Sample records for endogenous brain nop

  1. Retest imaging of [11C]NOP-1A binding to nociceptin/orphanin FQ peptide (NOP) receptors in the brain of healthy humans.

    PubMed

    Lohith, Talakad G; Zoghbi, Sami S; Morse, Cheryl L; Araneta, Maria D Ferraris; Barth, Vanessa N; Goebl, Nancy A; Tauscher, Johannes T; Pike, Victor W; Innis, Robert B; Fujita, Masahiro

    2014-02-15

    [(11)C]NOP-1A is a novel high-affinity PET ligand for imaging nociceptin/orphanin FQ peptide (NOP) receptors. Here, we report reproducibility and reliability measures of binding parameter estimates for [(11)C]NOP-1A binding in the brain of healthy humans. After intravenous injection of [(11)C]NOP-1A, PET scans were conducted twice on eleven healthy volunteers on the same (10/11 subjects) or different (1/11 subjects) days. Subjects underwent serial sampling of radial arterial blood to measure parent radioligand concentrations. Distribution volume (VT; a measure of receptor density) was determined by compartmental (one- and two-tissue) modeling in large regions and by simpler regression methods (graphical Logan and bilinear MA1) in both large regions and voxel data. Retest variability and intraclass correlation coefficient (ICC) of VT were determined as measures of reproducibility and reliability respectively. Regional [(11)C]NOP-1A uptake in the brain was high, with a peak radioactivity concentration of 4-7 SUV (standardized uptake value) and a rank order of putamen>cingulate cortex>cerebellum. Brain time-activity curves fitted well in 10 of 11 subjects by unconstrained two-tissue compartmental model. The retest variability of VT was moderately good across brain regions except cerebellum, and was similar across different modeling methods, averaging 12% for large regions and 14% for voxel-based methods. The retest reliability of VT was also moderately good in most brain regions, except thalamus and cerebellum, and was similar across different modeling methods averaging 0.46 for large regions and 0.48 for voxels having gray matter probability >20%. The lowest retest variability and highest retest reliability of VT were achieved by compartmental modeling for large regions, and by the parametric Logan method for voxel-based methods. Moderately good reproducibility and reliability measures of VT for [(11)C]NOP-1A make it a useful PET ligand for comparing NOP receptor

  2. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.

    PubMed

    Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko

    2015-02-09

    The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Functional plasticity of the N/OFQ-NOP receptor system determines analgesic properties of NOP receptor agonists

    PubMed Central

    Schröder, W; Lambert, D G; Ko, M C; Koch, T

    2014-01-01

    Despite high sequence similarity between NOP (nociceptin/orphanin FQ opioid peptide) and opioid receptors, marked differences in endogenous ligand selectivity, signal transduction, phosphorylation, desensitization, internalization and trafficking have been identified; underscoring the evolutionary difference between NOP and opioid receptors. Activation of NOP receptors affects nociceptive transmission in a site-specific manner, with antinociceptive effects prevailing after peripheral and spinal activation, and pronociceptive effects after supraspinal activation in rodents. The net effect of systemically administered NOP receptor agonists on nociception is proposed to depend on the relative contribution of peripheral, spinal and supraspinal activation, and this may depend on experimental conditions. Functional expression and regulation of NOP receptors at peripheral and central sites of the nociceptive pathway exhibits a high degree of plasticity under conditions of neuropathic and inflammatory pain. In rodents, systemically administered NOP receptor agonists exerted antihypersensitive effects in models of neuropathic and inflammatory pain. However, they were largely ineffective in acute pain while concomitantly evoking severe motor side effects. In contrast, systemic administration of NOP receptor agonists to non-human primates (NHPs) exerted potent and efficacious antinociception in the absence of motor and sedative side effects. The reason for this species difference with respect to antinociceptive efficacy and tolerability is not clear. Moreover, co-activation of NOP and μ-opioid peptide (MOP) receptors synergistically produced antinociception in NHPs. Hence, both selective NOP receptor as well as NOP/MOP receptor agonists may hold potential for clinical use as analgesics effective in conditions of acute and chronic pain. PMID:24762001

  4. Synthesis and Evaluation of Radioligands for Imaging Brain Nociceptin/Orphanin FQ Peptide (NOP) Receptors with Positron Emission Tomography

    PubMed Central

    Pike, Victor W.; Rash, Karen S.; Chen, Zhaogen; Pedregal, Concepción; Statnick, Michael A.; Kimura, Yasuyuki; Hong, Jinsoo; Zoghbi, Sami S.; Fujita, Masahiro; Toledo, Miguel A.; Diaz, Nuria; Gackenheimer, Susan L.; Tauscher, Johannes T.; Barth, Vanessa N.; Innis, Robert B.

    2011-01-01

    Positron emission tomography (PET) coupled to an effective radioligand could provide an important tool for understanding possible links between neuropsychiatric disorders and brain NOP (nociceptin/orphanin FQ peptide) receptors. We sought to develop such a PET radioligand. High-affinity NOP ligands were synthesized based on a 3-(2'-fluoro-4',5'-dihydrospiro[piperidine-4,7'-thieno[2,3-c]pyran]-1-yl)-2(2-halobenzyl)-N-alkylpropanamide scaffold and from experimental screens in rats, with ex vivo LC-MS/MS measures, three ligands were identified for labeling with carbon-11 and evaluation with PET in monkey. Each ligand was labeled by 11C-methylation of an N-desmethyl precursor and studied in monkey under baseline and NOP receptor-preblock conditions. The three radioligands, [11C](S)-10a–c, gave similar results. Baseline scans showed high entry of radioactivity into brain to give a distribution reflecting that expected for NOP receptors. Pre-block experiments showed high early peak levels of brain radioactivity which rapidly declined to a much lower level than seen in baseline scans, thereby indicating a high level of receptor-specific binding in baseline experiments. Overall, [11C](S)-10c showed the most favorable receptor-specific signal and kinetics and is now selected for evaluation in human subjects. PMID:21438532

  5. The pharmacology of Ro 64-6198, a systemically active, nonpeptide NOP receptor (opiate receptor-like 1, ORL-1) agonist with diverse preclinical therapeutic activity.

    PubMed

    Shoblock, James R

    2007-01-01

    The NOP receptor (formerly referred to as opiate receptor-like 1, ORL-1, LC132, OP(4), or NOP(1)) is a G protein-coupled receptor that shares high homology to the classic opioid MOP, DOP, and KOP (mu, delta, and kappa, respectively) receptors and was first cloned in 1994 by several groups. The NOP receptor remained an orphan receptor until 1995, when the endogenous neuropeptide agonist, known as nociceptin or orphanin FQ (N/OFQ) was isolated. Five years later, a group at Hoffmann-La Roche reported on the selective, nonpeptide NOP agonist Ro 64-6198, which became the most extensively published nonpeptide NOP agonist and a valuable pharmacological tool in determining the potential of the NOP receptor as a therapeutic target. Ro 64-6198 is systemically active and achieves high brain penetration. It has subnanomolar affinity for the NOP receptor and is at least 100 times more selective for the NOP receptor over the classic opioid receptors. Ro 64-6198 ranges from partial to full agonist, depending on the assay. Preclinical data indicate that Ro 64-6198 may have broad clinical uses, such as in treating stress and anxiety, addiction, neuropathic pain, cough, and anorexia. This review summarizes the pharmacology and preclinical data of Ro 64-6198.

  6. Knock-In Mice with NOP-eGFP Receptors Identify Receptor Cellular and Regional Localization.

    PubMed

    Ozawa, Akihiko; Brunori, Gloria; Mercatelli, Daniela; Wu, Jinhua; Cippitelli, Andrea; Zou, Bende; Xie, Xinmin Simon; Williams, Melissa; Zaveri, Nurulain T; Low, Sarah; Scherrer, Grégory; Kieffer, Brigitte L; Toll, Lawrence

    2015-08-19

    The nociceptin/orphanin FQ (NOP) receptor, the fourth member of the opioid receptor family, is involved in many processes common to the opioid receptors including pain and drug abuse. To better characterize receptor location and trafficking, knock-in mice were created by inserting the gene encoding enhanced green fluorescent protein (eGFP) into the NOP receptor gene (Oprl1) and producing mice expressing a functional NOP-eGFP C-terminal fusion in place of the native NOP receptor. The NOP-eGFP receptor was present in brain of homozygous knock-in animals in concentrations somewhat higher than in wild-type mice and was functional when tested for stimulation of [(35)S]GTPγS binding in vitro and in patch-clamp electrophysiology in dorsal root ganglia (DRG) neurons and hippocampal slices. Inhibition of morphine analgesia was equivalent when tested in knock-in and wild-type mice. Imaging revealed detailed neuroanatomy in brain, spinal cord, and DRG and was generally consistent with in vitro autoradiographic imaging of receptor location. Multicolor immunohistochemistry identified cells coexpressing various spinal cord and DRG cellular markers, as well as coexpression with μ-opioid receptors in DRG and brain regions. Both in tissue slices and primary cultures, the NOP-eGFP receptors appear throughout the cell body and in processes. These knock-in mice have NOP receptors that function both in vitro and in vivo and appear to be an exceptional tool to study receptor neuroanatomy and correlate with NOP receptor function. The NOP receptor, the fourth member of the opioid receptor family, is involved in pain, drug abuse, and a number of other CNS processes. The regional and cellular distribution has been difficult to determine due to lack of validated antibodies for immunohistochemical analysis. To provide a new tool for the investigation of receptor localization, we have produced knock-in mice with a fluorescent-tagged NOP receptor in place of the native NOP receptor. These

  7. Synthesis and biological activity of small peptides as NOP and opioid receptors' ligands: view on current developments.

    PubMed

    Naydenova, Emilia; Todorov, Petar; Zamfirova, Rositza

    2015-01-01

    The heptadecapeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor) and is involved in several central nervous system pathways, such as nociception, reward, tolerance, and feeding. The discovery of small molecule ligands for NOP is being actively pursued for several therapeutic applications. This review presents overview of the several recently reported NOP ligands (agonists and antagonists), with an emphasis of the structural features that may be important for modulating the intrinsic activity of these ligands. In addition, a brief account on the characterization of newly synthesized ligands of NOP receptor with aminophosphonate moiety and β-tryptophan analogues will be presented. © 2015 Elsevier Inc. All rights reserved.

  8. Characterisation of the Novel Mixed Mu-NOP Peptide Ligand Dermorphin-N/OFQ (DeNo)

    PubMed Central

    Bird, Mark F.; Malfacini, Davide; Vezzi, Vanessa; Molinari, Paola; Micheli, Laura; Mannelli, Lorenzo Di Cesare; Ghelardini, Carla; Guerrini, Remo; Calò, Girolamo; Lambert, David G.

    2016-01-01

    Introduction Opioid receptors are currently classified as Mu (μ), Delta (δ), Kappa (κ) plus the opioid related nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP). Despite compelling evidence for interactions and benefits of targeting more than one receptor type in producing analgesia, clinical ligands are Mu agonists. In this study we have designed a Mu-NOP agonist named DeNo. The Mu agonist component is provided by dermorphin, a peptide isolated from the skin of Phyllomedusa frogs and the NOP component by the endogenous agonist N/OFQ. Methods We have assessed receptor binding profile of DeNo and compared with dermorphin and N/OFQ. In a series of functional screens we have assessed the ability to (i) increase Ca2+ in cells coexpressing recombinant receptors and a the chimeric protein Gαqi5, (ii) stimulate the binding of GTPγ[35S], (iii) inhibit cAMP formation, (iv) activate MAPKinase, (v) stimulate receptor-G protein and arrestin interaction using BRET, (vi) electrically stimulated guinea pig ileum (gpI) assay and (vii) ability to produce analgesia via the intrathecal route in rats. Results DeNo bound to Mu (pKi; 9.55) and NOP (pKi; 10.22) and with reasonable selectivity. This translated to increased Ca2+ in Gαqi5 expressing cells (pEC50 Mu 7.17; NOP 9.69), increased binding of GTPγ[35S] (pEC50 Mu 7.70; NOP 9.50) and receptor-G protein interaction in BRET (pEC50 Mu 8.01; NOP 9.02). cAMP formation was inhibited and arrestin was activated (pEC50 Mu 6.36; NOP 8.19). For MAPK DeNo activated p38 and ERK1/2 at Mu but only ERK1/2 at NOP. In the gpI DeNO inhibited electrically-evoked contractions (pEC50 8.63) that was sensitive to both Mu and NOP antagonists. DeNo was antinociceptive in rats. Conclusion Collectively these data validate the strategy used to create a novel bivalent Mu-NOP peptide agonist by combining dermorphin (Mu) and N/OFQ (NOP). This molecule behaves essentially as the parent compounds in vitro. In the antonocicoeptive assays employed in this

  9. Endogenous nociceptin modulates diet preference independent of motivation and reward.

    PubMed

    Koizumi, Miwako; Cagniard, Barbara; Murphy, Niall P

    2009-04-20

    Previous studies show that the opioid peptide nociceptin stimulates food intake. Here, we studied nociceptin receptor knockout (NOP KO) mice in various behavioral paradigms designed to differentiate psychological and physiological loci at which endogenous nociceptin might control feeding. When presented a choice under food restriction, NOP KO mice displayed reduced preference for high sucrose diet, but lower intake of high fat diet under no-choice conditions. These responses were absent under ad libitum feeding conditions. Conditioned place preference to high fat diet under food-deprived conditions was unaltered in NOP KO mice, suggesting no difference in reward responses. Furthermore, operant food self-administration under a variety of conditions showed no genotype-dependent differences, suggesting no differences in the motivational properties of food. Taste reactivity to sucrose was unchanged in NOP KO mice, though NOP KO mice had altered aversive reactions to quinine solutions under ad libitum feeding, suggesting minor differences in the affective impact of palatable and unpalatable tastants. Although NOP KO mice re-fed following food-deprivation showed normal increases in plasma glucose and insulin, multidimensional scaling analysis showed that the relationship between these measures, body weight and plasma leptin was substantially disrupted in NOP KO, particularly in fasted mice. Additionally, the typical positive relationship between body weight and plasma leptin was considerably weaker in NOP KO mice. Together, these findings suggest that endogenous nociceptin differentially modulates diet preference depending on macronutrient content and homeostatic state, independently of the motivating, rewarding or orosensory properties of food, but may involve metabolic or postingestive processes.

  10. Behavioral and endocrine changes following antisense oligonucleotide-induced reduction in the rat NOP receptor.

    PubMed

    Blakley, Gregory G; Pohorecky, Larissa A; Benjamin, Daniel

    2004-02-01

    Compared with the use of classic receptor ligands, antisense oligonucleotides (ASO) targeted at specific central nervous system receptors are an effective alternative in experiments designed to examine the behavioral role of such systems. The nociception/orphaninFQ (N/OFQ) system has been implicated in mediating endocrine function, feeding, stress, pain, anxiety, and the rewarding effects of drugs of abuse. The objective of the current study was to examine whether long-term ASO-induced downregulation of N/OFQ's receptor (NOP) produced changes in endocrine, anxiety, nociception and ethanol's (EtOH's) locomotor activating properties. Male Long Evans rats were implanted with osmotic mini-pumps containing ASO for the NOP receptor. ASO was chronically infused for 26 days and, during this time, multiple behavioral and physiological measurements were conducted. ASO infusion significantly reduced expression of the NOP receptor in brain, confirmed by significant reductions of OFQ-stimulated [(35)S]-GTPgammaS binding in the paraventricular nucleus, prefrontal cortex, and septum. Behavioral changes were observed in ASO-treated animals including higher body temperature, increased water intake, decreased corticosterone (CORT) levels, decreased grooming in the open field, increased tail-flick latency, shorter durations on the open arms of the elevated plus maze, and heightened locomotor activity following EtOH. These behavioral, physiological and endocrine changes are relatively consistent with previous findings with agonists and antagonists for the NOP receptor and, taken together, suggest that ASO-induced downregulation of the NOP receptor is an effective method for studying the N/OFQ system.

  11. Activation of the endogenous nociceptin system by selective nociceptin receptor agonist SCH 221510 produces antitransit and antinociceptive effect: a novel strategy for treatment of diarrhea-predominant IBS.

    PubMed

    Fichna, J; Sobczak, M; Mokrowiecka, A; Cygankiewicz, A I; Zakrzewski, P K; Cenac, N; Sałaga, M; Timmermans, J-P; Vergnolle, N; Małecka-Panas, E; Krajewska, W M; Storr, M

    2014-11-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, defined by the presence of loose stools and abdominal pain. In search for a novel anti-IBS-D therapy, here we investigated the nociceptin receptor (NOP)-dependent effects in the GI tract. A novel potent and selective NOP agonist SCH 221510 was used in the study. The effect of NOP activation on mouse intestinal motility was characterized in vitro and in vivo, in physiological conditions and in animal models of hypermotility and diarrhea. Well-established mouse models of visceral pain were used to characterize the antinociceptive effect of the NOP activation. To provide additional evidence that the endogenous nociceptin system is a relevant target for IBS, NOP expression and nociceptin levels were quantified in serum and colonic biopsies from IBS-D patients. SCH 221510 produced a potent NOP-mediated inhibitory effect on mouse intestinal motility in vitro and in vivo in physiological conditions. The NOP agonist displayed an antidiarrheal and analgesic action after oral administration in animal models mimicking the symptoms of IBS-D. Studies on human samples revealed a strong decrease in endogenous nociceptin system expression in IBS-D patients compared with healthy controls. Collectively, mouse and human data suggest that the endogenous nociceptin system is involved in IBS-D and may become a target for anti-IBS-D treatments using potent and selective synthetic NOP agonists. © 2014 John Wiley & Sons Ltd.

  12. 78 FR 25879 - National Organic Program (NOP); Sunset Review (2013)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... CFR Part 205 [Document Number AMS-NOP-11-0003; NOP-10-13PR] RIN 0581-AD13 National Organic Program... (Secretary) by the National Organic Standards Board (NOSB) following their November 2011 and May 2012..., National Organic Program, USDA-AMS-NOP, 1400 Independence Ave. SW., Room 2646-So., Ag Stop 0268, Washington...

  13. 15 CFR 904.302 - Notice of permit sanction (NOPS).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Permit Sanctions and Denials General § 904.302 Notice of permit sanction (NOPS). (a) A NOPS will...

  14. 15 CFR 904.302 - Notice of permit sanction (NOPS).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE GENERAL REGULATIONS CIVIL PROCEDURES Permit Sanctions and Denials General § 904.302 Notice of permit sanction (NOPS). (a) A NOPS will...

  15. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Takashi; Suzuki, Shunji; Kanno, Motoko

    2006-06-10

    Nop25 is a putative RNA binding nucleolar protein associated with rRNA transcription. The present study was undertaken to determine the mechanism of Nop25 localization in the nucleolus. Deletion experiments of Nop25 amino acid sequence showed Nop25 to contain a nuclear targeting sequence in the N-terminal and a nucleolar targeting sequence in the C-terminal. By expressing derivative peptides from the C-terminal as GFP-fusion proteins in the cells, a lysine and arginine residue-enriched peptide (KRKHPRRAQDSTKKPPSATRTSKTQRRRR) allowed a GFP-fusion protein to be transported and fully retained in the nucleolus. When the peptide was fused with cMyc epitope and expressed in the cells, amore » cMyc epitope was then detected in the nucleolus. Nop25 did not localize in the nucleolus by deletion of the peptide from Nop25. Furthermore, deletion of a subdomain (KRKHPRRAQ) in the peptide or amino acid substitution of lysine and arginine residues in the subdomain resulted in the loss of Nop25 nucleolar localization. These results suggest that the lysine and arginine residue-enriched peptide is the most prominent nucleolar targeting sequence of Nop25 and that the long stretch of basic residues might play an important role in the nucleolar localization of Nop25. Although Nop25 contained putative SUMOylation, phosphorylation and glycosylation sites, the amino acid substitution in these sites had no effect on the nucleolar localization, thus suggesting that these post-translational modifications did not contribute to the localization of Nop25 in the nucleolus. The treatment of the cells, which expressed a GFP-fusion protein with a nucleolar targeting sequence of Nop25, with RNase A resulted in a complete dislocation of the protein from the nucleolus. These data suggested that the nucleolar targeting sequence might therefore play an important role in the binding of Nop25 to RNA molecules and that the RNA binding of Nop25 might be essential for the nucleolar localization of Nop25.« less

  16. Activation of brain NOP receptors attenuates acute and protracted alcohol withdrawal symptoms in the rat.

    PubMed

    Economidou, Daina; Cippitelli, Andrea; Stopponi, Serena; Braconi, Simone; Clementi, Stefano; Ubaldi, Massimo; Martin-Fardon, Rèmi; Weiss, Friedbert; Massi, Maurizio; Ciccocioppo, Roberto

    2011-04-01

    Alcohol withdrawal refers to a cluster of symptoms that may occur from suddenly ceasing the use of alcohol after chronic or prolonged ingestion. These symptoms make alcohol abstinence difficult and increase the risk of relapse in recovering alcoholics. In previous studies, we demonstrated that treatment with Nociceptin/orphanin FQ (N/OFQ) significantly reduces alcohol consumption and attenuates alcohol-seeking behavior induced by environmental conditioning factors or by stress in rats. In this study, we evaluated whether activation of brain NOP receptors may also attenuate alcohol withdrawal signs in rats. For this purpose, animals were subjected to a 6-day chronic alcohol intoxication (by intragastric administration), and at 8, 10, and 12 hours following cessation of alcohol exposure, they were treated intracerebroventricularly (ICV) with N/OFQ (0.0, 1.0, and 3.0 μg/rat). Somatic withdrawal signs were scored after ICV treatment. In a subsequent experiment, to evaluate N/OFQ effects on alcohol withdrawal-induced anxiety, another group of rats was subjected to ethanol intoxication and after 1 week was tested for anxiety behavior in the elevated plus maze (EPM). In the last experiment, an additional group of rats was tested for anxiety elicited by acute ethanol intoxication (hangover anxiety). For this purpose, animals received an acute dose (3.0 g/kg) of 20% alcohol and 12 hour later were tested in the EPM following ICV N/OFQ (0.0, 1.0, and 2.0 μg/rat). Results showed that N/OFQ significantly reduced the expression of somatic withdrawal signs and reversed anxiety-like behaviors associated with both chronic and acute alcohol intoxication. N/OFQ did not affect anxiety scores in nondependent animals. These findings suggest that the N/OFQ-NOP receptor system may represent a promising target for the development of new treatments to ameliorate alcohol withdrawal symptoms. Copyright © 2011 by the Research Society on Alcoholism.

  17. Characterization of Nops, nodulation outer proteins, secreted via the type III secretion system of NGR234.

    PubMed

    Marie, Corinne; Deakin, William J; Viprey, Virginie; Kopciñska, Joanna; Golinowski, Wladyslaw; Krishnan, Hari B; Perret, Xavier; Broughton, William J

    2003-09-01

    The nitrogen-fixing symbiotic bacterium Rhizobium species NGR234 secretes, via a type III secretion system (TTSS), proteins called Nops (nodulation outer proteins). Abolition of TTSS-dependent protein secretion has either no effect or leads to a change in the number of nodules on selected plants. More dramatically, Nops impair nodule development on Crotalaria juncea roots, resulting in the formation of nonfixing pseudonodules. A double mutation of nopX and nopL, which code for two previously identified secreted proteins, leads to a phenotype on Pachyrhizus tuberosus differing from that of a mutant in which the TTSS is not functional. Use of antibodies and a modification of the purification protocol revealed that NGR234 secretes additional proteins in a TTSS-dependent manner. One of them was identified as NopA, a small 7-kDa protein. Single mutations in nopX and nopL were also generated to assess the involvement of each Nop in protein secretion and nodule formation. Mutation of nopX had little effect on NopL and NopA secretion but greatly affected the interaction of NGR234 with many plant hosts tested. NopL was not necessary for the secretion of any Nops but was required for efficient nodulation of some plant species. NopL may thus act as an effector protein whose recognition is dependent upon the hosts' genetic background.

  18. Genetic and pharmacological evidence that endogenous nociceptin/orphanin FQ contributes to dopamine cell loss in Parkinson's disease.

    PubMed

    Arcuri, Ludovico; Viaro, Riccardo; Bido, Simone; Longo, Francesco; Calcagno, Mariangela; Fernagut, Pierre-Olivier; Zaveri, Nurulain T; Calò, Girolamo; Bezard, Erwan; Morari, Michele

    2016-05-01

    To investigate whether the endogenous neuropeptide nociceptin/orphanin FQ (N/OFQ) contributes to the death of dopamine neurons in Parkinson's disease, we undertook a genetic and a pharmacological approach using NOP receptor knockout (NOP(-/-)) mice, and the selective and potent small molecule NOP receptor antagonist (-)-cis-1-methyl-7-[[4-(2,6-dichlorophenyl)piperidin-1-yl]methyl]-6,7,8,9-tetrahydro-5H-benzocyclohepten-5-ol (SB-612111). Stereological unbiased methods were used to estimate the total number of dopamine neurons in the substantia nigra of i) NOP(-/-) mice acutely treated with the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP), ii) naïve mice subacutely treated with MPTP, alone or in combination with SB-612111, iii) rats injected with a recombinant adeno-associated viral (AAV) vector overexpressing human mutant p.A53T α-synuclein, treated with vehicle or SB-612111. NOP(-/-) mice showed a 50% greater amount of nigral dopamine neurons spared in response to acute MPTP compared to controls, which was associated with a milder motor impairment. SB-612111, given 4 days after MPTP treatment to mimic the clinical condition, prevented the loss of nigral dopamine neurons and striatal dopaminergic terminals caused by subacute MPTP. SB-612111, administered a week after the AAV injections in a clinically-driven protocol, also increased by 50% both the number of spared nigral dopamine neurons and striatal dopamine terminals, and prevented accompanying motor deficits induced by α-synuclein. We conclude that endogenous N/OFQ contributes to dopamine neuron loss in pathogenic and etiologic models of Parkinson's disease through NOP receptor-mediated mechanisms. NOP receptor antagonists might prove effective as disease-modifying agents in Parkinson's disease, through the rescue of degenerating nigral dopamine neurons and/or the protection of the healthy ones. Copyright © 2016. Published by Elsevier Inc.

  19. Characterization of NopP, a Type III Secreted Effector of Rhizobium sp. Strain NGR234

    PubMed Central

    Ausmees, Nora; Kobayashi, Hajime; Deakin, William J.; Marie, Corinne; Krishnan, Hari B.; Broughton, William J.; Perret, Xavier

    2004-01-01

    The type three secretion system (TTSS) encoded by pNGR234a, the symbiotic plasmid of Rhizobium sp. strain NGR234, is responsible for the flavonoid- and NodD1-dependent secretion of nodulation outer proteins (Nops). Abolition of secretion of all or specific Nops significantly alters the nodulation ability of NGR234 on many of its hosts. In the closely related strain Rhizobium fredii USDA257, inactivation of the TTSS modifies the host range of the mutant so that it includes the improved Glycine max variety McCall. To assess the impact of individual TTSS-secreted proteins on symbioses with legumes, various attempts were made to identify nop genes. Amino-terminal sequencing of peptides purified from gels was used to characterize NopA, NopL, and NopX, but it failed to identify SR3, a TTSS-dependent product of USDA257. By using phage display and antibodies that recognize SR3, the corresponding protein of NGR234 was identified as NopP. NopP, like NopL, is an effector secreted by the TTSS of NGR234, and depending on the legume host, it may have a deleterious or beneficial effect on nodulation or it may have little effect. PMID:15231809

  20. Antinociceptive action of NOP and opioid receptor agonists in the mouse orofacial formalin test.

    PubMed

    Rizzi, A; Ruzza, C; Bianco, S; Trapella, C; Calo', G

    2017-08-01

    Nociceptin/orphanin FQ (N/OFQ) modulates several biological functions, including pain transmission via selective activation of a specific receptor named NOP. The aim of this study was the investigation of the antinociceptive properties of NOP agonists and their interaction with opioids in the trigeminal territory. The orofacial formalin (OFF) test in mice was used to investigate the antinociceptive potential associated to the activation of NOP and opioid receptors. Mice subjected to OFF test displayed the typical biphasic nociceptive response and sensitivity to opioid and NSAID drugs. Mice knockout for the NOP gene displayed a robust pronociceptive phenotype. The NOP selective agonist Ro 65-6570 (0.1-1mgkg -1 ) and morphine (0.1-10mgkg -1 ) elicited dose dependent antinociceptive effects in the OFF with the alkaloid showing larger effects; the isobologram analysis of their actions demonstrated an additive type of interaction. The mixed NOP/opioid receptor agonist cebranopadol elicited potent (0.01-0.1mgkg -1 ) and robust antinociceptive effects. In the investigated dose range, all drugs did not modify the motor performance of the mice in the rotarod test. Collectively the results of this study demonstrated that selective NOP agonists and particularly mixed NOP/opioid agonists are worthy of development as innovative drugs to treat painful conditions of the trigeminal territory. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A homozygous NOP14 variant is likely to cause recurrent pregnancy loss.

    PubMed

    Suzuki, Toshifumi; Behnam, Mahdiyeh; Ronasian, Firooze; Salehi, Mansoor; Shiina, Masaaki; Koshimizu, Eriko; Fujita, Atsushi; Sekiguchi, Futoshi; Miyatake, Satoko; Mizuguchi, Takeshi; Nakashima, Mitsuko; Ogata, Kazuhiro; Takeda, Satoru; Matsumoto, Naomichi; Miyake, Noriko

    2018-04-01

    Recurrent pregnancy loss is newly defined as more than two consecutive miscarriages. Recurrent pregnancy loss occurs in <5% of total pregnancies. The cause in approximately 40-60% of recurrent pregnancy loss cases remains elusive and must be determined. We investigated two unrelated Iranian consanguineous families with recurrent pregnancy loss. We performed exome sequencing using DNA from a miscarriage tissue and identified a homozygous NOP14 missense variant (c.[136C>G];[136C>G]) in both families. NOP14 is an evolutionally conserved protein among eukaryotes and is required for 18S rRNA processing and 40S ribosome biogenesis. Interestingly, in zebrafish, homozygous mutation of nop14 (possibly loss of function) resulting from retrovirus-mediated insertional mutagenesis led to embryonic lethality at 5 days after fertilization, mimicking early pregnancy loss in humans. Similarly, it is known that the nop14-null yeast is inviable. These data suggest that the homozygous NOP14 mutation is likely to cause recurrent pregnancy loss. Furthermore, this study shows that exome sequencing is very useful to determine the etiology of unsolved recurrent pregnancy loss.

  2. NOP132 is required for proper nucleolus localization of DEAD-box RNA helicase DDX47

    PubMed Central

    Sekiguchi, Takeshi; Hayano, Toshiya; Yanagida, Mitsuaki; Takahashi, Nobuhiro; Nishimoto, Takeharu

    2006-01-01

    Previously, we described a novel nucleolar protein, NOP132, which interacts with the small GTP binding protein RRAG A. To elucidate the function of NOP132 in the nucleolus, we identified proteins that interact with NOP132 using mass spectrometric methods. NOP132 associated mainly with proteins involved in ribosome biogenesis and RNA metabolism, including the DEAD-box RNA helicase protein, DDX47, whose yeast homolog is Rrp3, which has roles in pre-rRNA processing. Immunoprecipitation of FLAG-tagged DDX47 co-precipitated rRNA precursors, as well as a number of proteins that are probably involved in ribosome biogenesis, implying that DDX47 plays a role in pre-rRNA processing. Introduction of NOP132 small interfering RNAs induced a ring-like localization of DDX47 in the nucleolus, suggesting that NOP132 is required for the appropriate localization of DDX47 within the nucleolus. We propose that NOP132 functions in the recruitment of pre-rRNA processing proteins, including DDX47, to the region where rRNA is transcribed within the nucleolus. PMID:16963496

  3. Boosting Endogenous Resistance of Brain to Ischemia

    PubMed Central

    Sun, Fen; Johnson, Stephen R.; Jin, Kunlin; Uteshev, Victor V.

    2016-01-01

    Most survivors of ischemic stroke remain physically disabled and require prolonged rehabilitation. However, some stroke victims achieve a full neurological recovery suggesting that human brain can defend itself against ischemic injury, but the protective mechanisms are unknown. This study used selective pharmacological agents and a rat model of cerebral ischemic stroke to detect endogenous brain protective mechanisms that require activation of α7 nicotinic acetylcholine receptors (nAChRs). This endogenous protection was found to be: 1) limited to less severe injuries; 2) significantly augmented by intranasal administration of a positive allosteric modulator of α7 nAChRs, significantly reducing brain injury and neurological deficits after more severe ischemic injuries; and 3) reduced by inhibition of calcium/calmodulin-dependent kinase-II. The physiological role of α7 nAChRs remains largely unknown. The therapeutic activation of α7 nAChRs after cerebral ischemia may serve as an important physiological responsibility of these ubiquitous receptors and holds a significant translational potential. PMID:26910820

  4. Differences between endogenous and exogenous emotion inhibition in the human brain.

    PubMed

    Kühn, Simone; Haggard, Patrick; Brass, Marcel

    2014-05-01

    The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants' subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141-9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834-2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.

  5. Clinorotation influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; González-Camacho, F.; Rodríguez-Vilariño, V.; Kordyum, E. L.; Medina, F. J.

    The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts. The plant nucleolin homologue NopA100 is involved in the regulation of r-chromatin condensation/expansion and rDNA transcription as well as in rRNA processing. We have investigated with immunogold electron microscopy the location of nucleolar DNA and NopA100 in cress root meristematic cells grown under slow horizontal clinorotation, reproducing an important feature of microgravity, namely the absence of an orienting action of a gravity vector, compared to control conditions. We demonstrate redistribution of both rDNA and NopA100 in nucleolar subcomponents induced by clinorotation. Ribosomal DNA concentrated predominantly in fibrillar centers in the form of condensed r-chromatin inclusions and internal non condensed fibrils, redistributing from the dense fibrillar component and the transition zone between fibrillar centers and the dense fibrillar component, recognized as the loci of rDNA transcription. The content of NopA100 was much higher in the inner space of fibrillar centers and reduced in the dense fibrillar component as compared to the control. Based on these data, an effect of slow horizontal clinorotation in lowering the level of rDNA transcription as well as rRNA processing is suggested.

  6. Nop9 is a PUF-like protein that prevents premature cleavage to correctly process pre-18S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jun; McCann, Kathleen L.; Qiu, Chen

    Numerous factors direct eukaryotic ribosome biogenesis, and defects in a single ribosome assembly factor may be lethal or produce tissue-specific human ribosomopathies. Pre-ribosomal RNAs (pre-rRNAs) must be processed stepwise and at the correct subcellular locations to produce the mature rRNAs. Nop9 is a conserved small ribosomal subunit biogenesis factor, essential in yeast. Here we report a 2.1-Å crystal structure of Nop9 and a small-angle X-ray-scattering model of a Nop9:RNA complex that reveals a ‘C’-shaped fold formed from 11 Pumilio repeats. We show that Nop9 recognizes sequence and structural features of the 20S pre-rRNA near the cleavage site of the nuclease,more » Nob1. We further demonstrate that Nop9 inhibits Nob1 cleavage, the final processing step to produce mature small ribosomal subunit 18S rRNA. Together, our results suggest that Nop9 is critical for timely cleavage of the 20S pre-rRNA. Moreover, the Nop9 structure exemplifies a new class of Pumilio repeat proteins.« less

  7. Human H/ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP2 and NOP10

    PubMed Central

    Pogacic, Vanda; Dragon, François; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3′ moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies. PMID:11074001

  8. NOP Receptor Mediates Anti-analgesia Induced by Agonist-Antagonist Opioids

    PubMed Central

    Gear, Robert W.; Bogen, Oliver; Ferrari, Luiz F.; Green, Paul G.; Levine, Jon D.

    2014-01-01

    Clinical studies have shown that agonist-antagonist opioid analgesics that produce their analgesic effect via action on the kappa-opioid receptor, produce a delayed-onset anti-analgesia in men but not women, an effect blocked by co-administration of a low dose of naloxone. We now report the same time-dependent anti-analgesia and its underlying mechanism in an animal model. Using the Randall-Selitto paw-withdrawal assay in male rats, we found that nalbuphine, pentazocine, and butorphanol each produced analgesia during the first hour followed by anti-analgesia starting at ~90 minutes after administration in males but not females, closely mimicking its clinical effects. As observed in humans, co-administration of nalbuphine with naloxone in a dose ratio of 12.5:1 blocked anti-analgesia but not analgesia. Administration of the highly selective kappa-opioid receptor agonist U69,593 produced analgesia without subsequent anti-analgesia, and confirmed by the failure of the selective kappa antagonist nor-binaltorphimine to block nalbuphine-induced anti-analgesia, indicating that anti-analgesia is not mediated by kappa-opioid receptors. We therefore tested the role of other receptors in nalbuphine anti-analgesia. Nociceptin/orphanin FQ (NOP) and sigma-1 and sigma-2 receptors were chosen on the basis of their known anti-analgesic effects and receptor binding studies. The selective NOP receptor antagonists, JTC801, and J113397, but not the sigma receptor antagonist, BD 1047, antagonized nalbuphine anti-analgesia. Furthermore, the NOP receptor agonist NNC 63-0532 produced anti-analgesia with the same delay in onset observed with the three agonist-antagonists, but without producing preceding analgesia and this anti-analgesia was also blocked by naloxone. These results strongly support the suggestion that clinically used agonist-antagonists act at the NOP receptor to produce anti-analgesia. PMID:24188792

  9. The Cbf5-Nop10 Complex is a Molecular Bracket that Organizes Box H/ACA RNPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamma, Tomoko; Reichow, Steve L.; Varani, Gabriele

    2005-12-01

    Box H/ACA ribonucleoprotein particles (RNPs) catalyze RNA pseudouridylation and direct processing of ribosomal RNA, and are essential architectural components of vertebrate telomerases. H/ACA RNPs comprise four proteins and a multihelical RNA. Two proteins, Cbf5 and Nop10, suffice for basal enzymatic activity in an archaeal in vitro system. We now report their cocrystal structure at 1.95-A resolution. We find that archaeal Cbf5 can assemble with yeast Nop10 and with human telomerase RNA, consistent with the high sequence identity of the RNP componenets between archaea and eukarya. Thus, the Cbf5-Nop10 architecture is phylogenetically conserved. The structure shows how Nop10 buttresses the activemore » site of Cbf5, and it reveals two basic troughs that bidirectionally extend the active site cleft. Mutagenesis results implicate an adjacent basic patch in RNA binding. This tripartite RNA-binding surface may function as a molecular bracket that organizes the multihelical H/ACA and telomerase RNAs.« less

  10. Altered gravity influences rDNA and NopA100 localization in nucleoli

    NASA Astrophysics Data System (ADS)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  11. The endogenous regenerative capacity of the damaged newborn brain: boosting neurogenesis with mesenchymal stem cell treatment.

    PubMed

    Donega, Vanessa; van Velthoven, Cindy T J; Nijboer, Cora H; Kavelaars, Annemieke; Heijnen, Cobi J

    2013-05-01

    Neurogenesis continues throughout adulthood. The neurogenic capacity of the brain increases after injury by, e.g., hypoxia-ischemia. However, it is well known that in many cases brain damage does not resolve spontaneously, indicating that the endogenous regenerative capacity of the brain is insufficient. Neonatal encephalopathy leads to high mortality rates and long-term neurologic deficits in babies worldwide. Therefore, there is an urgent need to develop more efficient therapeutic strategies. The latest findings indicate that stem cells represent a novel therapeutic possibility to improve outcome in models of neonatal encephalopathy. Transplanted stem cells secrete factors that stimulate and maintain neurogenesis, thereby increasing cell proliferation, neuronal differentiation, and functional integration. Understanding the molecular and cellular mechanisms underlying neurogenesis after an insult is crucial for developing tools to enhance the neurogenic capacity of the brain. The aim of this review is to discuss the endogenous capacity of the neonatal brain to regenerate after a cerebral ischemic insult. We present an overview of the molecular and cellular mechanisms underlying endogenous regenerative processes during development as well as after a cerebral ischemic insult. Furthermore, we will consider the potential to use stem cell transplantation as a means to boost endogenous neurogenesis and restore brain function.

  12. NopB, a type III secreted protein of Rhizobium sp. strain NGR234, is associated with pilus-like surface appendages.

    PubMed

    Saad, Maged M; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R; Mansfield, John W; Broughton, William J; Deakin, William J

    2005-02-01

    Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGROmegarhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB.

  13. NopB, a Type III Secreted Protein of Rhizobium sp. Strain NGR234, Is Associated with Pilus-Like Surface Appendages

    PubMed Central

    Saad, Maged M.; Kobayashi, Hajime; Marie, Corinne; Brown, Ian R.; Mansfield, John W.; Broughton, William J.; Deakin, William J.

    2005-01-01

    Rhizobium sp. strain NGR234 possesses a functional type three secretion system (TTSS), through which a number of proteins, called nodulation outer proteins (Nops), are delivered to the outside of the cell. A major constraint to the identification of Nops is their low abundance in the supernatants of NGR234 strains grown in culture. To overcome this limitation, a more sensitive proteomics-based strategy was developed. Secreted proteins from wild-type NGR234 were separated by two-dimensional gel electrophoresis, and the gel was compared to similar gels containing the proteins from a TTSS mutant (NGRΩrhcN). To identify the proteins, spots unique to the NGR234 gels were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and the data were compared to the sequence of the symbiotic plasmid of NGR234. A nonpolar mutant of one of these proteins was generated called NopB. NopB is required for Nop secretion but inhibits the interaction with Pachyrhizus tuberosus and augments nodulation of Tephrosia vogelii. Flavonoids and a functional TTSS are required for the formation of some surface appendages on NGR234. In situ immunogold labeling and isolation of these pili showed that they contain NopB. PMID:15659692

  14. Seizures, refractory status epilepticus, and depolarization block as endogenous brain activities

    NASA Astrophysics Data System (ADS)

    El Houssaini, Kenza; Ivanov, Anton I.; Bernard, Christophe; Jirsa, Viktor K.

    2015-01-01

    Epilepsy, refractory status epilepticus, and depolarization block are pathological brain activities whose mechanisms are poorly understood. Using a generic mathematical model of seizure activity, we show that these activities coexist under certain conditions spanning the range of possible brain activities. We perform a detailed bifurcation analysis and predict strategies to escape from some of the pathological states. Experimental results using rodent data provide support of the model, highlighting the concept that these pathological activities belong to the endogenous repertoire of brain activities.

  15. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau.

    PubMed

    Lasagna-Reeves, Cristian A; Castillo-Carranza, Diana L; Sengupta, Urmi; Guerrero-Munoz, Marcos J; Kiritoshi, Takaki; Neugebauer, Volker; Jackson, George R; Kayed, Rakez

    2012-01-01

    Intracerebral injection of brain extracts containing amyloid or tau aggregates in transgenic animals can induce cerebral amyloidosis and tau pathology. We extracted pure populations of tau oligomers directly from the cerebral cortex of Alzheimer disease (AD) brain. These oligomers are potent inhibitors of long term potentiation (LTP) in hippocampal brain slices and disrupt memory in wild type mice. We observed for the first time that these authentic brain-derived tau oligomers propagate abnormal tau conformation of endogenous murine tau after prolonged incubation. The conformation and hydrophobicity of tau oligomers play a critical role in the initiation and spread of tau pathology in the naïve host in a manner reminiscent of sporadic AD.

  16. NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii.

    PubMed

    Skorpil, Peter; Saad, Maged M; Boukli, Nawal M; Kobayashi, Hajime; Ares-Orpel, Florencia; Broughton, William J; Deakin, William J

    2005-09-01

    Rhizobium sp. NGR234 nodulates many plants, some of which react to proteins secreted via a type three secretion system (T3SS) in a positive- (Flemingia congesta, Tephrosia vogelii) or negative- (Crotalaria juncea, Pachyrhizus tuberosus) manner. T3SSs are devices that Gram-negative bacteria use to inject effector proteins into the cytoplasm of eukaryotic cells. The only two rhizobial T3SS effector proteins characterized to date are NopL and NopP of NGR234. NopL can be phosphorylated by plant kinases and we show this to be true for NopP as well. Mutation of nopP leads to a dramatic reduction in nodule numbers on F. congesta and T. vogelii. Concomitant mutation of nopL and nopP further diminishes nodulation capacity to levels that, on T. vogelii, are lower than those produced by the T3SS null mutant NGR(Omega)rhcN. We also show that the T3SS of NGR234 secretes at least one additional effector, which remains to be identified. In other words, NGR234 secretes a cocktail of effectors, some of which have positive effects on nodulation of certain plants while others are perceived negatively and block nodulation. NopL and NopP are two components of this mix that extend the ability of NGR234 to nodulate certain legumes.

  17. 76 FR 46595 - National Organic Program (NOP); Sunset Review (2011)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...-07-14FR] RIN 0581-AC77 National Organic Program (NOP); Sunset Review (2011) AGENCY: Agricultural... the Secretary of Agriculture (Secretary) by the National Organic Standards Board (NOSB) on November 5... exemption (use) of 12 substances in organic production and handling. Consistent with the recommendations...

  18. Fatty Acid-Binding Protein 5 at the Blood-Brain Barrier Regulates Endogenous Brain Docosahexaenoic Acid Levels and Cognitive Function.

    PubMed

    Pan, Yijun; Short, Jennifer L; Choy, Kwok H C; Zeng, Annie X; Marriott, Philip J; Owada, Yuji; Scanlon, Martin J; Porter, Christopher J H; Nicolazzo, Joseph A

    2016-11-16

    Fatty acid-binding protein 5 (FABP5) at the blood-brain barrier contributes to the brain uptake of docosahexaenoic acid (DHA), a blood-derived polyunsaturated fatty acid essential for maintenance of cognitive function. Given the importance of DHA in cognition, the aim of this study was to investigate whether deletion of FABP5 results in cognitive dysfunction and whether this is associated with reduced brain endothelial cell uptake of exogenous DHA and subsequent attenuation in the brain levels of endogenous DHA. Cognitive function was assessed in male and female FABP5 +/+ and FABP5 -/- mice using a battery of memory paradigms. FABP5 -/- mice exhibited impaired working memory and short-term memory, and these cognitive deficits were associated with a 14.7 ± 5.7% reduction in endogenous brain DHA levels. The role of FABP5 in the blood-brain barrier transport of DHA was assessed by measuring 14 C-DHA uptake into brain endothelial cells and capillaries isolated from FABP5 +/+ and FABP5 -/- mice. In line with a crucial role of FABP5 in the brain uptake of DHA, 14 C-DHA uptake into brain endothelial cells and brain capillaries of FABP5 -/- mice was reduced by 48.4 ± 14.5% and 14.0 ± 4.2%, respectively, relative to those of FABP5 +/+ mice. These results strongly support the hypothesis that FABP5 is essential for maintaining brain endothelial cell uptake of DHA, and that cognitive deficits observed in FABP5 -/- mice are associated with reduced CNS access of DHA. Genetic deletion of fatty acid-binding protein 5 (FABP5) in mice reduces uptake of exogenous docosahexaenoic acid (DHA) into brain endothelial cells and brain capillaries and reduces brain parenchymal levels of endogenous DHA. Therefore, FABP5 in the brain endothelial cell is a crucial contributor to the brain levels of DHA. Critically, lowered brain DHA levels in FABP5 -/- mice occurred in tandem with cognitive deficits in a battery of memory paradigms. This study provides evidence of a critical role for FABP5

  19. Effects of endogenous pyrogen and prostaglandin E2 on hypothalamic neurons in rat brain slices.

    PubMed

    Watanabe, T; Morimoto, A; Murakami, N

    1987-06-01

    We investigated the effects of endogenous pyrogen and prostaglandin E2 (PGE2) on the preoptic and anterior hypothalamic (POAH) neurons using brain slice preparations from the rat. Partially purified endogenous pyrogen did not change the activities of most of the neurons in the POAH region when applied locally through a micropipette attached to the recording electrode in proximity to the neurons. This indicates that partially purified endogenous pyrogen does not act directly on the neuronal activity in the POAH region. The partially purified endogenous pyrogen, applied into a culture chamber containing a brain slice, facilitated the activities in 24% of the total neurons tested, regardless of the thermal specificity of the neurons. Moreover, PGE2 added to the culture chamber facilitated 48% of the warm-responsive, 33% of the cold-responsive, and 29% of the thermally insensitive neurons. The direction of change in neuronal activity induced by partially purified endogenous pyrogen appears to be almost the same as that induced by PGE2 when these substances were applied by perfusion to the same neuron in the culture chamber. These results suggest that partially purified pyrogen applied to the perfusate of the culture chamber stimulates some constituents of brain tissue to synthesize and release prostaglandin, which in turn affects the neuronal activity of the POAH region.

  20. Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming.

    PubMed

    Riecke, Lars; Sack, Alexander T; Schroeder, Charles E

    2015-12-21

    In many natural listening situations, meaningful sounds (e.g., speech) fluctuate in slow rhythms among other sounds. When a slow rhythmic auditory stream is selectively attended, endogenous delta (1‒4 Hz) oscillations in auditory cortex may shift their timing so that higher-excitability neuronal phases become aligned with salient events in that stream [1, 2]. As a consequence of this stream-brain phase entrainment [3], these events are processed and perceived more readily than temporally non-overlapping events [4-11], essentially enhancing the neural segregation between the attended stream and temporally noncoherent streams [12]. Stream-brain phase entrainment is robust to acoustic interference [13-20] provided that target stream-evoked rhythmic activity can be segregated from noncoherent activity evoked by other sounds [21], a process that usually builds up over time [22-27]. However, it has remained unclear whether stream-brain phase entrainment functionally contributes to this buildup of rhythmic streams or whether it is merely an epiphenomenon of it. Here, we addressed this issue directly by experimentally manipulating endogenous stream-brain phase entrainment in human auditory cortex with non-invasive transcranial alternating current stimulation (TACS) [28-30]. We assessed the consequences of these manipulations on the perceptual buildup of the target stream (the time required to recognize its presence in a noisy background), using behavioral measures in 20 healthy listeners performing a naturalistic listening task. Experimentally induced cyclic 4-Hz variations in stream-brain phase entrainment reliably caused a cyclic 4-Hz pattern in perceptual buildup time. Our findings demonstrate that strong endogenous delta/theta stream-brain phase entrainment accelerates the perceptual emergence of task-relevant rhythmic streams in noisy environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1988-11-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.

  2. A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.

    PubMed Central

    Rose, C; Camus, A; Schwartz, J C

    1988-01-01

    A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide. PMID:3186727

  3. 77 FR 44429 - National Organic Program (NOP); Sunset Review (2012); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ...-01FR] RIN 0581-AC96 National Organic Program (NOP); Sunset Review (2012); Correction AGENCY... used as ingredients in processed products labeled as ``organic'' if organic forms are not commercially... requirements, Seals and insignia, Soil conservation. Accordingly, 7 CFR part 205 is corrected by making the...

  4. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  5. MT-7716, a novel selective nonpeptidergic NOP receptor agonist, effectively blocks ethanol-induced increase in GABAergic transmission in the rat central amygdala

    PubMed Central

    Kallupi, Marsida; Oleata, Christopher S.; Luu, George; Teshima, Koji; Ciccocioppo, Roberto; Roberto, Marisa

    2014-01-01

    The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100–1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1–13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism. PMID:24600360

  6. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.

    PubMed

    Xu, Ren; Jiang, Ning; Dosen, Strahinja; Lin, Chuang; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario

    2016-08-01

    In this study, we present a novel multi-class brain-computer interface (BCI) for communication and control. In this system, the information processing is shared by the algorithm (computer) and the user (human). Specifically, an electro-tactile cycle was presented to the user, providing the choice (class) by delivering timely sensory input. The user discriminated these choices by his/her endogenous sensory ability and selected the desired choice with an intuitive motor task. This selection was detected by a fast brain switch based on real-time detection of movement-related cortical potentials from scalp EEG. We demonstrated the feasibility of such a system with a four-class BCI, yielding a true positive rate of  ∼ 80% and  ∼ 70%, and an information transfer rate of  ∼ 7 bits/min and  ∼ 5 bits/min, for the movement and imagination selection command, respectively. Furthermore, when the system was extended to eight classes, the throughput of the system was improved, demonstrating the capability of accommodating a large number of classes. Combining the endogenous sensory discrimination with the fast brain switch, the proposed system could be an effective, multi-class, gaze-independent BCI system for communication and control applications.

  7. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid

    PubMed Central

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E.; Redhi, Godfrey H.; Panlilio, Leigh V.; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D.; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R.

    2013-01-01

    In the reward circuitry of the brain, alpha-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of delta-9-tetrahydrocannabinol (THC), marijuana’s main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by re-exposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are currently no medications approved for treatment of marijuana dependence. Modulation of KYNA provides a novel pharmacological strategy for achieving abstinence from marijuana and preventing relapse. PMID:24121737

  8. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid.

    PubMed

    Justinova, Zuzana; Mascia, Paola; Wu, Hui-Qiu; Secci, Maria E; Redhi, Godfrey H; Panlilio, Leigh V; Scherma, Maria; Barnes, Chanel; Parashos, Alexandra; Zara, Tamara; Fratta, Walter; Solinas, Marcello; Pistis, Marco; Bergman, Jack; Kangas, Brian D; Ferré, Sergi; Tanda, Gianluigi; Schwarcz, Robert; Goldberg, Steven R

    2013-11-01

    In the reward circuitry of the brain, α-7-nicotinic acetylcholine receptors (α7nAChRs) modulate effects of Δ(9)-tetrahydrocannabinol (THC), marijuana's main psychoactive ingredient. Kynurenic acid (KYNA) is an endogenous negative allosteric modulator of α7nAChRs. Here we report that the kynurenine 3-monooxygenase (KMO) inhibitor Ro 61-8048 increases brain KYNA levels and attenuates cannabinoid-induced increases in extracellular dopamine in reward-related brain areas. In the self-administration model of drug abuse, Ro 61-8048 reduced the rewarding effects of THC and the synthetic cannabinoid WIN 55,212-2 in squirrel monkeys and rats, respectively, and it also prevented relapse to drug-seeking induced by reexposure to cannabinoids or cannabinoid-associated cues. The effects of enhancing endogenous KYNA levels with Ro 61-8048 were prevented by positive allosteric modulators of α7nAChRs. Despite a clear need, there are no medications approved for treatment of marijuana dependence. Modulation of KYNA offers a pharmacological strategy for achieving abstinence from marijuana and preventing relapse.

  9. Application of Genetically Encoded Fluorescent Nitric Oxide (NO•) Probes, the geNOps, for Real-time Imaging of NO• Signals in Single Cells

    PubMed Central

    Eroglu, Emrah; Rost, Rene; Bischof, Helmut; Blass, Sandra; Schreilechner, Anna; Gottschalk, Benjamin; Depaoli, Maria R.; Klec, Christiane; Charoensin, Suphachai; Madreiter-Sokolowski, Corina T.; Ramadani, Jeta; Waldeck-Weiermair, Markus; Graier, Wolfgang F.; Malli, Roland

    2017-01-01

    Nitric Oxide (NO•) is a small radical, which mediates multiple important cellular functions in mammals, bacteria and plants. Despite the existence of a large number of methods for detecting NO• in vivo and in vitro, the real-time monitoring of NO• at the single-cell level is very challenging. The physiological or pathological effects of NO• are determined by the actual concentration and dwell time of this radical. Accordingly, methods that allow the single-cell detection of NO• are highly desirable. Recently, we expanded the pallet of NO• indicators by introducing single fluorescent protein-based genetically encoded nitric oxide (NO•) probes (geNOps) that directly respond to cellular NO• fluctuations and, hence, addresses this need. Here we demonstrate the usage of geNOps to assess intracellular NO• signals in response to two different chemical NO•-liberating molecules. Our results also confirm that freshly prepared 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7) has a much higher potential to evoke change in intracellular NO• levels as compared with the inorganic NO• donor sodium nitroprusside (SNP). Furthermore, dual-color live-cell imaging using the green geNOps (G-geNOp) and the chemical Ca2+ indicator fura-2 was performed to visualize the tight regulation of Ca2+-dependent NO• formation in single endothelial cells. These representative experiments demonstrate that geNOps are suitable tools to investigate the real-time generation and degradation of single-cell NO• signals in diverse experimental setups. PMID:28362417

  10. Archaeal fibrillarin-Nop5 heterodimer 2'-O-methylates RNA independently of the C/D guide RNP particle.

    PubMed

    Tomkuvienė, Miglė; Ličytė, Janina; Olendraitė, Ingrida; Liutkevičiūtė, Zita; Clouet-d'Orval, Béatrice; Klimašauskas, Saulius

    2017-09-01

    Archaeal fibrillarin (aFib) is a well-characterized S -adenosyl methionine (SAM)-dependent RNA 2'- O -methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'- O -methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'- O -methylated positions in the 16S rRNA of P. abyssi , positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution. © 2017 Tomkuvienė et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Human endogenous retrovirus W in brain lesions: Rationale for targeted therapy in multiple sclerosis.

    PubMed

    van Horssen, Jack; van der Pol, Susanne; Nijland, Philip; Amor, Sandra; Perron, Hervé

    2016-07-01

    Attempts to identify a causative agent of Multiple Sclerosis (MS) among environmental viruses have consistently failed suggesting that development of MS is a result from gene-environment interactions. A new pathogenic player within human genes, a human endogenous retrovirus (HERV) was identified from MS cells, named MS-associated retrovirus element (MSRV) and unveiled homologous multicopy HERVs (HERV-W). As independent studies revealed biological features of HERV-W on immune-mediated inflammation and on remyelinating cells, the present study characterized the presence of HERV-W envelope protein (MSRV-Env) at the cellular level, in different MS lesion stages to extend and validate previous studies. Immunohistological analysis of HERV-W envelope cellular expression in different lesion stages from a cohort of MS brains versus controls, using well-characterized and highly specific monoclonal antibodies. HERV-W envelope protein was detected in all MS brains and quite essentially in lesions. Immunohistochemistry showed dominant expression in macrophages and microglia, coinciding with areas of active demyelination, spread over the active lesions, or limited to the rim of active microglia in chronic active lesions or in few surviving astrocytes of inactive plaques. Weak expression was seen in MS normal appearing white matter. In active plaques, few lymphoid cells and astrocytes were also stained. This HERV-W expression was not observed in control brains. HERV-W was expressed in demyelinated lesions from MS brains, which were all positive for this endogenous pathogenic protein. Pronounced HERV-W immunoreactivity in active MS lesions was intimately associated with areas of active demyelination throughout the successive stages of lesion evolution in MS brains. Based on its pathogenic potential, this HERV-W (MSRV) endogenous toxin thus appears to be a novel therapeutic target in MS. It also has a unique positioning as an early and lifelong expressed pathogenic agonist, acting

  12. Activating Endogenous Neural Precursor Cells Using Metformin Leads to Neural Repair and Functional Recovery in a Model of Childhood Brain Injury.

