending >$100/month out-of-pocket on prescription medications (46%) were associated consistently with impaired health-related quality of life (ß = 3.75-6.77, P < .05). Respondents were 3- and 34-times more likely to be unemployed and declare bankruptcy than the US population, respectively. This study characterizes the financial burden in patients with multiple endocrine neoplasia type 1. Individuals with multiple endocrine neoplasia type 1 report a high degree of financial burden, negative financial events, and

  18. Late-life effects on rat reproductive system after developmental exposure to mixtures of endocrine disrupters.

    PubMed

    Isling, Louise Krag; Boberg, Julie; Jacobsen, Pernille Rosenskjold; Mandrup, Karen Riiber; Axelstad, Marta; Christiansen, Sofie; Vinggaard, Anne Marie; Taxvig, Camilla; Kortenkamp, Andreas; Hass, Ulla

    2014-01-01

    This study examined late-life effects of perinatal exposure of rats to a mixture of endocrine-disrupting contaminants. Four groups of 14 time-mated Wistar rats were exposed by gavage from gestation day 7 to pup day 22 to a mixture of 13 anti-androgenic and estrogenic chemicals including phthalates, pesticides, u.v.-filters, bisphenol A, parabens, and the drug paracetamol. The groups received vehicle (control), a mixture of all 13 chemicals at 150-times (TotalMix150) or 450-times (TotalMix450) high-end human exposure, or 450-times a mixture of nine predominantly anti-androgenic chemicals (AAMix450). Onset of puberty and estrous cyclicity at 9 and 12 months of age were assessed. Few female offspring showed significantly regular estrus cyclicity at 12 months of age in the TotalMix450 and AAMix450 groups compared with controls. In 19-month-old male offspring, epididymal sperm counts were lower than controls, and in ventral prostate an overrepresentation of findings related to hyperplasia was observed in exposed groups compared with controls, particularly in the group dosed with anti-androgens. A higher incidence of pituitary adenoma at 19 months of age was found in males and females in the AAMix450 group. Developmental exposure of rats to the highest dose of a human-relevant mixture of endocrine disrupters induced adverse effects late in life, manifested as earlier female reproductive senescence, reduced sperm counts, higher score for prostate atypical hyperplasia, and higher incidence of pituitary tumors. These delayed effects highlight the need for further studies on the role of endocrine disrupters in hormone-related disorders in aging humans.

  19. The Japanese Quail as an avian model for testing endocrine disrupting chemicals: endocrine and behavioral end points

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Thompson, N.; Wu, J.; Henry, K.; Humphries, E.; Henry, P.F.P.

    2000-01-01

    Birds have extremely varied reproductive strategies. As such, the impact of endocrine disrupting chemicals (EDCs) can greatly differ across avian species. Precocial species, such as Japanese quail appear to be most sensitive to EDC effects during embryonic development, particularly sexual differentiation. A great deal is known about the ontogeny of Japanese quail (Coturnix japonica) relative to endocrine, neuro-endocrine, and behavioral components of reproduction. Therefore, this species provides an excellent model for understanding effects of EDCs on reproductive biology with exposure at specific stages of the life cycle. The purpose of these experiments was to conduct a 1- or 2- generation experiment with positive or negative control chemicals and to determine changes in selected end points. Japanese quail embryos were exposed to estradiol benzoate (EB; positive control) in a 2-generation design or to fadrozole (FAD; negative control) in a 1-generation design. Embryonic EB treatment resulted in significant reductions (p< 0.5) in hen day production (90.2 vs 54.1; control vs EB, resp.) and fertility (85.3 vs 33.4%, control vs EB, resp.). Males showed sharply reduced courtship and mating behaviors as well as increased lag time (26 vs 148 sec; control vs EB) in behavioral tests. Fadrozole exposure resulted in reduced hatchability of fertile eggs, particularly at higher doses. There were no significant effects on courtship and mating behavior of males although males showed an increased lag time in their responses, nally, a behavioral test for studying motor and fear responses in young chicks was used; chicks exposed to an estrogenic pesticide (methoxychlor) showed some deficits. In summary, the use of appropriate and reliable end points that are responsive to endocrine disruption are critical for assessment of EDCs. Supported in part by EPA grant R826134.

  20. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  1. Biochemical, endocrine, and hematological factors in human oxygen tolerance extension: Predictive studies 6

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Clark, J. M.

    1992-01-01

    The Predictive Studies VI (Biochemical, endocrine, and hematological factors in human oxygen tolerance extension) Program consisted of two related areas of research activity, integrated in design and performance, that were each based on an ongoing analysis of human organ oxygen tolerance data obtained for the continuous oxygen exposures of the prior Predictive Studies V Program. The two research areas effectively blended broad investigation of systematically varied intermittent exposure patterns in animals with very selective evaluation of specific exposure patterns in man.

  2. Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?

    PubMed Central

    Falconer, Ian R.

    2006-01-01

    There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water. In

  3. Thirty-day outcomes underestimate endocrine and exocrine insufficiency after pancreatic resection.

    PubMed

    Lim, Pei-Wen; Dinh, Kate H; Sullivan, Mary; Wassef, Wahid Y; Zivny, Jaroslav; Whalen, Giles F; LaFemina, Jennifer

    2016-04-01

    Long-term incidence of endocrine and exocrine insufficiency after pancreatectomy is poorly described. We analyze the long-term risks of pancreatic insufficiency after pancreatectomy. Subjects who underwent pancreatectomy from 2002 to 2012 were identified from a prospective database (n = 227). Subjects who underwent total pancreatectomy or pancreatitis surgery were excluded. New post-operative endocrine and exocrine insufficiency was defined as the need for new pharmacologic intervention within 1000 days from resection. 28 (16%) of 178 subjects without pre-existing endocrine insufficiency developed post-operative endocrine insufficiency: 7 (25%) did so within 30 days, 8 (29%) between 30 and 90 days, and 13 (46%) after 90 days. 94 (43%) of 214 subjects without pre-operative exocrine insufficiency developed exocrine insufficiency: 20 (21%) did so within 30 days, 29 (31%) between 30 and 90 days, and 45 (48%) after 90 days. Adjuvant radiation was associated with new endocrine insufficiency. On multivariate regression, pancreaticoduodenectomy and chemotherapy were associated with a greater risk of exocrine insufficiency. Reporting 30-day functional outcomes for pancreatic resection is insufficient, as nearly 45% of subjects who develop disease do so after 90 days. Reporting of at least 90-day outcomes may more reliably assess risk for post-operative endocrine and exocrine insufficiency. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  4. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health

    PubMed Central

    Campbell, Sonya; Eley, Sarah E. A.; McKechanie, Andrew G.; Stanfield, Andrew C.

