Howes, Mark T.; Kirkham, Matthew; Riches, James; Cortese, Katia; Walser, Piers J.; Simpson, Fiona; Hill, Michelle M.; Jones, Alun; Lundmark, Richard; Lindsay, Margaret R.; Hernandez-Deviez, Delia J.; Hadzic, Gordana; McCluskey, Adam; Bashir, Rumasia; Liu, Libin; Pilch, Paul; McMahon, Harvey; Robinson, Phillip J.; Hancock, John F.; Mayor, Satyajit
2010-01-01
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells. PMID:20713605
Guo, Shuohan; Zhang, Xiaohan; Zheng, Mei; Zhang, Xiaowei; Min, Chengchun; Wang, Zengtao; Cheon, Seung Hoon; Oak, Min-Ho; Nah, Seung-Yeol; Kim, Kyeong-Man
2015-10-01
Among the multiple G protein-coupled receptor (GPCR) endocytic pathways, clathrin-mediated endocytosis (CME) and caveolar endocytosis are more extensively characterized than other endocytic pathways. A number of endocytic inhibitors have been used to block CME; however, systemic studies to determine the selectivity of these inhibitors are needed. Clathrin heavy chain or caveolin1-knockdown cells have been employed to determine the specificity of various chemical and molecular biological tools for CME and caveolar endocytosis. Sucrose, concanavalin A, and dominant negative mutants of dynamin blocked other endocytic pathways, in addition to CME. In particular, concanavalin A nonspecifically interfered with the signaling of several GPCRs tested in the study. Decreased pH, monodansylcadaverine, and dominant negative mutants of epsin were more specific for CME than other treatments were. A recently introduced CME inhibitor, Pitstop2™, showed only marginal selectivity for CME and interfered with receptor expression on the cell surface. Blockade of receptor endocytosis by epsin mutants and knockdown of the clathrin heavy chain enhanced the β2AR-mediated ERK activation. Overall, our studies show that previous experimental results should be interpreted with discretion if they included the use of endocytic inhibitors that were previously thought to be CME-selective. In addition, our study shows that endocytosis of β2 adrenoceptor through clathrin-mediated pathway has negative effects on ERK activation. Copyright © 2015 Elsevier B.V. All rights reserved.
The minute virus of mice exploits different endocytic pathways for cellular uptake
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcin, Pierre O.; Panté, Nelly, E-mail: pante@zoology.ubc.ca
The minute virus of mice, prototype strain (MVMp), is a non-enveloped, single-stranded DNA virus of the family Parvoviridae. Unlike other parvoviruses, the mechanism of cellular uptake of MVMp has not been studied in detail. We analyzed MVMp endocytosis in mouse LA9 fibroblasts and a tumor cell line derived from epithelial–mesenchymal transition through polyomavirus middle T antigen transformation in transgenic mice. By a combination of immunofluorescence and electron microscopy, we found that MVMp endocytosis occurs at the leading edge of migrating cells in proximity to focal adhesion sites. By using drug inhibitors of various endocytic pathways together with immunofluorescence microscopy andmore » flow cytometry analysis, we discovered that MVMp can use a number of endocytic pathways, depending on the host cell type. At least three different mechanisms were identified: clathrin-, caveolin-, and clathrin-independent carrier-mediated endocytosis, with the latter occurring in transformed cells but not in LA9 fibroblasts. - Highlights: • MVMp uptake takes place at the leading edge of migrating cells. • MVMp exploits a variety of endocytic pathways. • MVMp could use clathrin- and caveolin-mediated endocytosis. • MVMp could also use clathrin-independent carriers for cellular uptake.« less
Lo, Wen-Ting; Vujičić Žagar, Andreja; Gerth, Fabian; Lehmann, Martin; Puchkov, Dymtro; Krylova, Oxana; Freund, Christian; Scapozza, Leonardo; Vadas, Oscar; Haucke, Volker
2017-11-20
Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P 2 ) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P 2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Gupta, Gagan D.; Howes, Mark T.; Chandran, Ruma; Das, Anupam; Menon, Sindhu; Parton, Robert G.; Sowdhamini, R.; Thattai, Mukund; Mayor, Satyajit
2014-01-01
Single-cell-resolved measurements reveal heterogeneous distributions of clathrin-dependent (CD) and -independent (CLIC/GEEC: CG) endocytic activity in Drosophila cell populations. dsRNA-mediated knockdown of core versus peripheral endocytic machinery induces strong changes in the mean, or subtle changes in the shapes of these distributions, respectively. By quantifying these subtle shape changes for 27 single-cell features which report on endocytic activity and cell morphology, we organize 1072 Drosophila genes into a tree-like hierarchy. We find that tree nodes contain gene sets enriched in functional classes and protein complexes, providing a portrait of core and peripheral control of CD and CG endocytosis. For 470 genes we obtain additional features from separate assays and classify them into early- or late-acting genes of the endocytic pathways. Detailed analyses of specific genes at intermediate levels of the tree suggest that Vacuolar ATPase and lysosomal genes involved in vacuolar biogenesis play an evolutionarily conserved role in CG endocytosis. PMID:24971745
Chung, Byung Min; Tom, Eric; Zutshi, Neha; Bielecki, Timothy Alan; Band, Vimla; Band, Hamid
2014-01-01
Epidermal growth factor receptor (EGFR) controls a wide range of cellular processes, and aberrant EGFR signaling as a result of receptor overexpression and/or mutation occurs in many types of cancer. Tumor cells in non-small cell lung cancer (NSCLC) patients that harbor EGFR kinase domain mutations exhibit oncogene addiction to mutant EGFR, which confers high sensitivity to tyrosine kinase inhibitors (TKIs). As patients invariably develop resistance to TKIs, it is important to delineate the cell biological basis of mutant EGFR-induced cellular transformation since components of these pathways can serve as alternate therapeutic targets to preempt or overcome resistance. NSCLC-associated EGFR mutants are constitutively-active and induce ligand-independent transformation in nonmalignant cell lines. Emerging data suggest that a number of factors are critical for the mutant EGFR-dependent tumorigenicity, and bypassing the effects of TKIs on these pathways promotes drug resistance. For example, activation of downstream pathways such as Akt, Erk, STAT3 and Src is critical for mutant EGFR-mediated biological processes. It is now well-established that the potency and spatiotemporal features of cellular signaling by receptor tyrosine kinases such as EGFR, as well as the specific pathways activated, is determined by the nature of endocytic traffic pathways through which the active receptors traverse. Recent evidence indicates that NSCLC-associated mutant EGFRs exhibit altered endocytic trafficking and they exhibit reduced Cbl ubiquitin ligase-mediated lysosomal downregulation. More recent work has shown that mutant EGFRs undergo ligand-independent traffic into the endocytic recycling compartment, a behavior that plays a key role in Src pathway activation and oncogenesis. These studies are beginning to delineate the close nexus between signaling and endocytic traffic of EGFR mutants as a key driver of oncogenic processes. Therefore, in this review, we will discuss the links between mutant EGFR signaling and endocytic properties, and introduce potential mechanisms by which altered endocytic properties of mutant EGFRs may alter signaling and vice versa as well as their implications for NSCLC therapy. PMID:25493220
Shah, Mehul; Baterina, Oscar Y.; Taupin, Vanessa
2013-01-01
Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin. PMID:23836931
Chuang, Jen-Zen; Vega, Carrie; Jun, Wenjin; Sung, Ching-Hwa
2004-01-01
Retinitis pigmentosa (RP) is a clinically and genetically heterogeneous degenerative eye disease. Mutations at Arg135 of rhodopsin are associated with a severe form of autosomal dominant RP. This report presents evidence that Arg135 mutant rhodopsins (e.g., R135L, R135G, and R135W) are hyperphosphorylated and bind with high affinity to visual arrestin. Mutant rhodopsin recruits the cytosolic arrestin to the plasma membrane, and the rhodopsin-arrestin complex is internalized into the endocytic pathway. Furthermore, the rhodopsin-arrestin complexes alter the morphology of endosomal compartments and severely damage receptor-mediated endocytic functions. The biochemical and cellular defects of Arg135 mutant rhodopsins are distinct from those previously described for class I and class II RP mutations, and, hence, we propose that they be named class III. Impaired endocytic activity may underlie the pathogenesis of RP caused by class III rhodopsin mutations. PMID:15232620
Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8.
Auciello, Giulio; Cunningham, Debbie L; Tatar, Tulin; Heath, John K; Rappoport, Joshua Z
2013-01-15
Fibroblast growth factor receptors (FGFRs) mediate a wide spectrum of cellular responses that are crucial for development and wound healing. However, aberrant FGFR activity leads to cancer. Activated growth factor receptors undergo stimulated endocytosis, but can continue to signal along the endocytic pathway. Endocytic trafficking controls the duration and intensity of signalling, and growth factor receptor signalling can lead to modifications of trafficking pathways. We have developed live-cell imaging methods for studying FGFR dynamics to investigate mechanisms that coordinate the interplay between receptor trafficking and signal transduction. Activated FGFR enters the cell following recruitment to pre-formed clathrin-coated pits (CCPs). However, FGFR activation stimulates clathrin-mediated endocytosis; FGF treatment increases the number of CCPs, including those undergoing endocytosis, and this effect is mediated by Src and its phosphorylation target Eps8. Eps8 interacts with the clathrin-mediated endocytosis machinery and depletion of Eps8 inhibits FGFR trafficking and immediate Erk signalling. Once internalized, FGFR passes through peripheral early endosomes en route to recycling and degredative compartments, through an Src- and Eps8-dependent mechanism. Thus Eps8 functions as a key coordinator in the interplay between FGFR signalling and trafficking. This work provides the first detailed mechanistic analysis of growth factor receptor clustering at the cell surface through signal transduction and endocytic trafficking. As we have characterised the Src target Eps8 as a key regulator of FGFR signalling and trafficking, and identified the early endocytic system as the site of Eps8-mediated effects, this work provides novel mechanistic insight into the reciprocal regulation of growth factor receptor signalling and trafficking.
Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo
2009-10-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis.
Furuta, Nobumichi; Tsuda, Kayoko; Omori, Hiroko; Yoshimori, Tamotsu; Yoshimura, Fuminobu; Amano, Atsuo
2009-01-01
Porphyromonas gingivalis, a periodontal pathogen, secretes outer membrane vesicles (MVs) that contain major virulence factors, including major fimbriae and proteases termed gingipains, although it is not confirmed whether MVs enter host cells. In this study, we analyzed the mechanisms involved in the interactions of P. gingivalis MVs with human epithelial cells. Our results showed that MVs swiftly adhered to HeLa and immortalized human gingival epithelial cells in a fimbria-dependent manner and then entered via a lipid raft-dependent endocytic pathway. The intracellular MVs were subsequently routed to early endosome antigen 1-associated compartments and then were sorted to lysosomal compartments within 90 min, suggesting that intracellular MVs were ultimately degraded by the cellular digestive machinery. However, P. gingivalis MVs remained there for over 24 h and significantly induced acidified compartment formation after being taken up by the cellular digestive machinery. In addition, MV entry was shown to be mediated by a novel pathway for transmission of bacterial products into host cells, a Rac1-regulated pinocytic pathway that is independent of caveolin, dynamin, and clathrin. Our findings indicate that P. gingivalis MVs efficiently enter host cells via an endocytic pathway and survive within the endocyte organelles for an extended period, which provides better understanding of the role of MVs in the etiology of periodontitis. PMID:19651865
NASA Astrophysics Data System (ADS)
Delehanty, James B.; Spillmann, Christopher M.; Naciri, Jawad; Algar, W. Russ; Ratna, Banahalli R.; Medintz, Igor L.
2013-02-01
The demonstration of fine control over nanomaterials within biological systems, particularly in live cells, is integral for the successful implementation of nanoparticles (NPs) in biomedical applications. Here, we show the ability to differentially label the endocytic pathway of mammalian cells in a spatiotemporal manner utilizing fluorescent nanocolloids (NCs) doped with a perylene-based dye. EDC-based conjugation of green- and red-emitting NCs to the iron transport protein transferrin resulted in stable bioconjugates that were efficiently endocytosed by HEK 293T/17 cells. The staggered delivery of the bioconjugates allowed for the time-resolved, differential labeling of distinct vesicular compartments along the endocytic pathway in a nontoxic manner. We further demonstrated the ability of the NCs to be impregnated with the anticancer therapeutic, doxorubicin. Delivery of the drug-doped nanoconjugates resulted in the intracellular release and nuclear accumulation of doxorubicin in a time- and dose-dependent manner. We discuss our results in the context of the utility of such materials for NP-mediated drug delivery applications.
Regulation of raft-dependent endocytosis
Lajoie, P; Nabi, IR
2007-01-01
Abstract Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveo-lae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholesterol sensitivity, raft endocytic routes show differential regulation by various cellular components including caveolin-1, dynamin-2 and regulators of the actin cytoskeleton. Dynamin-dependent raft pathways, mediated by caveolae and morphologically equivalent non-caveolin vesicular intermediates, are referred to as caveolae/raft-dependent endocytosis. In contrast, dynamin-independent raft pathways are mediated by non-caveolar intermediates. Raft-dependent endocytosis is regulated by tyrosine kinase inhibitors and, through the regulation of the internalization of various ligands, receptors and effectors, is also a determinant of cellular signaling. In this review, we characterize and discuss the regulation of raft-dependent endocytic pathways and the role of key regulators such as caveolin-1. PMID:17760830
Evolutionary Changes on the Way to Clathrin-Mediated Endocytosis in Animals
Dergai, Mykola; Iershov, Anton; Novokhatska, Olga; Pankivskyi, Serhii; Rynditch, Alla
2016-01-01
Endocytic pathways constitute an evolutionarily ancient system that significantly contributed to the eukaryotic cell architecture and to the diversity of cell type–specific functions and signaling cascades, in particular of metazoans. Here we used comparative proteomic studies to analyze the universal internalization route in eukaryotes, clathrin-mediated endocytosis (CME), to address the issues of how this system evolved and what are its specific features. Among 35 proteins crucially required for animal CME, we identified a subset of 22 proteins common to major eukaryotic branches and 13 gradually acquired during evolution. Based on exploration of structure–function relationship between conserved homologs in sister, distantly related and early diverged branches, we identified novel features acquired during evolution of endocytic proteins on the way to animals: Elaborated way of cargo recruitment by multiple sorting proteins, structural changes in the core endocytic complex AP2, the emergence of the Fer/Cip4 homology domain-only protein/epidermal growth factor receptor substrate 15/intersectin functional complex as an additional interaction hub and activator of AP2, as well as changes in late endocytic stages due to recruitment of dynamin/sorting nexin 9 complex and involvement of the actin polymerization machinery. The evolutionary reconstruction showed the basis of the CME process and its subsequent step-by-step development. Documented changes imply more precise regulation of the pathway, as well as CME specialization for the uptake of specific cargoes and cell type-specific functions. PMID:26872775
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992
Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C
2014-02-27
Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.
Lee, Sora; Tumolo, Jessica M; Ehlinger, Aaron C; Jernigan, Kristin K; Qualls-Histed, Susan J; Hsu, Pi-Chiang; McDonald, W Hayes; Chazin, Walter J
2017-01-01
Despite its central role in protein degradation little is known about the molecular mechanisms that sense, maintain, and regulate steady state concentration of ubiquitin in the cell. Here, we describe a novel mechanism for regulation of ubiquitin homeostasis that is mediated by phosphorylation of ubiquitin at the Ser57 position. We find that loss of Ppz phosphatase activity leads to defects in ubiquitin homeostasis that are at least partially attributable to elevated levels of Ser57 phosphorylated ubiquitin. Phosphomimetic mutation at the Ser57 position of ubiquitin conferred increased rates of endocytic trafficking and ubiquitin turnover. These phenotypes are associated with bypass of recognition by endosome-localized deubiquitylases - including Doa4 which is critical for regulation of ubiquitin recycling. Thus, ubiquitin homeostasis is significantly impacted by the rate of ubiquitin flux through the endocytic pathway and by signaling pathways that converge on ubiquitin itself to determine whether it is recycled or degraded in the vacuole. PMID:29130884
Strick, David J.; Elferink, Lisa A.
2005-01-01
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways. PMID:16195351
Cho, DI; Zheng, M; Min, C; Kwon, KJ; Shin, CY; Choi, HK; Kim, KM
2013-01-01
Background and Purpose GPCRs undergo both homologous and heterologous regulatory processes in which receptor phosphorylation plays a critical role. The protein kinases responsible for each pathway are well established; however, other molecular details that characterize each pathway remain unclear. In this study, the molecular mechanisms that determine the differences in the functional roles and intracellular trafficking between homologous and PKC-mediated heterologous internalization pathways for the dopamine D2 receptor were investigated. Experimental Approach All of the S/T residues located within the intracellular loops of D2 receptor were mutated, and the residues responsible for GRK- and PKC-mediated internalization were determined in HEK-293 cells and SH-SY5Y cells. The functional role of receptor internalization and the cellular components that determine the post-endocytic fate of internalized D2 receptors were investigated in the transfected cells. Key Results T134, T225/S228/S229 and S325 were involved in PKC-mediated D2 receptor desensitization. S229 and adjacent S/T residues mediated the PKC-dependent internalization of D2 receptors, which induced down-regulation and desensitization. S/T residues within the second intracellular loop and T225 were the major residues involved in GRK-mediated internalization of D2 receptors, which induced receptor resensitization. ARF6 mediated the recycling of D2 receptors internalized in response to agonist stimulation. In contrast, GASP-1 mediated the down-regulation of D2 receptors internalized in a PKC-dependent manner. Conclusions and Implications GRK- and PKC-mediated internalizations of D2 receptors occur through different intracellular trafficking pathways and mediate distinct functional roles. Distinct S/T residues within D2 receptors and different sorting proteins are involved in the dissimilar regulation of D2 receptors by GRK2 and PKC. PMID:23082996
Tanaka, Tomohiro; Zhou, Yue; Ozawa, Tatsuhiko; Okizono, Ryuya; Banba, Ayako; Yamamura, Tomohiro; Oga, Eiji; Muraguchi, Atsushi; Sakurai, Hiroaki
2018-02-16
The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Efficient Endocytic Uptake and Maturation in Drosophila Oocytes Requires Dynamitin/p50
Liu, Guojun; Sanghavi, Paulomi; Bollinger, Kathryn E.; Perry, Libby; Marshall, Brendan; Roon, Penny; Tanaka, Tsubasa; Nakamura, Akira; Gonsalvez, Graydon B.
2015-01-01
Dynactin is a multi-subunit complex that functions as a regulator of the Dynein motor. A central component of this complex is Dynamitin/p50 (Dmn). Dmn is required for endosome motility in mammalian cell lines. However, the extent to which Dmn participates in the sorting of cargo via the endosomal system is unknown. In this study, we examined the endocytic role of Dmn using the Drosophila melanogaster oocyte as a model. Yolk proteins are internalized into the oocyte via clathrin-mediated endocytosis, trafficked through the endocytic pathway, and stored in condensed yolk granules. Oocytes that were depleted of Dmn contained fewer yolk granules than controls. In addition, these oocytes accumulated numerous endocytic intermediate structures. Particularly prominent were enlarged endosomes that were relatively devoid of Yolk proteins. Ultrastructural and genetic analyses indicate that the endocytic intermediates are produced downstream of Rab5. Similar phenotypes were observed upon depleting Dynein heavy chain (Dhc) or Lis1. Dhc is the motor subunit of the Dynein complex and Lis1 is a regulator of Dynein activity. We therefore propose that Dmn performs its function in endocytosis via the Dynein motor. Consistent with a role for Dynein in endocytosis, the motor colocalized with the endocytic machinery at the oocyte cortex in an endocytosis-dependent manner. Our results suggest a model whereby endocytic activity recruits Dynein to the oocyte cortex. The motor along with its regulators, Dynactin and Lis1, functions to ensure efficient endocytic uptake and maturation. PMID:26265702
ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis
Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.
2016-01-01
Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654
A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway
Erdmann, Kai S.; Mao, Yuxin; McCrea, Heather J.; Zoncu, Roberto; Lee, Sangyoon; Paradise, Summer; Modregger, Jan; Biemesderfer, Daniel; Toomre, Derek; De Camilli, Pietro
2007-01-01
Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, whose manifestations include mental retardation and renal Fanconi syndrome. OCRL has been implicated in membrane traffic, but disease mechanisms remain unclear. We show that OCRL visits late stage endocytic clathrin coated pits and binds the Rab5 effector APPL1 on peripheral early endosomes. The interaction with APPL1, which is mediated by the ASH-RhoGAP-like domains of OCRL and is abolished by disease mutations, provides a link to protein networks implicated in the reabsorptive function of kidney and in traffic and signaling of growth factor receptors in brain. Crystallographic studies reveal a role of the ASH-RhoGAP-like domains in positioning the phosphatase domain at the membrane interface and a clathrin box protruding from the RhoGAP-like domain. Our results support a role of OCRL in the early endocytic pathway consistent with the predominant localization of its preferred substrates, PI(4,5)P2 and PI(3,4,5)P3, at the cell surface. PMID:17765681
Yao, Pamela J; Bushlin, Ittai; Petralia, Ronald S
2006-01-10
Synapses of neurons use clathrin-mediated endocytic pathways for recycling of synaptic vesicles and trafficking of neurotransmitter receptors. Epsin 1 and huntingtin-interacting protein 1 (HIP1) are endocytic accessory proteins. Both proteins interact with clathrin and the AP2 adaptor complex and also bind to the phosphoinositide-containing plasma membrane via an epsin/AP180 N-terminal homology (ENTH/ANTH) domain. Epsin1 and HIP1 are found in neurons; however, their precise roles in synapses remain largely unknown. Using immunogold electron microscopy, we examine and compare the synaptic distribution of epsin1 and HIP1 in rat CA1 hippocampal synapse. We find that epsin1 is located across both sides of the synapse, whereas HIP1 displays a preference for the postsynaptic compartment. Within the synaptic compartments, espin1 is distributed similarly throughout, whereas postsynaptic HIP1 is concentrated near the plasma membrane. Our results suggest a dual role for epsin1 and HIP1 in the synapse: as broadly required factors for promoting clathrin assembly and as adaptors for specific endocytic pathways.
Clathrin-independent pathways do not contribute significantly to endocytic flux.
Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J
2014-09-17
Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells.
Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways.
da Silva, Edileuza Danieli; Cancela, Martin; Monteiro, Karina Mariante; Ferreira, Henrique Bunselmeyer; Zaha, Arnaldo
2018-05-04
Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival.
Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia
2014-01-01
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolar-mediated pathways, allows uptake of nano- and micro-carriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and micro-carriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size-restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems. PMID:24237309
Ansar, Maria; Serrano, Daniel; Papademetriou, Iason; Bhowmick, Tridib Kumar; Muro, Silvia
2013-12-23
Targeting of drug carriers to cell-surface receptors involved in endocytosis is commonly used for intracellular drug delivery. However, most endocytic receptors mediate uptake via clathrin or caveolar pathways associated with ≤200-nm vesicles, restricting carrier design. We recently showed that endocytosis mediated by intercellular adhesion molecule 1 (ICAM-1), which differs from clathrin- and caveolae-mediated pathways, allows uptake of nano- and microcarriers in cell culture and in vivo due to recruitment of cellular sphingomyelinases to the plasmalemma. This leads to ceramide generation at carrier binding sites and formation of actin stress-fibers, enabling engulfment and uptake of a wide size-range of carriers. Here we adapted this paradigm to enhance uptake of drug carriers targeted to receptors associated with size-restricted pathways. We coated sphingomyelinase onto model (polystyrene) submicro- and microcarriers targeted to clathrin-associated mannose-6-phosphate receptor. In endothelial cells, this provided ceramide enrichment at the cell surface and actin stress-fiber formation, modifying the uptake pathway and enhancing carrier endocytosis without affecting targeting, endosomal transport, cell-associated degradation, or cell viability. This improvement depended on the carrier size and enzyme dose, and similar results were observed for other receptors (transferrin receptor) and cell types (epithelial cells). This phenomenon also enhanced tissue accumulation of carriers after intravenous injection in mice. Hence, it is possible to maintain targeting toward a selected receptor while bypassing natural size restrictions of its associated endocytic route by functionalization of drug carriers with biological elements mimicking the ICAM-1 pathway. This strategy holds considerable promise to enhance flexibility of design of targeted drug delivery systems.
Delpeut, Sebastien; Sisson, Gary; Black, Karen M.
2017-01-01
ABSTRACT Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy. IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells. PMID:28250131
Stochastic Modeling of the Clathrin-dependent and -independent Endocytic Pathways
NASA Astrophysics Data System (ADS)
Deng, Hua; Dutta, Prashanta; Liu, Jin
2017-11-01
Endocytosis is one of the important processes that bioparticles use to enter the cells. During endocytosis the membrane-bound vesicles are formed by the invagination of plasma membrane as a result of interactions among many proteins and cytoskeletons. The clathrin-mediated endocytosis is one of the most significant form of endocytosis, where the dynamic assembly of clathrin-coated pits play a critical role. While herpes simplex virus-1 has recently shown to infect cell by a novel phagocytosis-like endocytic pathway where actin polymerization may facilitate the viral entry. In this work, we propose a stochastic model for both clathrin-dependent and -independent endocytic pathways based on Monte Carlo simulations. The important roles of clathrin coating and actin cytoskeleton as well as the impact of other biological parameters are studied. Our preliminary results indicate that there exist an intermediate particle size and ligand density that maximize the internalization efficiency. Below a critical size or surface ligand density, it is difficult for the entry of a single particle, which means clustering may needed for more efficient internalization. We also find that lower membrane bending rigidity may help promote the bioparticle entry. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.
Li, Xiao C; Hopfer, Ulrich; Zhuo, Jia L
2009-11-01
Angiotensin II (ANG II) is taken up by proximal tubule (PT) cells via AT1 (AT1a) receptor-mediated endocytosis, but the underlying cellular mechanisms remain poorly understood. The present study tested the hypothesis that the microtubule- rather than the clathrin-dependent endocytic pathway regulates AT1-mediated uptake of ANG II and ANG II-induced sodium and hydrogen exchanger-3 (NHE-3) expression in PT cells. The expression of AT1 receptors, clathrin light (LC) and heavy chain (HC) proteins, and type 1 microtubule-associated proteins (MAPs; MAP-1A and MAP-1B) in PT cells were knocked down by their respective small interfering (si) RNAs before AT1-mediated FITC-ANG II uptake and ANG II-induced NHE-3 expression were studied. AT1 siRNAs inhibited AT1 expression and blocked ANG II-induced NHE-3 expression in PT cells, as expected (P < 0.01). Clathrin LC or HC siRNAs knocked down their respective proteins by approximately 90% with a peak response at 24 h, and blocked the clathrin-dependent uptake of Alexa Fluor 594-transferrin (P < 0.01). However, neither LC nor HC siRNAs inhibited AT1-mediated uptake of FITC-ANG II or affected ANG II-induced NHE-3 expression. MAP-1A or MAP-1B siRNAs markedly knocked down MAP-1A or MAP-1B proteins in a time-dependent manner with peak inhibitions at 48 h (>76.8%, P < 0.01). MAP protein knockdown resulted in approximately 52% decreases in AT1-mediated FITC-ANG II uptake and approximately 66% decreases in ANG II-induced NHE-3 expression (P < 0.01). These effects were associated with threefold decreases in ANG II-induced MAP kinases ERK 1/2 activation (P < 0.01), but not with altered AT1 expression or clathrin-dependent transferrin uptake. Both losartan and AT1a receptor deletion in mouse PT cells completely abolished the effects of MAP-1A knockdown on ANG II-induced NHE-3 expression and activation of MAP kinases ERK1/2. Our findings suggest that the alternative microtubule-dependent endocytic pathway, rather than the canonical clathrin-dependent pathway, plays an important role in AT1 (AT1a)-mediated uptake of extracellular ANG II and ANG II-induced NHE-3 expression in PT cells.
Phosphorylation of Nephrin Triggers Its Internalization by Raft-Mediated Endocytosis
Qin, Xiao-Song; Shono, Akemi; Yamamoto, Akitsugu; Kurihara, Hidetake; Doi, Toshio
2009-01-01
Proper localization of nephrin determines integrity of the glomerular slit diaphragm. Slit diaphragm proteins assemble into functional signaling complexes on a raft-based platform, but how the trafficking of these proteins coordinates with their signaling function is unknown. Here, we demonstrate that a raft-mediated endocytic (RME) pathway internalizes nephrin. Nephrin internalization was slower with raft-mediated endocytosis than with classic clathrin-mediated endocytosis. Ultrastructurally, the RME pathway consisted of noncoated invaginations and was dependent on cholesterol and dynamin. Nephrin constituted a stable, signaling-competent microdomain through interaction with Fyn, a Src kinase, and podocin, a scaffold protein. Tyrosine phosphorylation of nephrin triggered its own RME-mediated internalization. Protamine-induced hyperphosphorylation of nephrin led to noncoated invaginations predominating over coated pits. These results demonstrate that an RME pathway couples nephrin internalization to its own signaling, suggesting that RME promotes proper spatiotemporal assembly of slit diaphragms during podocyte development or injury. PMID:19850954
Clathrin-independent pathways do not contribute significantly to endocytic flux
Bitsikas, Vassilis; Corrêa, Ivan R; Nichols, Benjamin J
2014-01-01
Several different endocytic pathways have been proposed to function in mammalian cells. Clathrin-coated pits are well defined, but the identity, mechanism and function of alternative pathways have been controversial. Here we apply universal chemical labelling of plasma membrane proteins to define all primary endocytic vesicles, and labelling of specific proteins with a reducible SNAP-tag substrate. These approaches provide high temporal resolution and stringent discrimination between surface-connected and intracellular membranes. We find that at least 95% of the earliest detectable endocytic vesicles arise from clathrin-coated pits. GPI-anchored proteins, candidate cargoes for alternate pathways, are also found to enter the cell predominantly via coated pits. Experiments employing a mutated clathrin adaptor reveal distinct mechanisms for sorting into coated pits, and thereby explain differential effects on the uptake of transferrin and GPI-anchored proteins. These data call for a revision of models for the activity and diversity of endocytic pathways in mammalian cells. DOI: http://dx.doi.org/10.7554/eLife.03970.001 PMID:25232658
Saheki, Yasunori; De Camilli, Pietro
2012-01-01
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization. PMID:22763746
Gekle, Michael; Drumm, Karina; Mildenberger, Sigrid; Freudinger, Ruth; Gaßner, Birgit; Silbernagl, Stefan
1999-01-01
Receptor-mediated endocytosis is an important mechanism for transport of macromolecules and regulation of cell-surface receptor expression. In renal proximal tubules, receptor-mediated endocytosis mediates the reabsorption of filtered albumin. Acidification of the endocytic compartments is essential because it interferes with ligand-receptor dissociation, vesicle trafficking, fusion events and coat formation. Here we show that the activity of Na+−H+ exchanger isoform 3 (NHE3) is important for proper receptor-mediated endocytosis of albumin and endosomal pH homeostasis in a renal proximal tubular cell line (opossum kidney cells) which expresses NHE3 only. Depending on their inhibitory potency with respect to NHE3 and their lipophilicity, the NHE inhibitors EIPA, amiloride and HOE694 differentially reduced albumin endocytosis. The hydrophilic inhibitor HOE642 had no effect. Inhibition of NHE3 led to an alkalinization of early endosomes and to an acidification of the cytoplasm, indicating that Na+−H+ exchange contributes to the acidification of the early endosomal compartment due to the existence of a sufficient Na+ gradient across the endosomal membrane. Exclusive acidification of the cytoplasm with propionic acid or by removal of Na+ induced a significantly smaller reduction in endocytosis than that induced by inhibition of Na+−H+ exchange. Analysis of the inhibitory profiles indicates that in early endosomes and endocytic vesicles NHE3 is of major importance, whereas plasma membrane NHE3 plays a minor role. Thus, NHE3-mediated acidification along the first part of the endocytic pathway plays an important role in receptor-mediated endocytosis. Furthermore, the involvement of NHE3 offers new ways to explain the regulation of receptor-mediated endocytosis. PMID:10545138
A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits Multiple, Diverse Viruses
Koehler, Jeffrey W.; Smith, Jeffrey M.; Ripoll, Daniel R.; Spik, Kristin W.; Taylor, Shannon L.; Badger, Catherine V.; Grant, Rebecca J.; Ogg, Monica M.; Wallqvist, Anders; Guttieri, Mary C.; Garry, Robert F.; Schmaljohn, Connie S.
2013-01-01
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors. PMID:24069485
Ghaffarian, Rasa; Muro, Silvia
2014-12-01
Ligand-targeted, receptor-mediated endocytosis is commonly exploited for intracellular drug delivery. However, cells-surface receptors may follow distinct endocytic fates when bound by monomeric vs multimeric ligands. Our purpose was to study this paradigm using ICAM-1, an endothelial receptor involved in inflammation, to better understand its regulation and potential for drug delivery. Our procedure involved fluorescence microscopy of human endothelial cells to determine the endocytic behavior of unbound ICAM-1 vs ICAM-1 bound by model ligands: monomeric (anti-ICAM) vs multimeric (anti-ICAM biotin-streptavidin conjugates or anti-ICAM coated onto 100 nm nanocarriers). Our findings suggest that both monomeric and multimeric ligands undergo a similar endocytic pathway sensitive to amiloride (∼50% inhibition), but not inhibitors of clathrin-pits or caveoli. After 30 min, ∼60-70% of both ligands colocalized with Rab11a-compartments. By 3-5 h, ∼65-80% of multimeric anti-ICAM colocalized with perinuclear lysosomes with ∼60-80% degradation, while 70% of monomeric anti-ICAM remained associated with Rab11a at the cell periphery and recycled to and from the cell-surface with minimal (<10%) lysosomal colocalization and minimal (≤15%) degradation. In the absence of ligands, ICAM-1 also underwent amiloride-sensitive endocytosis with peripheral distribution, suggesting that monomeric (not multimeric) anti-ICAM follows the route of this receptor. In conclusion, ICAM-1 can mediate different intracellular itineraries, revealing new insight into this biological pathway and alternative avenues for drug delivery.
Zhang, Liping; Xu, Yuan; Cao, Wenjuan; Xie, Shibao; Wen, Lu; Chen, Gang
2018-01-01
Background The round window membrane (RWM) functions as the primary biological barrier for therapeutic agents in the inner ear via local application. Previous studies on inner ear nano-drug delivery systems mostly focused on their pharmacokinetics and distribution in the inner ear, but seldom on the interaction with the RWM. Clarifying the transport mechanism of nanoparticulate carriers across RWM will shed more light on the optimum design of nano-drug delivery systems intended for meeting demands for their clinical application. Methods The poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) encapsulating coumarin-6 were prepared by emulsifying solvent evaporation method. We utilized confocal laser scanning microscope (CLSM) in combination with transmission electron microscope to investigate the transport pathway of PLGA NPs in the RWM. Simultaneously, the concentration and time dependence of NPs across the RWM were also determined. The endocytic mechanism of NPs through this membrane interface was classically analyzed by means of various endocytic inhibitors. The intracellular location of NPs into lysosomes was evaluated using CLSM scanning microscope colocalization analysis. The Golgi-related inhibitors were employed to probe into the function of Golgi and endoplasmic reticulum (ER) in the discharge of NPs out of cells. Results PLGA NPs were herein transported through the RWM of a sandwich-like structure into the perilymph via the transcellular pathway. NPs were internalized predominantly via macropinocytosis and caveolin-mediated endocytic pathways. After being internalized, the endocytosed cargos were entrapped within the lysosomal compartments and/or the endoplasmic reticulum/Golgi apparatus which mediated the exocytotic release of NPs. Conclusion For the first time, we showed the translocation itinerary of NPs in RWM, providing a guideline for the rational fabrication of inner ear nanoparticulate carriers with better therapeutic effects. PMID:29403277
Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference
Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu
2015-01-01
RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667
Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.
Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu
2015-03-03
RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells.
Porther, N; Barbieri, MA
2015-01-01
Metastasis is characterized pathologically by uncontrolled cell invasion, proliferation, migration and angiogenesis. It is a multistep process that encompasses the modulation of membrane permeability and invasion, cell spreading, cell migration and proliferation of the extracellular matrix, increase in cell adhesion molecules and interaction, decrease in cell attachment and induced survival signals and propagation of nutrient supplies (blood vessels). In cancer, a solid tumor cannot expand and spread without a series of synchronized events. Changes in cell adhesion receptor molecules (e.g., integrins, cadherin-catenins) and protease expressions have been linked to tumor invasion and metastasis. It has also been determined that ligand-growth factor receptor interactions have been associated with cancer development and metastasis via the endocytic pathway. Specifically, growth factors, which include IGF-1 and IGF-2 therapy, have been associated with most if not all of the features of metastasis. In this review, we will revisit some of the key findings on perhaps one of the most important hallmarks of cancer metastasis: cell migration and cell invasion and the role of the endocytic pathway in mediating this phenomenon PMID:26317377
Endocytosis and Endosomal Trafficking in Plants.
Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S
2016-04-29
Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.
Fast and ultrafast endocytosis.
Watanabe, Shigeki; Boucrot, Emmanuel
2017-08-01
Clathrin-mediated endocytosis (CME) is the main endocytic pathway supporting housekeeping functions in cells. However, CME may be too slow to internalize proteins from the cell surface during certain physiological processes such as reaction to stress hormones ('fight-or-flight' reaction), chemotaxis or compensatory endocytosis following exocytosis of synaptic vesicles or hormone-containing vesicles. These processes take place on a millisecond to second timescale and thus require very rapid cellular reaction to prevent overstimulation or exhaustion of the response. There are several fast endocytic processes identified so far: macropinocytosis, activity-dependent bulk endocytosis (ABDE), fast-endophilin-mediated endocytosis (FEME), kiss-and-run and ultrafast endocytosis. All are clathrin-independent and are not constitutively active but may use different molecular mechanisms to rapidly remove receptors and proteins from the cell surface. Here, we review our current understanding of fast and ultrafast endocytosis, their functions, and molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins
Schwarz, Lindsay A.; Patrick, Gentry N.
2011-01-01
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, synaptic development and function. Endocytic membrane trafficking of receptors can ensure that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism to control receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function. PMID:21884797
The effect of the size of fluorescent dextran on its endocytic pathway.
Li, Lei; Wan, Tao; Wan, Min; Liu, Bei; Cheng, Ran; Zhang, Rongying
2015-05-01
Fluorescent dextrans are commonly used as macropinocytic probes to study the properties of endocytic cargoes; however, the effect of the size of dextrans on endocytic mechanisms has not been carefully analyzed. By using chemical and siRNA inhibition of individual endocytic pathways, we evaluated the internalization of two commonly used dextrans, Dex10 (dextran 10 kDa) and Dex70 (dextran 70 kDa), in mammalian HeLa cells and Caenorhabditis elegans coelomocytes. We revealed that Dex70 enters these two cell types predominantly via clathrin- and dynamin-independent and amiloride-sensitive macropinocytosis process; Dex10, on the other hand, enters the two cell types through clathrin-/dynamin-dependent micropinocytosis in addition to macropinocytosis. In addition, although different-sized dextrans follow different endocytic processes, they share common post-endocytic events. Herein, though straightforward, our studies support that the size of nanomaterials could play a paramount role in their inclusion into endocytic vesicles and suggest that care should be taken while selecting endocytic pathway markers. Based on our results, we propose that Dex70 is a better probe for macropinocytosis, whereas Dex10 and smaller molecules are better for probing general fluid-phase endocytosis, which includes macropinocytic and micropinocytic processes. © 2015 International Federation for Cell Biology.
Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation.
Ferreira, Filipe; Foley, Matthew; Cooke, Alex; Cunningham, Margaret; Smith, Gemma; Woolley, Robert; Henderson, Graeme; Kelly, Eamonn; Mundell, Stuart; Smythe, Elizabeth
2012-08-07
Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Endocytosis of glycosylphosphatidylinositol-anchored proteins
2009-01-01
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies. PMID:19832981
Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease.
Kimura, Nobuyuki; Yanagisawa, Katsuhiko
2017-07-08
Membrane trafficking pathways, like the endocytic pathway, carry out fundamental cellular processes that are essential for normal functioning. One such process is regulation of cell surface receptor signaling. A growing body of evidence suggests that β-amyloid protein (Aβ) plays a key role in Alzheimer's disease (AD) pathogenesis. Cleavage of Aβ from its precursor, β-amyloid precursor protein (APP), occurs through the endocytic pathway in neuronal cells. In early-stage AD, intraneuronal accumulation of abnormally enlarged endosomes is common, indicating that endosome trafficking is disrupted. Strikingly, genome-wide association studies reveal that several endocytosis-related genes are associated with AD onset. Also, recent studies demonstrate that alteration in endocytosis induces not only Aβ pathology but also the propagation of tau protein pathology, another key pathological feature of AD. Endocytic dysfunction can disrupt neuronal physiological functions, such as synaptic vesicle transport and neurotransmitter release. Thus, "traffic jams" in the endocytic pathway may be involved in AD pathogenesis and may serve as a novel target for the development of new therapeutics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2014-08-25
Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.
Barbieri, M Alejandro; Kong, Chen; Chen, Pin-I; Horazdovsky, Bruce F; Stahl, Philip D
2003-08-22
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.
HIP1: trafficking roles and regulation of tumorigenesis.
Hyun, Teresa S; Ross, Theodora S
2004-04-01
During recent years, alterations in proteins of the endocytic pathway have been associated with tumors. Disrupted regulation of the endocytic pathway is a relatively unstudied mechanism of tumorigenesis, which can concomitantly disrupt several different signaling pathways to affect growth, differentiation and survival. Several endocytic proteins have been identified, either as part of tumor-associated translocations or to have the ability to transform cells. Here, we summarize the information known about huntingtin interacting protein 1 (HIP1), an endocytic protein with transforming properties that is involved in a cancer-causing translocation and which is overexpressed in a variety of human cancers. We describe the known normal functions of HIP1 in endocytosis and receptor trafficking, the evidence for its role as an oncoprotein and how HIP1 might be altered to promote tumorigenesis.
Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells
Kraehling, Jan R.; Chidlow, John H.; Rajagopal, Chitra; Sugiyama, Michael G.; Fowler, Joseph W.; Lee, Monica Y.; Zhang, Xinbo; Ramírez, Cristina M.; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W.; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L.; Fernández-Hernando, Carlos; Sessa, William C.
2016-01-01
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. PMID:27869117
Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells.
Kraehling, Jan R; Chidlow, John H; Rajagopal, Chitra; Sugiyama, Michael G; Fowler, Joseph W; Lee, Monica Y; Zhang, Xinbo; Ramírez, Cristina M; Park, Eon Joo; Tao, Bo; Chen, Keyang; Kuruvilla, Leena; Larriveé, Bruno; Folta-Stogniew, Ewa; Ola, Roxana; Rotllan, Noemi; Zhou, Wenping; Nagle, Michael W; Herz, Joachim; Williams, Kevin Jon; Eichmann, Anne; Lee, Warren L; Fernández-Hernando, Carlos; Sessa, William C
2016-11-21
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL.
COPI mediates recycling of an exocytic SNARE by recognition of a ubiquitin sorting signal
Xu, Peng; Hankins, Hannah M; MacDonald, Chris; Erlinger, Samuel J; Frazier, Meredith N; Diab, Nicholas S; Piper, Robert C; Jackson, Lauren P; MacGurn, Jason A
2017-01-01
The COPI coat forms transport vesicles from the Golgi complex and plays a poorly defined role in endocytic trafficking. Here we show that COPI binds K63-linked polyubiquitin and this interaction is crucial for trafficking of a ubiquitinated yeast SNARE (Snc1). Snc1 is a v-SNARE that drives fusion of exocytic vesicles with the plasma membrane, and then recycles through the endocytic pathway to the Golgi for reuse in exocytosis. Removal of ubiquitin from Snc1, or deletion of a β'-COP subunit propeller domain that binds K63-linked polyubiquitin, disrupts Snc1 recycling causing aberrant accumulation in internal compartments. Moreover, replacement of the β'-COP propeller domain with unrelated ubiquitin-binding domains restores Snc1 recycling. These results indicate that ubiquitination, a modification well known to target membrane proteins to the lysosome or vacuole for degradation, can also function as recycling signal to sort a SNARE into COPI vesicles in a non-degradative pathway. PMID:29058666
Bhatia, Dhiraj; Arumugam, Senthil; Nasilowski, Michel; Joshi, Himanshu; Wunder, Christian; Chambon, Valérie; Prakash, Ved; Grazon, Chloé; Nadal, Brice; Maiti, Prabal K; Johannes, Ludger; Dubertret, Benoit; Krishnan, Yamuna
2016-12-01
Functionalization of quantum dots (QDs) with a single biomolecular tag using traditional approaches in bulk solution has met with limited success. DNA polyhedra consist of an internal void bounded by a well-defined three-dimensional structured surface. The void can house cargo and the surface can be functionalized with stoichiometric and spatial precision. Here, we show that monofunctionalized QDs can be realized by encapsulating QDs inside DNA icosahedra and functionalizing the DNA shell with an endocytic ligand. We deployed the DNA-encapsulated QDs for real-time imaging of three different endocytic ligands-folic acid, galectin-3 (Gal3) and the Shiga toxin B-subunit (STxB). Single-particle tracking of Gal3- or STxB-functionalized QD-loaded DNA icosahedra allows us to monitor compartmental dynamics along endocytic pathways. These DNA-encapsulated QDs, which bear a unique stoichiometry of endocytic ligands, represent a new class of molecular probes for quantitative imaging of endocytic receptor dynamics.
Multiple internalization pathways of polyelectrolyte multilayer capsules into mammalian cells.
Kastl, Lena; Sasse, Daniel; Wulf, Verena; Hartmann, Raimo; Mircheski, Josif; Ranke, Christiane; Carregal-Romero, Susana; Martínez-López, José Antonio; Fernández-Chacón, Rafael; Parak, Wolfgang J; Elsasser, Hans-Peter; Rivera Gil, Pilar
2013-08-27
Polyelectrolyte multilayer (PEM) capsules are carrier vehicles with great potential for biomedical applications. With the future aim of designing biocompatible, effective therapeutic delivery systems (e.g., for cancer), the pathway of internalization (uptake and fate) of PEM capsules was investigated. In particular the following experiments were performed: (i) the study of capsule co-localization with established endocytic markers, (ii) switching-off endocytotic pathways with pharmaceutical/chemical inhibitors, and (iii) characterization and quantification of capsule uptake with confocal and electron microscopy. As result, capsules co-localized with lipid rafts and with phagolysosomes, but not with other endocytic vesicles. Chemical interference of endocytosis with chemical blockers indicated that PEM capsules enter the investigated cell lines through a mechanism slightly sensitive to electrostatic interactions, independent of clathrin and caveolae, and strongly dependent on cholesterol-rich domains and organelle acidification. Microscopic characterization of cells during capsule uptake showed the formation of phagocytic cups (vesicles) to engulf the capsules, an increased number of mitochondria, and a final localization in the perinuclear cytoplasma. Combining all these indicators we conclude that PEM capsule internalization in general occurs as a combination of different sequential mechanisms. Initially, an adsorptive mechanism due to strong electrostatic interactions governs the stabilization of the capsules at the cell surface. Membrane ruffling and filopodia extensions are responsible for capsule engulfing through the formation of a phagocytic cup. Co-localization with lipid raft domains activates the cell to initiate a lipid-raft-mediated macropinocytosis. Internalization vesicles are very acidic and co-localize only with phagolysosome markers, excluding caveolin-mediated pathways and indicating that upon phagocytosis the capsules are sorted to heterophagolysosomes.
Mosquito Cellular Factors and Functions in Mediating the Infectious entry of Chikungunya Virus
Lee, Regina Ching Hua; Hapuarachchi, Hapuarachchige Chanditha; Chen, Karen Caiyun; Hussain, Khairunnisa' Mohamed; Chen, Huixin; Low, Swee Ling; Ng, Lee Ching; Lin, Raymond; Ng, Mary Mah-Lee; Chu, Justin Jang Hann
2013-01-01
Chikungunya virus (CHIKV) is an arthropod-borne virus responsible for recent epidemics in the Asia Pacific regions. A customized gene expression microarray of 18,760 transcripts known to target Aedes mosquito genome was used to identify host genes that are differentially regulated during the infectious entry process of CHIKV infection on C6/36 mosquito cells. Several genes such as epsin I (EPN1), epidermal growth factor receptor pathway substrate 15 (EPS15) and Huntingtin interacting protein I (HIP1) were identified to be differentially expressed during CHIKV infection and known to be involved in clathrin-mediated endocytosis (CME). Transmission electron microscopy analyses further revealed the presence of CHIKV particles within invaginations of the plasma membrane, resembling clathrin-coated pits. Characterization of vesicles involved in the endocytic trafficking processes of CHIKV revealed the translocation of the virus particles to the early endosomes and subsequently to the late endosomes and lysosomes. Treatment with receptor-mediated endocytosis inhibitor, monodansylcadaverine and clathrin-associated drug inhibitors, chlorpromazine and dynasore inhibited CHIKV entry, whereas no inhibition was observed with caveolin-related drug inhibitors. Inhibition of CHIKV entry upon treatment with low-endosomal pH inhibitors indicated that low pH is essential for viral entry processes. CHIKV entry by clathrin-mediated endocytosis was validated via overexpression of a dominant-negative mutant of Eps15, in which infectious entry was reduced, while siRNA-based knockdown of genes associated with CME, low endosomal pH and RAB trafficking proteins exhibited significant levels of CHIKV inhibition. This study revealed, for the first time, that the infectious entry of CHIKV into mosquito cells is mediated by the clathrin-dependent endocytic pathway. PMID:23409203
Structural inhibition of dynamin-mediated membrane fission by endophilin
Galli, Valentina; Shen, Peter S; Humbert, Frédéric; De Camilli, Pietro
2017-01-01
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission. PMID:28933693
Yabuuchi, Satomi; Endo, Satoshi; Baek, KeangOk; Hoshino, Kunihide; Tsujino, Yoshio; Vestergaard, Mun'delanji C; Takagi, Masahiro
2017-12-01
Certain food ingredients can stimulate the human immune system. A lectin, concanavalin A (ConA), from Canavalia ensiformis (jack bean) is one of the most well-known food-derived immunostimulants and mediates activation of cell-mediated immunity through T cell proliferation. Generally, T cell activation is known to be triggered by the interaction between T cells and antigen-presenting cells (APCs) via a juxtacrine (contact-dependent) signaling pathway. The mechanism has been well characterized and is referred to as formation of the immunological synapse (IS). We were interested in the mechanism behind the T cell activation by food-derived ConA which might be different from that of T cell activation by APCs. The purpose of this study was to characterize T cell activation by ConA with regard to (i) movement of raft domain, (ii) endocytic vesicular transport, (iii) the cytoskeleton (actin and microtubules), and (iv) cholesterol composition. We found that raft-dependent endocytic movement was important for T cell activation by ConA and this movement was dependent on actin, microtubules, and cholesterol. The T cell signaling mechanism triggered by ConA can be defined as endocrine signaling which is distinct from the activation process triggered by interaction between T cells and APCs by juxtacrine signaling. Therefore, we hypothesized that T cell activation by ConA includes both two-dimensional superficial raft movement on the membrane surface along actin filaments and three-dimensional endocytic movement toward the inside of the cell along microtubules. These findings are important for developing new methods for immune stimulation and cancer therapy based on the function of ConA. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Regulation of endocytosis via the oxygen-sensing pathway.
Wang, Yi; Roche, Olga; Yan, Mathew S; Finak, Greg; Evans, Andrew J; Metcalf, Julie L; Hast, Bridgid E; Hanna, Sara C; Wondergem, Bill; Furge, Kyle A; Irwin, Meredith S; Kim, William Y; Teh, Bin T; Grinstein, Sergio; Park, Morag; Marsden, Philip A; Ohh, Michael
2009-03-01
Tumor hypoxia is associated with disease progression, resistance to conventional cancer therapies and poor prognosis. Hypoxia, by largely unknown mechanisms, leads to deregulated accumulation of and signaling via receptor tyrosine kinases (RTKs) that are critical for driving oncogenesis. Here, we show that hypoxia or loss of von Hippel-Lindau protein--the principal negative regulator of hypoxia-inducible factor (HIF)--prolongs the activation of epidermal growth factor receptor that is attributable to lengthened receptor half-life and retention in the endocytic pathway. The deceleration in endocytosis is due to the attenuation of Rab5-mediated early endosome fusion via HIF-dependent downregulation of a critical Rab5 effector, rabaptin-5, at the level of transcription. Primary kidney and breast tumors with strong hypoxic signatures show significantly lower expression of rabaptin-5 RNA and protein. These findings reveal a general role of the oxygen-sensing pathway in endocytosis and support a model in which tumor hypoxia or oncogenic activation of HIF prolongs RTK-mediated signaling by delaying endocytosis-mediated deactivation of receptors.
Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis
Chaudhary, Natasha; Gomez, Guillermo A.; Howes, Mark T.; Lo, Harriet P.; McMahon, Kerrie-Ann; Rae, James A.; Schieber, Nicole L.; Hill, Michelle M.; Gaus, Katharina; Yap, Alpha S.; Parton, Robert G.
2014-01-01
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin. PMID:24714042
2015-01-01
Methods to select ligands that accumulate specifically in cancer cells and traffic through a defined endocytic pathway may facilitate rapid pairing of ligands with linkers suitable for drug conjugate therapies. We performed phage display biopanning on cancer cells that are treated with selective inhibitors of a given mechanism of endocytosis. Using chlorpromazine to inhibit clathrin-mediated endocytosis in H1299 nonsmall cell lung cancer cells, we identified two clones, ATEPRKQYATPRVFWTDAPG (15.1) and a novel peptide LQWRRDDNVHNFGVWARYRL (H1299.3). The peptides segregate by mechanism of endocytosis and subsequent location of subcellular accumulation. The H1299.3 peptide primarily utilizes clathrin-mediated endocytosis and colocalizes with Lamp1, a lysosomal marker. Conversely, the 15.1 peptide is clathrin-independent and localizes to a perinuclear region. Thus, this novel phage display scheme allows for selection of peptides that selectively internalize into cells via a known mechanism of endocytosis. These types of selections may allow for better matching of linker with targeting ligand by selecting ligands that internalize and traffic to known subcellular locations. PMID:25188559
Umasankar, Perunthottathu K; Ma, Li; Thieman, James R; Jha, Anupma; Doray, Balraj; Watkins, Simon C; Traub, Linton M
2014-01-01
Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI: http://dx.doi.org/10.7554/eLife.04137.001 PMID:25303365
Wiederkehr, Andreas; Avaro, Sandrine; Prescianotto-Baschong, Cristina; Haguenauer-Tsapis, Rosine; Riezman, Howard
2000-01-01
In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Δ is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Δ mutant is strongly defective in recycling. PMID:10769031
Gambarte Tudela, Julian; Capmany, Anahi; Romao, Maryse; Quintero, Cristian; Miserey-Lenkei, Stephanie; Raposo, Graca; Goud, Bruno; Damiani, Maria Teresa
2015-08-15
Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown. In the present study, we demonstrate that Rab39a labels a subset of late endocytic vesicles - mainly MVBs - that move along microtubules. Moreover, Rab39a is actively recruited to chlamydial inclusions throughout the pathogen life cycle by a bacterial-driven process that depends on the Rab39a GTP- or GDP-binding state. Interestingly, Rab39a participates in the delivery of MVBs and host sphingolipids to maturing chlamydial inclusions, thereby promoting inclusion growth and bacterial development. Taken together, our findings indicate that Rab39a favours chlamydial replication and infectivity. This is the first report showing that a late endocytic Rab GTPase is involved in chlamydial infection development. © 2015. Published by The Company of Biologists Ltd.
Time-Resolved Proteomic Visualization of Dendrimer Cellular Entry and Trafficking.
Wang, Linna; Yang, Li; Pan, Li; Kadasala, Naveen Reddy; Xue, Liang; Schuster, Robert J; Parker, Laurie L; Wei, Alexander; Tao, W Andy
2015-10-14
Our understanding of the complex cell entry pathways would greatly benefit from a comprehensive characterization of key proteins involved in this dynamic process. Here we devise a novel proteomic strategy named TITAN (Tracing Internalization and TrAfficking of Nanomaterials) to reveal real-time protein-dendrimer interactions using a systems biology approach. Dendrimers functionalized with photoreactive cross-linkers were internalized by HeLa cells and irradiated at set time intervals, then isolated and subjected to quantitative proteomics. In total, 809 interacting proteins cross-linked with dendrimers were determined by TITAN in a detailed temporal manner during dendrimer internalization, traceable to at least two major endocytic mechanisms, clathrin-mediated and caveolar/raft-mediated endocytosis. The direct involvement of the two pathways was further established by the inhibitory effect of dynasore on dendrimer uptake and changes in temporal profiles of key proteins.
Hsu, Mei-Ju; Rixon, Frazer J.; Knebel-Mörsdorf, Dagmar
2011-01-01
Herpes simplex virus type 1 (HSV-1) can enter cells via endocytic pathways or direct fusion at the plasma membrane depending on the cell line and receptor(s). Most studies into virus entry have used cultured fibroblasts but since keratinocytes represent the primary entry site for HSV-1 infection in its human host, we initiated studies to characterize the entry pathway of HSV-1 into human keratinocytes. Electron microscopy studies visualized free capsids in the cytoplasm and enveloped virus particles in vesicles suggesting viral uptake both by direct fusion at the plasma membrane and by endocytic vesicles. The ratio of the two entry modes differed in primary human keratinocytes and in the keratinocyte cell line HaCaT. Inhibitor studies further support a role for endocytosis during HSV-1 entry. Infection was inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin, which demonstrates the requirement for host cholesterol during virus entry. Since the dynamin-specific inhibitor dynasore and overexpression of a dominant-negative dynamin mutant blocked infection, we conclude that the entry pathways into keratinocytes are dynamin-mediated. Electron microscopy studies confirmed that virus uptake is completely blocked when the GTPase activity of dynamin is inhibited. Ex vivo infection of murine epidermis that was treated with dynasore further supports the essential role of dynamin during entry into the epithelium. Thus, we conclude that HSV-1 can enter human keratinocytes by alternative entry pathways that require dynamin and host cholesterol. PMID:22022400
Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.
2015-01-01
ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543
Regulation of endocytic traffic by Rho GTPases.