    PubMed

    Dadwal, Parvati; Mahmud, Neemat; Sinai, Laleh; Azimi, Ashkan; Fatt, Michael; Wondisford, Fredric E; Miller, Freda D; Morshead, Cindi M

    2015-08-11

    The development of cell replacement strategies to repair the injured brain has gained considerable attention, with a particular interest in mobilizing endogenous neural stem and progenitor cells (known as neural precursor cells [NPCs]) to promote brain repair. Recent work demonstrated metformin, a drug used to manage type II diabetes, promotes neurogenesis. We sought to determine its role in neural repair following brain injury. We find that metformin administration activates endogenous NPCs, expanding the size of the NPC pool and promoting NPC migration and differentiation in the injured neonatal brain in a hypoxia-ischemia (H/I) injury model. Importantly, metformin treatment following H/I restores sensory-motor function. Lineage tracking reveals that metformin treatment following H/I causes an increase in the absolute number of subependyma-derived NPCs relative to untreated H/I controls in areas associated with sensory-motor function. Hence, activation of endogenous NPCs is a promising target for therapeutic intervention in childhood brain injury models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Effects of the NOP receptor agonist Ro65-6570 on the acquisition of opiate- and psychostimulant-induced conditioned place preference in rats.

    PubMed

    Rutten, Kris; De Vry, Jean; Bruckmann, Walter; Tzschentke, Thomas M

    2010-10-25

    Activation of the Nociceptin/Orphanin FQ (NOP) receptor may have anti-abuse effects. The present study examined the consequence of NOP receptor activation on the rewarding effect of opiates and psychostimulants in the conditioned place preference task in rats. First, the motivational effect of the NOP receptor agonists Ro64-6198 (0.316-3.16 mg/kg i.p.) and Ro65-6570 (1-10mg/kg i.p.) when administered alone, was assessed. Ro65-6570 was selected for further drug combination studies since, unlike Ro64-6198, it was devoid of an intrinsic motivational effect. Next, the minimal effective dose to induce reward for the opiates heroin (0.1-3.16 mg/kg i.p.), morphine (1-10mg/kg i.p.), hydrocodone (0.316-10mg/kg i.p.), tilidine (1-31.6 mg/kg i.p.), hydromorphone (0.1-10mg/kg i.p.), and oxycodone (0.0316-10mg/kg i.p.), as well as for the psychostimulants cocaine (3.16-31.6 mg/kg i.p.) and dexamphetamine (0.316-3.16 mg/kg i.p.) in combination with Ro 65-6570 (0 or 3.16 mg/kg i.p.) was determined. All drugs produced conditioned place preference, and for opiates and cocaine, but not for dexamphetamine, the minimal effective dose was higher when combined with Ro65-6570 (3.16 mg/kg i.p.). Attenuation of the rewarding effect of tilidine (3.16 mg/kg i.p.) and oxycodone (1mg/kg i.p.) by Ro65-6570 (3.16 mg/kg i.p.) could be reversed by pre-treatment with the NOP receptor antagonist J-113397 (4.64 mg/kg i.p.), suggesting that the attenuating effect of Ro65-6570 on opiates is due to activation of the NOP receptor. Taken together, the present study suggests that activation of NOP receptors effectively attenuates the rewarding effect of opiates, but may be less effective in reducing psychostimulant-induced reward. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. The nop gene from Phanerochaete chrysosporium encodes a peroxidase with novel structural features

    Treesearch

    Luis F. Larrondo; Angel Gonzalez; Tomas Perez-Acle; Dan Cullen; Rafael Vicuna

    2005-01-01

    Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase-like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal)...

  15. Splicing Factor 2-Associated Protein p32 Participates in Ribosome Biogenesis by Regulating the Binding of Nop52 and Fibrillarin to Preribosome Particles*

    PubMed Central

    Yoshikawa, Harunori; Komatsu, Wataru; Hayano, Toshiya; Miura, Yutaka; Homma, Keiichi; Izumikawa, Keiichi; Ishikawa, Hideaki; Miyazawa, Naoki; Tachikawa, Hiroyuki; Yamauchi, Yoshio; Isobe, Toshiaki; Takahashi, Nobuhiro

    2011-01-01

    Ribosome biogenesis starts with transcription of the large ribosomal RNA precursor (47S pre-rRNA), which soon combines with numerous factors to form the 90S pre-ribosome in the nucleolus. Although the subsequent separation of the pre-90S particle into pre-40S and pre-60S particles is critical for the production process of mature small and large ribosomal subunits, its molecular mechanisms remain undetermined. Here, we present evidence that p32, fibrillarin (FBL), and Nop52 play key roles in this separation step. Mass-based analyses combined with immunoblotting showed that p32 associated with 155 proteins including 31 rRNA-processing factors (of which nine were components of small subunit processome, and six were those of RIX1 complex), 13 chromatin remodeling components, and six general transcription factors required for RNA polymerase III-mediated transcription. Of these, a late rRNA-processing factor Nop52 interacted directly with p32. Immunocytochemical analyses demonstrated that p32 colocalized with an early rRNA-processing factor FBL or Nop52 in the nucleolus and Cajal bodies, but was excluded from the nucleolus after actinomycin D treatment. p32 was present in the pre-ribosomal fractions prepared by cell fractionation or separated by ultracentrifugation of the nuclear extract. p32 also associated with pre-rRNAs including 47S/45S and 32S pre-rRNAs. Furthermore, knockdown of p32 with a small interfering RNA slowed the early processing from 47S/45S pre-rRNAs to 18S rRNA and 32S pre-rRNA. Finally, Nop52 was found to compete with FBL for binding to p32 probably in the nucleolus. Given the fact that FBL and Nop52 are associated with pre-ribosome particles distinctly different from each other, we suggest that p32 is a new rRNA maturation factor involved in the remodeling from pre-90S particles to pre-40S and pre-60S particles that requires the exchange of FBL for Nop52. PMID:21536856

  16. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*

    PubMed Central

    Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.

    2016-01-01

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367

  17. Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.

    PubMed

    Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R

    2016-12-30

    Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. PREFACE: International Workshop on Neutron Optics and Detectors (NOP&D 2013)

    NASA Astrophysics Data System (ADS)

    2014-07-01

    Every two-three years scientists involved in developments of neutron optics gather together for the International Workshop on Neutron Optics (NOP). Neutron optics has always been considered very important for the development of new neutron instrumentation. The limited brilliance of existing or future neutron sources requires the more effective usage of emitted neutrons. Indeed, improvements of the neutron optical system or an optimization of the neutron-optical tracts of instruments can result in a significant enhancement of their performance. This is especially important at present when the neutron scattering community is strongly engaged in developments of new instrumentation around the spallation neutron sources - SNS, ESS, J-PARC and Second Target Station at ISIS. In 2013 the workshop was organized by the Jülich Centre for Neutron Science of the Forschungszentrum Jülich GmbH and was held at the Conference Centre in Ismaning next to Munich on July 2-7, 2013 on the eve of the ICNS-2013 in Edinburg. It carried on the series of Neutron Optics workshops held in Villigen (1999, 2007), Tokyo (2004) and Alpe d'Huez (2010). This time it is also aimed to compliment the International Conference on Neutron Scattering in Edinburgh (ICNS-2013) by providing a platform for detailed discussions on the latest developments in the field of neutron optics. The scope of the workshop was extended to the neutron detectors (in a way similar to the NOP-2004 held in Tokyo) and was labelled as the International Workshop on Neutron Optics and Detectors, NOP&D-2013. However, in contrast to the Tokyo workshop, the focus of discussions was not the detector technologies (which are the subject of many dedicated meetings), rather than the use of detectors for the purpose of the design of modern instrumentation aiming to inform detector developers about real detectors requirements for new advanced instrumental concepts. The three-full-days workshop gathered a record number of participants, more

  19. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    PubMed

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  20. Endogenous antipyretics.

    PubMed

    Roth, Joachim

    2006-09-01

    The febrile increase of body temperature is regarded as a component of the complex host response to infection or inflammation that accompanies the activation of the immune system. Late phases of fever appear mediated by pro-inflammatory cytokines called endogenous pyrogens. The rise of body temperature is beneficial because it accelerates several components of the activated immune system. To prevent an excessive and dangerous rise of body temperature the febrile response is controlled, limited in strength and duration, and sometimes even prevented by the actions of endogenous antipyretic substances liberated systemically or within the brain during fever. In most cases the antipyretic effects are achieved by an inhibitory influence on the formation or action of endogenous pyrogens, or by effects on neuronal thermoregulatory circuits that are activated during fever. Endogenous antipyretic substances include steroid hormones, neuropeptides, cytokines and other molecules. It is the purpose of this review to consider the current state in the research on endogenous antipyretic systems.

  1. 77 FR 59287 - National Organic Program (NOP); Sunset Review (2012) for Nutrient Vitamins and Minerals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... Value (DRV). FDA stated that substances such as omega-3 and omega-6 fatty acids, inositol, choline....\\3\\ The reference to 21 CFR 104.20 refers to the fortification policy for food under the FDA's... those nutrients. \\3\\ FDA Response to NOP--Questions and Answers Regarding Nutrient Fortification of...

  2. Further evidence for a parent-of-origin effect at the NOP9 locus on language-related phenotypes.

    PubMed

    Pettigrew, Kerry A; Frinton, Emily; Nudel, Ron; Chan, May T M; Thompson, Paul; Hayiou-Thomas, Marianna E; Talcott, Joel B; Stein, John; Monaco, Anthony P; Hulme, Charles; Snowling, Margaret J; Newbury, Dianne F; Paracchini, Silvia

    2016-01-01

    Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5-10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.

  3. Endogenous reward mechanisms and their importance in stress reduction, exercise and the brain.

    PubMed

    Esch, Tobias; Stefano, George B

    2010-06-30

    Stress can facilitate disease processes and causes strain on the health care budgets. It is responsible or involved in many human ailments of our time, such as cardiovascular illnesses, particularly related to the psychosocial stressors of daily life, including work. Besides pharmacological or clinical medical treatment options, behavioral stress reduction is much-needed. These latter approaches rely on an endogenous healing potential via life-style modification. Hence, research has suggested different ways and approaches to self-treat stress or buffer against stressors and their impacts. These self-care-centred approaches are sometimes referred to as mind-body medicine or multi-factorial stress management strategies. They consist of various cognitive behavioral techniques, as well as relaxation exercises and nutritional counselling. However, a critical and consistent element of modern effective stress reduction strategies are exercise practices. With regard to underlying neurobiological mechanisms of stress relief, reward and motivation circuitries that are imbedded in the limbic regions of the brain are responsible for the autoregulatory and endogenous processing of stress. Exercise techniques clearly have an impact upon these systems. Thereby, physical activities have a potential to increase mood, i.e., decrease psychological distress by pleasure induction. For doing so, neurobiological signalling molecules such as endogenous morphine and coupled nitric oxide pathways get activated and finely tuned. Evolutionarily, the various activities and autoregulatory pathways are linked together, which can also be demonstrated by the fact that dopamine is endogenously converted into morphine which itself leads to enhanced nitric oxide release by activation of constitutive nitric oxide synthase enzymes. These molecules and mechanisms are clearly stress-reducing.

  4. [Endogenous nociceptin level in ischemic stroke: connection to serotonin system].

    PubMed

    Tekes, Kornélia; Hantos, Mónika; Bátor, György; Gyenge, Melinda; Laufer, Rudolf; Folyovich, András

    2006-06-01

    Particular role of the heptadecapeptide nociceptin (orphanin FQ), the endogenous agonist of the NOP receptor, has been widely demonstrated in the regulation of pain sensation and anxiety-related behavior. In our best knowledge this is the first study reporting plasma nociceptin levels in 26 acute stroke and 6 transiens ischemic attack (TIA) patients. We have found significantly elevated plasma nociceptin levels in all the three groups of patients studied (stroke influencing the carotis or the lacunar region and TIA). We suggest that elevated plasma nociceptin level is the consequence of stroke as in the group of patients recovered from previous stroke was found similar the control value. Plasma serotonin level was found non-significantly decreased in patients with stroke influencing the lacunar region and TIA patients. However the plasma 5-hydroxy-indoleacetic acid (5HIAA) levels were found significantly elevated in patient groups with stroke influencing both the carotis and the lacunar regions. Data may serve as further evidence for the serotonergic dysregulation in stroke.

  5. Alpha Power Modulates Perception Independently of Endogenous Factors.

    PubMed

    Brüers, Sasskia; VanRullen, Rufin

    2018-01-01

    Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and

  6. [The endogenous opioid system and drug addiction].

    PubMed

    Maldonado, R

    2010-01-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  7. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus.

    PubMed

    da Silva, Juliana Almeida; Biagioni, Audrey Franceschi; Almada, Rafael Carvalho; de Freitas, Renato Leonardo; Coimbra, Norberto Cysne

    2017-10-01

    Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. Blockade of GABA A receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ 1 -opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.

  8. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder.

    PubMed

    Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Walker, S J; Mickey, B J; Koeppe, R A; Langenecker, S A; Zubieta, J-K

    2015-02-01

    The μ-opioid receptor (MOR) system, well known for dampening physical pain, is also hypothesized to dampen 'social pain.' We used positron emission tomography scanning with the selective MOR radioligand [(11)C]carfentanil to test the hypothesis that MOR system activation (reflecting endogenous opioid release) in response to social rejection and acceptance is altered in medication-free patients diagnosed with current major depressive disorder (MDD, n=17) compared with healthy controls (HCs, n=18). During rejection, MDD patients showed reduced endogenous opioid release in brain regions regulating stress, mood and motivation, and slower emotional recovery compared with HCs. During acceptance, only HCs showed increased social motivation, which was positively correlated with endogenous opioid release in the nucleus accumbens, a reward structure. Altered endogenous opioid activity in MDD may hinder emotional recovery from negative social interactions and decrease pleasure derived from positive interactions. Both effects may reinforce depression, trigger relapse and contribute to poor treatment outcomes.

  9. Possible human endogenous cryogens.

    PubMed

    Shido, Osamu; Sugimoto, Naotoshi

    2011-06-01

    Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.

  10. Tobacco Smoking and Brain Endogenous Opioid Release: More than Nicotine Alone.

    PubMed

    Domino, Edward F; Hirasawa-Fujita, Mika

    2018-03-05

    The effects of smoking denicotinized (denic) and average nicotine (avnic) tobacco cigarettes were studied on brain mu opioid receptor binding by positron emission tomography with 11C carfentanil. The results indicated the importance of physiological and psychological effects induced by denic smoking. Regional mu opioid binding potential (non-displaceable binding potential, BPND) was measured in 20 adult male overnight abstinent chronic tobacco smokers. The denic sessions were conducted about 8:00 AM followed by avnic sessions about 2 hours later. Venous plasma nicotine levels and scores of craving to smoke were assessed before and after each smoking session. Fagerstrom scores of nicotine dependence were determined. Pearson's and Spearman's correlation tests were used to examine associations between BPND and other smoking parameters. Surprisingly the very low plasma nicotine peak levels after denic smoking (mean±SD: 3.3±1.8 ng/ml) were significantly correlated with BPND after denic and avnic smoking. Equally surprising no association was found between nicotine levels after avnic smoking and BPND. Delta craving scores and Fagerstrom scores were correlated with both BPND after denic and avnic in several brain regions. Very small amounts of nicotine, psychological and behavioral effects of denic smoking appear to have important actions on the endogenous mu opioid system. Associations between very low venous plasma nicotine levels after denic smoking and regional brain mu opioid receptor availability are a surprising "placebo" effect. Delta craving and Fagerstrom scores were correlated with BPND in several brain regions including amygdala, hippocampus, insula, nucleus accumbens, putamen and ventral striatum. This study is limited by modest Power (mean 1-β=0.6) for all correlation analyses.

  11. Release of endogenous amino acids from the hippocampus and brain stem from developing and adult mice in ischemia.

    PubMed

    Oja, Simo S; Saransaari, Pirjo

    2009-09-01

    The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K(+)-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, L-glutamate and L-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active L-glutamine, L-alanine, L-threonine and L-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K(+) stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.

  12. Imaging of endogenous exchangeable proton signals in the human brain using frequency labeled exchange transfer imaging.

    PubMed

    Yadav, Nirbhay N; Jones, Craig K; Hua, Jun; Xu, Jiadi; van Zijl, Peter C M

    2013-04-01

    To image endogenous exchangeable proton signals in the human brain using a recently reported method called frequency labeled exchange transfer (FLEX) MRI. As opposed to labeling exchangeable protons using saturation (i.e., chemical exchange saturation transfer, or CEST), FLEX labels exchangeable protons with their chemical shift evolution. The use of short high-power frequency pulses allows more efficient labeling of rapidly exchanging protons, while time domain acquisition allows removal of contamination from semi-solid magnetization transfer effects. FLEX-based exchangeable proton signals were detected in human brain over the 1-5 ppm frequency range from water. Conventional magnetization transfer contrast and the bulk water signal did not interfere in the FLEX spectrum. The information content of these signals differed from in vivo CEST data in that the average exchange rate of these signals was 350-400 s(-1) , much faster than the amide signal usually detected using direct saturation (∼30 s(-1) ). Similarly, fast exchanging protons could be detected in egg white in the same frequency range where amide and amine protons of mobile proteins and peptides are known to resonate. FLEX MRI in the human brain preferentially detects more rapidly exchanging amide/amine protons compared to traditional CEST experiments, thereby changing the information content of the exchangeable proton spectrum. This has the potential to open up different types of endogenous applications as well as more easy detection of rapidly exchanging protons in diaCEST agents or fast exchanging units such as water molecules in paracest agents without interference of conventional magnetization transfer contrast. Copyright © 2013 Wiley Periodicals, Inc.

  13. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies.

    PubMed

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-06-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD.

  14. Involvement of Endogenous Brain-Derived Neurotrophic Factor in Hypothalamic-Pituitary-Adrenal Axis Activity.

    PubMed

    Naert, G; Zussy, C; Tran Van Ba, C; Chevallier, N; Tang, Y-P; Maurice, T; Givalois, L

    2015-11-01

    Brain-derived neurotrophic factor (BDNF) appears to be highly involved in hypothalamic-pituitary-adrenal (HPA) axis regulation during adulthood, playing an important role in homeostasis maintenance. The present study aimed to determine the involvement of BDNF in HPA axis activity under basal and stress conditions via partial inhibition of this endogenous neurotrophin. Experiments were conducted in rats and mice with two complementary approaches: (i) BDNF knockdown with stereotaxic delivery of BDNF-specific small interfering RNA (siRNA) into the lateral ventricle of adult male rats and (ii) genetically induced knockdown (KD) of BDNF expression specifically in the central nervous system during the first ontogenesis in mice (KD mice). Delivery of siRNA in the rat brain decreased BDNF levels in the hippocampus (-31%) and hypothalamus (-35%) but not in the amygdala, frontal cortex and pituitary. In addition, siRNA induced no change of the basal HPA axis activity. BDNF siRNA rats exhibited decreased BDNF levels and concomitant altered adrenocortoctrophic hormone (ACTH) and corticosterone responses to restraint stress, suggesting the involvement of BDNF in the HPA axis adaptive response to stress. In KD mice, BDNF levels in the hippocampus and hypothalamus were decreased by 20% in heterozygous and by 60% in homozygous animals compared to wild-type littermates. Although, in heterozygous KD mice, no significant change was observed in the basal levels of plasma ACTH and corticosterone, both hormones were significantly increased in homozygous KD mice, demonstrating that robust cerebral BDNF inhibition (60%) is necessary to affect basal HPA axis activity. All of these results in both rats and mice demonstrate the involvement and importance of a robust endogenous pool of BDNF in basal HPA axis regulation and the pivotal function of de novo BDNF synthesis in the establishment of an adapted response to stress. © 2015 British Society for Neuroendocrinology.

  15. Oxidative stress following traumatic brain injury: enhancement of endogenous antioxidant defense systems and the promise of improved outcome.

    PubMed

    Eghwrudjakpor, P O; Allison, A B

    2010-01-01

    Management of brain injury can pose enormous challenges to the health team. There are many studies aimed at discovering or developing pharmacotherapeutic agents targeted at improving outcome of head-injured patients. This paper reviews the role of oxidative stress in neuronal loss following traumatic brain injury and presents experimental and clinical evidence of the role of exogenous antioxidants as neuroprotectants. We reviewed published literature on reactive oxygen species and their role in experimental and clinical brain injuries in journals and the Internet using Yahoo and Google search engines. Traumatic brain injury causes massive production of reactive oxygen species with resultant oxidative stress. In experimental brain injury, exogenous antioxidants are useful in limiting oxidative damage. Results with clinical brain injury are however more varied. Oxidative stress due to excessive generation of reactive oxygen species with consequent impairment of endogenous antioxidant defence mechanisms plays a significant role in the secondary events leading to neuronal death. Enhancement of the defence mechanisms through the use of exogenous antioxidants may be neuroprotective, especially if the agents can penetrate cell membranes, are able to cross the blood-brain barrier and if they are administered within the neuroprotective time window.

  16. Dopamine-derived salsolinol derivatives as endogenous monoamine oxidase inhibitors: occurrence, metabolism and function in human brains.

    PubMed

    Naoi, Makoto; Maruyama, Wakako; Nagy, Georgy M

    2004-01-01

    Salsolinol, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, is an endogenous catechol isoquinoline detected in humans by M. Sandler. In human brain, a series of catechol isoquinolines were identified as the condensation products of dopamine or other monoamines with aldehydes or keto-acids. Recently selective occurrence of the (R)enantiomers of salsolinol derivatives was confirmed in human brain, and they are synthesized by enzymes in situ, but not by the non-enzymatic Pictet-Spengler reaction. A (R)salsolinol synthase catalyzes the enantio-specific synthesis of (R)salsolinol from dopamine and acetaldehyde, and (R)salsolinol N-methyltransferase synthesizes N-methyl(R)salsolinol, which is further oxidized into 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion by non-enzymatic and enzymatic oxidation. The step-wise reactions, N-methylation and oxidation, induce the specified distribution of the N-methylated and oxidized derivatives in the human nigro-striatum, suggesting that these derivatives may be involved in the function of dopamine neurons under physiological and pathological conditions. As shown by in vivo and in vitro experiments, salsolinol derivatives affect the levels of monoamine neurotransmitters though the inhibition of enzymes related in the metabolism of catechol- and indoleamines. In addition, the selective neurotoxicity of N-methyl(R)salsolinol to dopamine neurons was confirmed by preparation of an animal model of Parkinson's disease in rats. The involvement of N-methyl(R)salsolinol in the pathogenesis of Parkinson's disease was further indicated by the increase in the N-methyl(R)salsolinol levels in the cerebrospinal fluid and that in the activity of its synthesizing enzyme, a neural (R)salsolinol N-methyltransferase, in the lymphocytes prepared from parkinsonian patients. N-methyl(R)salsolinol induces apoptosis in dopamine neurons, which is mediated by death signal transduction in mitochondria. In addition, salsolinol was found to function as a

  17. A Selective Nociceptin Receptor Antagonist to Treat Depression: Evidence from Preclinical and Clinical Studies

    PubMed Central

    Post, Anke; Smart, Trevor S; Krikke-Workel, Judith; Dawson, Gerard R; Harmer, Catherine J; Browning, Michael; Jackson, Kimberley; Kakar, Rishi; Mohs, Richard; Statnick, Michael; Wafford, Keith; McCarthy, Andrew; Barth, Vanessa; Witkin, Jeffrey M

    2016-01-01

    Nociceptin/Orphanin FQ (N/OFQ) is an endogenous ligand of the N/OFQ peptide (NOP) receptor, which is a G protein-coupled receptor in brain regions associated with mood disorders. We used a novel, potent, and selective orally bioavailable antagonist, LY2940094, to test the hypothesis that blockade of NOP receptors would induce antidepressant effects. In this study we demonstrate that targeting NOP receptors with LY2940094 translates to antidepressant-like effects in rodent models and, importantly, to antidepressant efficacy in patients with major depressive disorder (MDD). The proof-of-concept study (POC) was an 8-week, double-blind, placebo-controlled trial that evaluated LY2940094 as a novel oral medication for the treatment of patients with MDD. Once daily oral dosing of LY2940094 at 40 mg for 8 weeks vs placebo provided some evidence for an antidepressant effect based on the change from baseline to week 8 in the GRID-Hamilton Depression Rating Scale-17 item total score, although the predefined POC efficacy criterion (probability of LY2940094 being better than placebo⩾88%) was not met (82.9%). LY2940094 also had an early effect on the processing of emotional stimuli at Week 1 as shown by an increased recognition of positive relative to negative facial expressions in an emotional test battery. LY2940094 was safe and well tolerated. Overall, these are the first human data providing evidence that the blockade of NOP receptor signaling represents a promising strategy for the treatment of MDD. PMID:26585287

  18. Endogenous Agmatine Induced by Ischemic Preconditioning Regulates Ischemic Tolerance Following Cerebral Ischemia

    PubMed Central

    Kim, Jae Hwan; Kim, Jae Young; Jung, Jin Young; Lee, Yong Woo; Lee, Won Taek; Huh, Seung Kon

    2017-01-01

    Ischemic preconditioning (IP) is one of the most important endogenous mechanisms that protect the cells against ischemia-reperfusion (I/R) injury. However, the exact molecular mechanisms remain unclear. In this study, we showed that changes in the level of agmatine were correlated with ischemic tolerance. Changes in brain edema, infarct volume, level of agmatine, and expression of arginine decarboxylase (ADC) and nitric oxide synthases (NOS; inducible NOS [iNOS] and neural NOS [nNOS]) were analyzed during I/R injury with or without IP in the rat brain. After cerebral ischemia, brain edema and infarct volume were significantly reduced in the IP group. The level of agmatine was increased before and during ischemic injury and remained elevated in the early reperfusion phase in the IP group compared to the experimental control (EC) group. During IP, the level of plasma agmatine was increased in the early phase of IP, but that of liver agmatine was abruptly decreased. However, the level of agmatine was definitely increased in the ipsilateral and contralateral hemisphere of brain during the IP. IP also increased the expression of ADC—the enzyme responsible for the synthesis of endogenous agmatine—before, during, and after ischemic injury. In addition, ischemic injury increased endogenous ADC expression in the EC group. The expression of nNOS was reduced in the I/R injured brain in the IP group. These results suggest that endogenous increased agmatine may be a component of the ischemic tolerance response that is induced by IP. Agmatine may have a pivotal role in endogenous ischemic tolerance. PMID:29302205

  19. A Role of Endogenous Progesterone in Stroke Cerebroprotection Revealed by the Neural-Specific Deletion of Its Intracellular Receptors.

    PubMed

    Zhu, Xiaoyan; Fréchou, Magalie; Liere, Philippe; Zhang, Shaodong; Pianos, Antoine; Fernandez, Neïké; Denier, Christian; Mattern, Claudia; Schumacher, Michael; Guennoun, Rachida

    2017-11-08

    Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes. SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the

  20. Regulation of endogenous neural stem/progenitor cells for neural repair—factors that promote neurogenesis and gliogenesis in the normal and damaged brain

    PubMed Central

    Christie, Kimberly J.; Turnley, Ann M.

    2012-01-01

    Neural stem/precursor cells in the adult brain reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. These cells primarily generate neuroblasts that normally migrate to the olfactory bulb (OB) and the dentate granule cell layer respectively. Following brain damage, such as traumatic brain injury, ischemic stroke or in degenerative disease models, neural precursor cells from the SVZ in particular, can migrate from their normal route along the rostral migratory stream (RMS) to the site of neural damage. This neural precursor cell response to neural damage is mediated by release of endogenous factors, including cytokines and chemokines produced by the inflammatory response at the injury site, and by the production of growth and neurotrophic factors. Endogenous hippocampal neurogenesis is frequently also directly or indirectly affected by neural damage. Administration of a variety of factors that regulate different aspects of neural stem/precursor biology often leads to improved functional motor and/or behavioral outcomes. Such factors can target neural stem/precursor proliferation, survival, migration and differentiation into appropriate neuronal or glial lineages. Newborn cells also need to subsequently survive and functionally integrate into extant neural circuitry, which may be the major bottleneck to the current therapeutic potential of neural stem/precursor cells. This review will cover the effects of a range of intrinsic and extrinsic factors that regulate neural stem/precursor cell functions. In particular it focuses on factors that may be harnessed to enhance the endogenous neural stem/precursor cell response to neural damage, highlighting those that have already shown evidence of preclinical effectiveness and discussing others that warrant further preclinical investigation. PMID:23346046

  1. In vitro and ex vivo distribution of [3H]harmane, an endogenous beta-carboline, in rat brain.

    PubMed

    Anderson, Neil J; Tyacke, Robin J; Husbands, Stephen M; Nutt, David J; Hudson, Alan L; Robinson, Emma S J

    2006-03-01

    The endogenous beta-carboline, harmane, has been shown to bind to monoamine oxidase A (MAO-A) and a separate, high affinity, non-MAO site. Research in our laboratory has shown that harmane is an active component of clonidine-displacing substance (CDS), the proposed endogenous ligand for imidazoline binding sites (IBS). In the present study we have investigated the distribution of [3H]harmane in rat brain, and related the binding profile to the distribution of the MAO-A selective ligand [3H]Ro41-1049 and the I2BS ligand [3H]2-BFI. The in vivo distribution of [3H]harmane following intravenous administration was also investigated. Receptor autoradiography revealed a highly significant correlation for the distribution of [3H]harmane and [3H]Ro41-1049, and a significant correlation for [3H]harmane and the I2BS ligand [3H]2-BFI. The in vivo distribution of [3H]harmane suggests that the ligand accumulates in the adrenal gland and throughout the brain with the primary route of excretion occurring via the duodenum. In conclusion, these studies have shown that [3H]harmane labels a population of binding sites that reflect the distribution of MAO-A. Further evidence for a non-MAO, IBS [3H]harmane population has not been shown but the high level of expression of the MAO-A site is likely to have masked the much smaller population of I2BS.

  2. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  3. Laser Desorption/Ionization Mass Spectrometric Imaging of Endogenous Lipids from Rat Brain Tissue Implanted with Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Muller, Ludovic; Baldwin, Kathrine; Barbacci, Damon C.; Jackson, Shelley N.; Roux, Aurélie; Balaban, Carey D.; Brinson, Bruce E.; McCully, Michael I.; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2017-08-01

    Mass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins). Image reproducibility in serial sections of brain tissue is achieved within <10% tolerance by selecting argentated instead of alkali cationized ions. The imaging of brain tissues spotted with pure standards was used to demonstrate that Ag cationized ceramide and diacylglycerol ions are from intact, endogenous species. In contrast, almost all Ag cationized fatty acid ions are a result of fragmentations of numerous lipid types having the fatty acid as a subunit. Almost no argentated intact fatty acid ions come from the pure fatty acid standard on tissue.

  4. Endogenous opioidergic dysregulation of pain in fibromyalgia: a PET and fMRI study.

    PubMed

    Schrepf, Andrew; Harper, Daniel E; Harte, Steven E; Wang, Heng; Ichesco, Eric; Hampson, Johnson P; Zubieta, Jon-Kar; Clauw, Daniel J; Harris, Richard E

    2016-10-01

    Endogenous opioid system dysfunction potentially contributes to chronic pain in fibromyalgia (FM), but it is unknown if this dysfunction is related to established neurobiological markers of hyperalgesia. We previously reported that µ-opioid receptor (MOR) availability was reduced in patients with FM as compared with healthy controls in several pain-processing brain regions. In the present study, we compared pain-evoked functional magnetic resonance imaging with endogenous MOR binding and clinical pain ratings in female opioid-naive patients with FM (n = 18) using whole-brain analyses and regions of interest from our previous research. Within antinociceptive brain regions, including the dorsolateral prefrontal cortex (r = 0.81, P < 0.001) and multiple regions of the anterior cingulate cortex (all r > 0.67; all P < 0.02), reduced MOR availability was associated with decreased pain-evoked neural activity. Additionally, reduced MOR availability was associated with lower brain activation in the nucleus accumbens (r = 0.47, P = 0.050). In many of these regions, pain-evoked activity and MOR binding potential were also associated with lower clinical affective pain ratings. These findings are the first to link endogenous opioid system tone to regional pain-evoked brain activity in a clinical pain population. Our data suggest that dysregulation of the endogenous opioid system in FM could lead to less excitation in antinociceptive brain regions by incoming noxious stimulation, resulting in the hyperalgesia and allodynia commonly observed in this population. We propose a conceptual model of affective pain dysregulation in FM.

  5. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    PubMed Central

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; Howard, Daryl L.; Howland, John G.; Hackett, Mark J.

    2016-01-01

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K+, Cl−, and Ca+ distributions unreliable. In the present study, we directly examined the distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl− and Fe while K+ levels increase further from the ventricle as Cl− levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl− surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. This study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models. PMID:27351594

  6. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  7. Mapping Alterations to the Endogenous Elemental Distribution within the Lateral Ventricles and Choroid Plexus in Brain Disorders Using X-Ray Fluorescence Imaging

    DOE PAGES

    Lins, Brittney R.; Pushie, Jake M.; Jones, Michael; ...

    2016-06-28

    The choroid plexus and cerebral ventricles are critical structures for the production of cerebral spinal fluid (CSF) and play an important role in regulating ion and metal transport in the brain, however many aspects of its roles in normal physiology and disease states, such as psychiatric illness, remain unknown. The choroid plexus is difficult to examine in vivo, and in situ ex vivo, and as such has typically been examined indirectly with radiolabeled tracers or ex vivo stains, making measurements of the endogenous K +, Cl -, and Ca + distributions unreliable. In the present study, we directly examined themore » distribution of endogenous ions and biologically relevant transition metals in the choroid plexus and regions surrounding the ventricles (ventricle wall, cortex, corpus callosum, striatum) using X-ray fluorescence imaging (XFI). We find that the choroid plexus was rich in Cl - and Fe while K + levels increase further from the ventricle as Cl - levels decrease, consistent with the known role of ion transporters in the choroid plexus CSF production. A polyI:C offspring displayed enlarged ventricles, elevated Cl - surrounding the ventricles, and intraventricular calcifications. These observations fit with clinical findings in patients with schizophrenia and suggest maternal treatment with polyI:C may lead to dysfunctional ion regulation in offspring. Furthermore, this study demonstrates the power of XFI for examining the endogenous elemental distributions of the ventricular system in healthy brain tissue as well as disease models.« less

  8. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  9. IGF-1: an endogenous link between traumatic brain injury and Alzheimer disease?

    PubMed

    Zheng, Ping; Tong, Wusong

    2017-08-01

    There is a growing body of evidence that the insulin-like growth factor-1 (IGF-1) is dynamically involved in the regulation of body homeostasis and glucose regulation. Traumatic brain injury (TBI) is considered to be a risk factor for Alzheimer's disease (AD). As alterations of IGF-1 have been implicated in both TBI and AD and the IGF-1 signaling also mediates the neuronal excitability and synaptic plasticity in both diseases, we propose that IGF-1 may act as the endogenous connection between TBI and AD. Growing evidence suggests that dysfunction of this pathway contributes to the progressive loss of neurons in Alzheimer's disease (AD), one of the most frequent neurodegenerative disorders. These findings have led to numerous studies in preclinical models of neurodegenerative disorders targeting IGF-1 signaling with currently available antidiabetics. These studies have shown that exogenous administration of IGF-1 reverses signaling abnormalities and has neuroprotective effects. In the first part of this review, we discuss physiological functions of IGF-1 signaling pathway including its distribution within the brain and its relationship with TBI and AD. In the second part, we undertake a comprehensive overview of IGF-1 signaling in TBI and AD, respectively. We then detail targeted IGF-1 in preclinical models of neurodegeneration and the design of clinical trials that have used anti-diabetics for treating AD patients. We close with future considerations that treat relevant issues for successful translation of these encouraging preclinical results into clinical sessions.

  10. Nociceptin and the nociceptin receptor in learning and memory.

    PubMed

    Andero, Raül

    2015-10-01

    There are many processes in which the neuropeptide nociceptin/orphanin FQ (N/OFQ or nociceptin) is involved in the brain. The role of nociceptin in learning and memory holds promise in modulating these processes in health and disease in the human brain. This review summarizes the body of research focused on N/OFQ and its specific receptor, the nociceptin receptor (NOP receptor), in learning and memory, and its potential mechanisms of action, in which acetylcholine, NMDA receptor, and noradrenaline may be critical. Finally, the association between NOP receptor and posttraumatic stress disorder (PTSD), a psychiatric disorder with altered fear learning, is examined as one of the potential outcomes resulting from pathological consequences of dysregulation of N/OFQ-NOP receptor in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Endogenous hypothermic response to hypoxia reduces brain injury: Implications for modeling hypoxic-ischemic encephalopathy and therapeutic hypothermia in neonatal mice.

    PubMed

    Reinboth, Barbara S; Köster, Christian; Abberger, Hanna; Prager, Sebastian; Bendix, Ivo; Felderhoff-Müser, Ursula; Herz, Josephine

    2016-09-01

    Hypothermia treatment (HT) is the only formally endorsed treatment recommended for hypoxic-ischemic encephalopathy (HIE). However, its success in protecting against brain injury is limited with a number to treat of 7-8. The identification of the target mechanisms of HIE in combination with HT will help to explain ineffective therapy outcomes but also requires stable experimental models in order to establish further neuroprotective therapies. Despite clinical and experimental indications for an endogenous thermoregulatory response to HIE, the potential effects on HIE-induced brain injury have largely been neglected in pre-clinical studies. In the present study we analyzed gray and white matter injury and neurobehavioral outcome in neonatal mice considering the endogenous thermoregulatory response during HIE combined with HT. HIE was induced in postnatal day (PND) 9 C57BL/6 mice through occlusion of the right common carotid artery followed by one hour of hypoxia. Hypoxia was performed at 8% or 10% oxygen (O2) at two different temperatures based on the nesting body core temperature. Using the model which mimics the clinical situation most closely, i.e. through maintenance of the nesting temperature during hypoxia we compared two mild HT protocols (rectal temperature difference 3°C for 4h), initiated either immediately after HIE or with delay of 2h. Injury was determined by histology, immunohistochemistry and western blot analyses at PND 16 and PND 51. Functional outcome was evaluated by Rota Rod, Elevated Plus Maze, Open Field and Novel Object Recognition testing at PND 30-PND 36 and PND 44-PND 50. We show that HIE modeling in neonatal mice is associated with a significant endogenous drop in body core temperature by 2°C resulting in profound neuroprotection, expressed by reduced neuropathological injury scores, reduced loss of neurons, axonal structures, myelin and decreased astrogliosis. Immediately applied post-hypoxic HT revealed slight advantages over a delayed

  12. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia.

    PubMed

    Bossong, Matthijs G; Niesink, Raymond J M

    2010-11-01

    Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptidemore » N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.« less

  14. Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins.

    PubMed

    Fortin, Dale A; Tillo, Shane E; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V; Guo, Caiying; Mao, Tianyi; Zhong, Haining

    2014-12-10

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. Copyright © 2014 the authors 0270-6474/14/3416698-15$15.00/0.

  15. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques

    PubMed Central

    Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko

    2016-01-01

    Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons. PMID:27782168

  16. Fluorescent protein tagging of endogenous protein in brain neurons using CRISPR/Cas9-mediated knock-in and in utero electroporation techniques.

    PubMed

    Uemura, Takeshi; Mori, Takuma; Kurihara, Taiga; Kawase, Shiori; Koike, Rie; Satoga, Michiru; Cao, Xueshan; Li, Xue; Yanagawa, Toru; Sakurai, Takayuki; Shindo, Takayuki; Tabuchi, Katsuhiko

    2016-10-26

    Genome editing is a powerful technique for studying gene functions. CRISPR/Cas9-mediated gene knock-in has recently been applied to various cells and organisms. Here, we successfully knocked in an EGFP coding sequence at the site immediately after the first ATG codon of the β-actin gene in neurons in the brain by the combined use of the CRISPR/Cas9 system and in utero electroporation technique, resulting in the expression of the EGFP-tagged β-actin protein in cortical layer 2/3 pyramidal neurons. We detected EGFP fluorescence signals in the soma and neurites of EGFP knock-in neurons. These signals were particularly abundant in the head of dendritic spines, corresponding to the localization of the endogenous β-actin protein. EGFP knock-in neurons showed no detectable changes in spine density and basic electrophysiological properties. In contrast, exogenously overexpressed EGFP-β-actin showed increased spine density and EPSC frequency, and changed resting membrane potential. Thus, our technique provides a potential tool to elucidate the localization of various endogenous proteins in neurons by epitope tagging without altering neuronal and synaptic functions. This technique can be also useful for introducing a specific mutation into genes to study the function of proteins and genomic elements in brain neurons.

  17. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface

    PubMed Central

    Koo, Bon-Kyung; Park, Chin-Ju; Fernandez, Cesar F.; Chim, Nicholas; Ding, Yi; Chanfreau, Guillaume; Feigon, Juli

    2011-01-01

    H/ACA small nucleolar and Cajal body ribonucleoproteins (RNPs) function in site-specific pseudouridylation of eukaryotic rRNA and snRNA, rRNA processing, and vertebrate telomerase biogenesis. Nhp2, one of four essential protein components of eukaryotic H/ACA RNPs, forms a core trimer with the pseudouridylase Cbf5 and Nop10 that specifically binds to H/ACA RNAs. Crystal structures of archaeal H/ACA RNPs have revealed how the protein components interact with each other and with the H/ACA RNA. However, in place of Nhp2p, archaeal H/ACA RNPs contain L7Ae, which binds specifically to an RNA K-loop motif absent in eukaryotic H/ACA RNPs, while Nhp2 binds a broader range of RNA structures. We report solution NMR studies of S. cerevisiae Nhp2 (Nhp2p), which reveal that Nhp2p exhibits two major conformations in solution due to cis/trans isomerization of the evolutionarily conserved Pro83. The equivalent proline is in the cis conformation in all reported structures of L7Ae and other homologous proteins. Nhp2p has the expected α-β-α fold, but the solution structures of the major conformation of Nhp2p with trans Pro83 and of Nhp2p-S82W with cis Pro83 reveal that Pro83 cis/trans isomerization affects the positions of numerous residues at the Nop10- and RNA-binding interface. An S82W substitution, which stabilizes the cis conformation, also stabilizes the association of Nhp2p with H/ACA snoRNPs in vivo. We propose that Pro83 plays a key role in the assembly of the eukaryotic H/ACA RNP, with the cis conformation locking in a stable Cbf5-Nop10-Nhp2 ternary complex and positioning the protein backbone to interact with the H/ACA RNA. PMID:21708174

  18. In vivo imaging of endogenous neural stem cells in the adult brain

    PubMed Central

    Rueger, Maria Adele; Schroeter, Michael

    2015-01-01

    The discovery of endogenous neural stem cells (eNSCs) in the adult mammalian brain with their ability to self-renew and differentiate into functional neurons, astrocytes and oligodendrocytes has raised the hope for novel therapies of neurological diseases. Experimentally, those eNSCs can be mobilized in vivo, enhancing regeneration and accelerating functional recovery after, e.g., focal cerebral ischemia, thus constituting a most promising approach in stem cell research. In order to translate those current experimental approaches into a clinical setting in the future, non-invasive imaging methods are required to monitor eNSC activation in a longitudinal and intra-individual manner. As yet, imaging protocols to assess eNSC mobilization non-invasively in the live brain remain scarce, but considerable progress has been made in this field in recent years. This review summarizes and discusses the current imaging modalities suitable to monitor eNSCs in individual experimental animals over time, including optical imaging, magnetic resonance tomography and-spectroscopy, as well as positron emission tomography (PET). Special emphasis is put on the potential of each imaging method for a possible clinical translation, and on the specificity of the signal obtained. PET-imaging with the radiotracer 3’-deoxy-3’-[18F]fluoro-L-thymidine in particular constitutes a modality with excellent potential for clinical translation but low specificity; however, concomitant imaging of neuroinflammation is feasible and increases its specificity. The non-invasive imaging strategies presented here allow for the exploitation of novel treatment strategies based upon the regenerative potential of eNSCs, and will help to facilitate a translation into the clinical setting. PMID:25621107

  19. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins

    PubMed Central

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-01-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood–brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates. PMID:22300099

  20. The major metabolite of dipeptide piracetam analogue GVS-111 in rat brain and its similarity to endogenous neuropeptide cyclo-L-prolylglycine.

    PubMed

    Gudasheva, T A; Boyko, S S; Ostrovskaya, R U; Voronina, T A; Akparov, V K; Trofimov, S S; Rozantsev, G G; Skoldinov, A P; Zherdev, V P; Seredenin, S B

    1997-01-01

    The metabolism of a new piracetam analogue, the dipeptide cognitive enhancer N-phenylacetyl-L-prolylglycine ethyl ester (GVS-111) was studied in vivo. GVS-111 itself was not found in rat brain 1 h after 5 mg/kg i.p. administration up to limit of detection (LOD) under high performance liquid chromatography (HPLC) conditions. Three substances corresponding to the three possible GVS-111 metabolites, namely phenylacetic acid, prolylglycine and cyclo-prolylglycine, were found in experimental rat brain samples as well as in controls using HPLC, gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) methods. Only cyclo-prolylglycine concentration increased (2.5-fold) 1 h after GVS-111 administration. Cyclo-prolylglycine formation from GVS-111 in the presence of plasma and brain enzymes was shown in vitro. These data could be considered as evidence that GVS-111 is prodrug which converts in the body to cyclo-prolylglycine, and which is identical to the endogenous cyclopeptide that produces the nootropic activity.

  1. Endogenous GFAP-Positive Neural Stem/Progenitor Cells in the Postnatal Mouse Cortex Are Activated following Traumatic Brain Injury

    PubMed Central

    Ahmed, Aminul I.; Shtaya, Anan B.; Zaben, Malik J.; Owens, Emma V.; Kiecker, Clemens

    2012-01-01

    Abstract Interest in promoting regeneration of the injured nervous system has recently turned toward the use of endogenous stem cells. Elucidating cues involved in driving these precursor cells out of quiescence following injury, and the signals that drive them toward neuronal and glial lineages, will help to harness these cells for repair. Using a biomechanically validated in vitro organotypic stretch injury model, cortico-hippocampal slices from postnatal mice were cultured and a stretch injury equivalent to a severe traumatic brain injury (TBI) applied. In uninjured cortex, proliferative potential under in vitro conditions is virtually absent in older slices (equivalent postnatal day 15 compared to 8). However, following a severe stretch injury, this potential is restored in injured outer cortex. Using slices from mice expressing a fluorescent reporter on the human glial fibrillary acidic protein (GFAP) promoter, we show that GFAP+ cells account for the majority of proliferating neurospheres formed, and that these cells are likely to arise from the cortical parenchyma and not from the subventricular zone. Moreover, we provide evidence for a correlation between upregulation of sonic hedgehog signaling, a pathway known to regulate stem cell proliferation, and this restoration of regenerative potential following TBI. Our results indicate that a source of quiescent endogenous stem cells residing in the cortex and subcortical tissue proliferate in vitro following TBI. Moreover, these proliferating cells are multipotent and are derived mostly from GFAP-expressing cells. This raises the possibility of using this endogenous source of stem cells for repair following TBI. PMID:21895532

  2. Ischemic conditioning-induced endogenous brain protection: Applications Pre-, Per- or Post-Stroke

    PubMed Central

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre- or post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stoke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post- ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those

  3. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  4. The importance of individual frequencies of endogenous brain oscillations for auditory cognition - A short review.

    PubMed

    Baltus, Alina; Herrmann, Christoph Siegfried

    2016-06-01

    Oscillatory EEG activity in the human brain with frequencies in the gamma range (approx. 30-80Hz) is known to be relevant for a large number of cognitive processes. Interestingly, each subject reveals an individual frequency of the auditory gamma-band response (GBR) that coincides with the peak in the auditory steady state response (ASSR). A common resonance frequency of auditory cortex seems to underlie both the individual frequency of the GBR and the peak of the ASSR. This review sheds light on the functional role of oscillatory gamma activity for auditory processing. For successful processing, the auditory system has to track changes in auditory input over time and store information about past events in memory which allows the construction of auditory objects. Recent findings support the idea of gamma oscillations being involved in the partitioning of auditory input into discrete samples to facilitate higher order processing. We review experiments that seem to suggest that inter-individual differences in the resonance frequency are behaviorally relevant for gap detection and speech processing. A possible application of these resonance frequencies for brain computer interfaces is illustrated with regard to optimized individual presentation rates for auditory input to correspond with endogenous oscillatory activity. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Interleukin-6 as an endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood mononuclear cells.

    PubMed

    Dinarello, C A; Cannon, J G; Mancilla, J; Bishai, I; Lees, J; Coceani, F

    1991-10-25

    Fever induced by endogenous as well as exogenous pyrogens is often prevented by cyclooxygenase inhibitors; endogenous pyrogens stimulate prostaglandin E2 (PGE2) in or near the thermoregulatory centers of the brain. The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), are two pyrogens which stimulate brain PGE2 formation during fever and also increase PGE2 synthesis in human mononuclear cells in vitro. In the present study, we examined whether interleukin-6 (IL-6) stimulates PGE2 formation in a manner similar to IL-1 and TNF. Both glycosylated and non-glycosylated forms of recombinant human IL-6 were tested. Following intravenous injection into rabbits, the glycosylated IL-6 was more pyrogenic than the non-glycosylated form and there was no evidence of synergy in the production of fever when IL-6 and IL-1 were given simultaneously. IL-6 fever was blocked by prior administration of the cyclooxygenase inhibitor ibuprofen. IL-6 was also pyrogenic in the cat by either the systemic or the intraventricular route. However, in both species, IL-6 was less effective than IL-1 beta. When given intraventricularly to cats, IL-6 produced an increase in PGE2 levels of the cerebrospinal fluid in parallel with the rise in body temperature. In the latter respect, IL-6 imitated IL-1 beta; however, IL-6 from 0.15-15 micrograms/ml did not increase mononuclear cell PGE2 production in vitro whereas IL-1 beta induced 20-30-fold increases in PGE2 at 100 ng/ml.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  7. Activation of the nociceptin/orphanin FQ receptor reduces bronchoconstriction and microvascular leakage in a rabbit model of gastroesophageal reflux

    PubMed Central

    D'Agostino, Bruno; Marrocco, Giuseppina; De Nardo, Marilisa; Calò, Girolamo; Guerrini, Remo; Gallelli, Luca; Advenier, Charles; Rossi, Francesco

    2005-01-01

    Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide ligand for a specific G-protein coupled receptor, the N/OFQ peptide receptor (NOP). The N/OFQ-NOP receptor system has been reported to play an important role in pain, anxiety and appetite regulation. In airways, N/OFQ was found to inhibit the release of tachykinins and the bronchoconstriction and cough provoked by capsaicin. Here we evaluated the effects of NOP receptor activation in bronchoconstriction and airway microvascular leakage induced by intraesophageal (i.oe.) hydrochloric acid (HCl) instillation in rabbits. We also tested the effects of NOP receptor activation in SP-induced plasma extravasation and bronchoconstriction. In anesthetized New Zealand rabbits bronchopulmonary function (total lung resistance (RL) and dynamic compliance (Cdyn)) and airway microvascular leakage (extravasation of Evans blue dye) were evaluated. Infusion of i.oe. HCl (1 N) led to a significant increase in bronchoconstriction and plasma extravasation in the main bronchi and trachea of rabbits pretreated with propranolol, atropine and phosphoramidon. Bronchoconstriction and airway microvascular leakage were inhibited by N/OFQ (3–30 μg kg−1 i.v.) in a dose-dependent manner. The NOP receptor agonist [Arg14,Lys15]N/OFQ mimicked the inhibitory effect of N/OFQ, being 10-fold more potent, UFP-101, a peptide selective NOP receptor antagonist, blocked the inhibitory effects of both agonists. Under the same experimental conditions, N/OFQ and [Arg14,Lys15]N/OFQ did not counteract the bronchoconstriction and airway microvascular leakage induced by substance P. These results suggest that bronchoconstriction and airway plasma extravasation induced by i.oe. HCl instillation are inhibited by activation of prejunctional NOP receptors. PMID:15685213

  8. A Novel Nociceptin Receptor Antagonist LY2940094 Inhibits Excessive Feeding Behavior in Rodents: A Possible Mechanism for the Treatment of Binge Eating Disorder.

    PubMed

    Statnick, Michael A; Chen, Yanyun; Ansonoff, Michael; Witkin, Jeffrey M; Rorick-Kehn, Linda; Suter, Todd M; Song, Min; Hu, Charlie; Lafuente, Celia; Jiménez, Alma; Benito, Ana; Diaz, Nuria; Martínez-Grau, Maria Angeles; Toledo, Miguel A; Pintar, John E

    2016-02-01

    Nociceptin/orphanin FQ (N/OFQ), a 17 amino acid peptide, is the endogenous ligand of the ORL1/nociceptin-opioid-peptide (NOP) receptor. N/OFQ appears to regulate a variety of physiologic functions including stimulating feeding behavior. Recently, a new class of thienospiro-piperidine-based NOP antagonists was described. One of these molecules, LY2940094 has been identified as a potent and selective NOP antagonist that exhibited activity in the central nervous system. Herein, we examined the effects of LY2940094 on feeding in a variety of behavioral models. Fasting-induced feeding was inhibited by LY2940094 in mice, an effect that was absent in NOP receptor knockout mice. Moreover, NOP receptor knockout mice exhibited a baseline phenotype of reduced fasting-induced feeding, relative to wild-type littermate controls. In lean rats, LY2940094 inhibited the overconsumption of a palatable high-energy diet, reducing caloric intake to control chow levels. In dietary-induced obese rats, LY2940094 inhibited feeding and body weight regain induced by a 30% daily caloric restriction. Last, in dietary-induced obese mice, LY2940094 decreased 24-hour intake of a high-energy diet made freely available. These are the first data demonstrating that a systemically administered NOP receptor antagonist can reduce feeding behavior and body weight in rodents. Moreover, the hypophagic effect of LY2940094 is NOP receptor dependent and not due to off-target or aversive effects. Thus, LY2940094 may be useful in treating disorders of appetitive behavior such as binge eating disorder, food choice, and overeating, which lead to obesity and its associated medical complications and morbidity. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage

    PubMed Central

    Roll, Lars; Faissner, Andreas

    2014-01-01

    The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section. PMID:25191223

  10. Environment and brain plasticity: towards an endogenous pharmacotherapy.

    PubMed

    Sale, Alessandro; Berardi, Nicoletta; Maffei, Lamberto

    2014-01-01

    Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.

  11. In Vivo Reprogramming for CNS Repair: Regenerating Neurons from Endogenous Glial Cells

    PubMed Central

    Li, Hedong; Chen, Gong

    2017-01-01

    Neuroregeneration in the central nervous system (CNS) has proven to be difficult despite decades of research. The old dogma that CNS neurons cannot be regenerated in the adult mammalian brain has been overturned; however, endogenous adult neurogenesis appears to be insufficient for brain repair. Stem cell therapy once held promise for generating large quantities of neurons in the CNS, but immunorejection and long-term functional integration remain major hurdles. In this perspective, we discuss the use of in vivo reprogramming as an emerging technology to regenerate functional neurons from endogenous glial cells inside the brain and spinal cord. Besides the CNS, in vivo reprogramming has been demonstrated successfully in the pancreas, heart and liver, and may be adopted in other organs. Although challenges remain for translating this technology into clinical therapies, we anticipate that in vivo reprogramming may revolutionize regenerative medicine by using a patient’s own internal cells for tissue repair. PMID:27537482

  12. Recombinant probes for visualizing endogenous synaptic proteins in living neurons

    PubMed Central

    Gross, Garrett G.; Junge, Jason A.; Mora, Rudy J.; Kwon, Hyung-Bae; Olson, C. Anders; Takahashi, Terry T.; Liman, Emily R.; Ellis-Davies, Graham C.R.; McGee, Aaron W.; Sabatini, Bernardo L.; Roberts, Richard W.; Arnold, Don B.

    2013-01-01

    Summary The ability to visualize endogenous proteins in living neurons provides a powerful means to interrogate neuronal structure and function. Here we generate recombinant antibody-like proteins, termed FingRs (Fibronectin intrabodies generated with mRNA display), that bind endogenous neuronal proteins PSD-95 and Gephyrin with high affinity and which, when fused to GFP, allow excitatory and inhibitory synapses to be visualized in living neurons. Design of the FingR incorporates a novel transcriptional regulation system that ties FingR expression to the level of the target and reduces background fluorescence. In dissociated neurons and brain slices FingRs generated against PSD-95 and Gephyrin did not affect the expression patterns of their endogenous target proteins or the number or strength of synapses. Together, our data indicate that PSD-95 and Gephyrin FingRs can report the localization and amount of endogenous synaptic proteins in living neurons and thus may be used to study changes in synaptic strength in vivo. PMID:23791193

  13. Cell lineage analysis in human brain using endogenous retroelements

    PubMed Central

    Evrony, Gilad D.; Lee, Eunjung; Mehta, Bhaven K.; Benjamini, Yuval; Johnson, Robert M.; Cai, Xuyu; Yang, Lixing; Haseley, Psalm; Lehmann, Hillel S.; Park, Peter J.; Walsh, Christopher A.