    2016-01-01

    Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive–compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions. PMID:27869718

  5. Influence of Melatonin on the Immune System of Fish: A Review

    PubMed Central

    Esteban, M. Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-01-01

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates. PMID:23579958

  6. Influence of melatonin on the immune system of fish: a review.

    PubMed

    Esteban, M Ángeles; Cuesta, Alberto; Chaves-Pozo, Elena; Meseguer, José

    2013-04-11

    Endocrine-immune system interactions have been widely demonstrated in mammals, whereas in fish, these relationships remain unclear. Of the organs that constitute the endocrine system, the pineal gland and its secretory product melatonin act in the synchronization of daily and seasonal rhythms in most vertebrates, including fish. Seasonal differences in immunocompetence and disease prevalence have been well documented in humans. Seasonality also strongly influences the life history of fish by controlling the timing of physiological events, such as reproduction, food intake, locomotor activity, and growth performance. Apart from its synchronizing capabilities, the role of melatonin in physiological processes in fish is not thoroughly understood. The purpose of this review is to summarize current studies on the effects of melatonin on the fish immune system. These studies suggest that melatonin represents an important component of fish endocrine-immune system interactions. The elucidation of the defense mechanisms of fish will facilitate the development of health management tools to support the growing finfish aquaculture industry as well as address questions concerning the origins and evolution of the immune system in vertebrates.

  7. Metabotropic glutamate receptor subtype 7 has critical roles in regulation of the endocrine system and social behaviours.

    PubMed

    Masugi-Tokita, M; Yoshida, T; Kageyama, S; Kawata, M; Kawauchi, A

    2018-03-01

    Metabotropic glutamate receptor subtype 7 (mGluR7) is one of the group III mGluRs, which are negatively coupled to adenylate cyclase via Gi/Go proteins and localised to presynaptic active zones of the mammalian central nervous system. We previously reported that mGluR7 is essential for intermale aggression and amygdala-dependent fear learning. To elucidate the role of mGluR7 in the neuroendocrine system, we performed biochemical analyses and found a significant reduction of testosterone levels in mGluR7 knockout (KO) mice. Testosterone replacement restored intermale aggressive behaviour in castrated wild-type mice to the level of gonadally intact wild-type mice. However, given the same dosage of testosterone replacement, mGluR7 KO mice showed almost no aggressive behaviour. These results indicate that reduction of plasma testosterone is unrelated to the deficit in intermale aggression in mGluR7 KO mice. Social investigating behaviour of intact mGluR7 KO mice also differed from that of wild-type mice; e.g. the KO mice showing less frequent anogenital sniffing and more frequent grooming behaviour. Testosterone replacement increased anogenital sniffing and grooming behaviour in castrated mGluR7 KO mice, while the differences were still present between castrated wild-type mice and KO mice after both underwent testosterone replacement. These results imply that reduction of plasma testosterone may partially inhibit social investigating behaviours in intact mGluR7 KO mice. Furthermore, castrated mGluR7 KO mice have smaller seminal vesicles than those of castrated wild-type mice, although seminal vesicle weights were normal in intact mice. These observations suggest that, besides testicular testosterone, some other hormone levels may be dysregulated in mGluR7 KO mice, and indicate a critical role of mGluR7 in the endocrine system. Taken together, our findings demonstrate that mGluR7 is essential for the regulation of the endocrine system, in addition to innate behaviours

  8. Adjuvant psychological therapy in long-term endocrine conditions.

    PubMed

    Daniels, J; Turner-Cobb, J M

    2017-06-01

    Consideration of psychological distress in long-term endocrine conditions is of vital importance given the prevalence of anxiety and depression in such disorders. Poor mental health can lead to compromised self-care, higher utilization of health services, lower rates of adherence, reduced quality of life and ultimately poorer outcomes. Adjuvant psychological therapy offers an effective resource to reduce distress in endocrine conditions. While the vast majority of work in this area has focused on psychological screening and intervention in diabetes, identification and recognition of psychological distress are equally important in other endocrinological conditions, with supportive evidence in polycystic ovary syndrome and Addison's disease. Referral pathways and recommendations set out by UK guidelines and the Department of Health mandate requires greater attention across a wider range of long-term endocrine conditions to facilitate improved quality of life and health outcome. © 2017 John Wiley & Sons Ltd.

  9. In silico methods in the discovery of endocrine disrupting chemicals.

    PubMed

    Vuorinen, Anna; Odermatt, Alex; Schuster, Daniela

    2013-09-01

    The prevalence of sex hormone-dependent cancers, reproductive problems, obesity, and cardiovascular complications has risen especially in the Western world. It has been suggested, that the exposure to various endocrine disrupting chemicals (EDCs) contributes to the development and progression of these diseases. EDCs can interfere with various proteins: nuclear steroid hormone receptors, such as estrogen-, androgen-, glucocorticoid- and mineralocorticoid receptors (ER, AR, GR, MR), and enzymes that are involved in steroid hormone synthesis and metabolism, for example hydroxysteroid dehydrogenases (HSDs). Numerous chemicals are known as endocrine disruptors. However, the mechanism of action for most of these EDCs is still unknown. It is exhaustive and time consuming to test in vitro all chemicals - potential EDCs - used in industry, agriculture or as food preservatives against their effects on the endocrine system. Computational methods, such as virtual screening, quantitative structure activity relationships and docking, are already well recognized and used in drug development. The same methods could also aid the research on EDCs. So far, the computational methods in the search of EDCs have been retrospective. There are, however, some prospective studies reporting the use of in silico methods: five studies reporting the identification of previously unknown 17β-HSD3 inhibitors, MR agonists, and ER antagonists/agonists. This review provides an overview of case studies and in silico methods that are used in the search of EDCs. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Assessment of thyroid endocrine system impairment and oxidative stress mediated by cobalt ferrite (CoFe2 O4 ) nanoparticles in zebrafish larvae.

    PubMed

    Ahmad, Farooq; Liu, Xiaoyi; Zhou, Ying; Yao, Hongzhou; Zhao, Fangfang; Ling, Zhaoxing; Xu, Chao

    2016-12-01

    Fascinating super paramagnetic uniqueness of iron oxide particles at nano-scale level make them extremely useful in the state of the art therapies, equipments, and techniques. Cobalt ferrite (CoFe 2 O 4 ) magnetic nanoparticles (MNPs) are extensively used in nano-based medicine and electronics, results in extensive discharge and accumulation into the environment. However, very limited information is available for their endocrine disrupting potential in aquatic organisms. In this study, the thyroid endocrine disrupting ability of CoFe 2 O 4 NPs in Zebrafish larvae for 168-h post fertilization (hpf) was evaluated. The results showed the elevated amounts of T4 and T3 hormones by malformation of hypothalamus pituitary axis in zebrafish larvae. These elevated levels of whole body THs leads to delayed hatching, head and eye malformation, arrested development, and alterations in metabolism. The influence of THs disruption on ROS production and change in activities of catalase (CAT), mu-glutathione s-transferase (mu-GST), and acid phosphatase (AP) were also studied. The production of significantly higher amounts of in vivo generation of ROS leads to membrane damage and oxidative stress. Presences of NPs and NPs agglomerates/aggregates were also the contributing factors in mechanical damaging the membranes and physiological structure of thyroid axis. The increased activities of CAT, mu-GST, and AP confirmed the increased oxidative stress, possible DNA, and metabolic alterations, respectively. The excessive production of in vivo ROS leads to severe apoptosis in head, eye, and heart region confirming that malformation leads to malfunctioning of hypothalamus pituitary axis. ROS-induced oxidative DNA damage by formation of 8-OHdG DNA adducts elaborates the genotoxicity potential of CoFe 2 O 4 NPs. This study will help us to better understand the risk and assessment of endocrine disrupting potential of nanoparticles. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2068

  11. CURRENT CHALLENGES ON ENDOCRINE DISRUPTORS

    EPA Science Inventory

    For over ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; the occurrence of this in the real world and in developing tools for screening and prediction of risk. ...