Qualmann, Britta; Mellor, Harry
2003-01-01
The members of the Rho subfamily of small GTPases are key regulators of the actin cytoskeleton. However, recent studies have provided evidence for multiple additional roles for these signalling proteins in controlling endocytic traffic. Here we review our current understanding of Rho GTPase action within the endocytic pathway and examine the potential points of convergence with the more established, actin-based functions of these signalling proteins. PMID:12564953
Bhagatji, Pinkesh; Leventis, Rania; Comeau, Jonathan; Refaei, Mohammad
2009-01-01
Diverse glycosylphosphatidylinositol (GPI)-anchored proteins enter mammalian cells via the clathrin- and dynamin-independent, Arf1-regulated GPI-enriched early endosomal compartment/clathrin-independent carrier endocytic pathway. To characterize the determinants of GPI protein targeting to this pathway, we have used fluorescence microscopic analyses to compare the internalization of artificial lipid-anchored proteins, endogenous membrane proteins, and membrane lipid markers in Chinese hamster ovary cells. Soluble proteins, anchored to cell-inserted saturated or unsaturated phosphatidylethanolamine (PE)-polyethyleneglycols (PEGs), closely resemble the GPI-anchored folate receptor but differ markedly from the transferrin receptor, membrane lipid markers, and even protein-free PE-PEGs, both in their distribution in peripheral endocytic vesicles and in the manner in which their endocytic uptake responds to manipulations of cellular Arf1 or dynamin activity. These findings suggest that the distinctive endocytic targeting of GPI proteins requires neither biospecific recognition of their GPI anchors nor affinity for ordered-lipid microdomains but is determined by a more fundamental property, the steric bulk of the lipid-anchored protein. PMID:19687251
Sun, Tao; Guo, Jun; Shallow, Heidi; Yang, Tonghua; Xu, Jianmin; Li, Wentao; Hanson, Christian; Wu, James G.; Li, Xian; Massaeli, Hamid; Zhang, Shetuan
2011-01-01
A reduction in extracellular K+ concentration ([K+]o) causes cardiac arrhythmias and triggers internalization of the cardiac rapidly activating delayed rectifier potassium channel (IKr) encoded by the human ether-a-go-go-related gene (hERG). We investigated the role of ubiquitin (Ub) in endocytic degradation of hERG channels stably expressed in HEK cells. Under low K+ conditions, UbKO, a lysine-less mutant Ub that only supports monoubiquitination, preferentially interacted and selectively enhanced degradation of the mature hERG channels. Overexpression of Vps24 protein, also known as charged multivesicular body protein 3, significantly accelerated degradation of mature hERG channels, whereas knockdown of Vps24 impeded this process. Moreover, the lysosomal inhibitor bafilomycin A1 inhibited degradation of the internalized mature hERG channels. Thus, monoubiquitination directs mature hERG channels to degrade through the multivesicular body/lysosome pathway. Interestingly, the protease inhibitor lactacystin inhibited the low K+-induced hERG endocytosis and concomitantly led to an accumulation of monoubiquitinated mature hERG channels, suggesting that deubiquitination is also required for the endocytic degradation. Consistently, overexpression of the endosomal deubiquitinating enzyme signal transducing adaptor molecule-binding protein significantly accelerated whereas knockdown of endogenous signal transducing adaptor molecule-binding protein impeded degradation of the mature hERG channels under low K+ conditions. Thus, monoubiquitin dynamically mediates endocytic degradation of mature hERG channels under low K+ conditions. PMID:21177251
Membrane traffic and synaptic cross-talk during host cell entry by Trypanosoma cruzi.
Butler, Claire E; Tyler, Kevin M
2012-09-01
It is widely accepted that Trypanosoma cruzi can exploit the natural exocytic response of the host to cell damage, utilizing host cell lysosomes as important effectors. It is, though, increasingly clear that the parasite also exploits endocytic mechanisms which allow for incorporation of plasma membrane into the parasitophorous vacuole. Further, that these endocytic mechanisms are involved in cross-talk with the exocytic machinery, in the recycling of vesicles and in the manipulation of the cytoskeleton. Here we review the mechanisms by which T. cruzi exploits features of the exocytic and endocytic pathways in epithelial and endothelial cells and the evidence for cross-talk between these pathways. © 2012 Blackwell Publishing Ltd.
Loh, Lip Nam; McCarthy, Elizabeth M C; Narang, Priyanka; Khan, Naveed A; Ward, Theresa H
2017-11-01
Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Su, Hua; Carter, Conner B.; Laur, Oskar; Sands, Jeff M.
2012-01-01
The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation. PMID:22914781
The early endosome: a busy sorting station for proteins at the crossroads
Jovic, Marko; Sharma, Mahak; Rahajeng, Juliati; Caplan, Steve
2010-01-01
Summary Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases. PMID:19924646
Tang, Yaning; Geng, Qing; Chen, Di; Zhao, Shaowei; Liu, Xian; Wang, Zhaohui
2017-05-01
Signals derived from the microenvironment contribute greatly to tumorigenesis . The underlying mechanism requires thorough investigation. Here, we use Drosophila testis as a model system to address this question, taking the advantage of the ease to distinguish germline and somatic cells and to track the cell numbers. In an EMS mutagenesis screen, we identified Rab5 , a key factor in endocytosis, for its nonautonomous role in germline proliferation. The disruption of Rab5 in somatic cyst cells, which escort the development of germline lineage, induced the overproliferation of underdifferentiated but genetically wild-type germ cells. We demonstrated that this nonautonomous effect was mediated by the transcriptional activation of Dpp [the fly homolog of bone morphogenetic protein (BMP)] by examining the Dpp-reporter expression and knocking down Dpp to block germline overgrowth. Consistently, the protein levels of Bam, the germline prodifferentiation factor normally accumulated in the absence of BMP/Dpp signaling, decreased in the overproliferating germ cells. Further, we discovered that the JNK signaling pathway operated between Rab5 and Dpp, because simultaneously inhibiting the JNK pathway and Rab5 in cyst cells prevented both dpp transcription and germline tumor growth. Additionally, we found that multiple endocytic genes, such as avl , TSG101 , Vps25 , or Cdc42 , were required in the somatic cyst cells to restrict germline amplification. These findings indicate that when the endocytic state of the surrounding cells is impaired, genetically wild-type germ cells overgrow. This nonautonomous model of tumorigenesis provides a simple system to dissect the relation between tumor and its niche. Copyright © 2017 by the Genetics Society of America.
Intracellular Route of Canine Parvovirus Entry
Vihinen-Ranta, Maija; Kalela, Anne; Mäkinen, Päivi; Kakkola, Laura; Marjomäki, Varpu; Vuento, Matti
1998-01-01
The present study was designed to investigate the endocytic pathway involved in canine parvovirus (CPV) infection. Reduced temperature (18°C) or the microtubule-depolymerizing drug nocodazole was found to inhibit productive infection of canine A72 cells by CPV and caused CPV to be retained in cytoplasmic vesicles as indicated by immunofluorescence microscopy. Consistent with previously published results, these data indicate that CPV enters a host cell via an endocytic route and further suggest that microtubule-dependent delivery of CPV to late endosomes is required for productive infection. Cytoplasmic microinjection of CPV particles was used to circumvent the endocytosis and membrane fusion steps in the entry process. Microinjection experiments showed that CPV particles which were injected directly into the cytoplasm, thus avoiding the endocytic pathway, were unable to initiate progeny virus production. CPV treated at pH 5.0 prior to microinjection was unable to initiate virus production, showing that factors of the endocytic route other than low pH are necessary for the initiation of infection by CPV. PMID:9420290
Roy, Ruchi; Parashar, Vyom; Chauhan, L K S; Shanker, Rishi; Das, Mukul; Tripathi, Anurag; Dwivedi, Premendra Dhar
2014-04-01
The inflammatory responses after exposure to zinc oxide nanoparticles (ZNPs) are known, however, the molecular mechanisms and direct consequences of particle uptake are still unclear. Dose and time-dependent increase in the uptake of ZNPs by macrophages has been observed by flow cytometry. Macrophages treated with ZNPs showed a significantly enhanced phagocytic activity. Inhibition of different internalization receptors caused a reduction in uptake of ZNPs in macrophages. The strongest inhibition in internalization was observed by blocking clathrin, caveolae and scavenger receptor mediated endocytic pathways. However, FcR and complement receptor-mediated phagocytic pathways also contributed significantly to control. Further, exposure of primary macrophages to ZNPs (2.5 μg/ml) caused (i) significant enhancement of Ras, PI3K, (ii) enhanced phosphorylation and subsequent activation of its downstream signaling pathways via ERK1/2, p38 and JNK MAPKs (iii) overexpression of c-Jun, c-Fos and NF-κB. Our results demonstrate that ZNPs induce the generation of reactive nitrogen species and overexpression of Cox-2, iNOS, pro-inflammatory cytokines (IL-6, IFN-γ, TNF-α, IL-17 and regulatory cytokine IL-10) and MAPKs which were found to be inhibited after blocking internalization of ZNPs through caveolae receptor pathway. These results indicate that ZNPs are internalized through caveolae pathway and the inflammatory responses involve PI3K mediated MAPKs signaling cascade. Copyright © 2013 Elsevier Ltd. All rights reserved.
APC Inhibits Ligand-Independent Wnt Signaling by the Clathrin Endocytic Pathway.
Saito-Diaz, Kenyi; Benchabane, Hassina; Tiwari, Ajit; Tian, Ai; Li, Bin; Thompson, Joshua J; Hyde, Annastasia S; Sawyer, Leah M; Jodoin, Jeanne N; Santos, Eduardo; Lee, Laura A; Coffey, Robert J; Beauchamp, R Daniel; Williams, Christopher S; Kenworthy, Anne K; Robbins, David J; Ahmed, Yashi; Lee, Ethan
2018-03-12
Adenomatous polyposis coli (APC) mutations cause Wnt pathway activation in human cancers. Current models for APC action emphasize its role in promoting β-catenin degradation downstream of Wnt receptors. Unexpectedly, we find that blocking Wnt receptor activity in APC-deficient cells inhibits Wnt signaling independently of Wnt ligand. We also show that inducible loss of APC is rapidly followed by Wnt receptor activation and increased β-catenin levels. In contrast, APC2 loss does not promote receptor activation. We show that APC exists in a complex with clathrin and that Wnt pathway activation in APC-deficient cells requires clathrin-mediated endocytosis. Finally, we demonstrate conservation of this mechanism in Drosophila intestinal stem cells. We propose a model in which APC and APC2 function to promote β-catenin degradation, and APC also acts as a molecular "gatekeeper" to block receptor activation via the clathrin pathway. Copyright © 2018 Elsevier Inc. All rights reserved.
Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).
Rofe, Adam P; Pryor, Paul R
2016-04-01
Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.
Ng, Wy Ching; Londrigan, Sarah L; Nasr, Najla; Cunningham, Anthony L; Turville, Stuart; Brooks, Andrew G; Reading, Patrick C
2016-01-01
It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5(+)) but not late (Rab7(+)) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Madsen, Daniel H.; Jürgensen, Henrik J.; Ingvarsen, Signe; Melander, Maria C.; Albrechtsen, Reidar; Hald, Andreas; Holmbeck, Kenn; Bugge, Thomas H.; Behrendt, Niels; Engelholm, Lars H.
2013-01-01
A well-coordinated remodeling of uncalcified collagen matrices is a pre-requisite for bone development and homeostasis. Collagen turnover proceeds through different pathways, either involving extracellular reactions exclusively, or being dependent on endocytic processes. Extracellular collagen degradation requires the action of secreted or membrane attached collagenolytic proteases, whereas the alternative collagen degradation pathway proceeds intracellularly after receptor-mediated uptake and delivery to the lysosomes. In this study we have examined the functional interplay between the extracellular collagenase, MMP-2, and the endocytic collagen receptor, uPARAP, by generating mice with combined deficiency of both components. In both uPARAP-deficient and MMP-2-deficient adult mice the length of the tibia and femur was decreased, along with a reduced bone mineral density and trabecular bone quality. An additional decrease in bone length was observed when combining the two deficiencies, pointing to both components being important for the remodeling processes in long bone growth. In agreement with results found by others, a different effect of MMP-2 deficiency was observed in the distinct bone structures of the calvaria. These membranous bones were found to be thickened in MMP-2-deficient mice, an effect likely to be related to an accompanying defect in the canalicular system. Surprisingly, both of the latter defects in MMP-2-deficient mice were counteracted by concurrent uPARAP deficiency, demonstrating that the collagen receptor does not support the same matrix remodeling processes as the MMP in the growth of the skull. We conclude that both uPARAP and MMP-2 take part in matrix turnover processes important for bone growth. However, in some physiological situations, these two components do not support the same step in the growth process. PMID:23940733
ALTERNATE ROUTES FOR DRUG DELIVERY TO THE CELL INTERIOR
Tarragó-Trani, Maria Teresa; Storrie, Brian
2007-01-01
The targeted delivery of drugs to the cell interior can be accomplished by taking advantage of the various receptor-mediated endocytic pathways operating in a particular cell. Among these pathways, the retrograde trafficking pathway from endosomes to the Golgi apparatus, and endoplasmic reticulum is of special importance since it provides a route to deliver drugs bypassing the acid pH, hydrolytic environment of the lysosome. The existence of pathways for drug or antigen delivery to the endoplasmic reticulum and Golgi apparatus has been to a large extent an outcome of research on the trafficking of A/B type-bacterial or plant toxins such as Shiga toxin within the cell. The targeting properties of these toxins reside in their B subunit. In this article we present an overview of the multiplicity of pathways to deliver drugs intracellularly. We highlight the retrograde trafficking pathway illustrated by Shiga toxin and Shiga-like toxin, and the potential role of the B subunit of these toxins as carriers of drugs, antigens and imaging agents. PMID:17669543
Tugizov, Sharof; Maidji, Ekaterina; Xiao, Jianqiao; Pereira, Lenore
1999-01-01
We previously reported that human cytomegalovirus (CMV) glycoprotein B (gB) is transported to apical membranes in CMV-infected polarized retinal pigment epithelial (ARPE-19) cells and in Madin-Darby canine kidney (MDCK) epithelial cells constitutively expressing gB. The cytosolic domain of gB contains a cluster of acidic amino acids, a motif that plays a pivotal role in vectorial trafficking in polarized epithelial cells and may also function as a signal for entry into the endocytic pathway. Here we compared gB internalization and recycling to the plasma membrane in CMV-infected human fibroblasts (HF) and ARPE-19 cells by using antibody-internalization experiments. Immunofluorescence and quantitative assays showed that gB was internalized from the cell surface into clathrin-coated transport vesicles and then recycled to the plasma membrane. gB colocalized with clathrin-coated vesicles containing the transferrin receptor in the early endocytic/recycling pathway, indicating that gB traffics in this pathway. The specific role of the acidic cluster in regulating the sorting of gB-containing vesicles in the early endocytic/recycling pathway was examined in MDCK cells expressing mutated gB derivatives. Immunofluorescence assays showed that derivatives lacking the acidic cluster were impaired in internalization and failed to recycle. These findings, together with our earlier observation that the acidic cluster is a key determinant for targeting gB molecules to apical membranes in epithelial cells, establish that this signal is recognized by cellular proteins that participate in polarized sorting and transport in the early endocytic/recycling pathway. PMID:10482621
Autophagy and Mis-targeting of Therapeutic Enzyme in Skeletal Muscle in Pompe Disease
Fukuda, Tokiko; Ahearn, Meghan; Roberts, Ashley; Mattaliano, Robert J.; Zaal, Kristien; Ralston, Evelyn; Plotz, Paul H.; Raben, Nina
2009-01-01
Enzyme replacement therapy (ERT) became a reality for patients with Pompe disease, a fatal cardiomyopathy and skeletal muscle myopathy caused by a deficiency of glycogen-degrading lysosomal enzyme acid alpha-glucosidase (GAA). The therapy, which relies on receptor-mediated endocytosis of recombinant human GAA (rhGAA), appears to be effective in cardiac muscle, but less so in skeletal muscle. We have previously shown a profound disturbance of the lysosomal degradative pathway (autophagy) in therapy-resistant muscle of GAA knockout mice (KO). Our findings here demonstrate a progressive age-dependent autophagic build-up in addition to enlargement of glycogen-filled lysosomes in multiple muscle groups in the KO. Trafficking and processing of the therapeutic enzyme along the endocytic pathway appear to be affected by the autophagy. Confocal microscopy of live single muscle fibers exposed to fluorescently labeled rhGAA indicates that a significant portion of the endocytosed enzyme in the KO was trapped as a partially processed form in the autophagic areas instead of reaching its target – the lysosomes. A fluid-phase endocytic marker was similarly mis-targeted and accumulated in vesicular structures within the autophagic areas. These findings may explain why ERT often falls short of reversing the disease process, and point to new avenues for the development of pharmacological intervention. PMID:17008131
Arasada, Rajesh; Sayyad, Wasim A.; Berro, Julien; Pollard, Thomas D.
2018-01-01
To internalize nutrients and cell surface receptors via clathrin-mediated endocytosis, cells assemble at least 50 proteins, including clathrin, clathrin-interacting proteins, actin filaments, and actin binding proteins, in a highly ordered and regulated manner. The molecular mechanism by which actin filament polymerization deforms the cell membrane is unknown, largely due to lack of knowledge about the organization of the regulatory proteins and actin filaments. We used high-speed superresolution localization microscopy of live fission yeast cells to improve the spatial resolution to ∼35 nm with 1-s temporal resolution. The nucleation promoting factors Wsp1p (WASp) and Myo1p (myosin-I) define two independent pathways that recruit Arp2/3 complex, which assembles two zones of actin filaments. Myo1p concentrates at the site of endocytosis and initiates a zone of actin filaments assembled by Arp2/3 complex. Wsp1p appears simultaneously at this site but subsequently moves away from the cell surface as it stimulates Arp2/3 complex to assemble a second zone of actin filaments. Cells lacking either nucleation-promoting factor assemble only one, stationary, zone of actin filaments. These observations support our two-zone hypothesis to explain endocytic tubule elongation and vesicle scission in fission yeast. PMID:29212877
Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes.
Koumandou, V Lila; Boehm, Cordula; Horder, Katy A; Field, Mark C
2013-02-01
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.
The CD63-Syntenin-1 Complex Controls Post-Endocytic Trafficking of Oncogenic Human Papillomaviruses.
Gräßel, Linda; Fast, Laura Aline; Scheffer, Konstanze D; Boukhallouk, Fatima; Spoden, Gilles A; Tenzer, Stefan; Boller, Klaus; Bago, Ruzica; Rajesh, Sundaresan; Overduin, Michael; Berditchevski, Fedor; Florin, Luise
2016-08-31
Human papillomaviruses enter host cells via a clathrin-independent endocytic pathway involving tetraspanin proteins. However, post-endocytic trafficking required for virus capsid disassembly remains unclear. Here we demonstrate that the early trafficking pathway of internalised HPV particles involves tetraspanin CD63, syntenin-1 and ESCRT-associated adaptor protein ALIX. Following internalisation, viral particles are found in CD63-positive endosomes recruiting syntenin-1, a CD63-interacting adaptor protein. Electron microscopy and immunofluorescence experiments indicate that the CD63-syntenin-1 complex controls delivery of internalised viral particles to multivesicular endosomes. Accordingly, infectivity of high-risk HPV types 16, 18 and 31 as well as disassembly and post-uncoating processing of viral particles was markedly suppressed in CD63 or syntenin-1 depleted cells. Our analyses also present the syntenin-1 interacting protein ALIX as critical for HPV infection and CD63-syntenin-1-ALIX complex formation as a prerequisite for intracellular transport enabling viral capsid disassembly. Thus, our results identify the CD63-syntenin-1-ALIX complex as a key regulatory component in post-endocytic HPV trafficking.
Decreased function of survival motor neuron protein impairs endocytic pathways.
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C
2016-07-26
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.
Decreased function of survival motor neuron protein impairs endocytic pathways
Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.
2016-01-01
Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754
Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A.
Carcea, Ioana; Ma'ayan, Avi; Mesias, Roxana; Sepulveda, Bryan; Salton, Stephen R; Benson, Deanna L
2010-11-10
Cortical efferents growing in the same environment diverge early in development. The expression of particular transcription factors dictates the trajectories taken, presumably by regulating responsiveness to guidance cues via cellular mechanisms that are not yet known. Here, we show that cortical neurons that are dissociated and grown in culture maintain their cell type-specific identities defined by the expression of transcription factors. Using this model system, we sought to identify and characterize mechanisms that are recruited to produce cell type-specific responses to Semaphorin 3A (Sema3A), a guidance cue that would be presented similarly to cortical axons in vivo. Axons from presumptive corticofugal neurons lacking the transcription factor Satb2 and expressing Ctip2 or Tbr1 respond far more robustly to Sema3A than those from presumptive callosal neurons expressing Satb2. Both populations of axons express similar levels of Sema3A receptors (neuropilin-1, cell adhesion molecule L1, and plexinA4), but significantly, axons from neurons lacking Satb2 internalize more Sema3A, and they do so via a raft-mediated endocytic pathway. We used an in silico approach to identify the endocytosis effector flotillin-1 as a Sema3A signaling candidate. We tested the contributions of flotillin-1 to Sema3A endocytosis and signaling, and show that raft-mediated Sema3A endocytosis is defined by and depends on the recruitment of flotillin-1, which mediates LIM domain kinase activation and regulates axon responsiveness to Sema3A in presumptive corticofugal axons.
Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma
2014-03-01
Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.
Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P; Schlosser, Anders; Sorensen, Grith L; Nielsen, Ole; Tornøe, Ida; Grønlund, Jørn; Nielsen, Maria E; Jørgensen, Jan S; Jensen, Ole N; Mollenhauer, Jan; Moestrup, Søren K; Holmskov, Uffe
2012-03-01
CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.
The Sla1 adaptor-clathrin interaction regulates coat formation and progression of endocytosis.
Tolsma, Thomas O; Cuevas, Lena M; Di Pietro, Santiago M
2018-06-01
Clathrin-mediated endocytosis is a fundamental transport pathway that depends on numerous protein-protein interactions. Testing the importance of the adaptor protein-clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin-binding motif (sla1 AAA ) that disrupt clathrin binding. Live-cell imaging showed an impaired Sla1-clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1 AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3-dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1 AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1-clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sun, Yidi; Leong, Nicole T; Jiang, Tommy; Tangara, Astou; Darzacq, Xavier; Drubin, David G
2017-08-16
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior.
Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom.
Xu, Yanjie; Xia, Jixiang; Liu, Suxuan; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong
2017-03-01
Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.
Endosomal protein traffic meets nuclear signal transduction head on.
Horazdovsky, Bruce
2004-02-01
Rab5 plays a key role in controlling protein traffic through the early stages of the endocytic pathway. Previous studies on the modulators and effectors of Rab5 protein function have tied the regulation of several signal transduction pathways to the movement of protein through endocytic compartments. In the February 6, 2004, issue of Cell, Miaczynska et al. describe a surprising new link between Rab5 function and the nucleus by uncovering two new Rab5 effectors as potential regulators of the nucleosome remodeling and histone deacetylase protein complex NuRD/MeCP1.
Doyle, Siamsa M.; Haeger, Ash; Vain, Thomas; ...
2015-02-02
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering themore » polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF–defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. In conclusion, our data confirm a role for GNOM in endoplasmic reticulum (ER)–Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.« less
Cellular entry via an actin and clathrin-dependent route is required for Lv2 restriction of HIV-2.
Harrison, I P; McKnight, A
2011-06-20
Lv2 is a human factor that restricts infection of some HIV-2 viruses after entry into particular target cells. HIV-2 MCR is highly susceptible to Lv2 whereas HIV-2 MCN is not. The block is after reverse transcription but prior to nuclear entry. The viral determinants for this restriction have been mapped to the HIV-2 envelope and the capsid genes. Our model of Lv2 restriction suggests that the route taken into a cell is important in determining whether a productive infection occurs. Here we characterised the infectious routes used by MCN and MCR using chemical compounds and molecular techniques to distinguish between potential pathways. Our results suggest that susceptible MCR can enter restrictive HeLa(CD4) cells via two pathways; a clathrin/AP2 mediated endocytic route that is sensitive to Lv2 restriction and an alternative, non-clathrin mediated route, which results in more efficient infection. Copyright © 2011 Elsevier Inc. All rights reserved.
Talaia, Gabriel; Gournas, Christos; Saliba, Elie; Barata-Antunes, Cláudia; Casal, Margarida; André, Bruno; Diallinas, George; Paiva, Sandra
2017-11-24
Eukaryotic α-arrestins connect environmental or stress signaling pathways to the endocytosis of plasma membrane transporters or receptors. The Saccharomyces cerevisiae lactate transporter Jen1p has been used as a model cargo for elucidating the mechanisms underlying endocytic turnover in response to carbon sources. Here, we discover a novel pathway of Jen1p endocytosis mediated by the α-arrestin Bul1p in response to the presence of cycloheximide or rapamycin, or prolonged growth in lactate. While cycloheximide or rapamycin modify cells pleiotropically, the major effect of prolonged growth in lactate was shown to be external pH alkalinization. Importantly, employment of specific inactive Jen1p versions showed that Bul1p-dependent endocytosis requires lactate transport, according to the signal imposed. Our results support a model where conformational changes of Jen1p, associated with substrate/H + symport, are critical for the efficiency of Bul1p-dependent Jen1p turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herpesvirus Entry into Host Cells Mediated by Endosomal Low pH.
Nicola, Anthony V
2016-09-01
Herpesviral pathogenesis stems from infection of multiple cell types including the site of latency and cells that support lytic replication. Herpesviruses utilize distinct cellular pathways, including low pH endocytic pathways, to enter different pathophysiologically relevant target cells. This review details the impact of the mildly acidic milieu of endosomes on the entry of herpesviruses, with particular emphasis on herpes simplex virus 1 (HSV-1). Epithelial cells, the portal of primary HSV-1 infection, support entry via low pH endocytosis mechanisms. Mildly acidic pH triggers reversible conformational changes in the HSV-1 class III fusion protein glycoprotein B (gB). In vitro treatment of herpes simplex virions with a similar pH range inactivates infectivity, likely by prematurely activating the viral entry machinery in the absence of a target membrane. How a given herpesvirus mediates both low pH and pH-independent entry events is a key unresolved question. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Talati, Ronak; Vanderpoel, Andrew; Eladdadi, Amina; Anderson, Kate; Abe, Ken; Barroso, Margarida
2013-01-01
The overexpression of certain membrane-bound receptors is a hallmark of cancer progression and it has been suggested to affect the organization, activation, recycling and down-regulation of receptor-ligand complexes in human cancer cells. Thus, comparing receptor trafficking pathways in normal vs. cancer cells requires the ability to image cells expressing dramatically different receptor expression levels. Here, we have presented a significant technical advance to the analysis and processing of images collected using intensity based Förster resonance energy transfer (FRET) confocal microscopy. An automated Image J macro was developed to select region of interests (ROI) based on intensity and statistical-based thresholds within cellular images with reduced FRET signal. Furthermore, SSMD (strictly standardized mean differences), a statistical signal-to-noise ratio (SNR) evaluation parameter, was used to validate the quality of FRET analysis, in particular of ROI database selection. The Image J ROI selection macro together with SSMD as an evaluation parameter of SNR levels, were used to investigate the endocytic recycling of Tfn-TFR complexes at nanometer range resolution in human normal vs. breast cancer cells expressing significantly different levels of endogenous TFR. Here, the FRET-based assay demonstrates that Tfn-TFR complexes in normal epithelial vs. breast cancer cells show a significantly different E% behavior during their endocytic recycling pathway. Since E% is a relative measure of distance, we propose that these changes in E% levels represent conformational changes in Tfn-TFR complexes during endocytic pathway. Thus, our results indicate that Tfn-TFR complexes undergo different conformational changes in normal vs. cancer cells, indicating that the organization of Tfn-TFR complexes at the nanometer range is significantly altered during the endocytic recycling pathway in cancer cells. In summary, improvements in the automated selection of FRET ROI datasets allowed us to detect significant changes in E% with potential biological significance in human normal vs. cancer cells. PMID:23994873
Nanes, Benjamin A.; Kowalczyk, Andrew P.
2014-01-01
Adherens junctions are important mediators of intercellular adhesion, but they are not static structures. They are regularly formed, broken, and rearranged in a variety of situations, requiring changes in the amount of cadherins, the main adhesion molecule in adherens junctions, present at the cell surface. Thus, endocytosis, degradation, and recycling of cadherins are crucial for dynamic regulation of adherens junctions and control of intercellular adhesion. In this chapter, we review the involvement of cadherin endocytosis in development and disease. We discuss the various endocytic pathways available to cadherins, the adaptors involved, and the sorting of internalized cadherin for recycling or lysosomal degradation. In addition, we review the regulatory pathways controlling cadherin endocytosis and degradation, including regulation of cadherin endocytosis by catenins, cadherin ubiquitination, and growth factor receptor signaling pathways. Lastly, we discuss the proteolytic cleavage of cadherins at the plasma membrane. PMID:22674073
Sphingosine Kinase 1 Cooperates with Autophagy to Maintain Endocytic Membrane Trafficking.
Young, Megan M; Takahashi, Yoshinori; Fox, Todd E; Yun, Jong K; Kester, Mark; Wang, Hong-Gang
2016-11-01
Sphingosine kinase 1 (Sphk1) associates with early endocytic membranes during endocytosis; however, the role of sphingosine or sphingosine-1-phosphate as the critical metabolite in endocytic trafficking has not been established. Here, we demonstrate that the recruitment of Sphk1 to sphingosine-enriched endocytic vesicles and the generation of sphingosine-1-phosphate facilitate membrane trafficking along the endosomal pathway. Exogenous sphingosine and sphingosine-based Sphk1 inhibitors induce the Sphk1-dependent fusion of endosomal membranes to accumulate enlarged late endosomes and amphisomes enriched in sphingolipids. Interestingly, Sphk1 also appears to facilitate endosomal fusion independent of its catalytic activity, given that catalytically inactive Sphk1 G82D is recruited to endocytic membranes by sphingosine or sphingosine-based Sphk1 inhibitor and promotes membrane fusion. Furthermore, we reveal that the clearance of enlarged endosomes is dependent on the activity of ceramide synthase, lysosomal biogenesis, and the restoration of autophagic flux. Collectively, these studies uncover intersecting roles for Sphk1, sphingosine, and autophagic machinery in endocytic membrane trafficking. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
A novel requirement for C. elegans Alix/ALX-1 in RME-1 mediated membrane transport
Shi, Anbing; Pant, Saumya; Balklava, Zita; Chen, Carlos Chih-Hsiung; Figueroa, Vanesa; Grant, Barth D.
2007-01-01
Summary Background Alix/Bro1p family proteins have recently been identified as important components of multivesicular endosomes (MVEs) involved in the sorting of endocytosed integral membrane proteins, interacting with components of the ESCRT complex, the unconventional phospholipid LBPA, and other known endocytosis regulators. During infection Alix can be co-opted by enveloped retroviruses, including HIV, providing an important function during virus budding from the plasma membrane. In addition Alix is associated with the actin cytoskeleton and may regulate cytoskeletal dynamics. Results Here we demonstrate a novel physical interaction between the only apparent Alix/Bro1p family protein in C. elegans, ALX-1, and a key regulator of receptor recycling from endosomes to the plasma membrane called RME-1. Analysis of alx-1 mutants indicates that ALX-1 is required for endocytic recycling of specific basolateral cargo in the C. elegans intestine, a pathway previously defined by analysis of rme-1 mutants. Expression of truncated human Alix in HeLa cells disrupts recycling of MHCI, a known Ehd1/RME-1 dependent transport step, suggesting phylogenetic conservation of this function. We show that the interaction of ALX-1 with RME-1 in C. elegans, mediated by RME-1/YPSL and ALX-1/NPF motifs, is required for this recycling process. In the C. elegans intestine ALX-1 localizes to both recycling endosomes and MVEs, but the ALX-1/RME-1 interaction appears dispensable for ALX-1 function in MVEs/late endosomes. Conclusions This work provides the first demonstration of a requirement for an Alix/Bro1p family member in the endocytic recycling pathway in association with the recycling regulator RME-1. PMID:17997305
Sun, Miao; Asghar, Suwaiba Z; Zhang, Huaye
2016-09-01
The processing of amyloid precursor protein (APP) into β-amyloid peptide (Aβ) is a key step in the pathogenesis of Alzheimer's disease (AD), and trafficking dysregulations of APP and its secretases contribute significantly to altered APP processing. Here we show that the cell polarity protein Par3 plays an important role in APP processing and trafficking. We found that the expression of full length Par3 is significantly decreased in AD patients. Overexpression of Par3 promotes non-amyloidogenic APP processing, while depletion of Par3 induces intracellular accumulation of Aβ. We further show that Par3 functions by regulating APP trafficking. Loss of Par3 decreases surface expression of APP by targeting APP to the late endosome/lysosome pathway. Finally, we show that the effects of Par3 are mediated through the endocytic adaptor protein Numb, and Par3 functions by interfering with the interaction between Numb and APP. Together, our studies show a novel role for Par3 in regulating APP processing and trafficking. Copyright © 2016 Elsevier Inc. All rights reserved.
Mishra, S K; Agostinelli, N R; Brett, T J; Mizukami, I; Ross, T S; Traub, L M
2001-12-07
Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.
EHD proteins: Key conductors of endocytic transport
Naslavsky, Naava; Caplan, Steve
2010-01-01
Regulation of endocytic transport is controlled by an elaborate network of proteins. Rab GTP-binding proteins and their effectors have well-defined roles in mediating specific endocytic transport steps, but until recently, less was known about the four mammalian dynamin-like C-terminal Eps15 Homology Domain (EHD) proteins that also regulate endocytic events. In recent years, however, great strides have been made in understanding the structure and function of these unique proteins. Indeed, a growing body of literature addresses EHD protein structure, interactions with binding partners, functions in mammalian cells, and the generation of various new model systems. Accordingly, this is now an opportune time to pause and review the function and mechanisms of action of EHD proteins, and to highlight some of the challenges and future directions for the field. PMID:21067929
Tu, Chun; Ahmad, Gulzar; Mohapatra, Bhopal; Bhattacharyya, Sohinee; Ortega-Cava, Cesar F; Chung, Byung Min; Wagner, Kay-Uwe; Raja, Srikumar M; Naramura, Mayumi; Band, Vimla
2011-01-01
ESCRT pathway proteins play a key role in sorting ubiquitinated membrane receptors towards lysosomes providing an important mechanism for attenuating cell surface receptor signaling. However, recent studies point to a positive role of ESCRT proteins in signal transduction in multiple species studied under physiological and pathological conditions. ESCRT components such as Tsg101 and Hrs are overexpressed in human cancers and Tsg101 depletion is detrimental for cell proliferation, survival and transformed phenotype of tumor cells. However, the mechanisms underlying the positive contributions of ESCRT pathway to surface receptor signaling have remained unclear. In a recent study, we showed that Tsg101 and Vps4 are essential for translocation of active Src from endosomes to focal adhesion and invadopodia, thereby revealing a role of ESCRT pathway in promoting Src-mediated migration and invasion. We discuss the implications of these and other recent studies which together suggest a role for the ESCRT pathway in recycling of endocytic cargo proteins, aside from its role in lysosomal targeting, potentially explaining the positive roles of ESCRT proteins in signal transduction. PMID:21866262
Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom
Xu, Yanjie; Liu, Suxuan; Xia, Jixiang; Stein, Sam; Ramon, Cueto; Xi, Hang; Wang, Luqiao; Xiong, Xinyu; Zhang, Lixiao; He, Dingwen; Yang, William; Zhao, Xianxian; Cheng, Xiaoshu; Yang, Xiaofeng; Wang, Hong
2016-01-01
Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via their binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established a group of database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins for vesicle formation in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complex and their intracellular trafficking based on protein-protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair. PMID:28199211
Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.
Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence
2018-03-15
Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of VAP blocks HPV infectious entry at a step after capsid uncoating but prior to localization at the trans -Golgi network. These results define a critical role for ER-associated VAP in endocytic tubulation and in HPV-16 infectious entry. Copyright © 2018 American Society for Microbiology.
Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli
2017-01-01
Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.
Rowling, Matthew J.; Kemmis, Carly M.; Taffany, David A.; Welsh, JoEllen
2007-01-01
The major circulating form of vitamin D is 25-hydroxycholecalciferol [25(OH)D3], which is delivered to target tissues in complex with the serum vitamin D binding protein (DBP). We recently observed that mammary cells can metabolize 25(OH)D3 to 1,25-dihydroxycholecalciferol [1,25(OH)2D3], the vitamin D receptor (VDR) ligand, and the objective of our study was to elucidate the mechanisms by which the 25(OH)D3-DBP complex is internalized by mammary cells prior to metabolism. Using fluorescent microscopy and temperature-shift techniques, we found that T-47D breast cancer cells rapidly internalize DBP via endocytosis, which is blunted by receptor-associated protein, a specific inhibitor of megalin-mediated endocytosis. Endocytosis of DBP was associated with activation of VDR by 25(OH)D3 but not 1,25(OH)2D3 (as measured by induction of the VDR target gene, CYP24). We also found that megalin and its endocytic partner, cubilin, are coexpressed in normal murine mammary tissue, in nontransformed human mammary epithelial cell lines, and in some established human breast cancer cell lines. To our knowledge, our studies are the first to demonstrate that mammary-derived cells express megalin and cubilin, which contribute to the endocytic uptake of 25(OH)D3-DBP and activation of the VDR pathway. PMID:17056796
Yamauchi, Yoshio; Iwamoto, Noriyuki; Rogers, Maximillian A.; Abe-Dohmae, Sumiko; Fujimoto, Toyoshi; Chang, Catherine C. Y.; Ishigami, Masato; Kishimoto, Takuma; Kobayashi, Toshihide; Ueda, Kazumitsu; Furukawa, Koichi; Chang, Ta-Yuan; Yokoyama, Shinji
2015-01-01
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process. PMID:26198636
Interplay of autophagy, receptor tyrosine kinase signalling and endocytic trafficking
Fraser, Jane; Cabodevilla, Ainara G.; Simpson, Joanne; Gammoh, Noor
2017-01-01
Vesicular trafficking events play key roles in the compartmentalization and proper sorting of cellular components. These events have crucial roles in sensing external signals, regulating protein activities and stimulating cell growth or death decisions. Although mutations in vesicle trafficking players are not direct drivers of cellular transformation, their activities are important in facilitating oncogenic pathways. One such pathway is the sensing of external stimuli and signalling through receptor tyrosine kinases (RTKs). The regulation of RTK activity by the endocytic pathway has been extensively studied. Compelling recent studies have begun to highlight the association between autophagy and RTK signalling. The influence of this interplay on cellular status and its relevance in disease settings will be discussed here. PMID:29233871
Hu, Qinglian; Wang, Jinlei; Shen, Jie; Liu, Min; Jin, Xue; Tang, Guping; Chu, Paul K
2012-02-01
Polyethylenimine (PEI) - based polymers are promising cationic nanovectors. A good understanding of the mechanism by which cationic polymers/DNA complexes are internalized and delivered to nuclei helps to identify which transport steps may be manipulated in order to improve the transfection efficiency. In this work, cell internalization and trafficking of PEI-CyD (PC) composed of β-cyclodextrin (β-CyD) and polyethylenimine (PEI, Mw 600) are studied. The results show that the PC transfected DNA is internalized by binding membrane-associated proteoglycans. The endocytic pathway of the PC particles is caveolae- and clathrin-dependent with both pathways converging to the lysosome. The intracellular fate of the PC provides visual evidence that it can escape from the lysosome. Lysosomal inhibition with chloroquine has no effect on PC mediated transfection implying that blocking the lysosomal traffic does not improve transfection. To improve the nuclear delivery of PC transfected DNA, nuclear localization signal (NLS) peptides are chosen to conjugate and combine with the PC. Compared to PC/pDNA, PC-NLS/pDNA, and PC/pDNA/NLS can effectively improve gene transfection in dividing and non-dividing cells. Copyright © 2011 Elsevier Ltd. All rights reserved.
Evaluation of different photosensitizers for use in photochemical gene transfection.
Prasmickaite, L; Høgset, A; Berg, K
2001-04-01
Many potentially therapeutic macromolecules, e.g. transgenes used in gene therapy, are taken into the cells by endocytosis, and have to be liberated from endocytic vesicles in order to express a therapeutic function. To achieve this we have developed a new technology, named photochemical internalization (PCI), based on photochemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which properties of photosensitizers are important for obtaining the PCI effect improving gene transfection. The photochemical effect on transfection of human melanoma THX cells has been studied employing photosensitizers with different physicochemical properties and using two gene delivery vectors: the cationic polypeptide polylysine and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). Photochemical treatment by photosensitizers that do not localize in endocytic vesicles (tetra[3-hydroxyphenyl]porphyrin and 5-aminolevulinic acid-induced protoporphyrin IX) do not stimulate transfection, irrespective of the gene delivery vector. In contrast, photosensitizers localized in endocytic vesicles stimulate polylysine-mediated transfection, and amphiphilic photosensitizers (disulfonated aluminium phthalocyanine [AlPcS2a] and meso-tetraphenylporphynes) show the strongest positive effect, inducing approximately 10-fold increase in transfection efficiency. In contrast, DOTAP-mediated transfection is inhibited by all photochemical treatments irrespective of the photosensitizer used. Neither AlPcS2a nor Photofrin affects the uptake of the transfecting DNA over the plasma membrane, therefore photochemical permeabilization of endocytic vesicles seems to be the most likely mechanism responsible for the positive PCI effect on gene transfection.
Endocytic recycling via the TGN underlies the polarized hyphal mode of life.
Hernández-González, Miguel; Bravo-Plaza, Ignacio; Pinar, Mario; de Los Ríos, Vivian; Arst, Herbert N; Peñalva, Miguel A
2018-04-01
Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth.
Role of flotillins in the endocytosis of GPCR in salivary gland epithelial cells.
Park, Moon-Yong; Kim, Nahyun; Wu, Li-Ling; Yu, Guang-Yan; Park, Kyungpyo
2016-08-05
Endocytosis has numerous functions in cellular homeostasis. Defects in the endocytic pathway of receptors may lead to dysfunction of salivary gland secretion. Therefore, elucidating the complex mechanisms of endocytosis may facilitate solutions for disease treatment and prevention. The muscarinic type 3 receptor (M3R), a G-protein-coupled receptor (GPCR) located in the plasma membrane, is involved in numerous physiological activities such as smooth muscle contraction and saliva secretion. M3R enters cells through clathrin-mediated endocytosis (CME), while flotillins (flot-1 and -2), highly conserved proteins residing in lipid-raft microdomains, make use of clathrin-independent endocytosis (CIE) for their internalization. Since these two proteins use two discrete pathways for endocytic entry, the association of flotillins with CME is poorly understood. We examined whether flotillins play a role in CME of M3R using immunoblotting, immunocytochemistry, confocal immunofluorescence microscopy, co-immunoprecipitation, and RNA interference techniques in secretory epithelial cells. Upon stimulation with a cholinergic agonist, M3R, flot-1, and flot-2 each internalized from the plasma membrane into intracellular sites. The addition of chlorpromazine and cytochalasin D, well-known inhibitors of CME, inhibited internalization of M3R via CME. Filipin III and methyl-β-cyclodextrin (mβCD) acting as lipid raft inhibitors disrupted internalization of flot-1/2 via CIE. Interestingly, filipin III and mβCD slightly reduced expression level of M3R whereas chlorpromazine and cytochalasin D did not affect internalization of the flotillin isoforms. M3R and flot-1/2 colocalized and interacted with each other as they entered the cytosol during limited periods of incubation. Moreover, knockdown of flot-1 or -2 by flotillin-specific siRNA prevented internalization and reduced the endocytic efficiency of M3R. Our results suggest that flot-1 and -2 are partially involved in CME of M3R by facilitating its internalization. Copyright © 2016 Elsevier Inc. All rights reserved.
Linford, Andrea; Yoshimura, Shin-ichiro; Bastos, Ricardo Nunes; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J.; Barr, Francis A.
2012-01-01
Summary Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. PMID:22595670
Wu, Yumei; O'Toole, Eileen T; Girard, Martine; Ritter, Brigitte; Messa, Mirko; Liu, Xinran; McPherson, Peter S; Ferguson, Shawn M; De Camilli, Pietro
2014-01-01
The exocytosis of synaptic vesicles (SVs) elicited by potent stimulation is rapidly compensated by bulk endocytosis of SV membranes leading to large endocytic vacuoles (‘bulk’ endosomes). Subsequently, these vacuoles disappear in parallel with the reappearance of new SVs. We have used synapses of dynamin 1 and 3 double knock-out neurons, where clathrin-mediated endocytosis (CME) is dramatically impaired, to gain insight into the poorly understood mechanisms underlying this process. Massive formation of bulk endosomes was not defective, but rather enhanced, in the absence of dynamin 1 and 3. The subsequent conversion of bulk endosomes into SVs was not accompanied by the accumulation of clathrin coated buds on their surface and this process proceeded even after further clathrin knock-down, suggesting its independence of clathrin. These findings support the existence of a pathway for SV reformation that bypasses the requirement for clathrin and dynamin 1/3 and that operates during intense synaptic activity. DOI: http://dx.doi.org/10.7554/eLife.01621.001 PMID:24963135
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-01-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier. PMID:26399746
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-05-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.
Diffusional spread and confinement of newly exocytosed synaptic vesicle proteins
NASA Astrophysics Data System (ADS)
Gimber, Niclas; Tadeus, Georgi; Maritzen, Tanja; Schmoranzer, Jan; Haucke, Volker
2015-09-01
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.
Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga
2015-03-16
The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting
2011-10-20
During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.
GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival
Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine
2015-01-01
Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845
Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes.
Wang, Qian; Chen, Xinmei; Wang, Zhixiang
2015-03-01
We have shown previously that epidermal growth factor (EGF) receptor (EGFR) endocytosis is controlled by EGFR dimerization. However, it is not clear how the dimerization drives receptor internalization. We propose that EGFR endocytosis is driven by dimerization, bringing two sets of endocytic codes, one contained in each receptor monomer, in close proximity. Here, we tested this hypothesis by generating specific homo- or hetero-dimers of various receptors and their mutants. We show that ErbB2 and ErbB3 homodimers are endocytosis deficient owing to the lack of endocytic codes. Interestingly, EGFR-ErbB2 or EGFR-ErbB3 heterodimers are also endocytosis deficient. Moreover, the heterodimer of EGFR and the endocytosis-deficient mutant EGFRΔ1005-1017 is also impaired in endocytosis. These results indicate that two sets of endocytic codes are required for receptor endocytosis. We found that an EGFR-PDGFRβ heterodimer is endocytosis deficient, although both EGFR and PDGFRβ homodimers are endocytosis-competent, indicating that two compatible sets of endocytic codes are required. Finally, we found that to mediate the endocytosis of the receptor dimer, the two sets of compatible endocytic codes, one contained in each receptor molecule, have to be spatially coordinated. © 2015. Published by The Company of Biologists Ltd.
Kaempf, Natalie; Maritzen, Tanja
2017-01-01
Communication between neurons relies on neurotransmitters which are released from synaptic vesicles (SVs) upon Ca2+ stimuli. To efficiently load neurotransmitters, sense the rise in intracellular Ca2+ and fuse with the presynaptic membrane, SVs need to be equipped with a stringently controlled set of transmembrane proteins. In fact, changes in SV protein composition quickly compromise neurotransmission and most prominently give rise to epileptic seizures. During exocytosis SVs fully collapse into the presynaptic membrane and consequently have to be replenished to sustain neurotransmission. Therefore, surface-stranded SV proteins have to be efficiently retrieved post-fusion to be used for the generation of a new set of fully functional SVs, a process in which dedicated endocytic sorting adaptors play a crucial role. The question of how the precise reformation of SVs is achieved is intimately linked to how SV membranes are retrieved. For a long time both processes were believed to be two sides of the same coin since Clathrin-mediated endocytosis (CME), the proposed predominant SV recycling mode, will jointly retrieve SV membranes and proteins. However, with the recent proposal of Clathrin-independent SV recycling pathways SV membrane retrieval and SV reformation turn into separable events. This review highlights the progress made in unraveling the molecular mechanisms mediating the high-fidelity retrieval of SV proteins and discusses how the gathered knowledge about SV protein recycling fits in with the new notions of SV membrane endocytosis. PMID:29085282
RGD-containing peptides activate S6K1 through beta3 integrin in adult cardiac muscle cells.
Balasubramanian, Sundaravadivel; Kuppuswamy, Dhandapani
2003-10-24
The enzyme p70S6 kinase (S6K1) is critical for cell growth, and we have reported its activation during cardiac hypertrophy. Because cardiac hypertrophy also involves integrin activation, we analyzed whether integrins could contribute to S6K1 activation. Using adult feline cardiomyocytes, here we report that integrin-interacting Arg-Gly-Asp (RGD) peptides activate S6K1 as observed by band shifting, kinase activity and phosphorylation at Thr-389 and Thr-421/Ser-424 of S6K1, and S6 protein phosphorylation. Perturbation of specific integrin function with blocking antibodies and by overexpressing the beta1A cytoplasmic tail revealed that beta3 but not beta1 integrin mediates the RGD-induced S6K1 activation. This activation is focal adhesion complex-independent and is accompanied by the activation of extracellular signal-regulated kinases 1/2 (ERK) and mammalian target of rapamycin (mTOR). Studies using specific inhibitors and dominant negative c-Raf expression in cardiomyocytes indicate that the S6K1 activation involves mTOR, MEK/ERK, and phosphatidylinositol 3-kinase pathways and is independent of protein kinase C and c-Raf. Finally, addition of fluorescent-labeled RGD peptide to cardiomyocytes exhibits its internalization and localization to the endocytic vesicles, and pretreatment of cardiomyocytes with endocytic inhibitors reduced the S6K1 activation. These data suggest that RGD interaction with beta3 integrin and its subsequent endocytosis trigger specific signaling pathway(s) for S6K1 activation in cardiomyocytes and that this process may contribute to hypertrophic growth and remodeling of myocardium.
Gómez-Suaga, Patricia; Rivero-Ríos, Pilar; Fdez, Elena; Blanca Ramírez, Marian; Ferrer, Isidro; Aiastui, Ana; López De Munain, Adolfo; Hilfiker, Sabine
2014-12-20
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset autosomal dominant Parkinson's disease (PD), and sequence variations at the LRRK2 locus are associated with increased risk for sporadic PD. LRRK2 contains both GTPase and kinase domains flanked by protein interaction motifs, and mutations associated with familial PD have been described for both catalytic domains. LRRK2 has been implicated in diverse cellular processes, and recent evidence pinpoints to an important role for LRRK2 in modulating a variety of intracellular membrane trafficking pathways. However, the underlying mechanisms are poorly understood. Here, by studying the classical, well-understood, degradative trafficking pathway of the epidermal growth factor receptor (EGFR), we show that LRRK2 regulates endocytic membrane trafficking in an Rab7-dependent manner. Mutant LRRK2 expression causes a slight delay in early-to-late endosomal trafficking, and a pronounced delay in trafficking out of late endosomes, which become aberrantly elongated into tubules. This is accompanied by a delay in EGFR degradation. The LRRK2-mediated deficits in EGFR trafficking and degradation can be reverted upon coexpression of active Rab7 and of a series of proteins involved in bridging the EGFR to Rab7 on late endosomes. Effector pulldown assays indicate that pathogenic LRRK2 decreases Rab7 activity both in cells overexpressing LRRK2, as well as in fibroblasts from pathogenic mutant LRRK2 PD patients when compared with healthy controls. Together, these findings provide novel insights into a previously unknown regulation of Rab7 activity by mutant LRRK2 which impairs membrane trafficking at very late stages of the endocytic pathway. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Endocytic Recycling Regulatory Protein EHD1 Is Required for Ocular Lens Development
Arya, Priyanka; Rainey, Mark A.; Bhattacharyya, Sohinee; Mohapatra, Bhopal; George, Manju; Kuracha, Murali R; Storck, Matthew D.; Band, Vimla; Govindarajan, Venkatesh; Band, Hamid
2015-01-01
The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis. PMID:26455409
Ben Khaled, Sara; Postma, Jelle; Robatzek, Silke
2015-01-01
A significant challenge for plants is to induce localized defense responses at sites of pathogen attack. Therefore, host subcellular trafficking processes enable accumulation and exchange of defense compounds, which contributes to the plant on-site defenses in response to pathogen perception. This review summarizes our current understanding of the transport processes that facilitate immunity, the significance of which is highlighted by pathogens reprogramming membrane trafficking through host cell translocated effectors. Prominent immune-related cargos of plant trafficking pathways are the pattern recognition receptors (PRRs), which must be present at the plasma membrane to sense microbes in the apoplast. We focus on the dynamic localization of the FLS2 receptor and discuss the pathways that regulate receptor transport within the cell and their link to FLS2-mediated immunity. One emerging theme is that ligand-induced late endocytic trafficking is conserved across different PRR protein families as well as across different plant species.
Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport
Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Cruz-Moreno, Beatriz; Leppla, Stephen H.; Nizet, Victor
2017-01-01
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies. PMID:28945820
Anthrax edema toxin disrupts distinct steps in Rab11-dependent junctional transport.
Guichard, Annabel; Jain, Prashant; Moayeri, Mahtab; Schwartz, Ruth; Chin, Stephen; Zhu, Lin; Cruz-Moreno, Beatriz; Liu, Janet Z; Aguilar, Bernice; Hollands, Andrew; Leppla, Stephen H; Nizet, Victor; Bier, Ethan
2017-09-01
Various bacterial toxins circumvent host defenses through overproduction of cAMP. In a previous study, we showed that edema factor (EF), an adenylate cyclase from Bacillus anthracis, disrupts endocytic recycling mediated by the small GTPase Rab11. As a result, cargo proteins such as cadherins fail to reach inter-cellular junctions. In the present study, we provide further mechanistic dissection of Rab11 inhibition by EF using a combination of Drosophila and mammalian systems. EF blocks Rab11 trafficking after the GTP-loading step, preventing a constitutively active form of Rab11 from delivering cargo vesicles to the plasma membrane. Both of the primary cAMP effector pathways -PKA and Epac/Rap1- contribute to inhibition of Rab11-mediated trafficking, but act at distinct steps of the delivery process. PKA acts early, preventing Rab11 from associating with its effectors Rip11 and Sec15. In contrast, Epac functions subsequently via the small GTPase Rap1 to block fusion of recycling endosomes with the plasma membrane, and appears to be the primary effector of EF toxicity in this process. Similarly, experiments conducted in mammalian systems reveal that Epac, but not PKA, mediates the activity of EF both in cell culture and in vivo. The small GTPase Arf6, which initiates endocytic retrieval of cell adhesion components, also contributes to junctional homeostasis by counteracting Rab11-dependent delivery of cargo proteins at sites of cell-cell contact. These studies have potentially significant practical implications, since chemical inhibition of either Arf6 or Epac blocks the effect of EF in cell culture and in vivo, opening new potential therapeutic avenues for treating symptoms caused by cAMP-inducing toxins or related barrier-disrupting pathologies.
KEY INTERACTIONS FOR CLATHRIN COAT STABILITY
Böcking, Till; Aguet, Francois; Rapoport, Iris; Banzhaf, Manuel; Yu, Anan; Zeeh, Jean Christophe; Kirchhausen, Tom
2014-01-01
SUMMARY Clathrin-coated vesicles are major carriers of vesicular traffic in eukaryotic cells. This endocytic pathway relies on cycles of clathrin coat assembly and Hsc70-mediated disassembly. Here we identify histidine residues as major determinants of lattice assembly and stability. They are located at the invariant interface between the proximal and distal segments of clathrin heavy chains, in triskelions centered on two adjacent vertices of the coated-vesicle lattice. Mutation of these histidine to glutamine alters the pH dependence of coat stability. We then describe single-particle fluorescence imaging experiments in which we follow the effect of these histidine mutations on susceptibility to Hsc70-dependent uncoating. Coats destabilized by these mutations require fewer Hsc70 molecules to initiate disassembly as predicted by a model in which Hsc70 traps conformational distortions during the auxilin- and Hsc70:ATP-mediated uncoating reaction. PMID:24815030
Hsu, Janet; Rappaport, Jeff; Muro, Silvia
2014-01-01
Purpose The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transporting drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule 1 (ICAM-1), to transport drug carriers into and across BBB models. Methods Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. Results ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. Conclusions CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier. PMID:24558007
Hsu, Janet; Rappaport, Jeff; Muro, Silvia
2014-07-01
The blood-brain barrier (BBB) represents a target for therapeutic intervention and an obstacle for brain drug delivery. Targeting endocytic receptors on brain endothelial cells (ECs) helps transport drugs and carriers into and across this barrier. While most receptors tested are associated with clathrin-mediated pathways, clathrin-independent routes are rather unexplored. We have examined the potential for one of these pathways, cell adhesion molecule (CAM)-mediated endocytosis induced by targeting intercellular adhesion molecule -1 (ICAM-1), to transport drug carriers into and across BBB models. Model polymer nanocarriers (NCs) coated with control IgG or antibodies against ICAM-1 (IgG NCs vs. anti-ICAM NCs; ~250-nm) were incubated with human brain ECs, astrocytes (ACs), or pericytes (PCs) grown as monocultures or bilayered (endothelial+subendothelial) co-cultures. ICAM-1 was present and overexpressed in disease-like conditions on ECs and, at a lesser extent, on ACs and PCs which are BBB subendothelial components. Specific targeting and CAM-mediated uptake of anti-ICAM NCs occurred in these cells, although this was greater for ECs. Anti-ICAM NCs were transported across endothelial monolayers and endothelial+subendothelial co-cultures modeling the BBB. CAM-mediated transport induced by ICAM-1 targeting operates in endothelial and subendothelial cellular components of the BBB, which may provide an avenue to overcome this barrier.
Tomas, Alejandra; Vaughan, Simon O.; Burgoyne, Thomas; Sorkin, Alexander; Hartley, John A.; Hochhauser, Daniel; Futter, Clare E.
2015-01-01
Stress exposure triggers ligand-independent EGF receptor (EGFR) endocytosis, but its post-endocytic fate and role in regulating signalling are unclear. We show that the p38 MAP kinase-dependent, EGFR tyrosine kinase (TK)-independent EGFR internalization induced by ultraviolet light C (UVC) or the cancer therapeutic cisplatin, is followed by diversion from the canonical endocytic pathway. Instead of lysosomal degradation or plasma membrane recycling, EGFR accumulates in a subset of LBPA-rich perinuclear multivesicular bodies (MVBs) distinct from those carrying EGF-stimulated EGFR. Stress-internalized EGFR co-segregates with exogenously expressed pre-melanosomal markers OA1 and fibrillar PMEL, following early endosomal sorting by the actin polymerization-promoting WASH complex. Stress-internalized EGFR is retained intracellularly by continued p38 activity in a mechanism involving ubiquitin-independent, ESCRT/ALIX-dependent incorporation onto intraluminal vesicles (ILVs) of MVBs. In contrast to the internalization-independent EGF-stimulated activation, UVC/cisplatin-triggered EGFR activation depends on EGFR internalization and intracellular retention. EGFR signalling from this MVB subpopulation delays apoptosis and might contribute to chemoresistance. PMID:26066081
Qi, Xu; Moore, Roger A.; McGuirl, Michele A.