    2015-01-01

    Summary Somatic mutations occur during brain development and are increasingly implicated as a cause of neurogenetic disease. However, the patterns in which somatic mutations distribute in the human brain are unknown. We used high-coverage whole-genome sequencing of single neurons from a normal individual to identify spontaneous somatic mutations as clonal marks to track cell lineages in human brain. Somatic mutation analyses in >30 locations throughout the nervous system identified multiple lineages and sub-lineages of cells marked by different LINE-1 (L1) retrotransposition events and subsequent mutation of poly-A microsatellites within L1. One clone contained thousands of cells limited to the left middle frontal gyrus, whereas a second distinct clone contained millions of cells distributed over the entire left hemisphere. These patterns mirror known somatic mutation disorders of brain development, and suggest that focally distributed mutations are also prevalent in normal brains. Single-cell analysis of somatic mutation enables tracing of cell lineage clones in human brain. PMID:25569347

  14. Comprehensive Analysis of Human Endogenous Retrovirus Group HERV-W Locus Transcription in Multiple Sclerosis Brain Lesions by High-Throughput Amplicon Sequencing

    PubMed Central

    Schmitt, Katja; Richter, Christin; Backes, Christina; Meese, Eckart; Ruprecht, Klemens

    2013-01-01

    Human endogenous retroviruses (HERVs) of the HERV-W group comprise hundreds of loci in the human genome. Deregulated HERV-W expression and HERV-W locus ERVWE1-encoded Syncytin-1 protein have been implicated in the pathogenesis of multiple sclerosis (MS). However, the actual transcription of HERV-W loci in the MS context has not been comprehensively analyzed. We investigated transcription of HERV-W in MS brain lesions and white matter brain tissue from healthy controls by employing next-generation amplicon sequencing of HERV-W env-specific reverse transcriptase (RT) PCR products, thus revealing transcribed HERV-W loci and the relative transcript levels of those loci. We identified more than 100 HERV-W loci that were transcribed in the human brain, with a limited number of loci being predominantly transcribed. Importantly, relative transcript levels of HERV-W loci were very similar between MS and healthy brain tissue samples, refuting deregulated transcription of HERV-W env in MS brain lesions, including the high-level-transcribed ERVWE1 locus encoding Syncytin-1. Quantitative RT-PCR likewise did not reveal differences in MS regarding HERV-W env general transcript or ERVWE1- and ERVWE2-specific transcript levels. However, we obtained evidence for interindividual differences in HERV-W transcript levels. Reporter gene assays indicated promoter activity of many HERV-W long terminal repeats (LTRs), including structurally incomplete LTRs. Our comprehensive analysis of HERV-W transcription in the human brain thus provides important information on the biology of HERV-W in MS lesions and normal human brain, implications for study design, and mechanisms by which HERV-W may (or may not) be involved in MS. PMID:24109235

  15. Purification of α-Synuclein from Human Brain Reveals an Instability of Endogenous Multimers as the Protein Approaches Purity

    PubMed Central

    2015-01-01

    Despite two decades of research, the structure–function relationships of endogenous, physiological forms of α-synuclein (αSyn) are not well understood. Most in vitro studies of this Parkinson’s disease-related protein have focused on recombinant αSyn that is unfolded and monomeric, assuming that this represents its state in the normal human brain. Recently, we have provided evidence that αSyn exists in considerable part in neurons, erythrocytes, and other cells as a metastable multimer that principally sizes as a tetramer. In contrast to recombinant αSyn, physiological tetramers purified from human erythrocytes have substantial α-helical content and resist pathological aggregation into β-sheet rich fibers. Here, we report the first method to fully purify soluble αSyn from the most relevant source, human brain. We describe protocols that purify αSyn to homogeneity from nondiseased human cortex using ammonium sulfate precipitation, gel filtration, and ion exchange, hydrophobic interaction, and affinity chromatographies. Cross-linking of the starting material and the partially purified chromatographic fractions revealed abundant αSyn multimers, including apparent tetramers, but these were destabilized in large part to monomers during the final purification step. The method also fully purified the homologue β-synuclein, with a similar outcome. Circular dichroism spectroscopy showed that purified, brain-derived αSyn can display more helical content than the recombinant protein, but this result varied. Collectively, our data suggest that purifying αSyn to homogeneity destabilizes native, α-helix-rich multimers that exist in intact and partially purified brain samples. This finding suggests existence of a stabilizing cofactor (e.g., a small lipid) present inside neurons that is lost during final purification. PMID:25490121

  16. PopF1 and PopF2, Two Proteins Secreted by the Type III Protein Secretion System of Ralstonia solanacearum, Are Translocators Belonging to the HrpF/NopX Family†

    PubMed Central

    Meyer, Damien; Cunnac, Sébastien; Guéneron, Mareva; Declercq, Céline; Van Gijsegem, Frédérique; Lauber, Emmanuelle; Boucher, Christian; Arlat, Matthieu

    2006-01-01

    Ralstonia solanacearum GMI1000 is a gram-negative plant pathogen which contains an hrp gene cluster which codes for a type III protein secretion system (TTSS). We identified two novel Hrp-secreted proteins, called PopF1 and PopF2, which display similarity to one another and to putative TTSS translocators, HrpF and NopX, from Xanthomonas spp. and rhizobia, respectively. They also show similarities with TTSS translocators of the YopB family from animal-pathogenic bacteria. Both popF1 and popF2 belong to the HrpB regulon and are required for the interaction with plants, but PopF1 seems to play a more important role in virulence and hypersensitive response (HR) elicitation than PopF2 under our experimental conditions. PopF1 and PopF2 are not necessary for the secretion of effector proteins, but they are required for the translocation of AvrA avirulence protein into tobacco cells. We conclude that PopF1 and PopF2 are type III translocators belonging to the HrpF/NopX family. The hrpF gene of Xanthomonas campestris pv. campestris partially restored HR-inducing ability to popF1 popF2 mutants of R. solanacearum, suggesting that translocators of R. solanacearum and Xanthomonas are functionally conserved. Finally, R. solanacearum strain UW551, which does not belong to the same phylotype as GMI1000, also possesses two putative translocator proteins. However, although one of these proteins is clearly related to PopF1 and PopF2, the other seems to be different and related to NopX proteins, thus showing that translocators might be variable in R. solanacearum. PMID:16788199

  17. 1-Methyl-beta-carboline (harmane), a potent endogenous inhibitor of benzodiazepine receptor binding.

    PubMed

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1980-10-01

    The interaction of several beta-carbolines with specific [3H]-flunitrazepam binding to benzodiazepine receptors in rat brain membranes was investigated. Out of the investigated compounds, harmane and norharmane were the most potent inhibitors of specific [3H]-flunitrazepam binding, with IC50-values in the micromolar range. All other derivatives, including harmine, harmaline, and several tetrahydroderivatives were at least ten times less potent. Harmane has been previously found in rat brain and human urine, so it is the most potent endogenous inhibitor of specific [3H]-flunitrazepam binding known so far, with a several fold higher affinity for the benzodiazepine receptor than inosine and hypoxanthine. Thus, we suggest that harmane or other related beta-carbolines could be potential candidates as endogenous ligands of the benzodiazepine receptor.

  18. Detection of Cyclooxygenase-2-Derived Oxygenation Products of the Endogenous Cannabinoid 2-Arachidonoylglycerol in Mouse Brain.

    PubMed

    Morgan, Amanda J; Kingsley, Philip J; Mitchener, Michelle M; Altemus, Megan; Patrick, Toni A; Gaulden, Andrew D; Marnett, Lawrence J; Patel, Sachin

    2018-05-09

    Cyclooxygenase-2 (COX-2) catalyzes the formation of prostaglandins, which are involved in immune regulation, vascular function, and synaptic signaling. COX-2 also inactivates the endogenous cannabinoid (eCB) 2-arachidonoylglycerol (2-AG) via oxygenation of its arachidonic acid backbone to form a variety of prostaglandin glyceryl esters (PG-Gs). Although this oxygenation reaction is readily observed in vitro and in intact cells, detection of COX-2-derived 2-AG oxygenation products has not been previously reported in neuronal tissue. Here we show that 2-AG is metabolized in the brain of transgenic COX-2-overexpressing mice and mice treated with lipopolysaccharide to form multiple species of PG-Gs that are detectable only when monoacylglycerol lipase is concomitantly blocked. Formation of these PG-Gs is prevented by acute pharmacological inhibition of COX-2. These data provide evidence that neuronal COX-2 is capable of oxygenating 2-AG to form a variety PG-Gs in vivo and support further investigation of the physiological functions of PG-Gs.

  19. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice.

    PubMed

    Smith, Craig M; Walker, Lesley L; Leeboonngam, Tanawan; McKinley, Michael J; Denton, Derek A; Lawrence, Andrew J

    2016-11-29

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior.

  20. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  1. Nociceptin/orphanin FQ (N/OFQ) modulates immunopathology and airway hyperresponsiveness representing a novel target for the treatment of asthma.

    PubMed

    Singh, Shailendra R; Sullo, Nikol; Matteis, Maria; Spaziano, Giuseppe; McDonald, John; Saunders, Ruth; Woodman, Lucy; Urbanek, Konrad; De Angelis, Antonella; De Palma, Raffaele; Berair, Rachid; Pancholi, Mitesh; Mistry, Vijay; Rossi, Francesco; Guerrini, Remo; Calò, Girolamo; D'Agostino, Bruno; Brightling, Christopher E; Lambert, David G

    2016-04-01

    There is evidence supporting a role for the nociceptin/orphanin FQ (N/OFQ; NOP) receptor and its endogenous ligand N/OFQ in the modulation of neurogenic inflammation, airway tone and calibre. We hypothesized that NOP receptor activation has beneficial effects upon asthma immunopathology and airway hyperresponsiveness. Therefore, the expression and function of N/OFQ and the NOP receptor were examined in healthy and asthmatic human airway tissues. The concept was further addressed in an animal model of allergic asthma. NOP receptor expression was investigated by quantitative real-time PCR. Sputum N/OFQ was determined by RIA. N/OFQ function was tested using several assays including proliferation, migration, collagen gel contraction and wound healing. The effects of N/OFQ administration in vivo were studied in ovalbumin (OVA)-sensitized and challenged mice. NOP receptors were expressed on a wide range of human and mouse immune and airway cells. Eosinophils expressed N/OFQ-precursor mRNA and their number correlated with N/OFQ concentration. N/OFQ was found in human sputum and increased in asthma. Additionally, in asthmatic human lungs N/OFQ immunoreactivity was elevated. NOP receptor activation inhibited migration of immunocytes and increased wound healing in airway structural cells. Furthermore, N/OFQ relaxed spasmogen-stimulated gel contraction. Remarkably, these findings were mirrored in OVA-mice where N/OFQ treatment before or during sensitization substantially reduced airway constriction and immunocyte trafficking to the lung, in particular eosinophils. N/OFQ also reduced inflammatory mediators and mucin production. We demonstrated a novel dual airway immunomodulator/bronchodilator role for N/OFQ and suggest targeting this system as an innovative treatment for asthma. © 2016 The British Pharmacological Society.

  2. Polyphenols and the human brain: plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits.

    PubMed

    Kennedy, David O

    2014-09-01

    Flavonoids and other polyphenols are ubiquitous plant chemicals that fulfill a range of ecologic roles for their home plant, including protection from a range of biotic and abiotic stressors and a pivotal role in the management of pathogenic and symbiotic soil bacteria and fungi. They form a natural part of the human diet, and evidence suggests that their consumption is associated with the beneficial modulation of a number of health-related variables, including those related to cardiovascular and brain function. Over recent years, the consensus as to the mechanisms responsible for these effects in humans has shifted away from polyphenols having direct antioxidant effects and toward their modulation of cellular signal transduction pathways. To date, little consideration has been given to the question of why, rather than how, these plant-derived chemicals might exert these effects. Therefore, this review summarizes the evidence suggesting that polyphenols beneficially affect human brain function and describes the current mechanistic hypotheses explaining these effects. It then goes on to describe the ecologic roles and potential endogenous signaling functions that these ubiquitous phytochemicals play within their home plant and discusses whether these functions drive their beneficial effects in humans via a process of “cross-kingdom” signaling predicated on the many conserved similarities in plant, microbial, and human cellular signal transduction pathways.

  3. Blood-brain barrier transport of drugs for the treatment of brain diseases.

    PubMed

    Gabathuler, Reinhard

    2009-06-01

    The central nervous system is a sanctuary protected by barriers that regulate brain homeostasis and control the transport of endogenous compounds into the brain. The blood-brain barrier, formed by endothelial cells of the brain capillaries, restricts access to brain cells allowing entry only to amino acids, glucose and hormones needed for normal brain cell function and metabolism. This very tight regulation of brain cell access is essential for the survival of neurons which do not have a significant capacity to regenerate, but also prevents therapeutic compounds, small and large, from reaching the brain. As a result, various strategies are being developed to enhance access of drugs to the brain parenchyma at therapeutically meaningful concentrations to effectively manage disease.

  4. Multimodal optical imaging database from tumour brain human tissue: endogenous fluorescence from glioma, metastasis and control tissues

    NASA Astrophysics Data System (ADS)

    Poulon, Fanny; Ibrahim, Ali; Zanello, Marc; Pallud, Johan; Varlet, Pascale; Malouki, Fatima; Abi Lahoud, Georges; Devaux, Bertrand; Abi Haidar, Darine

    2017-02-01

    Eliminating time-consuming process of conventional biopsy is a practical improvement, as well as increasing the accuracy of tissue diagnoses and patient comfort. We addressed these needs by developing a multimodal nonlinear endomicroscope that allows real-time optical biopsies during surgical procedure. It will provide immediate information for diagnostic use without removal of tissue and will assist the choice of the optimal surgical strategy. This instrument will combine several means of contrast: non-linear fluorescence, second harmonic generation signal, reflectance, fluorescence lifetime and spectral analysis. Multimodality is crucial for reliable and comprehensive analysis of tissue. Parallel to the instrumental development, we currently improve our understanding of the endogeneous fluorescence signal with the different modalities that will be implemented in the stated. This endeavor will allow to create a database on the optical signature of the diseased and control brain tissues. This proceeding will present the preliminary results of this database on three types of tissues: cortex, metastasis and glioblastoma.

  5. Endogenous Positive Allosteric Modulation of GABAA Receptors by Diazepam binding inhibitor

    PubMed Central

    Christian, Catherine A.; Herbert, Anne G.; Holt, Rebecca L.; Peng, Kathy; Sherwood, Kyla D.; Pangratz-Fuehrer, Susanne; Rudolph, Uwe; Huguenard, John R.

    2014-01-01

    Summary Benzodiazepines (BZs) allosterically modulate γ-aminobutyric acid type-A receptors (GABAARs) to increase inhibitory synaptic strength. Diazepam binding inhibitor (DBI) protein is a BZ site ligand expressed endogenously in the brain, but functional evidence for BZ-mimicking positive modulatory actions has been elusive. We demonstrate an endogenous potentiation of GABAergic synaptic transmission and responses to GABA uncaging in the thalamic reticular nucleus (nRT) that is absent in both nm1054 mice, in which the Dbi gene is deleted, and mice in which BZ binding to α3 subunit-containing GABAARs is disrupted. Viral transduction of DBI into nRT is sufficient to rescue the endogenous potentiation of GABAergic transmission in nm1054 mice. Both mutations enhance thalamocortical spike-and-wave discharges characteristic of absence epilepsy. Together these results indicate that DBI mediates endogenous nucleus-specific BZ-mimicking (“endozepine”) roles to modulate nRT function and suppress thalamocortical oscillations. Enhanced DBI signaling might serve as a novel therapy for epilepsy and other neurological disorders. PMID:23727119

  6. The endocannabinoid system in brain reward processes.

    PubMed

    Solinas, M; Goldberg, S R; Piomelli, D

    2008-05-01

    Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.

  7. Endogenous central amygdala mu-opioid receptor signaling promotes sodium appetite in mice

    PubMed Central

    Smith, Craig M.; Walker, Lesley L.; Leeboonngam, Tanawan; McKinley, Michael J.; Denton, Derek A.; Lawrence, Andrew J.

    2016-01-01

    Due to the importance of dietary sodium and its paucity within many inland environments, terrestrial animals have evolved an instinctive sodium appetite that is commensurate with sodium deficiency. Despite a well-established role for central opioid signaling in sodium appetite, the endogenous influence of specific opioid receptor subtypes within distinct brain regions remains to be elucidated. Using selective pharmacological antagonists of opioid receptor subtypes, we reveal that endogenous mu-opioid receptor (MOR) signaling strongly drives sodium appetite in sodium-depleted mice, whereas a role for kappa (KOR) and delta (DOR) opioid receptor signaling was not detected, at least in sodium-depleted mice. Fos immunohistochemistry revealed discrete regions of the mouse brain displaying an increased number of activated neurons during sodium gratification: the rostral portion of the nucleus of the solitary tract (rNTS), the lateral parabrachial nucleus (LPB), and the central amygdala (CeA). The CeA was subsequently targeted with bilateral infusions of the MOR antagonist naloxonazine, which significantly reduced sodium appetite in mice. The CeA is therefore identified as a key node in the circuit that contributes to sodium appetite. Moreover, endogenous opioids, acting via MOR, within the CeA promote this form of appetitive behavior. PMID:27849613

  8. The interactions of multisensory integration with endogenous and exogenous attention

    PubMed Central

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  9. Are endogenous feline leukemia viruses really endogenous?

    PubMed

    Stewart, H; Jarrett, O; Hosie, M J; Willett, B J

    2011-10-15

    Full length endogenous feline leukemia virus (FeLV) proviruses exist within the genomes of many breeds of domestic cat raising the possibility that they may also exist in a transmissible exogenous form. Such viruses would share receptor usage with the recombinant FeLV-B subgroup, a viral subgroup that arises in vivo by recombination between exogenous subgroup A virus (FeLV-A) and endogenous FeLV. Accordingly, all isolates of FeLV-B made to date have contained a "helper" FeLV-A, consistent with their recombinatorial origin. In order to assess whether endogenous viruses are transmitted between cats, we examined primary isolates of FeLV for which the viral subgroup had been determined for the presence of a subgroup B virus that lacked an FeLV-A. Here we describe the identification of two primary field isolates of FeLV (2518 and 4314) that appeared to contain subgroup B virus only by classical interference assays, raising the possibility of between-host transmission of endogenous FeLV. Sequencing of the env gene and U3 region of the 3' long terminal repeat (LTR) confirmed that both viral genomes contained endogenous viral env genes. However the viral 3' LTRs appeared exogenous in origin with a putative 3' recombination breakpoint residing at the 3' end of the env gene. Further, the FeLV-2518 virions also co-packaged a truncated FeLV-A genome containing a defective env gene, termed FeLV-2518(A) whilst no helper subgroup A viral genome was detected in virions of FeLV-4314. The acquisition of an exogenous LTR by the endogenous FeLV in 4314 may have allowed a recombinant FeLV variant to outgrow an exogenous FeLV-A virus that was presumably present during first infection. Given time, a similar evolution may also occur within the 2518 isolate. The data suggest that endogenous FeLVs may be mobilised by acquisition of exogenous LTRs yielding novel viruses that type biologically as FeLV-B. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Polyphenols and the Human Brain: Plant “Secondary Metabolite” Ecologic Roles and Endogenous Signaling Functions Drive Benefits12

    PubMed Central

    Kennedy, David O.

    2014-01-01

    Flavonoids and other polyphenols are ubiquitous plant chemicals that fulfill a range of ecologic roles for their home plant, including protection from a range of biotic and abiotic stressors and a pivotal role in the management of pathogenic and symbiotic soil bacteria and fungi. They form a natural part of the human diet, and evidence suggests that their consumption is associated with the beneficial modulation of a number of health-related variables, including those related to cardiovascular and brain function. Over recent years, the consensus as to the mechanisms responsible for these effects in humans has shifted away from polyphenols having direct antioxidant effects and toward their modulation of cellular signal transduction pathways. To date, little consideration has been given to the question of why, rather than how, these plant-derived chemicals might exert these effects. Therefore, this review summarizes the evidence suggesting that polyphenols beneficially affect human brain function and describes the current mechanistic hypotheses explaining these effects. It then goes on to describe the ecologic roles and potential endogenous signaling functions that these ubiquitous phytochemicals play within their home plant and discusses whether these functions drive their beneficial effects in humans via a process of “cross-kingdom” signaling predicated on the many conserved similarities in plant, microbial, and human cellular signal transduction pathways. PMID:25469384

  11. Enriched Endogenous Omega-3 Fatty Acids in Mice Ameliorate Parenchymal Cell Death After Traumatic Brain Injury.

    PubMed

    Ren, Huixia; Yang, Zhen; Luo, Chuanming; Zeng, Haitao; Li, Peng; Kang, Jing X; Wan, Jian-Bo; He, Chengwei; Su, Huanxing

    2017-07-01

    Currently no effective therapies are available for the treatment of traumatic brain injury (TBI). Early intervention that specifically provides neuroprotection is of most importance which profoundly influences the outcome of TBI. In the present study, we adopted a closed-skull mild TBI model to investigate potential roles of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in protecting against TBI. Using two-photon laser scanning microscopy (2PLSM), parenchymal cell death and reactive oxidative species (ROS) expression were directly observed and recorded after TBI through a thinned skull bone window. Fat-1 mice with high endogenous ω-3 PUFAs significantly inhibited ROS expression and attenuated parenchymal cell death after compression injury during the early injury phase. Elevated generation of glutathione (GSH) and neuroprotectin D1 (NPD1) in the parenchyma of fat-1 mice could be the contributor to the beneficial role of ω-3 PUFAs in TBI. The results of the study suggest that ω-3 PUFAs is an effective neuroprotectant as an early pharmacological intervention for TBI and the information derived from this study may help guide dietary advice for those who are susceptible to repetitive mild TBI.

  12. The interactions of multisensory integration with endogenous and exogenous attention.

    PubMed

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder.

    PubMed

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. Male Sprague Dawley rats received JTC-801 (6 mg kg(-1) i.p., once daily) during days 7-21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [(35) S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014

  14. Nociceptin/orphanin FQ peptide receptor antagonist JTC-801 reverses pain and anxiety symptoms in a rat model of post-traumatic stress disorder

    PubMed Central

    Zhang, Y; Simpson-Durand, C D; Standifer, K M

    2015-01-01

    BACKGROUND AND PURPOSE Single-prolonged stress (SPS), a rat model of post-traumatic stress disorder (PTSD), also induces long-lasting hyperalgesia associated with hypocortisolism and elevated nociceptin/orphanin FQ (N/OFQ) levels in serum and CSF. Here, we determined the effect of JTC-801 (N-(4-amino-2-methylquinolin-6-yl)-2-(4-ethylphenoxymethyl) benzamide monohydrochloride), a nociceptin/orphanin FQ peptide (NOP) receptor antagonist, on symptoms of pain and anxiety in rats after SPS exposure, and examined N/OFQ-NOP receptor system changes. EXPERIMENTAL APPROACH Male Sprague Dawley rats received JTC-801 (6 mg kg−1 i.p., once daily) during days 7–21 of SPS. The ability of JTC-801 to inhibit N/OFQ-stimulated [35S]-GTPγS binding was confirmed in rat brain membranes. Anxiety-like behaviour and pain sensitivity were monitored by changes in elevated plus maze performance and withdrawal responses to thermal and mechanical stimuli. Serum corticosterone and N/OFQ content in CSF, serum and brain tissues were determined by radioimmunoassay; NOP receptor protein and gene expression in amygdala, hippocampus and periaqueductal grey (PAG) were examined by immunoblotting and real-time PCR respectively. KEY RESULTS JTC-801 treatment reversed SPS-induced mechanical allodynia, thermal hyperalgesia, anxiety-like behaviour and hypocortisolism. Elevated N/OFQ levels in serum, CSF, PAG and hippocampus at day 21 of SPS were blocked by JTC-801; daily JTC-801 treatment also reversed NOP receptor protein and mRNA up-regulation in amygdala and PAG. CONCLUSION AND IMPLICATIONS JTC-801 reversed SPS-induced anxiety- and pain-like behaviours, and NOP receptor system up-regulation. These findings suggest that N/OFQ plays an important role in hyperalgesia and allodynia maintenance after SPS. NOP receptor antagonists may provide effective treatment for co-morbid PTSD and pain. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view

  15. Identification of novel proteins associated with yeast snR30 small nucleolar RNA

    PubMed Central

    Lemay, Vincent; Hossain, Ahmed; Osheim, Yvonne N.; Beyer, Ann L.; Dragon, François

    2011-01-01

    H/ACA small nucleolar RNPs (snoRNPs) that guide pseudouridylation reactions are comprised of one small nucleolar RNA (snoRNA) and four common proteins (Cbf5, Gar1, Nhp2 and Nop10). Unlike other H/ACA snoRNPs, snR30 is essential for the early processing reactions that lead to the production of 18S ribosomal RNA in the yeast Saccharomyces cerevisiae. To determine whether snR30 RNP contains specific proteins that contribute to its unique functional properties, we devised an affinity purification strategy using TAP-tagged Gar1 and an RNA aptamer inserted in snR30 snoRNA to selectively purify the RNP. Northern blotting and pCp labeling experiments showed that S1-tagged snR30 snoRNA can be selectively purified with streptavidin beads. Protein analysis revealed that aptamer-tagged snR30 RNA was associated with the four H/ACA proteins and a number of additional proteins: Nop6, ribosomal proteins S9 and S18 and histones H2B and H4. Using antibodies raised against Nop6 we show that endogenous Nop6 localizes to the nucleolus and that it cosediments with snR30 snoRNA in sucrose density gradients. We demonstrate through primer extension experiments that snR30 snoRNA is required for cleavages at site A0, A1 and A2, and that the absence of Nop6 decreases the efficiency of cleavage at site A2. Finally, electron microscopy analyses of chromatin spreads from cells depleted of snR30 snoRNA show that it is required for SSU processome assembly. PMID:21893585

  16. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2009-01-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 µg/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with β-tubulin III. However, 21-day treatment (50 µg/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo. PMID:17760863

  17. Method for simultaneous imaging of endogenous low molecular weight metabolites in mouse brain using TiO2 nanoparticles in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry.

    PubMed

    Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi

    2011-10-01

    We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.

  18. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    PubMed

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-07-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.

  19. Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.

    PubMed Central

    Kampschmidt, R F; Upchurch, H F; Worthington, M L

    1983-01-01

    It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen. PMID:6862633

  20. Studies on the pathogenesis of fever. V. The relation of circulating endogenous pyrogen to the fever of acute bacterial infections.

    PubMed

    KING, M K; WOOD, W B

    1958-02-01

    An endogenous pyrogen, which is indistinguishable from leucocytic pyrogen, has been demonstrated in the blood streams of rabbits with fevers caused by experimental pneumococcal and streptococcal infections. Like the endogenous pyrogen previously detected in the serum of animals with fever produced by the intravenous injection of typhoid vaccine, the newly discovered circulating factor acts directly upon the thermoregulatory centers of the brain. Its origin from polymorphonuclear leucocytes at the site of infection appears to have been established. The possible relationship of this circulating endogenous pyrogen to the pathogenesis of other forms of fever is discussed.

  1. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease

    PubMed Central

    Germi, Raphaëlle; Bernard, Corinne; Garcia-Montojo, Marta; Deluen, Cécile; Farinelli, Laurent; Faucard, Raphaël; Veas, Francisco; Stefas, Ilias; Fabriek, Babs O; Van-Horssen, Jack; Van-der-Valk, Paul; Gerdil, Claire; Mancuso, Roberta; Saresella, Marina; Clerici, Mario; Marcel, Sébastien; Creange, Alain; Cavaretta, Rosella; Caputo, Domenico; Arru, Giannina; Morand, Patrice; Lang, Alois B; Sotgiu, Stefano; Ruprecht, Klemens; Rieckmann, Peter; Villoslada, Pablo; Chofflon, Michel; Boucraut, Jose; Pelletier, Jean; Hartung, Hans-Peter

    2012-01-01

    Background: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation. Objective: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. Methods: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. Results: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. Conclusion: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with

  2. Endogenous Nocardial Endophthalmitis in an Immunosuppressed Patient: A Serious Warning of an Underlying Life Threatening and Blinding Disorder.

    PubMed

    Trehan, Hemant; Kaushik, Jaya; Jain, Vaibhav Kumar; Parihar, Jitendra Kumar Singh; Avasthi, Abhijit

    2017-01-01

    To report a case of bilateral endogenous nocardial endophthalmitis with central nervous system involvement in an immunocompromised individual with an extremely poor outcome. A 35-year-old man with a history of long-term, prescribed oral steroid use for membranoproliferative glomerulonephritis presented with profound bilateral vision loss. Patient's diagnosis of bilateral endogenous nocardial endophthalmitis was delayed. Nocardia was finally isolated from a brain biopsy after a repeat magnetic resonance imaging revealed a brain abscess. With anti-nocardia therapy, patient improved systemically, but the visual outcome was poor, with no light perception in both eyes. Ocular nocardiosis is a serious vision and life threatening disorder, particularly in patients on immunosuppressive therapy. A high index of suspicion is required for successful treatment.

  3. SwePep, a database designed for endogenous peptides and mass spectrometry.

    PubMed

    Fälth, Maria; Sköld, Karl; Norrman, Mathias; Svensson, Marcus; Fenyö, David; Andren, Per E

    2006-06-01

    A new database, SwePep, specifically designed for endogenous peptides, has been constructed to significantly speed up the identification process from complex tissue samples utilizing mass spectrometry. In the identification process the experimental peptide masses are compared with the peptide masses stored in the database both with and without possible post-translational modifications. This intermediate identification step is fast and singles out peptides that are potential endogenous peptides and can later be confirmed with tandem mass spectrometry data. Successful applications of this methodology are presented. The SwePep database is a relational database developed using MySql and Java. The database contains 4180 annotated endogenous peptides from different tissues originating from 394 different species as well as 50 novel peptides from brain tissue identified in our laboratory. Information about the peptides, including mass, isoelectric point, sequence, and precursor protein, is also stored in the database. This new approach holds great potential for removing the bottleneck that occurs during the identification process in the field of peptidomics. The SwePep database is available to the public.

  4. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    PubMed Central

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  5. beta-Citryl-L-glutamate is an endogenous iron chelator that occurs naturally in the developing brain.

    PubMed

    Hamada-Kanazawa, Michiko; Kouda, Makiko; Odani, Akira; Matsuyama, Kaori; Kanazawa, Kiyoka; Hasegawa, Tatsuya; Narahara, Masanori; Miyake, Masaharu

    2010-01-01

    The compound beta-citryl-L-glutamate (beta-CG) was initially isolated from developing brains, while it has also been found in high concentrations in testes and eyes. However, its functional roles are unclear. To evaluate its coordination with metal ions, we performed pH titration experiments. The stability constant, logbeta(pqr) for M(p)(beta-CG)(q)H(r) was calculated from pH titration data, which showed that beta-CG forms relatively strong complexes with Fe(III), Cu(II), Fe(II) and Zn(II). beta-CG was also found able to solubilize Fe more effectively from Fe(OH)(2) than from Fe(OH)(3). Therefore, we examined the effects of beta-CG on Fe-dependent reactive oxygen species (ROS)-generating systems, as well as the potential ROS-scavenging activities of beta-CG and metal ion-(beta-CG) complexes. beta-CG inhibited the Fe-dependent degradation of deoxyribose and Fe-dependent damage to DNA or plasmid DNA in a dose-dependent manner, whereas it had no effect on Cu-mediated DNA damage. In addition, thermodynamic data showed that beta-CG in a physiological pH solution is an Fe(II) chelator rather than an Fe(III) chelator. Taken together, these findings suggest that beta-CG is an endogenous low molecular weight Fe chelator.

  6. Endogenous Morphine in SH-SY5Y Cells and the Mouse Cerebellum

    PubMed Central

    Taleb, Omar; Kemmel, Véronique; Laux, Alexis; Miehe, Monique; Delalande, François; Roussel, Guy; Van Dorsselaer, Alain; Metz-Boutigue, Marie-Hélène; Aunis, Dominique; Goumon, Yannick

    2008-01-01

    Background Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system. Methodology and Principal Findings Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies. Conclusions/Significance The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a

  7. A surrogate analyte-based liquid chromatography-tandem mass spectrometry method for the determination of endogenous cyclic nucleotides in rat brain.

    PubMed

    Chen, Jie; Tabatabaei, Ali; Zook, Doug; Wang, Yan; Danks, Anne; Stauber, Kathe

    2017-11-30

    A robust high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and qualified for the measurement of cyclic nucleotides (cNTs) in rat brain tissue. Stable isotopically labeled 3',5'-cyclic adenosine- 13 C 5 monophosphate ( 13 C 5 -cAMP) and 3',5'-cyclic guanosine- 13 C, 15 N 2 monophosphate ( 13 C 15 N 2 -cGMP) were used as surrogate analytes to measure endogenous 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Pre-weighed frozen rat brain samples were rapidly homogenized in 0.4M perchloric acid at a ratio of 1:4 (w/v). Following internal standard addition and dilution, the resulting extracts were analyzed using negative ion mode electrospray ionization LC-MS/MS. The calibration curves for both analytes ranged from 5 to 2000ng/g and showed excellent linearity (r 2 >0.996). Relative surrogate analyte-to-analyte LC-MS/MS responses were determined to correct concentrations derived from the surrogate curves. The intra-run precision (CV%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was below 6.6% and 7.4%, respectively, while the inter-run precision (CV%) was 8.5% and 5.8%, respectively. The intra-run accuracy (Dev%) for 13 C 5 -cAMP and 13 C 15 N 2 -cGMP was <11.9% and 10.3%, respectively, and the inter-run Dev% was <6.8% and 5.5%, respectively. Qualification experiments demonstrated high analyte recoveries, minimal matrix effects and low autosampler carryover. Acceptable frozen storage, freeze/thaw, benchtop, processed sample and autosampler stability were shown in brain sample homogenates as well as post-processed samples. The method was found to be suitable for the analysis of rat brain tissue cAMP and cGMP levels in preclinical biomarker development studies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain slices.

    PubMed

    Rose, C; Camus, A; Schwartz, J C

    1989-01-01

    Endogenous cholecystokinin immunoreactivity released by depolarization of slices of rat cerebral cortex undergoes extensive degradation (85% of released immunoreactivity) before reaching the incubation medium. In order to identify the responsible peptidases, a large number of inhibitors of the four catalytic classes were tested for their protective effects. Inhibitors of metallopeptidases (bestatin, amastatin, puromycin, Thiorphan, captopril, o-phenantroline), thiol-peptidases, (leupeptin, antipain, p-hydroxymercuribenzoate) or carboxyl-peptidases (pepstatin) had generally low if any protective effect. By contrast, several serine peptidase inhibitors, i.e. diisopropyl-fluorophosphate, phenylmethylsulphonylfluoride or the chloromethylketone Ala-Ala-Pro-Val-CH2Cl, doubled the recovery of cholecystokinin immunoreactivity and the effect was amplified in the co-presence of bestatin, an aminopeptidase inhibitor and/or Thiorphan, an enkephalinase inhibitor. High-performance liquid chromatographic analysis of the cholecystokinin immunoreactivity recovered in medium in the absence of any inhibitor showed cholecystokinin-8 to be the major peak, representing 8% of the released immunoreactive material. Non-sulphated cholecystokinin-8 represented less than 1%, indicating that desulphation does not constitute a major inactivation pathway for the endogenous octapeptide. Cholecystokinin-5 was the major clearly identifiable immunoreactive fragment, representing 9% of released immunoreactivity in the absence of inhibitors. Its formation was decreased by about 50% in the presence of either diisopropyl-fluorophosphate or bestatin and Thiorphan and abolished when they were associated, suggesting that it resulted from the actions of a serine peptidase(s) and an aminopeptidase(s). Cholecystokinin-6 (or cholecystokinin-7) was less abundant, representing 4% of the released immunoreactivity, and its level was augmented in the presence of diisopropyl-fluorophosphate. Hence a serine

  9. Missing piece of the puzzle in the science of consciousness: Resting state and endogenous correlates of consciousness.

    PubMed

    Havlík, Marek

    2017-03-01

    Consciousness still stands as one of the most interesting and the most elusive problems of neuroscience. Finding its correlates is the first step toward its satisfactory explanation. Several theories have proposed its correlates but none of them seem to be generally accepted even though most of them share some very similar elements. These elements are the activity of the thalamus, which is considered by some as the central region for consciousness, and gamma synchronization, which should be the general principal for the emergence of conscious experience. However, all of these proposed theories share one characteristic and that is that they do not take into consideration the recently discovered endogenous activity of the brain, which is generally associated with the default mode network. Although the activity of this large scale brain network is in correlation with various levels of consciousness it is still missing in discussions of consciousness. This review recognizes the importance of endogenous activity and points out the important discoveries of endogenous activity that could be an important step toward a satisfactory explanation of consciousness. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  10. Age Dependency of Inhibition of α7 Nicotinic Receptors and Tonically Active N-Methyl-d-aspartate Receptors by Endogenously Produced Kynurenic Acid in the Brain

    PubMed Central

    Alkondon, Manickavasagom; Pereira, Edna F. R.; Eisenberg, Howard M.; Kajii, Yasushi; Schwarcz, Robert

    2011-01-01

    In the mouse hippocampus normal levels of kynurenic acid (KYNA), a neuroactive metabolite synthesized in astrocytes primarily by kynurenine aminotransferase II (KAT II)-catalyzed transamination of l-kynurenine, maintain a degree of tonic inhibition of α7 nicotinic acetylcholine receptors (nAChRs). The present in vitro study was designed to test the hypothesis that α7 nAChR activity decreases when endogenous production of KYNA increases. Incubation (2–7 h) of rat hippocampal slices with kynurenine (200 μM) resulted in continuous de novo synthesis of KYNA. Kynurenine conversion to KYNA was significantly decreased by the KAT II inhibitor (S)-(−)-9-(4-aminopiperazine-1-yl)-8-fluoro-3-methyl-6-oxo-2,3,5,6-tetrahydro-4H-1-oxa-3a-azaphenalene-5carboxylic acid (BFF122) (100 μM) and was more effective in slices from postweaned than preweaned rats. Incubation of slices from postweaned rats with kynurenine inhibited α7 nAChRs and extrasynaptic N-methyl-d-aspartate receptors (NMDARs) on CA1 stratum radiatum interneurons. These effects were attenuated by BFF122 and mimicked by exogenously applied KYNA (200 μM). Exposure of human cerebral cortical slices to kynurenine also inhibited α7 nAChRs. The α7 nAChR sensitivity to KYNA is age-dependent, because neither endogenously produced nor exogenously applied KYNA inhibited α7 nAChRs in slices from preweaned rats. In these slices, kynurenine-derived KYNA also failed to inhibit extrasynaptic NMDARs, which could, however, be inhibited by exogenously applied KYNA. In slices from preweaned and postweaned rats, glutamatergic synaptic currents were not affected by endogenously produced KYNA, but were inhibited by exogenously applied KYNA. These results suggest that in the mature brain α7 nAChRs and extrasynaptic NMDARs are in close apposition to KYNA release sites and, thereby, readily accessible to inhibition by endogenously produced KYNA. PMID:21270133

  11. [Blood-brain barrier part III: therapeutic approaches to cross the blood-brain barrier and target the brain].

    PubMed

    Weiss, N; Miller, F; Cazaubon, S; Couraud, P-O

    2010-03-01

    Over the last few years, the blood-brain barrier has come to be considered as the main limitation for the treatment of neurological diseases caused by inflammatory, tumor or neurodegenerative disorders. In the blood-brain barrier, the close intercellular contact between cerebral endothelial cells due to tight junctions prevents the passive diffusion of hydrophilic components from the bloodstream into the brain. Several specific transport systems (via transporters expressed on cerebral endothelial cells) are implicated in the delivery of nutriments, ions and vitamins to the brain; other transporters expressed on cerebral endothelial cells extrude endogenous substances or xenobiotics, which have crossed the cerebral endothelium, out of the brain and into the bloodstream. Recently, several strategies have been proposed to target the brain, (i) by by-passing the blood-brain barrier by central drug administration, (ii) by increasing permeability of the blood-brain barrier, (iii) by modulating the expression and/or the activity of efflux transporters, (iv) by using the physiological receptor-dependent blood-brain barrier transport, and (v) by creating new viral or chemical vectors to cross the blood-brain barrier. This review focuses on the illustration of these different approaches. Copyright (c) 2009 Elsevier Masson SAS. All rights reserved.

  12. Endogenous Lunar Volatiles

    NASA Astrophysics Data System (ADS)

    McCubbin, F. M.; Liu, Y.; Barnes, J. J.; Anand, M.; Boyce, J. W.; Burney, D.; Day, J. M. D.; Elardo, S. M.; Hui, H.; Klima, R. L.; Magna, T.; Ni, P.; Steenstra, E.; Tartèse, R.; Vander Kaaden, K. E.

    2018-04-01

    This abstract discusses numerous outstanding questions on the topic of endogenous lunar volatiles that will need to be addressed in the coming years. Although substantial insights into endogenous lunar volatiles have been gained, more work remains.

  13. Decrease in endogenous brain allopregnanolone induces autism spectrum disorder (ASD)-like behavior in mice: A novel animal model of ASD.

    PubMed

    Ebihara, Ken; Fujiwara, Hironori; Awale, Suresh; Dibwe, Dya Fita; Araki, Ryota; Yabe, Takeshi; Matsumoto, Kinzo

    2017-09-15

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with core symptoms of social impairments and restrictive repetitive behaviors. Recent evidence has implicated a dysfunction in the GABAergic system in the pathophysiology of ASD. We investigated the role of endogenous allopregnanolone (ALLO), a neurosteroidal positive allosteric modulator of GABA A receptors, in the regulation of ASD-like behavior in male mice using SKF105111 (SKF), an inhibitor of type I and type II 5α-reductase, a rate-limiting enzyme of ALLO biosynthesis. SKF impaired sociability-related performance, as analyzed by three different tests; i.e., the 3-chamber test and social interaction in the open field and resident-intruder tests, without affecting olfactory function elucidated by the buried food test. SKF also induced repetitive grooming behavior without affecting anxiety-like behavior. SKF had no effect on short-term spatial working memory or long-term fear memory, but enhanced latent learning ability in male mice. SKF-induced ASD-like behavior in male mice was abolished by the systemic administration of ALLO (1mg/kg, i.p.) and methylphenidate (MPH: 2.5mg/kg, i.p.), a dopamine transporter inhibitor. The effects of SKF on brain ALLO contents in male mice were reversed by ALLO, but not MPH. On the other hand, SKF failed to induce ASD-like behavior or a decline in brain ALLO contents in female mice. These results suggest that ALLO regulates episodes of ASD-like behavior by positively modulating the function of GABA A receptors linked to the dopaminergic system. Moreover, a sex-dependently induced decrease in brain ALLO contents may provide an animal model to study the main features of ASD. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analytical and Biological Methods for Probing the Blood-Brain Barrier

    PubMed Central

    Sloan, Courtney D. Kuhnline; Nandi, Pradyot; Linz, Thomas H.; Aldrich, Jane V.; Audus, Kenneth L.; Lunte, Susan M.

    2013-01-01

    The blood-brain barrier (BBB) is an important interface between the peripheral and central nervous systems. It protects the brain against the infiltration of harmful substances and regulates the permeation of beneficial endogenous substances from the blood into the extracellular fluid of the brain. It can also present a major obstacle in the development of drugs that are targeted for the central nervous system. Several methods have been developed to investigate the transport and metabolism of drugs, peptides, and endogenous compounds at the BBB. In vivo methods include intravenous injection, brain perfusion, positron emission tomography, and microdialysis sampling. Researchers have also developed in vitro cell-culture models that can be employed to investigate transport and metabolism at the BBB without the complication of systemic involvement. All these methods require sensitive and selective analytical methods to monitor the transport and metabolism of the compounds of interest at the BBB. PMID:22708905

  15. Production of endogenous pyrogen.

    PubMed

    Dinarello, C A

    1979-01-01

    The production and release of endogenous pyrogen by the host is the first step in the pathogenesis of fever. Endogenous pyrogen is a low-molecular-weight protein released from phagocytic leukocytes in response to several substances of diverse nature. Some of these agents stimulate production of endogenous pyrogen because they are toxic; others act as antigens and interact with either antibody or sensitized lymphocytes in order to induce its production. Some tumors of macrophage origin produce the molecule spontaneously. Whatever the mechanism involved, endogenous pyrogen is synthesized following transcription of new DNA and translation of mRNA into new protein. Once synthesis is completed, the molecule is released without significant intracellular storage. Recent evidence suggests that following release, molecular aggregates form which are biologically active. In its monomer form, endogenous pyrogen is a potent fever-producing substance and mediates fever by its action on the thermoregulatory center.

  16. Immunoadjuvants enhance the febrile responses of rats to endogenous pyrogen.

    PubMed

    Stitt, J T; Shimada, S G

    1989-11-01

    The febrile responses of male Sprague-Dawley rats to a semipurified endogenous pyrogen produced from human monocytes were characterized by establishing fever dose-response curves. The animals were then injected intravenously with a number of substances that possessed the common properties of stimulating the phagocytic activity of the cells of the reticuloendothelial system and of acting as immunoadjuvants. The substances used were zymosan, lipopolysaccharide endotoxin, and muramyl dipeptide. Three days after any of these immunoadjuvants were injected, the fever sensitivity of the rats was remeasured. In each case, the slope of the fever dose-response curve tripled, and in some instances the response threshold for fever response was reduced by factors of three to eight. Furthermore, the maximum increase in body temperature produced by the endogenous pyrogen was more than doubled after immunoadjuvant treatment. By contrast latex beads, which are also phagocytized by the cells of the reticuloendothelial system but do not subsequently increase their phagocytic index nor do they enhance immune responses, had no effect on the fever sensitivity of rats in response to endogenous pyrogen. In the light of these findings, it is suggested that the febrile responses of rats to endogenous pyrogen are mediated in some manner by cells that possess some of the properties of reticuloendothelial cells. The location of these putative cells must be close to the circulation, because the immunoadjuvants used in this study were, for the most part, large molecular weight molecules that could not cross the blood-brain barrier easily.

  17. Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.

    PubMed

    Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M

    2015-11-01

    Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.

  18. Chronic intracerebroventricular infusion of nociceptin/orphanin FQ increases food and ethanol intake in alcohol-preferring rats.

    PubMed

    Cifani, Carlo; Guerrini, Remo; Massi, Maurizio; Polidori, Carlo

    2006-11-01

    Central administration of low doses of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor NOP, have been shown to reduce ethanol consumption, ethanol-induced conditioned place preference and stress-induced reinstatement of alcohol-seeking behavior in alcohol preferring rats. The present study evaluated the effect of continuous (7 days) lateral brain ventricle infusions of N/OFQ (0, 0.25, 1, 4, and 8 microg/h), by means of osmotic mini-pumps, on 10% ethanol intake in Marchigian-Sardinian alcohol-preferring (msP) rats provided 2h or 24h access to it. N/OFQ dose-dependently increased food intake in msP rats. On the other hand, in contrast to previous studies with acute injections, continuous lateral brain ventricle infusion of high doses of N/OFQ increased ethanol consumption when the ethanol solution was available for 24h/day or 2h/day. The present study demonstrates that continuous activation of the opioidergic N/OFQ receptor does not blunt the reinforcing effects of ethanol. Moreover, the data suggest that continuous activation of the opioidergic N/OFQ receptor is not a suitable way to reduce alcohol abuse.

  19. Local and long-range endogenous resting potential gradients antagonistically regulate apoptosis and proliferation in the embryonic CNS.

    PubMed

    Pai, Vaibhav P; Lemire, Joan M; Chen, Ying; Lin, Gufa; Levin, Michael

    2015-01-01

    Bioelectric signals, particularly transmembrane voltage potentials (Vmem), play an important role in large-scale patterning during embryonic development. Endogenous bioelectric gradients across tissues function as instructive factors during eye, brain, and other morphogenetic processes. An important and still poorly-understood aspect is the control of cell behaviors by the voltage states of distant cell groups. Here, experimental alteration of endogenous Vmem was induced in Xenopus laevis embryos by misexpression of well-characterized ion channel mRNAs, a strategy often used to identify functional roles of Vmem gradients during embryonic development and regeneration. Immunofluorescence analysis (for activated caspase 3 and phosphor-histone H3P) on embryonic sections was used to characterize apoptosis and proliferation. Disrupting local bioelectric signals (within the developing neural tube region) increased caspase 3 and decreased H3P in the brain, resulting in brain mispatterning. Disrupting remote (ventral, non-neural region) bioelectric signals decreased caspase 3 and highly increased H3P within the brain, with normal brain patterning. Disrupting both the local and distant bioelectric signals produced antagonistic effects on caspase 3 and H3P. Thus, two components of bioelectric signals regulate apoptosis-proliferation balance within the developing brain and spinal cord: local (developing neural tube region) and distant (ventral non-neural region). Together, the local and long-range bioelectric signals create a binary control system capable of fine-tuning apoptosis and proliferation with the brain and spinal cord to achieve correct pattern and size control. Our data suggest a roadmap for utilizing bioelectric state as a diagnostic modality and convenient intervention parameter for birth defects and degenerative disease states of the CNS.

  20. DHA Effects in Brain Development and Function

    PubMed Central

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B. S.; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-01

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders. PMID:26742060

  1. DHA Effects in Brain Development and Function.

    PubMed

    Lauritzen, Lotte; Brambilla, Paolo; Mazzocchi, Alessandra; Harsløf, Laurine B S; Ciappolino, Valentina; Agostoni, Carlo

    2016-01-04

    Docosahexaenoic acid (DHA) is a structural constituent of membranes specifically in the central nervous system. Its accumulation in the fetal brain takes place mainly during the last trimester of pregnancy and continues at very high rates up to the end of the second year of life. Since the endogenous formation of DHA seems to be relatively low, DHA intake may contribute to optimal conditions for brain development. We performed a narrative review on research on the associations between DHA levels and brain development and function throughout the lifespan. Data from cell and animal studies justify the indication of DHA in relation to brain function for neuronal cell growth and differentiation as well as in relation to neuronal signaling. Most data from human studies concern the contribution of DHA to optimal visual acuity development. Accumulating data indicate that DHA may have effects on the brain in infancy, and recent studies indicate that the effect of DHA may depend on gender and genotype of genes involved in the endogenous synthesis of DHA. While DHA levels may affect early development, potential effects are also increasingly recognized during childhood and adult life, suggesting a role of DHA in cognitive decline and in relation to major psychiatric disorders.

  2. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  3. Drug transport across the blood–brain barrier

    PubMed Central

    Pardridge, William M

    2012-01-01

    The blood–brain barrier (BBB) prevents the brain uptake of most pharmaceuticals. This property arises from the epithelial-like tight junctions within the brain capillary endothelium. The BBB is anatomically and functionally distinct from the blood–cerebrospinal fluid barrier at the choroid plexus. Certain small molecule drugs may cross the BBB via lipid-mediated free diffusion, providing the drug has a molecular weight <400 Da and forms <8 hydrogen bonds. These chemical properties are lacking in the majority of small molecule drugs, and all large molecule drugs. Nevertheless, drugs can be reengineered for BBB transport, based on the knowledge of the endogenous transport systems within the BBB. Small molecule drugs can be synthesized that access carrier-mediated transport (CMT) systems within the BBB. Large molecule drugs can be reengineered with molecular Trojan horse delivery systems to access receptor-mediated transport (RMT) systems within the BBB. Peptide and antisense radiopharmaceuticals are made brain-penetrating with the combined use of RMT-based delivery systems and avidin–biotin technology. Knowledge on the endogenous CMT and RMT systems expressed at the BBB enable new solutions to the problem of BBB drug transport. PMID:22929442

  4. Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5)*

    PubMed Central

    Haas, Laura T.; Kostylev, Mikhail A.; Strittmatter, Stephen M.

    2014-01-01

    Soluble Amyloid-β oligomers (Aβo) can trigger Alzheimer disease (AD) pathophysiology by binding to cell surface cellular prion protein (PrPC). PrPC interacts physically with metabotropic glutamate receptor 5 (mGluR5), and this interaction controls the transmission of neurotoxic signals to intracellular substrates. Because the interruption of the signal transduction from PrPC to mGluR5 has therapeutic potential for AD, we developed assays to explore the effect of endogenous ligands, agonists/antagonists, and antibodies on the interaction between PrPC and mGluR5 in cell lines and mouse brain. We show that the PrPC segment of amino acids 91–153 mediates the interaction with mGluR5. Agonists of mGluR5 increase the mGluR5-PrPC interaction, whereas mGluR5 antagonists suppress protein association. Synthetic Aβo promotes the protein interaction in mouse brain and transfected HEK-293 cell membrane preparations. The interaction of PrPC and mGluR5 is enhanced dramatically in the brains of familial AD transgenic model mice. In brain homogenates with Aβo, the interaction of PrPC and mGluR5 is reversed by mGluR5-directed antagonists or antibodies directed against the PrPC segment of amino acids 91–153. Silent allosteric modulators of mGluR5 do not alter Glu or basal mGluR5 activity, but they disrupt the Aβo-induced interaction of mGluR5 with PrPC. The assays described here have the potential to identify and develop new compounds that inhibit the interaction of PrPC and mGluR5, which plays a pivotal role in the pathogenesis of Alzheimer disease by transmitting the signal from extracellular Aβo into the cytosol. PMID:25148681

  5. [Identification of mouse brain neuropeptides by high throughput mass spectrometry].

    PubMed

    Shao, Xianfeng; Ma, Min; Chen, Ruibing; Jia, Chenxi

    2018-04-25

    Neuropeptides play an important role in the physiological functions of the human body. The physiological activities such as pain, sleep, mood, learning and memory are affected by neuropeptides. Neuropeptides mainly exist in the nerve tissue of the body, and a small amount of them are distributed in body fluid and organs. At present, analysis of large-scale identification of neuropeptides in whole brain tissue is still challenging. Therefore, high-throughput detection of these neuropeptides is greatly significant to understand the composition and function of neuropeptides. In this study, 1 830 endogenous peptides and 99 novel putative neuropeptides were identified by extraction of endogenous peptides from whole brain tissue of mice by liquid phase tandem mass spectrometry (LC-MS / MS). The identification of these endogenous peptides provides not only a reference value in the treatment and mechanism studies of diseases and the development of drugs, but also the basis for the study of a new neuropeptides and their functions.

  6. Endogenous CNS Expression of Neurotensin and Neurotensin Receptors Is Altered during the Postpartum Period in Outbred Mice

    PubMed Central

    Driessen, Terri M.; Zhao, Changjiu; Whittlinger, Anna; Williams, Horecia; Gammie, Stephen C.

    2014-01-01

    Neurotensin (NT) is a neuropeptide identical in mice and humans that is produced and released in many CNS regions associated with maternal behavior. NT has been linked to aspects of maternal care and previous studies have indirectly suggested that endogenous NT signaling is altered in the postpartum period. In the present study, we directly examine whether NT and its receptors exhibit altered gene expression in maternal relative to virgin outbred mice using real time quantitative PCR (qPCR) across multiple brain regions. We also examine NT protein levels using anti-NT antibodies and immunohistochemistry in specific brain regions. In the medial preoptic area (MPOA), which is critical for maternal behaviors, mRNA of NT and NT receptor 3 (Sort1) were significantly up-regulated in postpartum mice compared to virgins. NT mRNA was also elevated in postpartum females in the bed nucleus of the stria terminalis dorsal. However, in the lateral septum, NT mRNA was down-regulated in postpartum females. In the paraventricular nucleus of the hypothalamus (PVN), Ntsr1 expression was down-regulated in postpartum females. Neurotensin receptor 2 (Ntsr2) expression was not altered in any brain region tested. In terms of protein expression, NT immunohistochemistry results indicated that NT labeling was elevated in the postpartum brain in the MPOA, lateral hypothalamus, and two subregions of PVN. Together, these findings indicate that endogenous changes occur in NT and its receptors across multiple brain regions, and these likely support the emergence of some maternal behaviors. PMID:24416154

  7. Purification of a benzodiazepine from bovine brain and detection of benzodiazepine-like immunoreactivity in human brain.

    PubMed Central

    Sangameswaran, L; Fales, H M; Friedrich, P; De Blas, A L

    1986-01-01

    An endogenous brain substance that binds to the central-type benzodiazepine receptors with agonist properties is present in both rat and bovine brains. This substance has been purified to homogeneity from bovine brain by immunoaffinity chromatography on immobilized monoclonal anti-benzodiazepine antibody followed by gel filtration on Sephadex G-25 and two reversed-phase HPLC steps. The purified substance was characterized as the benzodiazepine N-desmethyldiazepam (nordiazepam). The techniques used for the identification were mass spectrometry, HPLC, spectrophotometry, benzodiazepine receptor binding, and immunological techniques. Benzodiazepine-like immunoreactivity was also found in all the human brains tested, including six brains that had been stored in paraffin since 1940, fifteen years before the first synthesis of benzodiazepines. These results show that benzodiazepine-like molecules of natural origin--and possibly benzodiazepines themselves--are present in human and other mammalian brains. Images PMID:3024172

  8. The putative RNA helicase Dbp6p functionally interacts with Rpl3p, Nop8p and the novel trans-acting Factor Rsa3p during biogenesis of 60S ribosomal subunits in Saccharomyces cerevisiae.