  12. ENDOCRINE DISRUPTORS AS A THREAT TO NEUROLOGICAL FUNCTION

    PubMed Central

    Weiss, Bernard

    2011-01-01

    Endocrine disruption is a concept and principle whose origins can be traced to the beginnings of the environmental movement in the 1960s. It began with puzzlement about and the flaring of research on the decline of wildlife, particularly avian species. The proposed causes accented pesticides, especially persistent organochlorines such as DDT. Its scope gradually widened beyond pesticides, and, as endocrine disruption offered an explanation for the wildlife phenomena, it seemed to explain, as well, changes in fertility and disorders of male reproduction such as testicular cancer. Once disturbed gonadal hormone function became the most likely explanation, it provoked other questions. The most challenging arose because of how critical gonadal hormones are to brain function, especially as determinants of brain sexual differentiation. Pursuit of such connections has generated a robust literature embracing a broad swath of chemical classes. How endocrine disrupting chemicals influence the adult and aging brain is a question, so far mostly ignored because of the emphasis on early development, that warrants vigorous investigation. Gonadal hormones are crucial to optimal brain function during maturity and even senescence. They are pivotal to the processes of neurogenesis. They exert protective actions against neurodegenerative disorders such as dementia and support smoothly functioning cognitive activities. The limited research conducted so far on endocrine disruptors, aging, and neurogenesis argues that they should be overlooked no longer. PMID:21474148

  13. The endocrine manifestations of anorexia nervosa: mechanisms and management.

    PubMed

    Schorr, Melanie; Miller, Karen K

    2017-03-01

    Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic-pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5-15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.

  14. Male reprotoxicity and endocrine disruption

    PubMed Central

    Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim

    2013-01-01

    Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574

  15. Testosterone-Fatty Acid esterification: a unique target for the endocrine toxicity of tributyltin to gastropods.

    PubMed

    Leblanc, Gerald A; Gooding, Meredith P; Sternberg, Robin M

    2005-01-01

    Over the past thirty years, a global occurrence of sexual aberration has occurred whereby females among populations of prosobranch snails exhibit male sex characteristics. This condition, called imposex, has been causally associated with exposure to the biocide tributyltin. Tributyltin-exposed, imposex snails typically have elevated levels of testosterone which have led to the postulate that this endocrine dysfunction is responsible for imposex. This overview describes recent evidence that supports this postulate. Gastropods maintain circulating testosterone levels and administration of testosterone to females or castrates stimulates male sex differentiation in several snail species. Studies in the mud snail (Ilyanassa obsoleta) have shown that gastropods utilize a unique strategy for regulating free testosterone levels. Excess testosterone is converted to fatty acid esters by the action of a testosterone-inducible, high capacity/low affinity enzyme, acyl-CoA:testosterone acyl transferase, and stored within the organisms. Free testosterone levels are regulated during the reproductive cycle apparently due to changes in esterification/desterification suggesting that testosterone functions in the reproductive cycle of the organisms. Testosterone esterification provides a unique target in the testosterone regulatory machinery of snails that is altered by tributyltin. Indeed, imposex and free testosterone levels were elevated in field collected snails containing high tin levels, while testosterone-fatty acid ester pools were reduced in these organisms. These observations indicate that tributyltin elevates free testosterone by reducing the retention of testosterone as fatty acid-esters. This endocrine effect of tributyltin may be responsible for imposex.

  16. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ.

    PubMed

    Resnyk, C W; Carré, W; Wang, X; Porter, T E; Simon, J; Le Bihan-Duval, E; Duclos, M J; Aggrey, S E; Cogburn, L A

    2017-08-16

    Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today's broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. The present analyses of the visceral fat transcriptome in

  17. In vitro metabolism and bioavailability tests for the predictive toxicology of endocrine active substances

    EPA Science Inventory

    Legislation and prospective legislative proposals internationally (may) require that chemicals are tested for their ability to disrupt the hormonal systems of animals. Chemicals found to test positive in vitro are considered to be endocrine active substances (EAS) and may be puta...

  18. Socioeconomic conditions across life related to multiple measures of the endocrine system in older adults: Longitudinal findings from a British birth cohort study.

    PubMed

    Bann, David; Hardy, Rebecca; Cooper, Rachel; Lashen, Hany; Keevil, Brian; Wu, Frederick C W; Holly, Jeff M P; Ong, Ken K; Ben-Shlomo, Yoav; Kuh, Diana

    2015-12-01

    Little is known about how socioeconomic position (SEP) across life impacts on different axes of the endocrine system which are thought to underlie the ageing process and its adverse consequences. We examined how indicators of SEP across life related to multiple markers of the endocrine system in late midlife, and hypothesized that lower SEP across life would be associated with an adverse hormone profile across multiple axes. Data were from a British cohort study of 875 men and 905 women followed since their birth in March 1946 with circulating free testosterone and insulin-like growth factor-I (IGF-I) measured at both 53 and 60-64 years, and evening cortisol at 60-64 years. Indicators of SEP were ascertained prospectively across life-paternal occupational class at 4, highest educational attainment at 26, household occupational class at 53, and household income at 60-64 years. Associations between SEP and hormones were investigated using multiple regression and logistic regression models. Lower SEP was associated with lower free testosterone among men, higher free testosterone among women, and lower IGF-I and higher evening cortisol in both sexes. For example, the mean standardised difference in IGF-I comparing the lowest with the highest educational attainment at 26 years (slope index of inequality) was -0.4 in men (95% CI -0.7 to -0.2) and -0.4 in women (-0.6 to -0.2). Associations with each hormone differed by SEP indicator used and sex, and were particularly pronounced when using a composite adverse hormone score. For example, the odds of having 1 additional adverse hormone concentration in the lowest compared with highest education level were 3.7 (95% CI: 2.1, 6.3) among men, and 1.6 (1.0, 2.7) among women (P (sex interaction) = 0.02). We found no evidence that SEP was related to apparent age-related declines in free testosterone or IGF-I. Lower SEP was associated with an adverse hormone profile across multiple endocrine axes. SEP differences in endocrine

  19. Socioeconomic conditions across life related to multiple measures of the endocrine system in older adults: Longitudinal findings from a British birth cohort study