2012-01-01
Fibril dissociation is necessary for efficient conversion of normal prion protein to its misfolded state and continued propagation into amyloid. Recent studies have revealed that conversion occurs along the endocytic pathway. To better understand the dissociation process, we have investigated the effect of low pH on the stability of recombinant prion fibrils. We show that under conditions that mimic the endocytic environment, amyloid fibrils made from full length prion protein dissociate both laterally and axially to form protofilaments. About 5% of the protofilaments are short enough to be considered soluble and contain ~100–300 monomers per structure; these also retain the biophysical characteristics of the filaments. We propose that protonation of His residues and charge repulsion in the N-terminal domain trigger fibril dissociation. Our data suggest that lysosomes and late endosomes are competent milieus for propagating the misfolded state not only by destabilizing the normal prion protein, but by accelerating fibril dissociation into smaller structures that may act as seeds. PMID:22591453
Clathrin-independent internalization and recycling
Gong, Qiang; Huntsman, Christopher; Ma, Dzwokai
2008-01-01
Abstract The functionality of receptor and channel proteins depends directly upon their expression level on the plasma membrane. Therefore, the ability to selectively adjust the surface level of a particular receptor or channel protein is pivotal to many cellular signalling events. The internalization and recycling pathway plays a major role in the regulation of protein surface level, and thus has been a focus of research for many years. Although several endocytic pathways have been identified, most of our knowledge has come from the clathrin-dependent pathway, while the other pathways remain much less well defined. Considering that clathrin-independent internalization may account for as much as 50% of the total endocytic activity in the cell, the lack of such knowledge constitutes a major gap in our efforts to understand how different internalization pathways are utilized and co-ordinated. Recent studies have provided valuable insights into this area, yet many more questions still remain. In this review, we will give a panoramic introduction to the current knowledge of various internalization and recycling pathways, with an emphasis on the latest findings that have broadened our view of the clathrin-independent pathways. We will also dedicate one section to the emerging studies of the clathrin-independent internalization pathways in neuronal cells. PMID:18039352
Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway.
Song, Pingping; Trajkovic, Katarina; Tsunemi, Taiji; Krainc, Dimitri
2016-02-24
Mutations in PARK2 (parkin), which encodes Parkin protein, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While several studies implicated Parkin in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration upon Parkin loss of function remains incompletely understood. In this study, we found that Parkin modulates the endocytic pathway through the regulation of endosomal structure and function. We showed that loss of Parkin function led to decreased endosomal tubulation and membrane association of vesicle protein sorting 35 (VPS35) and sorting nexin 1 (SNX1), as well as decreased mannose 6 phosphate receptor (M6PR), suggesting the impairment of retromer pathway in Parkin-deficient cells. We also found increased formation of intraluminal vesicles coupled with enhanced release of exosomes in the presence of mutant Parkin. To elucidate the molecular mechanism of these alterations in the endocytic pathway in Parkin-deficient cells, we found that Parkin regulates the levels and activity of Rab7 by promoting its ubiquitination on lysine 38 residue. Both endogenous Rab7 in Parkin-deficient cells and overexpressed K38 R-Rab7 mutant displayed decreased effector binding and membrane association. Furthermore, overexpression of K38R-Rab7 in HEK293 cells phenocopied the increased secretion of exosomes observed in Parkin-deficient cells, suggesting that Rab7 deregulation may be at least partially responsible for the endocytic phenotype observed in Parkin-deficient cells. These findings establish a role for Parkin in regulating the endo-lysosomal pathway and retromer function and raise the possibility that alterations in these pathways contribute to the development of pathology in Parkin-linked Parkinson's disease. Copyright © 2016 the authors 0270-6474/16/362425-13$15.00/0.
EARP, a multisubunit tethering complex involved in endocytic recycling
Schindler, Christina; Chen, Yu; Pu, Jing; Guo, Xiaoli; Bonifacino, Juan S.
2015-01-01
Recycling of endocytic receptors to the cell surface involves passage through a series of membrane-bound compartments by mechanisms that are poorly understood. In particular, it is unknown if endocytic recycling requires the function of multisubunit tethering complexes, as is the case for other intracellular trafficking pathways. Herein we describe a tethering complex named Endosome-Associated Recycling Protein (EARP) that is structurally related to the previously described Golgi-Associated Retrograde Protein (GARP) complex. Both complexes share the Ang2, Vps52 and Vps53 subunits, but EARP comprises an uncharacterized protein, Syndetin, in place of the Vps54 subunit of GARP. This change determines differential localization of EARP to recycling endosomes and GARP to the Golgi complex. EARP interacts with the target-SNARE Syntaxin 6 and various cognate SNAREs. Depletion of Syndetin or Syntaxin 6 delays recycling of internalized transferrin to the cell surface. These findings implicate EARP in canonical membrane-fusion events in the process of endocytic recycling. PMID:25799061
Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid
2014-01-01
ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290
Zhang, Juan; Wang, Chen
2018-01-01
Background As a potentially bioactive material, the widespread application of nanosized hydroxyapatite (nano-HAP) in the field of bone regeneration has increased the risk of human exposure. However, our understanding of the interaction between nano-HAP and stem cells implicated in bone repair remains incomplete. Methods Here, we characterized the adhesion and cellular internalization of HAP nanoparticles (HANPs) with different sizes (20 nm np20 and 80 nm np80) and highlighted the involved pathway in their uptake using human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hWJ-MSCs). In addition, the effects of HANPs on cell viability, apoptosis response, osteogenic differentiation, and underlying related mechanisms were explored. Results It was shown that both types of HANPs readily adhered to the cellular membrane and were transported into the cells compared to micro-sized HAP particles (m-HAP; 12 μm). Interestingly, the endocytic routes of np20 and np80 differed, although they exhibited similar kinetics of adhesion and uptake. Our study revealed involvement of clathrin- and caveolin-mediated endocytosis as well as macropinocytosis in the np20 uptake. However, for np80, clathrin-mediated endocytosis and some as-yet-unidentified important uptake routes play central roles in their internalization. HANPs displayed a higher preference to accumulate in the cytoplasm compared to m-HAP, and HANPs were not detected in the nucleolus. Exposure to np20 for 24 h caused a decrease in cell viability, while cells completely recovered with an exposure time of 72 h. Furthermore, HANPs did not influence apoptosis and necrosis of hWJ-MSCs. Strikingly, HANPs enhanced mRNA levels of osteoblast-related genes and stimulated calcium mineral deposition, and this directly correlated with the activation in c-Jun N-terminal kinases and p38 pathways. Conclusion Our data provide additional insight about the interactions of HANPs with MSCs and suggest their application potential in hard tissue regeneration. PMID:29559775
Nández, Ramiro; Balkin, Daniel M; Messa, Mirko; Liang, Liang; Paradise, Summer; Czapla, Heather; Hein, Marco Y; Duncan, James S; Mann, Matthias; De Camilli, Pietro
2014-01-01
Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI: http://dx.doi.org/10.7554/eLife.02975.001 PMID:25107275
Crespo, A; Peydró, A; Dasí, F; Benet, M; Calvete, J J; Revert, F; Aliño, S F
2005-06-01
The present study contributes to clarify the mechanism underlying the high efficacy of hepatocyte gene transfer mediated by hydrodynamic injection. Gene transfer experiments were performed employing the hAAT gene, and the efficacy and differential identification in mouse plasma of human transgene versus mouse gene was assessed by ELISA and proteomic procedures, respectively. By applying different experimental strategies such as cumulative dose-response efficacy, hemodynamic changes reflected by venous pressures, intravital microscopy, and morphological changes established by transmission electron microscopy, we found that: (a) cumulative multiple doses of transgene by hydrodynamic injection are efficient and well tolerated, resulting in therapeutic plasma levels of hAAT; (b) hydrodynamic injection mediates a transient inversion of intrahepatic blood flow, with circulatory stasis for a few minutes mainly in pericentral vein sinusoids; (c) transmission electron microscopy shows hydrodynamic injection to promote massive megafluid endocytic vesicles among hepatocytes around the central vein but not in hepatocytes around the periportal vein. We suggest that the mechanism of hydrodynamic liver gene transfer involves transient inversion of intrahepatic flow, sinusoidal blood stasis, and massive fluid endocytic vesicles in pericentral vein hepatocytes.
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-01-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment. Images PMID:8334308
Kunz, Daniele; Oliveira, Gabriel B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Silva, Carlos P
2017-08-01
The transport of proteins across the intestinal epithelium of insects is still not well understood. There is evidence that vicilin, a major storage protein of cowpea seeds (Vigna unguiculata), is internalized in larvae of the seed-beetle Callosobruchus maculatus. It has been reported that this vicilin interacts with proteins present in the microvillar membranes of columnar cells along the digestive tract of the larvae. In the present work, we studied the cellular pathway involved in endocytosis of vicilin in larval C. maculatus by employing ex vivo experiments. In the ex vivo approach, we incubated FITC-labelled vicilin with isolated midgut wholemounts in the absence or in the presence of endocytosis inhibitors. The fate of labelled or non-labelled globulins was monitored by confocal microscopy and fluorescence measurement. Our results suggest that the internalization of vicilins is due to receptor-mediated endocytosis. Here we report the identity of a microvillar vicilin-binding protein that was purified using affinity chromatography on a vicilin-sepharose column. The putative vicilin receptor showed high homology to proteins with the CRAL-TRIO domain, specifically the Sec14 superfamily member α-tocopherol transfer protein. The precise mechanism involved in vicilin internalization was defined through the use of specific inhibitors of the endocytosis pathway. The inhibitors filipin III and nystatin significantly inhibited the endocytosis of vicilin, while chlorpromazine and phenylarsine oxide had a much lower effect on endocytosis, suggesting that the endocytic pathway is predominantly mediated by caveolin. Copyright © 2017 Elsevier Inc. All rights reserved.
Recombinant antibody mediated delivery of organelle-specific DNA pH sensors along endocytic pathways
NASA Astrophysics Data System (ADS)
Modi, Souvik; Halder, Saheli; Nizak, Clément; Krishnan, Yamuna
2013-12-01
DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a `handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the `handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications. Electronic supplementary information (ESI) available: Detailed description of all oligonucleotide sequences used in this study; list of figures that support claims from the main text. Mainly these show sensor sequences, phage display results, scFv purification and binding data, cell images clamped at different pH and co-localization studies with endocytic tracers. See DOI: 10.1039/c3nr03769j
de Vries, Erik; Tscherne, Donna M.; Wienholts, Marleen J.; Cobos-Jiménez, Viviana; Scholte, Florine; García-Sastre, Adolfo; Rottier, Peter J. M.; de Haan, Cornelis A. M.
2011-01-01
Influenza A virus (IAV) enters host cells upon binding of its hemagglutinin glycoprotein to sialylated host cell receptors. Whereas dynamin-dependent, clathrin-mediated endocytosis (CME) is generally considered as the IAV infection pathway, some observations suggest the occurrence of an as yet uncharacterized alternative entry route. By manipulating entry parameters we established experimental conditions that allow the separate analysis of dynamin-dependent and -independent entry of IAV. Whereas entry of IAV in phosphate-buffered saline could be completely inhibited by dynasore, a specific inhibitor of dynamin, a dynasore-insensitive entry pathway became functional in the presence of fetal calf serum. This finding was confirmed with the use of small interfering RNAs targeting dynamin-2. In the presence of serum, both IAV entry pathways were operational. Under these conditions entry could be fully blocked by combined treatment with dynasore and the amiloride derivative EIPA, the hallmark inhibitor of macropinocytosis, whereas either drug alone had no effect. The sensitivity of the dynamin-independent entry pathway to inhibitors or dominant-negative mutants affecting actomyosin dynamics as well as to a number of specific inhibitors of growth factor receptor tyrosine kinases and downstream effectors thereof all point to the involvement of macropinocytosis in IAV entry. Consistently, IAV particles and soluble FITC-dextran were shown to co-localize in cells in the same vesicles. Thus, in addition to the classical dynamin-dependent, clathrin-mediated endocytosis pathway, IAV enters host cells by a dynamin-independent route that has all the characteristics of macropinocytosis. PMID:21483486
LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer's amyloid-β.
Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun
2012-11-14
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer's disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA.
Fernández-Murray, J. Pedro; Ngo, Michael H.; McMaster, Christopher R.
2013-01-01
Choline is a precursor for the synthesis of phosphatidylcholine through the CDP-choline pathway. Saccharomyces cerevisiae expresses a single high affinity choline transporter at the plasma membrane, encoded by the HNM1 gene. We show that exposing cells to increasing levels of choline results in two different regulatory mechanisms impacting Hnm1 activity. Initial exposure to choline results in a rapid decrease in Hnm1-mediated transport at the level of transporter activity, whereas chronic exposure results in Hnm1 degradation through an endocytic mechanism that depends on the ubiquitin ligase Rsp5 and the casein kinase 1 redundant pair Yck1/Yck2. We present details of how the choline transporter is a major regulator of phosphatidylcholine synthesis. PMID:24187140
Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome.
Siegert, Anna-Maria; Serra-Peinado, Carla; Gutiérrez-Martínez, Enric; Rodríguez-Pascual, Fernando; Fabregat, Isabel; Egea, Gustavo
2018-02-01
The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways. Copyright © 2017 Elsevier B.V. All rights reserved.
Rab7: roles in membrane trafficking and disease.
Zhang, Ming; Chen, Li; Wang, Shicong; Wang, Tuanlao
2009-06-01
The endocytosis pathway controls multiple cellular and physiological events. The lysosome is the destination of newly synthesized lysosomal hydrolytic enzymes. Internalized molecules or particles are delivered to the lysosome for degradation through sequential transport along the endocytic pathway. The endocytic pathway is also emerging as a signalling platform, in addition to the well-known role of the plasma membrane for signalling. Rab7 is a late endosome-/lysosome-associated small GTPase, perhaps the only lysosomal Rab protein identified to date. Rab7 plays critical roles in the endocytic processes. Through interaction with its partners (including upstream regulators and downstream effectors), Rab7 participates in multiple regulation mechanisms in endosomal sorting, biogenesis of lysosome [or LRO (lysosome-related organelle)] and phagocytosis. These processes are closely related to substrates degradation, antigen presentation, cell signalling, cell survival and microbial pathogen infection. Consistently, mutations or dysfunctions of Rab7 result in traffic disorders, which cause various diseases, such as neuropathy, cancer and lipid metabolism disease. Rab7 also plays important roles in microbial pathogen infection and survival, as well as in participating in the life cycle of viruses. Here, we give a brief review on the central role of Rab7 in endosomal traffic and summarize the studies focusing on the participation of Rab7 in disease pathogenesis. The underlying mechanism governed by Rab7 and its partners will also be discussed.
Loebrich, Sven; Benoit, Marc Robert; Konopka, Jaclyn Aleksandra; Cottrell, Jeffrey Richard; Gibson, Joanne; Nedivi, Elly
2016-02-08
Internalization of glutamate receptors at the postsynaptic membrane via clathrin-mediated endocytosis (CME) is a key mechanism for regulating synaptic strength. A role for the F-actin cytoskeleton in CME is well established, and recently, PKA-dependent association of candidate plasticity gene 2 (CPG2) with the spine-cytoskeleton has been shown to mediate synaptic glutamate receptor internalization. Yet, how the endocytic machinery is physically coupled to the actin cytoskeleton to facilitate glutamate receptor internalization has not been demonstrated. Moreover, there has been no distinction of endocytic-machinery components that are specific to activity-dependent versus constitutive glutamate receptor internalization. Here, we show that CPG2, through a direct physical interaction, recruits endophilin B2 (EndoB2) to F-actin, thus anchoring the endocytic machinery to the spine cytoskeleton and facilitating glutamate receptor internalization. Regulation of CPG2 binding to the actin cytoskeleton by protein kinase A directly impacts recruitment of EndoB2 and clathrin. Specific disruption of EndoB2 or the CPG2-EndoB2 interaction impairs activity-dependent, but not constitutive, internalization of both NMDA- and AMPA-type glutamate receptors. These results demonstrate that, through direct interactions with F-actin and EndoB2, CPG2 physically bridges the spine cytoskeleton and the endocytic machinery, and this tripartite association is critical specifically for activity-dependent CME of synaptic glutamate receptors. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Deng, Hua; Dutta, Prashanta; Liu, Jin
2016-11-01
Clathrin-mediated endocytosis (CME) is one of the most important endocytic pathways for the internalization of bioparticles at lipid membrane of cells, which plays crucial roles in fundamental understanding of viral infections and interacellular/transcelluar targeted drug delivery. During CME, highly dynamic clathrin-coated pit (CCP), formed by the growth of ordered clathrin lattices, is the key scaffolding component that drives the deformation of plasma membrane. Experimental studies have shown that CCP alone can provide sufficient membrane curvature for facilitating membrane invagination. However, currently there is no computational model that could couple cargo receptor binding with membrane invagination process, nor simulations of the dynamic growing process of CCP. We develop a stochastic computational model for the clathrin-mediated endocytosis based on Metropolis Monte Carlo simulations. In our model, the energetic costs of bending membrane and CCP are linked with antigen-antibody interactions. The assembly of clathrin lattices is a dynamic process that correlates with antigen-antibody bond formation. This model helps study the membrane deformation and the effects of CCP during functionalized bioparticles internalization through CME. This work is supported by NSF Grants: CBET-1250107 and CBET-1604211.
Schwarz, Lindsay A; Hall, Benjamin J; Patrick, Gentry N
2010-12-08
The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, whereas dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer's disease. Previous work has shown that ubiquitination of integral membrane proteins is a common posttranslational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its C-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA but not for internalization of AMPARs in response to the NMDA receptor agonist NMDA. Through overexpression or RNA interference-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1 (neural-precursor cell-expressed developmentally downregulated gene 4-1), is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues and suggest that changes to this pathway may occur as neurons mature.
Activity-Dependent Ubiquitination of GluA1 Mediates a Distinct AMPAR Endocytosis and Sorting Pathway
Schwarz, Lindsay A.; Hall, Benjamin J.; Patrick, Gentry N.
2010-01-01
The accurate trafficking of AMPA receptors (AMPARs) to and from the synapse is a critical component of learning and memory in the brain, while dysfunction of AMPAR trafficking is hypothesized to be an underlying mechanism of Alzheimer’s disease. Previous work has shown that ubiquitination of integral membrane proteins is a common post-translational modification used to mediate endocytosis and endocytic sorting of surface proteins in eukaryotic cells. Here we report that mammalian AMPARs become ubiquitinated in response to their activation. Using a mutant of GluA1 that is unable to be ubiquitinated at lysines on its carboxy-terminus, we demonstrate that ubiquitination is required for internalization of surface AMPARs and their trafficking to the lysosome in response to the AMPAR agonist AMPA, but not for internalization of AMPARs in response to the NMDA receptor (NMDAR) agonist NMDA. Through over-expression or RNAi-mediated knockdown, we identify that a specific E3 ligase, Nedd4-1, is necessary for this process. Finally, we show that ubiquitination of GluA1 by Nedd4-1 becomes more prevalent as neurons mature. Together, these data show that ubiquitination of GluA1-containing AMPARs by Nedd4-1 mediates their endocytosis and trafficking to the lysosome. Furthermore, these results provide insight into how hippocampal neurons regulate AMPAR trafficking and degradation with high specificity in response to differing neuronal signaling cues, and suggest that changes to this pathway may occur as neurons mature. PMID:21148011
Tian, Ye; Wu, Man; Liu, Xiangxiang; Liu, Zhi; Zhou, Quan; Niu, Zhongwei; Huang, Yong
2015-02-18
Viral nanoparticles have attracted extensive research interests in diverse applications of diagnosis and therapy. In particular, filamentous M13 bacteriophages have shown great potential in biomedical applications. However, its pathways entering into cells still remain unclear, and this greatly hinders its further use as a drug or gene carrier. Here, a ratiometric M13 pH probe is designed by conjugating two fluorescent dyes onto the surface of M13. Since the intensity ratio is not influenced by probe concentration, ion strength, temperature, photobleaching, and optical path length, this ratiometric probe can be used to investigate the intracellular pH map of M13. More importantly, the internalization mechanism of M13 can be elucidated. It is found that this filamentous phage shows great cell-type dependence in interaction with cells and internalization mechanism. The phage tends to be bounded on the cell membrane of only epithelial cells, not endothelial cells. Furthermore, the M13 phage enters into cells through endocytosis with specific mechanism: clathrin-mediated endocytosis and macropinocytosis for HeLa; vesicular transport, clathrin-mediated endocytosis, and macropinocytosis for MCF-7; caveolae-mediated endocytosis for human dermal microvascular endothelial cell (HDMEC). This work provides key notes for cancer diagnosis and therapy based on filamentous bacteriophage, especially for design of pH-sensitive drug delivery systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loebrich, Sven; Djukic, Biljana; Tong, Zachary J.; Cottrell, Jeffrey R.; Turrigiano, Gina G.; Nedivi, Elly
2013-01-01
A key neuronal mechanism for adjusting excitatory synaptic strength is clathrin-mediated endocytosis of postsynaptic glutamate receptors (GluRs). The actin cytoskeleton is critical for clathrin-mediated endocytosis, yet we lack a mechanistic understanding of its interaction with the endocytic process and how it may be regulated. Here we show that F-actin in dendritic spines physically binds the synaptic nuclear envelope 1 gene product candidate plasticity gene 2 (CPG2) in a PKA-dependent manner, and that this association is required for synaptic GluR internalization. Mutating two PKA sites on CPG2 disrupts its cytoskeletal association, attenuating GluR endocytosis and affecting the efficacy of synaptic transmission in vivo. These results identify CPG2 as an F-actin binding partner that functionally mediates interaction of the spine cytoskeleton with postsynaptic endocytosis. Further, the regulation of CPG2/F-actin association by PKA provides a gateway for cellular control of synaptic receptor internalization through second messenger signaling pathways. Recent identification of human synaptic nuclear envelope 1 as a risk locus for bipolar disorder suggests that CPG2 could play a role in synaptic dysfunction underlying neuropsychiatric disease. PMID:24191017
LRP1 in Brain Vascular Smooth Muscle Cells Mediates Local Clearance of Alzheimer's Amyloid-β
Kanekiyo, Takahisa; Liu, Chia-Chen; Shinohara, Mitsuru; Li, Jie; Bu, Guojun
2012-01-01
Impaired clearance of amyloid-β (Aβ) is a major pathogenic event for Alzheimer’s disease (AD). Aβ depositions in brain parenchyma as senile plaques and along cerebrovasculature as cerebral amyloid angiopathy (CAA) are hallmarks of AD. A major pathway that mediates brain Aβ clearance is the cerebrovascular system where Aβ is eliminated through the blood-brain barrier (BBB) and/or degraded by cerebrovascular cells along the interstitial fluid drainage pathway. An Aβ clearance receptor, the low-density lipoprotein receptor-related protein 1 (LRP1), is abundantly expressed in cerebrovasculature, in particular in vascular smooth muscle cells. Previous studies have indicated a role of LRP1 in endothelial cells in transcytosing Aβ out of the brain across the BBB; however, whether this represents a significant pathway for brain Aβ clearance remains controversial. Here, we demonstrate that Aβ can be cleared locally in the cerebrovasculature by an LRP1-dependent endocytic pathway in smooth muscle cells. The uptake and degradation of both endogenous and exogenous Aβ were significantly reduced in LRP1-suppressed human brain vascular smooth muscle cells. Conditional deletion of Lrp1 in vascular smooth muscle cell in amyloid model APP/PS1 mice accelerated brain Aβ accumulation and exacerbated Aβ deposition as amyloid plaques and CAA without affecting Aβ production. Our results demonstrate that LRP1 is a major Aβ clearance receptor in cerebral vascular smooth muscle cell and a disturbance of this pathway contributes to Aβ accumulation. These studies establish critical functions of the cerebrovasculature system in Aβ metabolism and identify a new pathway involved in the pathogenesis of both AD and CAA. PMID:23152628
Sparks, J. Alan; Kwon, Taegun; Renna, Luciana; ...
2016-03-03
The endomembrane system plays essential roles in plant development, but the proteome responsible for its function and organization remains largely uncharacterized in plants. For this study, we identified and characterized the HYPERSENSITIVE TO LATRUNCULIN B1 (HLB1) protein isolated through a forward-genetic screen in Arabidopsis thaliana for mutants with heightened sensitivity to actin-disrupting drugs. HLB1 is a plant-specific tetratricopeptide repeat domain-containing protein of unknown function encoded by a single Arabidopsis gene. HLB1 associated with the trans-Golgi network (TGN)/early endosome (EE) and tracked along filamentous actin, indicating that it could link post-Golgi traffic with the actin cytoskeleton in plants. HLB1 was foundmore » to interact with the ADP-ribosylation-factor guanine nucleotide exchange factor, MIN7/BEN1 (HOPM INTERACTOR7/BREFELDIN A-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1) by coimmunoprecipitation. The min7/ben1 mutant phenocopied the mild root developmental defects and latrunculin B hypersensitivity of hlb1, and analyses of a hlb1/ min7/ben1 double mutant showed that hlb1 and min7/ben1 operate in common genetic pathways. Based on these data, we propose that HLB1 together with MIN7/BEN1 form a complex with actin to modulate the function of the TGN/EE at the intersection of the exocytic and endocytic pathways in plants.« less
Metzler, Martina; Li, Bo; Gan, Lu; Georgiou, John; Gutekunst, Claire-Anne; Wang, Yushan; Torre, Enrique; Devon, Rebecca S; Oh, Rosemary; Legendre-Guillemin, Valerie; Rich, Mark; Alvarez, Christine; Gertsenstein, Marina; McPherson, Peter S; Nagy, Andras; Wang, Yu Tian; Roder, John C; Raymond, Lynn A; Hayden, Michael R
2003-07-01
Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1(-/-)). HIP1(-/-) mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1(-/-) mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis.
Farrell, Kristen B.; Grossman, Caitlin; Di Pietro, Santiago M.
2015-01-01
Despite the importance of clathrin-mediated endocytosis (CME) for cell biology, it is unclear if all components of the machinery have been discovered and many regulatory aspects remain poorly understood. Here, using Saccharomyces cerevisiae and a fluorescence microscopy screening approach we identify previously unknown regulatory factors of the endocytic machinery. We further studied the top scoring protein identified in the screen, Ubx3, a member of the conserved ubiquitin regulatory X (UBX) protein family. In vivo and in vitro approaches demonstrate that Ubx3 is a new coat component. Ubx3-GFP has typical endocytic coat protein dynamics with a patch lifetime of 45 ± 3 sec. Ubx3 contains a W-box that mediates physical interaction with clathrin and Ubx3-GFP patch lifetime depends on clathrin. Deletion of the UBX3 gene caused defects in the uptake of Lucifer Yellow and the methionine transporter Mup1 demonstrating that Ubx3 is needed for efficient endocytosis. Further, the UBX domain is required both for localization and function of Ubx3 at endocytic sites. Mechanistically, Ubx3 regulates dynamics and patch lifetime of the early arriving protein Ede1 but not later arriving coat proteins or actin assembly. Conversely, Ede1 regulates the patch lifetime of Ubx3. Ubx3 likely regulates CME via the AAA-ATPase Cdc48, a ubiquitin-editing complex. Our results uncovered new components of the CME machinery that regulate this fundamental process. PMID:26362318
Gaden, Florence; Franqueville, Laure; Magnusson, Maria K.; Hong, Saw See; Merten, Marc D.; Lindholm, Leif; Boulanger, Pierre
2004-01-01
Monolayers of cystic fibrosis transmembrane conductance regulator (CFTR)-deficient human tracheal glandular cells (CF-KM4) were subjected to phage biopanning, and cell-internalized phages were isolated and sequenced, in order to identify CF-KM4-specific peptide ligands that would confer upon adenovirus type 5 (Ad5) vector a novel cell target specificity and/or higher efficiency of gene delivery into airway cells of patients with cystic fibrosis (CF). Three different ligands, corresponding to prototypes of the most represented families of phagotopes recovered from intracellular phages, were designed and individually inserted into Ad5-green fluorescent protein (GFP) (AdGFP) vectors at the extremities of short fiber shafts (seven repeats [R7]) terminated by scissile knobs. Only one vector, carrying the decapeptide GHPRQMSHVY (abbreviated as QM10), showed an enhanced gene transduction of CF-KM4 cells compared to control nonliganded vector with fibers of the same length (AdGFP-R7-knob). The enhancement in gene transfer efficiency was not specific to CF-KM4 cells but was observed in other mammalian cell lines tested. The QM10-liganded vector was referred to as AdGFP-QM10-knob in its knobbed version and as AdGFP-QM10 in its proteolytically deknobbed version. AdGFP-QM10 was found to transduce cells with a higher efficiency than its knob-bearing version, AdGFP-QM10-knob. Consistent with this, competition experiments indicated that the presence of knob domains was not an absolute requirement for cell attachment of the QM10-liganded vector and that the knobless AdGFP-QM10 used alternative cell-binding domains on its capsid, including penton base capsomer, via a site(s) different from its RGD motifs. The QM10-mediated effect on gene transduction seemed to take place at the step of endocytosis in both quantitative and qualitative manners. Virions of AdGFP-QM10 were endocytosed in higher numbers than virions of the control vector and were directed to a compartment different from the early endosomes targeted by members of species C Ad. AdGFP-QM10 was found to accumulate in late endosomal and low-pH compartments, suggesting that QM10 acted as an endocytic ligand of the lysosomal pathway. These results validated the concept of detargeting and retargeting Ad vectors via our deknobbing system and redirecting Ad vectors to an alternative endocytic pathway via a peptide ligand inserted in the fiber shaft domain. PMID:15194799
Hulseberg, Christine E; Fénéant, Lucie; Szymańska, Katarzyna M; White, Judith M
2018-01-02
Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late endosome membrane. A unique feature of LASV entry is a pH-dependent switch from a primary cell surface receptor (α-dystroglycan) to an endosomal receptor, lysosomal-associated membrane protein (Lamp1). Despite evidence that the interaction between LASV GP1 and Lamp1 is critical, the function of Lamp1 in promoting LASV infection remains poorly characterized. Here we used wild-type (WT) and Lamp1 knockout (KO) cells to show that Lamp1 increases the efficiency of, but is not absolutely required for, LASV entry and infection. We then used cell-cell and pseudovirus-cell surface fusion assays to demonstrate that LASV GPC-mediated fusion occurs at a significantly higher pH when Lamp1 is present compared to when Lamp1 is missing. Correspondingly, we found that LASV entry occurs through less acidic endosomes in WT (Lamp1-positive) versus Lamp1 KO cells. We propose that, by elevating the pH threshold for fusion, Lamp1 allows LASV particles to exit the endocytic pathway before they encounter an increasingly acidic and harsh proteolytic environment, which could inactivate a significant percentage of incoming viruses. In this manner Lamp1 increases the overall efficiency of LASV entry and infection. IMPORTANCE Lassa virus is the most clinically important member of the Arenaviridae , a family that includes six additional biosafety level 4 (BSL4) hemorrhagic fever viruses. The lack of specific antiviral therapies for Lassa fever drives an urgent need to identify druggable targets, and interventions that block infection at the entry stage are particularly attractive. Lassa virus is only the second virus known to employ an intracellular receptor, the first being Ebola virus. Here we show that interaction with its intracellular receptor, Lamp1, enhances and upwardly shifts the pH dependence of fusion and consistently permits Lassa virus entry into cells through less acidic endosomes. We propose that in this manner, Lamp1 increases the overall efficiency of Lassa virus infection. Copyright © 2018 Hulseberg et al.
Chichger, Havovi; Braza, Julie; Duong, Huetran; Boni, Geraldine; Harrington, Elizabeth O
2016-06-01
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Merriam, Laura A; Baran, Caitlin N; Girard, Beatrice M; Hardwick, Jean C; May, Victor; Parsons, Rodney L
2013-03-06
After G-protein-coupled receptor activation and signaling at the plasma membrane, the receptor complex is often rapidly internalized via endocytic vesicles for trafficking into various intracellular compartments and pathways. The formation of signaling endosomes is recognized as a mechanism that produces sustained intracellular signals that may be distinct from those generated at the cell surface for cellular responses including growth, differentiation, and survival. Pituitary adenylate cyclase activating polypeptide (PACAP; Adcyap1) is a potent neurotransmitter/neurotrophic peptide and mediates its diverse cellular functions in part through internalization of its cognate G-protein-coupled PAC1 receptor (PAC1R; Adcyap1r1). In the present study, we examined whether PAC1R endocytosis participates in the regulation of neuronal excitability. Although PACAP increased excitability in 90% of guinea pig cardiac neurons, pretreatment with Pitstop 2 or dynasore to inhibit clathrin and dynamin I/II, respectively, suppressed the PACAP effect. Subsequent addition of inhibitor after the PACAP-induced increase in excitability developed gradually attenuated excitability with no changes in action potential properties. Likewise, the PACAP-induced increase in excitability was markedly decreased at ambient temperature. Receptor trafficking studies with GFP-PAC1 cell lines demonstrated the efficacy of Pitstop 2, dynasore, and low temperatures at suppressing PAC1R endocytosis. In contrast, brefeldin A pretreatments to disrupt Golgi vesicle trafficking did not blunt the PACAP effect, and PACAP/PAC1R signaling still increased neuronal cAMP production even with endocytic blockade. Our results demonstrate that PACAP/PAC1R complex endocytosis is a key step for the PACAP modulation of cardiac neuron excitability.
Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain
2002-06-01
Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.
Ba, Qian; Zhou, Naiyuan; Duan, Juan; Chen, Tao; Hao, Miao; Yang, Xinying; Li, Junyang; Yin, Jun; Chu, Ruiai; Wang, Hui
2012-01-01
Artemisinin and its main active metabolite dihydroartemisinin, clinically used antimalarial agents with low host toxicity, have recently shown potent anticancer activities in a variety of human cancer models. Although iron mediated oxidative damage is involved, the mechanisms underlying these activities remain unclear. In the current study, we found that dihydroartemisinin caused cellular iron depletion in time- and concentration-dependent manners. It decreased iron uptake and disturbed iron homeostasis in cancer cells, which were independent of oxidative damage. Moreover, dihydroartemisinin reduced the level of transferrin receptor-1 associated with cell membrane. The regulation of dihydroartemisinin to transferrin receptor-1 could be reversed by nystatin, a cholesterol-sequestering agent but not the inhibitor of clathrin-dependent endocytosis. Dihydroartemisinin also induced transferrin receptor-1 palmitoylation and colocalization with caveolin-1, suggesting a lipid rafts mediated internalization pathway was involved in the process. Also, nystatin reversed the influences of dihydroartemisinin on cell cycle and apoptosis related genes and the siRNA induced downregulation of transferrin receptor-1 decreased the sensitivity to dihydroartemisinin efficiently in the cells. These results indicate that dihydroartemisinin can counteract cancer through regulating cell-surface transferrin receptor-1 in a non-classical endocytic pathway, which may be a new action mechanism of DHA independently of oxidative damage. PMID:22900042
Liu, Chun-Chun; Zhang, Yun-Na; Li, Zhao-Yao; Hou, Jin-Xiu; Zhou, Jing; Kan, Lin; Zhou, Bin; Chen, Pu-Yan
2017-10-01
During infection Japanese encephalitis virus (JEV) generally enters host cells via receptor-mediated clathrin-dependent endocytosis. The trafficking of JEV within endosomes is controlled by Rab GTPases, but which Rab proteins are involved in JEV entry into BHK-21 cells is unknown. In this study, entry and postinternalization of JEV were analyzed using biochemical inhibitors, RNA interference, and dominant negative (DN) mutants. Our data demonstrate that JEV entry into BHK-21 cells depends on clathrin, dynamin, and cholesterol but not on caveolae or macropinocytosis. The effect on JEV infection of dominant negative (DN) mutants of four Rab proteins that regulate endosomal trafficking was examined. Expression of DN Rab5 and DN Rab11, but not DN Rab7 and DN Rab9, significantly inhibited JEV replication. These results were further tested by silencing Rab5 or Rab11 expression before viral infection. Confocal microscopy showed that virus particles colocalized with Rab5 or Rab11 within 15 min after virus entry, suggesting that after internalization JEV moves to early and recycling endosomes before the release of the viral genome. Our findings demonstrate the roles of Rab5 and Rab11 on JEV infection of BHK-21 cells through the endocytic pathway, providing new insights into the life cycle of flaviviruses. IMPORTANCE Although Japanese encephalitis virus (JEV) utilizes different endocytic pathways depending on the cell type being infected, the detailed mechanism of its entry into BHK-21 cells is unknown. Understanding the process of JEV endocytosis and postinternalization will advance our knowledge of JEV infection and pathogenesis as well as provide potential novel drug targets for antiviral intervention. With this objective, we used systematic approaches to dissect this process. The results show that entry of JEV into BHK-21 cells requires a low-pH environment and that the process occurs through dynamin-, actin-, and cholesterol-dependent clathrin-mediated endocytosis that requires Rab5 and Rab11. Our work provides a detailed picture of the entry of JEV into BHK-21 cells and the cellular events that follow. Copyright © 2017 American Society for Microbiology.
Contreras-Ruiz, Laura; de la Fuente, María; Párraga, Jenny E; López-García, Antonio; Fernández, Itziar; Seijo, Begoña; Sánchez, Alejandro; Calonge, Margarita; Diebold, Yolanda
2011-01-27
Nanoparticles are a promising alternative for ocular drug delivery, and our group has proposed that they are especially suited for ocular mucosal disorders. The goal of the present study was to determine which internalization pathway is used by cornea-derived and conjunctiva-derived cell lines to take up hyaluronic acid (HA)-chitosan oligomer (CSO)-based nanoparticles (HA-CSO NPs). We also determined if plasmids loaded onto the NPs reached the cell nucleus. HA-CSO NPs were made of fluoresceinamine labeled HA and CSO by ionotropic gelation and were conjugated with a model plasmid DNA for secreted alkaline phosphatase. Human epithelial cell lines derived from the conjunctiva and the cornea were exposed to HA-CSO NPs for 1 h and the uptake was investigated in living cells by fluorescence microscopy. The influence of temperature and metabolic inhibition, the effect of blocking hyaluronan receptors, and the inhibition of main endocytic pathways were studied by fluorometry. Additionally, the metabolic pathways implicated in the degradation of HA-CSO NPs were evaluated by lysosome identification. There was intracellular localization of plasmid-loaded HACSO NPs in both corneal and conjunctival cells. The intracellular presence of NPs diminished with time. HA-CSO NP uptake was significantly reduced by inhibition of active transport at 4 °C and by sodium azide. Uptake was also inhibited by blocking hyaluronan receptors with anti-CD44 Hermes-1 antibody, by excess HA, and by filipin, an inhibitor of caveolin-dependent endocytosis. HA-CSO NPs had no effect on cell viability. The transfection efficiency of the model plasmid was significantly higher in NP treated cells than in controls. HA-CSO NPs were internalized by two different ocular surface cell lines by an active transport mechanism. The uptake was mediated by hyaluronan receptors through a caveolin-dependent endocytic pathway, yielding remarkable transfection efficiency. Most of HA-CSO NPs were metabolized within 48 h. This uptake did not compromise cell viability. These findings further support the potential use of HA-CSO NPs to deliver genetic material to the ocular surface.
Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn
2011-01-01
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661
Pangarkar, Chinmay; Dinh, Anh-Tuan; Mitragotri, Samir
2012-08-20
Lysosomes play a critical role in intracellular drug delivery. For enzyme-based therapies, they represent a potential target site whereas for nucleic acid or many protein drugs, they represent the potential degradation site. Either way, understanding the mechanisms and processes involved in routing of materials to lysosomes after cellular entry is of high interest to the field of drug delivery. Most therapeutic cargoes other than small hydrophobic molecules enter the cells through endocytosis. Endocytosed cargoes are routed to lysosomes via microtubule-based transport and are ultimately shared by various lysosomes via tethering and clustering of endocytic vesicles followed by exchange of their contents. Using a combined experimental and numerical approach, here we studied the rates of mass transfer into and among the endocytic vesicles in a model cell line, 3T3 fibroblasts. In order to understand the relationship of mass transfer with microtubular transport and vesicle clustering, we varied both properties through various pharmacological agents. At the same time, microtubular transport and vesicle clustering were modeled through diffusion-advection equations and the Smoluchowski equations, respectively. Our analysis revealed that the rate of mass transfer is optimally related to microtubular transport and clustering properties of vesicles. Further, the rate of mass transfer is highest in the innate state of the cell. Any perturbation to either microtubular transport or vesicle aggregation led to reduced mass transfer to lysosome. These results suggest that in the absence of an external intervention the endocytic pathway appears to maximize molecular delivery to lysosomes. Strategies are discussed to reduce mass transfer to lysosomes so as to extend the residence time of molecules in endosomes or late endosomes, thus potentially increasing the likelihood of their escape before disposition in the lysosomes. Copyright © 2012 Elsevier B.V. All rights reserved.
The multivesicular body is the major internal site of prion conversion
Yim, Yang-In; Park, Bum-Chan; Yadavalli, Rajgopal; Zhao, Xiaohong; Eisenberg, Evan; Greene, Lois E.
2015-01-01
ABSTRACT The conversion of the properly folded prion protein, PrPc, to its misfolded amyloid form, PrPsc, occurs as the two proteins traffic along the endocytic pathway and PrPc is exposed to PrPsc. To determine the specific site of prion conversion, we knocked down various proteins in the endocytic pathway including Rab7a, Tsg101 and Hrs (also known as HGS). PrPsc was markedly reduced in two chronically infected cell lines by preventing the maturation of the multivesicular body, a process that begins in the early endosome and ends with the sorting of cargo to the lysosome. By contrast, knocking down proteins in the retromer complex, which diverts cargo away from the multivesicular body caused an increase in PrPsc levels. These results suggest that the multivesicular body is the major site for intracellular conversion of PrPc to PrPsc. PMID:25663703
Cortese, Giuseppe P; Zhu, Mei; Williams, Damian; Heath, Sarah; Waites, Clarissa L
2016-11-30
Mutations in the gene encoding Parkin, an E3 ubiquitin ligase, lead to juvenile-onset Parkinson's disease by inducing the selective death of midbrain dopaminergic neurons. Accumulating evidence indicates that Parkin also has an important role in excitatory glutamatergic neurotransmission, although its precise mechanism of action remains unclear. Here, we investigate Parkin's role at glutamatergic synapses of rat hippocampal neurons. We find that Parkin-deficient neurons exhibit significantly reduced AMPA receptor (AMPAR)-mediated currents and cell-surface expression, and that these phenotypes result from decreased postsynaptic expression of the adaptor protein Homer1, which is necessary for coupling AMPAR endocytic zones with the postsynaptic density. Accordingly, Parkin loss of function leads to the reduced density of postsynaptic endocytic zones and to impaired AMPAR internalization. These findings demonstrate a novel and essential role for Parkin in glutamatergic neurotransmission, as a stabilizer of postsynaptic Homer1 and the Homer1-linked endocytic machinery necessary for maintaining normal cell-surface AMPAR levels. Mutations in Parkin, a ubiquitinating enzyme, lead to the selective loss of midbrain dopaminergic neurons and juvenile-onset Parkinson's disease (PD). Parkin loss of function has also been shown to alter hippocampal glutamatergic neurotransmission, providing a potential explanation for PD-associated cognitive impairment. However, very little is known about Parkin's specific sites or mechanisms of action at glutamatergic synapses. Here, we show that Parkin deficiency leads to decreased AMPA receptor-mediated activity due to disruption of the postsynaptic endocytic zones required for maintaining proper cell-surface AMPA receptor levels. These findings demonstrate a novel role for Parkin in synaptic AMPA receptor internalization and suggest a Parkin-dependent mechanism for hippocampal dysfunction that may explain cognitive deficits associated with some forms of PD. Copyright © 2016 the authors 0270-6474/16/3612243-16$15.00/0.
Duan, Hu; Jin, Songjun; Zhang, Yan; Li, Fuhua; Xiang, Jianhai
2014-10-01
The hemocytes of the red claw crayfish Cherax quadricarinatus are classified by morphologic observation into the following types: hyalinocytes (H), semi-granulocytes (SG) and granulocytes (G). Density gradient centrifugation with Percoll was developed to separate these three subpopulations of hemocytes. Beads, Escherichia coli, and FITC labeling WSSV were used to investigate the characteristics of granulocytes by using scanning electron microscope, transmission electron microscope, and laser scan confocal microscope. Results showed that granulocytes could phagocytose beads and E. coli by endocytic pathways. WSSV could rely on caveolae-mediated endocytosis to mainly enter into granulocytes. These results could elucidate the mechanism of the innate immunity function of granulocytes, and it also showed the mechanism by which WSSV invaded granulocytes in the red claw crayfish. Copyright © 2014 Elsevier Ltd. All rights reserved.
Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.
Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M
2000-10-01
In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.
Metzler, Martina; Li, Bo; Gan, Lu; Georgiou, John; Gutekunst, Claire-Anne; Wang, Yushan; Torre, Enrique; Devon, Rebecca S.; Oh, Rosemary; Legendre-Guillemin, Valerie; Rich, Mark; Alvarez, Christine; Gertsenstein, Marina; McPherson, Peter S.; Nagy, Andras; Wang, Yu Tian; Roder, John C.; Raymond, Lynn A.; Hayden, Michael R.
2003-01-01
Huntingtin interacting protein 1 (HIP1) is a recently identified component of clathrin-coated vesicles that plays a role in clathrin-mediated endocytosis. To explore the normal function of HIP1 in vivo, we created mice with targeted mutation in the HIP1 gene (HIP1–/–). HIP1–/– mice develop a neurological phenotype by 3 months of age manifest with a failure to thrive, tremor and a gait ataxia secondary to a rigid thoracolumbar kyphosis accompanied by decreased assembly of endocytic protein complexes on liposomal membranes. In primary hippocampal neurons, HIP1 colocalizes with GluR1-containing AMPA receptors and becomes concentrated in cell bodies following AMPA stimulation. Moreover, a profound dose-dependent defect in clathrin-mediated internalization of GluR1-containing AMPA receptors was observed in neurons from HIP1–/– mice. Together, these data provide strong evidence that HIP1 regulates AMPA receptor trafficking in the central nervous system through its function in clathrin-mediated endocytosis. PMID:12839988
CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling.
Lant, Benjamin; Yu, Bin; Goudreault, Marilyn; Holmyard, Doug; Knight, James D R; Xu, Peter; Zhao, Linda; Chin, Kelly; Wallace, Evan; Zhen, Mei; Gingras, Anne-Claude; Derry, W Brent
2015-03-06
The mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1. Loss of ccm-3 causes canal truncations and aggregations of canaliculular vesicles, which form ectopic lumen (cysts). We show that CCM-3 localizes to the apical membrane, and in cooperation with GCK-1 and STRIPAK, promotes CDC-42 signalling, Golgi stability and endocytic recycling. We propose that endocytic recycling is mediated through the CDC-42-binding kinase MRCK-1, which interacts physically with CCM-3-STRIPAK. We further show canal membrane integrity to be dependent on the exocyst complex and the actin cytoskeleton. This work reveals novel in vivo roles of CCM-3·STRIPAK in regulating tube extension and membrane integrity through small GTPase signalling and vesicle dynamics, which may help explain the severity of CCM3 mutations in patients.
Molecular and cellular aspects of rhabdovirus entry.
Albertini, Aurélie A V; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell.
Molecular and Cellular Aspects of Rhabdovirus Entry
Albertini, Aurélie A. V.; Baquero, Eduard; Ferlin, Anna; Gaudin, Yves
2012-01-01
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium between its pre- and post-fusion conformations. The elucidation of the atomic structures of these two conformations for the vesicular stomatitis virus (VSV) G has revealed that it is different from the previously characterized class I and class II fusion proteins. In this review, the pre- and post-fusion VSV G structures are presented in detail demonstrating that G combines the features of the class I and class II fusion proteins. In addition to these similarities, these G structures also reveal some particularities that expand our understanding of the working of fusion machineries. Combined with data from recent studies that revealed the cellular aspects of the initial stages of rhabdovirus infection, all these data give an integrated view of the entry pathway of rhabdoviruses into their host cell. PMID:22355455
Chen, Jiaming; Cao, Lihua; Cui, Yuecheng; Tu, Kehua; Wang, Hongjun; Wang, Li-Qun
2018-01-01
The nano-sized poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) particles with core-shell structure were efficiently prepared by using coaxial tri-capillary electrospray-template removal method. The cellular uptake mechanism, intracellular distribution and exocytosis in A549 cell model of electrosprayed PLA-PEG nanoparticles were systemically studied. The drug release behavior of electrosprayed PLA-PEG nanoparticles were also investigated. Our results showed that PLA-PEG nanoparticles can be endocytosed quickly by A549 cells. The cellular uptake of PLA-PEG nanoparticles was an energy dependent endocytosis process. Caveolae-mediated endocytosis was only one of endocytosis pathways in A549 cells for PLA-PEG nanoparticles, while clathrin mediated endocytosis was not involved in the endocytosis process. The endocytosed PLA-PEG nanoparticles enriched in the head of A549 cells and only a small amount of them was transported into lysosome after 24h incubation. These findings provided insights into the application of electrosprayed PLA-PEG nanoparticles in nano drug delivery field. Copyright © 2017 Elsevier B.V. All rights reserved.
The Na+-Taurocholate Cotransporting Polypeptide Traffics with the Epidermal Growth Factor Receptor
Wang, Xintao; Wang, Pijun; Wang, Wenjun; Murray, John W.; Wolkoff, Allan W.
2015-01-01
Na+-taurocholate cotransporting polypeptide (ntcp) mediates uptake of bile acids as well as serving as the receptor for hepatitis B virus in human liver. Previous studies showed that ntcp traffics on microtubules between the cell surface and endocytic vesicles. Specific inhibition of protein kinase C (PKC)ζ resulted in loss of microtubule-based motility of these vesicles in vitro and in living cells. The aim of the present study was to characterize the PKCζ target. Incubation of ntcp-containing endocytic vesicles with γ-32P-ATP revealed a 180 kDa phosphoglycoprotein that was identified as the EGF receptor (EGFR). Surface biotinylation of HuH7 cells expressing GFP-ntcp revealed substantially reduced trafficking of ntcp to the cell surface with EGFR knockdown. Microtubule-based motility of ntcp-containing endocytic vesicles was also significantly reduced when they were not associated with EGFR. Ntcp was also found to undergo cellular redistribution upon stimulation of cells with EGF, consistent with a model in which ntcp and EGF-EGFR internalize into common endocytic vesicles from which they segregate, trafficking EGF-EGFR to lysosomes and recycling ntcp to the plasma membrane. EGF regulation of ntcp trafficking may play a heretofore unanticipated role in subcellular targeting of ntcp ligands such as hepatitis B. PMID:26650232
Rab1a regulates sorting of early endocytic vesicles
Mukhopadhyay, Aparna; Quiroz, Jose A.
2014-01-01
We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591
Ares, Gustavo R.; Ortiz, Pablo A.
2012-01-01
Steady-state surface levels of the apical Na/K/2Cl cotransporter NKCC2 regulate NaCl reabsorption by epithelial cells of the renal thick ascending limb (THAL). We reported that constitutive endocytosis of NKCC2 controls NaCl absorption in native THALs; however, the pathways involved in NKCC2 endocytosis are unknown. We hypothesized that NKCC2 endocytosis at the apical surface depends on dynamin-2 and clathrin. Measurements of steady-state surface NKCC2 and the rate of NKCC2 endocytosis in freshly isolated rat THALs showed that inhibition of endogenous dynamin-2 with dynasore blunted NKCC2 endocytosis by 56 ± 11% and increased steady-state surface NKCC2 by 67 ± 27% (p < 0.05). Expression of the dominant negative Dyn2K44A in THALs slowed the rate of NKCC2 endocytosis by 38 ± 8% and increased steady-state surface NKCC2 by 37 ± 8%, without changing total NKCC2 expression. Inhibition of clathrin-mediated endocytosis with chlorpromazine blunted NKCC2 endocytosis by 54 ± 6%, while preventing clathrin from interacting with synaptojanin also blunted NKCC2 endocytosis by 52 ± 5%. Disruption of lipid rafts blunted NKCC2 endocytosis by 39 ± 4% and silencing caveolin-1 by 29 ± 4%. Simultaneous inhibition of clathrin- and lipid raft-mediated endocytosis completely blocked NKCC2 internalization. We concluded that dynamin-2, clathrin, and lipid rafts mediate NKCC2 endocytosis and maintain steady-state apical surface NKCC2 in native THALs. These are the first data identifying the endocytic pathway for apical NKCC2 endocytosis. PMID:22977238
Leontieva, Ekaterina A.; Kornilova, Elena S.
2017-01-01
Quantum dots (QDs) complexed to ligands recognizing surface receptors undergoing internalization are an attractive tool for live cell imaging of ligand-receptor complexes behavior and for specific tracking of the cells of interest. However, conjugation of quasi-multivalent large QD-particle to monovalent small growth factors like EGF that bound their tyrosine-kinase receptors may affect key endocytic events tightly bound to signaling. Here, by means of confocal microscopy we have addressed the key endocytic events of lysosomal degradative pathway stimulated by native EGF or EGF-QD bioconjugate. We have demonstrated that the decrease in endosome number, increase in mean endosome integrated density and the pattern of EEA1 co-localization with EGF-EGFR complexes at early stages of endocytosis were similar for the both native and QD-conjugated ligands. In both cases enlarged hollow endosomes appeared after wortmannin treatment. This indicates that early endosomal fusions and their maturation proceed similar for both ligands. EGF-QD and native EGF similarly accumulated in juxtanuclear region, and live cell imaging of endosome motion revealed the behavior described elsewhere for microtubule-facilitated motility. Finally, EGF-QD and the receptor were found in lysosomes. However, degradation of receptor part of QD-EGF-EGFR-complex was delayed compared to native EGF, but not inhibited, while QDs fluorescence was detected in lysosomes even after 24 hours. Importantly, in HeLa and A549 cells the both ligands behaved similarly. We conclude that during endocytosis EGF-QD behaves as a neutral marker for degradative pathway up to lysosomal stage and can also be used as a long-term cell marker. PMID:28574831
Palocci, Cleofe; Valletta, Alessio; Chronopoulou, Laura; Donati, Livia; Bramosanti, Marco; Brasili, Elisa; Baldan, Barbara; Pasqua, Gabriella
2017-12-01
PLGA NPs' cell uptake involves different endocytic pathways. Clathrin-independent endocytosis is the main internalization route. The cell wall plays a more prominent role than the plasma membrane in NPs' size selection. In the last years, many studies on absorption and cell uptake of nanoparticles by plants have been conducted, but the understanding of the internalization mechanisms is still largely unknown. In this study, polydispersed and monodispersed poly(lactic-co-glycolic) acid nanoparticles (PLGA NPs) were synthesized, and a strategy combining the use of transmission electron microscopy (TEM), confocal analysis, fluorescently labeled PLGA NPs, a probe for endocytic vesicles (FM4-64), and endocytosis inhibitors (i.e., wortmannin, ikarugamycin, and salicylic acid) was employed to shed light on PLGA NP cell uptake in grapevine cultured cells and to assess the role of the cell wall and plasma membrane in size selection of PLGA NPs. The ability of PLGA NPs to cross the cell wall and membrane was confirmed by TEM and fluorescence microscopy. A strong adhesion of PLGA NPs to the outer side of the cell wall was observed, presumably due to electrostatic interactions. Confocal microscopy and treatment with endocytosis inhibitors suggested the involvement of both clathrin-dependent and clathrin-independent endocytosis in cell uptake of PLGA NPs and the latter appeared to be the main internalization pathway. Experiments on grapevine protoplasts revealed that the cell wall plays a more prominent role than the plasma membrane in size selection of PLGA NPs. While the cell wall prevents the uptake of PLGA NPs with diameters over 50 nm, the plasma membrane can be crossed by PLGA NPs with a diameter of 500-600 nm.
Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J.; Sims, Katherine B.; Berry-Kravis, Elizabeth; Pahan, Kalipada
2015-01-01
Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role. PMID:25750174
A novel role for the Drosophila epsin (lqf): involvement in autophagy.
Csikós, György; Lippai, Mónika; Lukácsovich, Tamás; Juhász, Gábor; Henn, László; Erdélyi, Miklós; Maróy, Péter; Sass, Miklós
2009-07-01
Screening P-element-induced mutant collections, 52 lines were selected as potentially defected ones in endocytosis or autophagy. After excluding those which were rescued by 20-hydroxyecdysone treatment, the exact position of the inserted P-element was determined in the remaining lines. In the case of l(3)S011027 stock, the liquid facets (lqf) gene was affected which codes an epsin-homolog protein in Drosophila. We reveal that Lqf is essential to the receptor-mediated endocytosis of larval serum proteins (LSPs) in the larval fat body cells of Drosophila. In l(3)S011027 line, lack of Lqf fails the formation of autophagosomes thus leading to the arrest of destroying of trophocytes. Transgenic larvae carrying Lqf-RNAi construct were unable to generate endocytic and autophagic vacuoles and led to a prolonged larval stage. On the other hand, Lqf protein showed an exclusive colocalization with the LysoTracker Red- or GFP-Atg8a labeled autophagosomes. By using the antiserum generated against the fifth exon of lqf, we demonstrated that prior to the onset of developmental autophagy the Lqf protein was present in the nucleus of fat body cell, but thereafter the protein was localized in the territory of endocytic and autophagic vacuoles. The fact that the inhibition of the target of rapamycin (TOR) did not restore the autophagic process and the normal development in the case of lqf mutant larvae points to that the Lqf is downstream to the TOR, the central kinase of the autophagy pathway.
Cheng, Xiaju; Tian, Xin; Wu, Anqing; Li, Jianxiang; Tian, Jian; Chong, Yu; Chai, Zhifang; Zhao, Yuliang; Chen, Chunying; Ge, Cuicui
2015-09-23
The interaction at nanobio is a critical issue in designing safe nanomaterials for biomedical applications. Recent studies have reported that it is nanoparticle-protein corona rather than bare nanoparticle that determines the nanoparticle-cell interactions, including endocytic pathway and biological responses. Here, we demonstrate the effects of protein corona on cellular uptake of different sized gold nanoparticles in different cell lines. The experimental results show that protein corona significantly decreases the internalization of Au NPs in a particle size- and cell type-dependent manner. Protein corona exhibits much more significant inhibition on the uptake of large-sized Au NPs by phagocytic cell than that of small-sized Au NPs by nonphagocytic cell. The endocytosis experiment indicates that different endocytic pathways might be responsible for the differential roles of protein corona in the interaction of different sized Au NPs with different cell lines. Our findings can provide useful information for rational design of nanomaterials in biomedical application.