    PubMed Central

    de la Cruz, Jesús; Lacombe, Thierry; Deloche, Olivier; Linder, Patrick; Kressler, Dieter

    2004-01-01

    Ribosome biogenesis requires at least 18 putative ATP-dependent RNA helicases in Saccharomyces cerevisiae. To explore the functional environment of one of these putative RNA helicases, Dbp6p, we have performed a synthetic lethal screen with dbp6 alleles. We have previously characterized the nonessential Rsa1p, whose null allele is synthetically lethal with dbp6 alleles. Here, we report on the characterization of the four remaining synthetic lethal mutants, which reveals that Dbp6p also functionally interacts with Rpl3p, Nop8p, and the so-far-uncharacterized Rsa3p (ribosome assembly 3). The nonessential Rsa3p is a predominantly nucleolar protein required for optimal biogenesis of 60S ribosomal subunits. Both Dbp6p and Rsa3p are associated with complexes that most likely correspond to early pre-60S ribosomal particles. Moreover, Rsa3p is co-immunoprecipitated with protA-tagged Dbp6p under low salt conditions. In addition, we have established a synthetic interaction network among factors involved in different aspects of 60S-ribosomal-subunit biogenesis. This extensive genetic analysis reveals that the rsa3 null mutant displays some specificity by being synthetically lethal with dbp6 alleles and by showing some synthetic enhancement with the nop8-101 and the rsa1 null allele. PMID:15126390

  9. Diadenosine polyphosphates as antagonists of the endogenous P2Y1 receptor in rat brain capillary endothelial cells of the B7 and B10 clones

    PubMed Central

    Vigne, Paul; Breittmayer, Jean Philippe; Frelin, Christian

    2000-01-01

    Diadenosine polyphosphates (ApnAs, n=2–7) are considered as stress mediators in the cardiovascular system. They act both via identified P2 purinoceptors and via yet to be characterized receptors. This study analyses the actions of ApnAs in clones of rat brain capillary endothelial cells that express P2Y1 receptors (B10 cells) or both P2Y1 and P2Y2 receptors (B7 cells).B10 cells responded to Ap3A with rises in intracellular Ca2+ concentration ([Ca2+]i). This response was prevented by adenosine-3′-phosphate-5′-phosphate, an antagonist of P2Y1 receptors. It was largely suppressed by a treatment with apyrase VII or with creatine phosphokinase/creatine phosphate to degrade contaminating ADP.ApnAs inhibited ADP induced increases in [Ca2+]i mediated by P2Y1 receptors by shifting ADP concentration-response curves to larger concentrations. Apparent Ki values were estimated to be 6 μM for Ap4A, 10 μM for Ap5A and 47 μM for Ap6A. Ap2A and Ap3A were much less active.ApnAs were neither agonists nor antagonists of the endogenous P2Y2 receptor in B7 cells.ApnAs are neither agonists nor antagonists of the Gi-coupled, ADP receptor in B10 cells.The results suggest that most actions of ApnAs in B7 and B10 cells can be accounted for by endogenous P2Y1 receptors. Ap4A, Ap5A and Ap6A are specific antagonists of endogenous Ca2+-coupled P2Y1 receptors. PMID:10742308

  10. Endogenous ghrelin-O-acyltransferase (GOAT) acylates local ghrelin in the hippocampus.

    PubMed

    Murtuza, Mohammad I; Isokawa, Masako

    2018-01-01

    Ghrelin is an appetite-stimulating peptide. Serine 3 on ghrelin must be acylated by octanoate via the enzyme ghrelin-O-acyltransferase (GOAT) for the peptide to bind and activate the cognate receptor, growth hormone secretagogue receptor type 1a (GHSR1a). Interest in GHSR1a increased dramatically when GHSR1a mRNA was demonstrated to be widespread in the brain, including the cortex and hippocampus, indicating that it has multifaceted functions beyond the regulation of metabolism. However, the source of octanoylated ghrelin for GHSR1a in the brain, outside of the hypothalamus, is not well understood. Here, we report the presence of GOAT and its ability to acylate non-octanoylated ghrelin in the hippocampus. GOAT immunoreactivity is aggregated at the base of the dentate granule cell layer in the rat and wild-type mouse. This immunoreactivity was not affected by the pharmacological inhibition of GHSR1a or the metabolic state-dependent fluctuation of systemic ghrelin levels. However, it was absent in the GHSR1a knockout mouse hippocampus, pointing the possibility that the expression of GHSR1a may be a prerequisite for the production of GOAT. Application of fluorescein isothiocyanate (FITC)-conjugated non-octanoylated ghrelin in live hippocampal slice culture (but not in fixed culture or in the presence of GOAT inhibitors) mimicked the binding profile of FITC-conjugated octanoylated ghrelin, suggesting that extracellularly applied non-octanoylated ghrelin was acylated by endogenous GOAT in the live hippocampus while GOAT being mobilized out of neurons. Our results will advance the understanding for the role of endogenous GOAT in the hippocampus and facilitate the search for the source of ghrelin that is intrinsic to the brain. © 2017 International Society for Neurochemistry.

  11. The central mechanism underlying hypertension: a review of the roles of sodium ions, epithelial sodium channels, the renin–angiotensin–aldosterone system, oxidative stress and endogenous digitalis in the brain

    PubMed Central

    Takahashi, Hakuo; Yoshika, Masamichi; Komiyama, Yutaka; Nishimura, Masato

    2011-01-01

    The central nervous system has a key role in regulating the circulatory system by modulating the sympathetic and parasympathetic nervous systems, pituitary hormone release, and the baroreceptor reflex. Digoxin- and ouabain-like immunoreactive materials were found >20 years ago in the hypothalamic nuclei. These factors appeared to localize to the paraventricular and supraoptic nuclei and the nerve fibers at the circumventricular organs and supposed to affect electrolyte balance and blood pressure. The turnover rate of these materials increases with increasing sodium intake. As intracerebroventricular injection of ouabain increases blood pressure via sympathetic activation, an endogenous digitalis-like factor (EDLF) was thought to regulate cardiovascular system-related functions in the brain, particularly after sodium loading. Experiments conducted mainly in rats revealed that the mechanism of action of ouabain in the brain involves sodium ions, epithelial sodium channels (ENaCs) and the renin–angiotensin–aldosterone system (RAAS), all of which are affected by sodium loading. Rats fed a high-sodium diet develop elevated sodium levels in their cerebrospinal fluid, which activates ENaCs. Activated ENaCs and/or increased intracellular sodium in neurons activate the RAAS; this releases EDLF in the brain, activating the sympathetic nervous system. The RAAS promotes oxidative stress in the brain, further activating the RAAS and augmenting sympathetic outflow. Angiotensin II and aldosterone of peripheral origin act in the brain to activate this cascade, increasing sympathetic outflow and leading to hypertension. Thus, the brain Na+–ENaC–RAAS–EDLF axis activates sympathetic outflow and has a crucial role in essential and secondary hypertension. This report provides an overview of the central mechanism underlying hypertension and discusses the use of antihypertensive agents. PMID:21814209

  12. Studies on the pathogenesis of fever. IV. The site of action of leucocytic and circulating endogenous pyrogen.

    PubMed

    KING, M K; WOOD, W B

    1958-02-01

    By means of a method designed to compare the febrile responses produced by intracarotid and intravenous injections, the endogenous pyrogen, which is contained in leucocytic exudates and is present in the serum of rabbits 2 hours after intravenous injections of typhoid vaccine, has been shown to act directly upon the thermoregulatory centers of the brain. In contrast, the exogenous bacterial pyrogen present in serum obtained 5 minutes after vaccine injections was found to act by a different and less direct mechanism. These observations add strong support to the original hypothesis that endogenous pyrogen, presumably derived from polymorphonuclear leucocytes, is an essential factor in the pathogenesis of endotoxin fever.

  13. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone

    PubMed Central

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A.; Nagel, Bonnie J.

    2014-01-01

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. PMID:25312831

  14. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

    PubMed

    Wang, Rui

    2002-11-01

    Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.

  15. Mechanisms of Endogenous Neuroprotective Effects of Astrocytes in Brain Injury

    PubMed Central

    2018-01-01

    Astrocytes, once believed to serve only as “glue” for the structural support of neurons, have been demonstrated to serve critical functions for the maintenance and protection of neurons, especially under conditions of acute or chronic injury. There are at least seven distinct mechanisms by which astrocytes protect neurons from damage; these are (1) protection against glutamate toxicity, (2) protection against redox stress, (3) mediation of mitochondrial repair mechanisms, (4) protection against glucose-induced metabolic stress, (5) protection against iron toxicity, (6) modulation of the immune response in the brain, and (7) maintenance of tissue homeostasis in the presence of DNA damage. Astrocytes support these critical functions through specialized responses to stress or toxic conditions. The detoxifying activities of astrocytes are essential for maintenance of the microenvironment surrounding neurons and in whole tissue homeostasis. Improved understanding of the mechanisms by which astrocytes protect the brain could lead to the development of novel targets for the development of neuroprotective strategies.

  16. Endogenous Opioid Peptides and Epilepsy: Quieting the Seizing Brain?

    DTIC Science & Technology

    1988-08-01

    circuitry and highly sen- upon EEG findings could be tor, acid systems, remains sitive to epileptogenesis (see Refs misleading. to be l iated. The...Langwinski, R. (1986) Drug Alchoho! Depend. 18. 361-367: " Meldrum . B. S. et a. (1979) Brain Res. 170, 333-348; ’Sajorek, J. G. and Lomax, P. (1982... Acids . Peptides and Trophic Factors Engel, J., Jr, eds), pp. 263-274, Raven the outcome of which depends (Ferrendelli. J., Collins, R. and Johnson

  17. Buprenorphine-elicited alteration of adenylate cyclase activity in human embryonic kidney 293 cells coexpressing κ-, μ-opioid and nociceptin receptors

    PubMed Central

    Wang, Pei-Chen; Ho, Ing-Kang; Lee, Cynthia Wei-Sheng

    2015-01-01

    Buprenorphine, a maintenance drug for heroin addicts, exerts its pharmacological function via κ- (KOP), μ-opioid (MOP) and nociceptin/opioid receptor-like 1 (NOP) receptors. Previously, we investigated its effects in an in vitro model expressing human MOP and NOP receptors individually or simultaneously (MOP, NOP, and MOP+NOP) in human embryonic kidney 293 cells. Here, we expanded this cell model by expressing human KOP, MOP and NOP receptors individually or simultaneously (KOP, KOP+MOP, KOP+NOP and KOP+MOP+NOP). Radioligand binding with tritium-labelled diprenorphine confirmed the expression of KOP receptors. Immunoblotting and immunocytochemistry indicated that the expressed KOP, MOP and NOP receptors are N-linked glycoproteins and colocalized in cytoplasmic compartments. Acute application of the opioid receptor agonists— U-69593, DAMGO and nociceptin— inhibited adenylate cyclase (AC) activity in cells expressing KOP, MOP and NOP receptors respectively. Buprenorphine, when applied acutely, inhibited AC activity to ~90% in cells expressing KOP+MOP+NOP receptors. Chronic exposure to buprenorphine induced concentration-dependent AC superactivation in cells expressing KOP+NOP receptors, and the level of this superactivation was even higher in KOP+MOP+NOP-expressing cells. Our study demonstrated that MOP receptor could enhance AC regulation in the presence of coexpressed KOP and NOP receptors, and NOP receptor is essential for concentration-dependent AC superactivation elicited by chronic buprenorphine exposure. PMID:26153065

  18. Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention.

    PubMed

    Hopfinger, Joseph B; Parsons, Jonathan; Fröhlich, Flavio

    2017-04-01

    Previous electrophysiological studies implicate both alpha (8-12 Hz) and gamma (>30 Hz) neural oscillations in the mechanisms of selective attention. Here, participants preformed two separate visual attention tasks, one endogenous and one exogenous, while transcranial alternating current stimulation (tACS), at 10 Hz, 40 Hz, or sham, was applied to the right parietal lobe. Our results provide new evidence for the roles of gamma and alpha oscillations in voluntary versus involuntary shifts of attention. Gamma (40 Hz) stimulation resulted in improved disengagement from invalidly cued targets in the endogenous attention task, whereas alpha stimulation (10 Hz) had no effect on endogenous attention, but increased the exogenous cuing effect. These findings agree with previous studies suggesting that right inferior parietal regions may be especially important for the disengagement of attention, and go further to provide details about the specific type of oscillatory neural activity within that brain region that is differentially involved in endogenous versus exogenous attention. Our results also have potential implications for the plasticity and training of attention systems.

  19. Small endogenous molecules as moiety to improve targeting of CNS drugs.

    PubMed

    Sutera, Flavia Maria; De Caro, Viviana; Giannola, Libero Italo

    2017-01-01

    A major challenge in the development of novel neuro-therapeutic agents is to effectively overcome the blood-brain barrier (BBB), which acts as a 'working dynamic barrier'. The core problem in the treatment of neurodegenerative diseases is failed delivery of potential medicines due to their inadequate permeation rate. Areas covered: The present review gives a summary of endogenous moieties used in synthesizing prodrugs, derivatives and bioisosteric drugs appositely designed to structurally resemble physiological molecular entities able to be passively absorbed or carried by specific carrier proteins expressed at BBB level. In particular, this overview focuses on aminoacidic, glycosyl, purinergic, ureic and acidic fragments derivatives, most of which can take advantage from BBB carrier-mediated transporters, where passive diffusion is not permitted. Expert opinion: In the authors' perspective, further progress in this field could expedite successful translation of new chemical entities into clinical trials. Careful rationalization of the linkage between endogenous molecular structures and putative transporters binding sites could allow to useful work-flows and libraries for synthesizing new BBB-crossing therapeutic substances and/or multifunctional drugs for treatments of central disorders.

  20. The Potential of Stem Cells in Treatment of Traumatic Brain Injury.

    PubMed

    Weston, Nicole M; Sun, Dong

    2018-01-25

    Traumatic brain injury (TBI) is a global public health concern, with limited treatment options available. Despite improving survival rate after TBI, treatment is lacking for brain functional recovery and structural repair in clinic. Recent studies have suggested that the mature brain harbors neural stem cells which have regenerative capacity following brain insults. Much progress has been made in preclinical TBI model studies in understanding the behaviors, functions, and regulatory mechanisms of neural stem cells in the injured brain. Different strategies targeting these cell population have been assessed in TBI models. In parallel, cell transplantation strategy using a wide range of stem cells has been explored for TBI treatment in pre-clinical studies and some in clinical trials. This review summarized strategies which have been explored to enhance endogenous neural stem cell-mediated regeneration and recent development in cell transplantation studies for post-TBI brain repair. Thus far, neural regeneration through neural stem cells either by modulating endogenous neural stem cells or by stem cell transplantation has attracted much attention. It is highly speculated that targeting neural stem cells could be a potential strategy to repair and regenerate the injured brain. Neuroprotection and neuroregeneration are major aspects for TBI therapeutic development. With technique advancement, it is hoped that stem cell-based therapy targeting neuroregeneration will be able to translate to clinic in not so far future.

  1. Sex differences in the neural substrates of spatial working memory during adolescence are not mediated by endogenous testosterone.

    PubMed

    Alarcón, Gabriela; Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-12-17

    Adolescence is a developmental period characterized by notable changes in behavior, physical attributes, and an increase in endogenous sex steroid hormones, which may impact cognitive functioning. Moreover, sex differences in brain structure are present, leading to differences in neural function and cognition. Here, we examine sex differences in performance and blood oxygen level-dependent (BOLD) activation in a sample of adolescents during a spatial working memory (SWM) task. We also examine whether endogenous testosterone levels mediate differential brain activity between the sexes. Adolescents between ages 10 and 16 years completed a SWM functional magnetic resonance imaging (fMRI) task, and serum hormone levels were assessed within seven days of scanning. While there were no sex differences in task performance (accuracy and reaction time), differences in BOLD response between girls and boys emerged, with girls deactivating brain regions in the default mode network and boys showing increased response in SWM-related brain regions of the frontal cortex. These results suggest that adolescent boys and girls adopted distinct neural strategies, while maintaining spatial cognitive strategies that facilitated comparable cognitive performance of a SWM task. A nonparametric bootstrapping procedure revealed that testosterone did not mediate sex-specific brain activity, suggesting that sex differences in BOLD activation during SWM may be better explained by other factors, such as early organizational effects of sex steroids or environmental influences. Elucidating sex differences in neural function and the influence of gonadal hormones can serve as a basis of comparison for understanding sexually dimorphic neurodevelopment and inform sex-specific psychopathology that emerges in adolescence. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 75 FR 62693 - National Organic Program: Notice of Draft Guidance for Accredited Certifying Agents and Certified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... Production (NOP 5021); Wild Crop Harvesting (NOP 5022); Outdoor Access for Organic Poultry (NOP 5024); Commingling and Contamination Prevention in Organic Production and Handling (NOP 5025); and The Use of Chlorine Materials in Organic Production and Handling (NOP 5026). These draft guidance documents are...

  3. Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation.

    PubMed

    Yang, Tuo; Sun, Yang; Mao, Leilei; Zhang, Meijuan; Li, Qianqian; Zhang, Lili; Shi, Yejie; Leak, Rehana K; Chen, Jun; Zhang, Feng

    2018-05-06

    Brain ischemic preconditioning (IPC) with mild ischemic episodes is well known to protect the brain against subsequent ischemic challenges. However, the underlying mechanisms are poorly understood. Here we demonstrate the critical role of the master redox transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), in IPC-mediated neuroprotection and blood-brain barrier (BBB) preservation. We report that IPC causes generation of endogenous lipid electrophiles, including 4-hydroxy-2-nonenal (4-HNE), which release Nrf2 from inhibition by Keap1 (via Keap1-C288) and inhibition by glycogen synthase kinase 3β (via GSK3β-C199). Nrf2 then induces expression of its target genes, including a new target, cadherin 5, a key component of adherens junctions of the BBB. These effects culminate in mitigation of BBB leakage and of neurological deficits after stroke. Collectively, these studies are the first to demonstrate that IPC protects the BBB against ischemic injury by generation of endogenous electrophiles and activation of the Nrf2 pathway through inhibition of Keap1- and GSK3β-dependent Nrf2 degradation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Cytokines as endogenous pyrogens.

    PubMed

    Dinarello, C A

    1999-03-01

    Cytokines are pleiotropic molecules mediating several pathologic processes. Long before the discovery of cytokines as immune system growth factors or as bone marrow stimulants, investigators learned a great deal about cytokines when they studied them as the endogenous mediators of fever. The terms "granulocytic" or "endogenous pyrogen" were used to describe substances with the biologic property of fever induction. Today, we recognize that pyrogenicity is a fundamental biologic property of several cytokines and hence the clinically recognizeable property of fever links host perturbations during disease with fundamental perturbations in cell biology. In this review, the discoveries made on endogenous pyrogens are revisited, with insights into the importance of the earlier work to the present-day understanding of cytokines in health and in disease.

  5. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids

    PubMed Central

    Adler-Neal, Adrienne L.; Wells, Rebecca E.; Stagnaro, Emily; May, Lisa M.; Eisenach, James C.; McHaffie, John G.; Coghill, Robert C.

    2016-01-01

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. SIGNIFICANCE STATEMENT Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline

  6. Influence of White and Gray Matter Connections on Endogenous Human Cortical Oscillations

    PubMed Central

    Hawasli, Ammar H.; Kim, DoHyun; Ledbetter, Noah M.; Dahiya, Sonika; Barbour, Dennis L.; Leuthardt, Eric C.

    2016-01-01

    Brain oscillations reflect changes in electrical potentials summated across neuronal populations. Low- and high-frequency rhythms have different modulation patterns. Slower rhythms are spatially broad, while faster rhythms are more local. From this observation, we hypothesized that low- and high-frequency oscillations reflect white- and gray-matter communications, respectively, and synchronization between low-frequency phase with high-frequency amplitude represents a mechanism enabling distributed brain-networks to coordinate local processing. Testing this common understanding, we selectively disrupted white or gray matter connections to human cortex while recording surface field potentials. Counter to our original hypotheses, we found that cortex consists of independent oscillatory-units (IOUs) that maintain their own complex endogenous rhythm structure. IOUs are differentially modulated by white and gray matter connections. White-matter connections maintain topographical anatomic heterogeneity (i.e., separable processing in cortical space) and gray-matter connections segregate cortical synchronization patterns (i.e., separable temporal processing through phase-power coupling). Modulation of distinct oscillatory modules enables the functional diversity necessary for complex processing in the human brain. PMID:27445767

  7. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  8. Neocortical Transplants in the Mammalian Brain Lack a Blood-Brain Barrier to Macromolecules

    NASA Astrophysics Data System (ADS)

    Rosenstein, Jeffrey M.

    1987-02-01

    In order to determine whether the blood-brain barrier was present in transplants of central nervous tissue, fetal neocortex, which already possesses blood-brain and blood-cerebrospinal fluid barriers to protein, was grafted into the undamaged fourth ventricle or directly into the neocortex of recipient rats. Horseradish peroxidase or a conjugated human immunoglobulin G-peroxidase molecule was systemically administered into the host. These proteins were detected within the cortical transplants within 2 minutes regardless of the age of the donor or postoperative time. At later times these compounds, which normally do not cross the blood-brain barrier, inundated the grafts and adjacent host brain and also entered the cerebrospinal fluid. Endogenous serum albumin detected immunocytochemically in untreated hosts had a comparable although less extensive distribution. Thus, transplants of fetal central nervous tissue have permanent barrier dysfunction, probably due to microvascular changes, and are not integrated physiologically within the host. Blood-borne compounds, either systemically administered or naturally occurring, which should never contact normal brain tissue, have direct access to these transplants and might affect neuronal function.

  9. Regulation of body temperature and neuroprotection by endogenous interleukin-6 in cerebral ischemia.

    PubMed

    Herrmann, Oliver; Tarabin, Victoria; Suzuki, Shigeaki; Attigah, Nicolas; Coserea, Irinel; Schneider, Armin; Vogel, Johannes; Prinz, Simone; Schwab, Stefan; Monyer, Hannah; Brombacher, Frank; Schwaninger, Markus

    2003-04-01

    Although the function of fever is still unclear, it is now beyond doubt that body temperature influences the outcome of brain damage. An elevated body temperature is often found in stroke patients and denotes a bad prognosis. However, the pathophysiologic basis and treatment options of elevated body temperature after stroke are still unknown. Cerebral ischemia rapidly induced neuronal interleukin-6 (IL-6) expression in mice. In IL-6-deficient mice, body temperature was markedly decreased after middle cerebral artery occlusion (MCAO), but infarct size was comparable to that in control mice. If body temperature was controlled by external warming after MCAO, IL-6-deficient mice had a reduced survival, worse neurologic status, and larger infarcts than control animals. In cell culture, IL-6 exerted an antiapoptotic and neuroprotective effect. These data suggest that IL-6 is a key regulator of body temperature and an endogenous neuroprotectant in cerebral ischemia. Neuroprotective properties apparently compensate for its pyretic action after MCAO and enhance the safety of this endogenous pyrogen.

  10. Endogenous pyrogen-like substance produced by reptiles.

    PubMed

    Bernheim, H A; Kluger, M J

    1977-06-01

    1. Injection of lizards (Dipsosaurus dorsalis) with rabbit endogenous pyrogen led to a fever. Injections with denatured endogenous pyrogen did not affect body temperature. 2. Injection of lizards with lizard endogenous pyrogen led to a fever of short duration, while injection of denatured lizard endogenous pyrogen produced no change in body temperature. 3. These data support the hypothesis that the febrile mechanism observed in the higher vertebrates has its origins in some primitive vertebrate.

  11. Endogenous pyrogen-like substance produced by reptiles.

    PubMed Central

    Bernheim, H A; Kluger, M J

    1977-01-01

    1. Injection of lizards (Dipsosaurus dorsalis) with rabbit endogenous pyrogen led to a fever. Injections with denatured endogenous pyrogen did not affect body temperature. 2. Injection of lizards with lizard endogenous pyrogen led to a fever of short duration, while injection of denatured lizard endogenous pyrogen produced no change in body temperature. 3. These data support the hypothesis that the febrile mechanism observed in the higher vertebrates has its origins in some primitive vertebrate. PMID:874874

  12. Addressing the need for biomarker liquid chromatography/mass spectrometry assays: a protocol for effective method development for the bioanalysis of endogenous compounds in cerebrospinal fluid.

    PubMed

    Benitex, Yulia; McNaney, Colleen A; Luchetti, David; Schaeffer, Eric; Olah, Timothy V; Morgan, Daniel G; Drexler, Dieter M

    2013-08-30

    Research on disorders of the central nervous system (CNS) has shown that an imbalance in the levels of specific endogenous neurotransmitters may underlie certain CNS diseases. These alterations in neurotransmitter levels may provide insight into pathophysiology, but can also serve as disease and pharmacodynamic biomarkers. To measure these potential biomarkers in vivo, the relevant sample matrix is cerebrospinal fluid (CSF), which is in equilibrium with the brain's interstitial fluid and circulates through the ventricular system of the brain and spinal cord. Accurate analysis of these potential biomarkers can be challenging due to low CSF sample volume, low analyte levels, and potential interferences from other endogenous compounds. A protocol has been established for effective method development of bioanalytical assays for endogenous compounds in CSF. Database searches and standard-addition experiments are employed to qualify sample preparation and specificity of the detection thus evaluating accuracy and precision. This protocol was applied to the study of the histaminergic neurotransmitter system and the analysis of histamine and its metabolite 1-methylhistamine in rat CSF. The protocol resulted in a specific and sensitive novel method utilizing pre-column derivatization ultra high performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS), which is also capable of separating an endogenous interfering compound, identified as taurine, from the analytes of interest. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Endogenous Methanol Regulates Mammalian Gene Activity

    PubMed Central

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  14. Agmatine : metabolic pathway and spectrum of activity in brain.

    PubMed

    Halaris, Angelos; Plietz, John

    2007-01-01

    Agmatine is an endogenous neuromodulator that, based on animal studies, has the potential for new drug development. As an endogenous aminoguanidine compound (1-amino-4-guanidinobutane), it is structurally unique compared with other monoamines. Agmatine was long thought to be synthesised only in lower life forms, until its biosynthetic pathway (decarboxylation of arginine) was described in the mammalian brain in 1994. Human arginine decarboxylase has been cloned and shown to have 48% identity to ornithine decarboxylase. In neurons of the brain and spinal cord, agmatine is packaged into synaptic vesicles and released upon neuronal depolarisation. Other evidence of a neuromodulation role for agmatine is the presence of a specific cellular uptake mechanism and a specific metabolic enzyme (agmatinase; which forms putrescine).Initially, agmatine was conceptualised as an endogenous clonidine-displacing substance of imidazoline receptors; however, it has now been established to have affinity for several transmembrane receptors, such as alpha(2)-adrenergic, imidazoline I(1) and glutamatergic NMDA receptors. In addition to activity at these receptors, agmatine irreversibly inhibits neuronal nitric oxide synthase and downregulates inducible nitric oxide synthase. Endogenous agmatine is induced in response to stress and/or inflammation. Stressful conditions that induce agmatine include hypoxic-ischaemia and cold-restraint stress of ulcerogenic proportion. Induction of agmatine in the brain seems to occur in astrocytes, although neurons also synthesise agmatine. The effects of injected agmatine in animals include anticonvulsant-, antineurotoxic- and antidepressant-like actions. Intraperitoneal or intracerebroventricular injections of agmatine rapidly elicit antidepressant-like behavioural changes in the rodent forced swim test and tail suspension test. Intraperitoneal injections of agmatine into rats and mice also elicit acute anxiolytic-like behavioural changes in the elevated

  15. Characterizing novel endogenous retroviruses from genetic variation inferred from short sequence reads

    PubMed Central

    Mourier, Tobias; Mollerup, Sarah; Vinner, Lasse; Hansen, Thomas Arn; Kjartansdóttir, Kristín Rós; Guldberg Frøslev, Tobias; Snogdal Boutrup, Torsten; Nielsen, Lars Peter; Willerslev, Eske; Hansen, Anders J.

    2015-01-01

    From Illumina sequencing of DNA from brain and liver tissue from the lion, Panthera leo, and tumor samples from the pike-perch, Sander lucioperca, we obtained two assembled sequence contigs with similarity to known retroviruses. Phylogenetic analyses suggest that the pike-perch retrovirus belongs to the epsilonretroviruses, and the lion retrovirus to the gammaretroviruses. To determine if these novel retroviral sequences originate from an endogenous retrovirus or from a recently integrated exogenous retrovirus, we assessed the genetic diversity of the parental sequences from which the short Illumina reads are derived. First, we showed by simulations that we can robustly infer the level of genetic diversity from short sequence reads. Second, we find that the measures of nucleotide diversity inferred from our retroviral sequences significantly exceed the level observed from Human Immunodeficiency Virus infections, prompting us to conclude that the novel retroviruses are both of endogenous origin. Through further simulations, we rule out the possibility that the observed elevated levels of nucleotide diversity are the result of co-infection with two closely related exogenous retroviruses. PMID:26493184

  16. Enriched endogenous n-3 polyunsaturated fatty acids alleviate cognitive and behavioral deficits in a mice model of Alzheimer's disease.

    PubMed

    Wu, Kefeng; Gao, Xiang; Shi, Baoyan; Chen, Shiyu; Zhou, Xin; Li, Zhidong; Gan, Yuhong; Cui, Liao; Kang, Jing Xuan; Li, Wende; Huang, Ren

    2016-10-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that accompanied by memory deficits and neuropsychiatric dysfunction. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have seemly therapeutic potential in AD, but the benefit of n-3 PUFAs is still in debates. Here, we employed a transgenic mice carry fat-1 gene to encode n-3 desaturase from Caenorhabditis elegans, which increase endogenous n-3 PUFAs by converting n-6 PUFAs to n-3 PUFAs crossed with amyloid precursor protein (APP) Tg mice to evaluate the protective effects of endogenous n-3 PUFAs on cognitive and behavioral deficits of APP Tg mice. We fed APP, APP/fat-1 and fat-1 mice with n-6 PUFAs rich diet. Brain tissues were collected at 3, 9 and 12 months for fatty acid and gene expression analysis, histology and protein assays. Morris Water Maze Test, open field test and elevated plus maze test were performed to measure the behavior capability. From the results, the expression of fat-1 transgene increased cortical n-3: n-6 PUFAs ratio and n-3 PUFAs concentrations, and sensorimotor dysfunction and cognitive deficits in AD were significantly less severe in APP/fat-1 mice with endogenous n-3 PUFAs than in APP mice controls. The protection against disturbance of spontaneous motor activity and cognitive deficits in AD was strongly correlated with increased n-3: n-6 PUFAs ratio and endogenous n-3 PUFAs, reduced APP generation, inhibited amyloid β peptide aggregation, suppressed nuclear factor-kappa B and astroglia activation, and reduced death of neurons in the cortex of APP/fat-1 mice compared with APP mice controls. In conclusion, our study demonstrates that an available medication with the maintenance of enriched n-3 PUFAs in the brain could slow down cognitive decline and prevent neuropsychological disorder in AD. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. A quantitative and qualitative review of the effects of testosterone on the function and structure of the human social-emotional brain.

    PubMed

    Heany, Sarah J; van Honk, Jack; Stein, Dan J; Brooks, Samantha J

    2016-02-01

    Social and affective research in humans is increasingly using functional and structural neuroimaging techniques to aid the understanding of how hormones, such as testosterone, modulate a wide range of psychological processes. We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of testosterone administration, and of fMRI studies that measured endogenous levels of the hormone, in relation to social and affective stimuli. Furthermore, we conducted a review of structural MRI i.e. voxel based morphometry (VBM) studies which considered brain volume in relation to testosterone levels in adults and in children. In the included testosterone administration fMRI studies, which consisted of female samples only, bilateral amygdala/parahippocampal regions as well as the right caudate were significantly activated by social-affective stimuli in the testosterone condition. In the studies considering endogenous levels of testosterone, stimuli-invoked activations relating to testosterone levels were noted in the bilateral amygdala/parahippocampal regions and the brainstem. When the endogenous testosterone studies were split by sex, the significant activation of the brain stem was seen in the female samples only. Significant stimuli-invoked deactivations relating to endogenous testosterone levels were also seen in the right and left amygdala/parahippocampal regions studies. The findings of the VBM studies were less consistent. In adults larger volumes in the limbic and temporal regions were associated with higher endogenous testosterone. In children, boys showed a positive correlation between testosterone and brain volume in many regions, including the amygdala, as well as global grey matter volume, while girls showed a neutral or negative association between testosterone levels and many brain volumes. In conclusion, amygdalar and parahippocampal regions appear to be key target regions for the acute actions of testosterone in response to social and

  18. Role of Monocarboxylate Transporters in Drug Delivery to the Brain

    PubMed Central

    Vijay, Nisha; Morris, Marilyn E.

    2014-01-01

    Monocarboxylate transporters (MCTs) are known to mediate the transport of short chain monocarboxylates such as lactate, pyruvate and butyrate. Currently, fourteen members of this transporter family have been identified by sequence homology, of which only the first four members (MCT1- MCT4) have been shown to mediate the proton-linked transport of monocarboxylates. Another transporter family involved in the transport of endogenous monocarboxylates is the sodium coupled MCTs (SMCTs). These act as a symporter and are dependent on a sodium gradient for their functional activity. MCT1 is the predominant transporter among the MCT isoforms and is present in almost all tissues including kidney, intestine, liver, heart, skeletal muscle and brain. The various isoforms differ in terms of their substrate specificity and tissue localization. Due to the expression of these transporters in the kidney, intestine, and brain, they may play an important role in influencing drug disposition. Apart from endogenous short chain monocarboxylates, they also mediate the transport of exogenous drugs such as salicylic acid, valproic acid, and simvastatin acid. The influence of MCTs on drug pharmacokinetics has been extensively studied for γ-hydroxybutyrate (GHB) including distribution of this drug of abuse into the brain and the results will be summarized in this review. The physiological role of these transporters in the brain and their specific cellular localization within the brain will also be discussed. This review will also focus on utilization of MCTs as potential targets for drug delivery into the brain including their role in the treatment of malignant brain tumors. PMID:23789956

  19. Hypothesis: Leukocyte Endogenous Mediator/Endogenous Pyrogen/Lymphocyte-Activating Factor Modulates the Development of Nonspecific and Specific Immunity and Affects Nutritional Status

    DTIC Science & Technology

    1982-04-01

    Hypothesis: leukocyte endogenous mediator/ endogenous pyrogen /lymphocyte-activating factor modulates the development of nonspecific and specific... endogenous pyrogen /lympho- NI cyte-activating factor (LEM/EP/LAF) integrates the host’s nonspecific and specific immune responses to infection by...mediator/ endogenous pyrogen /lymphocyte-activating factor, nonspecific and specific immunity, infection, metabolism, nutrition. Introduction LAF which lead

  20. Endogenous digitalis-like factors.

    PubMed

    Schoner, W

    1992-01-01

    The postulate of a natriuretic factor inhibiting the sodium pump in the kidney led to the detection of increased concentrations of endogenous digitalis-like factors in blood after salt loading, in essential hypertension, in pregnancy-induced hypertension and in chronic hypervolaemia. The recent isolation of ouabain or a close isomer thereof from human plasma and the demonstration of a compound similar if not identical to digoxin in adrenals and human urine shows that mammals like non-vertebrates and toads may synthesize cardiac glycosides in their adrenals and possibly in hypothalamus. The hypothalamus also forms other compounds of unknown structure which bind to the cardiac glycoside receptor site. The differential functions of endogenously formed ouabain and of a digoxin-like substance are unclear. The detailed knowledge of the physiological role of both endogenously formed cardiac glycosides in the regulation of blood pressure has still to be worked out.

  1. The Historical Foundation of Learning Disabilities: A Quantitative Synthesis Assessing the Validity of Strauss and Werner's Exogenous versus Endogenous Distinction of Mental Retardation.

    ERIC Educational Resources Information Center

    Kavale, Kenneth A.; Forness, Steven R.

    1985-01-01

    The paper reviews research of A. Strauss and H. Werner on behavioral differences between exogeneous (brain injured) and endogeneous (familial-cultural) mental retardation using quantitative methods of research synthesis. Findings offer little empirical support for the presumed behavioral differences and reveal considerable overlap among the…

  2. Genetic Deletion of the Nociceptin/Orphanin FQ Receptor in the Rat Confers Resilience to the Development of Drug Addiction.

    PubMed

    Kallupi, Marsida; Scuppa, Giulia; de Guglielmo, Giordano; Calò, Girolamo; Weiss, Friedbert; Statnick, Michael A; Rorick-Kehn, Linda M; Ciccocioppo, Roberto

    2017-02-01

    The nociceptin (NOP) receptor is a G-protein-coupled receptor whose natural ligand is the NOP/orphanin FQ (N/OFQ) peptide. Evidence from pharmacological studies suggests that the N/OFQ system is implicated in the regulation of several addiction-related phenomena, such as drug intake, withdrawal, and relapse. Here, to further explore the role of NOP system in addiction, we used NOP (-/-) rats to study the motivation for cocaine, heroin, and alcohol self-administration in the absence of N/OFQ function. Conditioned place preference (CPP) and saccharin (0.2% w/v) self-administration were also investigated. Results showed that NOP (-/-) rats self-administer less cocaine (0.25, 0.125, or 0.5 mg/infusion) both under a fixed ratio 1 and a progressive ratio schedule of reinforcement compared with wild-type (Wt) controls. Consistently, cocaine (10 mg/kg, i.p.) was able to induce CPP in Wt but not in NOP (-/-). When NOP (-/-) rats were tested for heroin (20 μg/infusion) and ethanol (10% v/v) self-administration, they showed significantly lower drug intake compared with Wt. Conversely, saccharin self-administration was not affected by NOP deletion, excluding the possibility of nonspecific learning deficits or generalized disruption of reward mechanisms in NOP (-/-) rats. These findings were confirmed with pharmacological experiments using two selective NOP antagonists, SB-612111 and LY2817412. Both drugs attenuated alcohol self-administration in Wt rats but not in NOP (-/-) rats. In conclusion, our results demonstrate that genetic deletion of NOP receptors confers resilience to drug abuse and support a role for NOP receptor antagonism as a potential treatment option for drug addiction.

  3. Endogenous nandrolone metabolites in human urine: preliminary results to discriminate between endogenous and exogenous origin.

    PubMed

    Le Bizec, Bruno; Bryand, Fabrice; Gaudin, Isabelle; Monteau, Fabrice; Poulain, Frédéric; Andre, François

    2002-02-01

    When administered to human subjects, nandrolone is metabolized into two main products, 19-norandrosterone (19-NA) and 19-noretiocholanolone (19-NE). Recent studies demonstrated the endogenous production of these compounds in man at concentrations very close to the threshold of the International Olympic Committee (IOC), i.e. 2 ng/ml. Because the possibility of reaching or exceeding this fateful limit is difficult to exclude, a complementary biochemical parameter is necessary for the differentiation of endogenous 19-NA and 19-NE production from residues resulting from nandrolone consumption. We measured the endogenous concentrations of 19-NA and 19-NE in 385 urine samples from professional football players, and we studied the phase II metabolite composition in individuals excreting the highest concentrations. The results showed that around 30% of endogenous 19-norandrosterone was sulfo-conjugated, whereas 100% of 19-norandrosterone was excreted conjugated to a glucuronic acid when nandrolone was administered. This significant qualitative difference appears to be a promising complementary criterion to more definitively conclude about an athlete's culpability, especially when nandrolone metabolites are found in the low ng/ml range.

  4. 76 FR 26177 - National Organic Program: Notice of Final Guidance for Accredited Certifying Agents and Certified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... documents are entitled as follows: ``Compost and Vermicompost in Organic Crop Production (NOP 5021); Wild Crop Harvesting (NOP 5022)''; ``Commingling and Contamination Prevention in Organic Production and Handling (NOP 5025)''; and ``The Use of Chlorine Materials in Organic Production and Handling (NOP 5026...

  5. Mobilization of Endogenous Bone Marrow Derived Endothelial Progenitor Cells and Therapeutic Potential of Parathyroid Hormone after Ischemic Stroke in Mice

    PubMed Central

    Wang, Li-Li; Chen, Dongdong; Lee, Jinhwan; Gu, Xiaohuan; Alaaeddine, Ghina; Li, Jimei; Wei, Ling; Yu, Shan Ping

    2014-01-01

    Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH) therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p.) was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1) positive endothelial progenitor cells (EPCs) in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ) and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke. PMID:24503654

  6. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids.

    PubMed

    Zeidan, Fadel; Adler-Neal, Adrienne L; Wells, Rebecca E; Stagnaro, Emily; May, Lisa M; Eisenach, James C; McHaffie, John G; Coghill, Robert C

    2016-03-16

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline. The results

  7. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-09-15

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus.

  8. Effects of electromagnetic pulse exposure on gelatinase of blood-brain barrier in vitro.

    PubMed

    Zhou, Yan; Qiu, Lian-Bo; An, Guang-Zhou; Zhou, Jia-Xing; Du, Le; Ma, Ya-Hong; Guo, Guo-Zhen; Ding, Gui-Rong

    2017-01-01

    The biological effects of electromagnetic pulse (EMP) on the brain have been focused on for years. It was reported that gelatinase played an important role in maintaining brain function through regulating permeability in the blood-brain barrier (BBB). To investigate the effects of EMP on gelatinase of BBB, an in vitro BBB model was established using primary cultured rat brain microvascular endothelial cells (BMVEC), astrocytes and half-contact culture of these cells in a transwell chamber. Cultured supernatant and cells were collected at different time points after exposure to EMP (peak intensity 400 kV/m, rise time 10 ns, pulse width 350 ns, 0.5 pps and 200 pulses). Protein levels of cellular gelatinase MMP-2 and MMP-9, and endogenous inhibitor TIMP-1 and TIMP-2 were detected by Western blot. The activity of gelatinase in culture supernatant was detected by gelatin zymography. It was found that compared with the sham-exposed group, the protein level of MMP-2 was significantly increased at 6 h (p < 0.05), and the protein level of its endogenous inhibitor TIMP-2 did not change after EMP exposure. In addition, the protein levels of MMP-9 and its endogenous inhibitor TIMP-1 did not change after EMP exposure. Gelatin zymography results showed that the activity of MMP-2 in the inner pool and the outer pool of the transwell chamber was significantly increased at 6 h after EMP exposure compared with that of the sham group. These results suggested that EMP exposure could affect the expression and activity of MMP-2 in the BBB model.

  9. Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.

    PubMed

    Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G

    2017-11-01

    γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.

  10. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    PubMed

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  11. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration

    PubMed Central

    Herrera, María I.; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733

  12. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration.

    PubMed

    Herrera, María I; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.

  13. Identification of the convulsant opiate thebaine in mammalian brain.

    PubMed Central

    Kodaira, H; Lisek, C A; Jardine, I; Arimura, A; Spector, S

    1989-01-01

    The convulsant opiate thebaine, an intermediate of morphine biosynthesis, was purified from bovine brain to homogeneity by gel filtration and high-performance liquid chromatography (HPLC) monitored by a radioimmunoassay. The immunoreactive material behaved identically to standard thebaine in two HPLC systems and was confirmed to be thebaine by combined gas chromatography/mass spectrometry. To our knowledge, the presence of thebaine in mammalian tissue has not been demonstrated previously. Codeine and morphine were also found to exist in ovine brain. The presence of thebaine in ovine brain provides strong evidence that morphine and codeine, in various mammalian tissues, are of endogenous origin and actually biosynthesized from a precursor. Images PMID:2911601

  14. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  15. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors

    PubMed Central

    Huang, Susan M.; Bisogno, Tiziana; Trevisani, Marcello; Al-Hayani, Abdulmonem; De Petrocellis, Luciano; Fezza, Filomena; Tognetto, Michele; Petros, Timothy J.; Krey, Jocelyn F.; Chu, Constance J.; Miller, Jeffrey D.; Davies, Stephen N.; Geppetti, Pierangelo; Walker, J. Michael; Di Marzo, Vincenzo

    2002-01-01

    The vanilloid receptor VR1 is a nonselective cation channel that is most abundant in peripheral sensory fibers but also is found in several brain nuclei. VR1 is gated by protons, heat, and the pungent ingredient of “hot” chili peppers, capsaicin. To date, no endogenous compound with potency at this receptor comparable to that of capsaicin has been identified. Here we examined the hypothesis, based on previous structure-activity relationship studies and the availability of biosynthetic precursors, that N-arachidonoyl-dopamine (NADA) is an endogenous “capsaicin-like” substance in mammalian nervous tissues. We found that NADA occurs in nervous tissues, with the highest concentrations being found in the striatum, hippocampus, and cerebellum and the lowest concentrations in the dorsal root ganglion. We also gained evidence for the existence of two possible routes for NADA biosynthesis and mechanisms for its inactivation in rat brain. NADA activates both human and rat VR1 overexpressed in human embryonic kidney (HEK)293 cells, with potency (EC50 ≈ 50 nM) and efficacy similar to those of capsaicin. Furthermore, NADA potently activates native vanilloid receptors in neurons from rat dorsal root ganglion and hippocampus, thereby inducing the release of substance P and calcitonin gene-related peptide (CGRP) from dorsal spinal cord slices and enhancing hippocampal paired-pulse depression, respectively. Intradermal NADA also induces VR1-mediated thermal hyperalgesia (EC50 = 1.5 ± 0.3 μg). Our data demonstrate the existence of a brain substance similar to capsaicin not only with respect to its chemical structure but also to its potency at VR1 receptors. PMID:12060783

  16. The Role of Endogenous Serotonin in Methamphetamine-Induced Neurotoxicity to Dopamine Nerve Endings of the Striatum

    PubMed Central

    Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.

    2010-01-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968

  17. [11C]AZ10419096 - a full antagonist PET radioligand for imaging brain 5-HT1B receptors.

    PubMed

    Lindberg, Anton; Nag, Sangram; Schou, Magnus; Takano, Akihiro; Matsumoto, Junya; Amini, Nahid; Elmore, Charles S; Farde, Lars; Pike, Victor W; Halldin, Christer

    2017-11-01

    The serotonergic system is widely present in all regions of the central nervous system (CNS) and plays a key modulatory role in many of its functions. Positron emission tomography (PET) is used to study several serotonin receptors in CNS in vivo. The G-protein coupled receptor 5-HT 1B is mostly present in the occipital cortex and in midbrain and is linked to several psychiatric disorders. There is evidence that agonist PET radioligands for neuroreceptors are more sensitive to endogenous neurotransmitters than antagonists. Our previously developed 5-HT 1B receptor PET radioligand, [ 11 C]AZ10419369, is now considered a partial agonist. In this work we are aiming to develop a full antagonist PET radioligand for imaging brain 5-HT 1B receptors, and evaluate its sensitivity to increased endogenous serotonin concentration. [ 11 C]AZ10419096 was synthesized by rapid methylation of the prepared corresponding N-desmethyl precursor with [ 11 C]methyl triflate. Five PET measurements were performed in cynomolgus monkeys, consisting of two at baseline, one after treatment of a monkey with a 5-HT 1B antagonist, AR-A000002, and two in which fenfluramine was administered during scanning to induce endogenous serotonin release. [ 11 C]AZ10419096 was synthesized in high yield and purity within 30 min, including purification, formulation and sterile filtration. The baseline PET measurements demonstrated [ 11 C]AZ10419096 to have favorable radioligand characteristics, including high specific binding in brain regions that have high 5-HT 1B density, such as occipital cortex and globus pallidus, as well as subsequent rapid elimination from brain and a minor abundance of lipophilic radiometabolites in plasma. AR-A00002 completely blocked radioligand receptor-specific binding. Fenfluramine produced a distinct displacement of radioligand consistent with an expected increase of synaptic endogenous serotonin concentration. [ 11 C]AZ10419096, a full 5-HT 1B antagonist PET radioligand

  18. Ciliary neurotrophic factor is an endogenous pyrogen.

    PubMed Central

    Shapiro, L; Zhang, X X; Rupp, R G; Wolff, S M; Dinarello, C A

    1993-01-01

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) following intravenous injection; CNTF fever was blocked by pretreatment with indomethacin. The fever induced by CNTF was not due to contaminating endotoxins. Increasing doses of CNTF resulted in prolongation of the fever, suggesting the subsequent induction of additional endogenous pyrogenic activity. After passive transfer of plasma obtained during CNTF-induced fever, endogenous pyrogen activity was not present in the circulation; CNTF also did not induce the endogenous pyrogens interleukin 1, tumor necrosis factor, or interleukin 6 in vitro. Nevertheless, a second endogenous pyrogen may originate within the central nervous system following the systemic injection of CNTF. Of the four endogenous pyrogens described to date (interleukin 1, tumor necrosis factor, interferon, and interleukin 6), CNTF, like interleukin 6, utilizes the cell-surface gp 130 signal-transduction apparatus. PMID:8378338

  19. Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers

    PubMed Central

    Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R

    2016-01-01

    Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847

  20. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication

    PubMed Central

    Ouzzine, Mohamed; Gulberti, Sandrine; Ramalanjaona, Nick; Magdalou, Jacques; Fournel-Gigleux, Sylvie

    2014-01-01

    UDP-glucuronosyltransferases (UGTs) form a multigenic family of membrane-bound enzymes expressed in various tissues, including brain. They catalyze the formation of β-D-glucuronides from structurally unrelated substances (drugs, other xenobiotics, as well as endogenous compounds) by the linkage of glucuronic acid from the high energy donor, UDP-α-D-glucuronic acid. In brain, UGTs actively participate to the overall protection of the tissue against the intrusion of potentially harmful lipophilic substances that are metabolized as hydrophilic glucuronides. These metabolites are generally inactive, except for important pharmacologically glucuronides such as morphine-6-glucuronide. UGTs are mainly expressed in endothelial cells and astrocytes of the blood brain barrier (BBB). They are also associated to brain interfaces devoid of BBB, such as circumventricular organ, pineal gland, pituitary gland and neuro-olfactory tissues. Beside their key-role as a detoxication barrier, UGTs play a role in the steady-state of endogenous compounds, like steroids or dopamine (DA) that participate to the function of the brain. UGT isoforms of family 1A, 2A, 2B and 3A are expressed in brain tissues to various levels and are known to present distinct but overlapping substrate specificity. The importance of these enzyme species with regard to the formation of toxic, pharmacologically or physiologically relevant glucuronides in the brain will be discussed. PMID:25389387

  1. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  2. Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis

    PubMed Central

    Basuroy, Shyamali; Tcheranova, Dilyara; Bhattacharya, Sujoy; Leffler, Charles W.

    2011-01-01

    We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease. PMID:21123734

  3. Are endogenous sex hormones related to DNA damage in paradoxically sleep-deprived female rats?

    PubMed

    Andersen, Monica L; Ribeiro, Daniel A; Alvarenga, Tathiana A; Silva, Andressa; Araujo, Paula; Zager, Adriano; Tenorio, Neuli M; Tufik, Sergio

    2010-02-01

    The aim of this investigation was to evaluate overall DNA damage induced by experimental paradoxical sleep deprivation (PSD) in estrous-cycling and ovariectomized female rats to examine possible hormonal involvement during DNA damage. Intact rats in different phases of the estrous cycle (proestrus, estrus, and diestrus) or ovariectomized female Wistar rats were subjected to PSD by the single platform technique for 96 h or were maintained for the equivalent period as controls in home-cages. After this period, peripheral blood and tissues (brain, liver, and heart) were collected to evaluate genetic damage using the single cell gel (comet) assay. The results showed that PSD caused extensive genotoxic effects in brain cells, as evident by increased DNA migration rates in rats exposed to PSD for 96 h when compared to negative control. This was observed for all phases of the estrous cycle indistinctly. In ovariectomized rats, PSD also led to DNA damage in brain cells. No significant statistically differences were detected in peripheral blood, the liver or heart for all groups analyzed. In conclusion, our data are consistent with the notion that genetic damage in the form of DNA breakage in brain cells induced by sleep deprivation overrides the effects related to endogenous female sex hormones. Copyright 2009 Elsevier Inc. All rights reserved.

  4. Peptides and the blood-brain barrier.

    PubMed

    Banks, William A

    2015-10-01

    The demonstration that peptides and regulatory proteins can cross the blood-brain barrier (BBB) is one of the major contributions of Dr. Abba J. Kastin. He was the first to propose that peptides could cross the BBB, the first to show that an endogenous peptide did so, and the first to describe a saturable transport system at the BBB for peptides. His work shows that in crossing the BBB, peptides and regulatory proteins act as informational molecules, informing the brain of peripheral events. Brain-to-blood passage helps to control levels of peptides with the brain and can deliver information in the brain-to-blood direction. He showed that the transporters for peptides and proteins are not static, but respond to developmental and physiological changes and are affected by disease states. As such, the BBB is adaptive to the needs of the CNS, but when that adaption goes awry, the BBB can be a cause of disease. The mechanisms by which peptides and proteins cross the BBB offer opportunities for drug delivery of these substances or their analogs to the brain in the treatment of diseases of the central nervous system. Published by Elsevier Inc.

  5. Peptides and the blood–brain barrier

    PubMed Central

    Banks, William A.

    2016-01-01

    The demonstration that peptides and regulatory proteins can cross the blood–brain barrier (BBB) is one of the major contributions of Dr. Abba J. Kastin. He was the first to propose that peptides could cross the BBB, the first to show that an endogenous peptide did so, and the first to describe a saturable transport system at the BBB for peptides. His work shows that in crossing the BBB, peptides and regulatory proteins act as informational molecules, informing the brain of peripheral events. Brain-to-blood passage helps to control levels of peptides with the brain and can deliver information in the brain-to-blood direction. He showed that the transporters for peptides and proteins are not static, but respond to developmental and physiological changes and are affected by disease states. As such, the BBB is adaptive to the needs of the CNS, but when that adaption goes awry, the BBB can be a cause of disease. The mechanisms by which peptides and proteins cross the BBB offer opportunities for drug delivery of these substances or their analogs to the brain in the treatment of diseases of the central nervous system. PMID:25805003

  6. Endogenous timing factors in bird migration

    NASA Technical Reports Server (NTRS)

    Gwinner, E. G.

    1972-01-01

    Several species of warbler birds were observed in an effort to determine what initiates and terminates migration. Environmental and endogenous timing mechanisms were analyzed. The results indicate that endogenous stimuli are dominant factors for bird migration especially for long distances. It was concluded that environmental factors act as an assist mechanism.

  7. Identification of a botulinum C3-like enzyme in bovine brain that catalyzes ADP-ribosylation of GTP-binding proteins.

    PubMed

    Maehama, T; Takahashi, K; Ohoka, Y; Ohtsuka, T; Ui, M; Katada, T

    1991-06-05

    A novel enzyme activity was found in bovine brain cytosol that transfers the ADP-ribosyl moiety of NAD to proteins with Mr values of 22,000 and 25,000. The substrates were the same GTP-binding proteins serving as the substrate of an ADP-ribosyltransferase C3 which was produced by a type C strain of Clostridium botulinum. The brain enzyme was partially purified from the cytosol and had a molecular mass of approximately 20,000 on a gel filtration column. The brain endogenous enzyme displayed unique properties similar to those observed with botulinum C3 enzyme. The enzyme activity was markedly stimulated by a protein factor that had been initially found in the cytosol as an activator for botulinum C3-catalyzed ADP-ribosylation (Ohtsuka, T., Nagata, K., Iiri, T., Nozawa, Y., Ueno, K., Ui, M., and Katada, T. (1989) J. Biol. Chem. 264, 15000-15005). The activity of the brain enzyme was also affected by certain types of detergents or phospholipids. The substrate of the brain enzyme was specific for GTP-binding proteins serving as the substrate of botulinum C3 enzyme; the alpha-subunits of trimeric GTP-binding proteins which served as the substrate of cholera or pertussis toxin were not ADP-ribosylated by the endogenous enzyme. Thus, this is the first report showing an endogenous enzyme in mammalian cells that catalyzes ADP-ribosylation of small molecular weight GTP-binding proteins.

  8. Attenuating Nicotine Reinforcement and Relapse by Enhancing Endogenous Brain Levels of Kynurenic Acid in Rats and Squirrel Monkeys.

    PubMed

    Secci, Maria E; Auber, Alessia; Panlilio, Leigh V; Redhi, Godfrey H; Thorndike, Eric B; Schindler, Charles W; Schwarcz, Robert; Goldberg, Steven R; Justinova, Zuzana

    2017-07-01

    The currently available antismoking medications have limited efficacy and often fail to prevent relapse. Thus, there is a pressing need for newer, more effective treatment strategies. Recently, we demonstrated that enhancing endogenous levels of kynurenic acid (KYNA, a neuroinhibitory product of tryptophan metabolism) counteracts the rewarding effects of cannabinoids by acting as a negative allosteric modulator of α7 nicotinic receptors (α7nAChRs). As the effects of KYNA on cannabinoid reward involve nicotinic receptors, in the present study we used rat and squirrel monkey models of reward and relapse to examine the possibility that enhancing KYNA can counteract the effects of nicotine. To assess specificity, we also examined models of cocaine reward and relapse in monkeys. KYNA levels were enhanced by administering the kynurenine 3-monooxygenase (KMO) inhibitor, Ro 61-8048. Treatment with Ro 61-8048 decreased nicotine self-administration in rats and monkeys, but did not affect cocaine self-administration. In rats, Ro 61-8048 reduced the ability of nicotine to induce dopamine release in the nucleus accumbens shell, a brain area believed to underlie nicotine reward. Perhaps most importantly, Ro 61-8048 prevented relapse-like behavior when abstinent rats or monkeys were reexposed to nicotine and/or cues that had previously been associated with nicotine. Ro 61-8048 was also effective in monkey models of cocaine relapse. All of these effects of Ro 61-8048 in monkeys, but not in rats, were reversed by pretreatment with a positive allosteric modulator of α7nAChRs. These findings suggest that KMO inhibition may be a promising new approach for the treatment of nicotine addiction.

  9. 7 CFR 1280.406 - Exemption.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... percent organic under the National Organic Program (NOP) (7 CFR part 205), except as provided for in... percent organic under the NOP; or an exporter who exports only products that are eligible to be labeled as 100 percent organic under the NOP; and who operates under an approved NOP system plan and is not a...

  10. 7 CFR 1280.406 - Exemption.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... percent organic under the National Organic Program (NOP) (7 CFR part 205), except as provided for in... percent organic under the NOP; or an exporter who exports only products that are eligible to be labeled as 100 percent organic under the NOP; and who operates under an approved NOP system plan and is not a...

  11. 7 CFR 1280.406 - Exemption.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... percent organic under the National Organic Program (NOP) (7 CFR part 205), except as provided for in... percent organic under the NOP; or an exporter who exports only products that are eligible to be labeled as 100 percent organic under the NOP; and who operates under an approved NOP system plan and is not a...

  12. The endogenous and reactive depression subtypes revisited: integrative animal and human studies implicate multiple distinct molecular mechanisms underlying major depressive disorder.

    PubMed

    Malki, Karim; Keers, Robert; Tosto, Maria Grazia; Lourdusamy, Anbarasu; Carboni, Lucia; Domenici, Enrico; Uher, Rudolf; McGuffin, Peter; Schalkwyk, Leonard C

    2014-05-07

    Traditional diagnoses of major depressive disorder (MDD) suggested that the presence or absence of stress prior to onset results in either 'reactive' or 'endogenous' subtypes of the disorder, respectively. Several lines of research suggest that the biological underpinnings of 'reactive' or 'endogenous' subtypes may also differ, resulting in differential response to treatment. We investigated this hypothesis by comparing the gene-expression profiles of three animal models of 'reactive' and 'endogenous' depression. We then translated these findings to clinical samples using a human post-mortem mRNA study. Affymetrix mouse whole-genome oligonucleotide arrays were used to measure gene expression from hippocampal tissues of 144 mice from the Genome-based Therapeutic Drugs for Depression (GENDEP) project. The study used four inbred mouse strains and two depressogenic 'stress' protocols (maternal separation and Unpredictable Chronic Mild Stress) to model 'reactive' depression. Stress-related mRNA differences in mouse were compared with a parallel mRNA study using Flinders Sensitive and Resistant rat lines as a model of 'endogenous' depression. Convergent genes differentially expressed across the animal studies were used to inform candidate gene selection in a human mRNA post-mortem case control study from the Stanley Brain Consortium. In the mouse 'reactive' model, the expression of 350 genes changed in response to early stresses and 370 in response to late stresses. A minimal genetic overlap (less than 8.8%) was detected in response to both stress protocols, but 30% of these genes (21) were also differentially regulated in the 'endogenous' rat study. This overlap is significantly greater than expected by chance. The VAMP-2 gene, differentially expressed across the rodent studies, was also significantly altered in the human study after correcting for multiple testing. Our results suggest that 'endogenous' and 'reactive' subtypes of depression are associated with largely

  13. Endogenous Peer Effects: Fact or Fiction?

    ERIC Educational Resources Information Center

    Yeung, Ryan; Nguyen-Hoang, Phuong

    2016-01-01

    The authors examine endogenous peer effects, which occur when a student's behavior or outcome is a function of the behavior or outcome of his or her peer group. Endogenous peer effects have important implications for educational policies such as busing, school choice and tracking. In this study, the authors quantitatively review the literature on…

  14. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain.