    PubMed Central

    Bann, David; Hardy, Rebecca; Cooper, Rachel; Lashen, Hany; Keevil, Brian; Wu, Frederick C.W.; Holly, Jeff M.P.; Ong, Ken K.; Ben-Shlomo, Yoav; Kuh, Diana

    2015-01-01

    Background Little is known about how socioeconomic position (SEP) across life impacts on different axes of the endocrine system which are thought to underlie the ageing process and its adverse consequences. We examined how indicators of SEP across life related to multiple markers of the endocrine system in late midlife, and hypothesized that lower SEP across life would be associated with an adverse hormone profile across multiple axes. Methods Data were from a British cohort study of 875 men and 905 women followed since their birth in March 1946 with circulating free testosterone and insulin-like growth factor-I (IGF-I) measured at both 53 and 60–64 years, and evening cortisol at 60–64 years. Indicators of SEP were ascertained prospectively across life—paternal occupational class at 4, highest educational attainment at 26, household occupational class at 53, and household income at 60–64 years. Associations between SEP and hormones were investigated using multiple regression and logistic regression models. Results Lower SEP was associated with lower free testosterone among men, higher free testosterone among women, and lower IGF-I and higher evening cortisol in both sexes. For example, the mean standardised difference in IGF-I comparing the lowest with the highest educational attainment at 26 years (slope index of inequality) was −0.4 in men (95% CI -0.7 to −0.2) and −0.4 in women (−0.6 to −0.2). Associations with each hormone differed by SEP indicator used and sex, and were particularly pronounced when using a composite adverse hormone score. For example, the odds of having 1 additional adverse hormone concentration in the lowest compared with highest education level were 3.7 (95% CI: 2.1, 6.3) among men, and 1.6 (1.0, 2.7) among women (P (sex interaction) = 0.02). We found no evidence that SEP was related to apparent age-related declines in free testosterone or IGF-I. Conclusions Lower SEP was associated with an adverse hormone profile

  20. MODELING THE ENDOCRINE CONTROL OF VITELLOGENIN PRODUCTION IN FEMALE RAINBOW TROUT

    PubMed Central

    Sundling, Kaitlin; Craciun, Gheorghe; Schultz, Irvin; Hook, Sharon; Nagler, James; Cavileer, Tim; Verducci, Joseph; Liu, Yushi; Kim, Jonghan; Hayton, William

    2015-01-01

    The rainbow trout endocrine system is sensitive to changes in annual day length, which is likely the principal environmental cue controlling its reproductive cycle. This study focuses on the endocrine regulation of vitellogenin (Vg) protein synthesis, which is the major egg yolk precursor in this fish species. We present a model of Vg production in female rainbow trout which incorporates a biological pathway beginning with sex steroid estradiol-17β levels in the plasma and concluding with Vg secretion by the liver and sequestration in the oocytes. Numerical simulation results based on this model are compared with experimental data for estrogen receptor mRNA, Vg mRNA, and Vg in the plasma from female rainbow trout over a normal annual reproductive cycle. We also analyze the response of the model to parameter changes. The model is subsequently tested against experimental data from female trout under a compressed photoperiod regime. Comparison of numerical and experimental results suggests the possibility of a time-dependent change in oocyte Vg uptake rate. This model is part of a larger effort that is developing a mathematical description of the endocrine control of reproduction in female rainbow trout. We anticipate that these mathematical and computational models will play an important role in future regulatory toxicity assessments and in the prediction of ecological risk. PMID:24506554

  1. Expert consensus of general surgery residents' proficiency with common endocrine operations.

    PubMed

    Phitayakorn, Roy; Kelz, Rachel R; Petrusa, Emil; Sippel, Rebecca S; Sturgeon, Cord; Patel, Kepal N; Perrier, Nancy D

    2017-01-01

    Proficiency with common endocrine operations is expected of graduating, general surgery residents. However, no expert consensus guidelines exist about these expectations. Members of the American Association of Endocrine Surgeons were surveyed about their opinions on resident proficiency with common endocrine operations. Overall response rate was 38%. A total of 92% of the respondents operate with residents. On average, they believed that the steps of a total thyroidectomy for benign disease and a well-localized parathyroidectomy could be performed by a postgraduate year 4 surgery resident. Specific steps that they thought might require more training included decisions to divide the strap muscles or leaving a drain. Approximately 66% of respondents thought that a postgraduate year 5 surgery resident could independently perform a total thyroidectomy for benign disease, but only 45% felt similarly for malignant thyroid disease; 79% thought that a postgraduate year 5 surgery resident could independently perform a parathyroidectomy. Respondents' years of experience correlated with their opinions about resident autonomy for total thyroidectomy (benign r = 0.38, P < .001; malignant r = 0.29, P = .001) but not parathyroidectomy. On multivariate analysis, sex and years of experience of the respondents were independently associated with opinions on autonomy but only for total thyroidectomy for benign disease (P = .001). Annual endocrine volume of the respondents did not correlate with beliefs in autonomy. There was general agreement among responding members of the AAES about resident proficiency and autonomy with common endocrine operations. As postgraduate year 5 residents may not be proficient in advanced endocrine operations, opportunities exist to improve training prior to the transition to independent practice for graduates that anticipate performing endocrine operations routinely. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances

    EPA Science Inventory

    In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizatio...

  3. Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates.

    PubMed

    Huerta, B; Jakimska, A; Llorca, M; Ruhí, A; Margoutidis, G; Acuña, V; Sabater, S; Rodriguez-Mozaz, S; Barcelò, D

    2015-01-01

    Aquatic organisms from freshwater ecosystems impacted by waste water treatment plant (WWTP) effluents are constantly exposed to constant concentrations of pharmaceuticals, endocrine disruptors and related compounds, among other anthropogenic contaminants. Macroinvertebrates inhabiting freshwater ecosystems might be useful bioindicators of exposure to contaminants, since their lives are long enough to bioaccumulate, but at the same time may integrate short-term changes in the environment. However, studies about potential bioaccumulation of emerging contaminants in these organisms are very scarce. The objectives of this study were to develop an analytical methodology for the analysis of 41 pharmaceuticals and 21 endocrine disruptors in freshwater invertebrates. In addition, bioaccumulation of these contaminants in three macroinvertebrate taxa inhabiting a waste water treatment plant -impacted river was evaluated. The method for the simultaneous extraction of both families of compounds is based on sonication, purification via removal of phospholipids, and analysis by ultra performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS) in tandem. Recoveries for pharmaceuticals were 34-125%, and for endocrine disruptors were 48-117%. Method detection limits (MDLs) for EDCs were in the range of 0.080-2.4 ng g(-1), and for pharmaceuticals, 0.060-4.3 ng g(-1). These pollutants were detected in water samples taken downstream the waste water treatment plant effluent at concentrations up to 572 ng L(-1). Two non-esteroidal anti-inflammatory drugs, diclofenac and ibuprofen, and four endocrine disruptors - estrone, bisphenol A, TBEP, and nonylphenol - were detected in at least one macroinvertebrate taxa in concentrations up to 183 ng g(-1) (dry weight). An isobaric interference was identified during the analysis of diclofenac in Hydropsyche samples, which was successfully discriminated via accurate mass determination by TFC-LTQ Orbitrap. Copyright © 2014

  4. Pesticides as endocrine-disrupting chemicals

    EPA Science Inventory

    Pesticides are designed to be bioactive against certain targets but can cause toxicity to nontarget species by a variety of other modes of action including disturbance of endocrine function. As such, pesticides have been found to bind and alter the function of hormone receptors, ...