Regulators of Lysosome Function and Dynamics in Caenorhabditis elegans
Gee, Kevin; Zamora, Danniel; Horm, Teresa; George, Laeth; Upchurch, Cameron; Randall, Justin; Weaver, Colby; Sanford, Caitlin; Miller, Austin; Hernandez, Sebastian; Dang, Hope; Fares, Hanna
2017-01-01
Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation. PMID:28122949
Huang, I-Chueh; Bailey, Charles C.; Weyer, Jessica L.; Radoshitzky, Sheli R.; Becker, Michelle M.; Chiang, Jessica J.; Brass, Abraham L.; Ahmed, Asim A.; Chi, Xiaoli; Dong, Lian; Longobardi, Lindsay E.; Boltz, Dutch; Kuhn, Jens H.; Elledge, Stephen J.; Bavari, Sina; Denison, Mark R.; Choe, Hyeryun; Farzan, Michael
2011-01-01
Interferon-inducible transmembrane proteins 1, 2, and 3 (IFITM1, 2, and 3) are recently identified viral restriction factors that inhibit infection mediated by the influenza A virus (IAV) hemagglutinin (HA) protein. Here we show that IFITM proteins restricted infection mediated by the entry glycoproteins (GP1,2) of Marburg and Ebola filoviruses (MARV, EBOV). Consistent with these observations, interferon-β specifically restricted filovirus and IAV entry processes. IFITM proteins also inhibited replication of infectious MARV and EBOV. We observed distinct patterns of IFITM-mediated restriction: compared with IAV, the entry processes of MARV and EBOV were less restricted by IFITM3, but more restricted by IFITM1. Moreover, murine Ifitm5 and 6 did not restrict IAV, but efficiently inhibited filovirus entry. We further demonstrate that replication of infectious SARS coronavirus (SARS-CoV) and entry mediated by the SARS-CoV spike (S) protein are restricted by IFITM proteins. The profile of IFITM-mediated restriction of SARS-CoV was more similar to that of filoviruses than to IAV. Trypsin treatment of receptor-associated SARS-CoV pseudovirions, which bypasses their dependence on lysosomal cathepsin L, also bypassed IFITM-mediated restriction. However, IFITM proteins did not reduce cellular cathepsin activity or limit access of virions to acidic intracellular compartments. Our data indicate that IFITM-mediated restriction is localized to a late stage in the endocytic pathway. They further show that IFITM proteins differentially restrict the entry of a broad range of enveloped viruses, and modulate cellular tropism independently of viral receptor expression. PMID:21253575
Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion.
Zeng, Xiancheng; Mukhopadhyay, Suchetana; Brooks, Charles L
2015-02-17
Alphavirus envelope proteins, organized as trimers of E2-E1 heterodimers on the surface of the pathogenic alphavirus, mediate the low pH-triggered fusion of viral and endosomal membranes in human cells. The lack of specific treatment for alphaviral infections motivates our exploration of potential antiviral approaches by inhibiting one or more fusion steps in the common endocytic viral entry pathway. In this work, we performed constant pH molecular dynamics based on an atomic model of the alphavirus envelope with icosahedral symmetry. We have identified pH-sensitive residues that cause the largest shifts in thermodynamic driving forces under neutral and acidic pH conditions for various fusion steps. A series of conserved interdomain His residues is identified to be responsible for the pH-dependent conformational changes in the fusion process, and ligand binding sites in their vicinity are anticipated to be potential drug targets aimed at inhibiting viral infections.
PICALM modulates autophagy activity and tau accumulation
Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.
2014-01-01
Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929
Spontaneous-curvature theory of clathrin-coated membranes.
Mashl, R J; Bruinsma, R F
1998-01-01
Clathrin-coated membranes are precursors to coated vesicles in the receptor-mediated endocytic pathway. In this paper we present a physical model for the first steps of the transformation of a clathrin-coated membrane into a coated vesicle. The theory is based on in vitro cytoplasmic acidification experiments of Heuser (J. Cell Biol. 108:401-411) that suggest the transformation proceeds by changes in the chemical environment of the clathrin lattice, wherein the chemical environment determines the amount of intrinsic, or spontaneous, curvature of the network. We show that a necessary step of the transformation, formation of free pentagons in the clathrin network, can proceed via dislocation unbinding, driven by changes in the spontaneous curvature. Dislocation unbinding is shown to favor formation of coated vesicles that are quite small compared to those predicted by the current continuum theories, which do not include the topology of the clathrin lattice. PMID:9635740
Gemini surfactants mediate efficient mitochondrial gene delivery and expression.
Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S
2015-03-02
Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.
Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F. X.
2016-01-01
Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1. SIGNIFICANCE STATEMENT Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) and Leber congenital amaurosis (LCA15) in human patients. In this study, we discovered that the phosphoinositol-4,5-bisphosphate-binding protein Tulp1 is essential for the structural and functional organization of the periactive zone in photoreceptor synapses. Using Tulp1 knock-out mice, we found that Tulp1 is required to enrich major endocytic proteins at the periactive zone next to the synaptic ribbon. We demonstrate that Tulp1 is needed to promote endocytic vesicle retrieval at the periactive zone. Moreover, we discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE. This newly discovered disease-sensitive interaction provides a molecular model for the control of endocytosis close to the synaptic ribbon. PMID:26911694
Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark
2017-12-01
Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.
Mallet, W G; Maxfield, F R
1999-07-26
Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.
Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Metcalfe, Dean D.
2015-01-01
MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186
Yan, Hua; Jahanshahi, Maryam; Horvath, Elizabeth A; Liu, Hsiu-Yu; Pfleger, Cathie M
2010-08-10
The Ras signaling pathway allows cells to translate external cues into diverse biological responses. Depending on context and the threshold reached, Ras signaling can promote growth, proliferation, differentiation, or cell survival. Failure to maintain precise control of Ras can have adverse physiological consequences. Indeed, excess Ras signaling disrupts developmental patterning and causes developmental disorders [1, 2], and in mature tissues, it can lead to cancer [3-5]. We identify Rabex-5 as a new component of Ras signaling crucial for achieving proper pathway outputs in multiple contexts in vivo. We show that Drosophila Rabex-5 restricts Ras signaling to establish organism size, wing vein pattern, and eye versus antennal fate. Rabex-5 has both Rab5 guanine nucleotide exchange factor (GEF) activity that regulates endocytic trafficking [6] and ubiquitin ligase activity [7, 8]. Surprisingly, overexpression studies demonstrate that Rabex-5 ubiquitin ligase activity, not its Rab5 GEF activity, is required to restrict wing vein specification and to suppress the eye phenotypes of oncogenic Ras expression. Furthermore, genetic interaction experiments indicate that Rabex-5 acts at the step of Ras, and tissue culture studies show that Rabex-5 promotes Ras ubiquitination. Together, these findings reveal a new mechanism for attenuating Ras signaling in vivo and suggest an important role for Rabex-5-mediated Ras ubiquitination in pathway homeostasis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation.
Reis, Carlos R; Chen, Ping-Hung; Bendris, Nawal; Schmid, Sandra L
2017-01-17
Clathrin-mediated endocytosis (CME) constitutes the major pathway for uptake of signaling receptors into eukaryotic cells. As such, CME regulates signaling from cell-surface receptors, but whether and how specific signaling receptors reciprocally regulate the CME machinery remains an open question. Although best studied for its role in membrane fission, the GTPase dynamin also regulates early stages of CME. We recently reported that dynamin-1 (Dyn1), previously assumed to be neuron-specific, can be selectively activated in cancer cells to alter endocytic trafficking. Here we report that dynamin isoforms differentially regulate the endocytosis and apoptotic signaling downstream of TNF-related apoptosis-inducing ligand-death receptor (TRAIL-DR) complexes in several cancer cells. Whereas the CME of constitutively internalized transferrin receptors is mainly dependent on the ubiquitously expressed Dyn2, TRAIL-induced DR endocytosis is selectively regulated by activation of Dyn1. We show that TRAIL stimulation activates ryanodine receptor-mediated calcium release from endoplasmic reticulum stores, leading to calcineurin-mediated dephosphorylation and activation of Dyn1, TRAIL-DR endocytosis, and increased resistance to TRAIL-induced apoptosis. TRAIL-DR-mediated ryanodine receptor activation and endocytosis is dependent on early caspase-8 activation. These findings delineate specific mechanisms for the reciprocal crosstalk between signaling and the regulation of CME, leading to autoregulation of endocytosis and signaling downstream of surface receptors.
TRAIL-death receptor endocytosis and apoptosis are selectively regulated by dynamin-1 activation
Reis, Carlos R.; Chen, Ping-Hung; Bendris, Nawal; Schmid, Sandra L.
2017-01-01
Clathrin-mediated endocytosis (CME) constitutes the major pathway for uptake of signaling receptors into eukaryotic cells. As such, CME regulates signaling from cell-surface receptors, but whether and how specific signaling receptors reciprocally regulate the CME machinery remains an open question. Although best studied for its role in membrane fission, the GTPase dynamin also regulates early stages of CME. We recently reported that dynamin-1 (Dyn1), previously assumed to be neuron-specific, can be selectively activated in cancer cells to alter endocytic trafficking. Here we report that dynamin isoforms differentially regulate the endocytosis and apoptotic signaling downstream of TNF-related apoptosis-inducing ligand–death receptor (TRAIL–DR) complexes in several cancer cells. Whereas the CME of constitutively internalized transferrin receptors is mainly dependent on the ubiquitously expressed Dyn2, TRAIL-induced DR endocytosis is selectively regulated by activation of Dyn1. We show that TRAIL stimulation activates ryanodine receptor-mediated calcium release from endoplasmic reticulum stores, leading to calcineurin-mediated dephosphorylation and activation of Dyn1, TRAIL–DR endocytosis, and increased resistance to TRAIL-induced apoptosis. TRAIL–DR-mediated ryanodine receptor activation and endocytosis is dependent on early caspase-8 activation. These findings delineate specific mechanisms for the reciprocal crosstalk between signaling and the regulation of CME, leading to autoregulation of endocytosis and signaling downstream of surface receptors. PMID:28049841
Perrin, Laura; Laura, Perrin; Lacas-Gervais, Sandra; Sandra, Lacas-Gervais; Gilleron, Jérôme; Jérôme, Gilleron; Ceppo, Franck; Franck, Ceppo; Prodon, François; François, Prodon; Benmerah, Alexandre; Alexandre, Benmerah; Tanti, Jean-François; Jean-François, Tanti; Cormont, Mireille; Mireille, Cormont
2013-11-01
The endocytic pathway is essential for cell homeostasis and numerous small Rab GTPases are involved in its control. The endocytic trafficking step controlled by Rab4b has not been elucidated, although recent data suggested it could be important for glucose homeostasis, synaptic homeostasis or adaptive immunity. Here, we show that Rab4b is required for early endosome sorting of transferrin receptors (TfRs) to the recycling endosomes, and we identified the AP1γ subunit of the clathrin adaptor AP-1 as a Rab4b effector and key component of the machinery of early endosome sorting. We show that internalised transferrin (Tf) does not reach Vamp3/Rab11 recycling endosomes in the absence of Rab4b, whereas it is rapidly recycled back to the plasma membrane. By contrast, overexpression of Rab4b leads to the accumulation of internalised Tf within AP-1- and clathrin-coated vesicles. These vesicles are poor in early and recycling endocytic markers except for TfR and require AP1γ for their formation. Furthermore, the targeted overexpression of the Rab4b-binding domain of AP1γ to early endosome upon its fusion with FYVE domains inhibited the interaction between Rab4b and endogenous AP1γ, and perturbed Tf traffic. We thus proposed that the interaction between early endocytic Rab4b and AP1γ could allow the budding of clathrin-coated vesicles for subsequent traffic to recycling endosomes. The data also uncover a novel type of endosomes, characterised by low abundance of either early or recycling endocytic markers, which could potentially be generated in cell types that naturally express high level of Rab4b.
Kalaidzidis, Inna; Miaczynska, Marta; Brewińska-Olchowik, Marta; Hupalowska, Anna; Ferguson, Charles; Parton, Robert G.; Kalaidzidis, Yannis
2015-01-01
Endocytosis allows cargo to enter a series of specialized endosomal compartments, beginning with early endosomes harboring Rab5 and its effector EEA1. There are, however, additional structures labeled by the Rab5 effector APPL1 whose role in endocytic transport remains unclear. It has been proposed that APPL1 vesicles are transport intermediates that convert into EEA1 endosomes. Here, we tested this model by analyzing the ultrastructural morphology, kinetics of cargo transport, and stability of the APPL1 compartment over time. We found that APPL1 resides on a tubulo-vesicular compartment that is capable of sorting cargo for recycling or degradation and that displays long lifetimes, all features typical of early endosomes. Fitting mathematical models to experimental data rules out maturation of APPL1 vesicles into EEA1 endosomes as a primary mechanism for cargo transport. Our data suggest instead that APPL1 endosomes represent a distinct population of Rab5-positive sorting endosomes, thus providing important insights into the compartmental organization of the early endocytic pathway. PMID:26459602
Zhang, Yingqiu; Zhang, Jinrui; Liu, Congcong; Du, Sha; Feng, Lu; Luan, Xuelin; Zhang, Yayun; Shi, Yulin; Wang, Taishu; Wu, Yue; Cheng, Wei; Meng, Songshu; Li, Man; Liu, Han
2016-11-28
Receptor tyrosine kinase ErbB2/HER2 is frequently observed to be overexpressed in human cancers, leading to over activation of downstream signaling modules. HER2 positive is a major type of breast cancer for which ErbB2 targeting is already proving to be an effective therapeutic strategy. Apart from antibodies against ErbB2, the small molecule tyrosine kinase inhibitor lapatinib has had successful clinical outcomes, and other inhibitors such as neratinib are currently undergoing clinical investigations. In this study we report the effects of lapatinib and neratinib on the mRNA and protein levels of the ErbB2 receptor. We provide evidence that neratinib-induced down regulation of ErbB2 occurs through ubiquitin-mediated endocytic sorting and lysosomal degradation. At the mechanistic level, neratinib treatment leads to HSP90 release from ErbB2 and its subsequent ubiquitylation and endocytic degradation. Our findings provide novel insights into the mechanism of ErbB2 inhibition by neratinib. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The Endocytic Receptor Megalin and its Associated Proteins in Proximal Tubule Epithelial Cells
De, Shankhajit; Kuwahara, Shoji; Saito, Akihiko
2014-01-01
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases. PMID:25019425
Glozman, Rina; Okiyoneda, Tsukasa; Mulvihill, Cory M; Rini, James M; Barriere, Herve; Lukacs, Gergely L
2009-03-23
N-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR. Conformational destabilization of the glycan-deficient CFTR induces ubiquitination, leading to rapid elimination from the cell surface. Ubiquitinated CFTR is directed to lysosomal degradation instead of endocytic recycling in early endosomes mediated by ubiquitin-binding endosomal sorting complex required for transport (ESCRT) adaptors Hrs (hepatocyte growth factor-regulated tyrosine kinase substrate) and TSG101. These results suggest that cotranslational N-glycosylation can exert a chaperone-independent profolding change in the energetic of CFTR in vivo as well as outline a paradigm for the peripheral trafficking defect of membrane proteins with impaired glycosylation.
Xie, Shuwei; Bahl, Kriti; Reinecke, James B.; Hammond, Gerald R. V.; Naslavsky, Naava; Caplan, Steve
2016-01-01
The endocytic recycling compartment (ERC) is a series of perinuclear tubular and vesicular membranes that regulates recycling to the plasma membrane. Despite evidence that cargo is sorted at the early/sorting endosome (SE), whether cargo mixes downstream at the ERC or remains segregated is an unanswered question. Here we use three-dimensional (3D) structured illumination microscopy and dual-channel and 3D direct stochastic optical reconstruction microscopy (dSTORM) to obtain new information about ERC morphology and cargo segregation. We show that cargo internalized either via clathrin-mediated endocytosis (CME) or independently of clathrin (CIE) remains segregated in the ERC, likely on distinct carriers. This suggests that no further sorting occurs upon cargo exit from SE. Moreover, 3D dSTORM data support a model in which some but not all ERC vesicles are tethered by contiguous “membrane bridges.” Furthermore, tubular recycling endosomes preferentially traffic CIE cargo and may originate from SE membranes. These findings support a significantly altered model for endocytic recycling in mammalian cells in which sorting occurs in peripheral endosomes and segregation is maintained at the ERC. PMID:26510502
Characterization of porcine CD205
USDA-ARS?s Scientific Manuscript database
Dendritic cells (DC) express a cell-surface receptor, CD205, that plays a role in antigen capture and delivery to the endocytic pathway. Besides DCs, high CD205 expression is also detected on thymic epithelial cells, but B cells, macrophages, and T cells have limited or no expression. CD205 has be...
Storage vesicles in neurons are related to Golgi complex alterations in mucopolysaccharidosis IIIB.
Vitry, Sandrine; Bruyère, Julie; Hocquemiller, Michaël; Bigou, Stéphanie; Ausseil, Jérôme; Colle, Marie-Anne; Prévost, Marie-Christine; Heard, Jean Michel
2010-12-01
The accumulation of intracellular storage vesicles is a hallmark of lysosomal storage diseases. Neither the identity nor origin of these implicated storage vesicles have yet been established. The vesicles are often considered as lysosomes, endosomes, and/or autophagosomes that are engorged with undigested materials. Our studies in the mouse model of mucopolysaccharidosis type IIIB, a lysosomal storage disease that induces neurodegeneration, showed that large storage vesicles in cortical neurons did not receive material from either the endocytic or autophagy pathway, which functioned normally. Storage vesicles expressed GM130, a Golgi matrix protein, which mediates vesicle tethering in both pre- and cis-Golgi compartments. However, other components of the tethering/fusion complex were not associated with GM130 on storage vesicles, likely accounting for both the resistance of the vesicles to brefeldin A and the alteration of Golgi ribbon architecture, which comprised distended cisterna connected to LAMP1-positive storage vesicles. We propose that alteration in the GM130-mediated control of vesicle trafficking in pre-Golgi and Golgi compartments affects Golgi biogenesis and gives rise to a dead-end storage compartment. Vesicle accumulation, Golgi disorganization, and alterations of other GM130 functions may account for neuron dysfunction and death.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; ...
2015-09-28
Here, cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few othermore » eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.« less
Time-resolved Ultrastructural Detection of Phosphatidylinositol 3-phosphate
Stuffers, Susanne; Malerød, Lene; Schink, Kay Oliver; Corvera, Silvia; Stenmark, Harald; Brech, Andreas
2010-01-01
Phosphatidylinositol 3-phosphate [PtdIns(3)P] plays an important role in recruitment of various effector proteins in the endocytic and autophagic pathways. In an attempt to follow the distribution of PtdIns(3)P at the ultrastructural level, we are using the Fab1, YOTB, Vac1, and EEA1 (FYVE) domain, which is a zinc finger motif specifically binding to PtdIns(3)P. To follow PtdIns(3)P trafficking during a defined time window, here we have used a monomeric dimerizable FYVE probe, which binds with high avidity to PtdIns(3)P only after rapalog-induced dimerization. The probe localized to early and late endocytic compartments according to the time period of dimerization, which indicates that PtdIns(3)P is turned over via the endocytic machinery. In the functional context of epidermal growth factor (EGF) stimulation, we observed that dimerization of the probe led to clustering of mainly early endocytic structures, leaving most of the probe localized to the limiting membrane of endosomes. Interestingly, these clustered endosomes contained coats positive for the PtdIns(3)P-binding protein hepatocyte growth factor–regulated tyrosine kinase substrate (Hrs), indicating that the probe did not displace Hrs binding. We conclude that the dimerizer-inducible probe is useful for the time-resolved detection of PtdIns(3)P at the ultrastructural level, but its effects on endosome morphology after EGF stimulation need to be taken into account. (J Histochem Cytochem 58:1025–1032, 2010) PMID:20713985
Vijayakrishnan, Niranjana; Phillips, Scott E.; Broadie, Kendal
2010-01-01
Drosophila temperature-sensitive rolling blackout (rbots) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rboS358A mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase-domain is critical for RBO essential function. Likewise, the rboS358A mutant cannot provide any rescue of endocytic blockade in rbots Garland cells, demonstrating that the lipase-domain is indispensable for non-neuronal endocytosis. In contrast, rbots conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rboS358A mutant, showing that the RBO lipase-domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbots and the well-characterized dynamin GTPase conditional shibire (shits1) mutant. In both non-neuronal cells and neuronal synapses, shits1;rbots phenocopies shits1 endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase-domain dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. PMID:21029287
Japanese encephalitis virus invasion of cell: allies and alleys.
Nain, Minu; Abdin, Malik Z; Kalia, Manjula; Vrati, Sudhanshu
2016-03-01
The mosquito-borne flavivirus, Japanese encephalitis virus (JEV), is the leading cause of virus-induced encephalitis globally and a major public health concern of several countries in Southeast Asia, with the potential to become a global pathogen. The virus is neurotropic, and the disease ranges from mild fever to severe hemorrhagic and encephalitic manifestations and death. The early steps of the virus life cycle, binding, and entry into the cell are crucial determinants of infection and are potential targets for the development of antiviral therapies. JEV can infect multiple cell types; however, the key receptor molecule(s) still remains elusive. JEV also has the capacity to utilize multiple endocytic pathways for entry into cells of different lineages. This review not only gives a comprehensive update on what is known about the virus attachment and receptor system (allies) and the endocytic pathways (alleys) exploited by the virus to gain entry into the cell and establish infection but also discusses crucial unresolved issues. We also highlight common themes and key differences between JEV and other flaviviruses in these contexts. Copyright © 2015 John Wiley & Sons, Ltd.
Nipah virus entry can occur by macropinocytosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pernet, Olivier; Pohl, Christine; Ainouze, Michelle
2009-12-20
Nipah virus (NiV) is a zoonotic biosafety level 4 paramyxovirus that emerged recently in Asia with high mortality in man. NiV is a member, with Hendra virus (HeV), of the Henipavirus genus in the Paramyxoviridae family. Although NiV entry, like that of other paramyxoviruses, is believed to occur via pH-independent fusion with the host cell's plasma membrane we present evidence that entry can occur by an endocytic pathway. The NiV receptor ephrinB2 has receptor kinase activity and we find that ephrinB2's cytoplasmic domain is required for entry but is dispensable for post-entry viral spread. The mutation of a single tyrosinemore » residue (Y304F) in ephrinB2's cytoplasmic tail abrogates NiV entry. Moreover, our results show that NiV entry is inhibited by constructions and drugs specific for the endocytic pathway of macropinocytosis. Our findings could potentially permit the rapid development of novel low-cost antiviral treatments not only for NiV but also HeV.« less
Morrow, Isabel C.; Harper, Callista B.
2016-01-01
Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti–green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)–pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2–pHluorin/Atto647N–tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings. PMID:27810917
Wong, Athena W; Scales, Suzie J; Reilly, Dorothea E
2007-08-03
Using cationic liposomes to mediate gene delivery by transfection has the advantages of improved safety and simplicity of use over viral gene therapy. Understanding the mechanism by which cationic liposome:DNA complexes are internalized and delivered to the nucleus should help identify which transport steps might be manipulated in order to improve transfection efficiencies. We therefore examined the endocytosis and trafficking of two cationic liposomes, DMRIE-C and Lipofectamine LTX, in CHO cells. We found that DMRIE-C-transfected DNA is internalized via caveolae, while LTX-transfected DNA is internalized by clathrin-mediated endocytosis, with both pathways converging at the late endosome or lysosome. Inhibition of microtubule-dependent transport with nocodazole revealed that DMRIE-C:DNA complexes cannot enter the cytosol directly from caveosomes. Lysosomal degradation of transfected DNA has been proposed to be a major reason for poor transfection efficiency. However, in our system dominant negatives of both Rab7 and its effector RILP inhibited late endosome to lysosome transport of DNA complexes and LDL, but did not affect DNA delivery to the nucleus. This suggests that DNA is able to escape from late endosomes without traversing lysosomes and that caveosome to late endosome transport does not require Rab7 function. Lysosomal inhibition with chloroquine likewise had no effect on transfection product titers. These data suggest that DMRIE-C and LTX transfection complexes are endocytosed by separate pathways that converge at the late endosome or lysosome, but that blocking lysosomal traffic does not improve transfection product yields, identifying late endosome/lysosome to nuclear delivery as a step for future study.
Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roller, Devin G.; Dollery, Stephen J.; Doyle, James L.
2008-12-20
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with itsmore » ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.« less
Van de Walle, Gerlinde R; Peters, Sarah T; VanderVen, Brian C; O'Callaghan, Dennis J; Osterrieder, Nikolaus
2008-12-01
Equine herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae, and its broad tissue tropism suggests that EHV-1 may use multiple receptors to initiate virus entry. EHV-1 entry was thought to occur exclusively through fusion at the plasma membrane, but recently entry via the endocytic/phagocytic pathway was reported for Chinese hamster ovary cells (CHO-K1 cells). Here we show that cellular integrins, and more specifically those recognizing RGD motifs such as alphaVbeta5, are important during the early steps of EHV-1 entry via endocytosis in CHO-K1 cells. Moreover, mutational analysis revealed that an RSD motif in the EHV-1 envelope glycoprotein D (gD) is critical for entry via endocytosis. In addition, we show that EHV-1 enters peripheral blood mononuclear cells predominantly via the endocytic pathway, whereas in equine endothelial cells entry occurs mainly via fusion at the plasma membrane. Taken together, the data in this study provide evidence that EHV-1 entry via endocytosis is triggered by the interaction between cellular integrins and the RSD motif present in gD and, moreover, that EHV-1 uses different cellular entry pathways to infect important target cell populations of its natural host.
Controlled exosome release from the retinal pigment epithelium in situ.
Locke, Christina J; Congrove, Nicole R; Dismuke, W Michael; Bowen, Trent J; Stamer, W Daniel; McKay, Brian S
2014-12-01
Retinal Pigment Epithelial cells (RPE) express both GPR143 and myocilin, which interact in a signal transduction-dependent manner. In heterologous systems, activation of GPR143 with ligand causes transient recruitment of myocilin to internalized receptors, which appears to be the entry point of myocilin to the endocytic pathway. In some but not all cells, myocilin also traffics through the multivesicular body (MVB) and is released on the surface of exosomes in a signal transduction-dependent fashion. Little is known regarding the role of exosomes in RPE, but they likely serve as a mode of communication between the RPE and the outer retina. In this study, we used posterior poles with retina removed from fresh human donor eyes as a model to test the relationship between GPR143, myocilin, and exosomes in an endogenous system. We isolated exosomes released by RPE using differential centrifugation of media conditioned by the RPE for 25 min, and then characterized the exosomes using nanoparticle tracking to determine the number and size of the exosomes. Next, we tested whether ligand stimulation of GPR143 using l-DOPA altered RPE exosome release. Finally, we investigated whether myocilin was present on the exosomes released by RPE and whether l-DOPA stimulation of GPR143 caused recruitment of myocilin to the endocytic pathway, as we have previously observed using cultured cells. Activation of GPR143 halted RPE exosome release, while simultaneously recruiting myocilin to the endocytic compartment. Together, our results indicate that GPR143 and myocilin function in a signal transduction system that can control exosome release from RPE. Copyright © 2014 Elsevier Ltd. All rights reserved.
Regulation of endothelial barrier function by p120-catenin∙VE-cadherin interaction
Garrett, Joshua P.; Lowery, Anthony M.; Adam, Alejandro P.; Kowalczyk, Andrew P.; Vincent, Peter A.
2017-01-01
Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F–VE-Cad mutant or an endocytic-defective Y658F–VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer. PMID:27852896
IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling.
Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian; Hakuno, Fumihiko; Takahashi, Shin-Ichiro
2018-04-11
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)-1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. © 2018, Yoneyama et al.
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes
Marwaha, Rituraj; Arya, Subhash B.; Jagga, Divya; Kaur, Harmeet
2017-01-01
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. PMID:28325809
IRS-1 acts as an endocytic regulator of IGF-I receptor to facilitate sustained IGF signaling
Yoneyama, Yosuke; Lanzerstorfer, Peter; Niwa, Hideaki; Umehara, Takashi; Shibano, Takashi; Yokoyama, Shigeyuki; Chida, Kazuhiro; Weghuber, Julian
2018-01-01
Insulin-like growth factor-I receptor (IGF-IR) preferentially regulates the long-term IGF activities including growth and metabolism. Kinetics of ligand-dependent IGF-IR endocytosis determines how IGF induces such downstream signaling outputs. Here, we find that the insulin receptor substrate (IRS)−1 modulates how long ligand-activated IGF-IR remains at the cell surface before undergoing endocytosis in mammalian cells. IRS-1 interacts with the clathrin adaptor complex AP2. IRS-1, but not an AP2-binding-deficient mutant, delays AP2-mediated IGF-IR endocytosis after the ligand stimulation. Mechanistically, IRS-1 inhibits the recruitment of IGF-IR into clathrin-coated structures; for this reason, IGF-IR avoids rapid endocytosis and prolongs its activity on the cell surface. Accelerating IGF-IR endocytosis via IRS-1 depletion induces the shift from sustained to transient Akt activation and augments FoxO-mediated transcription. Our study establishes a new role for IRS-1 as an endocytic regulator of IGF-IR that ensures sustained IGF bioactivity, independent of its classic role as an adaptor in IGF-IR signaling. PMID:29661273
Birn, Henrik
2006-07-01
Over the past 10 years, animal studies have uncovered the molecular mechanisms for the renal tubular recovery of filtered vitamin and vitamin carrier proteins. Relatively few endocytic receptors are responsible for the proximal tubule uptake of a number of different vitamins, preventing urinary losses. In addition to vitamin conservation, tubular uptake by endocytosis is important to vitamin metabolism and homeostasis. The present review focuses on the receptors involved in renal tubular recovery of folate, vitamin B12, and their carrier proteins. The multiligand receptor megalin is important for the uptake and tubular accumulation of vitamin B12. During vitamin load, the kidney accumulates large amounts of free vitamin B12, suggesting a possible storage function. In addition, vitamin B12 is metabolized in the kidney, suggesting a role in vitamin homeostasis. The folate receptor is important for the conservation of folate, mediating endocytosis of the vitamin. Interaction between the structurally closely related, soluble folate-binding protein and megalin suggests that megalin plays an additional role in the uptake of folate bound to filtered folate-binding protein. A third endocytic receptor, the intrinsic factor-B12 receptor cubilin-amnionless complex, is essential to the renal tubular uptake of albumin, a carrier of folate. In conclusion, uptake is mediated by interaction with specific endocytic receptors also involved in the renal uptake of other vitamins and vitamin carriers. Little is known about the mechanisms regulating intracellular transport and release of vitamins, and whereas tubular uptake is a constitutive process, this may be regulated, e.g., by vitamin status.
The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins.
Kawada, Daiki; Kobayashi, Hiromu; Tomita, Tsuyoshi; Nakata, Eisuke; Nagano, Makoto; Siekhaus, Daria Elisabeth; Toshima, Junko Y; Toshima, Jiro
2015-01-01
Small GTP-binding proteins of the Ras superfamily play diverse roles in intracellular trafficking. Among them, the Rab, Arf, and Rho families function in successive steps of vesicle transport, in forming vesicles from donor membranes, directing vesicle trafficking toward target membranes and docking vesicles onto target membranes. These proteins act as molecular switches that are controlled by a cycle of GTP binding and hydrolysis regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In this study we explored the role of GAPs in the regulation of the endocytic pathway using fluorescently labeled yeast mating pheromone α-factor. Among 25 non-essential GAP mutants, we found that deletion of the GLO3 gene, encoding Arf-GAP protein, caused defective internalization of fluorescently labeled α-factor. Quantitative analysis revealed that glo3Δ cells show defective α-factor binding to the cell surface. Interestingly, Ste2p, the α-factor receptor, was mis-localized from the plasma membrane to the vacuole in glo3Δ cells. Domain deletion mutants of Glo3p revealed that a GAP-independent function, as well as the GAP activity, of Glo3p is important for both α-factor binding and Ste2p localization at the cell surface. Additionally, we found that deletion of the GLO3 gene affects the size and number of Arf1p-residing Golgi compartments and causes a defect in transport from the TGN to the plasma membrane. Furthermore, we demonstrated that glo3Δ cells were defective in the late endosome-to-TGN transport pathway, but not in the early endosome-to-TGN transport pathway. These findings suggest novel roles for Arf-GAP Glo3p in endocytic recycling of cell surface proteins. Copyright © 2014 Elsevier B.V. All rights reserved.
Pechstein, Arndt; Bacetic, Jelena; Vahedi-Faridi, Ardeschir; Gromova, Kira; Sundborger, Anna; Tomlin, Nikolay; Krainer, Georg; Vorontsova, Olga; Schäfer, Johannes G.; Owe, Simen G.; Cousin, Michael A.; Saenger, Wolfram; Shupliakov, Oleg; Haucke, Volker
2010-01-01
Clathrin-mediated synaptic vesicle (SV) recycling involves the spatiotemporally controlled assembly of clathrin coat components at phosphatidylinositiol (4, 5)-bisphosphate [PI(4,5)P2]-enriched membrane sites within the periactive zone. Such spatiotemporal control is needed to coordinate SV cargo sorting with clathrin/AP2 recruitment and to restrain membrane fission and synaptojanin-mediated uncoating until membrane deformation and clathrin coat assembly are completed. The molecular events underlying these control mechanisms are unknown. Here we show that the endocytic SH3 domain-containing accessory protein intersectin 1 scaffolds the endocytic process by directly associating with the clathrin adaptor AP2. Acute perturbation of the intersectin 1-AP2 interaction in lamprey synapses in situ inhibits the onset of SV recycling. Structurally, complex formation can be attributed to the direct association of hydrophobic peptides within the intersectin 1 SH3A-B linker region with the “side sites” of the AP2 α- and β-appendage domains. AP2 appendage association of the SH3A-B linker region inhibits binding of the inositol phosphatase synaptojanin 1 to intersectin 1. These data identify the intersectin-AP2 complex as an important regulator of clathrin-mediated SV recycling in synapses. PMID:20160082
Bar-Yosef, Hagit; Gildor, Tsvia; Ramírez-Zavala, Bernardo; Schmauch, Christian; Weissman, Ziva; Pinsky, Mariel; Naddaf, Rawi; Morschhäuser, Joachim; Arkowitz, Robert A.; Kornitzer, Daniel
2018-01-01
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation. PMID:29473018
Bar-Yosef, Hagit; Gildor, Tsvia; Ramírez-Zavala, Bernardo; Schmauch, Christian; Weissman, Ziva; Pinsky, Mariel; Naddaf, Rawi; Morschhäuser, Joachim; Arkowitz, Robert A; Kornitzer, Daniel
2018-01-01
The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation.
Beztsinna, N; de Matos, M B C; Walther, J; Heyder, C; Hildebrandt, E; Leneweit, G; Mastrobattista, E; Kok, R J
2018-02-09
Ribosome inactivating proteins (RIPs) are highly potent cytotoxins that have potential as anticancer therapeutics. Mistletoe lectin 1 (ML1) is a heterodimeric cytotoxic protein isolated from European Mistletoe and belongs to RIP class II. The aim of this project was to systematically study ML1 cell binding, endocytosis pathway(s), subcellular processing and apoptosis activation. For this purpose, state of the art cell imaging equipment and automated image analysis algorithms were used. ML1 displayed very fast binding to sugar residues on the membrane and energy-dependent uptake in CT26 cells. The co-staining with specific antibodies and uptake blocking experiments revealed involvement of both clathrin-dependent and -independent pathways in ML1 endocytosis. Co-localization studies demonstrated the toxin transport from early endocytic vesicles to Golgi network; a retrograde road to the endoplasmic reticulum. The pro-apoptotic and antiproliferative activity of ML1 were shown in time lapse movies and subsequently quantified. ML1 cytotoxicity was less affected in multidrug resistant tumor cell line 4T1 in contrast to commonly used chemotherapeutic drug (ML1 resistance index 6.9 vs 13.4 for doxorubicin; IC 50 : ML1 1.4 ng/ml vs doxorubicin 24000 ng/ml). This opens new opportunities for the use of ML1 as an alternative treatment in multidrug resistant cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Angelis Campos, Ana Carolina; Rodrigues, Michele Angela; Andrade, Carolina de
2011-08-26
Highlights: {yields} EGF and its receptor translocates to the nucleus in liver cells. {yields} Real time imaging shows that EGF moves to the nucleus. {yields} EGF moves with its receptor to the nucleus. {yields} Dynamin and clathrin are necessary for EGFR nuclear translocation. -- Abstract: The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and realmore » time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.« less
Han, Shi-Chong; Guo, Hui-Chen; Sun, Shi-Qi; Jin, Ye; Wei, Yan-Quan; Feng, Xia; Yao, Xue-Ping; Cao, Sui-Zhong; Xiang Liu, Ding; Liu, Xiang-Tao
2016-01-01
Virus entry is an attractive target for therapeutic intervention. Here, using a combination of electron microscopy, immunofluorescence assay, siRNA interference, specific pharmacological inhibitors, and dominant negative mutation, we demonstrated that the entry of foot-and-mouth disease virus (FMDV) triggered a substantial amount of plasma membrane ruffling. We also found that the internalization of FMDV induced a robust increase in fluid-phase uptake, and virions internalized within macropinosomes colocalized with phase uptake marker dextran. During this stage, the Rac1-Pak1 signaling pathway was activated. After specific inhibition on actin, Na+/H+ exchanger, receptor tyrosine kinase, Rac1, Pak1, myosin II, and protein kinase C, the entry and infection of FMDV significantly decreased. However, inhibition of phosphatidylinositol 3-kinase (PI3K) did not reduce FMDV internalization but increased the viral entry and infection to a certain extent, implying that FMDV entry did not require PI3K activity. Results showed that internalization of FMDV exhibited the main hallmarks of macropinocytosis. Moreover, intracellular trafficking of FMDV involves EEA1/Rab5-positive vesicles. The present study demonstrated macropinocytosis as another endocytic pathway apart from the clathrin-mediated pathway. The findings greatly expand our understanding of the molecular mechanisms of FMDV entry into cells, as well as provide potential insights into the entry mechanisms of other picornaviruses. PMID:26757826
Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma; Schmitt, Phuong Tieu; Webb, Stacy; Gibson, Kathleen; Dutch, Rebecca Ellis; Schmitt, Anthony P
2017-07-15
Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites. IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly. Copyright © 2017 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Yang; Glover, Karen; Su, Minfei
BECN1 (Beclin 1), a highly conserved eukaryotic protein, is a key regulator of autophagy, a cellular homeostasis pathway, and also participates in vacuolar protein sorting, endocytic trafficking, and apoptosis. BECN1 is important for embryonic development, the innate immune response, tumor suppression, and protection against neurodegenerative disorders, diabetes, and heart disease. BECN1 mediates autophagy as a core component of the class III phosphatidylinositol 3-kinase complexes. However, the exact mechanism by which it regulates the activity of these complexes, or mediates its other diverse functions is unclear. BECN1 interacts with several diverse protein partners, perhaps serving as a scaffold or interaction hubmore » for autophagy. Based on extensive structural, biophysical and bioinformatics analyses, BECN1 consists of an intrinsically disordered region (IDR), which includes a BH3 homology domain (BH3D); a flexible helical domain (FHD); a coiled-coil domain (CCD); and a β-α-repeated autophagy-specific domain (BARAD). Each of these BECN1 domains mediates multiple diverse interactions that involve concomitant conformational changes. Thus, BECN1 conformational flexibility likely plays a key role in facilitating diverse protein interactions. Further, BECN1 conformation and interactions are also modulated by numerous post-translational modifications. A better structure-based understanding of the interplay between different BECN1 conformational and binding states, and the impact of post-translational modifications will be essential to elucidating the mechanism of its multiple biological roles.« less
Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum.
Le, Phuong U; Guay, Ginette; Altschuler, Yoram; Nabi, Ivan R
2002-02-01
Caveolae are flask-shaped invaginations at the plasma membrane that constitute a subclass of detergent-resistant membrane domains enriched in cholesterol and sphingolipids and that express caveolin, a caveolar coat protein. Autocrine motility factor receptor (AMF-R) is stably localized to caveolae, and the cholesterol extracting reagent, methyl-beta-cyclodextrin, inhibits its internalization to the endoplasmic reticulum implicating caveolae in this distinct receptor-mediated endocytic pathway. Curiously, the rate of methyl-beta-cyclodextrin-sensitive endocytosis of AMF-R to the endoplasmic reticulum is increased in ras- and abl-transformed NIH-3T3 cells that express significantly reduced levels of caveolin and few caveolae. Overexpression of the dynamin K44A dominant negative mutant via an adenovirus expression system induces caveolar invaginations sensitive to methyl-beta-cyclodextrin extraction in the transformed cells without increasing caveolin expression. Dynamin K44A expression further inhibits AMF-R-mediated endocytosis to the endoplasmic reticulum in untransformed and transformed NIH-3T3 cells. Adenoviral expression of caveolin-1 also induces caveolae in the transformed NIH-3T3 cells and reduces AMF-R-mediated endocytosis to the endoplasmic reticulum to levels observed in untransformed NIH-3T3 cells. Cholesterol-rich detergent-resistant membrane domains or glycolipid rafts therefore invaginate independently of caveolin-1 expression to form endocytosis-competent caveolar vesicles via rapid dynamin-dependent detachment from the plasma membrane. Caveolin-1 stabilizes the plasma membrane association of caveolae and thereby acts as a negative regulator of the caveolae-mediated endocytosis of AMF-R to the endoplasmic reticulum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolokoltsov, Andrey A.; Fleming, Elisa H.; Davey, Robert A.
2006-04-10
Virus envelope proteins determine receptor utilization and host range. The choice of receptor not only permits specific targeting of cells that express it, but also directs the virus into specific endosomal trafficking pathways. Disrupting trafficking can result in loss of virus infectivity due to redirection of virions to non-productive pathways. Identification of the pathway or pathways used by a virus is, thus, important in understanding virus pathogenesis mechanisms and for developing new treatment strategies. Most of our understanding of alphavirus entry has focused on the Old World alphaviruses, such as Sindbis and Semliki Forest virus. In comparison, very little ismore » known about the entry route taken by more pathogenic New World alphaviruses. Here, we use a novel contents mixing assay to identify the cellular requirements for entry of a New World alphavirus, Venezuelan equine encephalitis virus (VEEV). Expression of dominant negative forms of key endosomal trafficking genes shows that VEEV must access clathrin-dependent endocytic vesicles for membrane fusion to occur. Unexpectedly, the exit point is different from Old World alphaviruses that leave from early endosomes. Instead, VEEV also requires functional late endosomes. Furthermore, unlike the Old World viruses, VEEV entry is insensitive to cholesterol sequestration from cell membranes and may reflect a need to access an endocytic compartment that lacks cholesterol. This indicates fundamental differences in the entry route taken by VEEV compared to Old World alphaviruses.« less
Differential effects of BDNF and neurotrophin 4 (NT4) on endocytic sorting of TrkB receptors.
Proenca, Catia C; Song, Minseok; Lee, Francis S
2016-08-01
Neurotrophins are a family of growth factors playing key roles in the survival, development, and function of neurons. The neurotrophins brain-derived neurotrophic factor (BDNF) and NT4 both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. The molecular mechanism of how TrkB activation by BDNF and NT4 leads to diverse outcomes is unknown. Here, we report that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions in cultured cortical neurons. Fluorescent microscopy and surface biotinylation experiments showed that both neurotrophins stimulate internalization of TrkB with similar kinetics. Exposure to BDNF for 2-3 h reduced the surface pool of TrkB receptors to half, whereas a longer treatment (4-5 h) with NT4 was necessary to achieve a similar level of down-regulation. Although BDNF and NT4 induced TrkB phosphorylation with similar intensities, BDNF induced more rapid ubiquitination and degradation of TrkB than NT4. Interestingly, TrkB receptor ubiquitination by these ligands have substantially different pH sensitivities, resulting in varying degrees of receptor ubiquitination at lower pH levels. Consequently, NT4 was capable of maintaining longer sustained downstream signaling activation that correlated with reduced TrkB ubiquitination at endosomal pH. Thus, by leading to altered endocytic trafficking itineraries for TrkB receptors, BDNF and NT4 elicit differential TrkB signaling in terms of duration, intensity, and specificity, which may contribute to their functional differences in vivo. The neurotrophins, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), both bind to and activate TrkB receptors, however, they mediate distinct neuronal functions. Here, we propose that BDNF and NT4 lead to differential endocytic sorting of TrkB receptors resulting in diverse biological functions. BDNF induces more rapid ubiquitination and degradation of TrkB than NT4. Consequently, NT4 is capable of maintaining more sustained signaling downstream of TrkB receptors. © 2016 International Society for Neurochemistry.
Gonzalez Porras, Maria A; Durfee, Paul; Giambini, Sebastian; Sieck, Gary C; Brinker, C Jeffrey; Mantilla, Carlos B
2018-04-01
Cholera toxin B (CTB) modified mesoporous silica nanoparticle supported lipid bilayers (CTB-protocells) are a promising, customizable approach for targeting therapeutic cargo to motoneurons. In the present study, the endocytic mechanism and intracellular fate of CTB-protocells in motoneurons were examined to provide information for the development of therapeutic application and cargo delivery. Pharmacological inhibitors elucidated CTB-protocells endocytosis to be dependent on the integrity of lipid rafts and macropinocytosis. Using immunofluorescence techniques, live confocal and transmission electron microscopy, CTB-protocells were primarily found in the cytosol, membrane lipid domains and Golgi. There was no difference in the amount of motoneuron activity dependent uptake of CTB-protocells in neuromuscular junctions, consistent with clathrin activation at the axon terminals during low frequency activity. In conclusion, CTB-protocells uptake is mediated principally by lipid rafts and macropinocytosis. Once internalized, CTB-protocells escape lysosomal degradation, and engage biological pathways that are not readily accessible by untargeted delivery methods. Copyright © 2018 Elsevier Inc. All rights reserved.
The U24 Protein from Human Herpesvirus 6 and 7 Affects Endocytic Recycling▿
Sullivan, Brian M.; Coscoy, Laurent
2010-01-01
Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport. PMID:19923186
Cell-autonomous regulation of Mu-opioid receptor recycling by substance P.
Bowman, Shanna L; Soohoo, Amanda L; Shiwarski, Daniel J; Schulz, Stefan; Pradhan, Amynah A; Puthenveedu, Manojkumar A
2015-03-24
How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.
NASA Astrophysics Data System (ADS)
Arunachalam, Balasubramanian; Phan, Uyen T.; Geuze, Hans J.; Cresswell, Peter
2000-01-01
Proteins internalized into the endocytic pathway are usually degraded. Efficient proteolysis requires denaturation, induced by acidic conditions within lysosomes, and reduction of inter- and intrachain disulfide bonds. Cytosolic reduction is mediated enzymatically by thioredoxin, but the mechanism of lysosomal reduction is unknown. We describe here a lysosomal thiol reductase optimally active at low pH and capable of catalyzing disulfide bond reduction both in vivo and in vitro. The active site, determined by mutagenesis, consists of a pair of cysteine residues separated by two amino acids, similar to other enzymes of the thioredoxin family. The enzyme is a soluble glycoprotein that is synthesized as a precursor. After delivery into the endosomal/lysosomal system by the mannose 6-phosphate receptor, N- and C-terminal prosequences are removed. The enzyme is expressed constitutively in antigen-presenting cells and induced by IFN-γ in other cell types, suggesting a potentially important role in antigen processing.
Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P
Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.
2015-01-01
SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029
The Reovirus Sigmal Aspartic Acid Sandwich: A Trimerization Motif Poised for Conformational Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelling,P.; Guglielml, K.; Kirchner, E.
2007-01-01
Reovirus attachment protein {sigma}1 mediates engagement of receptors on the surface of target cells and undergoes dramatic conformational rearrangements during viral disassembly in the endocytic pathway. The {sigma}1 protein is a filamentous, trimeric molecule with a globular {beta}-barrel head domain. An unusual cluster of aspartic acid residues sandwiched between hydrophobic tyrosines is located at the {sigma}1 subunit interface. A 1.75 {angstrom} structure of the {sigma}1 head domain now reveals two water molecules at the subunit interface that are held strictly in position and interact with neighboring residues. Structural and biochemical analyses of mutants affecting the aspartic acid sandwich indicate thatmore » these residues and the corresponding chelated water molecules act as a plug to block the free flow of solvent and stabilize the trimer. This arrangement of residues at the {sigma}1 head trimer interface illustrates a new protein design motif that may confer conformational mobility during cell entry.« less
Vijayakrishnan, Niranjana; Phillips, Scott E; Broadie, Kendal
2010-12-01
Drosophila temperature-sensitive rolling blackout (rbo(ts) ) mutants display a total block of endocytosis in non-neuronal cells and a weaker, partial defect at neuronal synapses. RBO is an integral plasma membrane protein and is predicted to be a serine esterase. To determine if lipase activity is required for RBO function, we mutated the catalytic serine 358 to alanine in the G-X-S-X-G active site, and assayed genomic rescue of rbo mutant non-neuronal and neuronal phenotypes. The rbo(S358A) mutant is unable to rescue rbo null 100% embryonic lethality, indicating that the lipase domain is critical for RBO essential function. Likewise, the rbo(S358A) mutant cannot provide any rescue of endocytic blockade in rbo(ts) Garland cells, showing that the lipase domain is indispensable for non-neuronal endocytosis. In contrast, rbo(ts) conditional paralysis, synaptic transmission block and synapse endocytic defects are all fully rescued by the rbo(S358A) mutant, showing that the RBO lipase domain is dispensable in neuronal contexts. We identified a synthetic lethal interaction between rbo(ts) and the well-characterized dynamin GTPase conditional shibire (shi(ts1)) mutant. In both non-neuronal cells and neuronal synapses, shi(ts1); rbo(ts) phenocopies shi(ts1) endocytic defects, indicating that dynamin and RBO act in the same pathway, with dynamin functioning upstream of RBO. We conclude that RBO possesses both lipase domain-dependent and scaffolding functions with differential requirements in non-neuronal versus neuronal endocytosis mechanisms downstream of dynamin GTPase activity. © 2010 John Wiley & Sons A/S.
Piétrement, Olivier; Castro-Smirnov, Fidel Antonio; Le Cam, Eric; Aranda, Pilar; Ruiz-Hitzky, Eduardo; Lopez, Bernard S
2017-12-29
Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Endocytosis and Signaling during Development
Bökel, Christian
2014-01-01
The development of multicellular organisms relies on an intricate choreography of intercellular communication events that pattern the embryo and coordinate the formation of tissues and organs. It is therefore not surprising that developmental biology, especially using genetic model organisms, has contributed significantly to the discovery and functional dissection of the associated signal-transduction cascades. At the same time, biophysical, biochemical, and cell biological approaches have provided us with insights into the underlying cell biological machinery. Here we focus on how endocytic trafficking of signaling components (e.g., ligands or receptors) controls the generation, propagation, modulation, reception, and interpretation of developmental signals. A comprehensive enumeration of the links between endocytosis and signal transduction would exceed the limits of this review. We will instead use examples from different developmental pathways to conceptually illustrate the various functions provided by endocytic processes during key steps of intercellular signaling. PMID:24591521
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24819092
Schelhaas, Mario; Shah, Bhavin; Holzer, Michael; Blattmann, Peter; Kühling, Lena; Day, Patricia M.; Schiller, John T.; Helenius, Ari
2012-01-01
Infectious endocytosis of incoming human papillomavirus type 16 (HPV-16), the main etiological agent of cervical cancer, is poorly characterized in terms of cellular requirements and pathways. Conflicting reports attribute HPV-16 entry to clathrin-dependent and -independent mechanisms. To comprehensively describe the cell biological features of HPV-16 entry into human epithelial cells, we compared HPV-16 pseudovirion (PsV) infection in the context of cell perturbations (drug inhibition, siRNA silencing, overexpression of dominant mutants) to five other viruses (influenza A virus, Semliki Forest virus, simian virus 40, vesicular stomatitis virus, and vaccinia virus) with defined endocytic requirements. Our analysis included infection data, i.e. GFP expression after plasmid delivery by HPV-16 PsV, and endocytosis assays in combination with electron, immunofluorescence, and video microscopy. The results indicated that HPV-16 entry into HeLa and HaCaT cells was clathrin-, caveolin-, cholesterol- and dynamin-independent. The virus made use of a potentially novel ligand-induced endocytic pathway related to macropinocytosis. This pathway was distinct from classical macropinocytosis in regards to vesicle size, cholesterol-sensitivity, and GTPase requirements, but similar in respect to the need for tyrosine kinase signaling, actin dynamics, Na+/H+ exchangers, PAK-1 and PKC. After internalization the virus was transported to late endosomes and/or endolysosomes, and activated through exposure to low pH. PMID:22536154
Akt recruits Dab2 to albumin endocytosis in the proximal tubule.
Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif
2014-12-15
Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.
Guo, Feng; McCubbin, Andrew G.
2012-01-01
The growing pollen tube apex is dedicated to balancing exo- and endocytic processes to form a rapidly extending tube. As perturbation of either tends to cause a morphological phenotype, this system provides tractable model for studying these processes. Vesicle-associated membrane protein 7s (VAMP7s) are members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family that mediate cognate membrane fusion but their role in pollen tube growth has not been investigated. This manuscript identifies PiVAMP726 of Petunia inflata as a pollen-specific VAMP7 that localizes to the inverted cone of transport vesicles at the pollen tube tip. The endocytic marker FM4-64 was found to colocalize with yellow fluorescent protein (YFP)-PiVAMP726, which is consistent with PiVAMP726 containing an amino-acid motif implicated in endosomal localization, At high overexpression levels, YFP- PiVAMP726 inhibited growth and caused the formation of novel membrane compartments within the pollen tube tip. Functional dissection of PiVAMP726 implicated the N-terminal longin domain in negative regulation of the SNARE activity, but not localization of PiVAMP726. Expression of the constitutively active C-terminal SNARE domain alone, in pollen tubes, generated similar phenotypes to the full-length protein, but the truncated domain was more potent than the wild-type protein at both inhibiting growth and forming the novel membrane compartments. Both endo- and exocytic markers localized to these compartments in addition to YFP-PiVAMP726, leading to the speculation that PiVAMP726 might be involved in the recycling of endocytic vesicles in tip growth. PMID:22345643
Stoops, Emily H; Hull, Michael; Caplan, Michael J
2016-12-01
Polarized epithelial cells sort newly synthesized and recycling plasma membrane proteins into distinct trafficking pathways directed to either the apical or basolateral membrane domains. While the trans-Golgi network is a well-established site of protein sorting, increasing evidence indicates a key role for endosomes in the initial trafficking of newly synthesized proteins. Both basolateral and apical proteins have been shown to traverse endosomes en route to the plasma membrane. In particular, apical proteins traffic through either subapical early or recycling endosomes. Here we use the SNAP tag system to analyze the trafficking of the apical protein gp135, also known as podocalyxin. We show that newly synthesized gp135 traverses the apical recycling endosome, but not the apical early endosomes (AEEs). In contrast, post-endocytic gp135 is delivered to the AEE before recycling back to the apical membrane. The pathways pursued by the newly synthesized and recycling gp135 populations do not detectably intersect, demonstrating that the biosynthetic and post-endocytic pools of this protein are subjected to distinct sorting processes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Hsp90 chaperone complex regulates GDI-dependent Rab recycling.
Chen, Christine Y; Balch, William E
2006-08-01
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.
Investigation of pathways of advanced glycation end-products accumulation in macrophages.
Nagai, Ryoji; Fujiwara, Yukio; Mera, Katsumi; Otagiri, Masaki
2007-04-01
Advanced glycation end-products (AGE) play a role in the pathogenesis of several diseases, including diabetic complications and atherosclerosis. In atherosclerotic lesions of human aortas, AGE are localized in the extracellular matrix and intracellularly in foam cells. Two interpretations are possible for AGE accumulation inside macrophages, one is endocytic uptake of extracellular AGE-proteins by scavenger receptors; the other is intracellular AGE formation inside the macrophages. In the present study, we determined the pathways involved in AGE accumulation inside macrophages. RAW 264.7 cells, a murine macrophage cell line, incubated with BSA and 1600 mM glucose for 40 weeks, recognized heavily modified AGE- BSA. In contrast, the cells showed no ligand activity for mildly modified AGE-BSA, prepared by incubating BSA with 50 mM glucose for 24 weeks. Nepsilon-(carboxymethyl)lysine (CML)-modified proteins of about 65 kDa were detected in human monocyte-derived macrophages incubated for 7 days with 30 mM glucose and phorbol myristate acetate. Furthermore, CML was generated when glycated protein was incubated with hypochloric acid. Taken together, our results indicate that AGE detected inside foam cells in atherosclerotic lesions are generated intracellularly rather than representing endocytic uptake of extracellular AGE-proteins by scavenger receptors.
Kim, Sung Hyun; Ryan, Timothy A.
2009-01-01
The mechanisms of how, following exocytosis, the approximately nine types of synaptic vesicle (SV) transmembrane proteins are accurately resorted to form SVs are poorly understood. The time course of SV endocytosis is very sensitive to perturbations in clathrin and dynamin, supporting the model that SV endocytosis occurs through a clathrin-mediated pathway. We recently demonstrated that removal of the clathrin adaptor protein AP-2, the key protein thought to coordinate cargo selection into clathrin-coated pits, results in a significant impairment in endocytosis kinetics. Endocytosis, however, still proceeds in the absence of AP-2, bringing into question the role of AP-2 in cargo sorting in this process. Using quantitative endocytosis assays at nerve terminals, we examined how endocytosis depends on the integrity of μ2 function. Our experiments indicate that no single perturbation in μ2 prevents restoration of endocytic function when mutated μ2 replaces native μ2, whereas introduction of multiple distributed mutations significantly impairs endocytosis. We also examined whether the presence of AP-2 is important for the functionality of the previously identified endocytic motif in an SV cargo protein, the dileucine motif in vGlut-1. These data show that while mutations in the dileucine motif slow the retrieval of vGlut-1, they only do so in the presence of AP-2. These data thus indicate that AP-2 plays a role in cargo selection but that no single aspect of μ2 function is critical, implying that a more distributed network of interactions supports AP-2 function in SV endocytosis. PMID:19762466
The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes.