    PubMed

    Pichery, Mélanie; Mirey, Emilie; Mercier, Pascale; Lefrancais, Emma; Dujardin, Arnaud; Ortega, Nathalie; Girard, Jean-Philippe

    2012-04-01

    IL-33 (previously known as NF from high endothelial venules) is an IL-1 family cytokine that signals through the ST2 receptor and drives cytokine production in mast cells, basophils, eosinophils, invariant NKT and NK cells, Th2 lymphocytes, and type 2 innate immune cells (natural helper cells, nuocytes, and innate helper 2 cells). Little is known about endogenous IL-33; for instance, the cellular sources of IL-33 in mouse tissues have not yet been defined. In this study, we generated an Il-33-LacZ gene trap reporter strain (Il-33(Gt/Gt)) and used this novel tool to analyze expression of endogenous IL-33 in vivo. We found that the Il-33 promoter exhibits constitutive activity in mouse lymphoid organs, epithelial barrier tissues, brain, and embryos. Immunostaining with anti-IL-33 Abs, using Il-33(Gt/Gt) (Il-33-deficient) mice as control, revealed that endogenous IL-33 protein is highly expressed in mouse epithelial barrier tissues, including stratified squamous epithelia from vagina and skin, as well as cuboidal epithelium from lung, stomach, and salivary gland. Constitutive expression of IL-33 was not detected in blood vessels, revealing the existence of species-specific differences between humans and mice. Importantly, IL-33 protein was always localized in the nucleus of producing cells with no evidence for cytoplasmic localization. Finally, strong expression of the Il-33-LacZ reporter was also observed in inflamed tissues, in the liver during LPS-induced endotoxin shock, and in the lung alveoli during papain-induced allergic airway inflammation. Together, our findings support the possibility that IL-33 may function as a nuclear alarmin to alert the innate immune system after injury or infection in epithelial barrier tissues.

  15. Susceptibility of human liver cells to porcine endogenous retrovirus.

    PubMed

    Lin, Xinzi; Qi, Lin; Li, Zhiguo; Chi, Hao; Lin, Wanjun; Wang, Yan; Jiang, Zesheng; Pan, Mingxin; Gao, Yi

    2013-12-01

    The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.

  16. When the endogenous hallucinogenic trace amine N,N-dimethyltryptamine meets the sigma-1 receptor.

    PubMed

    Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D Bruce

    2009-03-10

    N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine-associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors.

  17. When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor

    PubMed Central

    Su, Tsung-Ping; Hayashi, Teruo; Vaupel, D. Bruce

    2011-01-01

    N,N-dimethyltryptamine (DMT) is a hallucinogen found endogenously in human brain that is commonly recognized to target the 5-hydroxytryptamine 2A receptor or the trace amine–associated receptor to exert its psychedelic effect. DMT has been recently shown to bind sigma-1 receptors, which are ligand-regulated molecular chaperones whose function includes inhibiting various voltage-sensitive ion channels. Thus, it is possible that the psychedelic action of DMT might be mediated in part through sigma-1 receptors. Here, we present a hypothetical signaling scheme that might be triggered by the binding of DMT to sigma-1 receptors. PMID:19278957

  18. 2-Naphthalenesulphanyl-L-aspartyl-2-(phenethyl) amide (2-NAP) and food intake in rats: evidence that endogenous peripheral CCK does not play a major role as a satiety factor.

    PubMed Central

    Ebenezer, I. S.; Baldwin, B. A.

    1995-01-01

    1. The demonstration that systemic administration of the CCKA receptor antagonist, devazepide, increases food intake in rats has provided the strongest support for the hypothesis that endogenous peripherally released cholecystokinin (CCK) acts as a satiety factor. However, interpretation of these results has been confounded by the fact that devazepide can enter the brain from the systemic circulation and may increase food intake by a central action. The present study was therefore undertaken to confirm the hypothesis that endogenous peripheral CCK is a satiety factor by investigating the effects of a novel CCKA receptor antagonist, 2-NAP, which is unlikely to cross the blood brain barrier, on food intake in rats. 2. 2-NAP (1-16 mg kg-1, i.p.) had no significant effects on the intake of a test meal in rats. 3. Pretreatment of rats with 2-NAP (2 mg kg-1, s.c.) abolished the inhibitory effects of exogenous peripheral CCK (5 micrograms kg-1, i.p.) on food intake. 4. In agreement with previous results, devazepide (50-200 micrograms kg-1, i.p.) significantly increased the intake of a test meal in rats. 5. The observations that 2-NAP, which is unlikely to penetrate the blood brain barrier, had no effect on food intake, but that 2-NAP abolished the suppressant effect of exogenous peripheral CCK, suggest that endogenously released peripheral CCK is not important as a satiety factor in rats. PMID:8581271

  19. Are endogenous cardenolides controlled by atrial natriuretic peptide.

    PubMed

    Brar, Kanwarjeet S; Gao, Yonglin; El-Mallakh, Rif S

    2016-07-01

    Endogenous cardenolides are digoxin-like substances and ouabain-like substances that have been implicated in the pathogenesis of hypertension and mood disorders in clinical and pre-clinical studies. Regulatory signals for endogenous cardenolides are still unknown. These endogenous compounds are believed to be produced by the adrenal gland in the periphery and the hypothalamus in the central nervous system, and constitute part of an hormonal axis that may regulate the catalytic activity of the α subunit of Na(+)/K(+)-ATPase. A review of literature suggests that there is great overlap in physiological environments that are associated with either elevations or reductions in the levels of atrial natriuretic peptide (ANP) and endogenous cardenolides. This suggests that these two factors may share a common regulatory signal or perhaps that ANP may be involved in the regulation of endogenous cardenolides. Copyright © 2016. Published by Elsevier Ltd.

  20. The role of endogenous serotonin in methamphetamine-induced neurotoxicity to dopamine nerve endings of the striatum.

    PubMed

    Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M

    2010-11-01

    Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.

  1. 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarcz, R.; Okuno, E.; White, R.J.

    1988-06-01

    An excess of the tryptophan metabolite quinolinic acid in the brain has been hypothetically related to the pathogenesis of Huntington disease. Quinolinate's immediate biosynthetic enzyme, 3-hydroxyanthranilate oxygenase, has now been detected in human brain tissue. The activity of 3-hydroxyanthranilate oxygenase is increased in Huntington disease brains as compared to control brains. The increment is particularly pronounced in the striatum, which is known to exhibit the most prominent nerve-cell loss in Huntington disease. Thus, the Huntington disease brain has a disproportionately high capability to produce the endogenous excitotoxin quinolinic acid. This finding may be of relevance for clinical, neuropathologic, and biochemicalmore » features associated with Huntington disease.« less

  2. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network

    PubMed Central

    Boettiger, Charlotte A.; Kelley, Elizabeth A.; Mitchell, Jennifer M.; D’Esposito, Mark; Fields, Howard L.

    2009-01-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with Naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROI) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX’s therapeutic effects. PMID:19258022

  3. Relationship between Personality Traits and Endogenous Analgesia: The Role of Harm Avoidance.

    PubMed

    Nahman-Averbuch, Hadas; Yarnitsky, David; Sprecher, Elliot; Granovsky, Yelena; Granot, Michal

    2016-01-01

    Whether psychological factors such as anxiety and pain catastrophizing levels influence the expression of endogenous analgesia in general and, more specifically, the conditioned pain modulation (CPM) response is still under debate. It may be assumed that other psychological characteristics also play a role in the CPM response. The neurotransmitters serotonin, dopamine, and norepinephrine are involved both in CPM, as well as personality traits such as harm avoidance (HA), novelty seeking (NS), and reward dependence (RD), which can be obtained by the Tridimensional Personality Questionnaire (TPQ). However, the associations between these traits (HA, NS, and RD) with endogenous analgesia revealed by CPM have not yet been explored. Healthy middle-age subjects (n = 28) completed the TPQ, Spielberger's State Anxiety Inventory, and the Pain Catastrophizing Scale and were assessed for CPM paradigms using thermal phasic temporal summation as the "test stimulus" and hand immersion into hot water bath (CPM water) or contact heat (CPM contact) for "conditioning stimulus." Higher levels of HA were associated with less-efficient CPM responses obtained by both paradigms: CPM water (r = 0.418, P = 0.027) and CPM contact (r = 0.374, P = 0.050). However, NS and RD were not associated with the other measurements. No significant relationship was observed between state anxiety and pain catastrophizing levels and the CPM responses. The relationship between the capacity of endogenous analgesia and the tendency to avoid aversive experience can be explained by mutual mechanisms involving similar neurotransmitters or brain areas. These findings illuminate the key role of harm avoidance obtained by the TPQ in determining the characteristics of pain modulation profile. © 2014 World Institute of Pain.

  4. Endogenous versus exogenous shocks in systems with memory

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Helmstetter, A.

    2003-02-01

    Systems with long-range persistence and memory are shown to exhibit different precursory as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or from a stochastic forcing origin which may be external or be an effective coarse-grained description of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind of constructive interference of accumulated fluctuations whose impacts survive longer than the large shocks themselves. As a consequence, the recovery after an endogenous shock is in general slower at early times and can be at long times either slower or faster than after an exogenous perturbation. This offers the tantalizing possibility of distinguishing between an endogenous versus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in investigating the exogenous versus self-organized origins in problems such as the causes of major biological extinctions, of change of weather regimes and of the climate, in tracing the source of social upheaval and wars, and so on. Sornette et al., Volatility fingerprints of large stocks: endogenous versus exogenous, cond-mat/0204626 has already shown how this concept can be applied concretely to differentiate the effects on financial markets of the 11 September 2001 attack or of the coup against Gorbachev on 19 August 1991 (exogenous) from financial crashes such as October 1987 (endogenous).

  5. A Controlled, Randomized-Blinded Clinical Trial to Assess the Efficacy of a Nitric Oxide Releasing Patch in the Treatment of Cutaneous Leishmaniasis by Leishmania (V.) panamensis

    PubMed Central

    López-Jaramillo, Patricio; Rincón, Melvin Y.; García, Ronald G.; Silva, Sandra Y.; Smith, Erin; Kampeerapappun, Piyaporn; García, Carlos; Smith, Daniel J.; López, Marcos; Vélez, Iván D.

    2010-01-01

    A topical nanofiber nitric oxide (NO) releasing patch (≈3.5 μmol NO/cm2/day for 20 days, NOP) was compared with intramuscular meglumine antimoniate (Glucantime, 20 mg/kg/day for 20 days) for the treatment of cutaneous leishmaniasis (CL) caused by Leishmania (V.) panamensis in Santander and Tolima, Colombia. A double-blind, randomized, placebo-controlled, clinical trial was conducted to determine whether the NOP is as effective as Glucantime for the treatment of CL. Patients were randomly assigned to Glucantime and placebo patches or NOP and placebo of Glucantime. The cure rates after a 3-month follow-up were 94.8% for the group that received Glucantime compared with 37.1% in the NOP group. Despite the lower efficacy of the NOP versus Glucantime, a significantly lower frequency of non-serious adverse events and a reduced variation in serum markers were observed in patients treated with NOP. Treatment of CL with NOP resulted in a lower effectiveness compared with Glucantime; however, the low frequency of adverse events and the facility of topic administration justify the development of new generations of NOP systems for the treatment of CL. PMID:20595484

  6. The Therapeutic Potential of Nociceptin/Orphanin FQ Receptor Agonists as Analgesics without Abuse Liability

    PubMed Central

    2012-01-01

    Although mu opioid (MOP) receptor agonists are the most commonly used analgesics for the treatment of moderate to severe pain in the clinic, the side effects of MOP agonists such as abuse liability limit their value as a medication. Research to identify novel analgesics without adverse effects is pivotal to advance the health care of humans. The nociceptin/orphanin FQ peptide (NOP) receptor, the fourth opioid receptor subtype, mediates distinctive actions in nonhuman primates which suggests the possibility that activity at this receptor may result in strong analgesia in the absence of virtually all of the side effects associated with MOP agonists. The present review highlights the recent progress of pharmacological studies of NOP-related ligands in primates. Selective NOP agonists, either peptidic or nonpeptidic, produce full analgesia in various assays in primates, when delivered systemically or intrathecally. Yet small molecule NOP agonists do not serve as reinforcers, indicating a lack of abuse liability. Given that NOP agonists have low abuse liability and that coactivation of NOP and MOP receptors produces synergistic antinociception, it is worth developing bifunctional NOP/MOP ligands. The outcomes of these studies and recent developments provide new perspectives to establish a translational bridge for understanding the biobehavioral functions of NOP receptors in primates and for facilitating the development of NOP-related ligands as a new generation of analgesics without abuse liability in humans. PMID:23421672

  7. Are there endogenous stem cells in the spinal cord?

    PubMed

    Ferrucci, Michela; Ryskalin, Larisa; Busceti, Carla L; Gaglione, Anderson; Biagioni, Francesca; Fornai, Francesco

    2017-12-01

    Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.

  8. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    PubMed

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen

  9. Abnormal brain aging as a radical-related disease: A new target for nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujibayashi, Y.; Yamamoto, S.; Waki, A.

    DNA damages caused by endogenously produced radicals are closely correlated with aging. Among them, mitochondrial DNA (mtDNA) deletions have been reported as a memory of DNA damage by oxygen radicals. In fact, clinical as well as experimental studies indicated the accumulation of deleted mtDNA in the brain, myocardium and son on, in aged subjects. In our previous work, radioiodinated radical trapping agent, p-iodophenyl-N-t-butylnitrone, and hypoxia imaging agent, Cu-62 diacetyl-bis-N-4-methyl-thiosemicarbazone have been developed for the diagnosis of radical-related diseases, such as ischemic, inflammation, cancer or aging. The aim of the present work was to evaluate these agents for brain aging studies.more » In our university, an unique animal model, a senescence accelerated model mouse (SAM), has been established. Among the various substrains, SAMP8 showing memory deterioration in its young age ({approximately}3 month) was basically evaluated as an abnormal brain aging model with mtDNA deletion. As controls, SAMR1 showing normal aging and ddY mice were used. MtDNA deletion n the brain was analyzed with polymerase-chain reaction (PCR) method, and relationship between mtDNA deletion and brain uptake of IPBN or Cu-62-ATSM was studied. In 1-3 month old SAMP8 brain, multiple mtDNa deletions were already found and their content was significantly higher than that of SAMR1 or age-matched ddY control. Thus, it was cleared that SAMP8 brain has high tendency to be attacked by endogenously produced oxygen radicals, possibly from its birth. Both IPBN and Cu-ATSM showed significantly higher accumulation in the SAMP8 brain than in the SAMR1 brain, indicating that these agents have high possibility for the early detection of abnormal brain aging as a radical-related disease.« less

  10. The Endogenous-Exogenous Partition in Attribution Theory

    ERIC Educational Resources Information Center

    Kruglanski, Arie W.

    1975-01-01

    Within lay explanation of actions, several significant inferences are assumed to follow from the partition between endogenous and exogenous attributions. An endogenous action is judged to constitute an end in itself; an exogenous action is judged to serve as a means to some further end. (Editor/RK)

  11. Spinal Activation of Tropomyosin Receptor Kinase-B Recovers the Impaired Endogenous Analgesia in Neuropathic Pain Rats.

    PubMed

    Kato, Daiki; Suto, Takashi; Obata, Hideaki; Saito, Shigeru

    2018-06-20

    Although endogenous analgesia plays an important role in controlling pain states, chronic pain patients exhibit decreased endogenous analgesia compared to healthy individuals. In rats, noxious stimulus-induced analgesia (NSIA), which is an indicator of endogenous analgesia, diminished 6 weeks after spinal nerve ligation (SNL6W). A recent study in rats with deleted noradrenergic fibers demonstrated that the noradrenergic fibers were essential to NSIA. It has also been reported that brain-derived neurotrophic factor increased spinal noradrenergic fibers. Therefore, this study examined the effect of TrkB activation, which is the receptor for brain-derived neurotrophic factor, on impaired NSIA in SNL6W rats. In addition, we also examined the effect of endogenous analgesia on acute incisional pain. After 5 daily intraperitoneal injections of 7,8-dihydroxyflavone (7,8-DHF, TrkB agonist, 5 mg/kg), NSIA was examined by measuring the withdrawal threshold increment in the left (contralateral to nerve ligation) hindpaw at 30 minutes after capsaicin injection (250 μg) in the forepaw. K252a (TrkB antagonist, 2 μg) was administrated intrathecally for 5 days. Idazoxan (α2 adrenoceptor antagonist, 30 μg), atropine (muscarinic antagonist, 30 μg), and propranolol (nonselective β adrenoceptor antagonist, 30 μg) were administered intrathecally for 15 minutes before capsaicin injection. Microdialysis and immunohistochemistry were performed to examine the noradrenergic plasticity in the spinal dorsal horn. A hindpaw incision was performed on the left (contralateral to nerve ligation) hindpaw. Data were analyzed by 1-way analyses of variance or 2-way repeated-measures 1-way analysis of variance followed by a Student t test with Bonferroni correction. Five daily intraperitoneal injections of 7,8-DHF restored the attenuated NSIA in SNL6W rats (n = 7, P = .002; estimated treatment effect [95% CI]: 62.9 [27.0-98.7] g), with this effect blocked by 5 daily intrathecal coadministrations

  12. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  13. Purification and protein composition of endogenous rat viruses.

    PubMed

    Hlubinová, K; Prachar, J; Vrbenská, A; Matoska, J; Simkovic, D

    1984-01-01

    Endogenous retroviruses are not in the majority of cases the cause of any neoplasia, except for the laboratory conditions. As far as they might serve for the evolution of pathogenic retroviruses more attention should have been paid to them. In this paper we introduce some approaches to the purification of rat endogenous retroviruses to such a degree of purity that enabled satisfactory SDS-PAGE analysis of its structural proteins. Purities of samples obtained by usual purification methods, long-term isopycnic centrifugation at a high gravity force and velocity centrifugation are compared. Protein profile of rat endogenous virus in SDS-PAGE is compared with the ones of other retroviruses. For the first time the evidence was obtained for the striking similarity between electrophoretic protein profile of rat endogenous virus WERC and feline leukemia virus. The major structural proteins of rat endogenous retrovirus and feline leukemia virus cannot be distinguished even when resolution long gradient PAGE had been employed. The accordance of electrophoretic mobilities of major structural proteins in SDS-PAGE can indicate the relatedness of retroviruses.

  14. Early brain injury alters the blood-brain barrier phenotype in parallel with β-amyloid and cognitive changes in adulthood.

    PubMed

    Pop, Viorela; Sorensen, Dane W; Kamper, Joel E; Ajao, David O; Murphy, M Paul; Head, Elizabeth; Hartman, Richard E; Badaut, Jérôme

    2013-02-01

    Clinical studies suggest that traumatic brain injury (TBI) hastens cognitive decline and development of neuropathology resembling brain aging. Blood-brain barrier (BBB) disruption following TBI may contribute to the aging process by deregulating substance exchange between the brain and blood. We evaluated the effect of juvenile TBI (jTBI) on these processes by examining long-term alterations of BBB proteins, β-amyloid (Aβ) neuropathology, and cognitive changes. A controlled cortical impact was delivered to the parietal cortex of male rats at postnatal day 17, with behavioral studies and brain tissue evaluation at 60 days post-injury (dpi). Immunoglobulin G extravasation was unchanged, and jTBI animals had higher levels of tight-junction protein claudin 5 versus shams, suggesting the absence of BBB disruption. However, decreased P-glycoprotein (P-gp) on cortical blood vessels indicates modifications of BBB properties. In parallel, we observed higher levels of endogenous rodent Aβ in several brain regions of the jTBI group versus shams. In addition at 60 dpi, jTBI animals displayed systematic search strategies rather than relying on spatial memory during the water maze. Together, these alterations to the BBB phenotype after jTBI may contribute to the accumulation of toxic products, which in turn may induce cognitive differences and ultimately accelerate brain aging.

  15. Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.

    PubMed

    Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew

    2018-05-17

    Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins

  16. Explaining Cigarette Smoking: An Endogenous-Exogenous Analysis.

    ERIC Educational Resources Information Center

    McKillip, Jack

    Kruglanski's endogenous-exogenous partition, when applied to reasons given by smokers for smoking cigarettes, distinguishes two types of actions: (1) endogenous reasons implying that the behavior of consuming the cigarette is the goal of the action and the actor is positive toward the behavior, and (2) exogenous reasons implying that the behavior…

  17. Endogenous lipoid pneumonia associated with Legionella pneumophila serogroup 1.

    PubMed

    Hui, Chee-Kin

    2013-03-01

    Endogenous lipoid pneumonia is an uncommon condition. This is a report of a 29-year-old woman diagnosed with endogenous lipoid pneumonia associated with Legionella pneumophila serogroup 1 infection. The patient's endogenous lipoid pneumonia resolved completely after treatment for Legionella pneumophila infection. This suggests that early diagnosis and aggressive treatment of the underlying infection may prevent any long-term sequelae of lipoid pneumonia.

  18. Endogenous opiates and behavior: 2014.

    PubMed

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  19. A surrogate analyte method to determine D-serine in mouse brain using liquid chromatography-tandem mass spectrometry.

    PubMed

    Kinoshita, Kohnosuke; Jingu, Shigeji; Yamaguchi, Jun-ichi

    2013-01-15

    A bioanalytical method for determining endogenous d-serine levels in the mouse brain using a surrogate analyte and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. [2,3,3-(2)H]D-serine and [(15)N]D-serine were used as a surrogate analyte and an internal standard, respectively. The surrogate analyte was spiked into brain homogenate to yield calibration standards and quality control (QC) samples. Both endogenous and surrogate analytes were extracted using protein precipitation followed by solid phase extraction. Enantiomeric separation was achieved on a chiral crown ether column with an analysis time of only 6 min without any derivatization. The column eluent was introduced into an electrospray interface of a triple-quadrupole mass spectrometer. The calibration range was 1.00 to 300 nmol/g, and the method showed acceptable accuracy and precision at all QC concentration levels from a validation point of view. In addition, the brain d-serine levels of normal mice determined using this method were the same as those obtained by a standard addition method, which is time-consuming but is often used for the accurate measurement of endogenous substances. Thus, this surrogate analyte method should be applicable to the measurement of d-serine levels as a potential biomarker for monitoring certain effects of drug candidates on the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The Increased Endogenous Sulfur Dioxide Acts as a Compensatory Mechanism for the Downregulated Endogenous Hydrogen Sulfide Pathway in the Endothelial Cell Inflammation

    PubMed Central

    Zhang, Da; Wang, Xiuli; Tian, Xiaoyu; Zhang, Lulu; Yang, Guosheng; Tao, Yinghong; Liang, Chen; Li, Kun; Yu, Xiaoqi; Tang, Xinjing; Tang, Chaoshu; Zhou, Jing; Kong, Wei; Du, Junbao; Huang, Yaqian; Jin, Hongfang

    2018-01-01

    Endogenous hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as important regulators to control endothelial cell function and protect endothelial cell against various injuries. In our present study, we aimed to investigate the effect of endogenous H2S on the SO2 generation in the endothelial cells and explore its significance in the endothelial inflammation in vitro and in vivo. The human umbilical vein endothelial cell (HUVEC) line (EA.hy926), primary HUVECs, primary rat pulmonary artery endothelial cells (RPAECs), and purified aspartate aminotransferase (AAT) protein from pig heart were used for in vitro experiments. A rat model of monocrotaline (MCT)-induced pulmonary vascular inflammation was used for in vivo experiments. We found that endogenous H2S deficiency caused by cystathionine-γ-lyase (CSE) knockdown increased endogenous SO2 level in endothelial cells and enhanced the enzymatic activity of AAT, a major SO2 synthesis enzyme, without affecting the expressions of AAT1 and AAT2. While H2S donor could reverse the CSE knockdown-induced increase in the endogenous SO2 level and AAT activity. Moreover, H2S donor directly inhibited the activity of purified AAT protein, which was reversed by a thiol reductant DTT. Mechanistically, H2S donor sulfhydrated the purified AAT1/2 protein and rescued the decrease in the sulfhydration of AAT1/2 protein in the CSE knockdown endothelial cells. Furthermore, an AAT inhibitor l-aspartate-β-hydroxamate (HDX), which blocked the upregulation of endogenous SO2/AAT generation induced by CSE knockdown, aggravated CSE knockdown-activated nuclear factor-κB pathway in the endothelial cells and its downstream inflammatory factors including ICAM-1, TNF-α, and IL-6. In in vivo experiment, H2S donor restored the deficiency of endogenous H2S production induced by MCT, and reversed the upregulation of endogenous SO2/AAT pathway via sulfhydrating AAT1 and AAT2. In accordance with the results of the in vitro experiment, HDX

  1. Proliferation zones in the axolotl brain and regeneration of the telencephalon.

    PubMed

    Maden, Malcolm; Manwell, Laurie A; Ormerod, Brandi K

    2013-01-17

    Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. There is a continual generation of neuronal cells from neural progenitor cells located within the ventricular zone of the axolotl brain

  2. Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure

    PubMed Central

    Chen, Florence; Ohashi, Norifumi; Li, Wensheng; Eckman, Christopher; Nguyen, Justin H.

    2010-01-01

    Brain edema in acute liver failure (ALF) remains lethal. The role of vasogenic mechanisms of brain edema has not been explored. We previously demonstrated that matrix metalloproteinase-9 (MMP-9) contributes to the pathogenesis of brain edema. Here, we show that MMP-9 mediates disruptions in tight junction proteins in vitro and in brains of mice with ALF. We transfected murine brain endothelial cells with MMP-9 cDNA using pc DNA3.1 (+)/Myc-His A expression vector. Tissue inhibitor of matrix metalloproteinases (TIMP-1) cDNA transfection or GM6001 was used to inhibit MMP-9. ALF was induced in mice with azoxymethane. Endogenous overexpression of MMP-9 in brain endothelial cells resulted in significant degradation of tight junction proteins occludin and claudin-5. The alterations in tight junction proteins correlated with increased permeability to FITC-dextran molecules. The degradation of tight junction proteins and the increased permeability were reversed by TIMP-1 and GM6001. Similar results were found when MMP-9 was exogenously added to brain EC. We also found that tight junction proteins degradation was reversed with GM6001 in brains of mice with ALF. Conclusions Tight junction proteins are significantly perturbed in brains of mice with ALF. These data corroborate the important role of MMP-9 in the vasogenic mechanism of brain edema in ALF. PMID:19821483

  3. ENDOGENOUS RETROVIRUSES MOBILIZED DURING FRIEND MURINE LEUKEMIA VIRUS INFECTION

    PubMed Central

    Hansen, Ethan; Hendrick, Duncan; Malik, Frank; Evans, Leonard H.

    2016-01-01

    We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses. PMID:27657834

  4. Neurotransmitters behind pain relief with transcranial magnetic stimulation - positron emission tomography evidence for release of endogenous opioids.

    PubMed

    Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K

    2017-10-01

    Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition

  5. Multichannel brain recordings in behaving Drosophila reveal oscillatory activity and local coherence in response to sensory stimulation and circuit activation

    PubMed Central

    Paulk, Angelique C.; Zhou, Yanqiong; Stratton, Peter; Liu, Li

    2013-01-01

    Neural networks in vertebrates exhibit endogenous oscillations that have been associated with functions ranging from sensory processing to locomotion. It remains unclear whether oscillations may play a similar role in the insect brain. We describe a novel “whole brain” readout for Drosophila melanogaster using a simple multichannel recording preparation to study electrical activity across the brain of flies exposed to different sensory stimuli. We recorded local field potential (LFP) activity from >2,000 registered recording sites across the fly brain in >200 wild-type and transgenic animals to uncover specific LFP frequency bands that correlate with: 1) brain region; 2) sensory modality (olfactory, visual, or mechanosensory); and 3) activity in specific neural circuits. We found endogenous and stimulus-specific oscillations throughout the fly brain. Central (higher-order) brain regions exhibited sensory modality-specific increases in power within narrow frequency bands. Conversely, in sensory brain regions such as the optic or antennal lobes, LFP coherence, rather than power, best defined sensory responses across modalities. By transiently activating specific circuits via expression of TrpA1, we found that several circuits in the fly brain modulate LFP power and coherence across brain regions and frequency domains. However, activation of a neuromodulatory octopaminergic circuit specifically increased neuronal coherence in the optic lobes during visual stimulation while decreasing coherence in central brain regions. Our multichannel recording and brain registration approach provides an effective way to track activity simultaneously across the fly brain in vivo, allowing investigation of functional roles for oscillations in processing sensory stimuli and modulating behavior. PMID:23864378

  6. Endogenous versus Exogenous Origins of Crises

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for Xevents in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear signature or too many signatures. Here, I review several efforts carried out with collaborators which suggest a general strategy for understanding the organizations of several complex systems under the dual effect of endogenous and exogenous fluctuations. The studied examples are: internet download shocks, book sale shocks, social shocks, financial volatility shocks, and financial crashes. Simple models are offered to quantitatively relate the endogenous organization to the exogenous response of the system. Suggestions for applications of these ideas to many other systems are offered.

  7. Optimized endogenous post-stratification in forest inventories

    Treesearch

    Paul L. Patterson

    2012-01-01

    An example of endogenous post-stratification is the use of remote sensing data with a sample of ground data to build a logistic regression model to predict the probability that a plot is forested and using the predicted probabilities to form categories for post-stratification. An optimized endogenous post-stratified estimator of the proportion of forest has been...

  8. 76 FR 34180 - National Organic Program; Notice of Draft Guidance for Accredited Certifying Agents and Certified...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Stock in Organic Crop Production (NOP 5029)''; and ``Evaluating Allowed Ingredients and Sources of... finalized, these guidance documents will be available from the NOP through ``The Program Handbook: Guidance... ``Seeds, Annual Seedlings, and Planting Stock in Organic Crop Production (NOP 5029)'', and ``Evaluating...

  9. Fetal asphyxia induces acute and persisting changes in the ceramide metabolism in rat brain[S

    PubMed Central

    Vlassaks, Evi; Mencarelli, Chiara; Nikiforou, Maria; Strackx, Eveline; Ferraz, Maria J.; Aerts, Johannes M.; De Baets, Marc H.; Martinez-Martinez, Pilar; Gavilanes, Antonio W. D.

    2013-01-01

    Fetal asphyctic preconditioning, induced by a brief episode of experimental hypoxia-ischemia, offers neuroprotection to a subsequent more severe asphyctic insult at birth. Extensive cell stress and apoptosis are important contributing factors of damage in the asphyctic neonatal brain. Because ceramide acts as a second messenger for multiple apoptotic stimuli, including hypoxia/ischemia, we sought to investigate the possible involvement of the ceramide pathway in endogenous neuroprotection induced by fetal asphyctic preconditioning. Global fetal asphyxia was induced in rats by clamping both uterine and ovarian vasculature for 30 min. Fetal asphyxia resulted in acute changes in brain ceramide/sphingomyelin metabolic enzymes, ceramide synthase 1, 2, and 5, acid sphingomyelinase, sphingosine-1-phosphate phosphatase, and the ceramide transporter. This observation correlated with an increase in neuronal apoptosis and in astrocyte number. After birth, ceramide and sphingomyelin levels remained high in fetal asphyxia brains, suggesting that a long-term regulation of the ceramide pathway may be involved in the mechanism of tolerance to a subsequent, otherwise lethal, asphyctic event. PMID:23625371

  10. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  11. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    PubMed

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  12. Protection by Neuroglobin Expression in Brain Pathologies

    PubMed Central

    Baez, Eliana; Echeverria, Valentina; Cabezas, Ricardo; Ávila-Rodriguez, Marco; Garcia-Segura, Luis Miguel; Barreto, George E.

    2016-01-01

    Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, which is followed by loss of cognitive and motor functions. Previous studies have shown that astrocytes are more resilient than neurons during brain insults as a consequence of their more effective antioxidant systems, transporters, and enzymes, which made them less susceptible to excitotoxicity. In addition, astrocytes synthesize and release different protective molecules for neurons, including neuroglobin, a member of the globin family of proteins. After brain injury, neuroglobin expression is induced in astrocytes. Since neuroglobin promotes neuronal survival, its increased expression in astrocytes after brain injury may represent an endogenous neuroprotective mechanism. Here, we review the role of neuroglobin in the central nervous system, its relationship with different pathologies, and the role of different factors that regulate its expression in astrocytes. PMID:27672379

  13. Endogenous opioids regulate moment-to-moment neuronal communication and excitability.

    PubMed

    Winters, Bryony L; Gregoriou, Gabrielle C; Kissiwaa, Sarah A; Wells, Oliver A; Medagoda, Danashi I; Hermes, Sam M; Burford, Neil T; Alt, Andrew; Aicher, Sue A; Bagley, Elena E

    2017-03-22

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.

  14. Cell diversity and network dynamics in photosensitive human brain organoids.

    PubMed

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z; Sherwood, John L; Min Yang, Sung; Berger, Daniel R; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin P; Boyden, Edward S; Lichtman, Jeff W; Williams, Ziv M; McCarroll, Steven A; Arlotta, Paola

    2017-05-04

    In vitro models of the developing brain such as three-dimensional brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, the cells generated within organoids and the extent to which they recapitulate the regional complexity, cellular diversity and circuit functionality of the brain remain undefined. Here we analyse gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (more than 9 months), allowing for the establishment of relatively mature features, including the formation of dendritic spines and spontaneously active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photosensitive cells, which may offer a way to probe the functionality of human neuronal circuits using physiological sensory stimuli.

  15. Cell diversity and network dynamics in photosensitive human brain organoids

    PubMed Central

    Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z.; Sherwood, John L.; Yang, Sung Min; Berger, Daniel; Maria, Natalie; Scholvin, Jorg; Goldman, Melissa; Kinney, Justin; Boyden, Edward S.; Lichtman, Jeff; Williams, Ziv M.; McCarroll, Steven A.; Arlotta, Paola

    2017-01-01

    In vitro models of the developing brain such as 3D brain organoids offer an unprecedented opportunity to study aspects of human brain development and disease. However, it remains undefined what cells are generated within organoids and to what extent they recapitulate the regional complexity, cellular diversity, and circuit functionality of the brain. Here, we analyzed gene expression in over 80,000 individual cells isolated from 31 human brain organoids. We find that organoids can generate a broad diversity of cells, which are related to endogenous classes, including cells from the cerebral cortex and the retina. Organoids could be developed over extended periods (over 9 months) enabling unprecedented levels of maturity including the formation of dendritic spines and of spontaneously-active neuronal networks. Finally, neuronal activity within organoids could be controlled using light stimulation of photoreceptor-like cells, which may offer ways to probe the functionality of human neuronal circuits using physiological sensory stimuli. PMID:28445462

  16. Protecting against vascular disease in brain

    PubMed Central

    2011-01-01

    Endothelial cells exert an enormous influence on blood vessels throughout the circulation, but their impact is particularly pronounced in the brain. New concepts have emerged recently regarding the role of this cell type and mechanisms that contribute to endothelial dysfunction and vascular disease. Activation of the renin-angiotensin system plays a prominent role in producing these abnormalities. Both oxidative stress and local inflammation are key mechanisms that underlie vascular disease of diverse etiology. Endogenous mechanisms of vascular protection are also present, including antioxidants, anti-inflammatory molecules, and peroxisome proliferator-activated receptor-γ. Despite their clear importance, studies of mechanisms that underlie cerebrovascular disease continue to lag behind studies of vascular biology in general. Identification of endogenous molecules and pathways that protect the vasculature may result in targeted approaches to prevent or slow the progression of vascular disease that causes stroke and contributes to the vascular component of dementia and Alzheimer's disease. PMID:21335467

  17. HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity

    PubMed Central

    Leak, Rehana K.; Zhang, Lili; Stetler, R. Anne; Weng, Zhongfang; Li, Peiying; Atkins, G. Brandon; Gao, Yanqin; Chen, Jun

    2014-01-01

    Loss of integrity of the blood-brain barrier (BBB) in stroke victims initiates a devastating cascade of events including extravasation of blood-borne molecules, water, and inflammatory cells deep into brain parenchyma. Thus, it is important to identify mechanisms by which BBB integrity can be maintained in the face of ischemic injury in experimental stroke. We previously demonstrated that the phylogenetically conserved small heat shock protein 27 (HSP27) protects against transient middle cerebral artery occlusion (tMCAO). Here we show that HSP27 transgenic overexpression also maintains the integrity of the BBB in mice subjected to tMCAO. Extravasation of endogenous IgG antibodies and exogenous FITC-albumin into the brain following tMCAO was reduced in transgenic mice, as was total brain water content. HSP27 overexpression abolished the appearance of TUNEL-positive profiles in microvessel walls. Transgenics also exhibited less loss of microvessel proteins following tMCAO. Notably, primary endothelial cell cultures were rescued from oxygen-glucose deprivation (OGD) by lentiviral HSP27 overexpression according to four viability assays, supporting a direct effect on this cell type. Finally, HSP27 overexpression reduced the appearance of neutrophils in the brain and inhibited the secretion of five cytokines. These findings reveal a novel role for HSP27 in attenuating ischemia/reperfusion injury - the maintenance of BBB integrity. Endogenous upregulation of HSP27 after ischemia in wild-type animals may exert similar protective functions and warrants further investigation. Exogenous enhancement of HSP27 by rational drug design may lead to future therapies against a host of injuries, including but not limited to a harmful breach in brain vasculature. PMID:23469858

  18. Exercise induced asthma and endogenous opioids.

    PubMed Central

    Gaillard, R C; Bachman, M; Rochat, T; Egger, D; de Haller, R; Junod, A F

    1986-01-01

    Concentrations of endogenous opioid peptides in the plasma are increased during exercise and these substances have been implicated in the pathogenesis of asthma induced by chloropropramide and alcohol in diabetic patients. This work was undertaken to determine whether exercise induced asthma might be mediated by endogenous opioids. Plasma beta endorphin, met-enkephalin, and adrenocorticotrophic hormone (ACTH) concentrations were measured in five asthmatic patients and five normal volunteers breathing cold air during exercise. In four of the patients the effect of an infusion of naloxone on FEV1 was also measured during exercise induced asthma. Exercise produced acute bronchoconstriction in all asthmatics, characterised by a fall in FEV1; whereas no change occurred in normal subjects. There was no difference in plasma met-enkephalin, beta endorphin, and ACTH concentration between the two groups. Infusion of naloxone neither prevented nor worsened exercise induced asthma. These data suggest that endogenous opioids probably do not play a part in the development of exercise induced asthma. PMID:2944240

  19. TAK1 in brain endothelial cells mediates fever and lethargy

    PubMed Central

    Ridder, Dirk A.; Lang, Ming-Fei; Salinin, Sergei; Röderer, Jan-Peter; Struss, Marcel; Maser-Gluth, Christiane

    2011-01-01

    Systemic inflammation affects the brain, resulting in fever, anorexia, lethargy, and activation of the hypothalamus–pituitary–adrenal axis. How peripheral inflammatory signals reach the brain is still a matter of debate. One possibility is that, in response to inflammatory stimuli, brain endothelial cells in proximity to the thermoregulatory centers produce cyclooxygenase 2 (COX-2) and release prostaglandin E2, causing fever and sickness behavior. We show that expression of the MAP kinase kinase kinase TAK1 in brain endothelial cells is needed for interleukin 1β (IL-1β)–induced COX-2 production. Exploiting the selective expression of the thyroxine transporter Slco1c1 in brain endothelial cells, we generated a mouse line allowing inducible deletion of Tak1 specifically in brain endothelium. Mice lacking the Tak1 gene in brain endothelial cells showed a blunted fever response and reduced lethargy upon intravenous injection of the endogenous pyrogen IL-1β. In conclusion, we demonstrate that TAK1 in brain endothelial cells induces COX-2, most likely by activating p38 MAPK and c-Jun, and is necessary for fever and sickness behavior. PMID:22143887

  20. Functional interactions between endogenous cannabinoid and opioid systems: focus on alcohol, genetics and drug-addicted behaviors.

    PubMed

    López-Moreno, J A; López-Jiménez, A; Gorriti, M A; de Fonseca, F Rodríguez

    2010-04-01

    Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of cannabinoid addiction reports. More recently, functional interactions have been demonstrated between the endogenous cannabinoid and opioid systems. For example, the cannabinoid brain receptor type 1 (CB1) and mu opioid receptor type 1 (MOR1) co-localize in the same presynaptic nerve terminals and signal through a common receptor-mediated G-protein pathway. Here, we review a great variety of behavioral models of drug addiction and alcohol-related behaviors. We also include data providing clear evidence that activation of the cannabinoid and opioid endogenous systems via WIN 55,512-2 (0.4-10 mg/kg) and morphine (1.0-10 mg/kg), respectively, produces similar levels of relapse to alcohol in operant alcohol self-administration tasks. Finally, we discuss genetic studies that reveal significant associations between polymorphisms in MOR1 and CB1 receptors and drug addiction. For example, the SNP A118G, which changes the amino acid aspartate to asparagine in the MOR1 gene, is highly associated with altered opioid system function. The presence of a microsatellite polymorphism of an (AAT)n triplet near the CB1 gene is associated with drug addiction phenotypes. But, studies exploring haplotypes with regard to both systems, however, are lacking.

  1. Endogenous Opioid Mechanisms Are Implicated in Obesity and Weight Loss in Humans.

    PubMed

    Burghardt, Paul R; Rothberg, Amy E; Dykhuis, Kate E; Burant, Charles F; Zubieta, Jon-Kar

    2015-08-01

    Successful long-term weight loss is challenging. Brain endogenous opioid systems regulate associated processes; however, their role in the maintenance of weight loss has not been adequately explored in humans. In a preliminary study, the objective was to assess central μ-opioid receptor (MOR) system involvement in eating behaviors and their relationship to long-term maintenance of weight loss. This was a case-control study with follow-up of the treatment group at 1 year after intervention. The study was conducted at a tertiary care university medical center. Lean healthy (n = 7) and chronically obese (n = 7) men matched for age and ethnicity participated in the study. MOR availability measures were acquired with positron emission tomography and [(11)C]carfentanil. Lean healthy men were scanned twice under both fasted and fed conditions. Obese men were placed on a very low-calorie diet to achieve 15% weight loss from baseline weight and underwent two positron emission tomography scans before and two after weight loss, incorporating both fasted and fed states. Brain MOR availability and activation were measured by reductions in MOR availability (nondisplaceable binding potential) from the fed compared with the fasted-state scans. Baseline MOR nondisplaceable binding potential was reduced in obese compared with the lean and partially recovered obese after weight loss in regions that regulate homeostatic, hedonic, and emotional responses to feeding. Reductions in negative affect and feeding-induced MOR system activation in the right temporal pole were highly correlated in leans but not in obese men. A trend for an association between MOR activation in the right temporal pole before weight loss and weight regain 1 year was found. Although these preliminary studies have a small sample size, these results suggest that obesity and diet-induced weight loss impact central MOR binding and endogenous opioid system function. MOR system activation in response to an acute meal

  2. Endogenous modulation of human visual cortex activity improves perception at twilight.

    PubMed

    Cordani, Lorenzo; Tagliazucchi, Enzo; Vetter, Céline; Hassemer, Christian; Roenneberg, Till; Stehle, Jörg H; Kell, Christian A

    2018-04-10

    Perception, particularly in the visual domain, is drastically influenced by rhythmic changes in ambient lighting conditions. Anticipation of daylight changes by the circadian system is critical for survival. However, the neural bases of time-of-day-dependent modulation in human perception are not yet understood. We used fMRI to study brain dynamics during resting-state and close-to-threshold visual perception repeatedly at six times of the day. Here we report that resting-state signal variance drops endogenously at times coinciding with dawn and dusk, notably in sensory cortices only. In parallel, perception-related signal variance in visual cortices decreases and correlates negatively with detection performance, identifying an anticipatory mechanism that compensates for the deteriorated visual signal quality at dawn and dusk. Generally, our findings imply that decreases in spontaneous neural activity improve close-to-threshold perception.

  3. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier.

    PubMed

    Lajoie, Jason M; Shusta, Eric V

    2015-01-01

    Biologics are an emerging class of medicines with substantial promise to treat neurological disorders such as Alzheimer's disease, stroke, and multiple sclerosis. However, the blood-brain barrier (BBB) presents a formidable obstacle that appreciably limits brain uptake and hence the therapeutic potential of biologics following intravenous administration. One promising strategy for overcoming the BBB to deliver biologics is the targeting of endogenous receptor-mediated transport (RMT) systems that employ vesicular trafficking to transport ligands across the BBB endothelium. If a biologic is modified with an appropriate targeting ligand, it can gain improved access to the brain via RMT. Various RMT-targeting strategies have been developed over the past 20 years, and this review explores exciting recent advances, emphasizing studies that show brain targeting in vivo.

  4. Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments.

    PubMed

    Zhou, Jinyuan; Wilson, David A; Sun, Phillip Zhe; Klaus, Judith A; Van Zijl, Peter C M

    2004-05-01

    The proton exchange processes between water and solutes containing exchangeable protons have recently become of interest for monitoring pH effects, detecting cellular mobile proteins and peptides, and enhancing the detection sensitivity of various low-concentration endogenous and exogenous species. In this work, the analytic expressions for water exchange (WEX) filter spectroscopy, chemical exchange-dependent saturation transfer (CEST), and amide proton transfer (APT) experiments are derived by the use of Bloch equations with exchange terms. The effects of the initial states for the system, the difference between a steady state and a saturation state, and the relative contributions of the forward and backward exchange processes are discussed. The theory, in combination with numerical calculations, provides a useful tool for designing experimental schemes and assessing magnetization transfer (MT) processes between water protons and solvent-exchangeable protons. As an example, the case of endogenous amide proton exchange in the rat brain at 4.7 T is analyzed in detail. Copyright 2004 Wiley-Liss, Inc.

  5. 78 FR 54617 - Notice of Meeting of the National Organic Standards Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... Service [Document Number AMS-NOP-13-0049; NOP-13-04] Notice of Meeting of the National Organic Standards... Service (AMS) is announcing an upcoming meeting of the National Organic Standards Board (NOSB). Written... Assistant, National Organic Standards Board, USDA-AMS-NOP, 1400 Independence Ave. SW., Room 2648-So., Mail...

  6. Invasive fungal infections in endogenous Cushing's syndrome

    PubMed Central

    Scheffel, Rafael Selbach; Dora, José Miguel; Weinert, Letícia Schwerz; Aquino, Valério; Maia, Ana Luiza; Canani, Luis Henrique; Goldani, Luciano Z.

    2010-01-01

    Cushing's syndrome is a condition characterized by elevated cortisol levels that can result from either augmented endogenous production or exogenous administration of corticosteroids. The predisposition to fungal infections among patients with hypercortisolemia has been noted since Cushing's original description of the disease. We describe here a patient with endogenous Cushing's syndrome secondary to an adrenocortical carcinoma, who developed concomitant disseminated cryptococcosis and candidiasis in the course of his disease. PMID:24470886

  7. [Formation of endogenous pyrogen by mononuclear phagocytes].

    PubMed

    Agasarov, L G; Sorokin, A V; Ukhanova, I K

    1984-07-01

    Production of endogenous pyrogen by human and rabbit blood monocytes in response to stimulation with agents of different origin was studied by inhibitory analysis under comparable conditions. Actinomycin D and cytochalasin B were applied. New evidence was obtained about an important role in the mechanism of activation of mononuclear phagocytes of initial interaction between a stimulating agent and the leukocyte membrane and of the biphasic process of endogenous pyrogen production.

  8. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  9. The endocannabinoid system and the brain.

    PubMed

    Mechoulam, Raphael; Parker, Linda A

    2013-01-01

    The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.

  10. Endogenous Retroviruses in the Genomics Era.

    PubMed

    Johnson, Welkin E

    2015-11-01

    Endogenous retroviruses comprise millions of discrete genetic loci distributed within the genomes of extant vertebrates. These sequences, which are clearly related to exogenous retroviruses, represent retroviral infections of the deep past, and their abundance suggests that retroviruses were a near-constant presence throughout the evolutionary history of modern vertebrates. Endogenous retroviruses contribute in myriad ways to the evolution of host genomes, as mutagens and as sources of genetic novelty (both coding and regulatory) to be acted upon by the twin engines of random genetic drift and natural selection. Importantly, the richness and complexity of endogenous retrovirus data can be used to understand how viruses spread and adapt on evolutionary timescales by combining population genetics and evolutionary theory with a detailed understanding of retrovirus biology (gleaned from the study of extant retroviruses). In addition to revealing the impact of viruses on organismal evolution, such studies can help us better understand, by looking back in time, how life-history traits, as well as ecological and geological events, influence the movement of viruses within and between populations.

  11. Proteolysis Controls Endogenous Substance P Levels

    PubMed Central

    Mitchell, Andrew J.; Lone, Anna Mari; Tinoco, Arthur D.; Saghatelian, Alan

    2013-01-01

    Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels. PMID:23894327

  12. Proteolysis controls endogenous substance P levels.

    PubMed

    Mitchell, Andrew J; Lone, Anna Mari; Tinoco, Arthur D; Saghatelian, Alan

    2013-01-01

    Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP(1-9)-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.

  13. Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiang Jun; Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322; Yu, Shan Ping

    2010-07-01

    The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release andmore » activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.« less

  14. 76 FR 23914 - National Organic Program; Periodic Residue Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Service 7 CFR Part 205 [Document Number AMS-NOP-10-0102; NOP-10-10] RIN 0581-AD10 National Organic Program... proposed rule would clarify a provision of the Organic Foods Production Act of 1990 and the regulations...) National Organic Program (NOP) regulations to make clear that accredited certifying agents must conduct...

  15. Magnetite pollution nanoparticles in the human brain

    NASA Astrophysics Data System (ADS)

    Maher, Barbara A.; Ahmed, Imad A. M.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-01

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <˜200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  16. Magnetite pollution nanoparticles in the human brain.

    PubMed

    Maher, Barbara A; Ahmed, Imad A M; Karloukovski, Vassil; MacLaren, Donald A; Foulds, Penelope G; Allsop, David; Mann, David M A; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-09-27

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683-7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health.

  17. Magnetite pollution nanoparticles in the human brain

    PubMed Central

    Maher, Barbara A.; Karloukovski, Vassil; MacLaren, Donald A.; Foulds, Penelope G.; Allsop, David; Mann, David M. A.; Torres-Jardón, Ricardo; Calderon-Garciduenas, Lilian

    2016-01-01

    Biologically formed nanoparticles of the strongly magnetic mineral, magnetite, were first detected in the human brain over 20 y ago [Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Proc Natl Acad Sci USA 89(16):7683–7687]. Magnetite can have potentially large impacts on the brain due to its unique combination of redox activity, surface charge, and strongly magnetic behavior. We used magnetic analyses and electron microscopy to identify the abundant presence in the brain of magnetite nanoparticles that are consistent with high-temperature formation, suggesting, therefore, an external, not internal, source. Comprising a separate nanoparticle population from the euhedral particles ascribed to endogenous sources, these brain magnetites are often found with other transition metal nanoparticles, and they display rounded crystal morphologies and fused surface textures, reflecting crystallization upon cooling from an initially heated, iron-bearing source material. Such high-temperature magnetite nanospheres are ubiquitous and abundant in airborne particulate matter pollution. They arise as combustion-derived, iron-rich particles, often associated with other transition metal particles, which condense and/or oxidize upon airborne release. Those magnetite pollutant particles which are <∼200 nm in diameter can enter the brain directly via the olfactory bulb. Their presence proves that externally sourced iron-bearing nanoparticles, rather than their soluble compounds, can be transported directly into the brain, where they may pose hazard to human health. PMID:27601646

  18. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis

    PubMed Central

    Martin, Neil A.; McArthur, David L.; Hovda, David A.; Vespa, Paul; Johnson, Matthew L.; Horning, Michael A.; Brooks, George A.

    2015-01-01

    Abstract We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-2H2]glucose, i.e., D2-glucose, and [3-13C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2–10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain. PMID:25279664

  19. Endogenous Nutritive Support after Traumatic Brain Injury: Peripheral Lactate Production for Glucose Supply via Gluconeogenesis.

    PubMed

    Glenn, Thomas C; Martin, Neil A; McArthur, David L; Hovda, David A; Vespa, Paul; Johnson, Matthew L; Horning, Michael A; Brooks, George A

    2015-06-01

    We evaluated the hypothesis that nutritive needs of injured brains are supported by large and coordinated increases in lactate shuttling throughout the body. To that end, we used dual isotope tracer ([6,6-(2)H2]glucose, i.e., D2-glucose, and [3-(13)C]lactate) techniques involving central venous tracer infusion along with cerebral (arterial [art] and jugular bulb [JB]) blood sampling. Patients with traumatic brain injury (TBI) who had nonpenetrating head injuries (n=12, all male) were entered into the study after consent of patients' legal representatives. Written and informed consent was obtained from healthy controls (n=6, including one female). As in previous investigations, the cerebral metabolic rate (CMR) for glucose was suppressed after TBI. Near normal arterial glucose and lactate levels in patients studied 5.7±2.2 days (range of days 2-10) post-injury, however, belied a 71% increase in systemic lactate production, compared with control, that was largely cleared by greater (hepatic+renal) glucose production. After TBI, gluconeogenesis from lactate clearance accounted for 67.1% of glucose rate of appearance (Ra), which was compared with 15.2% in healthy controls. We conclude that elevations in blood glucose concentration after TBI result from a massive mobilization of lactate from corporeal glycogen reserves. This previously unrecognized mobilization of lactate subserves hepatic and renal gluconeogenesis. As such, a lactate shuttle mechanism indirectly makes substrate available for the body and its essential organs, including the brain, after trauma. In addition, when elevations in arterial lactate concentration occur after TBI, lactate shuttling may provide substrate directly to vital organs of the body, including the injured brain.

  20. Novel endogenous angiogenesis inhibitors and their therapeutic potential

    PubMed Central

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-01-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application. PMID:26364800

  1. Novel endogenous angiogenesis inhibitors and their therapeutic potential.

    PubMed

    Rao, Nithya; Lee, Yu Fei; Ge, Ruowen

    2015-10-01

    Angiogenesis, the formation of new blood vessels from the pre-existing vasculature is essential for embryonic development and tissue homeostasis. It also plays critical roles in diseases such as cancer and retinopathy. A delicate balance between pro- and anti-angiogenic factors ensures normal physiological homeostasis. Endogenous angiogenesis inhibitors are proteins or protein fragments that are formed in the body and have the ability to limit angiogenesis. Many endogenous angiogenesis inhibitors have been discovered, and the list continues to grow. Endogenous protein/peptide inhibitors are relatively less toxic, better tolerated and have a lower risk of drug resistance, which makes them attractive as drug candidates. In this review, we highlight ten novel endogenous protein angiogenesis inhibitors discovered within the last five years, including ISM1, FKBPL, CHIP, ARHGAP18, MMRN2, SOCS3, TAp73, ZNF24, GPR56 and JWA. Although some of these proteins have been well characterized for other biological functions, we focus on their new and specific roles in angiogenesis inhibition and discuss their potential for therapeutic application.

  2. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    PubMed

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Harnessing the potential of biomaterials for brain repair after stroke

    NASA Astrophysics Data System (ADS)

    Tuladhar, Anup; Payne, Samantha L.; Shoichet, Molly S.

    2018-03-01

    Stroke is a devastating disease for which no clinical treatment exists to regenerate lost tissue. Strategies for brain repair in animal models of stroke include the delivery of drug or cell-based therapeutics; however, the complex anatomy and functional organization of the brain presents many challenges. Biomaterials may alleviate some of these challenges by providing a scaffold, localizing the therapy to the site of action, and/or modulating cues to brain cells. Here, the challenges associated with delivery of therapeutics to the brain and the biomaterial strategies used to overcome these challenges are described. For example, innovative hydrogel delivery systems have been designed to provide sustained trophic factor delivery for endogenous repair and to support transplanted cell survival and integration. Novel treatments, such as electrical stimulation of transplanted cells and the delivery of factors for the direct reprogramming of astrocytes into neurons, may be further enhanced by biomaterial delivery systems. Ultimately, improved clinical translation will be achieved by combining clinically relevant therapies with biomaterials strategies.

  4. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish.

    PubMed

    Borrelli, Luca; Aceto, Serena; Agnisola, Claudio; De Paolo, Sofia; Dipineto, Ludovico; Stilling, Roman M; Dinan, Timothy G; Cryan, John F; Menna, Lucia F; Fioretti, Alessandro

    2016-07-15

    The gut microbiota plays a crucial role in the bi-directional gut-brain axis, a communication that integrates the gut and central nervous system (CNS) activities. Animal studies reveal that gut bacteria influence behaviour, Brain-Derived Neurotrophic Factor (BDNF) levels and serotonin metabolism. In the present study, we report for the first time an analysis of the microbiota-gut-brain axis in zebrafish (Danio rerio). After 28 days of dietary administration with the probiotic Lactobacillus rhamnosus IMC 501, we found differences in shoaling behaviour, brain expression levels of bdnf and of genes involved in serotonin signalling/metabolism between control and treated zebrafish group. In addition, in microbiota we found a significant increase of Firmicutes and a trending reduction of Proteobacteria. This study demonstrates that selected microbes can be used to modulate endogenous neuroactive molecules in zebrafish.

  5. The Immune System and Developmental Programming of Brain and Behavior

    PubMed Central

    Bilbo, Staci D.; Schwarz, Jaclyn M.