  5. Periodontal Disease and Dental Caries among children and Adolescents Suffering from Endocrine Disorders - A Literature Review.

    PubMed

    Saminsky, Michael

    2017-12-01

    Dental caries and periodontal disease are the most common oral diseases. Their link to disorders of endocrine system is of high interest. Most of the available data relates to the adult population, though its importance among children and adolescents is paramount. To review the existing evidence examining the link between these clinical conditions among children and adolescents. Electronic bibliographic databases and hand searches of relevant publications, based on prepared list of relevant key-words was performed. Paucity of existing data leaves the question of association between most endocrine disorders of the youth with dental caries and periodontal disease, inconclusive, apart from obesity and diabetes mellitus, where it seems to be elucidated. A profound research should be done in order to amend our understanding to what extent, if at all, exists the link between these oral maladies and different pediatric endocrine disorders. Copyright© of YS Medical Media ltd.

  6. Endocrine disrupting effects of butylated hydroxyanisole (BHA - E320)

    PubMed Central

    POP, ANCA; KISS, BELA; LOGHIN, FELICIA

    2013-01-01

    Butylated hydroxyanisole (BHA) is extensively used as antioxidant in foods, food packaging, cosmetics and pharmaceuticals. In the past years, it raised concerns regarding its possible endocrine disrupting effect. The existing in vitro studies indicate that BHA presents a weak estrogenic effect and also anti-androgenic properties while an in vivo study found it to have antiestrogenic properties. There is no sufficient data available at the moment to draw a conclusion regarding the safety of BHA when referring to its endocrine disrupting effect. Since a fraction of the population might be exposed to doses superior to the acceptable daily intake (ADI), it is important to gather more in vitro and in vivo data concerning the potential effects that BHA might have alone, but also in mixtures with natural hormones or other endocrine disrupting compounds. PMID:26527908

  7. Keeping Up with the Diabetes Technology: 2016 Endocrine Society Guidelines of Insulin Pump Therapy and Continuous Glucose Monitor Management of Diabetes.

    PubMed

    Galderisi, Alfonso; Schlissel, Elise; Cengiz, Eda

    2017-09-23

    Decades after the invention of insulin pump, diabetes management has encountered a technology revolution with the introduction of continuous glucose monitoring, sensor-augmented insulin pump therapy and closed-loop/artificial pancreas systems. In this review, we discuss the significance of the 2016 Endocrine Society Guidelines for insulin pump therapy and continuous glucose monitoring and summarize findings from relevant diabetes technology studies that were conducted after the publication of the 2016 Endocrine Society Guidelines. The 2016 Endocrine Society Guidelines have been a great resource for clinicians managing diabetes in this new era of diabetes technology. There is good body of evidence indicating that using diabetes technology systems safely tightens glycemic control while managing both type 1 and type 2 diabetes. The first-generation diabetes technology systems will evolve as we gain more experience and collaboratively work to improve them with an ultimate goal of keeping people with diabetes complication and burden-free until the cure for diabetes becomes a reality.

  8. Familial endocrine myxolentiginosis.

    PubMed

    Panossian, D H; Marais, G E; Marais, H J

    1995-11-01

    We present an unusual case of a left atrial myxoma as a feature of a familial mesoectodermal disorder and review the literature. The new term "familial endocrine myxolentiginosis" is proposed, which is descriptive of the major clinical components of the syndrome. Myriad features of this disorder include (1) cardiac myxomas; (2) cutaneous myxomas; (3) multiple lentigines or blue nevi, particularly of the head and neck; (4) bilateral primary pigmented nodular adrenocortical hyperplasia; (5) unusual testicular tumors; (6) pituitary tumors; (7) myxoid fibroadenomas of the breast; (8) myxomatous disorder of the stroma of the breast; (9) ductal adenoma of the breast; and (10) psammomatous melanotic schwannoma. A tentative diagnosis is suggested by identifying two features and a definitive diagnosis is made by three or more features. The clinical and pathologic features of cardiac myxoma in familial endocrine myxolentiginosis are identical to those of familial cardiac myxoma: age < 40 years, atypical locations, multicentric origins, and recurrent presentations. A Venn diagram classification for cardiac myxomas is proposed. We include photographic, echocardiographic, biopsy, and adrenal computerized tomography documentation in our patient. Recognition of this disorder is important because of its clinical, surgical, and genetic implications. The availability of transesophageal echocardiographic technology should allow early diagnosis of this underdiagnosed entity. Clinicians should consider this entity in the differential diagnosis of their patients with any one of these manifestations.

  9. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  10. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Hillard, Elizabeth A.; Vessières, Anne; Jaouen, Gerard

    We present here some of our studies on the synthesis and behaviour of ferrocenyl selective endocrine receptor modulators against cancer cells, particularly breast and prostate cancers. The proliferative/anti-proliferative effects of compounds based on steroidal and non-steroidal endocrine modulators have been extensively explored in vitro. Structure-activity relationship studies of such molecules, particularly the hydroxyferrocifens and ferrocene phenols, have shown the effect of (1) the presence and the length of the N,N-dimethylamino side chain, (2) the presence and position of the phenol group, (3) the role of the ferrocenyl moiety, (4) that of conjugation, (5) phenyl functionalisation and (6) the placement of the phenyl group. Compounds possessing a ferrocene moiety linked to a p-phenol by a conjugated π-system are among the most potent of the series, with IC50 values ranging from 0.090 to 0.6µM on hormone independent breast cancer cells. Based on the SAR data and electrochemical studies, we have proposed an original mechanism to explain the unusual behaviour of these bioorganometallic species and coin the term "kronatropic" to qualify this effect, involving ROS production and bio-oxidation. In addition, the importance of formulation is underlined. We also discuss the behaviour of ferrocenyl androgens and anti-androgens for possible use against prostate cancers. In sum, ferrocene has proven to be a fascinating substituent due to its vast potential for oncology.