Marwaha, Rituraj; Arya, Subhash B; Jagga, Divya; Kaur, Harmeet; Tuli, Amit; Sharma, Mahak
2017-04-03
Endocytic, autophagic, and phagocytic vesicles move on microtubule tracks to fuse with lysosomes. Small GTPases, such as Rab7 and Arl8b, recruit their downstream effectors to mediate this transport and fusion. However, the potential cross talk between these two GTPases is unclear. Here, we show that the Rab7 effector PLEKHM1 simultaneously binds Rab7 and Arl8b, bringing about clustering and fusion of late endosomes and lysosomes. We show that the N-terminal RUN domain of PLEKHM1 is necessary and sufficient for interaction with Arl8b and its subsequent localization to lysosomes. Notably, we also demonstrate that Arl8b mediates recruitment of HOPS complex to PLEKHM1-positive vesicle contact sites. Consequently, Arl8b binding to PLEKHM1 is required for its function in delivery and, therefore, degradation of endocytic and autophagic cargo in lysosomes. Finally, we also show that PLEKHM1 competes with SKIP for Arl8b binding, which dictates lysosome positioning. These findings suggest that Arl8b, along with its effectors, orchestrates lysosomal transport and fusion. © 2017 Marwaha et al.
Lehmann, Christian H. K.; Heger, Lukas; Heidkamp, Gordon F.; Baranska, Anna; Lühr, Jennifer J.; Hoffmann, Alana; Dudziak, Diana
2016-01-01
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques. PMID:27043640
A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements.
D'Souza-Schorey, C; Boshans, R L; McDonough, M; Stahl, P D; Van Aelst, L
1997-01-01
The ARF6 GTPase, the least conserved member of the ADP ribosylation factor (ARF) family, associates with the plasma membrane and intracellular endosome vesicles. Mutants of ARF6 defective in GTP binding and hydrolysis have a marked effect on endocytic trafficking and the gross morphology of the peripheral membrane system. Here we report that expression of the GTPase-defective mutant of ARF6, ARF6(Q67L), remodels the actin cytoskeleton by inducing actin polymerization at the cell periphery. This cytoskeletal rearrangement was inhibited by co-expression of ARF6(Q67L) with deletion mutants of POR1, a Rac1-interacting protein involved in membrane ruffling, but not with the dominant-negative mutant of Rac1, Rac1(S17N). A synergistic effect between POR1 and ARF6 for the induction of actin polymerization was detected. Furthermore, we observed that ARF6 interacts directly with POR1 and that this interaction was GTP dependent. These findings indicate that ARF6 and Rac1 function on distinct signaling pathways to mediate cytoskeletal reorganization, and suggest a role for POR1 as an important regulatory element in orchestrating cytoskeletal rearrangements at the cell periphery induced by ARF6 and Rac1. PMID:9312003
Knowns and unknowns of plasma membrane protein degradation in plants.
Liu, Chuanliang; Shen, Wenjin; Yang, Chao; Zeng, Lizhang; Gao, Caiji
2018-07-01
Plasma membrane (PM) not only creates a physical barrier to enclose the intracellular compartments but also mediates the direct communication between plants and the ever-changing environment. A tight control of PM protein homeostasis by selective degradation is thus crucial for proper plant development and plant-environment interactions. Accumulated evidences have shown that a number of plant PM proteins undergo clathrin-dependent or membrane microdomain-associated endocytic routes to vacuole for degradation in a cargo-ubiquitination dependent or independent manner. Besides, several trans-acting determinants involved in the regulation of endocytosis, recycling and multivesicular body-mediated vacuolar sorting have been identified in plants. More interestingly, recent findings have uncovered the participation of selective autophagy in PM protein turnover in plants. Although great progresses have been made to identify the PM proteins that undergo dynamic changes in subcellular localizations and to explore the factors that control the membrane protein trafficking, several questions remain to be answered regarding the molecular mechanisms of PM protein degradation in plants. In this short review article, we briefly summarize recent progress in our understanding of the internalization, sorting and degradation of plant PM proteins. More specifically, we focus on discussing the elusive aspects underlying the pathways of PM protein degradation in plants. Copyright © 2018 Elsevier B.V. All rights reserved.
Oreshkova, Nadia; Wichgers Schreur, Paul J; Spel, Lotte; Vloet, Rianka P M; Moormann, Rob J M; Boes, Marianne; Kortekaas, Jeroen
2015-01-01
Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulation of CD40, CD80, CD86, MHC-I and MHC-II and secretion of the proinflammatory cytokines IFN-β, IL-6 and TNF. Interestingly, expression of the most prominent marker of DC maturation, CD83, was consistently downregulated at 24 hours post infection. Remarkably, NSR infection also completely abrogated CD83 upregulation by LPS. Downregulation of CD83 was not associated with reduced mRNA levels or impaired CD83 mRNA transport from the nucleus and could not be prevented by inhibition of the proteasome or endocytic degradation pathways, suggesting that suppression occurs at the translational level. In contrast to infected cells, bystander DCs displayed full maturation as evidenced by upregulation of CD83. Our results indicate that bystander DCs play an important role in NSR-mediated immunity.
Identification of Genes That Interact With Drosophila liquid facets
Eun, Suk Ho; Lea, Kristi; Overstreet, Erin; Stevens, Samuel; Lee, Ji-Hoon; Fischer, Janice A.
2007-01-01
We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling. PMID:17179082
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Yujiro; Nakahama, Tomoyuki; Shoji, Jun-ya
2006-02-17
Endocytosis is an important process for cellular activities. However, in filamentous fungi, the existence of endocytosis has been so far elusive. In this study, we used AoUapC-EGFP, the fusion protein of a putative uric acid-xanthine permease with enhanced green fluorescent protein (EGFP) in Aspergillus oryzae, to examine whether the endocytic process occurs or not. Upon the addition of ammonium into the medium the fusion protein was internalized from the plasma membrane. The internalization of AoUapC-EGFP was completely blocked by sodium azide, cold, and cytochalasin A treatments, suggesting that the internalization possesses the general features of endocytosis. These results demonstrate themore » occurrence of endocytosis in filamentous fungi. Moreover, we discovered that the endosomal compartments appeared upon the induction of endocytosis and moved in a microtubule-dependent manner.« less
Cernadas, Manuela; Cavallari, Marco; Watts, Gerald; Mori, Lucia; De Libero, Gennaro; Brenner, Michael B
2010-02-01
A major step in understanding differences in the nature of Ag presentation was the realization that MHC class I samples peptides transported to the endoplasmic reticulum from the cytosol, whereas MHC class II samples peptides from lysosomes. In contrast to MHC class I and II molecules that present protein Ags, CD1 molecules present lipid Ags for recognition by specific T cells. Each of the five members of the CD1 family (CD1a-e) localizes to a distinct subcompartment of endosomes. Accordingly, it has been widely assumed that the distinct trafficking of CD1 isoforms must also have evolved to enable them to sample lipid Ags that traffic via different routes. Among the CD1 isoforms, CD1a is unusual because it does not have a tyrosine-based cytoplasmic sorting motif and uniquely localizes to the early endocytic recycling compartment. This led us to predict that CD1a might have evolved to focus on lipids that localize to early endocytic/recycling compartments. Strikingly, we found that the glycolipid Ag sulfatide also localized almost exclusively to early endocytic and recycling compartments. Consistent with colocalization of CD1a and sulfatide, wild-type CD1a molecules efficiently presented sulfatide to CD1a-restricted, sulfatide-specific T cells. In contrast, CD1a:CD1b tail chimeras, that retain the same Ag-binding capacity as CD1a but traffic based on the cytoplasmic tail of CD1b to lysosomes, failed to present sulfatide efficiently. Thus, the intracellular trafficking route of CD1a is essential for efficient presentation of lipid Ags that traffic through the early endocytic and recycling pathways.
Dixit, Saurabh; Sahu, Rajnish; Verma, Richa; Duncan, Skyla; Giambartolomei, Guillermo H; Singh, Shree R; Dennis, Vida A
2018-03-01
We previously developed a Chlamydia trachomatis nanovaccine (PPM) by encapsulating a chlamydial M278 peptide within poly(lactic acid)-poly(ethylene glycol) biodegradable nanoparticles that immunopotentiated Chlamydia-specific immune effector responses in mice. Herein, we investigated the mechanistic interactions of PPM with mouse bone marrow-derived dendritic cells (DCs) for its uptake, trafficking, and T cell activation. Our results reveal that PPM triggered enhanced expression of effector cytokines and chemokines, surface activation markers (Cd1d2, Fcgr1), pathogen-sensing receptors (TLR2, Nod1), co-stimulatory (CD40, CD80, CD86) and MHC class I and II molecules. Co-culturing of PPM-primed DCs with T cells from C. muridarum vaccinated mice yielded an increase in Chlamydia-specific immune effector responses including CD3 + lymphoproliferation, CD3 + CD4 + IFN-γ-secreting cells along with CD3 + CD4 + memory (CD44 high and CD62L high ) and effector (CD44 high and CD62L low ) phenotypes. Intracellular trafficking analyses revealed an intense expression and colocalization of PPM predominantly in endosomes. PPM also upregulated the transcriptional and protein expression of the endocytic mediator, caveolin-1 in DCs. More importantly, the specific inhibition of caveolin-1 led to decreased expression of PPM-induced cytokines and co-stimulatory molecules. Our investigation shows that PPM provided enhancement of uptake, probably by exploiting the caveolin-mediated endocytosis pathway, endosomal processing, and MHC II presentation to immunopotentiate Chlamydia-specific immune effector responses mediated by CD4 + T cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4
Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M.; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L.; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A.; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L.; Burgdorf, Sven
2016-01-01
The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8+ T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte–associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality. PMID:27601670
Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.
Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven
2016-09-20
The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.
Messa, Mirko; Fernández-Busnadiego, Rubén; Sun, Elizabeth Wen; Chen, Hong; Czapla, Heather; Wrasman, Kristie; Wu, Yumei; Ko, Genevieve; Ross, Theodora; Wendland, Beverly; De Camilli, Pietro
2014-01-01
Epsin is an evolutionarily conserved endocytic clathrin adaptor whose most critical function(s) in clathrin coat dynamics remain(s) elusive. To elucidate such function(s), we generated embryonic fibroblasts from conditional epsin triple KO mice. Triple KO cells displayed a dramatic cell division defect. Additionally, a robust impairment in clathrin-mediated endocytosis was observed, with an accumulation of early and U-shaped pits. This defect correlated with a perturbation of the coupling between the clathrin coat and the actin cytoskeleton, which we confirmed in a cell-free assay of endocytosis. Our results indicate that a key evolutionary conserved function of epsin, in addition to other roles that include, as we show here, a low affinity interaction with SNAREs, is to help generate the force that leads to invagination and then fission of clathrin-coated pits. DOI: http://dx.doi.org/10.7554/eLife.03311.001 PMID:25122462
Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor
1983-01-01
Treatment of short-term monolayer cultures of rat hepatocytes with the proton ionophore, monensin, abolishes asialoglycoprotein degradation, despite little effect of the drug on either surface binding of ligand or internalization of prebound ligand. Centrifuging cell homogenates on Percoll density gradients indicates that, as a result of monensin treatment, ligand does not enter lysosomes but sediments instead in a lower density subcellular fraction that is likely an endocytic vesicle. Analyzing the degree of receptor association of intracellular ligand revealed that monensin prevents the dissociation of the receptor-ligand complex that normally occurs subsequent to endocytosis. The weak base, chloroquine, also blocks this intracellular dissociation. Evidence from sequential substitution experiments is presented, indicating that monensin and chloroquine act at the same point in the sequence of events leading to ligand dissociation. These data are discussed in terms of a pH-mediated dissociation of the receptor-ligand complex within a prelysosomal endocytic vesicle. PMID:6304116
Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor
Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro
2014-01-01
Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384
Fruttero, Leonardo L; Leyria, Jimena; Ramos, Fabián O; Stariolo, Raúl; Settembrini, Beatriz P; Canavoso, Lilián E
2017-01-01
Lipophorin is the main lipoprotein in the hemolymph of insects. During vitellogenesis, lipophorin delivers its hydrophobic cargo to developing oocytes by its binding to non-endocytic receptors at the plasma membrane of the cells. In some species however, lipophorin may also be internalized to some extent, thus maximizing the storage of lipid resources in growing oocytes. The ectopic β chain of ATP synthase (β-ATPase) was recently described as a putative non-endocytic lipophorin receptor in the anterior midgut of the hematophagous insect Panstrongylus megistus. In the present work, females of this species at the vitellogenic stage of the reproductive cycle were employed to investigate the role of β-ATPase in the transfer of lipids to the ovarian tissue. Subcellular fractionation and western blot revealed the presence of β-ATPase in the microsomal membranes of the ovarian tissue, suggesting its localization in the plasma membrane. Immunofluorescence assays showed partial co-localization of β-ATPase and lipophorin in the membrane of oocytes as well as in the basal domain of the follicular epithelial cells. Ligand blotting and co-immunoprecipitation approaches confirmed the interaction between lipophorin and β-ATPase. In vivo experiments with an anti-β-ATPase antibody injected to block such an interaction demonstrated that the antibody significantly impaired the transfer of fatty acids from lipophorin to the oocyte. However, the endocytic pathway of lipophorin was not affected. On the other hand, partial inhibition of ATP synthase activity did not modify the transfer of lipids from lipophorin to oocytes. When the assays were performed at 4°C to diminish endocytosis, the results showed that the antibody interfered with lipophorin binding to the oocyte plasma membrane as well as with the transfer of fatty acids from the lipoprotein to the oocyte. The findings strongly support that β-ATPase plays a role as a docking lipophorin receptor at the ovary of P. megistus, similarly to its function in the midgut of such a vector. In addition, the role of β-ATPase as a docking receptor seems to be independent of the enzymatic ATP synthase activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina
2018-01-01
Prostaglandin E2 (PGE2) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1, PTGS2, MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE2-induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression. PMID:29599917
Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina
2018-03-13
Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.
ICAM-1 Binding Rhinoviruses A89 and B14 Uncoat in Different Endosomal Compartments
Conzemius, Rick; Ganjian, Haleh; Blaas, Dieter
2016-01-01
ABSTRACT Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating. PMID:27334586
Mechanism of Action of Presynaptic Neurotoxins
1985-09-01
Asialoglycoproteins in Cultured Hepatocytes . Ches. =7, 3191-3197. Harford, J., Klausner, R. D., and Ashwell, G. (1984) Inhibition of the Endocytic Pathway...valid marker for neurons in the CNS and neuronal cells when grown in culture ( Mirsky et al., 1978). Recently, the binding interactions have been...Gangliosides in Nervous Tissue Cultures and Binding of I-Labelled Tetanus Toxin, a Neuronal Marker . L. f ocA . 12, 329-334. Dimpfel, V., and
Differential Requirements in Endocytic Trafficking for Penetration of Dengue Virus
Acosta, Eliana G.; Castilla, Viviana; Damonte, Elsa B.
2012-01-01
The entry of DENV into the host cell appears to be a very complex process which has been started to be studied in detail. In this report, the route of functional intracellular trafficking after endocytic uptake of dengue virus serotype 1 (DENV-1) strain HW, DENV-2 strain NGC and DENV-2 strain 16681 into Vero cells was studied by using a susceptibility to ammonium chloride assay, dominant negative mutants of several members of the family of cellular Rab GTPases that participate in regulation of transport through endosome vesicles and immunofluorescence colocalization. Together, the results presented demonstrate that in spite of the different internalization route among viral serotypes in Vero cells and regardless of the viral strain, DENV particles are first transported to early endosomes in a Rab5-dependent manner. Then a Rab7-dependent pathway guides DENV-2 16681 to late endosomes, whereas a yet unknown sorting event controls the transport of DENV-2 NGC, and most probably DENV-1 HW, to the perinuclear recycling compartments where fusion membrane would take place releasing nucleocapsid into the cytoplasm. Besides the demonstration of a different intracellular trafficking for two DENV-2 strains that shared the initial clathrin-independent internalization route, these studies proved for the first time the involvement of the slow recycling pathway for DENV-2 productive infection. PMID:22970315
The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis.
Yu, Meng; Liu, Haijiao; Dong, Ziyi; Xiao, Jianwei; Su, Bodan; Fan, Lusheng; Komis, George; Šamaj, Jozef; Lin, Jinxing; Li, Ruili
2017-08-01
Membrane microdomains play vital roles in the process of bacterial infection. The membrane microdomain-associated protein Flot1 acts in an endocytic pathway and is required for seedling development, however, whether Flot1 is a part of host defense mechanisms remains unknown. During an analysis of callose deposition, we found that Flot1 amiRNAi mutants exhibited defects in response to flg22. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), structured illumination microscopy (SIM) and fluorescence cross spectroscopy (FCS), we determined that the dynamic behavior of GFP-Flot1 in Arabidopsis thaliana cotyledon epidermal cells changed significantly in plants treated with the elicitor flg22. Moreover, we found that Flot1 was constitutively recycled via an endocytic pathway and that flg22 could promote endocytosis. Importantly, targeting of Flot1 to the late endosome/vacuole for degradation increased in response to flg22 treatment; immunoblot analysis showed that when triggered by flg22, GFP-Flot1 was gradually degraded in a time-dependent manner. Taken together, these findings support the hypothesis that the changing of dynamics and oligomeric states can promote the endocytosis and degradation of Flot1 under flg22 treatment in plant cells. Copyright © 2017 Elsevier GmbH. All rights reserved.
Review: Post-translational cross-talk between brassinosteroid and sucrose signaling.
Kühn, Christina
2016-07-01
A direct link has been elucidated between brassinosteroid function and perception, and sucrose partitioning and transport. Sucrose regulation and brassinosteroid signaling cross-talk at various levels, including the well-described regulation of transcriptional gene expression: BZR-like transcription factors link the signaling pathways. Since brassinosteroid responses depend on light quality and quantity, a light-dependent alternative pathway was postulated. Here, the focus is on post-translational events. Recent identification of sucrose transporter-interacting partners raises the question whether brassinosteroid and sugars jointly affect plant innate immunity and plant symbiotic interactions. Membrane permeability and sensitivity depends on the number of cell surface receptors and transporters. More than one endocytic route has been assigned to specific components, including brassinosteroid-receptors. The number of such proteins at the plasma membrane relies on endocytic recycling, internalization and/or degradation. Therefore, vesicular membrane trafficking is gaining considerable attention with regard to plant immunity. The organization of pattern recognition receptors (PRRs), other receptors or transporters in membrane microdomains participate in endocytosis and the formation of specific intracellular compartments, potentially impacting biotic interactions. This minireview focuses on post-translational events affecting the subcellular compartmentation of membrane proteins involved in signaling, transport, and defense, and on the cross-talk between brassinosteroid signals and sugar availability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Falk, Matthias M; Baker, Susan M; Gumpert, Anna M; Segretain, Dominique; Buckheit, Robert W
2009-07-01
Double-membrane-spanning gap junction (GJ) channels cluster into two-dimensional arrays, termed plaques, to provide direct cell-to-cell communication. GJ plaques often contain circular, channel-free domains ( approximately 0.05-0.5 mum in diameter) identified >30 y ago and termed nonjunctional membrane (NM) domains. We show, by expressing the GJ protein connexin43 (Cx43) tagged with green fluorescent protein, or the novel photoconvertible fluorescent protein Dendra2, that NM domains appear to be remnants generated by the internalization of small GJ channel clusters that bud over time from central plaque areas. Channel clusters internalized within seconds forming endocytic double-membrane GJ vesicles ( approximately 0.18-0.27 mum in diameter) that were degraded by lysosomal pathways. Surprisingly, NM domains were not repopulated by surrounding channels and instead remained mobile, fused with each other, and were expelled at plaque edges. Quantification of internalized, photoconverted Cx43-Dendra2 vesicles indicated a GJ half-life of 2.6 h that falls within the estimated half-life of 1-5 h reported for GJs. Together with previous publications that revealed continuous accrual of newly synthesized channels along plaque edges and simultaneous removal of channels from plaque centers, our data suggest how the known dynamic channel replenishment of functional GJ plaques can be achieved. Our observations may have implications for the process of endocytic vesicle budding in general.
Flavivirus internalization is regulated by a size-dependent endocytic pathway.
Hackett, Brent A; Cherry, Sara
2018-04-17
Flaviviruses enter host cells through the process of clathrin-mediated endocytosis, and the spectrum of host factors required for this process are incompletely understood. Here we found that lymphocyte antigen 6 locus E (LY6E) promotes the internalization of multiple flaviviruses, including West Nile virus, Zika virus, and dengue virus. Perhaps surprisingly, LY6E is dispensable for the internalization of the endogenous cargo transferrin, which is also dependent on clathrin-mediated endocytosis for uptake. Since viruses are substantially larger than transferrin, we reasoned that LY6E may be required for uptake of larger cargoes and tested this using transferrin-coated beads of similar size as flaviviruses. LY6E was indeed required for the internalization of transferrin-coated beads, suggesting that LY6E is selectively required for large cargo. Cell biological studies found that LY6E forms tubules upon viral infection and bead internalization, and we found that tubule formation was dependent on RNASEK, which is also required for flavivirus internalization, but not transferrin uptake. Indeed, we found that RNASEK is also required for the internalization of transferrin-coated beads, suggesting it functions upstream of LY6E. These LY6E tubules resembled microtubules, and we found that microtubule assembly was required for their formation and flavivirus uptake. Since microtubule end-binding proteins link microtubules to downstream activities, we screened the three end-binding proteins and found that EB3 promotes virus uptake and LY6E tubularization. Taken together, these results highlight a specialized pathway required for the uptake of large clathrin-dependent endocytosis cargoes, including flaviviruses. Copyright © 2018 the Author(s). Published by PNAS.
Identifying novel members of the Wntless interactome through genetic and candidate gene approaches.
Petko, Jessica; Tranchina, Trevor; Patel, Goral; Levenson, Robert; Justice-Bitner, Stephanie
2018-04-01
Wnt signaling is an important pathway that regulates several aspects of embryogenesis, stem cell maintenance, and neural connectivity. We have recently determined that opioids decrease Wnt secretion, presumably by inhibiting the recycling of the Wnt trafficking protein Wntless (Wls). This effect appears to be mediated by protein-protein interaction between Wls and the mu-opioid receptor (MOR), the primary cellular target of opioid drugs. The goal of this study was to identify novel protein interactors of Wls that are expressed in the brain and may also play a role in reward or addiction. Using genetic and candidate gene approaches, we show that among a variety of protein, Wls interacts with the dopamine transporter (target of cocaine), cannabinoid receptors (target of THC), Adenosine A2A receptor (target of caffeine), and SGIP1 (endocytic regulator of cannabinoid receptors). Our study shows that aside from opioid receptors, Wntless interacts with additional proteins involved in reward and/or addiction. Future studies will determine whether Wntless and WNT signaling play a more universal role in these processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Polystyrene nanoparticle trafficking across MDCK-II
Fazlollahi, Farnoosh; Angelow, Susanne; Yacobi, Nazanin R.; Marchelletta, Ronald; Yu, Alan S.L.; Hamm-Alvarez, Sarah F.; Borok, Zea; Kim, Kwang-Jin; Crandall, Edward D.
2011-01-01
Polystyrene nanoparticles (PNP) cross rat alveolar epithelial cell monolayers via non-endocytic transcellular pathways. To evaluate epithelial cell type-specificity of PNP trafficking, we studied PNP flux across Madin Darby canine kidney cell II monolayers (MDCK-II). Effects of calcium chelation (EGTA), energy depletion (sodium azide (NaN3) or decreased temperature), and endocytosis inhibitors methyl-β-cyclodextrin (MBC), monodansylcadaverine and dynasore were determined. Amidine-modified PNP cross MDCK-II 500 times faster than carboxylate-modified PNP. PNP flux did not increase in the presence of EGTA. PNP flux at 4°C and after treatment with NaN3 decreased 75% and 80%, respectively. MBC exposure did not decrease PNP flux, whereas dansylcadaverine- or dynasore-treated MDCK-II exhibited ~80% decreases in PNP flux. Confocal laser scanning microscopy revealed intracellular colocalization of PNP with clathrin heavy chain. These data indicate that PNP translocation across MDCK-II (1) occurs via clathrin-mediated endocytosis and (2) is dependent upon PNP physicochemical properties. We conclude that uptake/trafficking of nanoparticles into/across epithelia is dependent both on properties of the nanoparticles and the specific epithelial cell type. PMID:21310266
Sirisaengtaksin, Natalie; Gireud, Monica; Yan, Qing; Kubota, Yoshihisa; Meza, Denisse; Waymire, Jack C.; Zage, Peter E.; Bean, Andrew J.
2014-01-01
The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR. PMID:24344129
Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis
Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won
2014-01-01
Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875
Parachoniak, Christine Anna; Luo, Yi; Abella, Jasmine Vanessa; Keen, James H.; Park, Morag
2011-01-01
Summary Cells are dependent on correct sorting of activated receptor tyrosine kinases (RTKs) for the outcome of growth factor signaling. Upon activation, RTKs are coupled through the endocytic machinery for degradation, or recycled to the cell surface. However, the molecular mechanisms governing RTK recycling are poorly understood. Here, we show that Golgi-localized gamma-ear containing Arf-binding protein 3 (GGA3) interacts selectively with the Met/Hepatocyte Growth Factor RTK when stimulated, to sort it for recycling in association with “gyrating”-clathrin. GGA3 loss abrogates Met recycling from a Rab4 endosomal subdomain, resulting in pronounced trafficking of Met towards degradation. Decreased Met recycling attenuates ERK activation and cell migration. Met recycling, sustained ERK activation and migration require interaction of GGA3 with Arf6 and an unexpected association with the Crk adaptor. The data show that GGA3 defines an active recycling pathway and support a broader role for GGA3-mediated cargo selection in targeting receptors destined for recycling. PMID:21664574
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.
Mayor, S; Sabharanjak, S; Maxfield, F R
1998-01-01
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins. PMID:9707422
A role for microtubules in sorting endocytic vesicles in rat hepatocytes.
Goltz, J S; Wolkoff, A W; Novikoff, P M; Stockert, R J; Satir, P
1992-01-01
The vectorial nature of hepatocyte receptor-mediated endocytosis (RME) and its susceptibility to cytoskeletal disruptors has suggested that a polarized network of microtubules plays a vital role in directed movement during sorting. Using as markers a well-known ligand, asialoorosomucoid, and its receptor, we have isolated endocytic vesicles that bind directly to and interact with stabilized endogenous hepatocyte microtubules at specific times during a synchronous, experimentally initiated, single wave of RME. Both ligand- and receptor-containing vesicles copelleted with microtubules in the absence of ATP but did not pellet under similar conditions when microtubules were not polymerized. When 5 mM ATP was added to preparations of microtubule-bound vesicles, ligand-containing vesicles were released into the supernatant, while receptor-containing vesicles remained immobilized on the microtubules. Release of ligand-containing vesicles from microtubules was prevented by monensin treatment during the endocytic wave. Several proteins, including the microtubule motor protein cytoplasmic dynein, were present in these preparations and were released from microtubule pellets by ATP addition concomitantly with ligand. These results suggest that receptor domains within the endosome can be immobilized by attachment to microtubules so that, following monensin-sensitive dissociation of ligand from receptor, ligand-containing vesicles can be pulled along microtubules away from the receptor domains by a motor molecule, such as cytoplasmic dynein, thereby delineating sorting. Images PMID:1353884
NASA Astrophysics Data System (ADS)
Liu, Yu-Sheng; Cheng, Ru-You; Lo, Yu-Lun; Hsu, Chin; Chen, Su-Hwei; Chiu, Chien-Chih; Wang, Li-Fang
2016-02-01
We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells.We previously synthesized a chondroitin sulfate-graft-poly(ε-caprolactone) copolymer (H-CP) with a high content of poly(ε-caprolactone) (18.7 mol%), which self-assembled in water into a rod-like micelle to encapsulate hydrophobic camptothecin (CPT) in the core (micelle/CPT) for tumor-targeted drug delivery. As a result of the recognition of the micelle by CD44, the micelle/CPT entered CRL-5802 cells efficiently and released CPT efficaciously, resulting in higher tumor suppression than commercial CPT-11. In this study, H1299 cells were found to have a higher CD44 expression than CRL-5802 cells. However, the lower CD44-expressing CRL-5802 cells had a higher percentage of cell death and higher cellular uptake of the micelle/CPT than the higher CD44-expressing H1299 cells. Examination of the internalization pathway of the micelle/CPT in the presence of different endocytic chemical inhibitors showed that the CRL-5802 cells involved clathrin-mediated endocytosis, which was not found in the H1299 cells. Analysis of the cell cycle of the two cell lines exposed to the micelle/CPT revealed that the CRL-5802 cells arrested mainly in the S phase and the H1299 cells arrested mainly in the G2-M phase. A consistent result was also found in the evaluation of γ-H2AX expression, which was about three-fold higher in the CRL-5802 cells than in the H1299 cells. A near-infrared dye, IR780, was encapsulated into the micelle to observe the in vivo biodistribution of the micelle/IR780 in tumor-bearing mice. The CRL-5802 tumor showed a higher fluorescence intensity than the H1299 tumor at any tracing time after 1 h. Thus we tentatively concluded that CRL-5802 cells utilized the clathrin-mediated internalization pathway and arrested in the S phase on exposure to the micelle/CPT; all are possible reasons for the better therapeutic outcome in CRL-5802 cells than in H1299 cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08345a
Salt stress signals shape the plant root.
Galvan-Ampudia, Carlos S; Testerink, Christa
2011-06-01
Plants use different strategies to deal with high soil salinity. One strategy is activation of pathways that allow the plant to export or compartmentalise salt. Relying on their phenotypic plasticity, plants can also adjust their root system architecture (RSA) and the direction of root growth to avoid locally high salt concentrations. Here, we highlight RSA responses to salt and osmotic stress and the underlying mechanisms. A model is presented that describes how salinity affects auxin distribution in the root. Possible intracellular signalling pathways linking salinity to root development and direction of root growth are discussed. These involve perception of high cytosolic Na+ concentrations in the root, activation of lipid signalling and protein kinase activity and modulation of endocytic pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of endocytic pathways in cellular uptake of plasma non-transferrin iron
Sohn, Yang-Sung; Ghoti, Hussam; Breuer, William; Rachmilewitz, Eliezer; Attar, Samah; Weiss, Guenter; Cabantchik, Z. Ioav
2012-01-01
Background In transfusional siderosis, the iron binding capacity of plasma transferrin is often surpassed, with concomitant generation of non-transferrin-bound iron. Although implicated in tissue siderosis, non-transferrin-bound iron modes of cell ingress remain undefined, largely because of its variable composition and association with macromolecules. Using fluorescent tracing of labile iron in endosomal vesicles and cytosol, we examined the hypothesis that non-transferrin-bound iron fractions detected in iron overloaded patients enter cells via bulk endocytosis. Design and Methods Fluorescence microscopy and flow cytometry served as analytical tools for tracing non-transferrin-bound iron entry into endosomes with the redox-reactive macromolecular probe Oxyburst-Green and into the cytosol with cell-laden calcein green and calcein blue. Non-transferrin-bound iron-containing media were from sera of polytransfused thalassemia major patients and model iron substances detected in thalassemia major sera; cell models were cultured macrophages, and cardiac myoblasts and myocytes. Results Exposure of cells to ferric citrate together with albumin, or to non-transferrin-bound iron-containing sera from thalassemia major patients caused an increase in labile iron content of endosomes and cytosol in macrophages and cardiac cells. This increase was more striking in macrophages, but in both cell types was largely reduced by co-exposure to non-transferrin-bound iron-containing media with non-penetrating iron chelators or apo-transferrin, or by treatment with inhibitors of endocytosis. Endosomal iron accumulation traced with calcein-green was proportional to input non-transferrin-bound iron levels (r2=0.61) and also preventable by pre-chelation. Conclusions Our studies indicate that macromolecule-associated non-transferrin-bound iron can initially gain access into various cells via endocytic pathways, followed by iron translocation to the cytosol. Endocytic uptake of plasma non-transferrin-bound iron is a possible mechanism that can contribute to iron loading of cell types engaged in bulk/adsorptive endocytosis, highlighting the importance of its prevention by iron chelation. PMID:22180428
Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.
Ong, E W; Xue, L; Olmstead, M C; Cahill, C M
2015-01-01
The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.
1991-01-01
The effect of receptor occupancy on insulin receptor endocytosis was examined in CHO cells expressing normal human insulin receptors (CHO/IR), autophosphorylation- and internalization-deficient receptors (CHO/IRA1018), and receptors which undergo autophosphorylation but lack a sequence required for internalization (CHO/IR delta 960). The rate of [125I]insulin internalization in CHO/IR cells at 37 degrees C was rapid at physiological concentrations, but decreased markedly in the presence of increasing unlabeled insulin (ED50 = 1-3 nM insulin, or 75,000 occupied receptors/cell). In contrast, [125I]insulin internalization by CHO/IRA1018 and CHO/IR delta 960 cells was slow and was not inhibited by unlabeled insulin. At saturating insulin concentrations, the rate of internalization by wild-type and mutant receptors was similar. Moreover, depletion of intracellular potassium, which has been shown to disrupt coated pit formation, inhibited the rapid internalization of [125I]insulin at physiological insulin concentrations by CHO/IR cells, but had little or no effect on [125I]insulin uptake by CHO/IR delta 960 and CHO/IRA1018 cells or wild-type cells at high insulin concentrations. These data suggest that the insulin-stimulated entry of the insulin receptor into a rapid, coated pit-mediated internalization pathway is saturable and requires receptor autophosphorylation and an intact juxtamembrane region. Furthermore, CHO cells also contain a constitutive nonsaturable pathway which does not require receptor autophosphorylation or an intact juxtamembrane region; this second pathway is unaffected by depletion of intracellular potassium, and therefore may be independent of coated pits. Our data suggest that the ligand-stimulated internalization of the insulin receptor may require specific saturable interactions between the receptor and components of the endocytic system. PMID:1757462
Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport
Li, Tianshu; Takeoka, Shinji
2014-01-01
With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) – 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG5000-DSPE]/maleimide [M]-PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG5000-DSPE/PEG5000-Glu2C18 at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%–45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport. PMID:24940060
Enhanced cellular uptake of maleimide-modified liposomes via thiol-mediated transport.
Li, Tianshu; Takeoka, Shinji
2014-01-01
With a small amount of maleimide modification on the liposome surface, enhanced cellular uptake of liposomes and drug-delivery efficiency can be obtained both in vitro and in vivo. Herein, we describe the mechanisms underlying this enhanced cellular uptake. Suppression of the cellular uptake of maleimide-modified liposomes (M-GGLG, composed of 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate [GGLG]/cholesterol/poly(ethylene glycol) - 1,2-distearoyl-sn-glycero-3-phosphoethanolamine [PEG₅₀₀₀-DSPE]/maleimide [M]-PEG₅₀₀₀-Glu2C18 at a molar ratio of 5:5:0.03:0.03) caused by temperature block and addition of serum was alleviated compared with that of liposomes without maleimide modification (GGLG liposomes, composed of GGLG/cholesterol/PEG₅₀₀₀-DSPE/PEG₅₀₀₀-Glu2C₁₈ at a molar ratio of 5:5:0.03:0.03). When 0.01 nM N-ethylmaleimide was used to pre-block cellular thiols, the cellular uptake of M-GGLG liposomes was decreased to approximately 70% in HeLa, HCC1954, MDA-MB-468, and COS-7 cell lines. Moreover, inhibition of a thiol-related reductase such as protein disulfide isomerase resulted in a 15%-45% inhibition of the cellular uptake of M-GGLG liposomes, whereas GGLG liposomes were not influenced. Further, single and mixed inhibitors of clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis did not efficiently inhibit the cellular uptake of M-GGLG liposomes. Using confocal microscopy, we verified that M-GGLG liposomes were localized partially in lysosomes after inhibition of the mentioned conventional endocytic pathways. Therefore, it was hypothesized that the mechanisms underlying the enhanced cellular uptake of liposomes by maleimide modification was thiol-mediated membrane trafficking, including endocytosis and energy-independent transport.
Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo
2015-12-28
Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Matsubara, Teruhiko; Otani, Ryohei; Yamashita, Miki; Maeno, Haruka; Nodono, Hanae; Sato, Toshinori
2017-02-13
Glycosphingolipids are major components of the membrane raft, and several kinds of viruses and bacterial toxins are known to bind to glycosphingolipids in the membrane raft. Since the viral genes and pathogenic proteins that are taken into cells are directly delivered to their target organelles, caveolae/raft-mediated endocytosis represents a promising pathway for specific delivery. In the present study, we demonstrated the ability of an artificial pentadecapeptide, which binds to ganglioside GM3, to deliver protein into cells by caveolae/raft-mediated endocytosis. The cellular uptake of a biotinylated GM3-binding peptide (GM3BP)-avidin complex into HeLa cells was observed, and the cellular uptake of this complex was inhibited by an incubation with sialic acid or endocytic inhibitors such as methyl-ß-cyclodextrin, and also by an incubation at 4 °C. These results indicate that the GM3BP-avidin complex bind to GM3 in membrane raft, and are taken into cell through caveolae/raft-mediated endocytosis. The GM3BP-avidin complex was transported into cells and localized around the nucleus more slowly than a human immunodeficiency virus type 1 TAT peptide. Furthermore, the uptake of a green fluorescent protein (GFP) linked with GM3BP into HeLa cells was similar to that of the GM3BP-avidin complex, and the localization of the GM3BP-GFP fusion protein was markedly different with that of the TAT-GFP fusion protein. The uptake and trafficking of GM3BP were distinguished from conventional cell-penetrating peptides. GM3BP has potential as a novel peptide for the selective delivery of therapeutic proteins and materials into cells in addition to being a cell-penetrating peptide.
Iaea, David B.; Gale, Sarah E.; Bielska, Agata A.; Krishnan, Kathiresan; Fujiwara, Hideji; Jiang, Hui; Maxfield, Frederick R.; Schlesinger, Paul H.; Covey, Douglas F.; Schaffer, Jean E.; Ory, Daniel S.
2015-01-01
Cholesterol homeostasis is regulated not only by cholesterol, but also by oxygenated cholesterol species, referred to as oxysterols. Side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), regulate cholesterol homeostasis through feedback inhibition and feed-forward activation of transcriptional pathways that govern cholesterol synthesis, uptake, and elimination, as well as through direct nongenomic actions that modulate cholesterol accessibility in membranes. Elucidating the cellular distribution of 25-HC is required to understand its biological activity at the molecular level. However, studying oxysterol distribution and behavior within cells has proven difficult due to the lack of fluorescent analogs of 25-HC that retain its chemical and physical properties. To address this, we synthesized a novel intrinsically fluorescent 25-HC mimetic, 25-hydroxycholestatrienol (25-HCTL). We show that 25-HCTL modulates sterol homeostatic responses in a similar manner as 25-HC. 25-HCTL associates with lipoproteins in media and is taken up by cells through LDL-mediated endocytosis. In cultured cells, 25-HCTL redistributes among cellular membranes and, at steady state, has a similar distribution as cholesterol, being enriched in both the endocytic recycling compartment as well as the plasma membrane. Our findings indicate that 25-HCTL is a faithful fluorescent 25-HC mimetic that can be used to investigate the mechanisms through which 25-HC regulates sterol homeostatic pathways. PMID:26497473
Won, Je-Seong; Im, Yeong-Bin; Khan, Mushfiquddin; Contreras, Miguel; Singh, Avtar K; Singh, Inderjit
2008-05-01
Previous studies have described that statins (inhibitors of cholesterol and isoprenoid biosynthesis) inhibit the output of amyloid-beta (Abeta) in the animal model and thus decrease risk of Alzheimer's disease. However, their action mechanism(s) in Abeta precursor protein (APP) processing and Abeta generation is not fully understood. In this study, we report that lovastatin treatment reduced Abeta output in cultured hippocampal neurons as a result of reduced APP levels and beta-secretase activities in low density Lubrol WX (non-ionic detergent) extractable lipid rafts (LDLR). Rather than altering cholesterol levels in lipid raft fractions and thus disrupting lipid raft structure, lovastatin decreased Abeta generation through down-regulating geranylgeranyl-pyrophosphate dependent endocytosis pathway. The inhibition of APP endocytosis by treatment with lovastatin and reduction of APP levels in LDLR fractions by treatment with phenylarsine oxide (a general endocytosis inhibitor) support the involvement of APP endocytosis in APP distribution in LDLR fractions and subsequent APP beta-cleavage. Moreover, lovastatin-mediated down-regulation of endocytosis regulators, such as early endosomal antigen 1, dynamin-1, and phosphatidylinositol 3-kinase activity, indicates that lovastatin modulates APP endocytosis possibly through its pleiotropic effects on endocytic regulators. Collectively, these data report that lovastatin mediates inhibition of LDLR distribution and beta-cleavage of APP in a geranylgeranyl-pyrophosphate and endocytosis-dependent manner.
Won, Je-Seong; Im, Yeong-Bin; Khan, Mushfiquddin; Contreras, Miguel; Singh, Avtar K.; Singh, Inderjit
2009-01-01
Previous studies have described that statins (inhibitors of cholesterol and isoprenoid biosynthesis) inhibit the output of amyloid-β (Aβ) in the animal model and thus decrease risk of Alzheimer's disease. However, their action mechanism(s) in APP processing and Aβ generation is not fully understood. Here we report that lovastatin treatment reduced Aβ output in cultured hippocampal neurons as a result of reduced Aβ precursor protein (APP) levels and β-secretase activities in low density Lubrol WX (non-ionic detergent) extractable lipid rafts (LDLR). Rather than altering cholesterol levels in lipid raft fractions and thus disrupting lipid raft structure, lovastatin decreased Aβ generation through down-regulating geranylgeranyl-pyrophosphate (GGPP) dependent endocytosis pathway. The inhibition of APP endocytosis by treatment with lovastatin and reduction of APP levels in LDLR fractions by treatment with phenylarsine oxide (a general endocytosis inhibitor) support the involvement of APP endocytosis in APP distribution in LDLR fractions and subsequent APP β-cleavage. Moreover, lovastatin-mediated down-regulation of endocytosis regulators, such as EEA1, dynamin-I and phosphatidylinositol-3 kinase activity, indicates that lovastatin modulates APP endocytosis possibly through its pleiotropic effects on endocytic regulators. Collectively, these data report that lovastatin mediates inhibition of LDLR distribution and β-cleavage of APP in a GGPP and endocytosis dependent manner. PMID:18266936
Membrane Transport across Polarized Epithelia.
Garcia-Castillo, Maria Daniela; Chinnapen, Daniel J-F; Lencer, Wayne I
2017-09-01
Polarized epithelial cells line diverse surfaces throughout the body forming selective barriers between the external environment and the internal milieu. To cross these epithelial barriers, large solutes and other cargoes must undergo transcytosis, an endocytic pathway unique to polarized cell types, and significant for the development of cell polarity, uptake of viral and bacterial pathogens, transepithelial signaling, and immunoglobulin transport. Here, we review recent advances in our knowledge of the transcytotic pathway for proteins and lipids. We also discuss briefly the promise of harnessing the molecules that undergo transcytosis as vehicles for clinical applications in drug delivery. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Amiodarone affects Ebola virus binding and entry into target cells.
Salata, Cristiano; Munegato, Denis; Martelli, Francesco; Parolin, Cristina; Calistri, Arianna; Baritussio, Aldo; Palù, Giorgio
2018-03-02
Ebola Virus Disease is one of the most lethal transmissible infections characterized by a high fatality rate. Several research studies have aimed to identify effective antiviral agents. Amiodarone, a drug used for the treatment of arrhythmias, has been shown to inhibit filovirus infection in vitro by acting at the early step of the viral replication cycle. Here we demonstrate that amiodarone reduces virus binding to target cells and slows down the progression of the viral particles along the endocytic pathway. Overall our data support the notion that amiodarone interferes with Ebola virus infection by affecting cellular pathways/targets involved in the viral entry process.
NASA Astrophysics Data System (ADS)
Xiong, Xiaoqin; Gan, Lu; Liu, Ying; Zhang, Chun; Yong, Tuying; Wang, Ziyi; Xu, Huibi; Yang, Xiangliang
2015-03-01
Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents.Carbon-based materials have been widely used in the biomedical fields including drug delivery and cancer therapies. In this paper, a recently synthesized three-dimensional nanographene (NG) based on triptycene self-assembles into nanoparticles which selectively kill human hepatocellular carcinoma HepG2 cells as compared to human normal liver HL7702 cells. Obvious differences in cellular accumulation, the endocytic pathway and intracellular trafficking of NG nanoparticles are observed in HepG2 cells and HL7702 cells. Further studies reveal that NG nanoparticles significantly increase the levels of reactive oxygen species (ROS) in HepG2 cells, but not in HL7702 cells. NG nanoparticle-induced ROS result in apoptosis induction and the decrease in mitochondrial membrane potential in HepG2 cells. Moreover, IKK/nuclear factor-κB (NF-κB) signaling is found to be activated by NG nanoparticle-induced ROS and serves to antagonize NG nanoparticle-induced apoptosis in HepG2 cells. Our studies show that the distinct behaviors of cellular uptake and ROS-mediated cytotoxicity are responsible for the selective killing of HepG2 cells. This study provides a foundation for understanding the mechanism of selective induction of apoptosis in cancer cells by NG nanoparticles and designing more effective chemotherapeutical agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07248k
Cell-penetrating peptides and antimicrobial peptides: how different are they?
Henriques, Sónia Troeira; Melo, Manuel Nuno; Castanho, Miguel A. R. B.
2006-01-01
Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented. PMID:16956326
All known patient mutations in the ASH-RhoGAP domains of OCRL affect targeting and APPL1 binding
McCrea, Heather J.; Paradise, Summer; Tomasini, Livia; Addis, Maria; Melis, Maria Antonietta; De Matteis, Maria Antonietta; De Camilli, Pietro
2008-01-01
Mutations in the inositol 5-phosphatase OCRL are responsible for Lowe syndrome, an X-linked disorder characterized by bilateral cataracts, mental retardation, neonatal hypotonia, and renal Fanconi syndrome, and for Dent disease, another X-linked condition characterized by kidney reabsorption defects. We have previously described an interaction of OCRL with the endocytic adaptor APPL1 that links OCRL to protein networks involved in the disease phenotype. Here we provide new evidence showing that among the interactions which target OCRL to membranes of the endocytic pathway, binding to APPL1 is the only one abolished by all known disease-causing missense mutations in the ASH-RhoGAP domains of the protein. Furthermore, we demonstrate that APPL1 and rab5 independently contribute to recruit OCRL to enlarged endosomes induced by the expression of constitutively active Rab5. Thus, binding to APPL1 helps localize OCRL at specific cellular sites, and disruption of this interaction may play a role in disease. PMID:18307981
RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells.
Rondanino, Christine; Rojas, Raul; Ruiz, Wily G; Wang, Exing; Hughey, Rebecca P; Dunn, Kenneth W; Apodaca, Gerard
2007-07-01
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Compromised fidelity of endocytic synaptic vesicle protein sorting in the absence of stonin 2
Kononenko, Natalia L.; Diril, M. Kasim; Puchkov, Dmytro; Kintscher, Michael; Koo, Seong Joo; Pfuhl, Gerit; Winter, York; Wienisch, Martin; Klingauf, Jürgen; Breustedt, Jörg; Schmitz, Dietmar; Maritzen, Tanja; Haucke, Volker
2013-01-01
Neurotransmission depends on the exocytic fusion of synaptic vesicles (SVs) and their subsequent reformation either by clathrin-mediated endocytosis or budding from bulk endosomes. How synapses are able to rapidly recycle SVs to maintain SV pool size, yet preserve their compositional identity, is poorly understood. We demonstrate that deletion of the endocytic adaptor stonin 2 (Stn2) in mice compromises the fidelity of SV protein sorting, whereas the apparent speed of SV retrieval is increased. Loss of Stn2 leads to selective missorting of synaptotagmin 1 to the neuronal surface, an elevated SV pool size, and accelerated SV protein endocytosis. The latter phenotype is mimicked by overexpression of endocytosis-defective variants of synaptotagmin 1. Increased speed of SV protein retrieval in the absence of Stn2 correlates with an up-regulation of SV reformation from bulk endosomes. Our results are consistent with a model whereby Stn2 is required to preserve SV protein composition but is dispensable for maintaining the speed of SV recycling. PMID:23345427
Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses.
Wu, Xin-Sheng; Lee, Sung Hoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Wei-Dong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M; Wu, Ling-Gang
2016-12-07
Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using a knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. Published by Elsevier Inc.
Actin is crucial for all kinetically distinguishable forms of endocytosis at synapses
Wu, Xin-Sheng; Lee, Sunghoon; Sheng, Jiansong; Zhang, Zhen; Zhao, Weidong; Wang, Dongsheng; Jin, Yinghui; Charnay, Patrick; Ervasti, James M.; Wu, Ling-Gang
2016-01-01
Summary Mechanical force is needed to mediate endocytosis. Whether actin, the most abundant force-generating molecule, is essential for endocytosis is highly controversial in mammalian cells, particularly synapses, likely due to the use of actin blockers, the efficiency and specificity of which are often unclear in the studied cell. Here we addressed this issue using knockout approach combined with measurements of membrane capacitance and fission pore conductance, imaging of vesicular protein endocytosis, and electron microscopy. We found that two actin isoforms, β- and γ-actin, are crucial for slow, rapid, bulk, and overshoot endocytosis at large calyx-type synapses, and for slow endocytosis and bulk endocytosis at small hippocampal synapses. Polymerized actin provides mechanical force to form endocytic pits. Actin also facilitates replenishment of the readily releasable vesicle pool, likely via endocytic clearance of active zones. We conclude that polymerized actin provides mechanical force essential for all kinetically distinguishable forms of endocytosis at synapses. PMID:27840001
O'Reilly, Mary K; Tian, Hua; Paulson, James C
2011-02-01
CD22 is a member of the sialic acid-binding Ig-like lectin (Siglec) family that is known to be a regulator of B cell signaling. Its B cell-specific expression makes it an attractive target for immunotoxin-mediated B cell depletion therapy for the treatment of B cell lymphomas and autoimmune diseases. Although CD22 is well documented to be an endocytic receptor, it is believed that after internalization, it is targeted for degradation. We show in this study that CD22 is instead constitutively recycled to the cell surface. We also find that glycan ligand-based cargo is released from CD22 and accumulates intracellularly as CD22 recycles between the cell surface and endosomal compartments. In contrast, Abs to CD22 do not accumulate but remain bound to CD22 and recycle to the cell surface. The results have implications for development of agents that target CD22 as an endocytic receptor for delivery of cytotoxic cargo to B cells.
Endocytic function is critical for influenza A virus infection via DC-SIGN and L-SIGN
Gillespie, Leah; Roosendahl, Paula; Ng, Wy Ching; Brooks, Andrew G.; Reading, Patrick C.; Londrigan, Sarah L.
2016-01-01
The ubiquitous presence of cell-surface sialic acid (SIA) has complicated efforts to identify specific transmembrane glycoproteins that function as bone fide entry receptors for influenza A virus (IAV) infection. The C-type lectin receptors (CLRs) DC-SIGN (CD209) and L-SIGN (CD209L) enhance IAV infection however it is not known if they act as attachment factors, passing virions to other unknown receptors for virus entry, or as authentic entry receptors for CLR-mediated virus uptake and infection. Sialic acid-deficient Lec2 Chinese Hamster Ovary (CHO) cell lines were resistant to IAV infection whereas expression of DC-SIGN/L-SIGN restored susceptibility of Lec2 cells to pH- and dynamin-dependent infection. Moreover, Lec2 cells expressing endocytosis-defective DC-SIGN/L-SIGN retained capacity to bind IAV but showed reduced susceptibility to infection. These studies confirm that DC-SIGN and L-SIGN are authentic endocytic receptors for IAV entry and infection. PMID:26763587
Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion*
Kondo, Naoyuki; Marin, Mariana; Kim, Jeong Hwa; Desai, Tanay M.; Melikyan, Gregory B.
2015-01-01
Whether HIV-1 enters cells by fusing with the plasma membrane or with endosomes is a subject of active debate. The ability of HIV-1 to mediate fusion between adjacent cells, a process referred to as “fusion-from-without” (FFWO), shows that this virus can fuse with the plasma membrane. To compare FFWO occurring at the cell surface with HIV-cell fusion through a conventional entry route, we designed an experimental approach that enabled the measurements of both processes in the same sample. The following key differences were observed. First, a very small fraction of viruses fusing with target cells participated in FFWO. Second, whereas HIV-1 fusion with adherent cells was insensitive to actin inhibitors, post-CD4/coreceptor binding steps during FFWO were abrogated. A partial dependence of HIV-cell fusion on actin remodeling was observed in CD4+ T cells, but this effect appeared to be due to the actin dependence of virus uptake. Third, deletion of the cytoplasmic tail of HIV-1 gp41 dramatically enhanced the ability of the virus to promote FFWO, while having a modest effect on virus-cell fusion. Distinct efficiencies and actin dependences of FFWO versus HIV-cell fusion are consistent with the notion that, except for a minor fraction of particles that mediate fusion between the plasma membranes of adjacent cells, HIV-1 enters through an endocytic pathway. We surmise, however, that cell-cell contacts enabling HIV-1 fusion with the plasma membrane could be favored at the sites of high density of target cells, such as lymph nodes. PMID:25589785
Winkler, Hans Christian; Kornprobst, Julian; Wick, Peter; von Moos, Lea Maria; Trantakis, Ioannis; Schraner, Elisabeth Maria; Bathke, Barbara; Hochrein, Hubertus; Suter, Mark; Naegeli, Hanspeter
2017-06-23
Dendritic cells (DCs) are specialized first-line sensors of foreign materials invading the organism. These sentinel cells rely on pattern recognition receptors such as Nod-like or Toll-like receptors (TLRs) to launch immune reactions against pathogens, but also to mediate tolerance to self-antigens and, in the intestinal milieu, to nutrients and commensals. Since inappropriate DC activation contributes to inflammatory diseases and immunopathologies, a key question in the evaluation of orally ingested nanomaterials is whether their contact with DCs in the intestinal mucosa disrupts this delicate homeostatic balance between pathogen defense and tolerance. Here, we generated steady-state DCs by incubating hematopoietic progenitors with feline McDonough sarcoma-like tyrosine kinase 3 ligand (Flt3L) and used the resulting immature DCs to test potential biological responses against food-grade synthetic amorphous silica (SAS) representing a common nanomaterial generally thought to be safe. Interaction of immature and unprimed DCs with food-grade SAS particles and their internalization by endocytic uptake fails to elicit cytotoxicity and the release of interleukin (IL)-1α or tumor necrosis factor-α, which were identified as master regulators of acute inflammation in lung-related studies. However, the display of maturation markers on the cell surface shows that SAS particles activate completely immature DCs. Also, the endocytic uptake of SAS particles into these steady-state DCs leads to induction of the pro-IL-1β precursor, subsequently cleaved by the inflammasome to secrete mature IL-1β. In contrast, neither pro-IL-1β induction nor mature IL-1β secretion occurs upon internalization of TiO 2 or FePO 4 nanoparticles. The pro-IL-1β induction is suppressed by pharmacologic inhibitors of endosomal TLR activation or by genetic ablation of MyD88, a downstream adapter of TLR pathways, indicating that endosomal pattern recognition is responsible for the observed cytokine response to food-grade SAS particles. Our results unexpectedly show that food-grade SAS particles are able to directly initiate the endosomal MyD88-dependent pathogen pattern recognition and signaling pathway in steady-state DCs. The ensuing activation of immature DCs with de novo induction of pro-IL-1β implies that the currently massive use of SAS particles as food additive should be reconsidered.
A Role for EHD4 in the Regulation of Early Endosomal Transport
Sharma, Mahak; Naslavsky, Naava; Caplan, Steve
2009-01-01
All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452
Integrins: masters and slaves of endocytic transport.
Caswell, Patrick T; Vadrevu, Suryakiran; Norman, Jim C
2009-12-01
Since it has become clear that adhesion receptors are trafficked through the endosomal pathway and that this can influence their function, much effort has been invested in obtaining detailed descriptions of the molecular machinery responsible for internalizing and recycling integrins. New findings indicate that integrin trafficking dictates the nature of Rho GTPase signalling during cytokinesis and cell migration. Furthermore, integrins can exert control over the trafficking of other receptors in a way that drives cancer cell invasion and tumour angiogenesis.
Tjomsland, Veronica; Ellegård, Rada; Burgener, Adam; Mogk, Kenzie; Che, Karlhans F; Westmacott, Garrett; Hinkula, Jorma; Lifson, Jeffrey D; Larsson, Marie
2013-01-01
Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery. PMID:23526630
The Endocytic Adaptor Eps15 Controls Marginal Zone B Cell Numbers
Pozzi, Benedetta; Amodio, Stefania; Lucano, Caterina; Sciullo, Anna; Ronzoni, Simona; Castelletti, Daniela; Adler, Thure; Treise, Irina; Betsholtz, Ingrid Holmberg; Rathkolb, Birgit; Busch, Dirk H.; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Betsholtz, Christer; Casola, Stefano; Di Fiore, Pier Paolo; Offenhäuser, Nina
2012-01-01
Eps15 is an endocytic adaptor protein involved in clathrin and non-clathrin mediated endocytosis. In Caenorhabditis elegans and Drosophila melanogaster lack of Eps15 leads to defects in synaptic vesicle recycling and synapse formation. We generated Eps15-KO mice to investigate its function in mammals. Eps15-KO mice are born at the expected Mendelian ratio and are fertile. Using a large-scale phenotype screen covering more than 300 parameters correlated to human disease, we found that Eps15-KO mice did not show any sign of disease or neural deficits. Instead, altered blood parameters pointed to an immunological defect. By competitive bone marrow transplantation we demonstrated that Eps15-KO hematopoietic precursor cells were more efficient than the WT counterparts in repopulating B220+ bone marrow cells, CD19− thymocytes and splenic marginal zone (MZ) B cells. Eps15-KO mice showed a 2-fold increase in MZ B cell numbers when compared with controls. Using reverse bone marrow transplantation, we found that Eps15 regulates MZ B cell numbers in a cell autonomous manner. FACS analysis showed that although MZ B cells were increased in Eps15-KO mice, transitional and pre-MZ B cell numbers were unaffected. The increase in MZ B cell numbers in Eps15 KO mice was not dependent on altered BCR signaling or Notch activity. In conclusion, in mammals, the endocytic adaptor protein Eps15 is a regulator of B-cell lymphopoiesis. PMID:23226392
Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling
Fujishiro, Mitsuhiro; Okamura, Tomohisa; Fujio, Keishi; Okazaki, Hiroaki; Nomura, Seitaro; Takeda, Norifumi; Harada, Mutsuo; Toko, Haruhiro; Takimoto, Eiki; Akazawa, Hiroshi; Morita, Hiroyuki; Suzuki, Jun-ichi; Yamazaki, Tsutomu; Yamamoto, Kazuhiko; Komuro, Issei; Yanagisawa, Masashi
2015-01-01
G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays. PMID:26020647
N-formyl peptide receptors internalize but do not recycle in the absence of arrestins.