    2012-01-01

    The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition. PMID:22982535

  6. Inhibition of endogenous phosphodiesterase 7 promotes oligodendrocyte precursor differentiation and survival.

    PubMed

    Medina-Rodríguez, E M; Arenzana, F J; Pastor, J; Redondo, M; Palomo, V; García de Sola, R; Gil, C; Martínez, A; Bribián, A; de Castro, F

    2013-09-01

    During the development of the central nervous system (CNS), oligodendrocyte precursors (OPCs) are generated in specific sites within the neural tube and then migrate to colonize the entire CNS, where they differentiate into myelin-forming oligodendrocytes. Demyelinating diseases such as multiple sclerosis (MS) are characterized by the death of these cells. The CNS reacts to demyelination and by promoting spontaneous remyelination, an effect mediated by endogenous OPCs, cells that represent approximately 5-7 % of the cells in the adult brain. Numerous factors influence oligodendrogliogenesis and oligodendrocyte differentiation, including morphogens, growth factors, chemotropic molecules, extracellular matrix proteins, and intracellular cAMP levels. Here, we show that during development and in early adulthood, OPCs in the murine cerebral cortex contain phosphodiesterase-7 (PDE7) that metabolizes cAMP. We investigated the effects of different PDE7 inhibitors (the well-known BRL-50481 and two new ones, TC3.6 and VP1.15) on OPC proliferation, survival, and differentiation. While none of the PDE7 inhibitors analyzed altered OPC proliferation, TC3.6 and VP1.15 enhanced OPC survival and differentiation, processes in which ERK intracellular signaling played a key role. PDE7 expression was also observed in OPCs isolated from adult human brains and the differentiation of these OPCs into more mature oligodendroglial phenotypes was accelerated by treatment with both new PDE7 inhibitors. These findings reveal new roles for PDE7 in regulating OPC survival and differentiation during brain development and in adulthood, and they may further our understanding of myelination and facilitate the development of therapeutic remyelination strategies for the treatment of MS.

  7. The Regenerative Response of Endogenous Neural Stem/Progenitor Cells to Traumatic Brain Injury

    DTIC Science & Technology

    2014-06-09

    Genevieve M. Sullivan, Molecular and Cell Biology. 2014 Thesis directed by: Dr. Regina C. Armstrong, PhD, APG The complex pathological mechanisms ...treatments for TBI (83 ). Therefore it is necessary to investigate the complex pathological and molecular mechanisms that occur after heterogeneous...of cellular mechanisms that is not an option in other species with gyrencephalic brains. Therefore, even though a mouse model cannot fully replicate

  8. Proliferation zones in the axolotl brain and regeneration of the telencephalon

    PubMed Central

    2013-01-01

    Background Although the brains of lower vertebrates are known to exhibit somewhat limited regeneration after incisional or stab wounds, the Urodele brain exhibits extensive regeneration after massive tissue removal. Discovering whether and how neural progenitor cells that reside in the ventricular zones of Urodeles proliferate to mediate tissue repair in response to injury may produce novel leads for regenerative strategies. Here we show that endogenous neural progenitor cells resident to the ventricular zone of Urodeles spontaneously proliferate, producing progeny that migrate throughout the telencephalon before terminally differentiating into neurons. These progenitor cells appear to be responsible for telencephalon regeneration after tissue removal and their activity may be up-regulated by injury through an olfactory cue. Results There is extensive proliferation of endogenous neural progenitor cells throughout the ventricular zone of the adult axolotl brain. The highest levels are observed in the telencephalon, especially the dorsolateral aspect, and cerebellum. Lower levels are observed in the mesencephalon and rhombencephalon. New cells produced in the ventricular zone migrate laterally, dorsally and ventrally into the surrounding neuronal layer. After migrating from the ventricular zone, the new cells primarily express markers of neuronal differentiative fates. Large-scale telencephalic tissue removal stimulates progenitor cell proliferation in the ventricular zone of the damaged region, followed by proliferation in the tissue that surrounds the healing edges of the wound until the telencephalon has completed regeneration. The proliferative stimulus appears to reside in the olfactory system, because telencephalic regeneration does not occur in the brains of olfactory bulbectomized animals in which the damaged neural tissue simply heals over. Conclusion There is a continual generation of neuronal cells from neural progenitor cells located within the

  9. Proliferation of murine midbrain neural stem cells depends upon an endogenous sonic hedgehog (Shh) source.

    PubMed

    Martínez, Constanza; Cornejo, Víctor Hugo; Lois, Pablo; Ellis, Tammy; Solis, Natalia P; Wainwright, Brandon J; Palma, Verónica

    2013-01-01

    The Sonic Hedgehog (Shh) pathway is responsible for critical patterning events early in development and for regulating the delicate balance between proliferation and differentiation in the developing and adult vertebrate brain. Currently, our knowledge of the potential role of Shh in regulating neural stem cells (NSC) is largely derived from analyses of the mammalian forebrain, but for dorsal midbrain development it is mostly unknown. For a detailed understanding of the role of Shh pathway for midbrain development in vivo, we took advantage of mouse embryos with cell autonomously activated Hedgehog (Hh) signaling in a conditional Patched 1 (Ptc1) mutant mouse model. This animal model shows an extensive embryonic tectal hypertrophy as a result of Hh pathway activation. In order to reveal the cellular and molecular origin of this in vivo phenotype, we established a novel culture system to evaluate neurospheres (nsps) viability, proliferation and differentiation. By recreating the three-dimensional (3-D) microenvironment we highlight the pivotal role of endogenous Shh in maintaining the stem cell potential of tectal radial glial cells (RGC) and progenitors by modulating their Ptc1 expression. We demonstrate that during late embryogenesis Shh enhances proliferation of NSC, whereas blockage of endogenous Shh signaling using cyclopamine, a potent Hh pathway inhibitor, produces the opposite effect. We propose that canonical Shh signaling plays a central role in the control of NSC behavior in the developing dorsal midbrain by acting as a niche factor by partially mediating the response of NSC to epidermal growth factor (EGF) and fibroblast growth factor (FGF) signaling. We conclude that endogenous Shh signaling is a critical mechanism regulating the proliferation of stem cell lineages in the embryonic dorsal tissue.

  10. Exogenic and endogenic Europa minerals

    NASA Astrophysics Data System (ADS)

    Maynard-Casely, H. E.; Brand, H. E. A.; Wilson, S. A.

    2016-12-01

    The Galileo Near Infrared Mapping Spectrometer (NIMS) identified a significant `non-ice' component upon the surface of Jupiter's moon Europa. Current explanations invoke both endogenic and exogenic origins for this material. It has long been suggested that magnesium and sodium sulfate minerals could have leached from the rock below a putative ocean (endogenic) 1 and that sulfuric acid hydrate minerals could have been radiologically produced from ionised sulfur originally from Io's volcanoes (exogenic) 2. However, a more recent theory proposes that the `non-ice' component could be radiation damaged NaCl leached from Europa's speculative ocean 3. What if the minerals are actually from combination of both endogenic and exogenic sources? To investigate this possibility we have focused on discovering new minerals that might form in the combination of the latter two cases, that is a mixture of leached sulfates hydrates with radiologically produced sulfuric acid. To this end we have explored a number of solutions in the MgSO4-H2SO4-H2O and Na2SO4-H2SO4-H2O systems, between 80 and 280 K with synchrotron x-ray powder diffraction. We report a number of new materials formed in this these ternary systems. This suggests that it should be considered that the `non-ice' component of the Europa's surface could be a material derived from endogenic and exogenic components. 1 Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368-390 (1991). 2 Carlson, R. W., Anderson, M. S., Mehlman, R. & Johnson, R. E. Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus 177, 461-471, doi:10.1016/j.icarus.2005.03.026 (2005). 3 Hand, K. P. & Carlson, R. W. Europa's surface color suggests an ocean rich with sodium chloride. Geophysical Research Letters, 2015GL063559, doi:10.1002/2015gl063559 (2015).

  11. 2-Arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor

    PubMed Central

    Hanuš, Lumír; Abu-Lafi, Saleh; Fride, Ester; Breuer, Aviva; Vogel, Zvi; Shalev, Deborah E.; Kustanovich, Irina; Mechoulam, Raphael

    2001-01-01

    Two types of endogenous cannabinoid-receptor agonists have been identified thus far. They are the ethanolamides of polyunsaturated fatty acids—arachidonoyl ethanolamide (anandamide) is the best known compound in the amide series—and 2-arachidonoyl glycerol, the only known endocannabinoid in the ester series. We report now an example of a third, ether-type endocannabinoid, 2-arachidonyl glyceryl ether (noladin ether), isolated from porcine brain. The structure of noladin ether was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by comparison with a synthetic sample. It binds to the CB1 cannabinoid receptor (Ki = 21.2 ± 0.5 nM) and causes sedation, hypothermia, intestinal immobility, and mild antinociception in mice. It binds weakly to the CB2 receptor (Ki > 3 μM). PMID:11259648

  12. Phosphatidylserine and the human brain.

    PubMed

    Glade, Michael J; Smith, Kyl

    2015-06-01

    The aim of this study was to assess the roles and importance of phosphatidylserine (PS), an endogenous phospholipid and dietary nutrient, in human brain biochemistry, physiology, and function. A scientific literature search was conducted on MEDLINE for relevant articles regarding PS and the human brain published before June 2014. Additional publications were identified from references provided in original papers; 127 articles were selected for inclusion in this review. A large body of scientific evidence describes the interactions among PS, cognitive activity, cognitive aging, and retention of cognitive functioning ability. Phosphatidylserine is required for healthy nerve cell membranes and myelin. Aging of the human brain is associated with biochemical alterations and structural deterioration that impair neurotransmission. Exogenous PS (300-800 mg/d) is absorbed efficiently in humans, crosses the blood-brain barrier, and safely slows, halts, or reverses biochemical alterations and structural deterioration in nerve cells. It supports human cognitive functions, including the formation of short-term memory, the consolidation of long-term memory, the ability to create new memories, the ability to retrieve memories, the ability to learn and recall information, the ability to focus attention and concentrate, the ability to reason and solve problems, language skills, and the ability to communicate. It also supports locomotor functions, especially rapid reactions and reflexes. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Growth and development of the brain and impact on cognitive outcomes.

    PubMed

    Hüppi, Petra S

    2010-01-01

    Understanding human brain development from the fetal life to adulthood is of great clinical importance as many neurological and neurobehavioral disorders have their origin in early structural and functional cerebral maturation. The developing brain is particularly prone to being affected by endogenous and exogenous events through the fetal and early postnatal life. The concept of 'developmental plasticity or disruption of the developmental program' summarizes these events. Increases in white matter, which speed up communication between brain cells, growing complexity of neuronal networks suggested by gray and white matter changes, and environmentally sensitive plasticity are all essential aspects in a child's ability to mentalize and maintain the adaptive flexibility necessary for achieving high sociocognitive functioning. Advancement in neuroimaging has opened up new ways for examining the developing human brain in vivo, the study of the effects of early antenatal, perinatal and neonatal events on later structural and functional brain development resulting in developmental disabilities or developmental resilience. In this review, methods of quantitative assessment of human brain development, such as 3D-MRI with image segmentation, diffusion tensor imaging to assess connectivity and functional MRI to visualize brain function will be presented. Copyright (c) 2010 S. Karger AG, Basel.

  14. A network approach for modulating memory processes via direct and indirect brain stimulation: Toward a causal approach for the neural basis of memory.

    PubMed

    Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin

    2016-10-01

    Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.

  15. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    PubMed Central

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  16. Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection.

    PubMed

    Lee, Do-Hun; Lee, Ji Yeoun; Oh, Byung-Mo; Phi, Ji Hoon; Kim, Seung-Ki; Bang, Moon Suk; Kim, Seung U; Wang, Kyu-Chang

    2013-03-01

    Experimental studies and clinical trials designed to help patients recover from various brain injuries, such as stroke or trauma, have been attempted. Rehabilitation has shown reliable, positive clinical outcome in patients with various brain injuries. Transplantation of exogenous neural stem cells (NSCs) to repair the injured brain is a potential tool to help patient recovery. This study aimed to evaluate the therapeutic efficacy of a combination therapy consisting of rehabilitation and NSC transplantation compared to using only one modality. A model of motor cortex resection in rats was used to create brain injury in order to obtain consistent and prolonged functional deficits. The therapeutic results were evaluated using three methods during an 8-week period with a behavioral test, motor-evoked potential (MEP) measurement, and measurement of the degree of endogenous NSC production. All three treatment groups showed the effects of treatment in the behavioral test, although the NSC transplantation alone group (CN) exhibited slightly worse results than the rehabilitation alone group (CR) or the combination therapy group (CNR). The latency on MEP was shortened to a similar extent in all three groups compared to the untreated group (CO). However, the enhancement of endogenous NSC proliferation was dramatically reduced in the CN group compared not only to the CR and CNR groups but also to the CO group. The CR and CNR groups seemed to prolong the duration of endogenous NSC proliferation compared to the untreated group. A combination of rehabilitation and NSC transplantation appears to induce treatment outcomes that are similar to rehabilitation alone. Further studies are needed to evaluate the electrophysiological outcome of recovery and the possible effect of prolonging endogenous NSC proliferation in response to NSC transplantation and rehabilitation.

  17. Is 2-dimethylaminoethanol (deanol) indeed a precursor of brain acetylcholine? A gas chromatographic evaluation.

    PubMed

    Zahniser, N R; Chou, D; Hanin, I

    1977-03-01

    Acute administration of deanol-p-acetamidobenzoate (Deaner; deanol) has been reported to elevate brain choline (CH) and acetylcholine (ACh) levels. We have developed a specific and sensitive gas chromatographic assay to measure deanol levels in tissue and have applied this assay to our studies of the effect of acute deanol administration on deanol, ACh and Ch levels in rodent brains. Details of the method are described in this text. This procedure is quantitative and yields reproducible results over a wide range of deanol concentrations (0.30-200 nmol). Seven endogenous and pharmacological parameters have been studied using this procedure. In control rodent brain, liver, heart, lung and plasma, we detected no free endogenous deanol (less than 1 nmol/g). After deanol administration, we were able to detect deanol in tissue and have attempted to determine a relationship between these levels and values of ACh in the same tissue. Regardless of deanol pretreatment time (1-30 minutes) or doses (33.3-3000 mg/kg i.p.) used, we detected no increase in mouse whole brain ACh levels. Likewise, there was no detectable elevation in ACh levels in rat whole brain, cortex, striatum or hippocampus after a 15-minute pretreatment with 550 mg/kg of deanol (i.p.). The only elevation in ACh levels which we detected occurred selectively in the striatum of mice pretreated with a massive dose (900 mg/kg i.p.) of deanol for 30 minutes. This selective increase in striatal ACh levels oculd not, however, be related to levels of deanol in the striatum because there was no greater accumulation of deanol in the striatum than in other brain areas tested or in whole brain. These data do not confirm the results of other investigators who reported elevations in whole brain or striatal ACh levels after acute administration of lower doses of deanol. The data emphasize the need for further investigation into the mode of action of deanol and question its suggested role as an immediate precursor of ACh

  18. Vulnerability to glutamate toxicity of dopaminergic neurons is dependent on endogenous dopamine and MAPK activation.

    PubMed

    Izumi, Yasuhiko; Yamamoto, Noriyuki; Matsuo, Takaaki; Wakita, Seiko; Takeuchi, Hiroki; Kume, Toshiaki; Katsuki, Hiroshi; Sawada, Hideyuki; Akaike, Akinori

    2009-07-01

    Dopaminergic neurons are more vulnerable than other types of neurons in cases of Parkinson disease and ischemic brain disease. An increasing amount of evidence suggests that endogenous dopamine plays a role in the vulnerability of dopaminergic neurons. Although glutamate toxicity contributes to the pathogenesis of these disorders, the sensitivity of dopaminergic neurons to glutamate toxicity has not been clarified. In this study, we demonstrated that dopaminergic neurons were preferentially affected by glutamate toxicity in rat mesencephalic cultures. Glutamate toxicity in dopaminergic neurons was blocked by inhibiting extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase, and p38 MAPK. Furthermore, depletion of dopamine by alpha-methyl-dl-p-tyrosine methyl ester (alpha-MT), an inhibitor of tyrosine hydroxylase (TH), protected dopaminergic neurons from the neurotoxicity. Exposure to glutamate facilitated phosphoryration of TH at Ser31 by ERK, which contributes to the increased TH activity. Inhibition of ERK had no additive effect on the protection offered by alpha-MT, whereas alpha-MT and c-jun N-terminal kinase or p38 MAPK inhibitors had additive effects and yielded full protection. These data suggest that endogenous dopamine is responsible for the vulnerability to glutamate toxicity of dopaminergic neurons and one of the mechanisms may be an enhancement of dopamine synthesis mediated by ERK.

  19. School system evaluation by value added analysis under endogeneity.

    PubMed

    Manzi, Jorge; San Martín, Ernesto; Van Bellegem, Sébastien

    2014-01-01

    Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile.

  20. Prediction of brain tissue temperature using near-infrared spectroscopy.

    PubMed

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-04-01

    Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of [Formula: see text] (animal dataset) and [Formula: see text] (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications.

  1. Endogenous Pyrogen Physiology

    DTIC Science & Technology

    1980-01-01

    neutrophilic pyrogen, the fever-producing factors of cellular origin are now generally known as endogenous NEURONE $ M E pyrogen, or EP. FFECTS , ,, The entire...which release well known hormones. EP in turn produces its effect on a distant Assay of EP . target tissue, i.e., certein.. neurons within the central...expenditure, since it is not blocked by fluoride, cause CAMP formation within the neurons , or they could alter the In combination, these data suggest that

  2. Neurotrophin-3 provides neuroprotection via TrkC receptor dependent pErk5 activation in a rat surgical brain injury model.

    PubMed

    Akyol, Onat; Sherchan, Prativa; Yilmaz, Gokce; Reis, Cesar; Ho, Wingi Man; Wang, Yuechun; Huang, Lei; Solaroglu, Ihsan; Zhang, John H

    2018-06-05

    Surgical brain injury (SBI) which occurs due to the inadvertent injury inflicted to surrounding brain tissue during neurosurgical procedures can potentiate blood brain barrier (BBB) permeability, brain edema and neurological deficits. This study investigated the role of neurotrophin 3 (NT-3) and tropomyosin related kinase receptor C (TrkC) against brain edema and neurological deficits in a rat SBI model. SBI was induced in male Sprague Dawley rats by partial right frontal lobe resection. Temporal expression of endogenous NT-3 and TrkC was evaluated at 6, 12, 24 and 72 h after SBI. SBI rats received recombinant NT-3 which was directly applied to the brain surgical injury site using gelfoam. Brain edema and neurological function was evaluated at 24 and 72 h after SBI. Small interfering RNA (siRNA) for TrkC and Rap1 was administered via intracerebroventricular injection 24 h before SBI. BBB permeability assay and western blot was performed at 24 h after SBI. Endogenous NT-3 was decreased and TrkC expression increased after SBI. Topical administration of recombinant NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. Recombinant NT-3 administration increased the expression of phosphorylated Rap1 and Erk5. The protective effect of NT-3 was reversed with TrkC siRNA but not Rap1 siRNA. Topical application of NT-3 reduced brain edema, BBB permeability and improved neurological function after SBI. The protective effect of NT-3 was possibly mediated via TrkC dependent activation of Erk5. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. A novel antipyretic action of 15-deoxy-Delta12,14-prostaglandin J2 in the rat brain.

    PubMed

    Mouihate, Abdeslam; Boissé, Lysa; Pittman, Quentin J

    2004-02-11

    Fever is an important part of the host defense response, yet fever can be detrimental if it is uncontrolled. We provide the first evidence that 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), an endogenous ligand for peroxisome proliferator-activated receptor gamma (PPARgamma), can attenuate the febrile response to lipopolysaccharide (LPS) in rats via an action on the brain. Furthermore, we show that PPARgamma is expressed in the hypothalamus, an important locus in the brain for fever generation. In addition, 15d-PGJ2 and its synthesizing enzyme (PGD2 synthase) were present in rat cerebrospinal fluid, and their levels were enhanced in response to systemic injection of LPS. The antipyretic effect of 15d-PGJ2 was associated with reduction in LPS-stimulated cyclooxygenase-2 expression in the hypothalamus but not in p44/p42 mitogen-activated protein kinase phosphorylation or in the expression of the PPARgamma. Thus it is likely that there is a parallel induction of an endogenous prostanoid pathway in the brain capable of limiting deleterious actions of the proinflammatory prostaglandin E2-dependent pathway.

  4. Social Laughter Triggers Endogenous Opioid Release in Humans.

    PubMed

    Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri

    2017-06-21

    The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the

  5. Endogenous siRNAs and noncoding RNA-derived small RNAs are expressed in adult mouse hippocampus and are up-regulated in olfactory discrimination training.

    PubMed

    Smalheiser, Neil R; Lugli, Giovanni; Thimmapuram, Jyothi; Cook, Edwin H; Larson, John

    2011-01-01

    We previously proposed that endogenous siRNAs may regulate synaptic plasticity and long-term gene expression in the mammalian brain. Here, a hippocampal-dependent task was employed in which adult mice were trained to execute a nose-poke in a port containing one of two simultaneously present odors in order to obtain a reward. Mice demonstrating olfactory discrimination training were compared to pseudo-training and nose-poke control groups; size-selected hippocampal RNA was subjected to Illumina deep sequencing. Sequences that aligned uniquely and exactly to the genome without uncertain nucleotide assignments, within exons or introns of MGI annotated genes, were examined further. The data confirm that small RNAs having features of endogenous siRNAs are expressed in brain; that many of them derive from genes that regulate synaptic plasticity (and have been implicated in neuropsychiatric diseases); and that hairpin-derived endo-siRNAs and the 20- to 23-nt size class of small RNAs show a significant increase during an early stage of training. The most abundant putative siRNAs arose from an intronic inverted repeat within the SynGAP1 locus; this inverted repeat was a substrate for dicer in vitro, and SynGAP1 siRNA was specifically associated with Argonaute proteins in vivo. Unexpectedly, a dramatic increase with training (more than 100-fold) was observed for a class of 25- to 30-nt small RNAs derived from specific sites within snoRNAs and abundant noncoding RNAs (Y1 RNA, RNA component of mitochondrial RNAse P, 28S rRNA, and 18S rRNA). Further studies are warranted to characterize the role(s) played by endogenous siRNAs and noncoding RNA-derived small RNAs in learning and memory.

  6. The Neural Cell Adhesion Molecule-Derived (NCAM)-Peptide FG Loop (FGL) Mobilizes Endogenous Neural Stem Cells and Promotes Endogenous Regenerative Capacity after Stroke.

    PubMed

    Klein, Rebecca; Mahlberg, Nicolas; Ohren, Maurice; Ladwig, Anne; Neumaier, Bernd; Graf, Rudolf; Hoehn, Mathias; Albrechtsen, Morten; Rees, Stephen; Fink, Gereon Rudolf; Rueger, Maria Adele; Schroeter, Michael

    2016-12-01

    The neural cell adhesion molecule (NCAM)-derived peptide FG loop (FGL) modulates synaptogenesis, neurogenesis, and stem cell proliferation, enhances cognitive capacities, and conveys neuroprotection after stroke. Here we investigated the effect of subcutaneously injected FGL on cellular compartments affected by degeneration and regeneration after stroke due to middle cerebral artery occlusion (MCAO), namely endogenous neural stem cells (NSC), oligodendrocytes, and microglia. In addition to immunohistochemistry, we used non-invasive positron emission tomography (PET) imaging with the tracer [ 18 F]-fluoro-L-thymidine ([ 18 F]FLT) to visualize endogenous NSC in vivo. FGL significantly increased endogenous NSC mobilization in the neurogenic niches as evidenced by in vivo and ex vivo methods, and it induced remyelination. Moreover, FGL affected neuroinflammation. Extending previous in vitro results, our data show that the NCAM mimetic peptide FGL mobilizes endogenous NSC after focal ischemia and enhances regeneration by amplifying remyelination and modulating neuroinflammation via affecting microglia. Results suggest FGL as a promising candidate to promote recovery after stroke.

  7. tirant, a newly discovered active endogenous retrovirus in Drosophila simulans.

    PubMed

    Akkouche, Abdou; Rebollo, Rita; Burlet, Nelly; Esnault, Caroline; Martinez, Sonia; Viginier, Barbara; Terzian, Christophe; Vieira, Cristina; Fablet, Marie

    2012-04-01

    Endogenous retroviruses have the ability to become permanently integrated into the genomes of their host, and they are generally transmitted vertically from parent to progeny. With the exception of gypsy, few endogenous retroviruses have been identified in insects. In this study, we describe the tirant endogenous retrovirus in a subset of Drosophila simulans natural populations. By focusing on the envelope gene, we show that the entire retroviral cycle (transcription, translation, and retrotransposition) can be completed for tirant within one population of this species.

  8. Endogenous opiates and behavior: 2007.

    PubMed

    Bodnar, Richard J

    2008-12-01

    This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.

  9. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, P.E.; Martin, M.A.; Rabson, A.B.

    1986-09-01

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less

  10. Detection of endogenous boldenone in the entire male horses.

    PubMed

    Ho, Emmie N M; Yiu, Kenneth C H; Tang, Francis P W; Dehennin, Louis; Plou, Philippe; Bonnaire, Yves; Wan, Terence S M

    2004-09-05

    Boldenone (1,2-dehydrotestosterone) is a common veterinary anabolic agent. Its structure is very similar to testosterone. Testosterone is endogenous in the horse, whereas there has been no report concerning the detection of endogenous boldenone. This paper reports the direct observation of sulphate conjugate of boldenone in equine urine from entires. The detection procedures involved solid-phase extraction, immunoaffinity column (IAC) purification, and then LC-MS-MS analysis on a Q-ToF instrument. The identification of boldenone sulphate has provided direct evidence for the endogenous nature of boldenone in entire male horses. Quantification data for the normal level of boldenone in Hong Kong racehorses will also be discussed.

  11. On the Endogeneity of the Mean-Variance Efficient Frontier.

    ERIC Educational Resources Information Center

    Somerville, R. A.; O'Connell, Paul G. J.

    2002-01-01

    Explains that the endogeneity of the efficient frontier in the mean-variance model of portfolio selection is commonly obscured in portfolio selection literature and in widely used textbooks. Demonstrates endogeneity and discusses the impact of parameter changes on the mean-variance efficient frontier and on the beta coefficients of individual…

  12. Possible role of a dysregulation of the endogenous opioid system in antisocial personality disorder.

    PubMed

    Bandelow, Borwin; Wedekind, Dirk

    2015-11-01

    Around half the inmates in prison institutions have antisocial personality disorder (ASPD). A recent theory has proposed that a dysfunction of the endogenous opioid system (EOS) underlies the neurobiology of borderline personality disorder (BPD). In the present theoretical paper, based on a comprehensive database and hand search of the relevant literature, this hypothesis is extended to ASPD, which may be the predominant expression of EOS dysfunction in men, while the same pathology underlies BPD in women. According to evidence from human and animal studies, the problematic behaviours of persons with antisocial, callous, or psychopathic traits may be seen as desperate, unconscious attempts to stimulate their deficient EOS, which plays a key role in brain reward circuits. If the needs of this system are not being met, the affected persons experience dysphoric mood, discomfort, or irritability, and strive to increase binding of endogenous opioids to receptors by using the rewarding effects of aggression by exertion of physical or manipulative power on others, by abusing alcohol or substances that have the reward system as target, by creating an "endorphin rush" by self-harm, by increasing the frequency of their sexual contacts, or by impulsive actions and sensation seeking. Symptoms associated with ASPD can be treated with opioid antagonists like naltrexone, naloxone, or nalmefene. Copyright © 2015 John Wiley & Sons, Ltd.

  13. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  14. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    NASA Astrophysics Data System (ADS)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  15. Accurate and sensitive liquid chromatography/tandem mass spectrometry simultaneous assay of seven steroids in monkey brain.

    PubMed

    Bertin, Jonathan; Dury, Alain Y; Ke, Yuyong; Ouellet, Johanne; Labrie, Fernand

    2015-06-01

    Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Brain glycogen in health and disease.

    PubMed

    Duran, Jordi; Guinovart, Joan J

    2015-12-01

    Glycogen is present in the brain at much lower concentrations than in muscle or liver. However, by characterizing an animal depleted of brain glycogen, we have shown that the polysaccharide plays a key role in learning capacity and in activity-dependent changes in hippocampal synapse strength. Since glycogen is essentially found in astrocytes, the diverse roles proposed for this polysaccharide in the brain have been attributed exclusively to these cells. However, we have demonstrated that neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. However, these cells can store only minute amounts of glycogen, since the progressive accumulation of this molecule leads to neuronal loss. Loss-of-function mutations in laforin and malin cause Lafora disease. This condition is characterized by the presence of high numbers of insoluble polyglucosan bodies, known as Lafora bodies, in neuronal cells. Our findings reveal that the accumulation of this aberrant glycogen accounts for the neurodegeneration and functional consequences, as well as the impaired autophagy, observed in models of this disease. Similarly glycogen synthase is responsible for the accumulation of corpora amylacea, which are polysaccharide-based aggregates present in the neurons of aged human brains. Our findings change the current view of the role of glycogen in the brain and reveal that endogenous neuronal glycogen metabolism is important under stress conditions and that neuronal glycogen accumulation contributes to neurodegenerative diseases and to aging-related corpora amylacea formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mapping Brain Metals to Evaluate Therapies for Neurodegenerative Disease

    PubMed Central

    Popescu, Bogdan Florin Gh; Nichol, Helen

    2013-01-01

    The brain is rich in metals and has a high metabolic rate, making it acutely vulnerable to the toxic effects of endogenously produced free radicals. The abundant metals, iron and copper, transfer single electrons as they cycle between their reduced (Fe2+, Cu1+) and oxidized (Fe3+, Cu2+) states making them powerful catalysts of reactive oxygen species (ROS) production. Even redox inert zinc, if present in excess, can trigger ROS production indirectly by altering mitochondrial function. While metal chelators seem to improve the clinical outcome of several neurodegenerative diseases, their mechanisms of action remain obscure and the effects of long-term use are largely unknown. Most chelators are not specific to a single metal and could alter the distribution of multiple metals in the brain, leading to unexpected consequences over the long-term. We show here how X-ray fluorescence will be a valuable tool to examine the effect of chelators on the distribution and amount of metals in the brain. PMID:20553312

  18. A New Method for Quantitative Immunoblotting of Endogenous α-Synuclein

    PubMed Central

    Newman, Andrew J.; Selkoe, Dennis; Dettmer, Ulf

    2013-01-01

    β-Sheet-rich aggregates of α-synuclein (αSyn) are the hallmark neuropathology of Parkinson’s disease and related synucleinopathies, whereas the principal native structure of αSyn in healthy cells - unfolded monomer or α-helically folded oligomer - is under debate. Our recent crosslinking analysis of αSyn in intact cells showed that a large portion of endogenous αSyn can be trapped as oligomers, most notably as apparent tetramers. One challenge in such studies is accurately quantifying αSyn Western blot signals among samples, as crosslinked αSyn trends toward increased immunoreactivity. Here, we analyzed this phenomenon in detail and found that treatment with the reducible amine-reactive crosslinker DSP strongly increased αSyn immunoreactivity even after cleavage with the reducing agent β-mercaptoethanol. The effect was observed with all αSyn antibodies tested and in all sample types from human brain homogenates to untransfected neuroblastoma cells, permitting easy detection of endogenous αSyn in the latter, which had long been considered impossible. Coomassie staining of blots before and after several hours of washing revealed complete retention of αSyn after DSP/β-mercaptoethanol treatment, in contrast to a marked loss of αSyn without this treatment. The treatment also enhanced immunodetection of the homologs β- and γ-synuclein and of histones, another group of small, lysine-rich proteins. We conclude that by neutralizing positive charges and increasing protein hydrophobicity, amine crosslinker treatment promotes adhesion of αSyn to blotting membranes. These data help explain the recent report of fixing αSyn blots with paraformaldehyde after transfer, which we find produces similar but weaker effects. DSP/β-mercaptoethanol treatment of Western blots should be particularly useful to quantify low-abundance αSyn forms such as extracellular and post-translationally modified αSyn and splice variants. PMID:24278419

  19. An endogenous RNA transcript antisense to CNG(alpha)1 cation channel mRNA.

    PubMed

    Cheng, Chin-Hung; Yew, David Tai-Wai; Kwan, Hiu-Yee; Zhou, Qing; Huang, Yu; Liu, Yong; Chan, Wing-Yee; Yao, Xiaoqiang

    2002-10-01

    CNG channels are cyclic nucleotide-gated Ca(2+)-permeable channels that are suggested to be involved in the activity-dependent alterations of synaptic strength that are thought to underlie information storage in the CNS. In this study, we isolated an endogenous RNA transcript antisense to CNG(alpha)1 mRNA. This transcript was capable of down-regulating the expression of sense CNG(alpha)1 in the Xenopus oocyte expression system. RT-PCR, Northern blot, and in situ hybridization analyses showed that the transcript was coexpressed with CNG(alpha)1 mRNA in many regions of human brain, notably in those regions that were involved in long-term potentiation and long-term depression, such as hippocampal CA1 and CA3, dentate gyrus, and cerebellar Purkinje layer. Comparison of expression patterns between adult and fetal cerebral cortex revealed that there were concurrent developmental changes in the expression levels of anti-CNG1 and CNG(alpha)1. Treatment of human glioma cell T98 with thyroid hormone T(3) caused a significant increase in anti-CNG1 expression and a parallel decrease in sense CNG(alpha)1 expression. These data suggest that the suppression of CNG(alpha)1 expression by anti-CNG1 may play an important role in neuronal functions, especially in synaptic plasticity and cortical development. Endogenous antisense RNA-mediated regulation may represent a new mechanism through which the activity of ion channels can be regulated in the human CNS.

  20. Do Endogenous and Exogenous Action Control Compete for Perception?

    ERIC Educational Resources Information Center

    Pfister, Roland; Heinemann, Alexander; Kiesel, Andrea; Thomaschke, Roland; Janczyk, Markus

    2012-01-01

    Human actions are guided either by endogenous action plans or by external stimuli in the environment. These two types of action control seem to be mediated by neurophysiologically and functionally distinct systems that interfere if an endogenously planned action suddenly has to be performed in response to an exogenous stimulus. In this case, the…

  1. Do endogenous and exogenous action control compete for perception?

    PubMed

    Pfister, Roland; Heinemann, Alexander; Kiesel, Andrea; Thomaschke, Roland; Janczyk, Markus

    2012-04-01

    Human actions are guided either by endogenous action plans or by external stimuli in the environment. These two types of action control seem to be mediated by neurophysiologically and functionally distinct systems that interfere if an endogenously planned action suddenly has to be performed in response to an exogenous stimulus. In this case, the endogenous representation has to be deactivated first to give way to the exogenous system. Here we show that interference of endogenous and exogenous action control is not limited to motor-related aspects but also affects the perception of action-related stimuli. Participants associated two actions with contingent sensory effects in learning blocks. In subsequent test blocks, preparing one of these actions specifically impaired responding to the associated effect in an exogenous speeded detection task, yielding a blindness-like effect for arbitrary, learned action effects. In accordance with the theory of event coding, this finding suggests that action planning influences perception even in the absence of any physical similarities between action and to-be-perceived stimuli.

  2. Endogenous Opiates and Behavior: 2015.

    PubMed

    Bodnar, Richard J

    2017-02-01

    This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Endogenous opiates and behavior: 2013.

    PubMed

    Bodnar, Richard J

    2014-12-01

    This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Endogenous opiates and behavior: 2004.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2005-12-01

    This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.

  5. MANF prevents traumatic brain injury in rats by inhibiting inflammatory activation and protecting Blood Brain Barrier.

    PubMed

    Li, Qing-Xin; Shen, Yu-Xian; Ahmad, Akhlaq; Shen, Yu-Jun; Zhang, Yi-Quan; Xu, Pei-Kun; Chen, Wei-Wei; Yu, Yong-Qiang

    2018-06-05

    Our previous studies have shown that MANF provides neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This work investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI). The model of TBI was induced by Feeney free falling methods with male Sprauge-Dawley rats. The expression of MANF, 24 hrs after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot and Reverse transcription PCR(RT-PCR) techniques. After treatment with recombinant human MANF following TBI, assessment was conducted - 24 hrs later for brain water content(BWC), cerebral edema volume in MRI, neurobehavioral testing and Evans blue extravasation. Moreover, by the techniques of Western blot and RT-PCR, the expression of inflammatory cytokines(IL-1β, TNF-α) and P65 was also analyzed to explore the underlying protective mechanism of MANF. At 24 hrs after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with high dose of recombinant human MANF(20 μg/20 μL) - significantly increased the modified Garcia score, and reduced BWC as well as cerebral edema volume in MRI. Furthermore, MANF alleviated not only the blood-brain barrier(BBB) permeability, but also the expressions of IL-1β and TNF-α mRNA and protein. Besides, the activation of P65 was also inhibited. These results suggest that MANF provides neuroprotective effect against acute brain injury after TBI, via attenuating BBB disruption and intracranial neuroinflammation, while the inhibition of NF-κB signaling pathway might be a potential mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Endogenous analgesic effect of pregabalin: A double-blind and randomized controlled trial.

    PubMed

    Sugimine, S; Saito, S; Araki, T; Yamamoto, K; Obata, H

    2017-07-01

    Conditioned pain modulation (CPM) is widely used to measure endogenous analgesia, and a recent study indicated that drugs that act on endogenous analgesia are more effective in individuals with lower CPM. Recent animal studies have indicated that pregabalin activates endogenous analgesia by stimulating the descending pain inhibitory system. The present study examined whether the analgesic effect of pregabalin is greater in individuals with lower original endogenous analgesia using CPM. Fifty-nine healthy subjects were randomly assigned to either a pregabalin group or a placebo group, and 50 of them completed the study. CPM was measured before and after pregabalin or placebo administration. The correlation of initial CPM to change in CPM was compared between the pregabalin and placebo groups. Initial CPM was significantly correlated with the change in CPM in the pregabalin group (r = -0.73, p < 0.0001) but not in the placebo group (p = 0.56) (difference in correlation coefficients between groups; p = 0.004). Furthermore, the initial CPM significantly affected the change in CPM in the pregabalin group but not in the placebo group (pregabalin group: adj R 2  = 0.51, p < 0.001, y = -0.54x + 2.98; placebo group: p = 0.56, significant difference in regression slopes; p = 0.015). These results indicate that pregabalin has a higher endogenous analgesic effect in individuals with lower original endogenous analgesia. The analgesic effect of pregabalin depends on the original endogenous analgesia status. Its effect on conditioned pain modulation (CPM) was stronger for subjects with lower original endogenous analgesia, suggesting that the mechanism of pregabalin involves the improvement of endogenous analgesia. © 2017 European Pain Federation - EFIC®.

  7. Endogenous network of firms and systemic risk

    NASA Astrophysics Data System (ADS)

    Ma, Qianting; He, Jianmin; Li, Shouwei

    2018-02-01

    We construct an endogenous network characterized by commercial credit relationships connecting the upstream and downstream firms. Simulation results indicate that the endogenous network model displays a scale-free property which exists in real-world firm systems. In terms of the network structure, with the expansion of the scale of network nodes, the systemic risk increases significantly, while the heterogeneities of network nodes have no effect on systemic risk. As for firm micro-behaviors, including the selection range of trading partners, actual output, labor requirement, price of intermediate products and employee salaries, increase of all these parameters will lead to higher systemic risk.

  8. [Mechanisms of leukocyte formation of endogenous pyrogen].

    PubMed

    Rybakina, E G; Sorokin, A V

    1982-06-01

    A study was made of the kinetics of endogenous pyrogen production by rabbit blood and exudate leukocytes and possible role played by the products of activated leukocytes in autoregulation of the process. It was established that accumulation of endogenous pyrogen in the cell precedes its release by stimulated cells. Then the processes of active pyrogen formation and release gel interdependent: pyrogen formed releases from the cell; the lowering of pyrogen concentration in the cell is accompanied by the decrease of its content in the medium. No stimulating effect of the products activated during leukocyte inflammation on pyrogen formation by blood leukocytes was discovered.

  9. Endogenous opioids encode relative taste preference.

    PubMed

    Taha, Sharif A; Norsted, Ebba; Lee, Lillian S; Lang, Penelope D; Lee, Brian S; Woolley, Joshua D; Fields, Howard L

    2006-08-01

    Endogenous opioid signaling contributes to the neural control of food intake. Opioid signaling is thought to regulate palatability, the reward value of a food item as determined by orosensory cues such as taste and texture. The reward value of a food reflects not only these sensory properties but also the relative value of competing food choices. In the present experiment, we used a consummatory contrast paradigm to manipulate the relative value of a sucrose solution for two groups of rats. Systemic injection of the nonspecific opioid antagonist naltrexone suppressed sucrose intake; for both groups, however, this suppression was selective, occurring only for the relatively more valuable sucrose solution. Our results indicate that endogenous opioid signaling contributes to the encoding of relative reward value.

  10. Activation of endogenous antioxidants as a common therapeutic strategy against cancer, neurodegeneration and cardiovascular diseases: A lesson learnt from DJ-1.

    PubMed

    Chan, Julie Y H; Chan, Samuel H H

    2015-12-01

    This review aims at presenting a new concept pertaining to the development of antioxidants, namely, to evolve from disease-oriented therapy to mechanism-oriented therapy. Using as our illustrative example is DJ-1, a homodimeric protein that is ubiquitously expressed in a variety of mammalian tissues, including the brain, and is found in the matrix and the intermembrane space of the mitochondria. DJ-1 is known to be an endogenous antioxidant against cancer, neurodegeneration and cardiovascular diseases, of which oxidative stress plays a causal role. Interestingly, the mechanistic targets of DJ-1 as an antioxidant, including Daxx, Nrf2, thioredoxin, glutathione, α-synuclein, PTEN/PI3K/Akt, and Pink/Parkin are also associated with those oxidative stress-related diseases. Furthermore, activators of DJ-1 are available in the form of mortalin, phenylbutyrate and quinone oxidoreductase 1. It follows that activation of DJ-1 as a common endogenous antioxidant provides a new strategy against cancer, neurodegeneration and cardiovascular diseases. Since clinical trials on exogenous application of the known antioxidants have basically failed, an alternative approach would logically be to activate the endogenous antioxidants that are already present in the appropriate cellular locale where elevated oxidative stress is the culprit for the disease. At the same time, since oxidative stress is a common denominator among cancer, neurodegeneration and cardiovascular diseases, development of antioxidant therapy should target the reduction in reactive oxygen species. Instead of focusing on disease-oriented therapy, pharmaceutical companies should concentrate on developing agents and dosing schemes for effective activation of the endogenous antioxidants that are associated with a multitude of oxidative stress-related diseases (mechanism-oriented therapy). Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Opiate receptor binding in the brain of the seizure sensitive Mongolian gerbil (Meriones unguiculatus).

    PubMed

    Lee, R J; Olsen, R W; Lomax, P; McCabe, R T; Wamsley, J K

    1984-12-01

    Opiate receptor binding was studied in seizure sensitive (SS) and seizure resistant (SR) strains of the Mongolian gerbil. Cryostat sections of the brain were labeled with [3H]-dihydromorphine, subjected to autoradiography and analysed by microdensitometry. SS gerbils, prior to seizure induction, demonstrated overall greater brain opiate binding when compared to SR animals. Immediately following a seizure, binding in the interpeduncular nucleus fell to levels found in SR animals. The increased opiate binding in the SS (pre-seizure) compared to SR gerbils could reflect a deficit of endogenous ligand which could underlie the seizure diathesis in the gerbil.

  12. Endogenous Serratia marcescens endophthalmitis.

    PubMed

    Shah, Sonya B; Bansal, Alok S; Rabinowitz, Michael P; Park, Carl; Bedrossian, Edward H; Eagle, Ralph C

    2014-01-01

    The purpose of this study was to describe a rare case of endogenous endophthalmitis associated with dental disease secondary to Serratia marcescens in an HIV-negative individual. Retrospective case report. A 50-year-old white man with a history of intravenous drug use presented with pain and decreased vision in his right eye. Slit-lamp examination showed a hazy cornea, hypopyon with fibrin in the anterior chamber, and elevated intraocular pressure. B-scan ultrasound showed vitritis and choroidal thickening. Computed tomography showed gingival inflammation and lucencies of several teeth. Blood and urine cultures were negative, and HIV testing was negative. Echocardiography was negative for vegetations. Intravitreal culture revealed S. marcescens. Despite intravitreal and systemic antibiotics, the patient's clinical situation rapidly deteriorated, and the eye was eviscerated. The patient underwent dental extraction and was subsequently discharged in stable condition. The first case of endogenous endophthalmitis secondary to S. marcescens in an otherwise healthy, HIV-negative, intravenous drug user in association with severe dental disease is reported. Serratia may be found in oral biofilm, and this mechanism should be considered in cases where other etiologies have been ruled out.

  13. Facile preparation of magnetic graphene double-sided mesoporous composites for the selective enrichment and analysis of endogenous peptides.

    PubMed

    Yin, Peng; Sun, Nianrong; Deng, Chunhui; Li, Yan; Zhang, Xiangmin; Yang, Pengyuan

    2013-08-01

    In this work, magnetic graphene double-sided mesoporous nanocomposites (mag-graphene@mSiO₂) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol-gel coating was performed using tetraethyl orthosilicate as the silica source. The as-made magnetic graphene double-sided mesoporous silica composites were treated with high-temperature calcination to remove the hydroxyl on the surface. The novel double-sided materials possess high surface area (167.8 cm²/g) and large pore volume (0.2 cm³/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic-hydrophobic interaction. At the same time, the magnetic Fe₃O₄ particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double-sided nanocomposites were successfully applied to size-selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC-MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as-made mag-graphene@mSiO₂ have powerful potential for peptidome research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Residential water demand with endogenous pricing: The Canadian Case

    NASA Astrophysics Data System (ADS)

    Reynaud, Arnaud; Renzetti, Steven; Villeneuve, Michel

    2005-11-01

    In this paper, we show that the rate structure endogeneity may result in a misspecification of the residential water demand function. We propose to solve this endogeneity problem by estimating a probabilistic model describing how water rates are chosen by local communities. This model is estimated on a sample of Canadian local communities. We first show that the pricing structure choice reflects efficiency considerations, equity concerns, and, in some cases, a strategy of price discrimination across consumers by Canadian communities. Hence estimating the residential water demand without taking into account the pricing structures' endogeneity leads to a biased estimation of price and income elasticities. We also demonstrate that the pricing structure per se plays a significant role in influencing price responsiveness of Canadian residential consumers.

  15. An endogenous small interfering RNA pathway in Drosophila

    PubMed Central

    Czech, Benjamin; Malone, Colin D.; Zhou, Rui; Stark, Alexander; Schlingeheyde, Catherine; Dus, Monica; Perrimon, Norbert; Kellis, Manolis; Wohlschlegel, James A.; Sachidanandam, Ravi; Hannon, Gregory J.; Brennecke, Julius

    2009-01-01

    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of ~22 nucleotides in length, which arise from structured precursors through the action of Drosha–Pasha and Dicer-1–Loquacious complexes1–7. These join Argonaute-1 to regulate gene expression8,9. A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons10,11. Piwi-interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi-catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer-2, but a subset depends preferentially on Loquacious1,4,5 rather than the canonical Dicer-2 partner, R2D2 (ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue-specific fashion. They predominantly join Argonaute-2 and have the capacity, as a class, to target both protein-coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles. PMID:18463631

  16. The Brain In Vivo Expresses the 2′,3′-cAMP-Adenosine Pathway

    PubMed Central

    Verrier, Jonathan D.; Jackson, Travis C.; Bansal, Rashmi; Kochanek, Patrick M.; Puccio, Ava M.; Okonkwo, David O.; Jackson, Edwin K.

    2012-01-01

    Although multiple biochemical pathways produce adenosine, studies suggest that the 2′,3′-cAMP-adenosine pathway (2′,3′-cAMP → 2′-AMP/3′-AMP → adenosine) contributes to adenosine production in some cells/tissues/organs. To determine whether the 2′,3′-cAMP-adenosine pathway exists in vivo in the brain, we delivered to the brain (gray matter and white matter separately) via the inflow perfusate of a microdialysis probe either 2′,3′-cAMP, 3′,5′-cAMP, 2′-AMP, 3′-AMP, or 5′-AMP and measured the recovered metabolites in the microdialysis outflow perfusate with mass spectrometry. In both gray and white matter, 2′,3′-cAMP increased 2′-AMP, 3′-AMP and adenosine, and 3′,5′-cAMP increased 5′-AMP and adenosine. In both brain regions, 2′-AMP, 3-AMP and 5′-AMP were converted to adenosine. Microdialysis experiments in 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) wild-type mice demonstrated that traumatic brain injury (TBI; controlled cortical impact model) activated the brain 2,3′-cAMP-adenosine pathway; similar experiments in CNPase knockout mice indicated that CNPase was involved in the metabolism of endogenous 2′,3′-cAMP to 2′-AMP and to adenosine. In CSF from TBI patients, 2′,3′-cAMP was significantly increased in the initial 12 hours after injury and strongly correlated with CSF levels of 2′-AMP, 3′-AMP, adenosine and inosine. We conclude that in vivo, 2′,3′-cAMP is converted to 2′-AMP/3′-AMP, and these AMPs are metabolized to adenosine. This pathway exists endogenously in both mice and humans. PMID:22360621

  17. The search for an endogenous activator.

    PubMed Central

    Gekowski, K. M.; Atkins, E.

    1985-01-01

    Certain febrile diseases are unaccompanied by infection or apparent hypersensitivity. In myocardial infarction or pulmonary embolism, for example, fever has been attributed to inflammation and/or tissue necrosis. Exogenous (microbial) pyrogens stimulate both human and animal monocytes/macrophages to produce endogenous pyrogen (EP) in vitro. To determine if plasma and cellular endogeneous mediators (EMs) of inflammation induced EP production, human mononuclear cells (M/L) were incubated for 18 hours with varying amounts of EM and the supernates assayed for EP in rabbits. Neutrophils (PMNs), which do not generate EP and yet are a feature of acute inflammation, were tested. Neither viable, phorbol myristic acetate-stimulated PMNs nor sonicated PMNs, red blood cells, or M/L stimulated human monocytes to produce EP. Human C3b and C5a, which mediate phagocytosis and chemotaxis, respectively, were also inactive. Despite its chemoattractant properties, the synthetic peptide FMLP failed to induce EP release. Since Poly I:Poly C (PIC: a synthetic, double-stranded RNA) is a potent pyrogen in rabbits, we investigated PIC, as well as a native, single-stranded RNA (from E. coli) and DNA (from calf thymus). None was active in vitro, and only PIC caused fever when given to rabbits intravenously. In summary, we have been unable to find an endogenous activator of EP from human monocytes to explain fevers associated with inflammation alone. PMID:3875936

  18. [Brain protection against cerebral ischemia].

    PubMed

    Kitagawa, Kazuo

    2013-01-01

    Previous clinical trials failed to show the benefit of several potentially protective drugs in acute ischemic stroke. However, there would be three main approaches for brain protection against stroke. The first is to develop a novel thrombolytic agent which is more efficient and safer than alteplase. Tenecteplase and desmoteplase are in progress as a new thrombolytic drug. The second strategy is to augment collateral circulation through leptomeningeal anastomosis. Administration of G-CSF could enhance arteriogenesis, but it takes several days to develop functional collateral. For this purpose, partial aortic balloon clumping or stimulation of pterygopalatine ganglion may be promising. The third one is to protect neurovascular unit against reperfusion injury. Brain hypothermia is the most effective strategy in experimental ischemia, and the clinical trial for hypothermia combined with thrombolysis therapy is in progress. Activation of endogenous protective response, as presented by ischemic tolerance, has focused on remote ischemic conditioning. Although the precise mechanisms of remote preconditioning remain unclear, intermittent limb ischemia is a safe approach. Remote ischemic conditioning is now investigated in acute patients with thrombolysis therapy.

  19. The Prognostic Impact of New-Onset Persistent Left Bundle Branch Block Following Transcatheter Aortic Valve Implantation: A Meta-analysis.

    PubMed

    Ando, Tomo; Takagi, Hisato

    2016-09-01

    New-onset persistent left bundle branch block (NOP-LBBB) is one of the most common conduction disturbances after transcatheter aortic valve implantation (TAVI). We hypothesized that NOP-LBBB may have a clinically negative impact after TAVI. To find out, we conducted a systematic literature search of the MEDLINE/PubMed and Embase databases. Observational studies that reported clinical outcomes of NOP-LBBB patients after TAVI were included. The random-effects model was used to combine odds ratios, risk ratios, or hazard ratios (HRs) with 95% confidence intervals. Adjusted HRs were utilized over unadjusted HRs or risk ratios when available. A total of 4049 patients (807 and 3242 patients with and without NOP-LBBB, respectively) were included. Perioperative (in-hospital or 30-day) and midterm all-cause mortality and midterm cardiovascular mortality were comparable between the groups. The NOP-LBBB patients experienced a higher rate of permanent pacemaker implantation (HR: 2.09, 95% confidence interval: 1.12-3.90, P = 0.021, I(2) = 83%) during midterm follow-up. We found that NOP-LBBB after TAVI resulted in higher permanent pacemaker implantation but did not negatively affect the midterm prognosis. Therefore, careful observation during the follow-up is required. © 2016 Wiley Periodicals, Inc.

  20. Sensitive and rapid detection of endogenous hydrogen sulfide distributing in different mouse viscera via a two-photon fluorescent probe.

    PubMed

    Chen, Qian; Yang, Jinfeng; Li, Yinhui; Zheng, Jing; Yang, Ronghua

    2015-10-08

    Development of efficient methods for detection of endogenous H2S in living cells and tissues is of considerable significance for better understanding the biological and pathological functions of H2S. Two-photon (TP) fluorescent probes are favorable as powerful molecular tools for studying physiological process due to its non-invasiveness, high spatiotemporal resolution and deep-tissues imaging. Up to date, several TP probes for intracellular H2S imaging have been designed, but real-time imaging of endogenous H2S-related biological processes in tissues is hampered due to low sensitivity, long response time and interference from other biothiols. To address this issue, we herein report a novel two-photon fluorescent probe (TPP-H2S) for highly sensitive and fast monitoring and imaging H2S levels in living cells and tissues. In the presence of H2S, it exhibits obviously improved sensitivity (LOD: 0.12 μM) and fast response time (about 2 min) compared with the reported two-photon H2S probes. With two-photon excitation, TPP-H2S displays high signal-to-noise ratio and sensitivity even no interference in cell growth media. As further application, TPP-H2S is applied for fast imaging of H2S in living cells and different fresh tissues by two-photon confocal microscope. Most importantly we first measured the endogenous H2S level in different viscera by vivisection and found that the distribution of endogenous H2S mostly in brain, liver and lung. The excellent sensing properties of TPP-H2S make it a practically useful tool for further studying biological roles of H2S. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: brain and liver enzymes are identical proteins encoded by two distinct mRNAs.

    PubMed

    Tappaz, M; Bitoun, M; Reymond, I; Sergeant, A

    1999-09-01

    Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.

  2. [Ischemic brain injury and hepatocyte growth factor].

    PubMed

    Takeo, Satoshi; Takagi, Norio; Takagi, Keiko

    2007-11-01

    Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.

  3. Rat brain gamma-secretase activity is highly influenced by detergents.

    PubMed

    Frånberg, Jenny; Welander, Hedvig; Aoki, Mikio; Winblad, Bengt; Tjernberg, Lars O; Frykman, Susanne

    2007-06-26

    Gamma-secretase is important for the development of Alzheimer's disease, since it is a crucial enzyme for the generation of the pathogenic amyloid beta-peptide (Abeta). Most data on gamma-secretase is derived from studies in cell lines overexpressing gamma-secretase components or amyloid precursor protein (APP), and since gamma-secretase is a transmembrane protein complex, detergents have been frequently used to facilitate the studies. However, no extensive comparison of the influence of different detergents at different concentrations on gamma-secretase activity in preparations from brain has been made. Here, we establish the optimal conditions for gamma-secretase activity in rat brain, using an activity assay detecting endogenous production of the APP intracellular domain, which is generated when gamma-secretase cleaves the APP C-terminal fragments. We performed a subcellular fractionation and noted the highest gamma-secretase activity in the 100000g pellet and that the optimal pH was around 7. We found that gamma-secretase was active for at least 16 h at 37 degrees C and that the endogenous substrate levels were sufficient for activity measurements. The highest activity was obtained in 0.4% CHAPSO, which is slightly below the critical micelle concentration (0.5%) for this detergent, but the complex was not solubilized efficiently at this concentration. On the other hand, 1% CHAPSO solubilized a substantial amount of the gamma-secretase components, but the activity was low. The activity was fully restored by diluting the sample to 0.4% CHAPSO. Therefore, using 1% CHAPSO for solubilization and subsequently diluting the sample to 0.4% is an appropriate procedure for obtaining a soluble, highly active gamma-secretase from rat brain.

  4. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

    PubMed Central

    Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.

    2012-01-01

    The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750

  5. Identification of endogenous flurophores in the layered retina

    NASA Astrophysics Data System (ADS)

    Xu, Gaixia; Chen, Danni; Sun, Yiwen; Qu, Junle; Lin, Ziyang; Ding, Zhihua; Niu, Hanben

    2007-05-01

    In this paper, we measured and analyzed the characteristic of endogenous fluorophores in porcine layered retina by using advanced fluorescence spectroscopy and microscopy imaging technology. It was found that there were obvious contrasts corresponding to the different layers of retina, which may be important for fundus disease diagnosis. The retinal pigment epithelium cells exhibited strong autofluorescence with as emission peak of 600+/-10nm when excited with 860-nm light. The emission peak of photoreceptors was at 652+/-5nm, and the emission peak of retinal vessels layer was weak and at 640~700nm, when excited with 488-nm light. Autofluorescence images of three layers of retina were obtained using the same setup. We concluded that the main endogenous fluorophore in PRE was lipofuscin and that in retinal vessels was porphyrin. What's more, the FMHW (full width at half. maximum) of retinal fluorescence spectrum was broad, which suggested that there wasn't only one endogenous fluorophores of tissues excited.

  6. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  7. Effects of theobroxide, a natural product, on the level of endogenous jasmonoids.

    PubMed

    Yang, Qing; Gao, Xiquan; Fujino, Yumiko; Matsuura, Hideyuki; Yoshihara, Teruhiko

    2004-01-01

    The natural potato microtuber inducing substance, theobroxide, strongly induces the formation of tuber of potato (Solanum tuberosum L.) and flower bud of morning glory (Pharbitis nil) plants under non-inducing conditions (long days) (Yoshihara et al., 2000). In the present study, theobroxide was evaluated for its effect on the level of endogenous jasmonoids in different tissues of such two plants. An in vitro bioassay using cultures of single-node segments of potato stems was performed with the supplement of theobroxide in the medium. The endogenous jasmonic acid (JA) and its analogue tuberonic acid (TA, 12-hydroxyjasmonic acid) in segments and microtubers were quantitatively analyzed. The increase in the endogenous JA level caused by theobroxide was observed in both segments and microtubers. Endogenous TA was only detected in segments, and the content increased with the concentration of theobroxide. As for morning glory, the whole plant was sprayed with theobroxide for 1 approximately 5 weeks under different photoperiods and endogenous JA in the leaves was quantitatively analyzed. Theobroxide spraying increased the level of endogenous JA in the leaves of the plants grown under both long and short days.