  11. Human infertility: are endocrine disruptors to blame?

    PubMed Central

    Marques-Pinto, André; Carvalho, Davide

    2013-01-01

    Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility. PMID:23985363

  12. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, andmore » the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.« less

  13. Efficiencies of freshwater and estuarine constructed wetlands for phenolic endocrine disruptor removal in Taiwan.

    PubMed

    Hsieh, Chi-Ying; Yang, Lei; Kuo, Wen-Chien; Zen, Yi-Peng

    2013-10-01

    that existing concentrations of these EDs in wetland systems pose a high ecological risk to aquatic organisms. The decreasing risk quotient from influent to effluent indicates that phenolic endocrine disruptors can be treated in these constructed wetlands. Our results of this research can serve as a preliminary understanding on the ED removal efficiencies in different types of constructed wetlands. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Endocrine hormones and local signals during the development of the mouse mammary gland.

    PubMed

    Brisken, Cathrin; Ataca, Dalya

    2015-01-01

    Most of mammary gland development occurs postnatally under the control of female reproductive hormones, which in turn interact with other endocrine factors. While hormones impinge on many tissues and trigger very complex biological responses, tissue recombination experiments with hormone receptor-deficient mammary epithelia revealed eminent roles for estrogens, progesterone, and prolactin receptor (PrlR) signaling that are intrinsic to the mammary epithelium. A subset of the luminal mammary epithelial cells expresses the estrogen receptor α (ERα), the progesterone receptor (PR), and the PrlR and act as sensor cells. These cells convert the detected systemic signals into local signals that are developmental stage-dependent and may be direct, juxtacrine, or paracrine. This setup ensures that the original input is amplified and that the biological responses of multiple cell types can be coordinated. Some key mediators of hormone action have been identified such as Wnt, EGFR, IGFR, and RANK signaling. Multiple signaling pathways such as FGF, Hedgehog, and Notch signaling participate in driving different aspects of mammary gland development locally but how they link to the hormonal control remains to be elucidated. An increasing number of endocrine factors are appearing to have a role in mammary gland development, the adipose tissue is increasingly recognized to play a role in endocrine regulation, and a complex role of the immune system with multiple different cell types is being revealed. For further resources related to this article, please visit the WIREs website. © 2015 Wiley Periodicals, Inc.

  15. Simultaneous profiling of 17 steroid hormones for the evaluation of endocrine-disrupting chemicals in H295R cells.

    PubMed

    Jumhawan, Udi; Yamashita, Toshiyuki; Ishida, Kazuya; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-01-01

    There is urgent need to develop a new protocol for the evaluation of chemical substances to potentially interact with the endocrine system and induce numerous pathological issues. The recently validated in vitro screening assay is limited on monitoring two steroid hormones. Methodology & results: The H295R model cell was exposed to seven endocrine disrupting chemicals (EDCs). The levels of 17 steroid hormones in cell extracts were subsequently determined by a quantitative targeted GC/MS/MS method. Through wide coverage, this system managed to capture the effects of exposure to increasing EDCs concentrations in the entire steroidogenic pathways. The developed approach could be beneficial for the mechanistic investigation of EDCs.

  16. Genetics of Endocrine and Neuroendocrine Neoplasias (PDQ®)—Health Professional Version

    Cancer.gov

    Genetics of Endocrine and Neuroendocrine Neoplasias discusses inherited syndromes multiple endocrine neoplasia types 1, 2, and 4 (MEN1, MEN2, MEN4), familial pheochromocytoma and paraganglioma, Carney-Stratakis syndrome, and familial nonmedullary thyroid cancer. Learn more in this clinician summary.

  17. Biological Profiling of Endocrine Related Effects of Chemicals in ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  18. Biological Profiling of Endocrine Related Effects of Chemicals Using ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  19. Pernicious anaemia and mucosal endocrine cell proliferation of the non-antral stomach.

    PubMed Central

    Rode, J; Dhillon, A P; Papadaki, L; Stockbrügger, R; Thompson, R J; Moss, E; Cotton, P B

    1986-01-01

    There is a recognised association between pernicious anaemia and the development of gastric carcinoma, endocrine cell hyperplasia, and carcinoid tumour. Multiple endoscopic biopsies from the body mucosa of seven patients with pernicious anaemia showed small intestinal metaplasia with varying degrees of inflammation, fibrosis, and expansion of the lamina propria. Using conventional silver and lead stains, endocrine cells were inconspicuous. Staining for the general neural and neuroendocrine markers NSE and PGP 9.5 revealed a proliferation of endocrine cells in the epithelium and isolated clumps of endocrine cells in the lamina propria. The clumps were composed of two cell types, either small or large. Some of these endocrine cells showed gastrin, 5HT, VIP and substance P immunoreactivity of varying intensity. Ultrastructurally nine morphologically distinct types of granules were found some of which correlated with the immunohistochemistry. Some separate islands were composed solely of endocrine cells while others had a definite neural component, suggesting that the former arise from 'budding off' of enteroendocrine cells and the latter originate from the neuroendocrine cells of the lamina propria plexus. Thus there may be a dual origin of carcinoid tumours. Carcinoid tumours associated with pernicious anaemia tend to be multifocal and are infrequent. Less than 50 such cases have hitherto been reported. Our findings of endocrine cells proliferations in seven cases of pernicious anaemia indicate that this may be an adaptive change that occurs frequently and provides the basis on which carcinoids, less frequently, develop. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:3525338

  20. Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice

    USGS Publications Warehouse

    Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.

    2015-01-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  1. Endocrine-Disrupting Activity of Hydraulic Fracturing Chemicals and Adverse Health Outcomes After Prenatal Exposure in Male Mice.

    PubMed

    Kassotis, Christopher D; Klemp, Kara C; Vu, Danh C; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L; Pinatti, Lisa; Zoeller, R Thomas; Drobnis, Erma Z; Balise, Victoria D; Isiguzo, Chiamaka J; Williams, Michelle A; Tillitt, Donald E; Nagel, Susan C

    2015-12-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  2. Increased Hormone-Negative Endocrine Cells in the Pancreas in Type 1 Diabetes.

    PubMed

    Md Moin, Abu Saleh; Dhawan, Sangeeta; Shieh, Christine; Butler, Peter C; Cory, Megan; Butler, Alexandra E

    2016-09-01

    Type 1 diabetes (T1D) is characterized by a β-cell deficit due to autoimmune inflammatory-mediated β-cell destruction. It has been proposed the deficit in β-cell mass in T1D may be in part due to β-cell degranulation to chromogranin-positive, hormone-negative (CPHN) cells. We investigated the frequency and distribution of CPHN cells in the pancreas of 15 individuals with T1D, 17 autoantibody-positive nondiabetic individuals, and 17 nondiabetic controls. CPHN cells were present at a low frequency in the pancreas from nondiabetic and autoantibody-positive, brain-dead organ donors but are more frequently found in the pancreas from donors with T1D (islets: 1.11% ± 0.20% vs 0.26% ± 0.06 vs 0.27% ± 0.10% of islet endocrine cells, T1D vs autoantibody positive [AA+] vs nondiabetic [ND]; T1D vs AA+, and ND, P < .001). CPHN cells are most commonly found in the single cells and small clusters of endocrine cells rather than within established islets (clusters: 18.99% ± 2.09% vs 9.67% ± 1.49% vs 7.42% ± 1.26% of clustered endocrine cells, T1D vs AA+ vs ND; T1D vs AA+ and ND, P < .0001), mimicking the distribution present in neonatal pancreas. From these observations, we conclude that CPHN cells are more frequent in T1D and, as in type 2 diabetes, are distributed in a pattern comparable with the neonatal pancreas, implying a possible attempted regeneration. In contrast to rodents, CPHN cells are insufficient to account for loss of β-cell mass in T1D.