Vines, Charlotte M; Revankar, Chetana M; Maestas, Diane C; LaRusch, Leah L; Cimino, Daniel F; Kohout, Trudy A; Lefkowitz, Robert J; Prossnitz, Eric R
2003-10-24
Arrestins mediate phosphorylation-dependent desensitization, internalization, and initiation of signaling cascades for the majority of G protein-coupled receptors (GPCRs). Many GPCRs undergo agonist-mediated internalization through arrestin-dependent mechanisms, wherein arrestin serves as an adapter between the receptor and endocytic proteins. To understand the role of arrestins in N-formyl peptide receptor (FPR) trafficking, we stably expressed the FPR in a mouse embryonic fibroblast cell line (MEF) that lacked endogenous arrestin 2 and arrestin 3 (arrestin-deficient). We compared FPR internalization and recycling kinetics in these cells to congenic wild type MEF cell lines. Internalization of the FPR was not altered in the absence of arrestins. Since the FPR remains associated with arrestins following internalization, we investigated whether the rate of FPR recycling was altered in arrestin-deficient cells. While the FPR was able to recycle in the wild type cells, receptor recycling was largely absent in the arrestin double knockout cells. Reconstitution of the arrestin-deficient line with either arrestin 2 or arrestin 3 restored receptor recycling. Confocal fluorescence microscopy studies demonstrated that in arrestin-deficient cells the FPR may become trapped in the perinuclear recycling compartment. These observations indicate that, although the FPR can internalize in the absence of arrestins, recycling of internalized receptors to the cell surface is prevented. Our results suggest a novel role for arrestins in the post-endocytic trafficking of GPCRs.
Geldanamycin Enhances Retrograde Transport of Shiga Toxin in HEp-2 Cells
Simm, Roger; Torgersen, Maria Lyngaas; Sandvig, Kirsten
2015-01-01
The heat shock protein 90 (Hsp90) inhibitor geldanamycin (GA) has been shown to alter endosomal sorting, diverting cargo destined for the recycling pathway into the lysosomal pathway. Here we investigated whether GA also affects the sorting of cargo into the retrograde pathway from endosomes to the Golgi apparatus. As a model cargo we used the bacterial toxin Shiga toxin, which exploits the retrograde pathway as an entry route to the cytosol. Indeed, GA treatment of HEp-2 cells strongly increased the Shiga toxin transport to the Golgi apparatus. The enhanced Golgi transport was not due to increased endocytic uptake of the toxin or perturbed recycling, suggesting that GA selectively enhances endosomal sorting into the retrograde pathway. Moreover, GA activated p38 and both inhibitors of p38 or its substrate MK2 partially counteracted the GA-induced increase in Shiga toxin transport. Thus, our data suggest that GA-induced p38 and MK2 activation participate in the increased Shiga toxin transport to the Golgi apparatus. PMID:26017782
Recent Observations on Australian Bat Lyssavirus Tropism and Viral Entry
Weir, Dawn L.; Annand, Edward J.; Reid, Peter A.; Broder, Christopher C.
2014-01-01
Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen. PMID:24556791
Gromova, Kira V; Muhia, Mary; Rothammer, Nicola; Gee, Christine E; Thies, Edda; Schaefer, Irina; Kress, Sabrina; Kilimann, Manfred W; Shevchuk, Olga; Oertner, Thomas G; Kneussel, Matthias
2018-05-29
Autism spectrum disorders (ASDs) are associated with mutations affecting synaptic components, including GluN2B-NMDA receptors (NMDARs) and neurobeachin (NBEA). NBEA participates in biosynthetic pathways to regulate synapse receptor targeting, synaptic function, cognition, and social behavior. However, the role of NBEA-mediated transport in specific trafficking routes is unclear. Here, we highlight an additional function for NBEA in the local delivery and surface re-insertion of synaptic receptors in mouse neurons. NBEA dynamically interacts with Rab4-positive recycling endosomes, transiently enters spines in an activity-dependent manner, and regulates GluN2B-NMDAR recycling. Furthermore, we show that the microtubule growth inhibitor kinesin KIF21B constrains NBEA dynamics and is present in the NBEA-recycling endosome-NMDAR complex. Notably, Kif21b knockout decreases NMDAR surface expression and alters social behavior in mice, consistent with reported social deficits in Nbea mutants. The influence of NBEA-KIF21B interactions on GluN2B-NMDAR local recycling may be relevant to mechanisms underlying ASD etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Recent observations on Australian bat lyssavirus tropism and viral entry.
Weir, Dawn L; Annand, Edward J; Reid, Peter A; Broder, Christopher C
2014-02-19
Australian bat lyssavirus (ABLV) is a recently emerged rhabdovirus of the genus lyssavirus considered endemic in Australian bat populations that causes a neurological disease in people indistinguishable from clinical rabies. There are two distinct variants of ABLV, one that circulates in frugivorous bats (genus Pteropus) and the other in insectivorous microbats (genus Saccolaimus). Three fatal human cases of ABLV infection have been reported, the most recent in 2013, and each manifested as acute encephalitis but with variable incubation periods. Importantly, two equine cases also arose recently in 2013, the first occurrence of ABLV in a species other than bats or humans. Similar to other rhabdoviruses, ABLV infects host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion facilitated by its single fusogenic envelope glycoprotein (G). Recent studies have revealed that proposed rabies virus (RABV) receptors are not sufficient to permit ABLV entry into host cells and that the unknown receptor is broadly conserved among mammalian species. However, despite clear tropism differences between ABLV and RABV, the two viruses appear to utilize similar endocytic entry pathways. The recent human and horse infections highlight the importance of continued Australian public health awareness of this emerging pathogen.
Chitosan-folate decorated carbon nanotubes for site specific lung cancer delivery.
Singh, Rahul Pratap; Sharma, Gunjan; Sonali; Singh, Sanjay; Bharti, Shreekant; Pandey, Bajarangprasad L; Koch, Biplob; Muthu, Madaswamy S
2017-08-01
The aim of this work was to formulate chitosan-folate conjugated multi-walled carbon nanotubes for the lung cancer targeted delivery of docetaxel. The chitosan-folate conjugate was synthesized and the conjugation was confirmed by Fourier transform infrared spectroscopy. The multi-walled carbon nanotubes were characterized for their particle size, polydispersity, zeta potential, surface morphology, drug encapsulation efficiency and in vitro release study. The in vitro cellular uptake, cytotoxicity, and cell cycle analysis of the docetaxel/coumarin-6 loaded multi-walled carbon nanotubes were carried out to compare the effectiveness of the formulations. The biocompatibility and safety of chitosan-folate conjugated multi-walled carbon nanotubes was analyzed by lung histopathology in comparison with marketed docetaxel formulation (Docel™) and acylated multi-walled carbon nanotubes. The cellular internalization study shown that the chitosan-folate conjugated multi-walled carbon nanotubes could be easily internalized into the lung cancer cells through a folate receptor-mediated endocytic pathway. The IC 50 values exhibited that chitosan-folate conjugated multi-walled carbon nanotubes could be 89-fold more effective than Docel™ in human lung cancer cells (A549 cells). Copyright © 2017 Elsevier B.V. All rights reserved.
Sato, Ken; Sato, Miyuki
2017-10-01
Mitochondria contain their own DNA (mtDNA). In most sexually reproducing organisms, mtDNA is inherited maternally (uniparentally); this type of inheritance is thus referred to as 'maternal (uniparental) inheritance'. Recent studies have revealed various mechanisms to prevent the transmission of sperm-derived paternal mtDNA to the offspring, thereby ensuring maternal inheritance of mtDNA. In the nematode Caenorhabditis elegans, paternal mitochondria and their mtDNA degenerate almost immediately after fertilization and are selectively degraded by autophagy, which is referred to as 'allophagy' (allogeneic [non-self] organelle autophagy). In the fruit fly Drosophila melanogaster, paternal mtDNA is largely eliminated by an endonuclease G-mediated mechanism. Paternal mitochondria are subsequently removed by endocytic and autophagic pathways after fertilization. In many mammals, including humans, paternal mitochondria enter fertilized eggs. However, the fate of paternal mitochondria and their mtDNA in mammals is still a matter of debate. In this review, we will summarize recent knowledge on the molecular mechanisms underlying the prevention of paternal mtDNA transmission, which ensures maternal mtDNA inheritance in animals. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Specificity and autoregulation of Notch binding by tandem WW domains in suppressor of Deltex.
Jennings, Martin D; Blankley, Richard T; Baron, Martin; Golovanov, Alexander P; Avis, Johanna M
2007-09-28
WW domains target proline-tyrosine (PY) motifs and frequently function as tandem pairs. When studied in isolation, single WW domains are notably promiscuous and regulatory mechanisms are undoubtedly required to ensure selective interactions. Here, we show that the fourth WW domain (WW4) of Suppressor of Deltex, a modular Nedd4-like protein that down-regulates the Notch receptor, is the primary mediator of a direct interaction with a Notch-PY motif. A natural Trp to Phe substitution in WW4 reduces its affinity for general PY sequences and enhances selective interaction with the Notch-PY motif via compensatory specificity-determining interactions with PY-flanking residues. When WW4 is paired with WW3, domain-domain association, impeding proper folding, competes with Notch-PY binding to WW4. This novel mode of autoinhibition is relieved by binding of another ligand to WW3. Such cooperativity may facilitate the transient regulatory interactions observed in vivo between Su(dx) and Notch in the endocytic pathway. The highly conserved tandem arrangement of WW domains in Nedd4 proteins, and similar arrangements in more diverse proteins, suggests domain-domain communication may be integral to regulation of their associated cellular activities.
VEGF and VEGFR-2 (KDR) internalization is required for endothelial recovery during wound healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantino Rosa Santos, Susana; Instituto de Biopatologia Quimica, Faculdade de Medicina de Lisboa/Unidade de Biopatologia Vascular, Instituto de Medicina Molecular, Lisbon; Instituto Gulbenkian de Ciencia
2007-05-01
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this processmore » required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF + KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.« less
NASA Astrophysics Data System (ADS)
Shen, Hao; Slifka, Mark K.; Matloubian, Mehrdad; Jensen, Eric R.; Ahmed, Rafi; Miller, Jeff F.
1995-04-01
Listeria monocytogenes (LM) is a Gram-positive bacterium that is able to enter host cells, escape from the endocytic vesicle, multiply within the cytoplasm, and spread directly from cell to cell without encountering the extracellular milieu. The ability of LM to gain access to the host cell cytosol allows proteins secreted by the bacterium to efficiently enter the pathway for major histocompatibility complex class I antigen processing and presentation. We have established a genetic system for expression and secretion of foreign antigens by recombinant strains, based on stable site-specific integration of expression cassettes into the LM genome. The ability of LM recombinants to induce protective immunity against a heterologous pathogen was demonstrated with lymphocytic choriomeningitis virus (LCMV). LM strains expressing the entire LCMV nucleoprotein or an H-2L^d-restricted nucleoprotein epitope (aa 118-126) were constructed. Immunization of mice with LM vaccine strains conferred protection against challenge with virulent strains of LCMV that otherwise establish chronic infection in naive adult mice. In vivo depletion of CD8^+ T cells from vaccinated mice abrogated their ability to clear viral infection, showing that protective anti-viral immunity was due to CD8^+ T cells.
Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation
Hirai, Maretoshi; Arita, Yoh; McGlade, C. Jane; Lee, Kuo-Fen; Chen, Ju; Evans, Sylvia M.
2017-01-01
Failure of trabecular myocytes to undergo appropriate cell cycle withdrawal leads to ventricular noncompaction and heart failure. Signaling of growth factor receptor ERBB2 is critical for myocyte proliferation and trabeculation. However, the mechanisms underlying appropriate downregulation of trabecular ERBB2 signaling are little understood. Here, we have found that the endocytic adaptor proteins NUMB and NUMBL were required for downregulation of ERBB2 signaling in maturing trabeculae. Loss of NUMB and NUMBL resulted in a partial block of late endosome formation, resulting in sustained ERBB2 signaling and STAT5 activation. Unexpectedly, activated STAT5 overrode Hippo-mediated inhibition and drove YAP1 to the nucleus. Consequent aberrant cardiomyocyte proliferation resulted in ventricular noncompaction that was markedly rescued by heterozygous loss of function of either ERBB2 or YAP1. Further investigations revealed that NUMB and NUMBL interacted with small GTPase Rab7 to transition ERBB2 from early to late endosome for degradation. Our studies provide insight into mechanisms by which NUMB and NUMBL promote cardiomyocyte cell cycle withdrawal and highlight previously unsuspected connections between pathways that are important for cardiomyocyte cell cycle reentry, with relevance to ventricular noncompaction cardiomyopathy and regenerative medicine. PMID:28067668
Membrane order in the plasma membrane and endocytic recycling compartment.
Iaea, David B; Maxfield, Frederick R
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.
Membrane order in the plasma membrane and endocytic recycling compartment
Iaea, David B.; Maxfield, Frederick R.
2017-01-01
The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles. PMID:29125865
Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang
2016-08-10
In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. Copyright © 2016 Elsevier B.V. All rights reserved.
Terebiznik, M. R.; Vazquez, C. L.; Torbicki, K.; Banks, D.; Wang, T.; Hong, W.; Blanke, S. R.; Colombo, M. I.; Jones, N. L.
2006-01-01
Helicobacter pylori colonizes the gastric epithelium of at least 50% of the world's human population, playing a causative role in the development of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. Current evidence indicates that H. pylori can invade epithelial cells in the gastric mucosa. However, relatively little is known about the biology of H. pylori invasion and survival in host cells. Here, we analyze both the nature of and the mechanisms responsible for the formation of H. pylori's intracellular niche. We show that in AGS cells infected with H. pylori, bacterium-containing vacuoles originate through the fusion of late endocytic organelles. This process is mediated by the VacA-dependent retention of the small GTPase Rab7. In addition, functional interactions between Rab7 and its downstream effector, Rab-interacting lysosomal protein (RILP), are necessary for the formation of the bacterial compartment since expression of mutant forms of RILP or Rab7 that fail to bind each other impaired the formation of this unique bacterial niche. Moreover, the VacA-mediated sequestration of active Rab7 disrupts the full maturation of vacuoles as assessed by the lack of both colocalization with cathepsin D and degradation of internalized cargo in the H. pylori-containing vacuole. Based on these findings, we propose that the VacA-dependent isolation of the H. pylori-containing vacuole from bactericidal components of the lysosomal pathway promotes bacterial survival and contributes to the persistence of infection. PMID:17000720
Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.
Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu
2015-12-02
Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. Copyright © 2015 Elsevier B.V. All rights reserved.
Masilamani, Madhan; Narayanan, Sriram; Prieto, Martha; Borrego, Francisco; Coligan, John E
2008-06-01
The CD94/NKG2A inhibitory receptor, expressed by natural killer and T cells, is constantly exposed to its HLA-E ligand expressed by surrounding cells. Ligand exposure often induces receptor downregulation. For CD94/NKG2A, this could potentiate activation receptor(s) induced responses to normal bystander cells. We investigated CD94/NKG2A endocytosis and found that it occurs by an amiloride-sensitive, Rac1-dependent macropinocytic-like process; however, it does not require clathrin, dynamin, ADP ribosylation factor-6, phosphoinositide-3 kinase or the actin cytoskeleton. Once endocytosed, CD94/NKG2A traffics to early endosomal antigen 1(+), Rab5(+) early endosomes. It does appear in Rab4(+) early/sorting endosome, but, in the time period examined, fails to reach Rab11(+) recycling or Rab7(+) late endosomes or lysosome-associated membrane protein-1(+) lysosomes. These results indicate that CD94/NKG2A utilizes a previously undescribed endocytic mechanism coupled with an abbreviated trafficking pattern, perhaps to insure surface expression.
Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines.
Youm, Ibrahima; Youan, Bi-Botti C
2013-10-01
This study tests the hypothesis that pegylated nanoparticles (NPs) could be taken up by the cochlear cells [House Ear Institute-organ of Corti 1 (HEI-OC1) and Stria vascularis K-1 (SVK-1)], through endocytic pathways. Furthermore, the in vitro drug release and the cytotoxicity of Furosemide (FUR)-loaded NPs on these two cochlear cells are investigated. FUR-loaded pegylated NPs are prepared by the emulsion-solvent diffusion method without surfactant. The NPs are characterized for particle mean diameter, polydispersity index (PDI), morphology, percent drug encapsulation efficiency (EE%), and FUR release kinetics. The methyl tetrazolium salt (MTS) and lactate dehydrogenase (LDH) bioassays are used to evaluate in vitro, the cytotoxicity of FUR-loaded NPs and native FUR. The NPs uptake is investigated using confocal microscopy, microplate reader/fluorimetry, and flow cytometry. Spherical NPs with a mean diameter range of 133-210 nm and PDI values varying from 0.037 to 0.41 are produced. The FUR EE% is 86% and the drug is released from the NPs according to the zero-order and Higuchi models. After treatment with blank NPs, the percentage of cell viability and cell death are 95.96% and 8.95%, in HEI-OC1 cells, respectively. The NPs are internalized by HEI-OC1 cells through a clathrin-dependent pathway. In addition, results show that NPs can be taken up via clathrin and cytoskeleton mediated pathways in SVK-1 cells. The internalization of the pegylated NPs can enhance the drug toxicity by necrosis in a dose-dependent and sustained release manner. The formulated NPs provide a promising template for a targeted drug delivery system to the inner ear. Copyright © 2013 Elsevier B.V. All rights reserved.
PIKfyve Regulation of Endosome-Linked Pathways
de Lartigue, Jane; Polson, Hannah; Feldman, Morri; Shokat, Kevan; Tooze, Sharon A; Urbé, Sylvie; Clague, Michael J
2009-01-01
The phosphoinositide 5-kinase (PIKfyve) is a critical enzyme for the synthesis of PtdIns(3,5)P2, that has been implicated in various trafficking events associated with the endocytic pathway. We have now directly compared the effects of siRNA-mediated knockdown of PIKfyve in HeLa cells with a specific pharmacological inhibitor of enzyme activity. Both approaches induce changes in the distribution of CI-M6PR and trans-Golgi network (TGN)-46 proteins, which cycles between endosomes and TGN, leading to their accumulation in dispersed punctae, whilst the TGN marker golgin-245 retains a perinuclear disposition. Trafficking of CD8-CI-M6PR (retromer-dependent) and CD8-Furin (retromer-independent) chimeras from the cell surface to the TGN is delayed following drug administration, as is the transport of the Shiga toxin B-subunit. siRNA knockdown of PIKfyve produced no defect in epidermal growth factor receptor (EGFR) degradation, unless combined with knockdown of its activator molecule Vac14, suggesting that a low threshold of PtdIns(3,5)P2 is necessary and sufficient for this pathway. Accordingly pharmacological inhibition of PIKfyve results in a profound block to the lysosomal degradation of activated epidermal growth factor (EGF) and Met receptors. Immunofluorescence revealed EGF receptors to be trapped in the interior of a swollen endosomal compartment. In cells starved of amino acids, PIKfyve inhibition leads to the accumulation of the lipidated form of GFP-LC3, a marker of autophagosomal structures, which can be visualized as fluorescent punctae. We suggest that PIKfyve inhibition may render the late endosome/lysosome compartment refractory to fusion with both autophagosomes and with EGFR-containing multivesicular bodies. PMID:19582903
Leone, Dario Armando; Peschel, Andrea; Brown, Markus; Schachner, Helga; Ball, Miriam J; Gyuraszova, Marianna; Salzer-Muhar, Ulrike; Fukuda, Minoru; Vizzardelli, Caterina; Bohle, Barbara; Rees, Andrew J; Kain, Renate
2017-07-15
The lysosome-associated membrane protein (LAMP) family includes the dendritic cell endocytic receptors DC-LAMP and CD68, as well as LAMP-1 and LAMP-2. In this study we identify LAMP-1 (CD107a) and LAMP-2 (CD107b) on the surface of human monocyte-derived dendritic cells (MoDC) and show only LAMP-2 is internalized after ligation by specific Abs, including H4B4, and traffics rapidly but transiently to the MHC class II loading compartment, as does Ag conjugated to H4B4. However, pulsing MoDC with conjugates of primary (keyhole limpet hemocyanin; KLH) and recall (Bet v 1) Ags (H4B4*KLH and H4B4*Bet v 1) induced significantly less CD4 cell proliferation than pulsing with native Ag or Ag conjugated to control mAb (ISO*KLH and ISO*Bet v 1). In H4B4*KLH-pulsed MoDC, the duration of KLH residence in MHC class II loading compartments was significantly reduced, as were surface HLA-DR and DR-bound KLH-derived peptides. Paradoxically, MoDC pulsed with H4B4*KLH, but not the other KLH preparations, induced robust proliferation of CD4 cells separated from them by a transwell membrane, indicating factors in the supernatant were responsible. Furthermore, extracellular vesicles from supernatants of H4B4*KLH-pulsed MoDC contained significantly more HLA-DR and KLH than those purified from control MoDC, and KLH was concentrated specifically in exosomes that were a uniquely effective source of Ag in standard T cell proliferation assays. In summary, we identify LAMP-2 as an endocytic receptor on human MoDC that routes cargo into unusual Ag processing pathways, which reduces surface expression of Ag-derived peptides while selectively enriching Ag within immunogenic exosomes. This novel pathway has implications for the initiation of immune responses both locally and at distant sites. Copyright © 2017 by The American Association of Immunologists, Inc.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells.
Chan, S A; Smith, C
2001-12-15
1. Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. 2. The sAPs evoked inward Na(+) and Ca(2+) currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (tau = 560 ms). 3. Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. 4. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. 5. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506.
Physiological stimuli evoke two forms of endocytosis in bovine chromaffin cells
Chan, Shyue-An; Smith, Corey
2001-01-01
Exocytosis and endocytosis were measured following single, or trains of, simulated action potentials (sAP) in bovine adrenal chromaffin cells. Catecholamine secretion was measured by oxidative amperometry and cell membrane turnover was measured by voltage clamp cell capacitance measurements. The sAPs evoked inward Na+ and Ca2+ currents that were statistically identical to those evoked by native action potential waveforms. On average, a single secretory granule underwent fusion following sAP stimulation. An equivalent amount of membrane was then quickly internalised (τ = 560 ms). Stimulation with sAP trains revealed a biphasic relationship between cell firing rate and endocytic activity. At basal stimulus frequencies (single to 0.5 Hz) cells exhibited a robust membrane internalisation that then diminished as firing increased to intermediate levels (1.9 and 6 Hz). However at the higher stimulation rates (10 and 16 Hz) endocytic activity rebounded and was again able to effectively maintain cell surface near pre-stimulus levels. Treatment with cyclosporin A and FK506, inhibitors of the phosphatase calcineurin, left endocytosis characteristics unaltered at the lower basal stimulus levels, but blocked the resurgence in endocytosis seen in control cells at higher sAP frequencies. Based on these findings we propose that, under physiological electrical stimulation, chromaffin cells internalise membrane via two distinct pathways that are separable. One is prevalent at basal stimulus frequencies, is lessened with increased firing, and is insensitive to cyclosporin A and FK506. A second endocytic form is activated by increased firing frequencies, and is selectively blocked by cyclosporin A and FK506. PMID:11744761
A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling.
Bai, Zhiyong; Grant, Barth D
2015-03-24
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1-positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42-associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling.
A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling
Bai, Zhiyong; Grant, Barth D.
2015-01-01
Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511
Tarpey, Patrick S; Stevens, Claire; Teague, Jon; Edkins, Sarah; O'Meara, Sarah; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Butler, Adam; Cole, Jennifer; Dicks, Ed; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Hinton, Jonathon; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Tofts, Calli; Varian, Jennifer; West, Sofie; Widaa, Sara; Yates, Andy; Catford, Rachael; Butler, Julia; Mallya, Uma; Moon, Jenny; Luo, Ying; Dorkins, Huw; Thompson, Deborah; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Carpenter, Nancy; Simensen, Richard J; Schwartz, Charles E; Stevenson, Roger E; Turner, Gillian; Partington, Michael; Gecz, Jozef; Stratton, Michael R; Futreal, P Andrew; Raymond, F Lucy
2006-12-01
In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis.
Gonçalves-Carneiro, Daniel; McKeating, Jane A; Bailey, Dalan
2017-04-01
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic. Copyright © 2017 Gonçalves-Carneiro et al.
The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes
Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak
2015-01-01
The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847
Brudner, Matthew; Karpel, Marshall; Lear, Calli; Chen, Li; Yantosca, L Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M Reza; Eisen, Damon P; Mungall, Bruce A; Kotton, Darrell N; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L; Ezekowitz, Alan B; Spear, Gregory T; Olinger, Gene G; Schmidt, Emmett V; Michelow, Ian C
2013-01-01
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes.
Lear, Calli; Chen, Li; Yantosca, L. Michael; Scully, Corinne; Sarraju, Ashish; Sokolovska, Anna; Zariffard, M. Reza; Eisen, Damon P.; Mungall, Bruce A.; Kotton, Darrell N.; Omari, Amel; Huang, I-Chueh; Farzan, Michael; Takahashi, Kazue; Stuart, Lynda; Stahl, Gregory L.; Ezekowitz, Alan B.; Spear, Gregory T.; Olinger, Gene G.; Schmidt, Emmett V.; Michelow, Ian C.
2013-01-01
Mannose-binding lectin (MBL) is a key soluble effector of the innate immune system that recognizes pathogen-specific surface glycans. Surprisingly, low-producing MBL genetic variants that may predispose children and immunocompromised individuals to infectious diseases are more common than would be expected in human populations. Since certain immune defense molecules, such as immunoglobulins, can be exploited by invasive pathogens, we hypothesized that MBL might also enhance infections in some circumstances. Consequently, the low and intermediate MBL levels commonly found in human populations might be the result of balancing selection. Using model infection systems with pseudotyped and authentic glycosylated viruses, we demonstrated that MBL indeed enhances infection of Ebola, Hendra, Nipah and West Nile viruses in low complement conditions. Mechanistic studies with Ebola virus (EBOV) glycoprotein pseudotyped lentiviruses confirmed that MBL binds to N-linked glycan epitopes on viral surfaces in a specific manner via the MBL carbohydrate recognition domain, which is necessary for enhanced infection. MBL mediates lipid-raft-dependent macropinocytosis of EBOV via a pathway that appears to require less actin or early endosomal processing compared with the filovirus canonical endocytic pathway. Using a validated RNA interference screen, we identified C1QBP (gC1qR) as a candidate surface receptor that mediates MBL-dependent enhancement of EBOV infection. We also identified dectin-2 (CLEC6A) as a potentially novel candidate attachment factor for EBOV. Our findings support the concept of an innate immune haplotype that represents critical interactions between MBL and complement component C4 genes and that may modify susceptibility or resistance to certain glycosylated pathogens. Therefore, higher levels of native or exogenous MBL could be deleterious in the setting of relative hypocomplementemia which can occur genetically or because of immunodepletion during active infections. Our findings confirm our hypothesis that the pressure of infectious diseases may have contributed in part to evolutionary selection of MBL mutant haplotypes. PMID:23573288
Cheng, Liang; Huang, Fa-Zhen; Cheng, Li-Fang; Zhu, Ya-Qin; Hu, Qing; Li, Ling; Wei, Lin; Chen, Da-Wei
2014-01-01
Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%-80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC.
Co-factors Required for TLR7- and TLR9- dependent Innate Immune Responses
Chiang, Chih-yuan; Engel, Alex; Opaluch, Amanda M.; Ramos, Irene; Maestre, Ana M.; Secundino, Ismael; De Jesus, Paul D.; Nguyen, Quy T.; Welch, Genevieve; Bonamy, Ghislain M.C.; Miraglia, Loren J.; Orth, Anthony P.; Nizet, Victor; Fernandez-Sesma, Ana; Zhou, Yingyao; Barton, Gregory M.; Chanda, Sumit K.
2012-01-01
SUMMARY Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent pro-inflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis we identify 190 co-factors required for TLR7- and TLR9-directed signaling responses. A set of co-factors were cross-profiled for their activities downstream of several immunoreceptors, and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection. PMID:22423970
Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases.
Clague, Michael J; Urbé, Sylvie
2017-06-01
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes. © 2017 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Soykan, Tolga; Kaempf, Natalie; Sakaba, Takeshi; Vollweiter, Dennis; Goerdeler, Felix; Puchkov, Dmytro; Kononenko, Natalia L; Haucke, Volker
2017-02-22
Neurotransmission is based on the exocytic fusion of synaptic vesicles (SVs) followed by endocytic membrane retrieval and the reformation of SVs. Recent data suggest that at physiological temperature SVs are internalized via clathrin-independent ultrafast endocytosis (UFE) within hundreds of milliseconds, while other studies have postulated a key role for clathrin-mediated endocytosis (CME) of SV proteins on a timescale of seconds to tens of seconds. Here we demonstrate using cultured hippocampal neurons as a model that at physiological temperature SV endocytosis occurs on several timescales from less than a second to several seconds, yet, is largely independent of clathrin. Clathrin-independent endocytosis (CIE) of SV membranes is mediated by actin-nucleating formins such as mDia1, which are required for the formation of presynaptic endosome-like vacuoles from which SVs reform. Our results resolve previous discrepancies in the field and suggest that SV membranes are predominantly retrieved via CIE mediated by formin-dependent actin assembly. Copyright © 2017 Elsevier Inc. All rights reserved.
Mingo, Rebecca M.; Simmons, James A.; Shoemaker, Charles J.; Nelson, Elizabeth A.; Schornberg, Kathryn L.; D'Souza, Ryan S.; Casanova, James E.
2014-01-01
ABSTRACT Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1+ LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. IMPORTANCE Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1+ LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1+ LE/Lys, as a therapeutic target for SARS and EBOV. PMID:25552710
Li, Zi; Zhao, Kui; Lan, Yungang; Lv, Xiaoling; Hu, Shiyu; Guan, Jiyu; Lu, Huijun; Zhang, Jing; Shi, Junchao; Yang, Yawen; Song, Deguang; Gao, Feng; He, Wenqi
2017-12-01
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes neurological dysfunction. Neural cells are its targets for viral progression. However, the detailed mechanism underlying PHEV entry and trafficking remains unknown. PHEV is the etiological agent of porcine hemagglutinating encephalomyelitis, which is an acute and highly contagious disease that causes numerous deaths in suckling piglets and enormous economic losses in China. Understanding the viral entry pathway will not only advance our knowledge of PHEV infection and pathogenesis but also open new approaches to the development of novel therapeutic strategies. Therefore, we employed systematic approaches to dissect the internalization and intracellular trafficking mechanism of PHEV in Neuro-2a cells. This is the first report to describe the process of PHEV entry into nerve cells via clathrin-mediated endocytosis in a dynamin-, cholesterol-, and pH-dependent manner that requires Rab5 and Rab7. Copyright © 2017 Li et al.
Ökvist, Anna; Fagergren, Pernilla; Whittard, John; Garcia-Osta, Ana; Drakenberg, Katarina; Horvath, Monika Cs.; Schmidt, Carl J.; Keller, Eva; Bannon, Michael J.; Hurd, Yasmin L.
2010-01-01
Background Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers. Methods We examined glutamate receptors and scaffolding proteins associated with the post-synaptic density (PSD) of excitatory synapses in the human post-mortem amygdala. mRNA or protein levels were studied in a multi-drug (7 heroin, 8 cocaine, 7 heroin/cocaine and 7 control) or predominant heroin (29 heroin and 15 control) population of subjects. Results The amygdala of drug abusers was characterized by a striking positive correlation (r > 0.8) between AMPA GluA1 and post-synaptic protein-95 (PSD-95) mRNA levels, which was not evident in controls. Structural equation multi-group analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1—PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was significantly increased in both heroin and cocaine users as was its binding partner dynamin-3, localized to the endocytic zone. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c—dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers. Conclusions Impairment of key components of the amygdala PSD and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers. PMID:21126734
1985-01-01
The endocytic compartments of the asialoglycoprotein (ASGP) pathway in rat hepatocytes were studied using a combined morphological and biochemical approach in the isolated perfused liver. Use of electron microscopic tracers and a temperature-shift protocol to synchronize ligand entry confirmed the route of ASGP internalization observed in our previous in vivo studies (1) and established conditions under which we could label the contents of successive compartments in the pathway for subcellular fractionation studies. Three endosomal compartments were demonstrated in which ASGPs appear after they enter the cell via coated pits and vesicles but before they reach their site of degradation in lysosomes. These three compartments could be distinguished by their location within the hepatocyte, by their morphological appearance in situ, and by their density in sucrose gradients. The distributions of ASGP receptors, both accessible and latent (revealed by detergent permeabilization), were also examined and compared with that of ligand during subcellular fractionation. Most accessible ASGP receptors co-distributed with conventional plasma membrane markers. However, hepatocytes contain a substantial intracellular pool of latent ASGP binding sites that exceeds the number of cell surface receptors and whose presence is not dependent on ASGP exposure. The distribution of these latent ASGP receptors on sucrose gradients (detected either immunologically or by binding assays) was coincident with that of ligand sequestered within the early endosome compartments. In addition, both early endosomes and the membrane vesicles containing latent ASGP receptors had high cholesterol content, because both shifted markedly in density upon exposure to digitonin. PMID:2866191
A protein interaction map for cell polarity development
Drees, Becky L.; Sundin, Bryan; Brazeau, Elizabeth; Caviston, Juliane P.; Chen, Guang-Chao; Guo, Wei; Kozminski, Keith G.; Lau, Michelle W.; Moskow, John J.; Tong, Amy; Schenkman, Laura R.; McKenzie, Amos; Brennwald, Patrick; Longtine, Mark; Bi, Erfei; Chan, Clarence; Novick, Peter; Boone, Charles; Pringle, John R.; Davis, Trisha N.; Fields, Stanley; Drubin, David G.
2001-01-01
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein–protein interactions that mediate cell polarity development, and to uncover novel mechanisms that coordinate the numerous events involved, we carried out a large-scale two-hybrid experiment. 68 Gal4 DNA binding domain fusions of yeast proteins associated with the actin cytoskeleton, septins, the secretory apparatus, and Rho-type GTPases were used to screen an array of yeast transformants that express ∼90% of the predicted Saccharomyces cerevisiae open reading frames as Gal4 activation domain fusions. 191 protein–protein interactions were detected, of which 128 had not been described previously. 44 interactions implicated 20 previously uncharacterized proteins in cell polarity development. Further insights into possible roles of 13 of these proteins were revealed by their multiple two-hybrid interactions and by subcellular localization. Included in the interaction network were associations of Cdc42 and Rho1 pathways with proteins involved in exocytosis, septin organization, actin assembly, microtubule organization, autophagy, cytokinesis, and cell wall synthesis. Other interactions suggested direct connections between Rho1- and Cdc42-regulated pathways; the secretory apparatus and regulators of polarity establishment; actin assembly and the morphogenesis checkpoint; and the exocytic and endocytic machinery. In total, a network of interactions that provide an integrated response of signaling proteins, the cytoskeleton, and organelles to the spatial cues that direct polarity development was revealed. PMID:11489916
Shea, Patrick R; Virtaneva, Kimmo; Kupko, John J; Porcella, Stephen F; Barry, William T; Wright, Fred A; Kobayashi, Scott D; Carmody, Aaron; Ireland, Robin M; Sturdevant, Daniel E; Ricklefs, Stacy M; Babar, Imran; Johnson, Claire A; Graham, Morag R; Gardner, Donald J; Bailey, John R; Parnell, Michael J; Deleo, Frank R; Musser, James M
2010-03-09
Relatively little is understood about the dynamics of global host-pathogen transcriptome changes that occur during bacterial infection of mucosal surfaces. To test the hypothesis that group A Streptococcus (GAS) infection of the oropharynx provokes a distinct host transcriptome response, we performed genome-wide transcriptome analysis using a nonhuman primate model of experimental pharyngitis. We also identified host and pathogen biological processes and individual host and pathogen gene pairs with correlated patterns of expression, suggesting interaction. For this study, 509 host genes and seven biological pathways were differentially expressed throughout the entire 32-day infection cycle. GAS infection produced an initial widespread significant decrease in expression of many host genes, including those involved in cytokine production, vesicle formation, metabolism, and signal transduction. This repression lasted until day 4, at which time a large increase in expression of host genes was observed, including those involved in protein translation, antigen presentation, and GTP-mediated signaling. The interactome analysis identified 73 host and pathogen gene pairs with correlated expression levels. We discovered significant correlations between transcripts of GAS genes involved in hyaluronic capsule production and host endocytic vesicle formation, GAS GTPases and host fibrinolytic genes, and GAS response to interaction with neutrophils. We also identified a strong signal, suggesting interaction between host gammadelta T cells and genes in the GAS mevalonic acid synthesis pathway responsible for production of isopentenyl-pyrophosphate, a short-chain phospholipid that stimulates these T cells. Taken together, our results are unique in providing a comprehensive understanding of the host-pathogen interactome during mucosal infection by a bacterial pathogen.
Yang, Zhe; Tang, Wenxin; Luo, Xingen; Zhang, Xiaofang; Zhang, Chao; Li, Hao; Gao, Di; Luo, Huiyan; Jiang, Qing; Liu, Jie
2015-08-01
In this study, a dual-ligand polymer-lipid hybrid nanoparticle drug delivery vehicle comprised of an anti-HER2/neu peptide (AHNP) mimic with a modified HIV-1 Tat (mTAT) was established for the targeted treatment of Her2/neu-overexpressing cells. The resultant dual-ligand hybrid nanoparticles (NPs) consisted of a poly(lactide-co-glycolide) core, a near 90% surface coverage of the lipid monolayer, and a 5.7 nm hydrated polyethylene glycol shell. Ligand density optimization study revealed that cellular uptake efficiency of the hybrid NPs could be manipulated by controlling the surface-ligand densities. Furthermore, the cell uptake kinetics and mechanism studies showed that the dual-ligand modifications of hybrid NPs altered the cellular uptake pathway from caveolae-mediated endocytosis (CvME) to the multiple endocytic pathways, which would significantly enhance the NP internalization. Upon the systemic investigation of the cellular uptake behavior of dual-ligand hybrid NPs, docetaxel (DTX), a hydrophobic anticancer drug, was successfully encapsulated into dual-ligand hybrid NPs with high drug loading for Her2/neu-overexpressing SK-BR-3 breast cancer cell treatment. The DTX-loaded dual-ligand hybrid NPs showed a decreased burst release and a more gradual sustained drug release property. Because of the synergistic effect of dual-ligand modification, DTX-loaded dual-ligand hybrid NPs exerted substantially better therapeutic potency against SK-BR-3 cancer cells than other NP formulations and free DTX drugs. These results demonstrate that the dual-ligand hybrid NPs could be a promising vehicle for targeted drug delivery to treat breast cancer.
Lojk, Jasna; Bregar, Vladimir B; Rajh, Maruša; Miš, Katarina; Kreft, Mateja Erdani; Pirkmajer, Sergej; Veranič, Peter; Pavlin, Mojca
2015-01-01
Magnetic nanoparticles (NPs) are a special type of NP with a ferromagnetic, electron-dense core that enables several applications such as cell tracking, hyperthermia, and magnetic separation, as well as multimodality. So far, superparamagnetic iron oxide NPs (SPIONs) are the only clinically approved type of metal oxide NPs, but cobalt ferrite NPs have properties suitable for biomedical applications as well. In this study, we analyzed the cellular responses to magnetic cobalt ferrite NPs coated with polyacrylic acid (PAA) in three cell types: Chinese Hamster Ovary (CHO), mouse melanoma (B16) cell line, and primary human myoblasts (MYO). We compared the internalization pathway, intracellular trafficking, and intracellular fate of our NPs using fluorescence and transmission electron microscopy (TEM) as well as quantified NP uptake and analyzed uptake dynamics. We determined cell viability after 24 or 96 hours’ exposure to increasing concentrations of NPs, and quantified the generation of reactive oxygen species (ROS) upon 24 and 48 hours’ exposure. Our NPs have been shown to readily enter and accumulate in cells in high quantities using the same two endocytic pathways; mostly by macropinocytosis and partially by clathrin-mediated endocytosis. The cell types differed in their uptake rate, the dynamics of intracellular trafficking, and the uptake capacity, as well as in their response to higher concentrations of internalized NPs. The observed differences in cell responses stress the importance of evaluation of NP–cell interactions on several different cell types for better prediction of possible toxic effects on different cell and tissue types in vivo. PMID:25733835
Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease.
Fang, Fang; Yang, Wanlin; Florio, Jazmin B; Rockenstein, Edward; Spencer, Brian; Orain, Xavier M; Dong, Stephanie X; Li, Huayan; Chen, Xuqiao; Sung, Kijung; Rissman, Robert A; Masliah, Eliezer; Ding, Jianqing; Wu, Chengbiao
2017-06-20
Recent studies have demonstrated that hyperphosphorylation of tau protein plays a role in neuronal toxicities of α-synuclein (ASYN) in neurodegenerative disease such as familial Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease. Using a transgenic mouse model of Parkinson's disease (PD) that expresses GFP-ASYN driven by the PDGF-β promoter, we investigated how accumulation of ASYN impacted axonal function. We found that retrograde axonal trafficking of brain-derived neurotrophic factor (BDNF) in DIV7 cultures of E18 cortical neurons was markedly impaired at the embryonic stage, even though hyperphosphorylation of tau was not detectable in these neurons at this stage. Interestingly, we found that overexpressed ASYN interacted with dynein and induced a significant increase in the activated levels of small Rab GTPases such as Rab5 and Rab7, both key regulators of endocytic processes. Furthermore, expression of ASYN resulted in neuronal atrophy in DIV7 cortical cultures of either from E18 transgenic mouse model or from rat E18 embryos that were transiently transfected with ASYN-GFP for 72 hrs. Our studies suggest that excessive ASYN likely alters endocytic pathways leading to axonal dysfunction in embryonic cortical neurons in PD mouse models.
Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T.
2015-01-01
Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. PMID:25712094
Castillon, Guillaume A; Burriat-Couleru, Patricia; Abegg, Daniel; Criado Santos, Nina; Watanabe, Reika
2018-03-01
Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Graf regulates hematopoiesis through GEEC endocytosis of EGFR.
Kim, Sungdae; Nahm, Minyeop; Kim, Najin; Kwon, Yumi; Kim, Joohyung; Choi, Sukwoo; Choi, Eun Young; Shim, Jiwon; Lee, Cheolju; Lee, Seungbok
2017-11-15
GTPase regulator associated with focal adhesion kinase 1 (GRAF1) is an essential component of the GPI-enriched endocytic compartment (GEEC) endocytosis pathway. Mutations in the human GRAF1 gene are associated with acute myeloid leukemia, but its normal role in myeloid cell development remains unclear. We show that Graf, the Drosophila ortholog of GRAF1, is expressed and specifically localizes to GEEC endocytic membranes in macrophage-like plasmatocytes. We also find that loss of Graf impairs GEEC endocytosis, enhances EGFR signaling and induces a plasmatocyte overproliferation phenotype that requires the EGFR signaling cascade. Mechanistically, Graf-dependent GEEC endocytosis serves as a major route for EGFR internalization at high, but not low, doses of the predominant Drosophila EGFR ligand Spitz (Spi), and is indispensable for efficient EGFR degradation and signal attenuation. Finally, Graf interacts directly with EGFR in a receptor ubiquitylation-dependent manner, suggesting a mechanism by which Graf promotes GEEC endocytosis of EGFR at high Spi. Based on our findings, we propose a model in which Graf functions to downregulate EGFR signaling by facilitating Spi-induced receptor internalization through GEEC endocytosis, thereby restraining plasmatocyte proliferation. © 2017. Published by The Company of Biologists Ltd.
Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation
Zhen, Yuanli; Li, Wei
2015-01-01
The HOPS (homotypic fusion and protein sorting) complex functions in endocytic and autophagic pathways in both lower eukaryotes and mammalian cells through its involvement in fusion events between endosomes and lysosomes or autophagosomes and lysosomes. However, the differential molecular mechanisms underlying these fusion processes are largely unknown. Buff (bf) is a mouse mutant that carries an Asp251-to-Glu point mutation (D251E) in the VPS33A protein, a tethering protein and a core subunit of the HOPS complex. Bf mice showed impaired spontaneous locomotor activity, motor learning, and autophagic activity. Although the gross anatomy of the brain was apparently normal, the number of Purkinje cells was significantly reduced. Furthermore, we found that fusion between autophagosomes and lysosomes was defective in bf cells without compromising the endocytic pathway. The direct association of mutant VPS33AD251E with the autophagic SNARE complex, STX17 (syntaxin 17)-VAMP8-SNAP29, was enhanced. In addition, the VPS33AD251E mutation enhanced interactions with other HOPS subunits, namely VPS41, VPS39, VPS18, and VPS11, except for VPS16. Reduction of the interactions between VPS33AY440D and several other HOPS subunits led to decreased association with STX17. These results suggest that the VPS33AD251E mutation plays dual roles by increasing the HOPS complex assembly and its association with the autophagic SNARE complex, which selectively affects the autophagosome-lysosome fusion that impairs basal autophagic activity and induces Purkinje cell loss. PMID:26259518
DLG1 is an anchor for the E3 ligase MARCH2 at sites of cell-cell contact
Cao, Zhifang; Huett, Alan; Kuballa, Petric; Giallourakis, Cosmas; Xavier, Ramnik J.
2008-01-01
PDZ domain containing molecular scaffolds play a central role in organizing synaptic junctions. Observations in Drosophila and mammalian cells have implicated that ubiquitination and endosomal trafficking, of molecular scaffolds are critical to the development and maintenance of cell-cell junctions and cell polarity. To elucidate if there is a connection between these pathways, we applied an integrative genomic strategy, which combined comparative genomics and proteomics with cell biological assays. Given the importance of ubiquitin in regulating endocytic processes, we first identified the subset of E3 ligases with conserved PDZ binding motifs. Among this subset, the MARCH family ubiquitin ligases account for the largest family and MARCH2 has been previously implicated in endosomal trafficking. Next, we tested in an unbiased fashion, if MARCH2 binds PDZ proteins in vivo using a modified tandem affinity purification strategy followed by mass spectrometry. Of note, DLG1 was co-purified from MARCH2, with subsequent confirmation that MARCH2 interacts with full-length DLG1 in a PDZ domain dependent manner. Furthermore, we demonstrated that MARCH2 co-localized with DLG1 at sites of cell-cell contact. In addition, loss of the MARCH2 PDZ binding motif led to loss of MARCH2 localization at cell-cell contact sites and MARCH2 appeared to localize away from cell-cell junctions. In in vivo ubiquitination assays we show that MARCH2 promotes DLG1 ubiquitination Overall, these results suggest that PDZ ligands with E3 ligase activity may link PDZ domain containing tumor suppressors to endocytic pathways and cell polarity determination. PMID:17980554
Intersectin goes nuclear: secret life of an endocytic protein.
Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa
2018-04-27
Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
2013-01-01
Background The uptake of nanoparticles (NPs) by cells remains to be better characterized in order to understand the mechanisms of potential NP toxicity as well as for a reliable risk assessment. Real NP uptake is still difficult to evaluate because of the adsorption of NPs on the cellular surface. Results Here we used two approaches to distinguish adsorbed fluorescently labeled NPs from the internalized ones. The extracellular fluorescence was either quenched by Trypan Blue or the uptake was analyzed using imaging flow cytometry. We used this novel technique to define the inside of the cell to accurately study the uptake of fluorescently labeled (SiO2) and even non fluorescent but light diffracting NPs (TiO2). Time course, dose-dependence as well as the influence of surface charges on the uptake were shown in the pulmonary epithelial cell line NCI-H292. By setting up an integrative approach combining these flow cytometric analyses with confocal microscopy we deciphered the endocytic pathway involved in SiO2 NP uptake. Functional studies using energy depletion, pharmacological inhibitors, siRNA-clathrin heavy chain induced gene silencing and colocalization of NPs with proteins specific for different endocytic vesicles allowed us to determine macropinocytosis as the internalization pathway for SiO2 NPs in NCI-H292 cells. Conclusion The integrative approach we propose here using the innovative imaging flow cytometry combined with confocal microscopy could be used to identify the physico-chemical characteristics of NPs involved in their uptake in view to redesign safe NPs. PMID:23388071
Involvement of Clathrin-Mediated Endocytosis in Human Immunodeficiency Virus Type 1 Entry
Daecke, Jessica; Fackler, Oliver T.; Dittmar, Matthias T.; Kräusslich, Hans-Georg
2005-01-01
Productive entry of human immunodeficiency virus (HIV) is believed to occur by direct fusion at the plasma membrane. Endocytic uptake of HIV particles has been observed in several studies but is considered to be nonproductive, leading to virus degradation in the lysosome. We show here that endocytosis contributes significantly to productive HIV entry in HeLa cells by using trans dominant-negative mutants of dynamin and Eps15. Inducible expression of a dominant-negative mutant of dynamin in a CD4-positive HeLa cell line reduced HIV infection by 40 to 80%. This effect was independent of the infectious dose and was observed for three different isolates. Analysis of reverse transcription products by real-time PCR and of virus entry by delivery of a virion-associated Vpr-β-lactamase fusion protein revealed a similar reduction, indicating that the block occurred at the entry stage. A strong reduction of HIV entry was also observed upon transient transfection of a different trans dominant-negative variant of dynamin, and this reduction correlated with the relative inhibition of transferrin endocytosis. Expression of a dominant-negative variant of Eps15, which is specific for clathrin-dependent endocytosis, reduced HIV entry in HeLa cells by ca 95%, confirming the role of endocytosis for productive infection. In contrast, no effect was observed for a dominant-negative variant of caveolin. We conclude that dynamin-dependent, clathrin-mediated endocytosis can lead to productive entry of HIV in HeLa cells, suggesting this pathway as an alternative route of virus entry. PMID:15650184
Walsh, Sharon L; Unterwald, Ellen M; Izenwasser, Sari
2010-05-01
Opioid receptors are critical therapeutic targets for medications development relevant to the treatment of drug dependence and pain. With recent advances in molecular neurobiology, it has become evident that the functional activity of opioid receptors, as ligand-regulated protein complexes, is modulated by multifarious intracellular and extracellular events, that there is genetic variation in coding for receptors, and that the activity of endogenous opioid systems may underlie actions common to other addictive disorders. This supplemental issue of Drug and Alcohol Dependence, arising from an invited symposium at the 71st Annual Meeting of the College on Problems of Drug Dependence, provides a series of contemporary reviews focused on recent advances in opioid neuropharmacology. Each speaker provides herein an invited comprehensive review of the state of knowledge on a specific topic in opioid neuropharmacology. Evans and colleagues describe the multi-faceted control of the opioid G-protein coupled receptor as a dynamic "sensor" complex and identify novel targets for drug development. von Zastrow focuses on opioid receptor-mediated events regulated by endocytosis and membrane trafficking through the endocytic pathway and differential responses to opioid agonists. Blendy and colleague provide a review of human association studies on the functional relevance of the mu opioid receptor variant, A118G, and presents data from the A112G knock-in model, an analogous mouse variant to A118G. Finally, Maldonado and colleagues provide a broader systems review from genetic, pharmacologic and behavioral studies implicating the endogenous opioid systems as a substrate for the mediation of substance use disorders spanning pharmacological classes.
Chowdhury, Helena H; Kreft, Marko; Zorec, Robert
2002-12-15
We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (C(m)), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (upsilon;(exo)) was lower than the frequency of endocytic events (upsilon;(endo)) with a ratio upsilon;(exo)/upsilon;(endo) < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (upsilon;(exo)/upsilon;(endo) > 1). To study the coupling between the two processes, the slopes of regression lines relating upsilon;(exo) and upsilon;(endo) in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton.
Chowdhury, Helena H; Kreft, Marko; Zorec, Robert
2002-01-01
We used the cell-attached mode of patch-clamp technique to measure discrete attofarad steps in membrane capacitance (Cm), reporting area changes in the plasma membrane due to unitary exocytic and endocytic events. To investigate the role of the actin cytoskeleton in elementary exocytic and endocytic events, neuroendocrine rat melanotrophs were treated with Clostridium spiroforme toxin (CST), which specifically depolymerises F-actin. The average amplitude of exocytic events was not significantly different in control and in CST-treated cells. However, the amplitude of endocytic events was significantly smaller in CST-treated cells as compared to controls. The frequency of exocytic events increased by 2-fold in CST-treated cells relative to controls. In control cells the average frequency of exocytic events (νexo) was lower than the frequency of endocytic events (νendo) with a ratio νexo/νendo < 1. In the toxin treated cells, the predominant process was exocytosis with a ratio (νexo/νendo > 1). To study the coupling between the two processes, the slopes of regression lines relating νexo and νendo in a given patch of membrane were studied. The slopes of regression lines were similar, whereas the line intercepts with the y-axis were significantly different. The increased frequency of unitary exocytic events in CST-treated cells is consistent with the view, that the actin cytoskeleton acts as a barrier for exocytosis. While the disassembly of the actin cytoskeleton diminishes the size of unitary endocytic events, suggesting an important role of the actin cytoskeleton in determining the size of endocytic vesicles, the coupling between exocytosis and endocytosis in a given patch of membrane was independent of the state of the actin cytoskeleton. PMID:12482893
The interaction of bacterial magnetosomes and human liver cancer cells in vitro
NASA Astrophysics Data System (ADS)
Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao
2017-04-01
As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.
Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.
Zhao, Wenting; Hanson, Lindsey; Lou, Hsin-Ya; Akamatsu, Matthew; Chowdary, Praveen D; Santoro, Francesca; Marks, Jessica R; Grassart, Alexandre; Drubin, David G; Cui, Yi; Cui, Bianxiao
2017-08-01
Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.
Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein
Sato, Miyuki; Sato, Ken; Liou, Willisa; Pant, Saumya; Harada, Akihiro; Grant, Barth D
2008-01-01
Using Caenorhabditis elegans genetic screens, we identified receptor-mediated endocytosis (RME)-4 and RME-5/RAB-35 as important regulators of yolk endocytosis in vivo. In rme-4 and rab-35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME-4 and RAB-35 function downstream of clathrin, upstream of RAB-7, and act synergistically with recycling regulators RAB-11 and RME-1. We find that RME-4 is a conserved DENN domain protein that binds to RAB-35 in its GDP-loaded conformation. GFP–RME-4 also physically interacts with AP-2, is enriched on clathrin-coated pits, and requires clathrin but not RAB-5 for cortical association. GFP–RAB-35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme-4 mutants. We propose that RME-4 functions on coated pits and/or vesicles to recruit RAB-35, which in turn functions in the endosome to promote receptor recycling. PMID:18354496
Annexin VI is a mannose-6-phosphate-independent endocytic receptor for bovine β-glucuronidase.
Ramírez-Mata, Alberto; Michalak, Colette; Mendoza-Hernández, Guillermo; León-Del-Río, Alfonso; González-Noriega, Alfonso
2011-10-01
Endocytosis and transport of bovine liver β-glucuronidase to lysosomes in human fibroblasts are mediated by two receptors: the well-characterized cation-independent mannose 6-phosphate receptor (IGF-II/Man6PR) and an IGF-II/Man6PR-independent receptor, which recognizes a Ser-Trp*-Ser sequence present on the ligand. The latter receptor was detergent extracted from bovine liver membranes and purified. LC/ESI-MS/MS analysis revealed that this endocytic receptor was annexin VI (AnxA6). Several approaches were used to confirm this finding. First, the binding of bovine β-glucuronidase to the purified receptor from bovine liver membranes and His-tagged recombinant human AnxA6 protein was confirmed using ligand-blotting assays. Second, western blot analysis using antibodies raised against IGF-II/Man6PR-independent receptor as well as commercial antibodies against AnxA6 confirmed that the receptor and AnxA6 were indeed the same protein. Third, double immunofluorescence experiments in human fibroblasts confirmed a complete colocalization of the bovine β-glucuronidase and the AnxA6 receptor on the plasma membrane. Lastly, two cell lines were stably transfected with a plasmid containing the cDNA for human AnxA6. In both transfected cell lines, an increase in cell surface AnxA6 and in mannose 6-phosphate-independent endocytosis of bovine β-glucuronidase was detected. These results indicate that AnxA6 is a novel receptor that mediates the endocytosis of the bovine β-glucuronidase. Copyright © 2011 Elsevier Inc. All rights reserved.
Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L; Sapp, Martin
2012-09-01
Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles.
Bienkowska-Haba, Malgorzata; Williams, Carlyn; Kim, Seong Man; Garcea, Robert L.
2012-01-01
Human papillomaviruses (HPV) are composed of the major and minor capsid proteins, L1 and L2, that encapsidate a chromatinized, circular double-stranded DNA genome. At the outset of infection, the interaction of HPV type 16 (HPV16) (pseudo)virions with heparan sulfate proteoglycans triggers a conformational change in L2 that is facilitated by the host cell chaperone cyclophilin B (CyPB). This conformational change results in exposure of the L2 N terminus, which is required for infectious internalization. Following internalization, L2 facilitates egress of the viral genome from acidified endosomes, and the L2/DNA complex accumulates at PML nuclear bodies. We recently described a mutant virus that bypasses the requirement for cell surface CyPB but remains sensitive to cyclosporine for infection, indicating an additional role for CyP following endocytic uptake of virions. We now report that the L1 protein dissociates from the L2/DNA complex following infectious internalization. Inhibition and small interfering RNA (siRNA)-mediated knockdown of CyPs blocked dissociation of L1 from the L2/DNA complex. In vitro, purified CyPs facilitated the dissociation of L1 pentamers from recombinant HPV11 L1/L2 complexes in a pH-dependent manner. Furthermore, CyPs released L1 capsomeres from partially disassembled HPV16 pseudovirions at slightly acidic pH. Taken together, these data suggest that CyPs mediate the dissociation of HPV L1 and L2 capsid proteins following acidification of endocytic vesicles. PMID:22761365
Role of turgor pressure in endocytosis in fission yeast
Basu, Roshni; Munteanu, Emilia Laura; Chang, Fred
2014-01-01
Yeast and other walled cells possess high internal turgor pressure that allows them to grow and survive in the environment. This turgor pressure, however, may oppose the invagination of the plasma membrane needed for endocytosis. Here we study the effects of turgor pressure on endocytosis in the fission yeast Schizosaccharomyces pombe by time-lapse imaging of individual endocytic sites. Decreasing effective turgor pressure by addition of sorbitol to the media significantly accelerates early steps in the endocytic process before actin assembly and membrane ingression but does not affect the velocity or depth of ingression of the endocytic pit in wild-type cells. Sorbitol also rescues endocytic ingression defects of certain endocytic mutants and of cells treated with a low dose of the actin inhibitor latrunculin A. Endocytosis proceeds after removal of the cell wall, suggesting that the cell wall does not contribute mechanically to this process. These studies suggest that endocytosis is governed by a mechanical balance between local actin-dependent inward forces and opposing forces from high internal turgor pressure on the plasma membrane. PMID:24403609
Agonist-induced Endocytosis of CC Chemokine Receptor 5 Is Clathrin Dependent
Signoret, Nathalie; Hewlett, Lindsay; Wavre, Silène; Pelchen-Matthews, Annegret; Oppermann, Martin; Marsh, Mark
2005-01-01
The signaling activity of several chemokine receptors, including CC chemokine receptor 5 (CCR5), is in part controlled by their internalization, recycling, and/or degradation. For CCR5, agonists such as the chemokine CCL5 induce internalization into early endosomes containing the transferrin receptor, a marker for clathrin-dependent endocytosis, but it has been suggested that CCR5 may also follow clathrin-independent routes of internalization. Here, we present a detailed analysis of the role of clathrin in chemokine-induced CCR5 internalization. Using CCR5-transfected cell lines, immunofluorescence, and electron microscopy, we demonstrate that CCL5 causes the rapid redistribution of scattered cell surface CCR5 into large clusters that are associated with flat clathrin lattices. Invaginated clathrin-coated pits could be seen at the edge of these lattices and, in CCL5-treated cells, these pits contain CCR5. Receptors internalized via clathrin-coated vesicles follow the clathrin-mediated endocytic pathway, and depletion of clathrin with small interfering RNAs inhibits CCL5-induced CCR5 internalization. We found no evidence for CCR5 association with caveolae during agonist-induced internalization. However, sequestration of cholesterol with filipin interferes with agonist binding to CCR5, suggesting that cholesterol and/or lipid raft domains play some role in the events required for CCR5 activation before internalization. PMID:15591129
NASA Astrophysics Data System (ADS)
Jin, Hua; Pi, Jiang; Yang, Fen; Jiang, Jinhuan; Wang, Xiaoping; Bai, Haihua; Shao, Mingtao; Huang, Lei; Zhu, Haiyan; Yang, Peihui; Li, Lihua; Li, Ting; Cai, Jiye; Chen, Zheng W.