  8. Targeted drug delivery across the blood brain barrier in Alzheimer's disease.

    PubMed

    Rocha, Sandra

    2013-01-01

    The discovery of drugs for Alzheimer's disease (AD) therapy that can also permeate the blood brain barrier (BBB) is very difficult owing to its specificity and restrictive nature. The BBB disruption or the administration of the drug directly into the brain is not an option due to toxic effects and low diffusion of the therapeutic molecule in the brain parenchyma. A promising approach for drug systemic delivery to the central nervous system is the use of nanosized carriers. The therapeutic potential of certain nanopharmaceuticals for AD has already been demonstrated in vivo after systemic delivery. They are based on i) conjugates of drug and monoclonal antibodies against BBB endogenous receptors; ii) cationized or end terminal protected proteins/peptides; iii) liposomes and polymeric nanoparticles coated with polysorbate 80, cationic macromolecules or antibodies against BBB receptors/amyloid beta-peptides. Optimization and further validation of these systems are needed.

  9. Blood-brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody.

    PubMed

    Pardridge, William M

    2015-02-01

    Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.

  10. Animal spirits, competitive markets, and endogenous growth

    NASA Astrophysics Data System (ADS)

    Miyazaki, Kenji

    2013-10-01

    This paper uses a simple model with an endogenous discount rate and linear technology to investigate whether a competitive equilibrium has a higher balanced growth path (BGP) than the social planning solution and whether the BGP is determinate or indeterminate. The implications are as follows. To start with, people with an instinct to compare themselves with others possess an endogenous discount rate. In turn, this instinct affects the economic growth rate in a competitive market economy. The competitive market economy also sometimes achieves higher economic growth than a social planning economy. However, the outcomes of market economy occasionally fluctuate because of the presence of the self-fulfilling prophecy or animal spirits.

  11. Effects of phenylethanolamine N-methyltransferase inhibitors on uptake and release of norepinephrine and dopamine from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, N.Y.; Hower, J.A.; Borchardt, R.T.

    1985-09-01

    Inhibitors of phenylethanolamine N-methyltransferase (PNMT) and amphetamine were evaluated for their effects on the uptake of (TH)-norepinephrine (TH-NE) and the release of endogenous NE and dopamine (DA) from chopped rat brain tissues. Unlike amphetamine, all of PNMT inhibitors tested produced only slight inhibition of (TH)-NE uptake into chopped cerebral cortex. 2,3-Dichloro-alpha-methylbenzylamine (DCMB) and 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline (SKF64139), but not 2-cyclooctyl-2-hydroxyethylamine (CONH) and 1-aminomethylcycloundecanol (CUNH) produced slight release of endogenous NE and DA from chopped hypothalami, but their effects were less pronounced than those produced by amphetamine.

  12. Noninvasive monitoring of treatment response in a rabbit cyanide toxicity model reveals differences in brain and muscle metabolism

    NASA Astrophysics Data System (ADS)

    Kim, Jae G.; Lee, Jangwoen; Mahon, Sari B.; Mukai, David; Patterson, Steven E.; Boss, Gerry R.; Tromberg, Bruce J.; Brenner, Matthew

    2012-10-01

    Noninvasive near infrared spectroscopy measurements were performed to monitor cyanide (CN) poisoning and recovery in the brain region and in foreleg muscle simultaneously, and the effects of a novel CN antidote, sulfanegen sodium, on tissue hemoglobin oxygenation changes were compared using a sub-lethal rabbit model. The results demonstrated that the brain region is more susceptible to CN poisoning and slower in endogenous CN detoxification following exposure than peripheral muscles. However, sulfanegen sodium rapidly reversed CN toxicity, with brain region effects reversing more quickly than muscle. In vivo monitoring of multiple organs may provide important clinical information regarding the extent of CN toxicity and subsequent recovery, and facilitate antidote drug development.

  13. Endogenous cholinergic tone modulates spontaneous network level neuronal activity in primary cortical cultures grown on multi-electrode arrays.

    PubMed

    Hammond, Mark W; Xydas, Dimitris; Downes, Julia H; Bucci, Giovanna; Becerra, Victor; Warwick, Kevin; Constanti, Andrew; Nasuto, Slawomir J; Whalley, Benjamin J

    2013-03-26

    Cortical cultures grown long-term on multi-electrode arrays (MEAs) are frequently and extensively used as models of cortical networks in studies of neuronal firing activity, neuropharmacology, toxicology and mechanisms underlying synaptic plasticity. However, in contrast to the predominantly asynchronous neuronal firing activity exhibited by intact cortex, electrophysiological activity of mature cortical cultures is dominated by spontaneous epileptiform-like global burst events which hinders their effective use in network-level studies, particularly for neurally-controlled animat ('artificial animal') applications. Thus, the identification of culture features that can be exploited to produce neuronal activity more representative of that seen in vivo could increase the utility and relevance of studies that employ these preparations. Acetylcholine has a recognised neuromodulatory role affecting excitability, rhythmicity, plasticity and information flow in vivo although its endogenous production by cortical cultures and subsequent functional influence upon neuronal excitability remains unknown. Consequently, using MEA electrophysiological recording supported by immunohistochemical and RT-qPCR methods, we demonstrate for the first time, the presence of intrinsic cholinergic neurons and significant, endogenous cholinergic tone in cortical cultures with a characterisation of the muscarinic and nicotinic components that underlie modulation of spontaneous neuronal activity. We found that tonic muscarinic ACh receptor (mAChR) activation affects global excitability and burst event regularity in a culture age-dependent manner whilst, in contrast, tonic nicotinic ACh receptor (nAChR) activation can modulate burst duration and the proportion of spikes occurring within bursts in a spatio-temporal fashion. We suggest that the presence of significant endogenous cholinergic tone in cortical cultures and the comparability of its modulatory effects to those seen in intact brain

  14. Endogenous lentivirus in Malayan colugo (Galeopterus variegatus), a close relative of primates.

    PubMed

    Hron, Tomáš; Fábryová, Helena; Pačes, Jan; Elleder, Daniel

    2014-10-04

    A significant fraction of mammalian genomes is composed of endogenous retroviral (ERV) sequences that are formed by germline infiltration of various retroviruses. In contrast to other retroviral genera, lentiviruses only rarely form ERV copies. We performed a computational search aimed at identification of novel endogenous lentiviruses in vertebrate genomes. Using the in silico strategy, we have screened 104 publicly available vertebrate genomes for the presence of endogenous lentivirus sequences. In addition to the previously described cases, the search revealed the presence of endogenous lentivirus in the genome of Malayan colugo (Galeopterus variegatus). At least three complete copies of this virus, denoted ELVgv, were detected in the colugo genome, and approximately one hundred solo LTR sequences. The assembled consensus sequence of ELVgv had typical lentivirus genome organization including three predicted accessory genes. Phylogenetic analysis placed this virus as a distinct subgroup within the lentivirus genus. The time of insertion into the dermopteran lineage was estimated to be more than thirteen million years ago. We report the discovery of the first endogenous lentivirus in the mammalian order Dermoptera, which is a taxon close to the Primates. Lentiviruses have infiltrated the mammalian germline several times across millions of years. The colugo virus described here represents possibly the oldest documented endogenization event and its discovery can lead to new insights into lentivirus evolution. This is also the first report of an endogenous lentivirus in an Asian mammal, indicating a long-term presence of this retrovirus family in Asian continent.

  15. Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion

    PubMed Central

    Wang, Jin; Cao, Huachuan; You, Changjun; Yuan, Bifeng; Bahde, Ralf; Gupta, Sanjeev; Nishigori, Chikako; Niedernhofer, Laura J.; Brooks, Philip J.; Wang, Yinsheng

    2012-01-01

    Exposure to reactive oxygen species (ROS) can give rise to the formation of various DNA damage products. Among them, d(G[8-5 m]T) can be induced in isolated DNA treated with Fenton reagents and in cultured human cells exposed to γ-rays, d(G[8-5m]T) can be recognized and incised by purified Escherichia coli UvrABC nuclease. However, it remains unexplored whether d(G[8-5 m]T) accumulates in mammalian tissues and whether it is a substrate for nucleotide excision repair (NER) in vivo. Here, we found that d(G[8-5 m]T) could be detected in DNA isolated from tissues of healthy humans and animals, and elevated endogenous ROS generation enhanced the accumulation of this lesion in tissues of a rat model of Wilson’s disease. Additionally, XPA-deficient human brain and mouse liver as well as various types of tissues of ERCC1-deficient mice contained higher levels of d(G[8-5 m]T) but not ROS-induced single-nucleobase lesions than the corresponding normal controls. Together, our studies established that d(G[8-5 m]T) can be induced endogenously in mammalian tissues and constitutes a substrate for NER in vivo. PMID:22581771

  16. Submicron-resolution photoacoustic microscopy of endogenous light-absorbing biomolecules

    NASA Astrophysics Data System (ADS)

    Zhang, Chi

    detection, with sub-degree temperature resolution and sub-micron lateral resolution. The second part of this dissertation describes the exploration of endogenous light-absorbing biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 microm in depth, we derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the first time. The findings promote PAM at new wavelengths and open up new possibilities for characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 nm wavelengths is analogous to H&E histology. The last part of this dissertation describes the development of sectioning photoacoustic microscopy (SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for histology, probe many other biomolecules and cells, and become a universal tool for animal or human whole-organ microscopy, with diverse applications in life sciences.

  17. Effects of leukemia inhibitory factor and basic fibroblast growth factor on free radicals and endogenous stem cell proliferation in a mouse model of cerebral infarction.

    PubMed

    Huang, Weihui; Li, Yadan; Lin, Yufeng; Ye, Xue; Zang, Dawei

    2012-07-05

    The present study established a mouse model of cerebral infarction by middle cerebral artery occlusion, and monitored the effect of 25 μg/kg leukemia inhibitory factor and (or) basic fibroblast growth factor administration 2 hours after model establishment. Results showed that following administration, the number of endogenous neural stem cells in the infarct area significantly increased, malondialdehyde content in brain tissue homogenates significantly decreased, nitric oxide content, glutathione peroxidase and superoxide dismutase activity significantly elevated, and mouse motor function significantly improved as confirmed by the rotarod and bar grab tests. In particular, the effect of leukemia inhibitory factor in combination with basic fibroblast growth factor was the most significant. Results indicate that leukemia inhibitory factor and basic fibroblast growth factor can improve the microenvironment after cerebral infarction by altering free radical levels, improving the quantity of endogenous neural stem cells, and promoting neurological function of mice with cerebral infarction.

  18. Recruiting endogenous stem cells: a novel therapeutic approach for erectile dysfunction

    PubMed Central

    Xin, Zhong-Cheng; Xu, Yong-De; Lin, Guiting; Lue, Tom F; Guo, Ying-Lu

    2016-01-01

    Transplanted stem cells (SCs), owing to their regenerative capacity, represent one of the most promising methods to restore erectile dysfunction (ED). However, insufficient source, invasive procedures, ethical and regulatory issues hamper their use in clinical applications. The endogenous SCs/progenitor cells resident in organ and tissues play critical roles for organogenesis during development and for tissue homeostasis in adulthood. Even without any therapeutic intervention, human body has a robust self-healing capability to repair the damaged tissues or organs. Therefore, SCs-for-ED therapy should not be limited to a supply-side approach. The resident endogenous SCs existing in patients could also be a potential target for ED therapy. The aim of this review was to summarize contemporary evidence regarding: (1) SC niche and SC biological features in vitro; (2) localization and mobilization of endogenous SCs; (3) existing evidence of penile endogenous SCs and their possible mode of mobilization. We performed a search on PubMed for articles related to these aspects in a wide range of basic studies. Together, numerous evidences hold the promise that endogenous SCs would be a novel therapeutic approach for the therapy of ED. PMID:25926601

  19. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate.

    PubMed

    Barker, Steven A; Borjigin, Jimo; Lomnicka, Izabela; Strassman, Rick

    2013-12-01

    We report a qualitative liquid chromatography-tandem mass spectrometry (LC/MS/MS) method for the simultaneous analysis of the three known N,N-dimethyltryptamine endogenous hallucinogens, their precursors and metabolites, as well as melatonin and its metabolic precursors. The method was characterized using artificial cerebrospinal fluid (aCSF) as the matrix and was subsequently applied to the analysis of rat brain pineal gland-aCSF microdialysate. The method describes the simultaneous analysis of 23 chemically diverse compounds plus a deuterated internal standard by direct injection, requiring no dilution or extraction of the samples. The results demonstrate that this is a simple, sensitive, specific and direct approach to the qualitative analysis of these compounds in this matrix. The protocol also employs stringent MS confirmatory criteria for the detection and confirmation of the compounds examined, including exact mass measurements. The excellent limits of detection and broad scope make it a valuable research tool for examining the endogenous hallucinogen pathways in the central nervous system. We report here, for the first time, the presence of N,N-dimethyltryptamine in pineal gland microdialysate obtained from the rat. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Competing endogenous RNA network crosstalk reveals novel molecular markers in colorectal cancer.

    PubMed

    Samir, Nehal; Matboli, Marwa; El-Tayeb, Hanaa; El-Tawdi, Ahmed; Hassan, Mohmed K; Waly, Amr; El-Akkad, Hesham A E; Ramadan, Mohamed G; Al-Belkini, Tarek N; El-Khamisy, Sherif; El-Asmar, Farid

    2018-05-08

    The competing endogenous RNA networks play a pivotal role in cancer diagnosis and progression. Novel properstrategies for early detection of colorectal cancer (CRC) are strongly needed. We investigated a novel CRC-specific RNA-based integrated competing endogenous network composed of lethal3 malignant brain tumor like1 (L3MBTL1) gene, long non-coding intergenic RNA- (lncRNA RP11-909B2.1) and homo sapiens microRNA-595 (hsa-miRNA-595) using in silico data analysis. RT-qPCR-based validation of the network was achieved in serum of 70 patients with CRC, 40 patients with benign colorectal neoplasm, and 20 healthy controls. Moreover, in cancer tissues of 20 of the 70 CRC cases were involved in the study. The expression of RNA-based biomarker network in both CRC and adjacent non-tumor tissues and their correlation with the serum levels of this network members was investigated. Lastly, the expression levels of the chosen ceRNA was verified in CRC cell line. Our results revealed that the three RNAs-based biomarker network (long non-coding intergenic RNA-[lncRNA RP11-909B2.1], Homo sapiens microRNA-595 [hsa-miRNA-595], and L3MBTL1 mRNA), had high sensitivity and specificity for discriminating CRC from healthy controls and also from benign colorectal neoplasm. The data suggest that among these three RNAs, serum lncRNA RP11-909B2.1 could be a promising independent prognostic factors in CRC. The circulatory RNA based biomarker panel can act as potential biomarker for CRC diagnosis and prognosis. © 2018 Wiley Periodicals, Inc.

  1. Protection from experimental asthma by an endogenous bronchodilator.

    PubMed

    Que, Loretta G; Liu, Limin; Yan, Yun; Whitehead, Gregory S; Gavett, Stephen H; Schwartz, David A; Stamler, Jonathan S

    2005-06-10

    Mechanisms that protect against asthma remain poorly understood. S-nitrosoglutathione (GSNO), an endogenous bronchodilator, is depleted from asthmatic airways, suggesting a protective role. We report that, following allergen challenge, wild-type mice exhibiting airway hyperresponsivity have increased airway levels of the enzyme GSNO reductase (GSNOR) and are depleted of lung S-nitrosothiols (SNOs). In contrast, mice with genetic deletion of GSNOR exhibit increases in lung SNOs and are protected from airway hyperresponsivity. Our results indicate that endogenous SNOs, governed by GSNOR, are critical regulators of airway responsivity and may provide new therapeutic approaches to asthma.

  2. Endocannabinoid 2-arachidonoylglycerol protects inflammatory insults from sulfur dioxide inhalation via cannabinoid receptors in the brain.

    PubMed

    Li, Ben; Chen, Minjun; Guo, Lin; Yun, Yang; Li, Guangke; Sang, Nan

    2017-01-01

    Sulfur dioxide (SO 2 ) pollution in the atmospheric environment causes brain inflammatory insult and inflammatory-related microvasculature dysfunction. However, there are currently no effective medications targeting the harmful outcomes from chemical inhalation. Endocannabinoids (eCBs) are involved in neuronal protection against inflammation-induced neuronal injury. The 2-arachidonoylglycerol (2-AG), the most abundant eCBs and a full agonist for cannabinoid receptors (CB1 and CB2), is also capable of suppressing proinflammatory stimuli and improving microvasculature dysfunction. Here, we indicated that endogenous 2-AG protected against neuroinflammation in response to SO 2 inhalation by inhibiting the activation of microglia and astrocytes and attenuating the overexpression of inflammatory cytokines, including tumor necrosis factor alpha (TNF-a), interleukin (IL)-1β, and inducible nitric oxide synthase (iNOS). In addition, endogenous 2-AG prevented cerebral vasculature dysfunction following SO 2 inhalation by inhibiting endothelin 1 (ET-1), vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) expression, elevating endothelial nitric oxide synthase (eNOS) level, and restoring the imbalance between thromboxane A2 (TXA2) and prostaglandin I2 (PGI2). In addition, the action of endogenous 2-AG on the suppression of inflammatory insult and inflammatory-related microvasculature dysfunction appeared to be mainly mediated by CB1 and CB2 receptors. Our results provided a mechanistic basis for the development of new therapeutic approaches for protecting brain injuries from SO 2 inhalation. Copyright © 2016. Published by Elsevier B.V.

  3. Circadian misalignment, reward-related brain function, and adolescent alcohol involvement.

    PubMed

    Hasler, Brant P; Clark, Duncan B

    2013-04-01

    Developmental changes in sleep and circadian rhythms that occur during adolescence may contribute to reward-related brain dysfunction, and consequently increase the risk of alcohol use disorders (AUDs). This review (i) describes marked changes in circadian rhythms, reward-related behavior and brain function, and alcohol involvement that occur during adolescence, (ii) offers evidence that these parallel developmental changes are associated, and (iii) posits a conceptual model by which misalignment between sleep-wake timing and endogenous circadian timing may increase the risk of adolescent AUDs by altering reward-related brain function. The timing of sleep shifts later throughout adolescence, in part due to developmental changes in endogenous circadian rhythms, which tend to become more delayed. This tendency for delayed sleep and circadian rhythms is at odds with early school start times during secondary education, leading to misalignment between many adolescents' sleep-wake schedules and their internal circadian timing. Circadian misalignment is associated with increased alcohol use and other risk-taking behaviors, as well as sleep loss and sleep disturbance. Growing evidence indicates that circadian rhythms modulate the reward system, suggesting that circadian misalignment may impact adolescent alcohol involvement by altering reward-related brain function. Neurocognitive function is also subject to sleep and circadian influence, and thus circadian misalignment may also impair inhibitory control and other cognitive processes relevant to alcohol use. Specifically, circadian misalignment may further exacerbate the cortical-subcortical imbalance within the reward circuit, an imbalance thought to explain increased risk-taking and sensation-seeking during adolescence. Adolescent alcohol use is highly contextualized, however, and thus studies testing this model will also need to consider factors that may influence both circadian misalignment and alcohol use. This review

  4. Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study

    PubMed Central

    Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.

    2014-01-01

    Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416

  5. Development and characterization of lysine-methotrexate conjugate for enhanced brain delivery.

    PubMed

    Singh, Vijay Kumar; Subudhi, Bharat Bhusan

    2016-09-01

    Methotrexate (MTX), an anticancer drug of choice, has poor permeability across blood-brain barrier (BBB) making it unsuitable for brain tumor application. Its brain availability and scope of application was improved by preparation of reversible conjugate with lysine by capitalizing the endogenous transport system of lysine at BBB. To enhance its delivery to brain, MTX was reversibly conjugated with l-Lysine by an amide linkage. It was characterized by advanced spectroscopy techniques including IR, NMR and MS. Furthermore, conjugate was assessed for stability, toxicity and drug release ability. In vivo distribution studies were done by radioscintigraphy study using 99m Tc radioisotope. The structure of prodrug was confirmed by 1 H-NMR, 13 C-NMR and Mass. The m/e (mass to charge ratio) fragment was found at [M + H] 711.32 in Mass spectra. Stability and metabolic studies suggested that conjugate was stable at physiological pH (in Phosphate buffer pH 7.4 t 1/2 is 70.25 ± 2.17 h and in plasma t 1/2 is 193.57 ± 2.03 min) and circulated adequately to release MTX slowly in brain. In vivo biodistribution study showed that prodrug significantly increased the level of MTX in brain when compared with pharmacokinetic parameter of parent drug. The brain permeability of MTX was enhanced significantly by this conjugate.

  6. Memory, Cognition and the Endogenous Evoked Potentials of the Brain: the Estimation of the Disturbance of Cognitive Functions and Capacity of Working Memory Without the Psychological Testing.

    PubMed

    Gnezditskiy, V V; Korepina, O S; Chatskaya, A V; Klochkova, O I

    2017-01-01

    Cognition, cognitive and memory impairments is widely discussed in the literature, especially in the psycho physiological and the neurologic. In essence, this literature is dedicated to the psycho physiological tests, different scales. However, instrument neurophysiologic methods not so widely are used for these purposes. This review is dedicated to the instrument methods of neurophysiology, in particular to the endogenous evoked potentials method Р 300 (by characteristic latency 300 ms), in the estimation of cognitive functions and memory, to their special features dependent on age and to special features to their changes with the pathology. Method cognitive EP - Р 300 is the response of the brain, recorded under the conditions of the identification of the significant distinguishing stimulus, it facilitates the inspection of cognitive functions and memory in the healthy persons and patients with different manifestation of cognitive impairments. In the review it is shown on the basis of literature and our own data, that working (operative) memory and the capacity of the working memory it can be evaluated with the aid of the indices Р 300 within the normal subject and with the pathology. Testing with the estimation of working memory according to latent period of the peak Р 300 can be carried out and when conducting psychological testing is not possible for any reasons. Together with these cognitive EP are used for evidence pharmacotherapy of many neurotropic drugs.

  7. "Smart" nickel oxide based core-shell nanoparticles for combined chemo and photodynamic cancer therapy.

    PubMed

    Bano, Shazia; Nazir, Samina; Munir, Saeeda; AlAjmi, Mohamed Fahad; Afzal, Muhammad; Mazhar, Kehkashan

    2016-01-01

    We report "smart" nickel oxide nanoparticles (NOPs) as multimodal cancer therapy agent. Water-dispersible and light-sensitive NiO core was synthesized with folic acid (FA) connected bovine serum albumin (BSA) shell on entrapped doxorubicin (DOX). The entrapped drug from NOP-DOX@BSA-FA was released in a sustained way (64 hours, pH=5.5, dark conditions) while a robust release was found under red light exposure (in 1/2 hour under λmax=655 nm, 50 mW/cm(2), at pH=5.5). The cell viability, thiobarbituric acid reactive substances and diphenylisobenzofuran assays conducted under light and dark conditions revealed a high photodynamic therapy potential of our construct. Furthermore, we found that the combined effect of DOX and NOPs from NOP-DOX@BSA-FA resulted in cell death approximately eightfold high compared to free DOX. We propose that NOP-DOX@BSA-FA is a potential photodynamic therapy agent and a collective drug delivery system for the systemic administration of cancer chemotherapeutics resulting in combination therapy.

  8. Endogenous opiates and behavior: 2005.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2006-12-01

    This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).

  9. Endogenous opiates and behavior: 2010.

    PubMed

    Bodnar, Richard J

    2011-12-01

    This paper is the thirty-third consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2010 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17). Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Endogenous opiates and behavior: 2002.

    PubMed

    Bodnar, Richard J; Hadjimarkou, Maria M

    2003-08-01

    This paper is the twenty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2002 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).

  11. Endogenous opiates and behavior: 2006.

    PubMed

    Bodnar, Richard J

    2007-12-01

    This paper is the 29th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning 30 years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).

  12. Endogenous opiates and behavior: 2009.

    PubMed

    Bodnar, Richard J

    2010-12-01

    This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Endogenous opiates and behavior: 2011.

    PubMed

    Bodnar, Richard J

    2012-12-01

    This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17). Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Endogenous opiates and behavior: 2003.

    PubMed

    Bodnar, Richard J; Klein, Gad E

    2004-12-01

    This paper is the 26th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2003 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).

  15. Endogenous opiates and behavior: 2008.

    PubMed

    Bodnar, Richard J

    2009-12-01

    This paper is the 31st consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2008 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).

  16. Endogenous Opiates and Behavior: 2006

    PubMed Central

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  17. Endogenous opiates and behavior: 2012.

    PubMed

    Bodnar, Richard J

    2013-12-01

    This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Neural correlates of endogenous attention, exogenous attention and inhibition of return in touch.

    PubMed

    Jones, Alexander; Forster, Bettina

    2014-07-01

    Selective attention helps process the myriad of information constantly touching our body. Both endogenous and exogenous mechanisms are relied upon to effectively process this information; however, it is unclear how they relate in the sense of touch. In three tasks we contrasted endogenous and exogenous event-related potential (ERP) and behavioural effects. Unilateral tactile cues were followed by a tactile target at the same or opposite hand. Clear behavioural effects showed facilitation of expected targets both when the cue predicted targets at the same (endogenous predictive task) and opposite hand (endogenous counter-predictive task), and these effects also correlated with ERP effects of endogenous attention. In an exogenous task, where the cue was non-informative, inhibition of return (IOR) was observed. The electrophysiological results demonstrated early effects of exogenous attention followed by later endogenous attention modulations. These effects were independent in both the endogenous predictive and exogenous tasks. However, voluntarily directing attention away from a cued body part influenced the early exogenous marker (N80). This suggests that the two mechanisms are interdependent, at least when the task requires more demanding shifts of attention. The early marker of exogenous tactile attention, the N80, was not directly related to IOR, which may suggest that exogenous attention and IOR are not necessarily two sides of the same coin. This study adds valuable new insight into how we process and select information presented to our body, showing both independent and interdependent effects of endogenous and exogenous attention in touch. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Endogenous sex steroids and cardio- and cerebro-vascular disease in the postmenopausal period.

    PubMed

    Pappa, Theodora; Alevizaki, Maria

    2012-08-01

    Cardio- and cerebro-vascular diseases are two leading causes of death and long-term disability in postmenopausal women. The acute fall of estrogen in menopause is associated with increased cardiovascular risk. The relative contribution of androgen to this risk is also being recognized. The use of more sensitive assays for estradiol measurement and the study of receptor and carrier protein gene polymorphisms have provided some new information on the clinical relevance of endogenous sex steroids. We provide an update on the role of endogenous sex steroids on cardio- and cerebro-vascular disease in the postmenopausal period. We performed a PubMed search using the terms 'endogenous estrogen', 'androgen', 'cardiovascular disease', 'cerebro-vascular disease', 'stroke', 'carotid artery disease', and 'subclinical atherosclerosis'. The majority of studies show a beneficial effect of endogenous estrogen on the vasculature; however, there are a few studies reporting the contrary. A significant body of literature has reported associations of endogenous estrogen and androgen with early markers of atherosclerosis and metabolic parameters. Data on the relevance of endogenous sex steroids in heart disease and stroke are inconclusive. Most studies support a beneficial role of endogenous estrogens and, probably, an adverse effect of androgens in the vasculature in postmenopausal women. However, the described associations may not always be considered as causal. It is possible that circulating estrogen might represent a marker of general health status or alternatively reflect the sum of endogenous androgens aromatized in the periphery. Elucidating the role of sex steroids in cardio- and cerebro-vascular disease remains an interesting field of future research.

  20. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production

    PubMed Central

    Hristov, Alexander N.; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W.; Harper, Michael T.; Weeks, Holley L.; Branco, Antonio F.; Moate, Peter J.; Deighton, Matthew H.; Williams, S. Richard O.; Kindermann, Maik; Duval, Stephane

    2015-01-01

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries. PMID:26229078

  1. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.

    PubMed

    Hristov, Alexander N; Oh, Joonpyo; Giallongo, Fabio; Frederick, Tyler W; Harper, Michael T; Weeks, Holley L; Branco, Antonio F; Moate, Peter J; Deighton, Matthew H; Williams, S Richard O; Kindermann, Maik; Duval, Stephane

    2015-08-25

    A quarter of all anthropogenic methane emissions in the United States are from enteric fermentation, primarily from ruminant livestock. This study was undertaken to test the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission in lactating Holstein cows. An experiment was conducted using 48 cows in a randomized block design with a 2-wk covariate period and a 12-wk data collection period. Feed intake, milk production, and fiber digestibility were not affected by the inhibitor. Milk protein and lactose yields were increased by 3NOP. Rumen methane emission was linearly decreased by 3NOP, averaging about 30% lower than the control. Methane emission per unit of feed dry matter intake or per unit of energy-corrected milk were also about 30% less for the 3NOP-treated cows. On average, the body weight gain of 3NOP-treated cows was 80% greater than control cows during the 12-wk experiment. The experiment demonstrated that the methane inhibitor 3NOP, applied at 40 to 80 mg/kg feed dry matter, decreased methane emissions from high-producing dairy cows by 30% and increased body weight gain without negatively affecting feed intake or milk production and composition. The inhibitory effect persisted over 12 wk of treatment, thus offering an effective methane mitigation practice for the livestock industries.

  2. Effect of storage temperature on endogenous GHB levels in urine.

    PubMed

    LeBeau, M A; Miller, M L; Levine, B

    2001-06-15

    Because gamma-hydroxybutyrate (GHB) is an endogenous substance present in the body and is rapidly eliminated after ingestion, toxicologists investigating drug-facilitated sexual assault cases are often asked to differentiate between endogenous and exogenous levels of GHB in urine samples. This study was designed to determine the effects of storage temperature on endogenous GHB levels in urine. Specifically, it was designed to ascertain whether endogenous levels can be elevated to a range considered indicative of GHB ingestion. Urine specimens from two subjects that had not been administered exogenous GHB were collected during a 24h period and individually pooled. The pooled specimens were separated into standard sample cups and divided into three storage groups: room temperature ( approximately 25 degrees C), refrigerated (5 degrees C), and frozen (-10 degrees C). Additionally, some specimens were put through numerous freeze/thaw cycles to mimic situations that may occur if multiple laboratories analyze the same specimen. Periodic analysis of the samples revealed increases in the levels of endogenous GHB over a 6-month period. The greatest increase (up to 404%) was observed in the samples maintained at room temperature. The refrigerated specimens showed increases of 140-208%, while the frozen specimens showed smaller changes (88-116%). The specimens subjected to multiple freeze/thaw cycles mirrored specimens that had been thawed only once. None of the stored urine specimens demonstrated increases in GHB concentrations that would be consistent with exogenous GHB ingestion.

  3. Serum antibody response to Moraxella catarrhalis proteins in stringently defined otitis prone children.

    PubMed

    Ren, Dabin; Almudevar, Anthony L; Murphy, Timothy F; Lafontaine, Eric R; Campagnari, Anthony A; Luke-Marshall, Nicole; Pichichero, Michael E

    2017-07-26

    Moraxella catarrhalis (Mcat) is a frequent pathogen of acute otitis media (AOM) in young children. Here we prospectively assessed naturally-induced serum antibodies to four Mcat vaccine candidate proteins in stringently defined otitis prone (sOP) and non-otitis prone (NOP) children age 6-36months old following nasopharyngeal (NP) colonization, at onset of AOM and convalescence from AOM. Serum IgG and IgM antibody against recombinant Mcat proteins, oligopeptide permease A (OppA), outer membrane protein (OMP) CD, hemagglutinin (Hag), and PilA clade 2 (PilA2), were quantitated by ELISA. During NP colonization by Mcat all four antigens were immunogenic in both sOP and NOP children. However, sOP children had lower antibody responses than NOP children across age 6-36months, similar to our findings for protein vaccine candidates of Streptococcus pneumoniae (Spn) and Nontypeable Haemophilus influenzae (NTHi). sOP children displayed a later and lower peak of antibody rise than NOP children for all four antigens during NP colonization of Mcat. The age-dependent increase of antibody ranked as OppA>Hag5-9>OMP CD>PilA2 in both sOP and NOP children. Lower serum antibody levels to the Mcat antigens were measured in sOP compared to NOP children at the onset of AOM. We did not find a consistent significant increase of antibody at the convalescence phase after an AOM event. sOP children is a highly vulnerable population that mount lower serum antibody responses to Mcat candidate vaccine proteins compared to NOP children during asymptomatic NP carriage and at onset of AOM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nodulation outer proteins: double-edged swords of symbiotic rhizobia.

    PubMed

    Staehelin, Christian; Krishnan, Hari B

    2015-09-15

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial Nops (nodulation outer proteins) play a crucial symbiotic role in many strain-host combinations. Nops are defined as proteins secreted via a rhizobial T3SS (type III secretion system). Functional T3SSs have been characterized in many rhizobial strains. Nops have been identified using various genetic, biochemical, proteomic, genomic and experimental approaches. Certain Nops represent extracellular components of the T3SS, which are visible in electron micrographs as bacterial surface appendages called T3 (type III) pili. Other Nops are T3 effector proteins that can be translocated into plant cells. Rhizobial T3 effectors manipulate cellular processes in host cells to suppress plant defence responses against rhizobia and to promote symbiosis-related processes. Accordingly, mutant strains deficient in synthesis or secretion of T3 effectors show reduced symbiotic properties on certain host plants. On the other hand, direct or indirect recognition of T3 effectors by plant cells expressing specific R (resistance) proteins can result in effector triggered defence responses that negatively affect rhizobial infection. Hence Nops are double-edged swords that may promote establishment of symbiosis with one legume (symbiotic factors) and impair symbiotic processes when bacteria are inoculated on another legume species (asymbiotic factors). In the present review, we provide an overview of our current understanding of Nops. We summarize their symbiotic effects, their biochemical properties and their possible modes of action. Finally, we discuss future perspectives in the field of T3 effector research. © 2015 Authors; published by Portland Press Limited.

  5. Mice with reduced brain-derived neurotrophic factor expression show decreased choline acetyltransferase activity, but regular brain monoamine levels and unaltered emotional behavior.

    PubMed

    Chourbaji, Sabine; Hellweg, Rainer; Brandis, Dorothee; Zörner, Björn; Zacher, Christiane; Lang, Undine E; Henn, Fritz A; Hörtnagl, Heide; Gass, Peter

    2004-02-05

    The "neurotrophin hypothesis" of depression predicts that depressive disorders in humans coincide with a decreased activity and/or expression of brain-derived neurotrophic factor (BDNF) in the brain. Therefore, we investigated whether mice with a reduced BDNF expression due to heterozygous gene disruption demonstrate depression-like neurochemical changes or behavioral symptoms. BNDF protein levels of adult BDNF(+/-) mice were reduced to about 60% in several brain areas investigated, including the hippocampus, frontal cortex, striatum, and hypothalamus. The content of monoamines (serotonin, norepinephrine, and dopamine) as well as of serotonin and dopamine degradation products was unchanged in these brain regions. By contrast, choline acetyltransferase activity was significantly reduced by 19% in the hippocampus of BDNF(+/-) mice, indicating that the cholinergic system of the basal forebrain is critically dependent on sufficient endogenous BDNF levels in adulthood. Moreover, BDNF(+/-) mice exhibited normal corticosterone and adrenocorticotropic hormone (ACTH) serum levels under baseline conditions and following immobilization stress. In a panel of behavioral tests investigating locomotor activity, exploration, anxiety, fear-associated learning, and behavioral despair, BDNF(+/-) mice were indistinguishable from wild-type littermates. Thus, a chronic reduction of BDNF protein content in adult mice is not sufficient to induce neurochemical or behavioral alterations that are reminiscent of depressive symptoms in humans.

  6. The Influence of Endogenous and Exogenous Spatial Attention on Decision Confidence.

    PubMed

    Kurtz, Phillipp; Shapcott, Katharine A; Kaiser, Jochen; Schmiedt, Joscha T; Schmid, Michael C

    2017-07-25

    Spatial attention allows us to make more accurate decisions about events in our environment. Decision confidence is thought to be intimately linked to the decision making process as confidence ratings are tightly coupled to decision accuracy. While both spatial attention and decision confidence have been subjected to extensive research, surprisingly little is known about the interaction between these two processes. Since attention increases performance it might be expected that confidence would also increase. However, two studies investigating the effects of endogenous attention on decision confidence found contradictory results. Here we investigated the effects of two distinct forms of spatial attention on decision confidence; endogenous attention and exogenous attention. We used an orientation-matching task, comparing the two attention conditions (endogenous and exogenous) to a control condition without directed attention. Participants performed better under both attention conditions than in the control condition. Higher confidence ratings than the control condition were found under endogenous attention but not under exogenous attention. This finding suggests that while attention can increase confidence ratings, it must be voluntarily deployed for this increase to take place. We discuss possible implications of this relative overconfidence found only during endogenous attention with respect to the theoretical background of decision confidence.

  7. Marijuana and cannabinoid regulation of brain reward circuits.

    PubMed

    Lupica, Carl R; Riegel, Arthur C; Hoffman, Alexander F

    2004-09-01

    The reward circuitry of the brain consists of neurons that synaptically connect a wide variety of nuclei. Of these brain regions, the ventral tegmental area (VTA) and the nucleus accumbens (NAc) play central roles in the processing of rewarding environmental stimuli and in drug addiction. The psychoactive properties of marijuana are mediated by the active constituent, Delta(9)-THC, interacting primarily with CB1 cannabinoid receptors in a large number of brain areas. However, it is the activation of these receptors located within the central brain reward circuits that is thought to play an important role in sustaining the self-administration of marijuana in humans, and in mediating the anxiolytic and pleasurable effects of the drug. Here we describe the cellular circuitry of the VTA and the NAc, define the sites within these areas at which cannabinoids alter synaptic processes, and discuss the relevance of these actions to the regulation of reinforcement and reward. In addition, we compare the effects of Delta(9)-THC with those of other commonly abused drugs on these reward circuits, and we discuss the roles that endogenous cannabinoids may play within these brain pathways, and their possible involvement in regulating ongoing brain function, independently of marijuana consumption. We conclude that, whereas Delta(9)-THC alters the activity of these central reward pathways in a manner that is consistent with other abused drugs, the cellular mechanism through which this occurs is likely different, relying upon the combined regulation of several afferent pathways to the VTA.

  8. Functional electrical stimulation-facilitated proliferation and regeneration of neural precursor cells in the brains of rats with cerebral infarction

    PubMed Central

    Xiang, Yun; Liu, Huihua; Yan, Tiebin; Zhuang, Zhiqiang; Jin, Dongmei; Peng, Yuan

    2014-01-01

    Previous studies have shown that proliferation of endogenous neural precursor cells cannot alone compensate for the damage to neurons and axons. From the perspective of neural plasticity, we observed the effects of functional electrical stimulation treatment on endogenous neural precursor cell proliferation and expression of basic fibroblast growth factor and epidermal growth factor in the rat brain on the infarct side. Functional electrical stimulation was performed in rat models of acute middle cerebral artery occlusion. Simultaneously, we set up a placebo stimulation group and a sham-operated group. Immunohistochemical staining showed that, at 7 and 14 days, compared with the placebo group, the numbers of nestin (a neural precursor cell marker)-positive cells in the subgranular zone and subventricular zone were increased in the functional electrical stimulation treatment group. Western blot assays and reverse-transcription PCR showed that total protein levels and gene expression of epidermal growth factor and basic fibroblast growth factor were also upregulated on the infarct side. Prehensile traction test results showed that, at 14 days, prehension function of rats in the functional electrical stimulation group was significantly better than in the placebo group. These results suggest that functional electrical stimulation can promote endogenous neural precursor cell proliferation in the brains of acute cerebral infarction rats, enhance expression of basic fibroblast growth factor and epidermal growth factor, and improve the motor function of rats. PMID:25206808

  9. Microbial endogenous response to acute inhibitory impact of antibiotics.

    PubMed

    Pala-Ozkok, I; Kor-Bicakci, G; Çokgör, E U; Jonas, D; Orhon, D

    2017-06-13

    Enhanced endogenous respiration was observed as the significant/main response of the aerobic microbial culture under pulse exposure to antibiotics: sulfamethoxazole, tetracycline and erythromycin. Peptone mixture and acetate were selected as organic substrates to compare the effect of complex and simple substrates. Experiments were conducted with microbial cultures acclimated to different sludge ages of 10 and 2 days, to visualize the effect of culture history. Evaluation relied on modeling of oxygen uptake rate profiles, reflecting the effect of all biochemical reactions associated with substrate utilization. Model calibration exhibited significant increase in values of endogenous respiration rate coefficient with all antibiotic doses. Enhancement of endogenous respiration was different with antibiotic type and initial dose. Results showed that both peptone mixture and acetate cultures harbored resistance genes against the tested antibiotics, which suggests that biomass spends cellular maintenance energy for activating the required antibiotic resistance mechanisms to survive, supporting higher endogenous decay rates. [Formula: see text]: maximum growth rate for X H (day -1 ); K S : half saturation constant for growth of X H (mg COD/L); b H : endogenous decay rate for X H (day -1 ); k h : maximum hydrolysis rate for S H1 (day -1 ); K X : hydrolysis half saturation constant for S H1 (mg COD/L); k hx : maximum hydrolysis rate for X S1 (day -1 ); K XX : hydrolysis half saturation constant for X S1 (mg COD/L); k STO : maximum storage rate of PHA by X H (day -1 ); [Formula: see text]: maximum growth rate on PHA for X H (day -1 ); K STO : half saturation constant for storage of PHA by X H (mg COD/L); X H1 : initial active biomass (mg COD/L).

  10. Multi-spectral endogenous fluorescence imaging for bacterial differentiation

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Babayants, Margarita V.; Korotkov, Oleg V.; Kudrin, Konstantin G.; Rimskaya, Elena N.; Shikunova, Irina A.; Kurlov, Vladimir N.; Cherkasova, Olga P.; Komandin, Gennady A.; Reshetov, Igor V.; Zaytsev, Kirill I.

    2017-07-01

    In this paper, the multi-spectral endogenous fluorescence imaging was implemented for bacterial differentiation. The fluorescence imaging was performed using a digital camera equipped with a set of visual bandpass filters. Narrowband 365 nm ultraviolet radiation passed through a beam homogenizer was used to excite the sample fluorescence. In order to increase a signal-to-noise ratio and suppress a non-fluorescence background in images, the intensity of the UV excitation was modulated using a mechanical chopper. The principal components were introduced for differentiating the samples of bacteria based on the multi-spectral endogenous fluorescence images.

  11. Endogenous strychnine: description of hypo- and hyperstrychninergic state in relation to neuropsychiatric diseases.

    PubMed

    Kurup, Ravi Kumar; Kurup, Parameswara Achutha

    2002-10-01

    Previous work from our laboratory has demonstrated the presence of endogenous strychnine in the mammalian brain and human serum samples. The present study examines the role of strychnine in neuropsychiatric disorders. Strychnine is synthesized from tryptophan. The blood levels of tyrosine, tryptophan, and strychnine were studied as also RBC membrane Na(+)-K+ ATPase activity. It was found that serum tyrosine levels were reduced and that tryptophan levels were elevated in all neuropsychiatric disorders studied with a reduction in RBC Na(+)-K+ ATPase activity. Strychnine was present in significant amounts in the serum of patients with epilepsy, Parkinson's disease, and manic depressive psychosis. The presence of strychnine in significant amounts could be related to elevated tryptophan levels, suggesting the synthesis of these alkaloids from tryptophan. Na(+)-K+ ATPase inhibition present in most of the disorders could be related to increased depolarizing strychninergic transmission. The role of strychnine in the pathogenesis of these disorders, in the setting of membrane Na(+)-K+ ATPase inhibition, is discussed.

  12. The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high forage and high grain diets.

    PubMed

    Vyas, Diwakar; Alemu, Aklilu W; McGinn, Sean M; Duval, Stephane M; Kindermann, Maik; Beauchemin, Karen A

    2018-05-05

    The study objective was to evaluate the combined effects of supplementing monensin (MON) and the methane (CH4) inhibitor 3-nitrooxypropanol (NOP) on enteric CH4 emissions, growth rate and feed conversion efficiency of backgrounding and finishing beef cattle. Two hundred and forty crossbred steers were used in a 238-d feeding study and fed a backgrounding diet for the first 105-d (backgrounding phase), transition diets for 28 d, followed by a finishing diet for 105-d (finishing phase). Treatments were: 1) Control (no additive); 2) MON (monensin supplemented at 33 mg/kg DM; 3) NOP (3-nitrooxypropanol supplemented at 200 mg/kg DM for backgrounding or 125 mg/kg DM for finishing phase); 4) MONOP (33 mg/kg DM MON supplemented with either 200 mg/kg DM or 125 mg/kg DM NOP). The experiment was a randomized complete block (weight: heavy and light) design with 2 (NOP) × 2 (MON) factorial arrangement of treatments using 24 pens (8 cattle/pen; 6 pens/treatment) at the main feedlot and 8 pens (6 cattle/pen; 2 pens/treatment) at the controlled environment building (CEB) feedlot. Five animals per treatment were moved to chambers for methane measurements during both phases. Data were analyzed using a Mixed procedure of SAS with pen as experimental unit (except CH4). Location (Main vs CEB) had no significant effect and was thus omitted from the final model. Overall, there were few interactions between MON and NOP indicating that the effects of the 2 compounds were independent. When cattle were fed the backgrounding diet, pen DMI was decreased by 7% while gain-to-feed ratio (G:F) was improved by 5% with NOP supplementation (P < 0.01). Similarly, MON improved G:F ratio by 4% (P < 0.01), but without affecting DMI. During the finishing phase, DMI tended (P = 0.06) to decrease by 5% with both MON (5%) and NOP (5%), while average daily gain tended (P = 0.08) to decrease by 3% with MON. Gain-to-feed ratio for finishing cattle was improved with NOP by 3% (P < 0.01); however, no effects

  13. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury

    PubMed Central

    Prins, Mayumi L.; Matsumoto, Joyce H.

    2014-01-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. PMID:24721741

  14. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  15. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but notmore » fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.« less

  16. A model of the endogenous glucose balance incorporating the characteristics of glucose transporters.

    PubMed

    Arleth, T; Andreassen, S; Federici, M O; Benedetti, M M

    2000-07-01

    This paper describes the development and preliminary test of a model of the endogenous glucose balance that incorporates the characteristics of the glucose transporters GLUT1, GLUT3 and GLUT4. In the modeling process the model is parameterized with nine parameters that are subsequently estimated from data in the literature on the hepatic- and endogenous- balances at various combinations of blood glucose and insulin levels. The ability of the resulting endogenous balance to fit blood glucose measured from patients was tested on 20 patients. The fit obtained with this model compared favorably with the fit obtained with the endogenous balance currently incorporated in the DIAS system.

  17. Inter-subject Functional Correlation Reveal a Hierarchical Organization of Extrinsic and Intrinsic Systems in the Brain.

    PubMed

    Ren, Yudan; Nguyen, Vinh Thai; Guo, Lei; Guo, Christine Cong

    2017-09-07

    The brain is constantly monitoring and integrating both cues from the external world and signals generated intrinsically. These extrinsically and intrinsically-driven neural processes are thought to engage anatomically distinct regions, which are thought to constitute the extrinsic and intrinsic systems of the brain. While the specialization of extrinsic and intrinsic system is evident in primary and secondary sensory cortices, a systematic mapping of the whole brain remains elusive. Here, we characterized the extrinsic and intrinsic functional activities in the brain during naturalistic movie-viewing. Using a novel inter-subject functional correlation (ISFC) analysis, we found that the strength of ISFC shifts along the hierarchical organization of the brain. Primary sensory cortices appear to have strong inter-subject functional correlation, consistent with their role in processing exogenous information, while heteromodal regions that attend to endogenous processes have low inter-subject functional correlation. Those brain systems with higher intrinsic tendency show greater inter-individual variability, likely reflecting the aspects of brain connectivity architecture unique to individuals. Our study presents a novel framework for dissecting extrinsically- and intrinsically-driven processes, as well as examining individual differences in brain function during naturalistic stimulation.

  18. A natural basis for efficient brain-actuated control

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Enghoff, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.

  19. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  20. Guidance of spatial attention by incidental learning and endogenous cuing

    PubMed Central

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.

    2012-01-01

    Our visual system is highly sensitive to regularities in the environment. Locations that were important in one’s previous experience are often prioritized during search, even though observers may not be aware of the learning. In this study we characterized the guidance of spatial attention by incidental learning of a target’s spatial probability, and examined the interaction between endogenous cuing and probability cuing. Participants searched for a target (T) among distractors (L’s). The target was more often located in one region of the screen than in others. We found that search RT was faster when the target appeared in the high-frequency region rather than the low-frequency regions. This difference increased when there were more items on the display, suggesting that probability cuing guides spatial attention. Additional data indicated that on their own, probability cuing and endogenous cuing (e.g., a central arrow that predicted a target’s location) were similarly effective at guiding attention. However, when both cues were presented at once, probability cuing was largely eliminated. Thus, although both incidental learning and endogenous cuing can effectively guide attention, endogenous cuing takes precedence over incidental learning. PMID:22506784

  1. Role of Endogenous Cholecystokinin on Growth of Human Pancreatic Cancer

    PubMed Central

    Matters, Gail L.; McGovern, Christopher; Harms, John F.; Markovic, Kevin; Anson, Krystal; Jayakumar, Calpurnia; Martenis, Melissa; Awad, Christina; Smith, Jill P.

    2012-01-01

    Cholecystokinin (CCK) and gastrin stimulate growth of pancreatic cancer. Although down regulation of gastrin inhibits growth of pancreatic cancer, the contribution of endogenous CCK to tumor growth is unknown. The purpose of this study was to evaluate the role of endogenous CCK on autocrine growth of pancreatic cancer. Pancreatic cancer cell lines were analyzed for CCK mRNA and peptide expression by real time RT-PCR and radioimmunoassay, respectively. The effect of endogenous CCK on growth was evaluated by treating cancer cells with CCK neutralizing antibodies and by down regulating CCK mRNA by RNAi. Wild type pancreatic cancer cells expressed significantly lower CCK mRNA and peptide levels than gastrin. Neither treatment of pancreatic cancer cells with CCK antibodies nor the down regulation of CCK mRNA and peptide by shRNAs altered growth in vitro or in vivo. Conversely, when gastrin mRNA expression was down regulated, the same cells failed to produce tumors in spite of having sustained levels of endogenous CCK. Pancreatic cancer cells produce CCK and gastrin; however, the autocrine production of gastrin is more important for stimulating tumor growth. PMID:21186400

  2. Conditions for Effective Application of Analysis of Symmetrically-Predicted Endogenous Subgroups

    ERIC Educational Resources Information Center

    Peck, Laura R.

    2015-01-01

    Several analytic strategies exist for opening up the "black box" to reveal more about what drives policy and program impacts. This article focuses on one of these strategies: the Analysis of Symmetrically-Predicted Endogenous Subgroups (ASPES). ASPES uses exogenous baseline data to identify endogenously-defined subgroups, keeping the…

  3. Prediction of brain tissue temperature using near-infrared spectroscopy

    PubMed Central

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-01-01

    Abstract. Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications. PMID:28630878

  4. Excretion of endogenous boldione in human urine: influence of phytosterol consumption.

    PubMed

    Verheyden, Karolien; Noppe, Herlinde; Vanhaecke, Lynn; Wille, Klaas; Bussche, Julie Vanden; Bekaert, Karen; Thas, Olivier; Janssen, Colin R; De Brabander, Hubert F

    2009-10-01

    Boldenone (17-hydroxy-androsta-1,4-diene-3-one, Bol) and boldione (androst-1,4-diene-3,17-dione, ADD), are currently listed as exogenous anabolic steroids by the World Anti-Doping Agency. However, it has been reported that these analytes can be produced endogenously. Interestingly, only for Bol a comment is included in the list on its potential endogenous origin. In this study, the endogenous origin of ADD in human urine was investigated, and the potential influence of phytosterol consumption was evaluated. We carried out a 5-week in vivo trial with both men (n=6) and women (n=6) and measured alpha-boldenone, beta-boldenone, boldione, androstenedione, beta-testosterone and alpha-testosterone in their urine using gas chromatography coupled to multiple mass spectrometry (GC-MS-MS). The results demonstrate that endogenous ADD is sporadically produced at concentrations ranging from 0.751 ng mL(-1) to 1.73 ng mL(-1), whereas endogenous Bol could not be proven. We also tested the effect of the daily consumption of a commercially available phytosterol-enriched yogurt drink on the presence of these analytes in human urine. Results from this study could not indicate a relation of ADD-excretion with the consumption of phytosterols at the recommended dose. The correlations between ADD and other steroids were consistently stronger for volunteers consuming phytosterols (test) than for those refraining from phytosterol consumption (control). Excretion of AED, bT and aT did not appear to be dependent on the consumption of phytosterols. This preliminary in vivo trial indicates the endogenous origin of boldione or ADD in human urine, independent on the presence of any structural related analytes such as phytosterols.

  5. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.

    PubMed

    Yagoub, Daniel; Hart-Smith, Gene; Moecking, Jonas; Erce, Melissa A; Wilkins, Marc R

    2015-09-01

    The Hmt1 methyltransferase is the predominant arginine methyltransferase in Saccharomyces cerevisiae. There are 18 substrate proteins described for this methyltransferase, however native sites of methylation have only been identified on two of these proteins. Here we used peptide immunoaffinity enrichment, followed by LC-ETD-MS/MS, to discover 21 native sites of arginine methylation on five putative Hmt1 substrate proteins, namely Gar1p (H/ACA ribonucleoprotein complex subunit 1), Nop1p (rRNA 2'-O-methyltransferase fibrillarin), Npl3p (nucleolar protein 3), Nsr1p (nuclear localization sequence-binding protein), and Rps2p (40S ribosomal protein S2). The sites, many of which were found to be mono- or di-methylated, were predominantly found in RGG (Arg-Gly-Gly) motifs. Heavy methyl-SILAC validated the majority of these peptides. The above proteins, and relevant sites of methylation, were subsequently validated by in vitro methylation with recombinant Hmt1. This brings the total of Hmt1 substrate proteins for which native methylation sites have been identified to five. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Blood-brain barrier transport of non-viral gene and RNAi therapeutics.

    PubMed

    Boado, Ruben J

    2007-09-01

    The development of gene- and RNA interference (RNAi)-based therapeutics represents a challenge for the drug delivery field. The global brain distribution of DNA genes, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, i.e. viruses, have poor diffusion in brain when injected in situ and do not cross the blood-brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Recent advances in the "Trojan Horse Liposome" (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the DNA/RNAi delivery obstacle. The THL is comprised of immunoliposomes carrying either a gene for protein replacement or small hairpin RNA (shRNA) expression plasmids for RNAi effect, respectively. The THL is engineered with known lipids containing polyethyleneglycol (PEG), which stabilizes its structure in vivo in circulation. The tissue target specificity of THL is given by conjugation of approximately 1% of the PEG residues to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors (i.e. insulin and transferrin receptors) located on both the BBB and the brain cellular membranes, respectively. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The present review presents an overview of the THL technology and its current application to gene therapy and RNAi, including experimental models of Parkinson's disease and brain tumors.

  7. Brain imaging with sup 123 I-IMP-SPECT in migraine between attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlake, H.P.; Boettger, I.G.G.; Grotemeyer, K.H.

    1989-06-01

    {sup 123}I-IMP-SPECT brain imaging was performed in patients with classic migraine (n = 5) and migraine accompagnee (n = 18) during the headache-free interval. A regional reduction of tracer uptake into brain was observed in all patients with migraine accompagnee, while in patients with classic migraine only one case showed an area of decreased activity. The most marked alteration was found in a patient with persisting neurological symptoms (complicated migraine). In most cases the areas of decreased tracer uptake corresponded to headache localization as well as to topography of neurologic symptoms during migraine attacks. It may be concluded that migrainemore » attacks occur in connection with exacerbations of preexisting changes of cerebral autoregulation due to endogenous or exogenous factors.« less

  8. Endogenous subclinical hyperthyroidism and cardiovascular system: time to reconsider?

    PubMed

    Patanè, Salvatore; Marte, Filippo; Sturiale, Mauro

    2011-05-19

    Subclinical hyperthyroidism is an increasingly recognized entity that is defined as a normal serum free thyroxine and free triiodothyronine levels with a thyroid-stimulating hormone level suppressed below the normal range and usually undetectable. Exogenous sublinical hyperthyroidism is a thyroid metabolic state caused by L-thyroxine administration. Endogenous subclinical hyperthyroidism is a thyroid metabolic state in patients with autonomously functioning thyroid nodule or multinodular goiter, various forms of thyroiditis, in areas with endemic goiter and particularly in elderly subjects. Endogenous subclinical hyperthyroidism is currently the subject of numerous studies and it yet remains controversial particularly as it relates to its treatment and to cardiovascular impact nevertheless established effects have been demonstrated. Recently, acute myocardial infarction without significant coronary stenoses and recurrent acute pulmonary embolism have been reported associated with subclinical hyperthyroidism without L-thyroxine administration. So, it is very important to recognize and to treat promptly also endogenous subclinical hyperthyroidism. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  9. The Nociceptin/Orphanin FQ System Is Modulated in Patients Admitted to ICU with Sepsis and after Cardiopulmonary Bypass

    PubMed Central

    Serrano-Gomez, Alcira; McDonald, John; Ladak, Nadia; Bowrey, Sarah

    2013-01-01

    Background And Objectives Nociceptin/Orphanin FQ (N/OFQ) is a non-classical endogenous opioid peptide that modulates immune function in vitro. Its importance in inflammation and human sepsis is unknown. The objectives of this study were to determine the relationship between N/OFQ, transcripts for its precursor (pre-pro-N/OFQ [ppNOC]) and receptor (NOP), inflammatory markers and clinical outcomes in patients undergoing cardiopulmonary bypass and with sepsis. Methods A prospective observational cohort study of 82 patients admitted to Intensive Care (ICU) with sepsis and 40 patients undergoing cardiac surgery under cardiopulmonary bypass (as a model of systemic inflammation). Sixty three healthy volunteers, matched by age and sex to the patients with sepsis were also studied. Clinical and laboratory details were recorded. Polymorph ppNOC and NOP receptor mRNA were determined using quantitative PCR. Plasma N/OFQ was determined using ELISA and cytokines (TNF- α, IL-8, IL-10) measured using radioimmunoassay. Data from patients undergoing cardiac surgery were recorded before, 3 and 24 hours after cardiopulmonary bypass. ICU patients with sepsis were assessed on Days 1 and 2 of ICU admission, and after clinical recovery. Main Results Plasma N/OFQ concentrations increased (p<0.0001) on Days 1 and 2 of ICU admission with sepsis compared to matched recovery samples. Polymorph ppNOC (p= 0.019) and NOP mRNA (p<0.0001) decreased compared to healthy volunteers. TNF-α, IL-8 and IL-10 concentrations increased on Day 1 compared to matched recovery samples and volunteers (p<0.0001). Similar changes (increased plasma N/OFQ, [p=0.0058], decreased ppNOC [p<0.0001], increased IL-8 and IL-10 concentrations [both p<0.0001]) occurred after cardiac surgery but these were comparatively lower and of shorter duration. Conclusions The N/OFQ system is modulated in ICU patients with sepsis with similar but reduced changes after cardiac surgery under cardiopulmonary bypass. Further studies are

  10. The mitochondria-targeted antioxidants and remote kidney preconditioning ameliorate brain damage through kidney-to-brain cross-talk.