  3. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance.

    PubMed

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S; Bowden, Michaela; Rao, Prakash; Long, Henry W; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-05-30

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2-ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists.

  4. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance

    PubMed Central

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S.; Bowden, Michaela; Rao, Prakash; Long, Henry W.; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-01-01

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2–ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists. PMID:28507152

  5. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid.

    PubMed

    Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don

    This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms.

  6. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    PubMed

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  7. Embryonic exposure to carbendazim induces the transcription of genes related to apoptosis, immunotoxicity and endocrine disruption in zebrafish (Danio rerio).

    PubMed

    Jiang, Jinhua; Wu, Shenggan; Wu, Changxing; An, Xuehua; Cai, Leiming; Zhao, Xueping

    2014-12-01

    Carbendazim is one of the most widespread environmental contaminant that can cause major concern to human and animal reproductive system. To date, very few studies have been conducted on the toxic effect of carbendazim in the non-target organism zebrafish (Danio rerio). The study presented here aimed to assess how carbendazim triggers apoptosis, immunotoxicity and endocrine disruption pathways in zebrafish during its embryo development. Our results demonstrated that the expression patterns of many key genes involved in cell apoptosis pathway (e.g. P53, Mdm2, Bbc3 and Cas8) were significantly up-regulated upon the exposure to carbendazim at the concentration of 500 μg/L, while the Bcl2 and Cas3 were down-regulated at the same concentration, interestingly, the expression level of Ogg1 decreased at all the exposure concentrations. It was also observed that the mRNA levels of CXCL-C1C, CCL1, IL-1b and TNFα which were closely related to the innate immune system, were affected in newly hatched zebrafish after exposed to different concentrations of carbendazim. Moreover, the expression of genes that are involved in the hypothalamic-pituitary-gonadal/thyroid (HPG/HPT) axis including VTG, ERα, ERβ2, Dio1, Dio2, Thraa and Thrb were all down-regulated significantly after the exposure to carbendazim. The expression levels of two cytochrome P450 aromatases CYP19a and CYP19b were increased significantly after 20 and 100 μg/L carbendazim exposure, respectively. Taken together, our results indicated that carbendazim had the potential to induce cell apoptosis and cause immune toxicity as well as endocrine disruption in zebrafish during the embryo developmental stage. The information presented here also help to elucidate the environmental risks caused by the carbendazim-induced toxicity in aquatic organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for

  9. Bisphenol A and its analogs: Do their metabolites have endocrine activity?

    PubMed

    Gramec Skledar, Darja; Peterlin Mašič, Lucija

    2016-10-01

    Structural analogs of bisphenol A are commonly used as its alternatives in industrial and commercial applications. Nevertheless, the question arises whether the use of other bisphenols is justified as replacements for bisphenol A in mass production of plastic materials. To evaluate the influence of metabolic reactions on endocrine activities of bisphenols, we conducted a systematic review of the literature. Knowledge about the metabolic pathways and enzymes involved in metabolic biotransformations is essential for understanding and predicting mechanisms of toxicity. Bisphenols are metabolized predominantly by the glucuronidation reaction, which is considered their most important detoxification pathway, as based on current knowledge, glucuronides do not have activity on endocrine receptors. In contrast, several oxidative metabolites of bisphenols with enhanced endocrine activities are presented, and these findings indicate that oxidative metabolites of bisphenols can still have endocrine activities in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    PubMed Central

    Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119

  11. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  12. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.

  13. The Central Endocrine Glands: Intertwining Physiology and Pharmacy

    PubMed Central

    2007-01-01

    The initial courses in didactic pharmacy curriculum are designed to provide core scientific knowledge and develop learning skills that are the basis for highly competent application and practice of pharmacy. Commonly, students interpret this scientific base as ancillary to the practice of pharmacy. Physiology courses present a natural opportunity for the instructor to introduce basic pharmaceutical principles that form the foundation of pharmacological application early in the professional curriculum. Human Physiology I is the first of a 2-course physiology sequence that pharmacy students take upon matriculating into Midwestern University College of Pharmacy-Glendale. The endocrine physiology section of this course is designed to emphasize the regulatory and compensatory nature of this system in maintaining homeostasis, but also includes aspects of basic pharmaceutical principles. In this way the dependency of physiology and pharmacy upon one another is accentuated. The lecture format and content described in this manuscript focus on the central endocrine glands and illustrates their vital role in normal body function, compensatory responses to disease states, and their components as pharmacotherapy targets. The integration of these pharmaceutical principles at the introductory level supports an environment that can alleviate any perceived disparity between science foundation and practical application in the profession of pharmacy. PMID:17998993

  14. Water deprivation affects serotoninergic system and glycoprotein secretion in the sub-commissural organ of a desert rodent Meriones shawi.

    PubMed

    Elgot, Abdeljalil; Ahboucha, Samir; Bouyatas, My Mustapha; Fèvre-Montange, Michèlle; Gamrani, Halima

    2009-11-27

    Water deprivation is a stress that has been associated with activation of several endocrine systems, including circumventricular organs of the central nervous system. The sub-comissural organ (SCO), characterized by its glycoprotein secretion called Reissner's fiber has been suggested to play a role in the regulation of body water balance. Meriones shawi, a semi-desertic rodent characterized by its resistance to long periods of thirst was subjected to water deprivation for 1 and 3 months. Effect of water deprivation was evaluated immunohistochemically on 5-hydroxytryptamine (5-HT; serotonin) system and glycoprotein secretion of the SCO. Our findings demonstrate significant reduction of anti-Reissner's fiber immunoreactive materials within basal and apical parts of the SCO ependymocytes. These changes seem to be the consequence of reduced control by 5-HT fibers reaching the SCO as a concomitant and significant reduction of anti-5-HT immunoreactive fibers are also observed following water deprivation. 5-HT immunoreactive reduction is seen in several regions in the brain including the neurons of origin within the dorsal raphe nucleus and the projecting supra and sub-ependymal fibers reaching the classical ependyma of the third ventricle. The extent of Reissner's fiber and 5-HT immunoreactive changes significantly correlates with the severity of water restriction. We suggest that water deprivation causes changes of the classical ependyma and the specialized ependyma that differentiates into the SCO as well as other cirumventricular organs such as the subfornical organ and the organum vasculosum laminae terminalis known to control drinking behaviors.