2016-07-01
Ursolic acid (UA) has proved to have broad-spectrum anti-tumor effects, but its poor water solubility and incompetent targeting property largely limit its clinical application and efficiency. Here, we synthesized a nanoparticle-based drug carrier composed of chitosan, UA and folate (FA-CS-UA-NPs) and demonstrated that FA-CS-UA-NPs could effectively diminish off-target effects and increase local drug concentrations of UA. Using MCF-7 cells as in vitro model for anti-cancer mechanistic studies, we found that FA-CS-UA-NPs could be easily internalized by cancer cells through a folate receptor-mediated endocytic pathway. FA-CS-UA-NPs entered into lysosome, destructed the permeability of lysosomal membrane, and then got released from lysosomes. Subsequently, FA-CS-UA-NPs localized into mitochondria but not nuclei. The prolonged retention of FA-CS-UA-NPs in mitochondria induced overproduction of ROS and destruction of mitochondrial membrane potential, and resulted in the irreversible apoptosis in cancer cells. In vivo experiments showed that FA-CS-UA-NPs could significantly reduce breast cancer burden in MCF-7 xenograft mouse model. These results suggested that FA-CS-UA-NPs could further be explored as an anti-cancer drug candidate and that our approach might provide a platform to develop novel anti-cancer drug delivery system.
Quantifying the Dynamic Interactions Between a Clathrin-Coated Pit and Cargo Molecules
NASA Astrophysics Data System (ADS)
Weigel, Aubrey; Tamkun, Michael; Krapf, Diego
2014-03-01
Clathrin-mediated endocytosis is a major pathway of internalization of cargo in eukaryotic cells. This process involves the recruitment of cargo molecules into a growing clathrin-coated pit (CCP). However, cargo-CCP interactions are difficult to study because CCPs display a large degree of lifetime heterogeneity and the interactions with cargo molecules evolve over time. We use single-molecule total internal reflection fluorescence (TIRF) microscopy, in combination with automatic detection and tracking algorithms, to directly visualize the recruitment of individual voltage-gated potassium channels into forming CCPs in living cells. Contrary to widespread ideas, cargo often escapes from a pit before abortive CCP termination or endocytic vesicle production. By measuring tens of thousands of capturing events, we build the distribution of capture times and the times that cargo remains confined to a CCP. An analytical stochastic model is developed and compared to the measured distributions. Due to the dynamic nature of the pit, the model is non-Markovian and it displays long-tail power law statistics. Our findings identify one source of the large heterogeneities observed in CCP maturation and provide a mechanism for the anomalous diffusion of proteins in the plasma membrane. This work was supported by National Science Foundation Grant PHY-0956714.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiles, Katie M.; Center for Oral Health Research, School of Dental Medicine University of Pennsylvania, Philadelphia, PA 19104; Milne, Richard S.B.
2008-03-30
During herpes simplex virus (HSV) entry, membrane fusion occurs either on the cell surface or after virus endocytosis. In both cases, binding of glycoprotein D (gD) to a receptor such as nectin-1 or HVEM is required. In this study, we co-cultured cells expressing gD with nectin-1 expressing cells to investigate the effects of gD on nectin-1 at cell contacts. After overnight co-cultures with gD expressing cells, there was a down-regulation of nectin-1 in B78H1-C10, SY5Y, A431 and HeLa cells, which HSV enters by endocytosis. In contrast, on Vero cells, which HSV enters at the plasma membrane, nectin-1 was not down-regulated.more » Further analysis of B78H1-derived cells showed that nectin-1 down-regulation corresponds to the ability of gD to bind nectin-1 and is achieved by internalization and low-pH-dependent degradation of nectin-1. Moreover, gD is necessary for virion internalization in B78H1 cells expressing nectin-1. These data suggest that the determinants of gD-mediated internalization of nectin-1 may direct HSV to an endocytic pathway during entry.« less
Vanegas Sáenz, Juan Ramón; Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi
2017-01-01
Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220-580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.
Spatially restricted G protein-coupled receptor activity via divergent endocytic compartments.
Jean-Alphonse, Frederic; Bowersox, Shanna; Chen, Stanford; Beard, Gemma; Puthenveedu, Manojkumar A; Hanyaloglu, Aylin C
2014-02-14
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.
Beers, Michael F.; Hawkins, Arie; Maguire, Jean Ann; Kotorashvili, Adam; Zhao, Ming; Newitt, Jennifer L.; Ding, Wenge; Russo, Scott; Guttentag, Susan; Gonzales, Linda; Mulugeta, Surafel
2011-01-01
Interstitial lung disease in both children and adults has been linked to mutations in the lung-specific Surfactant protein C gene (SFTPC). Among these, the missense mutation (isoleucine to threonine at codon 73 = hSP-CI73T) accounts for ~30% of all described SFTPC mutations. We reported previously that unlike the BRICHOS misfolding SFTPC mutants, expression of hSP-CI73T induces lung remodeling and alveolar lipoproteinosis without a substantial ER stress response or ER-mediated intrinsic apoptosis. We show here that, in contrast to its wild type counterpart that is directly routed to lysosomal-like organelles for processing, SP-CI73T is misdirected to the plasma membrane and subsequently internalized to the endocytic pathway via early endosomes, leading to the accumulation of abnormally processed proSP-C isoforms. Functionally, cells expressing hSP-CI73T demonstrated both impaired uptake and degradation of surfactant phospholipid, thus providing a molecular mechanism for the observed lipid accumulation in patients expressing hSP-CI73T through the disruption of normal phospholipid recycling. Our data provide evidence for a novel cellular mechanism for conformational protein associated diseases, and suggest a paradigm for mistargeted proteins involved in the disruption of the endosomal/lysosomal sorting machinery. PMID:21707890
1985-01-01
Hepatocytes of estradiol-treated rats, which express many low density lipoprotein receptors, rapidly accumulate intravenously injected low density lipoprotein in multivesicular bodies (MVBs). We have isolated MVBs and Golgi apparatus fractions from livers of estradiol-treated rats. MVB fractions were composed mainly of large vesicles, approximately 0.55 micron diam, filled with remnantlike very low density lipoproteins, known to be taken up into hepatocytes by receptor- mediated endocytosis. MVBs also contained numerous small vesicles, 0.05- 0.07 micron in diameter, and had two types of appendages: one fingerlike and electron dense and the other saclike and electron lucent. MVBs contained little galactosyltransferase or arylsulfatase activity, and content lipoproteins were largely intact. Very low density lipoproteins from Golgi fractions, which are derived to a large extent from secretory vesicles, were larger than those of MVB fractions and contained newly synthesized triglycerides. Membranes of MVBs contained much more cholesterol and less protein than did Golgi membranes. We conclude that two distinct lipoprotein-filled organelles are located in the bile canalicular pole of hepatocytes. MVBs, a major prelysosomal organelle of low density in the endocytic pathway, contain remnants of triglyceride-rich lipoproteins, whereas secretory vesicles of the Golgi apparatus contain nascent very low density lipoproteins. PMID:3988801
Covarrubias-Pinto, A; Acuña, A I; Boncompain, G; Papic, E; Burgos, P V; Perez, F; Castro, M A
2018-05-20
Ascorbic acid (Asc) is an antioxidant molecule essential for physiological functions. The concentration of extracellular Asc increases during synaptic transmission and renal reabsorption. These phenomena induce an increase of the Sodium-dependent-Vitamin-C-transporter 2 (SVCT2) at plasma membrane (PM) localization, as we previously demonstrated in neuronal and non-neuronal cells. Hence, the aim of this study was to evaluate intracellular SVCT2 trafficking kinetics in response to Asc. We observed two peaks of SVCT2 localization and function at the PM (at 5-10 min, "acute response", and 30-60 min, "post-acute response") when cells were incubated with Asc. We defined that the post-acute response was dependent on SVCT2 located in early secretory compartments, and its trafficking was abolished with Tunicamycin and Brefeldin A treatment. Moreover, using the RUSH system to retain and synchronize cargo secretion through the secretory pathway we demonstrated that the post-acute response increases SVCT2 trafficking kinetics from the ER to the PM suggesting the retention of SVCT2 at the early secretory pathway when Asc is absent. However, these observations do not explain the increased SVCT2 levels at the PM during the "acute" response, suggesting the involvement of a faster mechanism in close proximity with the PM. To investigate the possible role of endosomal compartments, we tested the effect of endocytosis inhibition. Expression of dominant-negative (DN) versions of the GTPase-dynamin II and clathrin-accessory protein AP180 showed a significant increase in SVCT2 levels at the PM. Moreover, expression of Rab11-DN, a GTPase implicated in cargo protein recycling from endosomes to the PM showed a similar outcome, strongly indicating that Asc impacts SVCT2 trafficking during the acute response. Therefore, our results revealed two mechanisms by which Asc modulates SVCT2 levels at the PM, one at the early secretory pathway and another at the endocytic compartments. We propose that these two mechanisms have key protective implications in the homeostasis of metabolically active and specialized tissues. Copyright © 2018 Elsevier Inc. All rights reserved.
Structures and mechanisms of vesicle coat components and multisubunit tethering complexes
Jackson, Lauren P; Kümmel, Daniel; Reinisch, Karin M; Owen, David J
2012-01-01
Eukaryotic cells face a logistical challenge in ensuring prompt and precise delivery of vesicular cargo to specific organelles within the cell. Coat protein complexes select cargo and initiate vesicle formation, while multisubunit tethering complexes participate in the delivery of vesicles to target membranes. Understanding these macromolecular assemblies has greatly benefited from their structural characterization. Recent structural data highlight principles in coat recruitment and uncoating in both the endocytic and retrograde pathways, and studies on the architecture of tethering complexes provide a framework for how they might link vesicles to the respective acceptor compartments and the fusion machinery. PMID:22728063
Cottingham, Christopher; Lu, Roujian; Jiao, Kai; Wang, Qin
2013-01-01
Inter-regulation of adrenergic receptors (ARs) via cross-talk is a long appreciated but mechanistically unclear physiological phenomenon. Evidence from the AR literature and our own extensive studies on regulation of α2AARs by the scaffolding protein spinophilin have illuminated a potential novel mechanism for cross-talk from β to α2ARs. In the present study, we have characterized a mode of endogenous AR cross-talk in native adrenergic neurons whereby canonical βAR-mediated signaling modulates spinophilin-regulated α2AAR endocytosis through PKA. Our findings demonstrate that co-activation of β and α2AARs, either by application of endogenous agonist or by simultaneous stimulation with distinct selective agonists, results in acceleration of endogenous α2AAR endocytosis in native neurons. We show that receptor-independent PKA activation by forskolin is sufficient to accelerate α2AAR endocytosis and that α2AAR stimulation alone drives accelerated endocytosis in spinophilin-null neurons. Endocytic response acceleration by β/α2AAR co-activation is blocked by PKA inhibition and lost in spinophilin-null neurons, consistent with our previous finding that spinophilin is a substrate for phosphorylation by PKA that disrupts its interaction with α2AARs. Importantly, we show that α2AR agonist-mediated α2AAR/spinophilin interaction is blocked by βAR co-activation in a PKA-dependent fashion. We therefore propose a novel mechanism for cross-talk from β to α2ARs, whereby canonical βAR-mediated signaling coupled to PKA activation results in phosphorylation of spinophilin, disrupting its interaction with α2AARs and accelerating α2AAR endocytic responses. This mechanism of cross-talk has significant implications for endogenous adrenergic physiology and for therapeutic targeting of β and α2AARs. PMID:23965992
Victoria, Guiliana Soraya; Zurzolo, Chiara
2015-09-02
Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Maggie P C; Robinson, Phillip J; Chircop, Megan
2013-01-01
Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association.
Ma, Maggie P. C.; Robinson, Phillip J.; Chircop, Megan
2013-01-01
Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association. PMID:23861900
Planar cell polarity controls directional Notch signaling in the Drosophila leg
Capilla, Amalia; Johnson, Ruth; Daniels, Maki; Benavente, María; Bray, Sarah J.; Galindo, Máximo Ibo
2012-01-01
The generation of functional structures during development requires tight spatial regulation of signaling pathways. Thus, in Drosophila legs, in which Notch pathway activity is required to specify joints, only cells distal to ligand-producing cells are capable of responding. Here, we show that the asymmetric distribution of planar cell polarity (PCP) proteins correlates with this spatial restriction of Notch activation. Frizzled and Dishevelled are enriched at distal sides of each cell and hence localize at the interface with ligand-expressing cells in the non-responding cells. Elimination of PCP gene function in cells proximal to ligand-expressing cells is sufficient to alleviate the repression, resulting in ectopic Notch activity and ectopic joint formation. Mutations that compromise a direct interaction between Dishevelled and Notch reduce the efficacy of repression. Likewise, increased Rab5 levels or dominant-negative Deltex can suppress the ectopic joints. Together, these results suggest that PCP coordinates the spatial activity of the Notch pathway by regulating endocytic trafficking of the receptor. PMID:22736244
NPC1L1 and Cholesterol Transport
Betters, Jenna L.; Yu, Liqing
2010-01-01
The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540
Li, Yang; Monteiro-Riviere, Nancy A
2016-12-01
To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona. Human epidermal keratinocytes were exposed to 40 and 80 nm AuNP with lipoic acid, polyethylene glycol (PEG) and branched polyethyleneimine (BPEI) coatings with and without a protein corona up to 48 h. Inhibitors were selected to characterize endocytosis. BPEI-AuNP showed the greatest uptake, while PEG-AuNP had the least. Protein coronas decreased uptake and affected their mechanism. AuNP uptake was energy-dependent, except for 40 nm lipoic-AuNP. Most AuNP were internalized by clathrin and lipid raft-mediated endocytosis, except for 40 nm PEG was by raft/noncaveolae mediated endocytosis. Coronas inhibited caveolae-mediated-endocytosis with lipoic acid and BPEI-AuNP and altered 40 nm PEG-AuNP from raft/noncaveolae to clathrin. Inflammatory responses decreased with a plasma corona. Results suggest protein coronas significantly affect cellular uptake and inflammatory responses of AuNP.
HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2.
Metzler, M; Legendre-Guillemin, V; Gan, L; Chopra, V; Kwok, A; McPherson, P S; Hayden, M R
2001-10-19
Polyglutamine expansion in huntingtin is the underlying mutation leading to neurodegeneration in Huntington disease. This mutation influences the interaction of huntingtin with different proteins, including huntingtin-interacting protein 1 (HIP1), in which affinity to bind to mutant huntingtin is profoundly reduced. Here we demonstrate that HIP1 colocalizes with markers of clathrin-mediated endocytosis in neuronal cells and is highly enriched on clathrin-coated vesicles (CCVs) purified from brain homogenates. HIP1 binds to the clathrin adaptor protein 2 (AP2) and the terminal domain of the clathrin heavy chain, predominantly through a small fragment encompassing amino acids 276-335. This region, which contains consensus clathrin- and AP2-binding sites, functions in conjunction with the coiled-coil domain to target HIP1 to CCVs. Expression of various HIP1 fragments leads to a potent block of clathrin-mediated endocytosis. Our findings demonstrate that HIP1 is a novel component of the endocytic machinery.
Membrane recycling at the infranuclear pole of the outer hair cell
NASA Astrophysics Data System (ADS)
Harasztosi, Csaba; Harasztosi, Emese; Gummer, Anthony W.
2015-12-01
Rapid endocytic activity of outer hair cells (OHCs) in the guinea-pig cochlea has been already studied using the fluorescent membrane marker FM1-43. It was demonstrated that vesicles were endocytosed at the apical pole of OHCs and transcytosed to the basolateral membrane and through a central strand towards the nucleus. The significance of endocytic activity in the infranuclear region is still not clear. Therefore, in this study endocytic activity at the synaptic pole of OHCs was investigated. Confocal laser scanning microscopy was used to visualize dye uptake of OHCs isolated from the guinea-pig cochlea. Signal intensity changes were quantified in the apical and basal poles relative to the signal at the membrane. Data showed no significant difference in fluorescent signal intensity changes between the opposite poles of the OHC. These results suggest that endocytic activities in both the basal and the apical poles contribute equally to the membrane recycling of OHCs.
Plant Endocytosis Requires the ER Membrane-Anchored Proteins VAP27-1 and VAP27-3.
Stefano, Giovanni; Renna, Luciana; Wormsbaecher, Clarissa; Gamble, Jessie; Zienkiewicz, Krzysztof; Brandizzi, Federica
2018-05-22
Through yet-undefined mechanisms, the plant endoplasmic reticulum (ER) has a critical role in endocytosis. The plant ER establishes a close association with endosomes and contacts the plasma membrane (PM) at ER-PM contact sites (EPCSs) demarcated by the ER membrane-associated VAMP-associated-proteins (VAP). Here, we investigated two plant VAPs, VAP27-1 and VAP27-3, and found an interaction with clathrin and a requirement for the homeostasis of clathrin dynamics at endocytic membranes and endocytosis. We also demonstrated direct interaction of VAP27-proteins with phosphatidylinositol-phosphate lipids (PIPs) that populate endocytic membranes. These results support that, through interaction with PIPs, VAP27-proteins bridge the ER with endocytic membranes and maintain endocytic traffic, likely through their interaction with clathrin. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour
2015-03-01
Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.
Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.
2018-01-01
ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656
Stolle, Anne-Sophie; Norkowski, Stefanie; Körner, Britta; Schmitz, Jürgen; Lüken, Lena; Frankenberg, Maj; Rüter, Christian; Schmidt, M Alexander
2017-01-01
Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida ( Phdp ). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.
Wang, Qiong; Hui, Haipeng; Guo, Zhendong; Zhang, Weina; Hu, Yaou; He, Tao; Tai, Yanhong; Peng, Peng; Wang, Li
2013-11-01
Rho GTPase activating protein 26 (ARHGAP26) is a negative regulator of the Rho family that converts the small G proteins RhoA and Cdc42 to their inactive GDP-bound forms. It is essential for the CLIC/GEEC endocytic pathway, cell spreading, and muscle development. The present study shows that ARHGAP26 mRNA undergoes extensive A-to-I RNA editing in the 3' UTR that is specifically catalyzed by ADAR1. Furthermore, the mRNA and protein levels of ARHGAP26 were decreased in cells in which ADAR1 was knocked down. Conversely, ADAR1 overexpression increased the abundance of ARHGAP26 mRNA and protein. In addition, we found that both miR-30b-3p and miR-573 target the ARHGAP26 gene and that RNA editing of ARHGAP26 mediated by ADAR1 abolished the repression of its expression by miR-30b-3p or miR-573. When ADAR1 was overexpressed, the reduced abundance of ARHGAP26 protein mediated by miR-30b-3p or miR-573 was rescued. Importantly, we also found that knocking down ADAR1 elevated RhoA activity, which was consistent with the reduced level of ARHGAP26. Conversely, when ADAR1 was overexpressed, the amount of RhoA-GTP decreased. The similar expression patterns of ARHGAP26 and ADAR1 in human tissue samples further confirmed our findings. Taken together, our results suggest that ADAR1 regulates the expression of ARHGAP26 through A-to-I RNA editing by disrupting the binding of miR-30b-3p and miR-573 within the 3' UTR of ARHGAP26. This study provides a novel insight into the mechanism by which ADAR1 and its RNA editing function regulate microRNA-mediated modulation of target genes.
Johnson, Kristen E.; Mitra, Shalini; Katoch, Parul; Kelsey, Linda S.; Johnson, Keith R.; Mehta, Parmender P.
2013-01-01
The molecular mechanisms regulating the assembly of connexins (Cxs) into gap junctions are poorly understood. Using human pancreatic tumor cell lines BxPC3 and Capan-1, which express Cx26 and Cx43, we show that, upon arrival at the cell surface, the assembly of Cx43 is impaired. Connexin43 fails to assemble, because it is internalized by clathrin-mediated endocytosis. Assembly is restored upon expressing a sorting-motif mutant of Cx43, which does not interact with the AP2 complex, and by expressing mutants that cannot be phosphorylated on Ser-279 and Ser-282. The mutants restore assembly by preventing clathrin-mediated endocytosis of Cx43. Our results also document that the sorting-motif mutant is assembled into gap junctions in cells in which the expression of endogenous Cx43 has been knocked down. Remarkably, Cx43 mutants that cannot be phosphorylated on Ser-279 or Ser-282 are assembled into gap junctions only when connexons are composed of Cx43 forms that can be phosphorylated on these serines and forms in which phosphorylation on these serines is abolished. Based on the subcellular fate of Cx43 in single and contacting cells, our results document that the endocytic itinerary of Cx43 is altered upon cell–cell contact, which causes Cx43 to traffic by EEA1-negative endosomes en route to lysosomes. Our results further show that gap-junctional plaques formed of a sorting motif–deficient mutant of Cx43, which is unable to be internalized by the clathrin-mediated pathway, are predominantly endocytosed in the form of annular junctions. Thus the differential phosphorylation of Cx43 on Ser-279 and Ser-282 is fine-tuned to control Cx43’s endocytosis and assembly into gap junctions. PMID:23363606
Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L.; Li, Hanjun; Zach, Sydney; Stauch, Kelly L.; Grosely, Rosslyn; Sorgen, Paul L.
2016-01-01
Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1–3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT 283PPXY286 sequence. Although Tyr286 is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)279 and Ser(P)282) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT276–289(Ser(P)279, Ser(P)282) complex reveals that coordination of Ser(P)282 with the end of β-strand 3 enables Ser(P)279 to interact with the back face of β-strand 3 (Tyr286 is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)279/Ser(P)282 strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation. PMID:26841867
Spagnol, Gaelle; Kieken, Fabien; Kopanic, Jennifer L; Li, Hanjun; Zach, Sydney; Stauch, Kelly L; Grosely, Rosslyn; Sorgen, Paul L
2016-04-01
Neuronal precursor cell-expressed developmentally down-regulated 4 (Nedd4) was the first ubiquitin protein ligase identified to interact with connexin43 (Cx43), and its suppressed expression results in accumulation of gap junction plaques at the plasma membrane. Nedd4-mediated ubiquitination of Cx43 is required to recruit Eps15 and target Cx43 to the endocytic pathway. Although the Cx43 residues that undergo ubiquitination are still unknown, in this study we address other unresolved questions pertaining to the molecular mechanisms mediating the direct interaction between Nedd4 (WW1-3 domains) and Cx43 (carboxyl terminus (CT)). All three WW domains display a similar three antiparallel β-strand structure and interact with the same Cx43CT(283)PPXY(286)sequence. Although Tyr(286)is essential for the interaction, MAPK phosphorylation of the preceding serine residues (Ser(P)(279)and Ser(P)(282)) increases the binding affinity by 2-fold for the WW domains (WW2 > WW3 ≫ WW1). The structure of the WW2·Cx43CT(276-289)(Ser(P)(279), Ser(P)(282)) complex reveals that coordination of Ser(P)(282)with the end of β-strand 3 enables Ser(P)(279)to interact with the back face of β-strand 3 (Tyr(286)is on the front face) and loop 2, forming a horseshoe-shaped arrangement. The close sequence identity of WW2 with WW1 and WW3 residues that interact with the Cx43CT PPXY motif and Ser(P)(279)/Ser(P)(282)strongly suggests that the significantly lower binding affinity of WW1 is the result of a more rigid structure. This study presents the first structure illustrating how phosphorylation of the Cx43CT domain helps mediate the interaction with a molecular partner involved in gap junction regulation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Jing, Zhou; Wei-jie, Yuan; Yi-Feng, Zhu-ge
2015-09-01
Podocyte dysfunction plays important roles in the pathogenesis of chronic kidney disease, and Wt1 has long been considered to be a marker of podocyte, whereas its roles and mechanisms in podocyte injury are still unclear though Wt1 mutations are reported to be involved in the development of glomerular disease in human and mice. Here we show that down-regulation of Wt1 could induce podocyte dysfunction and apoptosis through activating Wnt/β-catenin signaling. Podocytes treated with adriamycin demonstrated decreased expression of Wt1, coupled with activated Wnt/β-catenin signaling in vitro. Reduced expression of Wt1 in podocytes transfected with Wt1 siRNA is correlated with activated Wnt/β-catenin signaling, increased podocyte apoptosis, as well as suppressed expression of nephrin. Blockade of Wnt/β-catenin signaling with Dickkopf-1 ameliorated podocyte injury and apoptosis induced by Wt1 siRNA. We also found that membrane LRP6 was increased dramatically in podocytes transfected with Wt1 siRNA compared with control siRNA, while no significant change was found in total LRP6. Caveolin- and clathrin-dependent endocytosis were both involved in the regulation of β-catenin signaling. And we found that down-regulation of Wt1 in podocytes mediates activation of Wnt/β-catenin signaling by recruiting LRP6 to the caveolin-mediated endocytosis route, thereby sequestering it from clathrin-dependent endocytosis. As a result, we concluded that Wt1 expression levels in podocytes regulate Wnt/β-catenin signaling through modulating the endocytic fate of LRP6, and this indicates a potential target for the therapy of CKD. Copyright © 2015 Elsevier Inc. All rights reserved.
Nielsen, Christoffer Fagernæs; van Putten, Sander Maarten; Lund, Ida Katrine; Melander, Maria Carlsén; Nørregaard, Kirstine Sandal; Jürgensen, Henrik Jessen; Reckzeh, Kristian; Christensen, Kristine Rothaus; Ingvarsen, Signe Ziir; Gårdsvoll, Henrik; Jensen, Kamilla Ellermann; Hamerlik, Petra; Engelholm, Lars Henning; Behrendt, Niels
2017-01-01
A key task in developing the field of personalized cancer therapy is the identification of novel molecular targets that enable treatment of cancers not susceptible to other means of specific therapy. The collagen receptor uPARAP/Endo180 is overexpressed by malignant cells in several non-epithelial cancers, notably including sarcomas, glioblastomas and subsets of acute myeloid leukemia. In contrast, in healthy adult individuals, expression is restricted to minor subsets of mesenchymal cells. Functionally, uPARAP/Endo180 is a rapidly recycling endocytic receptor that delivers its cargo directly into the endosomal-lysosomal system, thus opening a potential route of entry into receptor-positive cells. This combination of specific expression and endocytic function appears well suited for targeting of uPARAP/Endo180-positive cancers by antibody-drug conjugate (ADC) mediated drug delivery. Therefore, we utilized a specific monoclonal antibody against uPARAP/Endo180, raised through immunization of a uPARAP/Endo180 knock-out mouse, which reacts with both the human and the murine receptor, to construct a uPARAP-directed ADC. This antibody was coupled to the highly toxic dolastatin derivative, monomethyl auristatin E, via a cathepsin-labile valine-citrulline linker. With this ADC, we show strong and receptor-dependent cytotoxicity in vitro in uPARAP/Endo180-positive cancer cell lines of sarcoma, glioblastoma and leukemic origin. Furthermore, we demonstrate the potency of the ADC in vivo in a xenograft mouse model with human uPARAP/Endo180-positive leukemic cells, obtaining a complete cure of all tested mice following intravenous ADC treatment with no sign of adverse effects. Our study identifies uPARAP/Endo180 as a promising target for novel therapy against several highly malignant cancer types. PMID:28574834
Metzler, Martina; Gan, Lu; Wong, Tak Pan; Liu, Lidong; Helm, Jeffrey; Liu, Lili; Georgiou, John; Wang, Yushan; Bissada, Nagat; Cheng, Kevin; Roder, John C; Wang, Yu Tian; Hayden, Michael R
2007-02-28
Huntingtin-interacting protein 1 (HIP1) is an endocytic adaptor protein that plays a role in clathrin-mediated endocytosis and the ligand-induced internalization of AMPA receptors (AMPARs) (Metzler et al., 2003). In the present study, we investigated the role of HIP1 in NMDA receptor (NMDAR) function by analyzing NMDA-dependent transport and NMDA-induced excitotoxicity in neurons from HIP1-/- mice. HIP1 colocalizes with NMDARs in hippocampal and cortical neurons and affinity purifies with NMDARs by GST (glutathione S-transferase) pull down and coimmunoprecipitation. A profound decrease in NMDA-induced AMPAR internalization of 75% occurs in neurons from HIP1-/- mice compared with wild type, using a quantitative single-cell-based internalization assay. This defect in NMDA-dependent removal of surface AMPARs is in agreement with the observed defect in long-term depression induction in hippocampal brain slices of HIP1-/- mice and supports a role of HIP1 in AMPAR internalization in vivo. HIP1-/- neurons are partially protected from NMDA-induced excitotoxicity as assessed by LDH (lactate dehydrogenase) release, TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick end labeling) and caspase-3 activation assays, which points to a role of HIP1 in NMDA-induced cell death. Interestingly, phosphorylation of Akt and its substrate huntingtin (htt) decreases during NMDA-induced excitotoxicity by 48 and 31%, respectively. This decrease is significantly modulated by HIP1, resulting in 94 and 48% changes in P-Akt and P-htt levels in HIP1-/- neurons, respectively. In summary, we have shown that HIP1 influences important NMDAR functions and that both HIP1 and htt participate in NMDA-induced cell death. These findings may provide novel insights into the cellular mechanisms underlying enhanced NMDA-induced excitotoxicity in Huntington's disease.
Lippé, Roger; Miaczynska, Marta; Rybin, Vladimir; Runge, Anja; Zerial, Marino
2001-01-01
Rab GTPases are central elements of the vesicular transport machinery. An emerging view is that downstream effectors of these GTPases are multiprotein complexes that include nucleotide exchange factors to ensure coupling between GTPase activation and effector function. We have previously shown that Rab5, which regulates various steps of transport along the early endocytic pathway, is activated by a complex consisting of Rabex-5, a Rab5 nucleotide exchange factor, and the effector Rabaptin-5. We postulated that the physical association of these two proteins is necessary for their activity in Rab5-dependent endocytic membrane transport. To evaluate the functional implications of such complex formation, we have reconstituted it with the use of recombinant proteins and characterized its properties. First, we show that Rabaptin-5 increases the exchange activity of Rabex-5 on Rab5. Second, Rab5-dependent recruitment of Rabaptin-5 to early endosomes is completely dependent on its physical association with Rabex-5. Third, complex formation between Rabaptin-5 and Rabex-5 is essential for early endosome homotypic fusion. These results reveal a functional synergy between Rabaptin-5 and Rabex-5 in the complex and have implications for the function of analogous complexes for Rab and Rho GTPases. PMID:11452015
Griffing, L R
2008-08-01
Although the styryl dye FM4-64 is now used routinely to monitor endocytosis in plants, the argument about its potential to cytoplasmically and non-endocytically relocate into a selective set of vesicular compartments persists. To address this question, we determined whether fluorescence resonance energy transfer (FRET) could occur between a cytoplasmically expressed, short-wavelength excitation green fluorescent protein (GFP) and FM4-64 in Nicotiana benthaminana. After exposure to FM4-64, the root hair plasma membrane and internal organelles became labelled. Under these conditions, no FRET with cytoplasmic GFP was seen. However, if the cells were treated with a low concentration of quillajasaponin, a membrane permeabilization agent, the cells continued to stream and FRET was detected. Thereby, we demonstrate that under conditions that do not severely compromise cell viability, the FM4-64 dye becomes a suitable FRET partner for the cytoplasmically localized GFP. Under normal conditions, FM4-64 does not significantly enter the cytosolic side of the membrane, but remains at the plasma membrane or trapped in the organelles of the endocytic pathway. Hence, when the structure or permeability of the plasma membrane is unaltered, FM4-64 dye is a robust marker for endocytosis.
LRP in amyloid-beta production and metabolism.
Bu, Guojun; Cam, Judy; Zerbinatti, Celina
2006-11-01
Amyloid-beta peptide (Abeta) production and accumulation in the brain is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have shown that apolipoprotein E (apoE) receptors, members of the low-density lipoprotein receptor (LDLR) family, modulate Abeta production as well as Abeta cellular uptake. Abeta is derived from proteolytic processing of the amyloid precursor protein (APP), which interacts with several members of the LDLR family. Studies from our laboratory have focused on two members of the LDLR family, the LDLR-related protein (LRP) and LRP1B. Our in vitro studies have shown that while LRP's rapid endocytosis facilitates APP endocytic trafficking and processing to Abeta, LRP1B's slow endocytosis inhibits these processes. In addition to modulating APP endocytic trafficking, LRP's rapid endocytosis also facilitates Abeta cellular uptake by binding to Abeta either directly or via LRP ligands such as apoE. Our in vivo studies using transgenic mice have shown that overexpression of LRP in central nervous system (CNS) neurons increases soluble brain Abeta and this increase correlates with deficits in memory. Together our studies demonstrate that members of the LDLR family modulate APP processing and Abeta metabolism by several independent mechanisms. Understanding the pathways that modulate brain Abeta metabolism may enable the rational design of molecular medicine to treat AD.
Liang, Xue-hai; Sun, Hong; Shen, Wen; Crooke, Stanley T
2015-03-11
Although the RNase H-dependent mechanism of inhibition of gene expression by chemically modified antisense oligonucleotides (ASOs) has been well characterized, little is known about the interactions between ASOs and intracellular proteins that may alter cellular localization and/or potency of ASOs. Here, we report the identification of 56 intracellular ASO-binding proteins using multi-step affinity selection approaches. Many of the tested proteins had no significant effect on ASO activity; however, some proteins, including La/SSB, NPM1, ANXA2, VARS and PC4, appeared to enhance ASO activities, likely through mechanisms related to subcellular distribution. VARS and ANXA2 co-localized with ASOs in endocytic organelles, and reduction in the level of VARS altered lysosome/ASO localization patterns, implying that these proteins may facilitate ASO release from the endocytic pathway. Depletion of La and NPM1 reduced nuclear ASO levels, suggesting potential roles in ASO nuclear accumulation. On the other hand, Ku70 and Ku80 proteins inhibited ASO activity, most likely by competition with RNase H1 for ASO/RNA duplex binding. Our results demonstrate that phosphorothioate-modified ASOs bind a set of cellular proteins that affect ASO activity via different mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Pratt, Christopher P.; Kuljis, Dika A.; Homanics, Gregg E.; He, Jianjun; Kolodieznyi, Dmytro; Dudem, Srikanth; Hollywood, Mark A.; Barth, Alison L.; Bruchez, Marcel P.
2017-01-01
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking. PMID:29163049
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-01-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X3 receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X3 receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X3 receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X3 receptors. The α, β-MeATP-induced Ca2+ influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X3 receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X3 receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X3 receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels. PMID:22157653
Endosome-mediated retrograde axonal transport of P2X3 receptor signals in primary sensory neurons.
Chen, Xu-Qiao; Wang, Bin; Wu, Chengbiao; Pan, Jin; Yuan, Bo; Su, Yuan-Yuan; Jiang, Xing-Yu; Zhang, Xu; Bao, Lan
2012-04-01
Neurotrophins and their receptors adopt signaling endosomes to transmit retrograde signals. However, the mechanisms of retrograde signaling for other ligand/receptor systems are poorly understood. Here, we report that the signals of the purinergic (P)2X(3) receptor, an ATP-gated ion channel, are retrogradely transported in dorsal root ganglion (DRG) neuron axons. We found that Rab5, a small GTPase, controls the early sorting of P2X(3) receptors into endosomes, while Rab7 mediates the fast retrograde transport of P2X(3) receptors. Intraplantar injection and axonal application into the microfluidic chamber of α, β-methylene-ATP (α, β-MeATP), a P2X selective agonist, enhanced the endocytosis and retrograde transport of P2X(3) receptors. The α, β-MeATP-induced Ca(2+) influx activated a pathway comprised of protein kinase C, rat sarcoma viral oncogene and extracellular signal-regulated protein kinase (ERK), which associated with endocytic P2X(3) receptors to form signaling endosomes. Disruption of the lipid rafts abolished the α, β-MeATP-induced ERK phosphorylation, endocytosis and retrograde transport of P2X(3) receptors. Furthermore, treatment of peripheral axons with α, β-MeATP increased the activation level of ERK and cAMP response element-binding protein in the cell bodies of DRG neurons and enhanced neuronal excitability. Impairment of either microtubule-based axonal transport in vivo or dynein function in vitro blocked α, β-MeATP-induced retrograde signals. These results indicate that P2X(3) receptor-activated signals are transmitted via retrogradely transported endosomes in primary sensory neurons and provide a novel signaling mechanism for ligand-gated channels.
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-01-01
Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727
Krüger, Kristin; Schrader, Katrin; Klempt, Martin
2017-04-07
Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.
Single Vesicle Analysis of Endocytic Fission on Microtubules In Vitro
Wolkoff, Allan W.
2016-01-01
Following endocytosis, internalized molecules are found within intracellular vesicles and tubules that move along the cytoskeleton and undergo fission, as demonstrated here using primary cultured rat hepatocytes. Although the use of depolymerizing drugs has shown that the cytoskeleton is not required to segregate endocytic protein, many studies suggest that the cytoskeleton is involved in the segregation of protein in normal cells. To investigate whether cytoskeletal-based movement results in the segregation of protein, we tracked the contents of vesicles during in vitro microscopy assays. These studies showed that the addition of ATP causes fission of endocytic contents along microtubules, resulting in the segregation of proteins that are targeted for different cellular compartments. The plasma membrane proteins, sodium (Na+) taurocholate cotransporting polypeptide (ntcp) and transferrin receptor, segregated from asialoorosomucoid (ASOR), an endocytic ligand that is targeted for degradation. Epidermal growth factor receptor, which is degraded, and the asialoglycoprotein receptor, which remains partially bound to ASOR, segregated less efficiently from ASOR. Vesicles containing ntcp and transferrin receptor had reduced fission in the absence of ASOR, suggesting that fission is regulated to allow proteins to segregate. A single round of fission resulted in 6.5-fold purification of ntcp from ASOR, and 25% of the resulting vesicles were completely depleted of the endocytic ligand. PMID:18284582
O’Brien, Emma D.; Salicioni, Ana M.; Cabada, Marcelo O.; Arranz, Silvia E.
2009-01-01
Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellins isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage-II oocytes into three physiologically and morphologically distinct periods (early, mid and late). PMID:19932187
O'Brien, Emma D; Salicioni, Ana M; Cabada, Marcelo O; Arranz, Silvia E
2010-03-01
Vitellogenin (Vtg), a large lipoglycophosphoprotein, is the most important precursor of the yolk proteins, and the major source of nutrients for the developing embryo in oviparous species. After its uptake by the oocytes, Vtg is converted into lipovitellins (high and light) and phosvitin, which are deposited into crystalline yolk platelets. We describe here the presence of two high molecular mass lipovitellin isoforms in Bufo arenarum mature oocytes with masses of 113 and 100 kDa, respectively. The amino acid sequence analysis of p113 and p100 peptides showed a high sequence homology between both polypeptides and the complete reported sequences of Xenopus laevis vitellogenin. Using specific antibodies, we determined that the Vtg uptake begins early during oogenesis, at the previtellogenic stage, and continues until oocytes have reached their mature status. In addition, we found that large endocytic vesicles mediate Vtg uptake in stage I oocytes, and that the size of the endocytic vesicles declines with oogenesis progression. In terms of the Vtg protein trafficking, we detected the Vtg precursor (190 kDa) in the liver of estradiol-injected females. Finally, we propose a subclassification of B. arenarum stage II oocytes into three physiologically and morphologically distinct periods (early, mid and late). 2009 Elsevier Inc. All rights reserved.
Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors
NASA Astrophysics Data System (ADS)
Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2017-11-01
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors.
Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le
2017-11-17
The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.
Mingo, Rebecca M; Simmons, James A; Shoemaker, Charles J; Nelson, Elizabeth A; Schornberg, Kathryn L; D'Souza, Ryan S; Casanova, James E; White, Judith M
2015-03-01
Ebola virus (EBOV) causes hemorrhagic fevers with high mortality rates. During cellular entry, the virus is internalized by macropinocytosis and trafficked through endosomes until fusion between the viral and an endosomal membrane is triggered, releasing the RNA genome into the cytoplasm. We found that while macropinocytotic uptake of filamentous EBOV viruslike particles (VLPs) expressing the EBOV glycoprotein (GP) occurs relatively quickly, VLPs only begin to enter the cytoplasm after a 30-min lag, considerably later than particles bearing the influenza hemagglutinin or GP from lymphocytic choriomeningitis virus, which enter through late endosomes (LE). For EBOV, the long lag is not due to the large size or unusual shape of EBOV filaments, the need to prime EBOV GP to the 19-kDa receptor-binding species, or a need for unusually low endosomal pH. In contrast, since we observed that EBOV entry occurs upon arrival in Niemann-Pick C1 (NPC1)-positive endolysosomes (LE/Lys), we propose that trafficking to LE/Lys is a key rate-defining step. Additional experiments revealed, unexpectedly, that severe acute respiratory syndrome (SARS) S-mediated entry also begins only after a 30-min lag. Furthermore, although SARS does not require NPC1 for entry, SARS entry also begins after colocalization with NPC1. Since the only endosomal requirement for SARS entry is cathepsin L activity, we tested and provide evidence that NPC1(+) LE/Lys have higher cathepsin L activity than LE, with no detectable activity in earlier endosomes. Our findings suggest that both EBOV and SARS traffic deep into the endocytic pathway for entry and that they do so to access higher cathepsin activity. Ebola virus is a hemorrhagic fever virus that causes high fatality rates when it spreads from zoonotic vectors into the human population. Infection by severe acute respiratory syndrome coronavirus (SARS-CoV) causes severe respiratory distress in infected patients. A devastating outbreak of EBOV occurred in West Africa in 2014, and there was a significant outbreak of SARS in 2003. No effective vaccine or treatment has yet been approved for either virus. We present evidence that both viruses traffic late into the endocytic pathway, to NPC1(+) LE/Lys, in order to enter host cells, and that they do so to access high levels of cathepsin activity, which both viruses use in their fusion-triggering mechanisms. This unexpected similarity suggests an unexplored vulnerability, trafficking to NPC1(+) LE/Lys, as a therapeutic target for SARS and EBOV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Role of Intermediate Filaments in Vesicular Traffic.
Margiotta, Azzurra; Bucci, Cecilia
2016-04-25
Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.
1994-01-01
In neuroendocrine cells, cytosolic Ca2+ triggers exocytosis in tens of milliseconds, yet known pathways of endocytic membrane retrieval take minutes. To test for faster retrieval mechanisms, we have triggered short bursts of exocytosis by flash photolysis of caged Ca2+, and have tracked subsequent retrieval by measuring the plasma membrane capacitance. We find that a limited amount of membrane can be retrieved with a time constant of 4 s at 21-26 degrees C, and that this occurs partially via structures larger than coated vesicles. This novel mechanism may be arrested at a late step. Incomplete retrieval structures then remain on the cell surface for minutes until the consequences of a renewed increase in cytosolic [Ca2+] disconnect them from the cell surface in < 1 s. Our results provide evidence for a rapid, triggered membrane retrieval pathway in excitable cells. PMID:8120090
Killisch, I; Steinlein, P; Römisch, K; Hollinshead, R; Beug, H; Griffiths, G
1992-09-01
We describe a detailed morphological characterization of the endocytic pathway in differentiating chicken erythroblasts transformed by a temperature-sensitive mutant of avian erythroblastosis virus (AEV). These cells express high levels of transferrin receptors (TfR) when induced to differentiate at 42 degrees C. Biochemical analysis showed that most (approximately 90%) of the internalized 125I-Tf recycled within approximately 30 min while a smaller fraction of 125I-Tf required up to 2 h for recycling. By immunocytochemistry, the bulk of Tf and TfR was localized at the plasma membrane and in tubuloreticular early endosomes. This structure contained coated buds that labelled with an antibody specific for the clathrin light chain. Decreasing amounts of both Tf and TfR were detected in two distal compartments, spherical endosome vesicles resembling multivesicular bodies and the prelysosomal compartment (PLC) enriched in cation-independent mannose 6-phosphate receptor. As shown by fluorescent (FITC-Tf) labelling of living cells, the movement of Tf/TfR complex into these late structures was accompanied by a significant drop in pH from about 6, the value displayed by early endosomes, to values below pH 5.0. Since no detectable 125I-Tf degradation was observed during a 4 h period we believe that the Tf/TfR detected in these late endocytic structures avoids degradation and recycles back to the cell surface. The addition of an anti-TfR monoclonal antibody to the culture medium of these cells blocks their differentiation. Under this condition the antibody-TfR complex was trapped in an early endosome compartment that enlarged to more than twice its normal size. However, this condition did not affect the transport kinetics of horseradish peroxidase from the medium to the PLC.
Fretz, Marjan M.; Penning, Neal A.; Al-Taei, Saly; Futaki, Shiroh; Takeuchi, Toshihide; Nakase, Ikuhiko; Storm, Gert; Jones, Arwyn T.
2007-01-01
Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4–12 °C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 °C incubations. At temperatures between 12 and 30 °C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 °C. Small increases in the extracellular peptide concentration in 37 °C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-β-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane. PMID:17217340
Dutta, Sujoy; Ongarora, Benson G.; Li, Hairong; Vicente, Maria da Graca H.; Kolli, Bala K.; Chang, Kwang Poo
2011-01-01
Photodynamic therapy, unlikely to elicit drug-resistance, deserves attention as a strategy to counter this outstanding problem common to the chemotherapy of all diseases. Previously, we have broadened the applicability of this modality to photodynamic vaccination by exploiting the unusual properties of the trypanosomatid protozoa, Leishmania, i.e., their innate ability of homing to the phagolysosomes of the antigen-presenting cells and their selective photolysis therein, using transgenic mutants endogenously inducible for porphyrin accumulation. Here, we extended the utility of this host-parasite model for in vitro photodynamic therapy and vaccination by exploring exogenously supplied photosensitizers. Seventeen novel phthalocyanines (Pcs) were screened in vitro for their photolytic activity against cultured Leishmania. Pcs rendered cationic and soluble (csPcs) for cellular uptake were phototoxic to both parasite and host cells, i.e., macrophages and dendritic cells. The csPcs that targeted to mitochondria were more photolytic than those restricted to the endocytic compartments. Treatment of infected cells with endocytic csPcs resulted in their accumulation in Leishmania-containing phagolysosomes, indicative of reaching their target for photodynamic therapy, although their parasite versus host specificity is limited to a narrow range of csPc concentrations. In contrast, Leishmania pre-loaded with csPc were selectively photolyzed intracellularly, leaving host cells viable. Pre-illumination of such csPc-loaded Leishmania did not hinder their infectivity, but ensured their intracellular lysis. Ovalbumin (OVA) so delivered by photo-inactivated OVA transfectants to mouse macrophages and dendritic cells were co-presented with MHC Class I molecules by these antigen presenting cells to activate OVA epitope-specific CD8+T cells. The in vitro evidence presented here demonstrates for the first time not only the potential of endocytic csPcs for effective photodynamic therapy against Leishmania but also their utility in photo-inactivation of Leishmania to produce a safe carrier to express and deliver a defined antigen with enhanced cell-mediated immunity. PMID:21673971
Deciphering dynamics of clathrin-mediated endocytosis in a living organism
Heidotting, Spencer P.; Huber, Scott D.
2016-01-01
Current understanding of clathrin-mediated endocytosis (CME) dynamics is based on detection and tracking of fluorescently tagged clathrin coat components within cultured cells. Because of technical limitations inherent to detection and tracking of single fluorescent particles, CME dynamics is not characterized in vivo, so the effects of mechanical cues generated during development of multicellular organisms on formation and dissolution of clathrin-coated structures (CCSs) have not been directly observed. Here, we use growth rates of fluorescence signals obtained from short CCS intensity trace fragments to assess CME dynamics. This methodology does not rely on determining the complete lifespan of individual endocytic assemblies. Therefore, it allows for real-time monitoring of spatiotemporal changes in CME dynamics and is less prone to errors associated with particle detection and tracking. We validate the applicability of this approach to in vivo systems by demonstrating the reduction of CME dynamics during dorsal closure of Drosophila melanogaster embryos. PMID:27458134
Deconvoluting hepatic processing of carbon nanotubes
NASA Astrophysics Data System (ADS)
Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; Romin, Yevgeniy; Barlas, Afsar; Mulvey, J. Justin; Fujisawa, Sho; Xu, Ke; Ruggiero, Alessandro; Riabov, Vladimir; Thorek, Daniel L. J.; Ulmert, Hans David S.; Brea, Elliott J.; Behling, Katja; Kzhyshkowska, Julia; Manova-Todorova, Katia; Scheinberg, David A.; McDevitt, Michael R.
2016-07-01
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearance of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. The pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.
Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano
2015-01-01
TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086
Viejo-Borbolla, A; Pizzato, M; Blair, E D; Schulz, T F
2005-03-01
Several groups have inserted targeting domains into the envelope glycoprotein (Env) of Moloney murine leukemia virus (MoMLV) in an attempt to produce targeted retroviral vectors for human gene therapy. While binding of these modified Envs to the target molecule expressed on the surface of human cells was observed, specific high-titer infection of human cells expressing the target molecule was not achieved. Here we investigate the initial steps in the entry process of targeted MoMLV vectors both in murine and human cells expressing the MoMLV receptor, the mouse cationic amino acid transporter-1 (mCAT-1). We show that insertion of a small ligand targeted to E-selectin and of a single chain antibody (scFv) targeted to folate-binding protein (FBP) into the N-terminus of MoMLV Env results in the reduction of the infectivity and the kinetics of entry of the MoMLV vectors. The use of soluble receptor-binding domain (sRBD), bafilomycin A1 (BafA1) and methyl-beta-cyclodextrin (MbetaC) increase the infectivity of the MoMLV vectors targeted to FBP (MoMLV-FBP) suggesting that the scFv targeted to FBP increases the threshold for fusion and might re-route entry of the targeted MoMLV-FBP vector towards an endocytic, non-productive pathway.
Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells.
Pi, Jiang; Jin, Hua; Liu, Ruiying; Song, Bing; Wu, Qing; Liu, Li; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Cai, Jiye
2013-02-01
Selenium nanoparticles (Se NPs) have been recognized as promising materials for biomedical applications. To prepare Se NPs which contained cancer targeting methods and to clarify the cellular localization and cytotoxicity mechanisms of these Se NPs against cancer cells, folic acid protected/modified selenium nanoparticles (FA-Se NPs) were first prepared by a one-step method. Some morphologic and spectroscopic methods were obtained to prove the successfully formation of FA-Se NPs while free folate competitive inhibition assay, microscope, and several biological methods were used to determine the in vitro uptake, subcellular localization, and cytotoxicity mechanism of FA-Se NPs in MCF-7 cells. The results indicated that the 70-nm FA-Se NPs were internalized by MCF-7 cells through folate receptor-mediated endocytosis and targeted to mitochondria located regions through endocytic vesicles transporting. Then, the FA-Se NPs entered into mitochondria; triggered the mitochondria-dependent apoptosis of MCF-7 cells which involved oxidative stress, Ca(2)+ stress changes, and mitochondrial dysfunction; and finally caused the damage of mitochondria. FA-Se NPs released from broken mitochondria were transported into nucleus and further into nucleolus which then induced MCF-7 cell cycle arrest. In addition, FA-Se NPs could induce cytoskeleton disorganization and induce MCF-7 cell membrane morphology alterations. These results collectively suggested that FA-Se NPs could be served as potential therapeutic agents and organelle-targeted drug carriers in cancer therapy.
Fernandez, David R.; Telarico, Tiffany; Bonilla, Eduardo; Li, Qing; Banerjee, Sanjay; Middleton, Frank A.; Phillips, Paul E.; Crow, Mary K.; Oess, Stefanie; Muller-Esterl, Werner; Perl, Andras
2008-01-01
Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T-cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. Here, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR causes the over-expression of the Rab5A and HRES-1/Rab4 small GTPases that regulate endocytic recycling of surface receptors. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with the T-cell receptor/CD3ζ chain (TCRζ). Importantly, the deficiency of the TCRζ chain and Lck and compensatory upregulation of the Fcε receptor type I γ chain (FcεRIγ) and Syk, which mediate enhanced calcium fluxing in lupus T cells, was reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by siRNA and inhibitors of lysosomal function augmented TCRζ protein levels. The results suggest that activation of mTOR causes the loss of TCRζ in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation. PMID:19201859
Rodríguez-López, Alexander; Alméciga-Díaz, Carlos J.; Sánchez, Jhonnathan; Moreno, Jefferson; Beltran, Laura; Díaz, Dennis; Pardo, Andrea; Ramírez, Aura María; Espejo-Mojica, Angela J.; Pimentel, Luisa; Barrera, Luis A.
2016-01-01
Mucopolysaccharidosis IV A (MPS IV A, Morquio A disease) is a lysosomal storage disease (LSD) produced by mutations on N-acetylgalactosamine-6-sulfate sulfatase (GALNS). Recently an enzyme replacement therapy (ERT) for this disease was approved using a recombinant enzyme produced in CHO cells. Previously, we reported the production of an active GALNS enzyme in Escherichia coli that showed similar stability properties to that of a recombinant mammalian enzyme though it was not taken-up by culture cells. In this study, we showed the production of the human recombinant GALNS in the methylotrophic yeast Pichia pastoris GS115 (prGALNS). We observed that removal of native signal peptide and co-expression with human formylglycine-generating enzyme (SUMF1) allowed an improvement of 4.5-fold in the specific GALNS activity. prGALNS enzyme showed a high stability at 4 °C, while the activity was markedly reduced at 37 and 45 °C. It was noteworthy that prGALNS was taken-up by HEK293 cells and human skin fibroblasts in a dose-dependent manner through a process potentially mediated by an endocytic pathway, without any additional protein or host modification. The results show the potential of P. pastoris in the production of a human recombinant GALNS for the development of an ERT for Morquio A. PMID:27378276
Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles
Tenkumo, Taichi; Kamano, Yuya; Egusa, Hiroshi; Sasaki, Keiichi
2017-01-01
Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB. PMID:29145481
Chang, Jiang; Paillard, Archibald; Passirani, Catherine; Morille, Marie; Benoit, Jean-Pierre; Betbeder, Didier; Garcion, Emmanuel
2012-06-01
Nanomedicines represent an alternative for the treatment of aggressive glioblastoma tumors. Behaviour of PLGA-nanoparticles (NPs) was here investigated as a function of their protein adsorption characteristics at the different biological interfaces they are expected to face in order to reach brain cancer cells. NPs were studied for size, zeta potential, blood half-life, in vitro endocytic behavior and in vivo accumulation within healthy rat brain and brain tumors. While slightly modifying size (80 to 90 nm) and zeta potential (-44 to -32 mV) protein coating of PLGA-NPs by bovine serum albumin (BSA) or transferrin (Tf) greatly prolonged their blood half-life when intravenously injected in rats and mice. In contrast with THP-1 monocytes, differentiated THP-1 macrophages, F98 glioma cells and astrocytes internalized BSA- and Tf-NPs in vitro. Increase of Tf-NP uptake by F98 cells through caveolae- and clathrin-mediated pathways supports specific interaction between Tf and overexpressed Tf-receptor. Finally, in vivo targeting of healthy brain was found higher with Tf-NPs than with BSA-NPs while both NPs entered massively within brain-developed tumors. Taken together, those data evidence that Tf-NPs represent an interesting nanomedicine to deliver anticancer drugs to glioma cells through systemic or locoregional strategies at early and late tumor stages.
Gagescu, Raluca; Demaurex, Nicolas; Parton, Robert G.; Hunziker, Walter; Huber, Lukas A.; Gruenberg, Jean
2000-01-01
We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway. PMID:10930469
McIntosh, Michael T; Vaid, Ankush; Hosgood, H Dean; Vijay, Justin; Bhattacharya, Anindita; Sahani, Mayurbhai H; Baevova, Pavlina; Joiner, Keith A; Sharma, Pushkar
2007-04-13
Phosphatidylinositol 3-phosphate (PI3P) is a key ligand for recruitment of endosomal regulatory proteins in higher eukaryotes. Subsets of these endosomal proteins possess a highly selective PI3P binding zinc finger motif belonging to the FYVE domain family. We have identified a single FYVE domain-containing protein in Plasmodium falciparum which we term FCP. Expression and mutagenesis studies demonstrate that key residues are involved in specific binding to PI3P. In contrast to FYVE proteins in other organisms, endogenous FCP localizes to a lysosomal compartment, the malaria parasite food vacuole (FV), rather than to cytoplasmic endocytic organelles. Transfections of deletion mutants further indicate that FCP is essential for trophozoite and FV maturation and that it traffics to the FV via a novel constitutive cytoplasmic to vacuole targeting pathway. This newly discovered pathway excludes the secretory pathway and is directed by a C-terminal 44-amino acid peptide domain. We conclude that an FYVE protein that might be expected to participate in vesicle targeting in the parasite cytosol instead has a vital and functional role in the malaria parasite FV.
Planar Cell Polarity Pathway Regulates Nephrin Endocytosis in Developing Podocytes
Babayeva, Sima; Rocque, Brittany; Aoudjit, Lamine; Zilber, Yulia; Li, Jane; Baldwin, Cindy; Kawachi, Hiroshi; Takano, Tomoko; Torban, Elena
2013-01-01
The noncanonical Wnt/planar cell polarity (PCP) pathway controls a variety of cell behaviors such as polarized protrusive cell activity, directional cell movement, and oriented cell division and is crucial for the normal development of many tissues. Mutations in the PCP genes cause malformation in multiple organs. Recently, the PCP pathway was shown to control endocytosis of PCP and non-PCP proteins necessary for cell shape remodeling and formation of specific junctional protein complexes. During formation of the renal glomerulus, the glomerular capillary becomes enveloped by highly specialized epithelial cells, podocytes, that display unique architecture and are connected via specialized cell-cell junctions (slit diaphragms) that restrict passage of protein into the urine; podocyte differentiation requires active remodeling of cytoskeleton and junctional protein complexes. We report here that in cultured human podocytes, activation of the PCP pathway significantly stimulates endocytosis of the core slit diaphragm protein, nephrin, via a clathrin/β-arrestin-dependent endocytic route. In contrast, depletion of the PCP protein Vangl2 leads to an increase of nephrin at the cell surface; loss of Vangl2 functions in Looptail mice results in disturbed glomerular maturation. We propose that the PCP pathway contributes to podocyte development by regulating nephrin turnover during junctional remodeling as the cells differentiate. PMID:23824190
Takahashi, Masafumi; Ishiko, Takatoshi; Kamohara, Hidenobu; Hidaka, Hideaki; Ikeda, Osamu; Ogawa, Michio; Baba, Hideo
2007-01-01
We investigated the impact of curcumin on neutrophils. Chemotactic activity via human recombinant IL-8 (hrIL-8) was significantly inhibited by curcumin. Curcumin reduced calcium ion flow induced by internalization of the IL-8 receptor. We analyzed flow cytometry to evaluate the status of the IL-8 receptor after curcumin treatment. The change in the distribution of receptors intracellularly and on the cell surface suggested that curcumin may affect the receptor trafficking pathway intracellulary. Rab11 is a low molecular weight G protein associated with the CXCR recycling pathway. Following curcumin treatment, immunoprecipitation studies showed that the IL-8 receptor was associated with larger amounts of active Rab11 than that in control cells. These data suggest that curcumin induces the stacking of the Rab11 vesicle complex with CXCR1 and CXCR2 in the endocytic pathway. The mechanism for antiinflammatory response by curcumin may involve unique regulation of the Rab11 trafficking molecule in recycling of IL-8 receptors. PMID:17710245
Gu, Zi; Rolfe, Barbara E; Thomas, Anita C; Campbell, Julie H; Lu, G Q Max; Xu, Zhi P
2011-10-01
This paper reports a clear elucidation of the pathway for the cellular delivery of layered double hydroxide (LDH) nanoparticles intercalated with anti-restenotic low molecular weight heparin (LMWH). Cellular uptake of LMWH-LDH conjugates into cultured rat vascular smooth muscle cells (SMCs) measured via flow cytometry was more than ten times greater than that of LMWH alone. Confocal and transmission electron microscopy showed LMWH-LDH conjugates taken up by endosomes, then released into the cytoplasm. We propose that LMWH-LDH is taken up via a unique 'modified endocytic' pathway, whereby the conjugate is internalized by SMCs in early endosomes, sorted in late endosomes, and quickly released from late endosomes/lysosomes, avoiding degradation. Treatment of cells with LMWH-LDH conjugates suppressed the activation of ERK1/2 in response to foetal calf serum (FCS) for up to 24h, unlike unconjugated LMWH which had no significant effect at 24h. Improved understanding of the intracellular pathway of LMWH-LDH nanohybrids in SMC will allow for refinement of design for LDH nanomedicine applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microscopic observations of sonoporation mechanisms
NASA Astrophysics Data System (ADS)
Zeghimi, Aya; Escoffre, Jean-Michel; Bouakaz, Ayache
2017-03-01
Background Sonoporation promises a local gene/drug delivery with a high therapeutic efficacy and low toxicity level. However, the mechanisms orchestrating the molecules uptake are still unclear. Here, we investigate the effects of sonoporation on the plasma membrane of U-87 MG cells, either immediately or at different times post-sonoporation, using electron microscopy, and also the implication of cytoskeleton during the sonoporation process. Methods In our set-up, the U-87 MG cells were seeded on 18 mm diameter cover slips, placed in 24-well plates. The acoustic exposure conditions consisted of ultrasound pulses at 1 MHz, 1W/cm2 with duty cycle of 20% for 60 seconds. BR14® microbubbles were added to the cell medium before sonoporation at a microbubble/cell ratio of 5. These acoustic parameters were obtained as a result of a prior optimization experiments. Membrane permeabilization after sonoporation was assessed using SYTOX® Green dye (1 µM), as a model drug which does not cross the membrane of normal cells. The cell mortality was measured with propidium iodide staining. The alterations, on the plasma membrane, after sonoporation were monitored by scanning electron microscopy (SEM). The cell samples were processed immediately (0 min) and every 5 min up to 60 min post-sonoporation and coated by platinum sputtering (5 nm). For immunofluorescence experiments, the cells were fixed with 4% paraformaldehyde, and then incubated with TRITC-labeled Phalloidin, used to stain the actin cytoskeleton. Tubulin antibody Alexa Fluor® 555 conjugate was used to label the microtubules. Results Our results showed that immediately after ultrasound and microbubble exposure, dark and spherical structures appear on the plasma membrane. These structures have a diameter ranging from few nanometers to 160 nm. These structures are transient, since 15 min post-sonoporation, almost half of these structures disappeared. The decrease in the number of permeant structures is accentuated over time to be fully resorbed 60 min post-sonoporation, consequently the cells still metabolically active. Moreover, flow cytometry results show a positive correlation between membrane permeabilization and the number of these electron dense structures. Indeed, 60% of SYTOX® Green incorporation is achieved immediately after sonoporation, to decay over time and therefore as a function of the presence of these permeant structures on the cell membrane. These structures are named here "permeation structures". To define the nature of the TPS structures the cells were treated with Genistein, an inhibitor of caveolae-mediated endocytosis. Scanning Electron microscopy images showed a significant diminution of the number of TPS for cells incubated with Genistein, suggesting that a large part of these structures are caveolae still open. Moreover, immunofluorescence analysis showed a depolymerization of actin and tubulin cytoskeleton, immediately after sonoporation. This depolymerization is accompanied with a massive uptake of SYTOX® Green, while the use of cytochalasin D and nocodazole (inhibitors of actin and tubulin polymerization) induced a decrease in the percentage of SYTOX® Green incorporation. Conclusion In conclusion, our findings reveal the reversibility of sonoporation effects on the cell membrane, and show that the caveolae-mediated endocytosis is a dominant pathway involved in the sonoporation process of U-87 MG cells, with a probable involvement of other endocytic and non-endocytic pathways. Otherwise, the study of sonoporation on cytoskeleton gives evidence on the involvement of endocytosis during the sonoporation process (entry and transport of molecules).
Receptor-Mediated and Fluid-Phase Transcytosis of Horseradish Peroxidase across Rat Hepatocytes
Ellinger, Isabella; Fuchs, Renate
2010-01-01
Horseradish peroxidase (HRP) is often used as a fluid-phase marker to characterize endocytic and transcytotic processes. Likewise, it has been applied to investigate the mechanisms of biliary secretion of fluid in rat liver hepatocytes. However, HRP contains mannose residues and thus binds to mannose receptors (MRs) on liver cells, including hepatocytes. To study the role of MR-mediated endocytosis of HRP transport in hepatocytes, we determined the influence of the oligosaccharid mannan on HRP biliary secretion in the isolated perfused rat liver. A 1-minute pulse of HRP was applied followed by marker-free perfusion. HRP appeared in bile with biphasic kinetics: a first peak at 7 minutes and a second peak at 15 minutes after labeling. Perfusion with 0.8 mg/mL HRP in the presence of a twofold excess of mannan reduced the first peak by 41% without effect on the second one. Together with recently published data on MR expression in rat hepatocytes this demonstrates two different mechanisms for HRP transcytosis: a rapid, receptor-mediated transport and a slower fluid-phase transport. PMID:20168981
miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus
Serva, Andrius; Knapp, Bettina; Tsai, Yueh-Tso; Claas, Christoph; Lisauskas, Tautvydas; Matula, Petr; Harder, Nathalie; Kaderali, Lars; Rohr, Karl; Erfle, Holger; Eils, Roland; Braga, Vania; Starkuviene, Vytaute
2012-01-01
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease. PMID:23285084
Endocytosis in the Shiitake Mushroom Lentinula edodes and Involvement of GTPase LeRAB7▿
Lee, Ming Tsung; Szeto, Carol Ying Ying; Ng, Tak Pan; Kwan, Hoi Shan
2007-01-01
Endocytosis is the process by which substrates enter a cell without passing through the plasma membrane but rather invaginate the cell membrane and form intracellular vesicles. Rab7 regulates endocytic trafficking between early and late endosomes and between late endosomes and lysosomes. LeRab7 in Lentinula edodes is strongly homologous to Rab7 in Homo sapiens. Receptors for activated C kinase-1 (LeRACK1) and Rab5 GTPase (LeRAB5) were isolated as interacting partners of LeRab7, and the interactions were confirmed by in vivo and in vitro protein interaction assays. The three genes showed differential expression in the various developmental stages of the mushroom. In situ hybridization showed that the three transcripts were localized in regions of active growth, such as the outer region of trama cells, and the subhymenium of the hymenophore of mature fruiting bodies and the prehymenophore of young fruiting bodies. The existence of endocytosis in the mycelium and hymenophores was confirmed by the internalization of FM4-64. LeRAB7 was partially colocalized with the AM4-64 and was located in the late endocytic pathway. This is the first report of the presence of endocytosis in homobasidiomycetes. LeRAB7, LeRAB5, and LeRACK1 may contribute to the growth of L. edodes and cell differentiation in hymenophores. PMID:17921351
Drosophila VAMP7 regulates Wingless intracellular trafficking.
Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui
2017-01-01
Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.
The spatial and temporal organization of ubiquitin networks
Grabbe, Caroline; Husnjak, Koraljka; Dikic, Ivan
2013-01-01
In the past decade, the diversity of signals generated by the ubiquitin system has emerged as a dominant regulator of biological processes and propagation of information in the eukaryotic cell. A wealth of information has been gained about the crucial role of spatial and temporal regulation of ubiquitin species of different lengths and linkages in the nuclear factor-κB (NF-κB) pathway, endocytic trafficking, protein degradation and DNA repair. This spatiotemporal regulation is achieved through sophisticated mechanisms of compartmentalization and sequential series of ubiquitylation events and signal decoding, which control diverse biological processes not only in the cell but also during the development of tissues and entire organisms. PMID:21448225
Kissing, Sandra; Rudnik, Sönke; Damme, Markus; Lüllmann-Rauch, Renate; Ichihara, Atsuhiro; Kornak, Uwe; Eskelinen, Eeva-Liisa; Jabs, Sabrina; Heeren, Jörg; De Brabander, Jef K; Haas, Albert; Saftig, Paul
2017-04-03
The vacuolar-type H + -translocating ATPase (v-H + -ATPase) has been implicated in the amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (MTORC1), an important regulator of macroautophagy. To reveal the mechanistic links between the v-H + -ATPase and MTORC1, we destablilized v-H + -ATPase complexes in mouse liver cells by induced deletion of the essential chaperone ATP6AP2. ATP6AP2-mutants are characterized by massive accumulation of endocytic and autophagic vacuoles in hepatocytes. This cellular phenotype was not caused by a block in endocytic maturation or an impaired acidification. However, the degradation of LC3-II in the knockout hepatocytes appeared to be reduced. When v-H + -ATPase levels were decreased, we observed lysosome association of MTOR and normal signaling of MTORC1 despite an increase in autophagic marker proteins. To better understand why MTORC1 can be active when v-H + -ATPase is depleted, the activation of MTORC1 was analyzed in ATP6AP2-deficient fibroblasts. In these cells, very little amino acid-elicited activation of MTORC1 was observed. In contrast, insulin did induce MTORC1 activation, which still required intracellular amino acid stores. These results suggest that in vivo the regulation of macroautophagy depends not only on v-H + -ATPase-mediated regulation of MTORC1.
MicroRNA and receptor mediated signaling pathways as potential therapeutic targets in heart failure.
Tuttolomondo, Antonino; Simonetta, Irene; Pinto, Antonio
2016-11-01
Cardiac remodelling is a complex pathogenetic pathway involving genome expression, molecular, cellular, and interstitial changes that cause changes in size, shape and function of the heart after cardiac injury. Areas covered: We will review recent advances in understanding the role of several receptor-mediated signaling pathways and micro-RNAs, in addition to their potential as candidate target pathways in the pathogenesis of heart failure. The myocyte is the main target cell involved in the remodelling process via ischemia, cell necrosis and apoptosis (by means of various receptor pathways), and other mechanisms mediated by micro-RNAs. We will analyze the role of some receptor mediated signaling pathways such as natriuretic peptides, mediators of glycogen synthase kinase 3 and ERK1/2 pathways, beta-adrenergic receptor subtypes and relaxin receptor signaling mechanisms, TNF/TNF receptor family and TWEAK/Fn14 axis, and some micro-RNAs as candidate target pathways in pathogenesis of heart failure. These mediators of receptor-mediated pathways and micro-RNA are the most addressed targets of emerging therapies in modern heart failure treatment strategies. Expert opinion: Future treatment strategies should address mediators involved in multiple steps within heart failure pathogenetic pathways.
Phosphoinositide 3-kinase regulates maturation of lysosomes in rat hepatocytes.
Mousavi, Seyed Ali; Brech, Andreas; Berg, Trond; Kjeken, Rune
2003-01-01
To obtain information about the role of phosphoinositide 3-kinase (PI3K) in the endocytic pathway in hepatocytes, the uptake and intracellular transport of asialo-orosomucoid (ASOR) was followed in cells treated with wortmannin or LY294002. The two inhibitors, at concentrations known to inhibit the enzyme, did not affect internalization or the number of surface asialoglycoprotein receptors, but they caused a paradoxical increase (approx. 50% above control values) in the degradation of ASOR labelled with [(125)I]tyramine cellobiose ([(125)I]TC). Wortmannin or LY204002 inhibited the autophagic sequestration of lactate dehydrogenase very effectively, and the enhanced degradation of [(125)I]TC-ASOR could be an indirect effect of reduced autophagy, as an amino acid mixture known to inhibit autophagy also caused increased degradation of [(125)I]TC-ASOR, and its effect was not additive to that of wortmannin or LY294002. Wortmannin or LY294002 had pronounced effects on the late parts of the endocytic pathway in the hepatocytes: first, dense lysosomes disappeared and were replaced by swollen vesicles; secondly, degradation of [(125)I]TC-ASOR took place in an organelle of lower buoyant density (in a sucrose gradient) than the bulk of lysosomes (identified in the gradient by lysosomal marker enzymes). With increasing length of incubation with wortmannin or LY294002, the density distributions of the lysosomal markers also shifted to lower density and gradually approached that of the labelled degradation products. The labelled degradation products formed from [(125)I]TC-labelled proteins were trapped at the site of formation, because they did not penetrate the vesicle membranes. The results obtained indicate that internalization and intracellular transport of ASOR to lysomes may take place in the absence of PI3K activity in rat hepatocytes. On the other hand, fusion of late endosomes with lysosomes seems to produce 'hybrid organelles' (active lysosomes) that are unable to mature into dense lysosomes. PMID:12646047
Los, Ferdinand C O; Kao, Cheng-Yuan; Smitham, Jane; McDonald, Kent L; Ha, Christine; Peixoto, Christina A; Aroian, Raffi V
2011-02-17
Pore-forming toxins (PFTs) secreted by pathogenic bacteria are the most common bacterial protein toxins and are important virulence factors for infection. PFTs punch holes in host cell plasma membranes, and although cells can counteract the resulting membrane damage, the underlying mechanisms at play remain unclear. Using Caenorhabditis elegans as a model, we demonstrate in vivo and in an intact epithelium that intestinal cells respond to PFTs by increasing levels of endocytosis, dependent upon RAB-5 and RAB-11, which are master regulators of endocytic and exocytic events. Furthermore, we find that RAB-5 and RAB-11 are required for protection against PFT and to restore integrity to the plasma membrane. One physical mechanism involved is the RAB-11-dependent expulsion of microvilli from the apical side of the intestinal epithelial cells. Specific vesicle-trafficking pathways thus protect cells against an attack by PFTs on plasma membrane integrity, via altered plasma membrane dynamics. Copyright © 2011 Elsevier Inc. All rights reserved.
Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas
2011-01-01
Oral squamous cell carcinoma (OSCC) is a challenging disease with a high mortality rate. Natural products represent a valuable source for the development of novel anticancer drugs. We investigated the cytotoxic potential of essential oil from the leaves of a medicinal plant, Levisticum officinale (lovage) on head and neck squamous carcinoma cells (HNSCC). Cytotoxicity of lovage essential oil was investigated on the HNSCC cell line, UMSCC1. Additionally, we performed pharmacogenomics analyses. Lovage essential oil extract had an IC₅₀ value of 292.6 μg/ml. Genes involved in apoptosis, cancer, cellular growth and cell cycle regulation were the most prominently affected in microarray analyses. The three pathways to be most significantly regulated were extracellular signal-regulated kinase 5 (ERK5) signaling, integrin-linked kinase (ILK) signaling, virus entry via endocytic pathways and p53 signaling. Levisticum officinale essential oil inhibits human HNSCC cell growth.
Rab proteins: The key regulators of intracellular vesicle transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhuin, Tanmay; Roy, Jagat Kumar, E-mail: jkroy@bhu.ac.in
2014-10-15
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied bymore » cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes. - Highlights: • Rab proteins regulate different signalling pathways. • Deregulation of Rabs is the fundamental causes of a variety of human diseases. • This paper gives potential directions in developing therapeutic targets. • This paper also gives ample directions for modulating pathways central to normal physiology. • These are the huge challenges for drug discovery and delivery in near future.« less
Lucas, Cândida; Ferreira, Célia; Cazzanelli, Giulia; Franco-Duarte, Ricardo; Tulha, Joana
2016-01-01
In multiple tissues, the Hedgehog secreted morphogen activates in the receiving cells a pathway involved in cell fate, proliferation and differentiation in the receiving cells. This pathway is particularly important during embryogenesis. The protein HHAT (Hedgehog O-acyltransferase) modifies Hh morphogens prior to their secretion, while HHATL (Hh O-acyltransferase-like) negatively regulates the pathway. HHAT and HHATL are homologous to Saccharomyces cerevisiae Gup2 and Gup1, respectively. In yeast, Gup1 is associated with a high number and diversity of biological functions, namely polarity establishment, secretory/endocytic pathway functionality, vacuole morphology and wall and membrane composition, structure and maintenance. Phenotypes underlying death, morphogenesis and differentiation are also included. Paracrine signalling, like the one promoted by the Hh pathway, has not been shown to occur in microbial communities, despite the fact that large aggregates of cells like biofilms or colonies behave as proto-tissues. Instead, these have been suggested to sense the population density through the secretion of quorum-sensing chemicals. This review focuses on Gup1/HHATL and Gup2/HHAT proteins. We review the functions and physiology associated with these proteins in yeasts and higher eukaryotes. We suggest standardisation of the presently chaotic Gup-related nomenclature, which includes KIAA117, c3orf3, RASP, Skinny, Sightless and Central Missing, in order to avoid the disclosure of otherwise unnoticed information. PMID:29615596
A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis
Taylor, Marcus J.; Perrais, David; Merrifield, Christien J.
2011-01-01
Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼1,000 recruitment profiles to their respective scission events and constructed characteristic “recruitment signatures” that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes. PMID:21445324
Stavrides, Philip; Saito, Mitsuo; Kumar, Asok; Rodriguez-Navarro, Jose A.; Pawlik, Monika; Huo, Chunfeng; Walkley, Steven U.; Saito, Mariko; Cuervo, Ana M.
2014-01-01
Autophagy, the major lysosomal pathway for the turnover of intracellular organelles is markedly impaired in neurons in Alzheimer’s disease and Alzheimer mouse models. We have previously reported that severe lysosomal and amyloid neuropathology and associated cognitive deficits in the TgCRND8 Alzheimer mouse model can be ameliorated by restoring lysosomal proteolytic capacity and autophagy flux via genetic deletion of the lysosomal protease inhibitor, cystatin B. Here we present evidence that macroautophagy is a significant pathway for lipid turnover, which is defective in TgCRND8 brain where lipids accumulate as membranous structures and lipid droplets within giant neuronal autolysosomes. Levels of multiple lipid species including several sphingolipids (ceramide, ganglioside GM3, GM2, GM1, GD3 and GD1a), cardiolipin, cholesterol and cholesteryl esters are elevated in autophagic vacuole fractions and lysosomes isolated from TgCRND8 brain. Lipids are localized in autophagosomes and autolysosomes by double immunofluorescence analyses in wild-type mice and colocalization is increased in TgCRND8 mice where abnormally abundant GM2 ganglioside-positive granules are detected in neuronal lysosomes. Cystatin B deletion in TgCRND8 significantly reduces the number of GM2-positive granules and lowers the levels of GM2 and GM3 in lysosomes, decreases lipofuscin-related autofluorescence, and eliminates giant lipid-containing autolysosomes while increasing numbers of normal-sized autolysosomes/lysosomes with reduced content of undigested components. These findings have identified macroautophagy as a previously unappreciated route for delivering membrane lipids to lysosomes for turnover, a function that has so far been considered to be mediated exclusively through the endocytic pathway, and revealed that autophagic-lysosomal dysfunction in TgCRND8 brain impedes lysosomal turnover of lipids as well as proteins. The amelioration of lipid accumulation in TgCRND8 by removing cystatin B inhibition on lysosomal proteases suggests that enhancing lysosomal proteolysis improves the overall environment of the lysosome and its clearance functions, which may be possibly relevant to a broader range of lysosomal disorders beyond Alzheimer’s disease. PMID:25270989
NASA Astrophysics Data System (ADS)
Tian, Xiumei; Guan, Xiaoying; Luo, Ningqi; Yang, Fanwen; Chen, Dihu; Peng, Ye; Zhu, Jixiang; He, Fupo; Li, Li; Chen, Xiaoming
2014-09-01
Gd2O3 nanoprobes prepared by laser ablation in liquid can be used as magnetic resonance imaging contrast agent. However, their immunotoxicity in vivo remains unknown. In this article, the in vitro biocompatibility of the Gd2O3 nanoprobe was evaluated in terms of cell uptake, cell viability, and apoptosis. In vivo immunotoxicity was detected by monitoring the levels of the immunity mediator, cluster of differentiation (CD) markers in Balb/c mice. The results show that no in vitro cytotoxicity was observed, and no significant changes in the expression levels of CD206 and CD69 between the nanoprobe-injected group and the Gd-DTPA group in mice were observed. Importantly, the immunotoxicity data revealed significant differences in the expression levels of CD40, CD80, CD11b, and reactive oxygen species. In addition, transmission electron microscopy images showed that few Gd2O3 nanoprobes were localized in phagosomes by the endocytic pathway. In conclusion, the toxic effects of our Gd2O3 nanoprobe may be due to endocytosis during which the microstructure or ultrastructure of cells is slightly damaged and induces the generation of an oxidative stress reaction that further stimulates the innate immune response. Therefore, it is important to use a sensitive assay for the in vivo immunotoxicity measurements to evaluate the risk assessment of Gd2O3-based biomaterials at the molecular level.
Danielsen, E Michael; Hansen, Gert H
2017-07-03
Intestinal permeation enhancers (PEs) are agents aimed to improve oral delivery of therapeutic drugs with poor bioavailability. The main permeability barrier for oral delivery is the intestinal epithelium, and PEs act to increase the paracellular and/or transcellular passage of drugs. Transcellular passage can be achieved by cell membrane permeabilization and/or by endocytic uptake and subsequent transcytosis. One broad class of PEs is surfactants which act by inserting into the cell membrane, thereby perturbing its integrity, but little is known about how the dynamics of the membrane are affected. In the present work, the interaction of the surfactants lauroyl-L-carnitine, 1-decanoyl-rac-glycerol, and nonaethylene glycol monododecyl ether with the intestinal epithelium was studied in organ cultured pig jejunal mucosal explants. As expected, at 2 mM, these agents rapidly permeabilized the enterocytes for the fluorescent polar tracer lucifer yellow, but surprisingly, they all also blocked both constitutive -and receptor-mediated pathways of endocytosis from the brush border, indicating a complete arrest of apical membrane trafficking. At the ultrastructural level, the PEs caused longitudinal fusion of brush border microvilli. Such a membrane fusogenic activity could also explain the observed formation of vesicle-like structures and large vacuoles along the lateral cell membranes of the enterocytes induced by the PEs. We conclude that the surfactant action of the PEs selected in this study not only permeabilized the enterocytes, but profoundly changed the dynamic properties of their constituent cell membranes.
Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice.
Qian, Wenyu; Hong, Yang; Zhu, Minyan; Zhou, Liang; Li, Hongchang; Li, Huashun
2017-06-15
Endocytic adaptor protein Numb is the first identified cell fate determinant in Drosophila melanogaster. It has been implicated in Notch signaling pathway and regulation of neural stem cells proliferation in the central nervous system. Numb is also expressed in postmitotic neurons, in vitro studies showed that Numb is involved in neuronal morphologic development, such as neurite growth, axonal growth and spine development. However, in vivo functions of Numb in the postmitotic neurons are largely unknown. Here we show that deletion of Numb/Numblike in glutamatergic neurons causes anxiety-like behavior in mouse. In this study, we conditionally deleted Numb and its homologous gene Numblike in the glutamatergic neurons in dorsal forebrain, and thoroughly characterized the behavioral phenotypes of mutant mice. On a battery of tests for anxiety-like behavior, the conditional double knockout mice showed increased anxiety-like behavior on light/dark exploration and novel open field tests, but not on elevated zero maze tests. The conditional double knockout mice also displayed novelty induced hyperactivity in novel open field test. Control measures of general health, motor functions, startle response, sensorimotor gating, depression-related behaviors did not show differences between genotypes. Our present findings provide new insight into the indispensable functions of Numb/Numblike in the brain and behavior, and suggest that Numb/Numblike may play a role in mediating neuronal functions that underlie behaviors related to anxiety. Copyright © 2017. Published by Elsevier B.V.
Self-assembled pentablock copolymers for selective and sustained gene delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bingqi
2011-05-15
The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomesmore » of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.« less
Kuznets, Galit; Vigonsky, Elena; Weissman, Ziva; Lalli, Daniela; Gildor, Tsvia; Kauffman, Sarah J; Turano, Paola; Becker, Jeffrey; Lewinson, Oded; Kornitzer, Daniel
2014-10-01
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host's body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7-/- mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.
Interactions of the Human Calcitonin Fragment 9–32 with Phospholipids: A Monolayer Study
Wagner, Kerstin; Van Mau, Nicole; Boichot, Sylvie; Kajava, Andrey V.; Krauss, Ulrike; Le Grimellec, Christian; Beck-Sickinger, Annette; Heitz, Frédéric
2004-01-01
Human calcitonin and its C-terminal fragment 9–32 (hCT(9–32)) administered in a spray translocate into respiratory nasal epithelium with an effect similar to intravenous injection. hCT(9–32) is an efficient carrier to transfer the green fluorescent protein into excised bovine nasal mucosa. To understand the translocation of hCT(9–32) across plasma membranes, we investigated its interactions with phospholipids and its interfacial structure using model lipid monolayers. A combination of physicochemical methods was applied including surface tension measurements on adsorbed and spread monolayers at the air-water interface, Fourier transform infrared, circular dichroism, and atomic force microscopy on Langmuir-Blodgett monolayers. The results disclose that hCT(9–32) preferentially interacts with negatively charged phospholipids and does not insert spontaneously into lipid monolayers. This supports a nonreceptor-mediated endocytic internalization pathway as previously suggested. Structural studies revealed a random coil conformation of hCT(9–32) in solution, transforming to α-helices when the peptide is localized at lipid-free or lipid-containing air-water interfaces. Atomic force microscopy studies of monolayers of the peptide alone or mixed with dioleoylphosphatidylcholine revealed that hCT(9–32) forms filaments rolled into spirals. In contrast, when interacting with dioleoylphosphatidylglycerol, hCT(9–32) does not adopt filamentous structures. A molecular model and packing is proposed for the spiral-forming hCT(9–32). PMID:15240473
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Urbán, Patricia; Bogni, Alessia; Ponti, Jessica; Gioria, Sabrina; Kinsner-Ovaskainen, Agnieszka
2017-06-26
Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called "critical quality attributes", that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs.
Salaun, Christine; Ritchie, Louise; Greaves, Jennifer; Bushell, Trevor J; Chamberlain, Luke H
2017-12-01
The S-acyltransferase zDHHC2 mediates dynamic S-acylation of PSD95 and AKAP79/150, which impacts synaptic targeting of AMPA receptors. zDHHC2 is responsive to synaptic activity and catalyses the increased S-acylation of PSD95 that occurs following action potential blockade or application of ionotropic glutamate receptor antagonists. These treatments have been proposed to increase plasma membrane delivery of zDHHC2 via an endosomal cycling pathway, enhancing substrate accessibility. To generate an improved understanding of zDHHC2 trafficking and how this might be regulated by neuronal activity, we searched for intramolecular signals that regulate enzyme localisation. Two signals were mapped to the C-terminal tail of zDHHC2: a non-canonical dileucine motif [SxxxLL] and a downstream NP motif. Mutation of these signals enhanced plasma membrane accumulation of zDHHC2 in both neuroendocrine PC12 cells and rat hippocampal neurons, consistent with reduced endocytic retrieval. Furthermore, mutation of these signals also increased accumulation of the enzyme in neurites. Interestingly, several threonine and serine residues are adjacent to these sorting motifs and analysis of phospho-mimetic mutants highlighted a potential role for phosphorylation in regulating the efficacy of these signals. This study offers new molecular insight into the signals that determine zDHHC2 localisation and highlights a potential mechanism to regulate these trafficking signals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Deconvoluting hepatic processing of carbon nanotubes
Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry; ...
2016-07-29
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-01-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of possible 18 α-chains and one of possible 8 β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalised by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalisation by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with AP2 C-µ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions. PMID:26779610
Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.
De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna
2016-02-01
Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.
Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis.
Wang, Changhe; Wang, Yeshi; Hu, Meiqin; Chai, Zuying; Wu, Qihui; Huang, Rong; Han, Weiping; Zhang, Claire Xi; Zhou, Zhuan
2016-01-01
Precise and efficient endocytosis is essential for vesicle recycling during a sustained neurotransmission. The regulation of endocytosis has been extensively studied, but inhibitors have rarely been found. Here, we show that synaptotagmin-11 (Syt11), a non-Ca(2+)-binding Syt implicated in schizophrenia and Parkinson's disease, inhibits clathrin-mediated endocytosis (CME) and bulk endocytosis in dorsal root ganglion neurons. The frequency of both types of endocytic event increases in Syt11 knockdown neurons, while the sizes of endocytosed vesicles and the kinetics of individual bulk endocytotic events remain unaffected. Specifically, clathrin-coated pits and bulk endocytosis-like structures increase on the plasma membrane in Syt11-knockdown neurons. Structural-functional analysis reveals distinct domain requirements for Syt11 function in CME and bulk endocytosis. Importantly, Syt11 also inhibits endocytosis in hippocampal neurons, implying a general role of Syt11 in neurons. Taken together, we propose that Syt11 functions to ensure precision in vesicle retrieval, mainly by limiting the sites of membrane invagination at the early stage of endocytosis. © 2015 The Authors.
Deconvoluting hepatic processing of carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alidori, Simone; Bowman, Robert L.; Yarilin, Dmitry
Single-wall carbon nanotubes present unique opportunities for drug delivery, but have not advanced into the clinic. Differential nanotube accretion and clearance from critical organs have been observed, but the mechanism not fully elucidated. The liver has a complex cellular composition that regulates a range of metabolic functions and coincidently accumulates most particulate drugs. Here we provide the unexpected details of hepatic processing of covalently functionalized nanotubes including receptor-mediated endocytosis, cellular trafficking and biliary elimination. Ammonium-functionalized fibrillar nanocarbon is found to preferentially localize in the fenestrated sinusoidal endothelium of the liver but not resident macrophages. Stabilin receptors mediate the endocytic clearancemore » of nanotubes. Biocompatibility is evidenced by the absence of cell death and no immune cell infiltration. Towards clinical application of this platform, nanotubes were evaluated for the first time in non-human primates. Lastly, the pharmacologic profile in cynomolgus monkeys is equivalent to what was reported in mice and suggests that nanotubes should behave similarly in humans.« less
Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells
2015-01-01
Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond–drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers. PMID:25437772
da Luz, Camila Macedo; Boyles, Matthew Samuel Powys; Falagan-Lotsch, Priscila; Pereira, Mariana Rodrigues; Tutumi, Henrique Rudolf; de Oliveira Santos, Eidy; Martins, Nathalia Balthazar; Himly, Martin; Sommer, Aniela; Foissner, Ilse; Duschl, Albert; Granjeiro, José Mauro; Leite, Paulo Emílio Corrêa
2017-01-31
Poly-lactic acid nanoparticles (PLA-NP) are a type of polymeric NP, frequently used as nanomedicines, which have advantages over metallic NP such as the ability to maintain therapeutic drug levels for sustained periods of time. Despite PLA-NP being considered biocompatible, data concerning alterations in cellular physiology are scarce. We conducted an extensive evaluation of PLA-NP biocompatibility in human lung epithelial A549 cells using high throughput screening and more complex methodologies. These included measurements of cytotoxicity, cell viability, immunomodulatory potential, and effects upon the cells' proteome. We used non- and green-fluorescent PLA-NP with 63 and 66 nm diameters, respectively. Cells were exposed with concentrations of 2, 20, 100 and 200 µg/mL, for 24, 48 and 72 h, in most experiments. Moreover, possible endocytic mechanisms of internalization of PLA-NP were investigated, such as those involving caveolae, lipid rafts, macropinocytosis and clathrin-coated pits. Cell viability and proliferation were not altered in response to PLA-NP. Multiplex analysis of secreted mediators revealed a low-level reduction of IL-12p70 and vascular epidermal growth factor (VEGF) in response to PLA-NP, while all other mediators assessed were unaffected. However, changes to the cells' proteome were observed in response to PLA-NP, and, additionally, the cellular stress marker miR155 was found to reduce. In dual exposures of staurosporine (STS) with PLA-NP, PLA-NP enhanced susceptibility to STS-induced cell death. Finally, PLA-NP were rapidly internalized in association with clathrin-coated pits, and, to a lesser extent, with lipid rafts. These data demonstrate that PLA-NP are internalized and, in general, tolerated by A549 cells, with no cytotoxicity and no secretion of pro-inflammatory mediators. However, PLA-NP exposure may induce modification of biological functions of A549 cells, which should be considered when designing drug delivery systems. Moreover, the pathways of PLA-NP internalization we detected could contribute to the improvement of selective uptake strategies.
Progranulin Is a Chemoattractant for Microglia and Stimulates Their Endocytic Activity
Pickford, Fiona; Marcus, Jacob; Camargo, Luiz Miguel; Xiao, Qiurong; Graham, Danielle; Mo, Jan-Rung; Burkhardt, Matthew; Kulkarni, Vinayak; Crispino, Jamie; Hering, Heike; Hutton, Michael
2011-01-01
Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathways involved in growth and development. Secretion of cytokines and several chemokines linked to chemoattraction but not inflammation were also increased from progranulin-treated primary neurons. Therefore, whether progranulin is involved in recruitment of immune cells in the brain was investigated. Localized lentiviral expression of progranulin in C57BL/6 mice resulted in an increase of Iba1-positive microglia around the injection site. Moreover, progranulin alone was sufficient to promote migration of primary mouse microglia in vitro. Primary microglia and C4B8 cells demonstrated more endocytosis of amyloid β1-42 when treated with progranulin. These data demonstrate that progranulin acts as a chemoattractant in the brain to recruit or activate microglia and can increase endocytosis of extracellular peptides such as amyloid β. PMID:21224065
Massaeli, Hamid; Sun, Tao; Li, Xian; Shallow, Heidi; Wu, Jimmy; Xu, Jianmin; Li, Wentao; Hanson, Christian; Guo, Jun; Zhang, Shetuan
2010-01-01
Reduction in the rapidly activating delayed rectifier K+ channel current (IKr) due to either mutations in the human ether-a-go-go-related gene (hERG) or drug block causes inherited or drug-induced long QT syndrome. A reduction in extracellular K+ concentration ([K+]o) exacerbates long QT syndrome. Recently, we demonstrated that lowering [K+]o promotes degradation of IKr in rabbit ventricular myocytes and of the hERG channel stably expressed in HEK 293 cells. In this study, we investigated the degradation pathways of hERG channels under low K+ conditions. We demonstrate that under low K+ conditions, mature hERG channels and caveolin-1 (Cav1) displayed a parallel time-dependent reduction. Mature hERG channels coprecipitated with Cav1 in co-immunoprecipitation analysis, and internalized hERG channels colocalized with Cav1 in immunocytochemistry analysis. Overexpression of Cav1 accelerated internalization of mature hERG channels in 0 mm K+o, whereas knockdown of Cav1 impeded this process. In addition, knockdown of dynamin 2 using siRNA transfection significantly impeded hERG internalization and degradation under low K+o conditions. In cultured neonatal rat ventricular myocytes, knockdown of caveolin-3 significantly impeded low K+o-induced reduction of IKr. Our data indicate that a caveolin-dependent endocytic route is involved in low K+o-induced degradation of mature hERG channels. PMID:20605793
Szymanska, Monika; Fosdahl, Anne M; Nikolaysen, Filip; Pedersen, Mikkel W; Grandal, Michael M; Stang, Espen; Bertelsen, Vibeke
2016-10-01
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Dictyostelium discoideum mutants with temperature-sensitive defects in endocytosis
1994-01-01
We have isolated and characterized temperature-sensitive endocytosis mutants in Dictyostelium discoideum. Dictyostelium is an attractive model for genetic studies of endocytosis because of its high rates of endocytosis, its reliance on endocytosis for nutrient uptake, and tractable molecular genetics. Endocytosis-defective mutants were isolated by a fluorescence-activated cell sorting (FACS) as cells unable to take up a fluorescent marker. One temperature-sensitive mutant (indy1) was characterized in detail and found to exhibit a complete block in fluid phase endocytosis at the restrictive temperature, but normal rates of endocytosis at the permissive temperature. Likewise, a potential cell surface receptor that was rapidly internalized in wild-type cells and indy1 cells at the permissive temperature was poorly internalized in indy1 under restrictive conditions. Growth was also completely arrested at the restrictive temperature. The endocytosis block was rapidly induced upon shift to the restrictive temperature and reversed upon return to normal conditions. Inhibition of endocytosis was also specific, as other membrane-trafficking events such as phagocytosis, secretion of lysosomal enzymes, and contractile vacuole function were unaffected at the restrictive temperature. Because recycling and transport to late endocytic compartments were not affected, the site of the defect's action is probably at an early step in the endocytic pathway. Additionally, indy1 cells were unable to proceed through the normal development program at the restrictive temperature. Given the tight functional and growth phenotypes, the indy1 mutant provides an opportunity to isolate genes responsible for endocytosis in Dictyostelium by complementation cloning. PMID:7929583
Multifaceted Mechanisms of HIV-1 Entry Inhibition by Human α-Defensin*♦
Demirkhanyan, Lusine H.; Marin, Mariana; Padilla-Parra, Sergi; Zhan, Changyou; Miyauchi, Kosuke; Jean-Baptiste, Maikha; Novitskiy, Gennadiy; Lu, Wuyuan; Melikyan, Gregory B.
2012-01-01
The human neutrophil peptide 1 (HNP-1) is known to block the human immunodeficiency virus type 1 (HIV-1) infection, but the mechanism of inhibition is poorly understood. We examined the effect of HNP-1 on HIV-1 entry and fusion and found that, surprisingly, this α-defensin inhibited multiple steps of virus entry, including: (i) Env binding to CD4 and coreceptors; (ii) refolding of Env into the final 6-helix bundle structure; and (iii) productive HIV-1 uptake but not internalization of endocytic markers. Despite its lectin-like properties, HNP-1 could bind to Env, CD4, and other host proteins in a glycan- and serum-independent manner, whereas the fusion inhibitory activity was greatly attenuated in the presence of human or bovine serum. This demonstrates that binding of α-defensin to molecules involved in HIV-1 fusion is necessary but not sufficient for blocking the virus entry. We therefore propose that oligomeric forms of defensin, which may be disrupted by serum, contribute to the anti-HIV-1 activity perhaps through cross-linking virus and/or host glycoproteins. This notion is supported by the ability of HNP-1 to reduce the mobile fraction of CD4 and coreceptors in the plasma membrane and to precipitate a core subdomain of Env in solution. The ability of HNP-1 to block HIV-1 uptake without interfering with constitutive endocytosis suggests a novel mechanism for broad activity against this and other viruses that enter cells through endocytic pathways. PMID:22733823
Bhalekar, Mangesh R; Upadhaya, Prashant G; Madgulkar, Ashwini R
2016-03-10
Rheumatoid arthritis (RA), a chronic systemic autoimmune disease, stimulates various immune cells especially macrophages, causing release of various proinflammatory cytokines such as TNF-α leading to persistent synovitis. Chloroquine, an anti-malarial drug inhibits the production of TNF-α, thus, halting the disease progression. The aim of the present study was fabrication, characterization and demonstration of kinetic and dynamic efficacy of chloroquine loaded solid lipid nanoparticles (CQ-SLNs) in arthritic rats and in lowering TNF-α levels. CQ-SLNs were prepared using melt homogenization method and subjected to lyophilization. The particle size, zeta potential, PDI and entrapment efficiency were found to be 113.6±0.15nm, -27.8±1.21mV, 0.125±0.03 and 93.45±0.43% respectively. Ex vivo endocytic uptake studies revealed engrossment of endocytic pathways in the uptake of SLN from intestine. Plasma drug profile upon pharmacokinetic evaluation demonstrated increased AUC, half-life and decreased elimination rate of the drug. Pharmacodynamic studies revealed reduction in the paw volume, bone erosion and cartilage destruction, the same was also reflected in histopathological studies. The TNF-α ELISA concluded that the TNF-α level was significantly reduced in the synovial fluid upon treatment with CQ-SLN, thus, leading to the conclusion that CQ-SLN could be used as a potential in reducing inflammatory TNF-α at the arthritic site and halting the disease progression. Copyright © 2016 Elsevier B.V. All rights reserved.
The Rab4 effector Rabip4 plays a role in the endocytotic trafficking of Glut 4 in 3T3-L1 adipocytes.
Mari, Muriel; Monzo, Pascale; Kaddai, Vincent; Keslair, Frédérique; Gonzalez, Teresa; Le Marchand-Brustel, Yannick; Cormont, Mireille
2006-04-01
Insulin regulates glucose uptake in the adipocytes by modulating Glut 4 localization, a traffic pathway involving the endocytic small GTPases Rab4, Rab5, and RabThe expression of the Rab4 effector Rabip4 leads to a 30% increase in glucose uptake and Glut 4 translocation in the presence of insulin, without modifications in the basal condition. This effect was not due to modifications of Glut 4 expression or insulin signaling, suggesting that Rabip4 controls Glut 4 trafficking. We present evidence that Rabip4 defines a subdomain of early endosomes and that Rabip4 is redistributed to the plasma membrane by insulin. Rabip4 is mostly absent from structures positive for early endosome antigen 1, Rab11 or transferrin receptors and from Glut 4 sequestration compartments. However, Rabip4 vesicles can be reached by internalized transferrin and Glut 4. Thus, Rabip4 probably defines an endocytic sorting platform for Glut 4 towards its sequestration pool. The expression of a form of Rabip4 unable to bind Rab4 does not modify basal and insulin-induced glucose transport. However, it induces an increase in the amount of Glut 4 at the plasma membrane and perturbs Glut 4 traffic from endosomes towards its sequestration compartments. These observations suggest that the uncoupling between Rabip4 and Rab4 induces the insertion of Glut 4 molecules that are unable to transport glucose into the plasma membrane.
pHuji, a pH-sensitive red fluorescent protein for imaging of exo- and endocytosis
Shen, Yi; Rosendale, Morgane
2014-01-01
Fluorescent proteins with pH-sensitive fluorescence are valuable tools for the imaging of exocytosis and endocytosis. The Aequorea green fluorescent protein mutant superecliptic pHluorin (SEP) is particularly well suited to these applications. Here we describe pHuji, a red fluorescent protein with a pH sensitivity that approaches that of SEP, making it amenable for detection of single exocytosis and endocytosis events. To demonstrate the utility of the pHuji plus SEP pair, we perform simultaneous two-color imaging of clathrin-mediated internalization of both the transferrin receptor and the β2 adrenergic receptor. These experiments reveal that the two receptors are differentially sorted at the time of endocytic vesicle formation. PMID:25385186
Imaging galectin-3 dependent endocytosis with lattice light-sheet microscopy
NASA Astrophysics Data System (ADS)
Baek, Jongho; Lou, Jieqiong; Coelho, Simao; Lim, Yean Jin; Seidlitz, Silvia; Nicovich, Philip R.; Wunder, Christian; Johannes, Ludger; Gaus, Katharina
2017-04-01
Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.
DeVay, Rachel M.; Yamamoto, Lynn; Shelton, David L.; Liang, Hong
2015-01-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a soluble protein that directs membrane-bound receptors to lysosomes for degradation. In the most studied example of this, PCSK9 binding leads to the degradation of low density lipoprotein receptor (LDLR), significantly affecting circulating LDL-C levels. The mechanism mediating this degradation, however, is not completely understood. We show here that LDLR facilitates PCSK9 interactions with amyloid precursor like protein 2 (APLP2) at neutral pH leading to PCSK9 internalization, although direct binding between PCSK9 and LDLR is not required. Moreover, binding to APLP2 or LDLR is independently sufficient for PCSK9 endocytosis in hepatocytes, while LDL can compete with APLP2 for PCSK9 binding to indirectly mediate PCSK9 endocytosis. Finally, we show that APLP2 and LDLR are also required for the degradation of another PCSK9 target, APOER2, necessitating a general role for LDLR and APLP2 in PCSK9 function. Together, these findings provide evidence that PCSK9 has at least two endocytic epitopes that are utilized by a variety of internalization mechanisms and clarifies how PCSK9 may direct proteins to lysosomes. PMID:25905719
Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N
2018-04-01
Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.
Wang, Lili; Eng, Edward T.; Law, Kenneth; Gordon, Ronald E.; Rice, William J.
2016-01-01
ABSTRACT Virological synapses (VS) are adhesive structures that form between infected and uninfected cells to enhance the spread of HIV-1. During T cell VS formation, viral proteins are actively recruited to the site of cell-cell contact where the viral material is efficiently translocated to target cells into heterogeneous, protease-resistant, antibody-inaccessible compartments. Using correlative light and electron microscopy (CLEM), we define the membrane topography of the virus-containing compartments (VCC) where HIV is found following VS-mediated transfer. Focused ion beam scanning electron microscopy (FIB-SEM) and serial sectioning transmission electron microscopy (SS-TEM) were used to better resolve the fluorescent Gag-containing structures within the VCC. We found that small punctate fluorescent signals correlated with single viral particles in enclosed vesicular compartments or surface-localized virus particles and that large fluorescent signals correlated with membranous Gag-containing structures with unknown pathological function. CLEM imaging revealed distinct pools of newly deposited viral proteins within endocytic and nonendocytic compartments in VS target T cells. IMPORTANCE This study directly correlates individual virus-associated objects observed in light microscopy with ultrastructural features seen by electron microscopy in the HIV-1 virological synapse. This approach elucidates which infection-associated ultrastructural features represent bona fide HIV protein complexes. We define the morphology of some HIV cell-to-cell transfer intermediates as true endocytic compartments and resolve unique synapse-associated viral structures created by transfer across virological synapses. PMID:27847357
Abbad, Sarra; Wang, Cheng; Waddad, Ayman Yahia; Lv, Huixia; Zhou, Jianping
2015-01-01
Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH), based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate) (HA-PBCA) block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS) was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs) and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs) were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice. Overall, the results imply that the developed nanoparticles are promising vehicles for the targeted delivery of lipophilic anticancer drugs. PMID:25609946
Green fluorescent protein (GFP): is seeing believing and is that enough?
Shorter, Susan A; Pettit, Marie W; Dyer, Paul D R; Coakley Youngs, Emma; Gorringe-Pattrick, Monique A M; El-Daher, Samer; Richardson, Simon
Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.
Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.
2016-01-01
Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264
Sphingosine and Sphingosine Kinase 1 Involvement in Endocytic Membrane Trafficking*
Lima, Santiago; Milstien, Sheldon; Spiegel, Sarah
2017-01-01
The balance between cholesterol and sphingolipids within the plasma membrane has long been implicated in endocytic membrane trafficking. However, in contrast to cholesterol functions, little is still known about the roles of sphingolipids and their metabolites. Perturbing the cholesterol/sphingomyelin balance was shown to induce narrow tubular plasma membrane invaginations enriched with sphingosine kinase 1 (SphK1), the enzyme that converts the bioactive sphingolipid metabolite sphingosine to sphingosine-1-phosphate, and suggested a role for sphingosine phosphorylation in endocytic membrane trafficking. Here we show that sphingosine and sphingosine-like SphK1 inhibitors induced rapid and massive formation of vesicles in diverse cell types that accumulated as dilated late endosomes. However, much smaller vesicles were formed in SphK1-deficient cells. Moreover, inhibition or deletion of SphK1 prolonged the lifetime of sphingosine-induced vesicles. Perturbing the plasma membrane cholesterol/sphingomyelin balance abrogated vesicle formation. This massive endosomal influx was accompanied by dramatic recruitment of the intracellular SphK1 and Bin/Amphiphysin/Rvs domain-containing proteins endophilin-A2 and endophilin-B1 to enlarged endosomes and formation of highly dynamic filamentous networks containing endophilin-B1 and SphK1. Together, our results highlight the importance of sphingosine and its conversion to sphingosine-1-phosphate by SphK1 in endocytic membrane trafficking. PMID:28049734
Cavallini, Claudia; Zannini, Chiara; Olivi, Elena; Tassinari, Riccardo; Taglioli, Valentina; Rossi, Martina; Poggi, Paola; Chatgilialoglu, Alexandros; Simonazzi, Giuliana; Alviano, Francesco; Bonsi, Laura; Ventura, Carlo
2018-01-01
Human mesenchymal stem cells (hMSCs) are an effective tool in regenerative medicine notably for their intrinsic plentiful paracrine activity rather than differentiating properties. The hMSC secretome includes a wide spectrum of regulatory and trophic factors, encompassing several naked molecules as well as different kinds of extracellular vesicles (EVs). Among EVs, exosomes represent an intriguing population, able to shuttle proteins, transcription factors, and genetic materials, with a relevant role in cell-to-cell communication, modulating biological responses in recipient cells. In this context, the extracellular milieu can greatly impact the paracrine activity of stem cells, modifying their metabolism, and the dynamics of vesicle secretion. In the present study, we investigated the effects elicited on exosome patterning by tailored, ad hoc formulated lipid supplementation (Refeed ® ) in MSCs derived from human fetal membranes (hFM-MSCs). Wound healing experiments revealed that stem cell exposure to exosomes obtained from Refeed ® -supplemented hFM-MSCs increased their migratory capability, although the amount of exosomes released after Refeed ® supplementation was lower than that yielded from non-supplemented cells. We found that such a decrease was mainly due to a different rate of exosomal exocytosis rather than to an effect of the lipid supplement on the endocytic pathway. Endoplasmic reticulum homeostasis was modified by supplementation, through the upregulation of PKR-like ER kinase (PERK) and inositol-requiring enzyme 1α (IRE1α). Increased expression of these proteins did not lead to stress-induced, unfolded protein response (UPR)-mediated apoptosis, nor did it affect phosphorylation of p38 kinase, suggesting that PERK and IRE1α overexpression was due to augmented metabolic activities mediated by optimization of a cellular feeding network afforded through lipid supplementation. In summary, these results demonstrate how tailored lipid supplementation can successfully modify the paracrine features in hFM-MSCs, impacting both intracellular vesicle trafficking and secreted exosome number and function.
NASA Astrophysics Data System (ADS)
Kaneda, Megan Marie
Early steps in the progression of inflammatory diseases such as atherosclerosis involve the recruitment of leukocytes to the vascular endothelium through the expression or up-regulation of adhesion molecules. These adhesion molecules are critical mediators of leukocyte attachment and subsequent extravasation through transendothelial migration. One of these adhesion molecules, vascular cell adhesion molecule-1 (VCAM-1) is particularly attractive as a marker of early atherosclerotic activity due to its low expression level on normal endothelium and up-regulation prior to and during the development of early lesions. With this in mind, the purpose of this thesis was to develop nanostructures for the detection and down-regulation of adhesion molecules by the vascular endothelium. To detect early inflammation we designed a perfluorocarbon nanoparticle (PFC-NP) probe, which was used for in vivo targeting of VCAM-1. Nanoparticles were detected ex vivo by the magnetic resonance (MR) signature from the fluorine core of the particle. Nanoparticles accumulated in tissues characterized by early inflammatory processes. To down-regulate VCAM-1 expression by vascular endothelial cells, cationic PFC-NP were produced through the addition of the cationic lipid 1,2-Dioleoyl-3-Trimethylammonium-Propane. Cationic PFC-NP were able to deliver anti-VCAM-1 siRNA to endothelial cells through a non-standard lipid raft mediated endocytic pathway. VCAM-1 levels were significantly reduced in treated cells indicating that this delivery mechanism may be advantageous for delivery of cargo into the cytoplasm. Using the fluorine signature from the core of the cationic PFC-NP, we were able to quantify and localize this siRNA delivery agent both in vitro and in vivo. The ability to quantify the local concentrations of these particles could be of great benefit for estimating local drug concentrations and developing new pharmacokinetic and pharmacodynamic paradigms to describe this new class of nucleotide agents.
G Protein and β-Arrestin Signaling Bias at the Ghrelin Receptor*
Evron, Tama; Peterson, Sean M.; Urs, Nikhil M.; Bai, Yushi; Rochelle, Lauren K.; Caron, Marc G.; Barak, Larry S.
2014-01-01
The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through Gq/11, Gi/o, and G12/13 as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca2+ mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events. PMID:25261469
G Protein and β-arrestin signaling bias at the ghrelin receptor.
Evron, Tama; Peterson, Sean M; Urs, Nikhil M; Bai, Yushi; Rochelle, Lauren K; Caron, Marc G; Barak, Larry S
2014-11-28
The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through G(q/11), G(i/o), and G(12/13) as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca(2+) mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Endocytic reawakening of motility in jammed epithelia
NASA Astrophysics Data System (ADS)
Malinverno, Chiara; Corallino, Salvatore; Giavazzi, Fabio; Bergert, Martin; Li, Qingsen; Leoni, Marco; Disanza, Andrea; Frittoli, Emanuela; Oldani, Amanda; Martini, Emanuele; Lendenmann, Tobias; Deflorian, Gianluca; Beznoussenko, Galina V.; Poulikakos, Dimos; Ong, Kok Haur; Uroz, Marina; Trepat, Xavier; Parazzoli, Dario; Maiuri, Paolo; Yu, Weimiao; Ferrari, Aldo; Cerbino, Roberto; Scita, Giorgio
2017-05-01
Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination.
Olivier-Mason, Anique; Wojtyniak, Martin; Bowie, Rachel V; Nechipurenko, Inna V; Blacque, Oliver E; Sengupta, Piali
2013-04-01
The structure and function of primary cilia are critically dependent on intracellular trafficking pathways that transport ciliary membrane and protein components. The mechanisms by which these trafficking pathways are regulated are not fully characterized. Here we identify the transmembrane protein OSTA-1 as a new regulator of the trafficking pathways that shape the morphology and protein composition of sensory cilia in C. elegans. osta-1 encodes an organic solute transporter alpha-like protein, mammalian homologs of which have been implicated in membrane trafficking and solute transport, although a role in regulating cilia structure has not previously been demonstrated. We show that mutations in osta-1 result in altered ciliary membrane volume, branch length and complexity, as well as defects in localization of a subset of ciliary transmembrane proteins in different sensory cilia types. OSTA-1 is associated with transport vesicles, localizes to a ciliary compartment shown to house trafficking proteins, and regulates both retrograde and anterograde flux of the endosome-associated RAB-5 small GTPase. Genetic epistasis experiments with sensory signaling, exocytic and endocytic proteins further implicate OSTA-1 as a crucial regulator of ciliary architecture via regulation of cilia-destined trafficking. Our findings suggest that regulation of transport pathways in a cell type-specific manner contributes to diversity in sensory cilia structure and might allow dynamic remodeling of ciliary architecture via multiple inputs.
Recombinant VSV G proteins reveal a novel raft-dependent endocytic pathway in resorbing osteoclasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulari, Mika T.K.; Centre for Military Medicine, Research Department, Lahti; Nars, Martin
2008-05-01
Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSDmore » to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-{beta}-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.« less
What lysosomes actually tell us about Parkinson's disease?
Bourdenx, Mathieu; Dehay, Benjamin
2016-12-01
Parkinson's disease is a common neurodegenerative disorder of unknown origin mainly characterized by the loss of neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta and the presence of intraneuronal proteinaceous inclusions called Lewy bodies. Lysosomes are dynamic organelles that degrade, in a controlled manner, cellular components delivered via the secretory, endocytic, autophagic and phagocytic membrane-trafficking pathways. Increasing amounts of evidence suggest a central role of lysosomal impairment in PD aetiology. This review provides an update on how genetic evidence support this connection and highlights how the neuropathologic and mechanistic evidence might relate to the disease process in sporadic forms of Parkinson's disease. Finally, we discuss the influence of ageing on lysosomal impairment and PD aetiology and therapeutic strategies targeting lysosomal function. Copyright © 2016 Elsevier B.V. All rights reserved.
Leishmania hijacking of the macrophage intracellular compartments.
Liévin-Le Moal, Vanessa; Loiseau, Philippe M
2016-02-01
Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.
KCNE Regulation of K+ Channel Trafficking – a Sisyphean Task?
Kanda, Vikram A.; Abbott, Geoffrey W.
2012-01-01
Voltage-gated potassium (Kv) channels shape the action potentials of excitable cells and regulate membrane potential and ion homeostasis in excitable and non-excitable cells. With 40 known members in the human genome and a variety of homomeric and heteromeric pore-forming α subunit interactions, post-translational modifications, cellular locations, and expression patterns, the functional repertoire of the Kv α subunit family is monumental. This versatility is amplified by a host of interacting proteins, including the single membrane-spanning KCNE ancillary subunits. Here, examining both the secretory and the endocytic pathways, we review recent findings illustrating the surprising virtuosity of the KCNE proteins in orchestrating not just the function, but also the composition, diaspora and retrieval of channels formed by their Kv α subunit partners. PMID:22754540