  15. Screening for secondary endocrine hypertension in young patients.

    PubMed

    Trifanescu, Raluca; Carsote, Mara; Caragheorgheopol, Andra; Hortopan, Dan; Dumitrascu, Anda; Dobrescu, Mariana; Poiana, Catalina

    2013-06-01

    Secondary endocrine hypertension accounts for 5-12% of hypertension's causes. In selected patients (type 2 diabetes mellitus, sleep apnea syndrome with resistant hypertension, sudden deterioration in hypertension control), prevalence could be higher. To present etiology of endocrine secondary hypertension in a series of patients younger than 40 years at hypertension's onset. Medical records of 80 patients (39M/41F), aged 30.1 ± 8.2 years (range: 12-40 years), with maximum systolic blood pressure=190.4 ± 29.2 mm Hg, range: 145-300 mm Hg, maximum diastolic blood pressure=107.7 ± 16.9 mm Hg, range: 80-170 mm Hg) referred by cardiologists for endocrine hypertension screening were retrospectively reviewed. Cardiac and renal causes of secondary hypertension were previously excluded. In all patients, plasma catecholamines were measured by ELISA and plasma cortisol by immunochemiluminescence. Orthostatic aldosterone (ELISA) and direct renin (chemiluminescence) were measured in 48 patients. Secondary endocrine hypertension was confirmed in 16 out of 80 patients (20%). Primary hyperaldosteronism was diagnosed in 7 (4M/3F) out of 48 screened patients (14.6%). i.e. 8.75% from whole group: 5 patients with adrenal tumors (3 left/2 right), 2 patients with bilateral adrenal hyperplasia; all patients were hypokalemic at diagnostic (average nadir K+ levels = 2.5 ± 0.5 mmol/L); four patients were hypokalaemic on diuretic therapy (indapamidum); other 3 patients were hypokalaemic in the absence of diuretic therapy. Cushing's syndrome was diagnosed in 6 patients (7.5%): subclinical Cushing due to 4 cm right adrenal tumour - n = 1, overt ACTH-independent Cushing's syndrome due to: macronodular adrenal hyperplasia associated with primary hyperparathyroidism - n = 1; due to adrenal carcinoma - n = 1; due to adrenal adenomas - n = 2; Cushing's disease - n = 1). Pheochromocytomas were diagnosed in 3 patients (3.75%). Primary hyperaldosteronism was the most frequent cause of secondary

  16. TRIENNIAL REPRODUCTION SYMPOSIUM: Environmental programming of reproduction during fetal life: Effects of intrauterine position and the endocrine disrupting chemical bisphenol A.

    PubMed

    Vom Saal, F S

    2016-07-01

    During critical periods in fetal life, there is an increased vulnerability to perturbations in endocrine function due to environmental factors. Small shifts in concentrations of hormones that regulate the differentiation of organs, such as estradiol and testosterone, can have permanent effects on morphology, enzymatic activity, and hormone receptors in tissues as well as neurobehavioral effects. These changes can lead to effects throughout life, including impacting the risk for various diseases (referred to as the Developmental Origins of Adult Health and Disease hypothesis). The intrauterine position phenomenon concerns the consequence for fetuses of randomly implanting next to embryos of the same or opposite sex. An intrauterine position next to males vs. females results in small differences in serum testosterone and estradiol during fetal life that are associated with marked effects on life history (such as lifetime fecundity) in both males and females born in litters (mice, rats, gerbils, rabbits, and swine) as well as human twins. Research with mice subsequently demonstrated that a very small experimental change in fetal serum estradiol levels altered organogenesis and caused permanent changes in organ function. Taken together, these findings led to the hypothesis that environmental chemicals that mimic or antagonize hormone action (e.g., endocrine disrupting chemicals) could also be causing harm at very low exposures (the "low dose" hypothesis) within the range of exposure of humans, domesticated animals, and wildlife. There is now extensive evidence from experimental laboratory animals, sheep, and humans that fetal exposure to very low (presumably safe) doses of the endocrine disrupting chemical bisphenol A (BPA), which exhibits estrogenic activity, can cause permanent changes that can increase the risk of a wide array of diseases. The reasons that federal regulatory agencies are ignoring the massive literature showing adverse effects of BPA and other

  17. Endocrine Disruptor Vinclozolin Induced Epigenetic Transgenerational Adult-Onset Disease

    PubMed Central

    Anway, Matthew D.; Leathers, Charles; Skinner, Michael K.

    2018-01-01

    The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1–F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1–F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease. PMID:16973726

  18. Presence of endocrine disruptors in freshwater in the northern Antarctic Peninsula region.

    PubMed

    Esteban, S; Moreno-Merino, L; Matellanes, R; Catalá, M; Gorga, M; Petrovic, M; López de Alda, M; Barceló, D; Silva, A; Durán, J J; López-Martínez, J; Valcárcel, Y

    2016-05-01

    The increasing human presence in Antarctica and the waste it generates is causing an impact on the environment at local and border scale. The main sources of anthropic pollution have a mainly local effect, and include the burning of fossil fuels, waste incineration, accidental spillage and wastewater effluents, even when treated. The aim of this work is to determine the presence and origin of 30 substances of anthropogenic origin considered to be, or suspected of being, endocrine disruptors in the continental waters of the Antarctic Peninsula region. We also studied a group of toxic metals, metalloids and other elements with possible endocrine activity. Ten water samples were analyzed from a wide range of sources, including streams, ponds, glacier drain, and an urban wastewater discharge into the sea. Surprisingly, the concentrations detected are generally similar to those found in other studies on continental waters in other parts of the world. The highest concentrations of micropollutants found correspond to the group of organophosphate flame retardants (19.60-9209ngL(-1)) and alkylphenols (1.14-7225ngL(-1)); and among toxic elements the presence of aluminum (a possible hormonal modifier) (1.7-127µgL(-1)) is significant. The concentrations detected are very low and insufficient to cause acute or subacute toxicity in aquatic organisms. However, little is known as yet of the potential sublethal and chronic effects of this type of pollutants and their capacity for bioaccumulation. These results point to the need for an ongoing system of environmental monitoring of these substances in Antarctic continental waters, and the advisability of regulating at least the most environmentally hazardous of these in the Antarctic legislation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system.

    PubMed

    Zhao, Yanyan; Xie, Liqiang; Yan, Yunjun

    2015-02-01

    Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The interaction between ER and NFκB in resistance to endocrine therapy

    PubMed Central

    2012-01-01

    Endocrine therapy is a commonly used treatment for estrogen receptor (ER)-positive breast cancer. Although endocrine therapy has a favorable outcome in many patients, development of resistance is common. Recent studies have shown that NFκB, a transcription factor regulating a wide variety of cellular processes, might play a role in the development of endocrine resistance. The precise interaction between ER and NFκB and how this contributes to the attenuated responsiveness of ER-positive breast cancer cells to hormonal treatment remains unclear. This review provides an overview of the mechanisms of action for both transcription factors and focuses on the current knowledge explaining how ER and NFκB affect each other's activity and how this cross-talk might contribute to the development of an endocrine resistance phenotype in breast cancer cells. PMID:22963717