    PubMed

    Silachev, Denis N; Isaev, Nikolay K; Pevzner, Irina B; Zorova, Ljubava D; Stelmashook, Elena V; Novikova, Svetlana V; Plotnikov, Egor Y; Skulachev, Vladimir P; Zorov, Dmitry B

    2012-01-01

    Many ischemia-induced neurological pathologies including stroke are associated with high oxidative stress. Mitochondria-targeted antioxidants could rescue the ischemic organ by providing specific delivery of antioxidant molecules to the mitochondrion, which potentially suffers from oxidative stress more than non-mitochondrial cellular compartments. Besides direct antioxidative activity, these compounds are believed to activate numerous protective pathways. Endogenous anti-ischemic defense may involve the very powerful neuroprotective agent erythropoietin, which is mainly produced by the kidney in a redox-dependent manner, indicating an important role of the kidney in regulation of brain ischemic damage. The goal of this study is to track the relations between the kidney and the brain in terms of the amplification of defense mechanisms during SkQR1 treatment and remote renal preconditioning and provide evidence that the kidney can generate signals inducing a tolerance to oxidative stress-associated brain pathologies. We used the cationic plastoquinone derivative, SkQR1, as a mitochondria-targeted antioxidant to alleviate the deleterious consequences of stroke. A single injection of SkQR1 before cerebral ischemia in a dose-dependent manner reduces infarction and improves functional recovery. Concomitantly, an increase in the levels of erythropoietin in urine and phosphorylated glycogen synthase kinase-3β (GSK-3β) in the brain was detected 24 h after SkQR1 injection. However, protective effects of SkQR1 were not observed in rats with bilateral nephrectomy and in those treated with the nephrotoxic antibiotic gentamicin, indicating the protective role of humoral factor(s) which are released from functional kidneys. Renal preconditioning also induced brain protection in rats accompanied by an increased erythropoietin level in urine and kidney tissue and P-GSK-3β in brain. Co-cultivation of SkQR1-treated kidney cells with cortical neurons resulted in enchanced

  11. Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1

    PubMed Central

    Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.

    1983-01-01

    The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227

  12. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations

    NASA Astrophysics Data System (ADS)

    Striggow, Frank; Riek, Monika; Breder, Jörg; Henrich-Noack, Petra; Reymann, Klaus G.; Reiser, Georg

    2000-02-01

    We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 μM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca2+ spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca2+ elevation. Thus, distinct Ca2+ signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.

  13. Influence of endogenous pyrogen on the cerebral prostaglandin-synthetase system.

    PubMed

    Ziel, R; Krupp, P

    1976-11-15

    The biotransformation of arachidonic acid to prostaglandins in vitro is specifically augmented by endogenous pyrogen to a degree depending on the concentration applied, providing that the microsomal fraction of the cerebral cortex is used as prostaglandin-synthetase system. This effect is inhibited by non-steroidal anti-inflammatory agents. These findings are compatible with the hypothesis that prostaglandins might act as mediators of the febrile reaction induced by endogenous pyrogen.

  14. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  15. Endogenous Magnetic Reconnection in Solar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Asgari-Targhi, M.; Coppi, B.; Basu, B.; Fletcher, A.; Golub, L.

    2017-12-01

    We propose that a magneto-thermal reconnection process occurring in coronal loops be the source of the heating of the Solar Corona [1]. In the adopted model, magnetic reconnection is associated with electron temperature gradients, anisotropic electron temperature fluctuations and plasma current density gradients [2]. The input parameters for our theoretical model are derived from the most recent observations of the Solar Corona. In addition, the relevant (endogenous) collective modes can produce high energy particle populations. An endogenous reconnection process is defined as being driven by factors internal to the region where reconnection takes place. *Sponsored in part by the U.S. D.O.E. and the Kavli Foundation* [1] Beafume, P., Coppi, B. and Golub, L., (1992) Ap. J. 393, 396. [2] Coppi, B. and Basu, B. (2017) MIT-LNS Report HEP 17/01.

  16. The Cannabinoid Acids, Analogs and Endogenous Counterparts

    PubMed Central

    Burstein, Sumner H.

    2015-01-01

    The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9–THC-11-oic acid, the principal metabolite of Δ9–THC. Both types of acids have in common several biological actions such as low affinity for CB1, anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid. PMID:24731541

  17. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high inmore » most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.« less

  18. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    PubMed

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Fungal mycelia show lag time before re-growth on endogenous carbon.

    PubMed

    Pollack, Judith K; Li, Zheng Jian; Marten, Mark R

    2008-06-15

    Nutrient starvation is a common occurrence for filamentous fungi. To better understand the effects of starvation, we used a parallel plate flow chamber to study individual fungal mycelia when subjected to a step change in glucose concentration. We report the presence of a finite "lag time" in starved mycelia during which they ceased to grow/extend while switching from growth on exogenous carbon to re-growth on endogenous carbon. This lag time precedes other morphological or physiological changes such as change in growth rate (50-70% reduction), vacuolation (up to 16%), and decreased hyphal diameter (almost 50% reduction). Data suggests that during lag time, vacuolar degradation produces sufficient endogenous carbon to support survival and restart hyphal extension. Lag time is inversely related to the size of the mycelium at the time of starvation, which suggests a critical flow of endogenous carbon to the apical tip. We present a mathematical model consistent with our experimental observations that relate lag time, area, and flow of endogenous carbon. (c) 2008 Wiley Periodicals, Inc.

  20. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    PubMed

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  1. 75 FR 54591 - Notice of Agricultural Management Assistance Organic Certification Cost-Share Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Doc. No. AMS-NOP-10-0065; NOP-10-06] Notice of Agricultural Management Assistance Organic Certification Cost-Share Program AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice of Funds Availability. Inviting Applications for the...

  2. Effect of Leu-enkephalin and delta sleep inducing peptide (DSIP) on endogenous noradrenaline release by rat brain synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lozhanets, V.V.; Anosov, A.K.

    1986-01-01

    The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before andmore » after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test.« less

  3. Endogenously and exogenously driven selective sustained attention: Contributions to learning in kindergarten children.

    PubMed

    Erickson, Lucy C; Thiessen, Erik D; Godwin, Karrie E; Dickerson, John P; Fisher, Anna V

    2015-10-01

    Selective sustained attention is vital for higher order cognition. Although endogenous and exogenous factors influence selective sustained attention, assessment of the degree to which these factors influence performance and learning is often challenging. We report findings from the Track-It task, a paradigm that aims to assess the contribution of endogenous and exogenous factors to selective sustained attention within the same task. Behavioral accuracy and eye-tracking data on the Track-It task were correlated with performance on an explicit learning task. Behavioral accuracy and fixations to distractors during the Track-It task did not predict learning when exogenous factors supported selective sustained attention. In contrast, when endogenous factors supported selective sustained attention, fixations to distractors were negatively correlated with learning. Similarly, when endogenous factors supported selective sustained attention, higher behavioral accuracy was correlated with greater learning. These findings suggest that endogenously and exogenously driven selective sustained attention, as measured through different conditions of the Track-It task, may support different kinds of learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Neuroplastic Changes Following Brain Ischemia and their Contribution to Stroke Recovery: Novel Approaches in Neurorehabilitation

    PubMed Central

    Alia, Claudia; Spalletti, Cristina; Lai, Stefano; Panarese, Alessandro; Lamola, Giuseppe; Bertolucci, Federica; Vallone, Fabio; Di Garbo, Angelo; Chisari, Carmelo; Micera, Silvestro; Caleo, Matteo

    2017-01-01

    Ischemic damage to the brain triggers substantial reorganization of spared areas and pathways, which is associated with limited, spontaneous restoration of function. A better understanding of this plastic remodeling is crucial to develop more effective strategies for stroke rehabilitation. In this review article, we discuss advances in the comprehension of post-stroke network reorganization in patients and animal models. We first focus on rodent studies that have shed light on the mechanisms underlying neuronal remodeling in the perilesional area and contralesional hemisphere after motor cortex infarcts. Analysis of electrophysiological data has demonstrated brain-wide alterations in functional connectivity in both hemispheres, well beyond the infarcted area. We then illustrate the potential use of non-invasive brain stimulation (NIBS) techniques to boost recovery. We finally discuss rehabilitative protocols based on robotic devices as a tool to promote endogenous plasticity and functional restoration. PMID:28360842

  5. Endogenous testosterone and exogenous oxytocin influence the response to baby schema in the female brain.

    PubMed

    Holtfrerich, Sarah K C; Pfister, Roland; El Gammal, Alexander T; Bellon, Eugen; Diekhof, Esther K

    2018-05-16

    Nurturing behavior may be critically influenced by the interplay of different hormones. The neuropeptide oxytocin is known to promote maternal behavior and its reduction has been associated with postpartum depression risk and child neglect. Contrariwise, the observed decrease in testosterone level during early parenthood may benefit caretaking behavior, whereas increased testosterone may reduce attention to infants. Here we used functional magnetic resonance imaging to investigate the interactive influence of testosterone and oxytocin on selective attention to and neural processing of the baby schema (BS). 57 nulliparous women performed a target detection task with human faces with varying degree of BS following double-blinded placebo-controlled oxytocin administration in a between-subjects design. Our results support the idea that oxytocin enhances attention to the BS. Oxytocin had a positive effect on activation of the inferior frontal junction during identification of infant targets with a high degree of BS that were presented among adult distractors. Further, activation of the putamen was positively correlated with selective attention to the BS, but only in women with high endogenous testosterone who received oxytocin. These findings provide initial evidence for the neural mechanism by which oxytocin may counteract the negative effects of testosterone in the modulation of nurturing behavior.

  6. Diverse functions of 24(S)-hydroxycholesterol in the brain.

    PubMed

    Noguchi, Noriko; Saito, Yoshiro; Urano, Yasuomi

    2014-04-11

    24(S)-hydroxycholesterol (24S-OHC) which is enzymatically produced in the brain plays important physiological roles in maintaining brain cholesterol homeostasis. We found that 24S-OHC at sub-lethal concentrations down-regulated amyloid precursor protein (APP) trafficking via enhancement of the complex formation of APP with up-regulated glucose-regulated protein 78, an endoplasmic reticulum chaperone. In accordance with this mechanism, 24S-OHC suppressed amyloid-β production in human neuroblastoma SH-SY5Y cells. Furthermore, 24S-OHC at sub-lethal concentrations induced adaptive responses via transcriptional activation of the liver X receptor signaling pathway, thereby protecting neuronal cells against the forthcoming oxidative stress induced by 7-ketocholesterol. On the other hand, we found that high concentrations of 24S-OHC induced apoptosis in T-lymphoma Jurkat cells which endogenously expressed caspase-8, and induced necroptosis - a form of programmed necrosis - in neuronal SH-SY5Y cells which expressed no caspase-8. In this Article, we show the diverse functions of 24S-OHC and consider the possible importance of controlling 24S-OHC levels in the brain for preventing neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Endogenous technological and demographic change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  8. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  9. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine.

    PubMed

    Jacob, Michael S; Presti, David E

    2005-01-01

    The presence of the potent hallucinogenic psychoactive chemical N,N-dimethyltryptamine (DMT) in the human body has puzzled scientists for decades. Endogenous DMT was investigated in the 1960s and 1970s and it was proposed that DMT was involved in psychosis and schizophrenia. This hypothesis developed from comparisons of the blood and urine of schizophrenic and control subjects. However, much of this research proved inconclusive and conventional thinking has since held that trace levels of DMT, and other endogenous psychoactive tryptamines, are insignificant metabolic byproducts. The recent discovery of a G-protein-coupled, human trace amine receptor has triggered a reappraisal of the role of compounds present in limited concentrations in biological systems. Interestingly enough, DMT and other psychoactive tryptamine hallucinogens elicit a robust response at the trace amine receptor. While it is currently accepted that serotonin 5-HT(2A) receptors play a pivotal role in the activity of hallucinogenic/psychedelic compounds, we propose that the effects induced by exogenous DMT administration, especially at low doses, are due in part to activity at the trace amine receptor. Furthermore, we suggest that endogenous DMT interacts with the TA receptor to produce a calm and relaxed mental state, which may suppress, rather than promote, symptoms of psychosis. This hypothesis may help explain the inconsistency in the early analysis of endogenous DMT in humans. Finally, we propose that amphetamine action at the TA receptor may contribute to the calming effects of amphetamine and related drugs, especially at low doses.

  10. 78 FR 13776 - National Organic Program: Notice of Policies Addressing Kelp, Seeds and Planting Stock, Livestock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... Organic Crop Production (NOP 5029)''; and ``Evaluating Allowed Ingredients and Sources of Vitamins and... Production''; and ``NOP 5030--Evaluating Allowed Ingredients and Sources of Vitamins and Minerals for Organic... through ``The Program Handbook: Guidance and Instructions for Certifying Agents and Certified Operations...

  11. 76 FR 10527 - Regulatory Flexibility Act: Section 610 Review of National Organic Program Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ...: This document announces the Agricultural Marketing Service's (AMS) plans to review the National Organic... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 205 [Document Number AMS-NOP-11-0005; NOP-11-01] Regulatory Flexibility Act: Section 610 Review of National Organic Program...

  12. 78 FR 56811 - National Organic Program-Sunset Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 205 [Document Number AMS-NOP-13-0057; NOP-13-03] National Organic Program--Sunset Process AGENCY: Agricultural Marketing Service, USDA. ACTION: Notification of sunset process. SUMMARY: This document describes the sunset review and...

  13. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.

    PubMed

    Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill

    2016-08-17

    Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.

  14. RANTES: a new prostaglandin dependent endogenous pyrogen in the rat.

    PubMed

    Tavares, E; Miñano, F J

    2000-09-01

    Fever, a hallmark of disease, is a highly complex process initiated by the action of a number of endogenous pyrogens on the thermosensitive cells of the brain. We describe the activity of RANTES, a chemotactic cytokine, as intrinsically pyrogenic in the rat, when it is delivered directly to the thermosensitive region of the rat's anterior hypothalamic, pre-optic area (AH/POA). RANTES, microinjected into the AH/POA in a dose of 1, 5, 10, 15, 25 or 50 pg, produces an immediate and intense dose-related fever following injection. Increasing the dose to 100 pg did not result in a further increase in the febrile response. No significant change in body temperature was produced by heat-inactivated RANTES. The intrahypothalamic injection of antibodies against RANTES (2.0 microg, 15 min prior to RANTES) significantly blocked the fever induced by this chemokine. Pretreatment with ibuprofen blocked the fever induced by RANTES. In order of potency, the magnitude of the febrile response induced by RANTES was greater than that produced with equipotent doses of either macrophage inflammatory protein-1beta or interleukin-6. The results thus demonstrate that RANTES is the most potent endopyrogen discovered thus far and exerts its action directly on pyrogen-sensitive cells of the AH/POA through a prostaglandin-dependent pathway.

  15. Endogeneity in prison risk classification.

    PubMed

    Shermer, Lauren O'Neill; Bierie, David M; Stock, Amber

    2013-10-01

    Security designation tools are a key feature of all prisons in the United States, intended as objective measures of risk that funnel inmates into security levels-to prison environments varying in degree of intrusiveness, restriction, dangerousness, and cost. These tools are mostly (if not all) validated by measuring inmates on a set of characteristics, using scores from summations of that information to assign inmates to prisons of varying security level, and then observing whether inmates assumed more risky did in fact offend more. That approach leaves open the possibility of endogeneity--that the harsher prisons are themselves bringing about higher misconduct and thus biasing coefficients assessing individual risk. The current study assesses this potential bias by following an entry cohort of inmates to more than 100 facilities in the Federal Bureau of Prisons (BOP) and exploiting the substantial variation in classification scores within a given prison that derive from systematic overrides of security-level designations for reasons not associated with risk of misconduct. By estimating pooled models of misconduct along with prison-fixed effects specifications, the data show that a portion of the predictive accuracy thought associated with the risk-designation tool used in BOP was a function of facility-level contamination (endogeneity).

  16. In vitro terahertz spectroscopy of gelatin-embedded human brain tumors: a pilot study

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, N. V.; Gavdush, A. A.; Beshplav, S.-I. T.; Malakhov, K. M.; Kucheryavenko, A. S.; Katyba, G. M.; Dolganova, I. N.; Goryaynov, S. A.; Karasik, V. E.; Spektor, I. E.; Kurlov, V. N.; Yurchenko, S. O.; Komandin, G. A.; Potapov, A. A.; Tuchin, V. V.; Zaytsev, K. I.

    2018-04-01

    We have performed the in vitro terahertz (THz) spectroscopy of human brain tumors. In order to fix tissues for the THz measurements, we have applied the gelatin embedding. It allows for preserving tissues from hydration/dehydration and sustaining their THz response similar to that of the freshly-excised tissues for a long time after resection. We have assembled an experimental setup for the reflection-mode measurements of human brain tissues based on the THz pulsed spectrometer. We have used this setup to study in vitro the refractive index and the amplitude absorption coefficient of 2 samples of malignant glioma (grade IV), 1 sample of meningioma (grade I), and samples of intact tissues. We have observed significant differences between the THz responses of normal and pathological tissues of the brain. The results of this paper highlight the potential of the THz technology in the intraoperative neurodiagnosis of tumors relying on the endogenous labels of tumorous tissues.

  17. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates

    PubMed Central

    Ryou, Jae-Wook; Wei, Xuefeng F.; Butson, Christopher R.; Schiff, Nicholas D.; Purpura, Keith P.

    2016-01-01

    The central thalamus (CT) is a key component of the brain-wide network underlying arousal regulation and sensory-motor integration during wakefulness in the mammalian brain. Dysfunction of the CT, typically a result of severe brain injury (SBI), leads to long-lasting impairments in arousal regulation and subsequent deficits in cognition. Central thalamic deep brain stimulation (CT-DBS) is proposed as a therapy to reestablish and maintain arousal regulation to improve cognition in select SBI patients. However, a mechanistic understanding of CT-DBS and an optimal method of implementing this promising therapy are unknown. Here we demonstrate in two healthy nonhuman primates (NHPs), Macaca mulatta, that location-specific CT-DBS improves performance in visuomotor tasks and is associated with physiological effects consistent with enhancement of endogenous arousal. Specifically, CT-DBS within the lateral wing of the central lateral nucleus and the surrounding medial dorsal thalamic tegmental tract (DTTm) produces a rapid and robust modulation of performance and arousal, as measured by neuronal activity in the frontal cortex and striatum. Notably, the most robust and reliable behavioral and physiological responses resulted when we implemented a novel method of CT-DBS that orients and shapes the electric field within the DTTm using spatially separated DBS leads. Collectively, our results demonstrate that selective activation within the DTTm of the CT robustly regulates endogenous arousal and enhances cognitive performance in the intact NHP; these findings provide insights into the mechanism of CT-DBS and further support the development of CT-DBS as a therapy for reestablishing arousal regulation to support cognition in SBI patients. PMID:27582298

  18. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain.

    PubMed

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-19

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H 2 O 2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property.

  19. Antioxidant mediated response of Scoparia dulcis in noise-induced redox imbalance and immunohistochemical changes in rat brain

    PubMed Central

    Wankhar, Wankupar; Srinivasan, Sakthivel; Rajan, Ravindran; Sheeladevi, Rathinasamy

    2017-01-01

    Noise has been regarded as an environmental/occupational stressor that causes damages to both auditory and non-auditory organs. Prolonged exposure to these mediators of stress has often resulted in detrimental effect, where oxidative/nitrosative stress plays a major role. Hence, it would be appropriate to examine the possible role of free radicals in brain discrete regions and the "antioxidants" mediated response of S. dulcis. Animals were subjected to noise stress for 15 days (100 dB/4 hours/day) and estimation of endogenous free radical and antioxidant activity were carried out on brain discrete regions (the cerebral cortex, cerebellum, brainstem, striatum, hippocampus and hypothalamus). The result showed that exposure to noise could alleviate endogenous free radical generation and altered antioxidant status in brain discrete regions when compared to that of the control groups. This alleviated free radical generation (H2O2 and NO) is well supported by an upregulated protein expression on immunohistochemistry of both iNOS and nNOS in the cerebral cortex on exposure to noise stress. These findings suggest that increased free radical generation and altered anti-oxidative status can cause redox imbalance in the brain discrete regions. However, free radical scavenging activity of the plant was evident as the noise exposed group treated with S. dulcis[200 mg/(kg·b·w)] displayed a therapeutic effect by decreasing the free radical level and regulate the anti-oxidative status to that of control animals. Hence, it can be concluded that the efficacy of S. dulcis could be attributed to its free radical scavenging activity and anti-oxidative property. PMID:28808196

  20. Endogenous GLP-1 in lateral septum contributes to stress-induced hypophagia.

    PubMed

    Terrill, Sarah J; Maske, Calyn B; Williams, Diana L

    2018-03-03

    Glucagon-like peptide 1 (GLP-1) neurons of the caudal brainstem project to many brain areas, including the lateral septum (LS), which has a known role in stress responses. Previously, we showed that endogenous GLP-1 in the LS plays a physiologic role in the control of feeding under non-stressed conditions, however, central GLP-1 is also involved in behavioral and endocrine responses to stress. Here, we asked whether LS GLP-1 receptors (GLP-1R) contribute to stress-induced hypophagia. Male rats were implanted with bilateral cannulas targeting the dorsal subregion of the LS (dLS). In a within-subjects design, shortly before the onset of the dark phase, rats received dLS injections of saline or the GLP-1R antagonist Exendin (9-39) (Ex9) prior to 30 min restraint stress. Food intake was measured continuously for the next 20 h. The stress-induced hypophagia observed within the first 30 min of dark was not influenced by Ex9 pretreatment, but Ex9 tended to blunt the effect of stress as early as 1 and 2 h into the dark phase. By 4-6 h, there were significant stress X drug interactions, and Ex9 pretreatment blocked the stress-induced suppression of feeding. These effects were mediated entirely through changes in average meal size; stress suppressed meal size while dLS Ex9 attenuated this effect. Using a similar design, we examined the role of dLS GLP-1R in the neuroendocrine response to acute restraint stress. As expected, stress potently increased serum corticosterone, but blockade of dLS GLP-1Rs did not affect this response. Together, these data show that endogenous GLP-1 action in the dLS plays a role in some but not all of the physiologic responses to acute stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Breastfeeding and the risk of childhood asthma: A two-stage instrumental variable analysis to address endogeneity.

    PubMed

    Sharma, Nivita D

    2017-09-01

    Several explanations for the inconsistent results on the effects of breastfeeding on childhood asthma have been suggested. The purpose of this study was to investigate one unexplored explanation, which is the presence of a potential endogenous relationship between breastfeeding and childhood asthma. Endogeneity exists when an explanatory variable is correlated with the error term for reasons such as selection bias, reverse causality, and unmeasured confounders. Unadjusted endogeneity will bias the effect of breastfeeding on childhood asthma. To investigate potential endogeneity, a cross-sectional study of breastfeeding practices and incidence of childhood asthma in 87 pediatric patients in Georgia, the USA, was conducted using generalized linear modeling and a two-stage instrumental variable analysis. First, the relationship between breastfeeding and childhood asthma was analyzed without considering endogeneity. Second, tests for presence of endogeneity were performed and having detected endogeneity between breastfeeding and childhood asthma, a two-stage instrumental variable analysis was performed. The first stage of this analysis estimated the duration of breastfeeding and the second-stage estimated the risk of childhood asthma. When endogeneity was not taken into account, duration of breastfeeding was found to significantly increase the risk of childhood asthma (relative risk ratio [RR]=2.020, 95% confidence interval [CI]: [1.143-3.570]). After adjusting for endogeneity, duration of breastfeeding significantly reduced the risk of childhood asthma (RR=0.003, 95% CI: [0.000-0.240]). The findings suggest that researchers should consider evaluating how the presence of endogeneity could affect the relationship between duration of breastfeeding and the risk of childhood asthma. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  2. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    EPA Science Inventory

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  3. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid

    PubMed Central

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407

  4. Role of Insulin in Endogenous Hypertriglyceridemia*

    PubMed Central

    Reaven, Gerald M.; Lerner, Roger L.; Stern, Michael P.; Farquhar, John W.

    1967-01-01

    Dietary carbohydrate accentuation of endogenous triglyceride production has been studied in 33 patients. A broad and relatively continuous spectrum of steady-state plasma triglyceride concentrations was produced in 31 of the 33 subjects during 3 wk of a high carbohydrate (fat-free) liquid formula diet. Two patients developed plasma triglyceride concentrations in excess of 2000 mg/100 ml, and these were the only patients we have studied in which carbohydrate induction of hypertriglyceridemia seemed to be associated with a defect in endogenous plasma triglyceride removal mechanisms. In the remaining 31 patients the degree of hypertriglyceridemia was highly correlated with the insulin response elicited by the ingestion of the high carbohydrate formula (P < 0.005). No significant correlation existed between fasting plasma triglyceride concentration and either plasma glucose or free fatty acid concentrations after the high carbohydrate diet, nor was the degree of hypertriglyceridemia related to degree of obesity. It is suggested that hypertriglyceridemia in most subjects results from an increase in hepatic triglyceride secretion rate secondary to exaggerated postprandial increases in plasma insulin concentration. Images PMID:6061748

  5. Endogenous endophthalmitis with an unusual infective agent: Actinomyces neuii.

    PubMed

    Graffi, Shmuel; Peretz, Avi; Naftali, Modi

    2012-01-01

    To report an unusual case of a patient with endogenous endophthalmitis caused by Actinomyces neuii. A 69-year-old woman in an immunosuppressed state and who had a previous history of periappendicular abscess presented with bilateral red painful eyes. The diagnosis was confirmed by culture and pan-bacterial polymerase chain reaction drawn from anterior chamber sample. On admission, the patient underwent an intravitreal injection of vancomycin combined with ceftazidime. Following a 3-week treatment of intravenous penicillin and topical sulfacetamide sodium, the patient recovered fully. Actinomyces neuii can cause endogenous endophthalmitis. Intravenous penicillin G is an effective treatment leading to favorable prognosis.

  6. Quantification of endogenous retinoic acid in limited biological samples by LC/MS/MS

    PubMed Central

    Kane, Maureen A.; Chen, Na; Sparks, Susan; Napoli, Joseph L.

    2005-01-01

    We report a sensitive LC (liquid chromatography)/MS/MS assay using selected reaction monitoring to quantify RA (retinoic acid), which is applicable to biological samples of limited size (10–20 mg of tissue wet weight), requires no sample derivatization, provides mass identification and resolves atRA (all-trans-RA) from its geometric isomers. The assay quantifies over a linear range of 20 fmol to 10 pmol, and has a 10 fmol limit of detection at a signal/noise ratio of 3. Coefficients of variation are: instrumental, 0.5–2.9%; intra-assay, 5.4±0.4%; inter-assay 8.9±1.0%. An internal standard (all-trans-4,4-dimethyl-RA) improves accuracy by confirming extraction efficiency and revealing handling-induced isomerization. Tissues of 2–4-month-old C57BL/6 male mice had atRA concentrations of 7–9.6 pmol/g and serum atRA of 1.9±0.6 pmol/ml (±S.E.M.). Tissue 13-cis-RA ranged from 2.9 to 4.2 pmol/g, and serum 13-cis-RA was 1.2±0.3 pmol/ml. CRBP (cellular retinol-binding protein)-null mouse liver had atRA ∼30% lower than wild-type (P<0.05), but kidney, testis, brain and serum atRA were similar to wild-type. atRA in brain areas of 12-month-old female C57BL/6 mice were (±S.E.M.): whole brain, 5.4±0.4 pmol/g; cerebellum, 10.7±0.3 pmol/g; cortex, 2.6±0.4 pmol/g; hippocampus, 8.4±1.2 pmol/g; striatum, 15.3±4.7 pmol/g. These data provide the first analytically robust quantification of atRA in animal brain and in CRBP-null mice. Direct measurements of endogenous RA should have a substantial impact on investigating target tissues of RA, mechanisms of RA action, and the relationship between RA and chronic disease. PMID:15628969

  7. Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular Neurobiological Substrates

    PubMed Central

    Gold, Mark S.; Kobeissy, Firas H.; Wang, Kevin K.W.; Merlo, Lisa J.; Bruijnzeel, Adriaan W.; Krasnova, Irina N.; Cadet, Jean Lud

    2009-01-01

    The use of methamphetamine (METH) is a growing public health problem because its abuse is associated with long-term biochemical and structural effects on the human brain. Neurodegeneration is often observed in humans as a result of mechanical injuries (e.g. traumatic brain injury, TBI) and ischemic damage (strokes). In this review, we discuss recent findings documenting the fact that the psychostimulant drug, METH, can cause neuronal damage in several brain regions. The accumulated evidence from our laboratories and those of other investigators indicates that acute administration of METH leads to activation of calpain and caspase proteolytic systems. These systems are also involved in causing neuronal damage secondary to traumatic and ischemic brain injuries. Protease activation is accompanied by proteolysis of endogenous neuronal structural proteins (αII-spectrin and MAP-tau protein) evidenced by the appearance of their breakdown products after these injuries. When taken together, these observations suggest that METH exposure, like TBI, can cause substantial damage to the brain by causing both apoptotic and necrotic cell death in the brains of METH addicts who use large doses of the drug during their lifetimes. Finally, because METH abuse is accompanied by functional and structural changes in the brain similar to those in TBI, METH addicts might experience greater benefit if their treatment involved greater emphasis on rehabilitation in conjunction with the use of potential neuroprotective pharmacological agents such as calpain and caspase inhibitors similar to those used in TBI. PMID:19345341

  8. A unique role of endogenous visual-spatial attention in rapid processing of multiple targets

    PubMed Central

    Guzman, Emmanuel; Grabowecky, Marcia; Palafox, German; Suzuki, Satoru

    2012-01-01

    Visual spatial attention can be exogenously captured by a salient stimulus or can be endogenously allocated by voluntary effort. Whether these two attention modes serve distinctive functions is debated, but for processing of single targets the literature suggests superiority of exogenous attention (it is faster acting and serves more functions). We report that endogenous attention uniquely contributes to processing of multiple targets. For speeded visual discrimination, response times are faster for multiple redundant targets than for single targets due to probability summation and/or signal integration. This redundancy gain was unaffected when attention was exogenously diverted from the targets, but was completely eliminated when attention was endogenously diverted. This was not due to weaker manipulation of exogenous attention because our exogenous and endogenous cues similarly affected overall response times. Thus, whereas exogenous attention is superior for processing single targets, endogenous attention plays a unique role in allocating resources crucial for rapid concurrent processing of multiple targets. PMID:21517209

  9. Endogenous pyrogen production by Hodgkin's disease and human histiocytic lymphoma cell lines in vitro.

    PubMed

    Bodel, P; Ralph, P; Wenc, K; Long, J C

    1980-02-01

    Fever not explained by infection may occur in patients with malignant lymphoma presumably caused by a release of endogenous pyrogen. Although pyrogen has been found in some tumors with a mixed cell population, production of endogenous pyrogen by the neoplastic cells has not been demonstrated. This report documents the apparently spontaneous synthesis and release of such pyrogen by two human tumor cell lines derived from patients with Hodgkin's disease and histiocytic lymphoma. The endogenous pyrogen from the two cell lines was similar and closely resembled that produced by normal human monocytes in antigenic properties as well as heat and pronase sensitivity. The Hodgkin's disease and histiocytic lymphoma cell lines do not require specific stimulation for the production of endogenous pyrogen suggesting that the mechanism of pyrogen release by neoplastic macrophage-related cells differs from that of normal phagocytic cells. The tumor-associated fever in some patients with malignant lymphoma may be caused by a release of endogenous pyrogen by proliferating neoplastic cells.

  10. Endogenous pyrogen production by Hodgkin's disease and human histiocytic lymphoma cell lines in vitro.

    PubMed Central

    Bodel, P; Ralph, P; Wenc, K; Long, J C

    1980-01-01

    Fever not explained by infection may occur in patients with malignant lymphoma presumably caused by a release of endogenous pyrogen. Although pyrogen has been found in some tumors with a mixed cell population, production of endogenous pyrogen by the neoplastic cells has not been demonstrated. This report documents the apparently spontaneous synthesis and release of such pyrogen by two human tumor cell lines derived from patients with Hodgkin's disease and histiocytic lymphoma. The endogenous pyrogen from the two cell lines was similar and closely resembled that produced by normal human monocytes in antigenic properties as well as heat and pronase sensitivity. The Hodgkin's disease and histiocytic lymphoma cell lines do not require specific stimulation for the production of endogenous pyrogen suggesting that the mechanism of pyrogen release by neoplastic macrophage-related cells differs from that of normal phagocytic cells. The tumor-associated fever in some patients with malignant lymphoma may be caused by a release of endogenous pyrogen by proliferating neoplastic cells. PMID:6985918

  11. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury.

    PubMed

    Prins, Mayumi L; Matsumoto, Joyce H

    2014-12-01

    The postinjury period of glucose metabolic depression is accompanied by adenosine triphosphate decreases, increased flux of glucose through the pentose phosphate pathway, free radical production, activation of poly-ADP ribose polymerase via DNA damage, and inhibition of glyceraldehyde dehydrogenase (a key glycolytic enzyme) via depletion of the cytosolic NAD pool. Under these post-brain injury conditions of impaired glycolytic metabolism, glucose becomes a less favorable energy substrate. Ketone bodies are the only known natural alternative substrate to glucose for cerebral energy metabolism. While it has been demonstrated that other fuels (pyruvate, lactate, and acetyl-L-carnitine) can be metabolized by the brain, ketones are the only endogenous fuel that can contribute significantly to cerebral metabolism. Preclinical studies employing both pre- and postinjury implementation of the ketogenic diet have demonstrated improved structural and functional outcome in traumatic brain injury (TBI) models, mild TBI/concussion models, and spinal cord injury. Further clinical studies are required to determine the optimal method to induce cerebral ketone metabolism in the postinjury brain, and to validate the neuroprotective benefits of ketogenic therapy in humans. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Determination of pharmacological levels of harmane, harmine and harmaline in mammalian brain tissue, cerebrospinal fluid and plasma by high-performance liquid chromatography with fluorimetric detection.

    PubMed

    Moncrieff, J

    1989-11-24

    Increased blood aldehyde levels, as occur in alcohol intoxication, could lead to the formation of beta-carbolines such as harmane by condensation with indoleamines. Endogenous beta-carbolines, therefore, should occur in specific brain areas where indoleamine concentrations are high, whilst exogenous beta-carbolines should exhibit an even distribution. The author presents direct and sensitive methods for assaying the beta-carbolines harmane, harmine and harmaline in brain tissue, cerebrospinal fluid and plasma at picogram sample concentrations using reversed-phase high-performance liquid chromatography with fluorimetric detection and minimal sample preparation. Using these assay methods, it was found that the distribution of beta-carbolines from a source exogenous to the brain results in a relatively even distribution within the brain tissue.

  13. The Case for 8, 5’-Cyclopurine-2’-Deoxynucleosides as Endogenous DNA Lesions That Cause Neurodegeneration in Xeroderma Pigmentosum

    PubMed Central

    Brooks, PJ

    2007-01-01

    Patients with the genetic disease xeroderma pigmentosum (XP) lack the capacity to carry out a specific type of DNA repair process called nucleotide excision repair (NER). The NER pathway plays a critical role in the repair of DNA damage resulting from UV radiation. A subset of XP patients develop a profound neurodegenerative condition known as XP neurological disease. Robbins and colleagues (PNAS 75:1984–88, 1978) hypothesized that since UV light cannot reach into the human brain, XP neurological disease results from some form of endogenous DNA damage that is normally repaired by the NER pathway. In the absence of NER, the damage accumulates, causing neuronal death by blocking transcription. In this manuscript, I consider the evidence that a particular class of oxidative DNA lesions, the 8, 5’-cyclopurine-2’-deoxynucleosides, fulfills many of the criteria expected of neurodegenerative DNA lesions in XP. Specifically, these lesions are chemically stable, endogenous DNA lesions that are repaired by the NER pathway but not by any other known process, and strongly block transcription by RNA polymerase II in cells from XP patients. A similar set of criteria might be used to evaluate other candidate DNA lesions responsible for neurological diseases resulting from defects in other DNA repair mechanisms as well. PMID:17184928

  14. Endogenous field feedback promotes the detectability for exogenous electric signal in the hybrid coupled population.

    PubMed

    Wei, Xile; Zhang, Danhong; Lu, Meili; Wang, Jiang; Yu, Haitao; Che, Yanqiu

    2015-01-01

    This paper presents the endogenous electric field in chemical or electrical synaptic coupled networks, aiming to study the role of endogenous field feedback in the signal propagation in neural systems. It shows that the feedback of endogenous fields to network activities can reduce the required energy of the noise and enhance the transmission of input signals in hybrid coupled populations. As a common and important nonsynaptic interactive method among neurons, particularly, the endogenous filed feedback can not only promote the detectability of exogenous weak signal in hybrid coupled neural population but also enhance the robustness of the detectability against noise. Furthermore, with the increasing of field coupling strengths, the endogenous field feedback is conductive to the stochastic resonance by facilitating the transition of cluster activities from the no spiking to spiking regions. Distinct from synaptic coupling, the endogenous field feedback can play a role as internal driving force to boost the population activities, which is similar to the noise. Thus, it can help to transmit exogenous weak signals within the network in the absence of noise drive via the stochastic-like resonance.

  15. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    PubMed

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  16. [Correlation index amylase-creatinine clearance to endogenous creatinine clearance in severe preeclampsia].

    PubMed

    Vázquez Rodríguez, Juan Gustavo; Cruz Cruz, Polita del Rocío; Márquez Hubert, Elizabeth

    2009-07-01

    Tubular lesion may cause acute renal insufficiency in pregnant patients with severe preeclampsia. To describe the correlation between the amylase/creatinine clearance ratio and endogenous creatinine depuration in pregnant patients with severe preeclampsia. Transversal study (pilot study) twenty eight women with pregnancies of 20 to 40 weeks complicated by severe preeclampsia were studied. Subjects had serum and urine creatinine and amylase determinations to calculate the amylase/creatinine clearance ratio (%). According to the results, two groups were formed: group A (> 3%) and group B (< or = 3%). The correlation between amylase/creatinine clearance ratio and endogenous creatinine depuration was evaluated. measures of central tendency and dispersion, Student's t-test, Pearson correlation coefficient (r) and linear regression were used. Group A included 23 cases (82%) and group B included 5 cases (18%). Amylase/creatinine clearance ratio (%) for group A was 5.22 +/- 1.6 and for group B was 2.41 +/- 0.41 (p = 0.001). The endogenous creatinine depuration (mL /min. /1.73 m2 SC) for group A was 105.6 +/- 9.71 and for group B was 132.10 +/- 7.95 (p = 0.54). The r between amylase/creatinine clearance ratio and endogenous creatinine depuration for group A was -0.43 and for group B was -0.25. A moderately significant negative correlation exists between amylase/creatinine clearance ratio and endogenous creatinine depuration.

  17. 78 FR 38913 - National Organic Program: Request for an Extension of a Currently Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Doc. No. AMS-NOP-13-0051; NOP-13-02...: Agricultural Marketing Service, USDA. ACTION: Notice and request for comments. SUMMARY: In accordance with the Paperwork Reduction Act of 1995, this notice announces the Agricultural Marketing Service's (AMS) intention...

  18. Controlling for endogeneity in attributable costs of vancomycin-resistant enterococci from a Canadian hospital.

    PubMed

    Lloyd-Smith, Patrick

    2017-12-01

    Decisions regarding the optimal provision of infection prevention and control resources depend on accurate estimates of the attributable costs of health care-associated infections. This is challenging given the skewed nature of health care cost data and the endogeneity of health care-associated infections. The objective of this study is to determine the hospital costs attributable to vancomycin-resistant enterococci (VRE) while accounting for endogeneity. This study builds on an attributable cost model conducted by a retrospective cohort study including 1,292 patients admitted to an urban hospital in Vancouver, Canada. Attributable hospital costs were estimated with multivariate generalized linear models (GLMs). To account for endogeneity, a control function approach was used. The analysis sample included 217 patients with health care-associated VRE. In the standard GLM, the costs attributable to VRE are $17,949 (SEM, $2,993). However, accounting for endogeneity, the attributable costs were estimated to range from $14,706 (SEM, $7,612) to $42,101 (SEM, $15,533). Across all model specifications, attributable costs are 76% higher on average when controlling for endogeneity. VRE was independently associated with increased hospital costs, and controlling for endogeneity lead to higher attributable cost estimates. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  19. Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator.

    PubMed

    Shimada, Yoshiaki; Shimura, Hideki; Tanaka, Ryota; Yamashiro, Kazuo; Koike, Masato; Uchiyama, Yasuo; Urabe, Takao; Hattori, Nobutaka

    2018-01-01

    Loss of integrity of the blood-brain barrier (BBB) in ischemic stroke victims initiates a devastating cascade of events causing brain damage. Maintaining the BBB is important to preserve brain function in ischemic stroke. Unfortunately, recombinant tissue plasminogen activator (tPA), the only effective fibrinolytic treatment at the acute stage of ischemic stroke, also injures the BBB and increases the risk of brain edema and secondary hemorrhagic transformation. Thus, it is important to identify compounds that maintain BBB integrity in the face of ischemic injury in patients with stroke. We previously demonstrated that intravenously injected phosphorylated recombinant heat shock protein 27 (prHSP27) protects the brains of mice with transient middle cerebral artery occlusion (tMCAO), an animal stroke-model. Here, we determined whether prHSP27, in addition to attenuating brain injury, also decreases BBB damage in hyperglycemic tMCAO mice that had received tPA. After induction of hyperglycemia and tMCAO, we examined 4 treatment groups: 1) bovine serum albumin (BSA), 2) prHSP27, 3) tPA, 4) tPA plus prHSP27. We examined the effects of prHSP27 by comparing the BSA and prHSP27 groups and the tPA and tPA plus prHSP27 groups. Twenty-four hours after injection, prHSP27 reduced infarct volume, brain swelling, neurological deficits, the loss of microvessel proteins and endothelial cell walls, and mortality. It also reduced the rates of hemorrhagic transformation, extravasation of endogenous IgG, and MMP-9 activity, signs of BBB damage. Therefore, prHSP27 injection attenuated brain damage and preserved the BBB in tPA-injected, hyperglycemic tMCAO experimental stroke-model mice, in which the BBB is even more severely damaged than in simple tMCAO mice. The attenuation of brain damage and BBB disruption in the presence of tPA suggests the effectiveness of prHSP27 and tPA as a combination therapy. prHSP27 may be a novel therapeutic agent for ischemic stroke patients whose BBBs are

  20. Exogenous agmatine has neuroprotective effects against restraint-induced structural changes in the rat brain

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Cai, Zheng-Wei; Regunathan, Soundar; Ordway, Gregory

    2009-01-01

    Agmatine is an endogenous amine derived from decarboxylation of arginine catalysed by arginine decarboxylase. Agmatine is considered a novel neuromodulator and possesses neuroprotective properties in the central nervous system. The present study examined whether agmatine has neuroprotective effects against repeated restraint stress-induced morphological changes in rat medial prefrontal cortex and hippocampus. Sprague-Dawley rats were subjected to 6 h of restraint stress daily for 21 days. Immunohistochemical staining with β-tubulin III showed that repeated restraint stress caused marked morphological alterations in the medial prefrontal cortex and hippocampus. Stress-induced alterations were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Interestingly, endogenous agmatine levels, as measured by high-performance liquid chromatography, in the prefrontal cortex and hippocampus as well as in the striatum and hypothalamus of repeated restraint rats were significantly reduced as compared with the controls. Reduced endogenous agmatine levels in repeated restraint animals were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. Moreover, administration of exogenous agmatine to restrained rats abolished increases of arginine decarboxylase protein levels. Taken together, these results demonstrate that exogenously administered agmatine has neuroprotective effects against repeated restraint-induced structural changes in the medial prefrontal cortex and hippocampus. These findings indicate that stress-induced reductions in endogenous agmatine levels in the rat brain may play a permissive role in neuronal pathology induced by repeated restraint stress. PMID:18364017

  1. Endogenous Retrovirus 3 – History, Physiology, and Pathology

    PubMed Central

    Bustamante Rivera, Yomara Y.; Brütting, Christine; Schmidt, Caroline; Volkmer, Ines; Staege, Martin S.

    2018-01-01

    Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response. PMID:29379485

  2. 3D-QSAR, homology modeling, and molecular docking studies on spiropiperidines analogues as agonists of nociceptin/orphanin FQ receptor.

    PubMed

    Liu, Ming; He, Lin; Hu, Xiaopeng; Liu, Peiqing; Luo, Hai-Bin

    2010-12-01

    The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator.

    PubMed

    García, Luis Fernando; Viera, Carmen; Pekár, Stano

    2018-04-02

    Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.

  4. Metabolic and reward feeding synchronises the rhythmic brain.

    PubMed

    Challet, Etienne; Mendoza, Jorge

    2010-07-01

    Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and temporally restricted feeding are potent synchronisers for secondary clocks in peripheral organs such as the liver and in brain regions, although not for the suprachiasmatic nuclei. Even when animals are exposed to a light-dark cycle, timed calorie restriction (i.e. when only a hypocaloric diet is given every day) is a synchroniser powerful enough to modify the suprachiasmatic clockwork and increase the synchronising effects of light. A daily chocolate snack in animals fed ad libitum with chow diet entrains the suprachiasmatic clockwork only under the conditions of constant darkness and decreases the synchronising effects of light. Secondary clocks in the brain outside the suprachiasmatic nuclei are differentially influenced by meal timing. Circadian oscillations can either be highly sensitive to food-related metabolic or reward cues (i.e. their phase is shifted according to the timed meal schedule) in some structures or hardly affected by meal timing (palatable or not) in others. Furthermore, animals will manifest food-anticipatory activity prior to their expected meal time. Anticipation of a palatable or regular meal may rely on a network of brain clocks, involving metabolic and reward systems and the cerebellum.

  5. Neuropeptide W acts in brain to control prolactin, corticosterone, and growth hormone release.

    PubMed

    Baker, Jennifer R; Cardinal, Kara; Bober, Cynthia; Taylor, Meghan M; Samson, Willis K

    2003-07-01

    The endogenous, peptide ligand for the orphan receptors GPR7 and GPR8 was identified to be neuropeptide W (NPW). Because these receptors are expressed in brain and in particular in hypothalamus, we hypothesized that NPW might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPW were observed on the in vitro releases of prolactin (PRL), ACTH, or GH when log molar concentrations ranging from 1 pM to 100 nM NPW were incubated with dispersed anterior pituitary cells. However, NPW, when injected into the lateral cerebroventricle of conscious, unrestrained male rats, in a dose-related fashion elevated PRL and corticosterone and lowered GH levels in circulation. The threshold dose for all three effects was 1.0 nmol. We conclude that endogenous NPW may play a regulatory role in the organization of neuroendocrine signals accessing the anterior pituitary gland but does not itself act as a true releasing or inhibiting factor in the gland. Central administration of NPW23 also stimulated water drinking and food intake. The ability of exogenous peptide to decrease GH but stimulate PRL secretion and activate the hypothalamo-pituitary adrenal axis, together with the observed behavioral effects, suggests that endogenous NPW may play a role in the hypothalamic response to stress.

  6. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.

    PubMed

    Levin, Michael; Pezzulo, Giovanni; Finkelstein, Joshua M

    2017-06-21

    Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.

  7. Investigations into the differential reactivity of endogenous and exogenous mercury species in coastal sediments.

    PubMed

    Bouchet, S; Rodriguez-Gonzalez, P; Bridou, R; Monperrus, M; Tessier, E; Anschutz, P; Guyoneaud, R; Amouroux, D

    2013-03-01

    Stable isotopic tracer methodologies now allow the evaluation of the reactivity of the endogenous (ambient) and exogenous (added) Hg to further predict the potential effect of Hg inputs in ecosystems. The differential reactivity of endogenous and exogenous Hg was compared in superficial sediments collected in a coastal lagoon (Arcachon Bay) and in an estuary (Adour River) from the Bay of Biscay (SW France). All Hg species (gaseous, aqueous, and solid fraction) and ancillary data were measured during time course slurry experiments under variable redox conditions. The average endogenous methylation yield was higher in the estuarine (1.2 %) than in the lagoonal sediment (0.5 %), although both methylation and demethylation rates were higher in the lagoonal sediment in relation with a higher sulfate-reducing activity. Demethylation was overall more consistent than methylation in both sediments. The endogenous and exogenous Hg behaviors were always correlated but the exogenous inorganic Hg (IHg) partitioning into water was 2.0-4.3 times higher than the endogenous one. Its methylation was just slightly higher (1.4) in the estuarine sediment while the difference in the lagoonal sediment was much larger (3.6). The relative endogenous and exogenous methylation yields were not correlated to IHg partitioning, demonstrating that the bioavailable species distributions were different for the two IHg pools. In both sediments, the exogenous IHg partitioning equaled the endogenous one within a week, while its higher methylation lasted for months. Such results provide an original assessment approach to compare coastal sediment response to Hg inputs.

  8. Drug Delivery to the Ischemic Brain

    PubMed Central

    Thompson, Brandon J.; Ronaldson, Patrick T.

    2014-01-01

    Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events inneurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is re-established. Therefore, there is a critical need for novel therapeutic approaches that can “rescue” salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides (OATPs/Oatps) and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia. PMID:25307217

  9. Circadian rhythmicity and light sensitivity of the zebrafish brain.

    PubMed

    Moore, Helen A; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker

  10. Circadian Rhythmicity and Light Sensitivity of the Zebrafish Brain

    PubMed Central

    Moore, Helen A.; Whitmore, David

    2014-01-01

    Traditionally, circadian clocks have been thought of as a neurobiological phenomenon. This view changed somewhat over recent years with the discovery of peripheral tissue circadian oscillators. In mammals, however, the suprachiasmatic nucleus (SCN) in the hypothalamus still retains the critical role of a central synchronizer of biological timing. Zebrafish, in contrast, have always reflected a more highly decentralized level of clock organization, as individual cells and tissues contain directly light responsive circadian pacemakers. As a consequence, clock function in the zebrafish brain has remained largely unexplored, and the precise organization of rhythmic and light-sensitive neurons within the brain is unknown. To address this issue, we used the period3 (per3)-luciferase transgenic zebrafish to confirm that multiple brain regions contain endogenous circadian oscillators that are directly light responsive. In addition, in situ hybridization revealed localised neural expression of several rhythmic and light responsive clock genes, including per3, cryptochrome1a (cry1a) and per2. Adult brain nuclei showing significant clock gene expression include the teleost equivalent of the SCN, as well as numerous hypothalamic nuclei, the periventricular grey zone (PGZ) of the optic tectum, and granular cells of the rhombencephalon. To further investigate the light sensitive properties of neurons, expression of c-fos, a marker for neuronal activity, was examined. c-fos mRNA was upregulated in response to changing light conditions in different nuclei within the zebrafish brain. Furthermore, under constant dark (DD) conditions, c-fos shows a significant circadian oscillation. Taken together, these results show that there are numerous areas of the zebrafish central nervous system, which contain deep brain photoreceptors and directly light-entrainable circadian pacemakers. However, there are also multiple brain nuclei, which possess neither, demonstrating a degree of pacemaker

  11. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    PubMed

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  12. Evidence for an endogenous papillomavirus-like element in the platypus genome.

    PubMed

    Cui, Jie; Holmes, Edward C

    2012-06-01

    Papillomaviruses (PVs) infect a wide range of vertebrates and have diversified into multiple genetic types, some of which have serious consequences for human health. Although PVs have to date only been characterized as exogenous viral forms, here we report the observation of an endogenous viral element (EPVLoa) in the genome of the platypus (Ornithorhynchus anatinus) that is related to PVs. Further data mining for endogenous PV-like elements is therefore warranted.

  13. Peptic ulcer disease in endogenous hypercortisolism: myth or reality?

    PubMed

    Hatipoglu, Esra; Caglar, Asli Sezgin; Caglar, Erkan; Ugurlu, Serdal; Tuncer, Murat; Kadioglu, Pinar

    2015-11-01

    Many clinicians believe hypercortisolism is ulcerogenic. However, data from clinical studies show that prophylaxis for peptic ulcer disease is no longer recommended in patients receiving corticosteroid treatment. This has not yet been verified in endogenous hypercortisolism by controlled clinical studies. The purpose of the current study was to evaluate the relationship between endogenous Cushing's syndrome (CS) and peptic ulcer disease and Helicobacter pylori infection. The study group contained 20 cases with CS resulting from ACTH-dependent endogenous hypercortisolism. The control groups consisted of 14 age- and gender-matched cases receiving exogenous corticosteroid therapy and 100 cases of dyspepsia with non-cushingoid features. Upper gastrointestinal endoscopy was performed on all cases. Biopsies were taken from five different points: two samples from the antrum, two samples from the corpus, and one sample from the fundus. A histological diagnosis of Helicobacter pylori infection was also obtained from evaluation of biopsy specimens. The frequency of stomach and duodenal ulcers did not vary between the groups (p = 0.5 and p = 0.7). Antral gastritis was less frequent and pangastritis was more common in cases with CS compared to the healthy controls (p = 0.001 and p < 0.001). The incidence of Candida esophagitis was more frequent in cases with CS compared to cases with corticosteroid treatment and healthy controls (p = 0.03). Histopathological findings and frequency of Helicobacter pylori based on pathology results did not vary between the three groups. It is possible that neither exogenous nor endogenous corticosteroid excess directly causes peptic ulcer or Helicobacter pylori infection. Prophylactic use of proton pump inhibitors is not compulsory for hypercortisolism of any type.

  14. Advances in the study on endogenous sulfur dioxide in the cardiovascular system.

    PubMed

    Tian, Hong

    2014-01-01

    This review summarized the current advances in understanding the role of the novel gasotransmitter, sulfur dioxide (SO2), in the cardiovascular system. Articles on the advances in the study of the role of endogenous sulfur dioxide in the cardiovascular system were accessed from PubMed and CNKI from 2003 to 2013, using keywords such as "endogenous sulfur dioxide" and "cardiovascular system". Articles with regard to the role of SO2 in the regulation of cardiovascular system were selected. Recently, scientists discovered that an endogenous SO2 pathway is present in the cardiovascular system and exerts physiologically significant effects, such as regulation of the cardiac function and the pathogenesis of various cardiopulmonary diseases such as hypoxic pulmonary hypertension, hypertension, coronary atherosclerosis, and cardiac ischemia-reperfusion (I/R) injury, in the cardiovascular system. Endogenous SO2 is a novel member of the gasotransmitter family in addition to the nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S). Studies indicated that it has a role in regulating the cardiovascular disease.

  15. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs.

    PubMed

    Khan, Aly A; Betel, Doron; Miller, Martin L; Sander, Chris; Leslie, Christina S; Marks, Debora S

    2009-06-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competition among the transfected small RNAs and the endogenous pool of miRNAs for the intracellular machinery that processes small RNAs. To test this hypothesis, we analyzed genome-wide transcript responses from 151 published transfection experiments in seven different human cell types. We show that targets of endogenous miRNAs are expressed at significantly higher levels after transfection, consistent with impaired effectiveness of endogenous miRNA repression. This effect exhibited concentration and temporal dependence. Notably, the profile of endogenous miRNAs can be largely inferred by correlating miRNA sites with gene expression changes after transfections. The competition and saturation effects have practical implications for miRNA target prediction, the design of siRNA and short hairpin RNA (shRNA) genomic screens and siRNA therapeutics.

  16. Metabolomic signature of brain cancer.

    PubMed

    Pandey, Renu; Caflisch, Laura; Lodi, Alessia; Brenner, Andrew J; Tiziani, Stefano

    2017-11-01

    Despite advances in surgery and adjuvant therapy, brain tumors represent one of the leading causes of cancer-related mortality and morbidity in both adults and children. Gliomas constitute about 60% of all cerebral tumors, showing varying degrees of malignancy. They are difficult to treat due to dismal prognosis and limited therapeutics. Metabolomics is the untargeted and targeted analyses of endogenous and exogenous small molecules, which charact erizes the phenotype of an individual. This emerging "omics" science provides functional readouts of cellular activity that contribute greatly to the understanding of cancer biology including brain tumor biology. Metabolites are highly informative as a direct signature of biochemical activity; therefore, metabolite profiling has become a promising approach for clinical diagnostics and prognostics. The metabolic alterations are well-recognized as one of the key hallmarks in monitoring disease progression, therapy, and revealing new molecular targets for effective therapeutic intervention. Taking advantage of the latest high-throughput analytical technologies, that is, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), metabolomics is now a promising field for precision medicine and drug discovery. In the present report, we review the application of metabolomics and in vivo metabolic profiling in the context of adult gliomas and paediatric brain tumors. Analytical platforms such as high-resolution (HR) NMR, in vivo magnetic resonance spectroscopic imaging and high- and low-resolution MS are discussed. Moreover, the relevance of metabolic studies in the development of new therapeutic strategies for treatment of gliomas are reviewed. © 2017 Wiley Periodicals, Inc.

  17. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    USGS Publications Warehouse

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  18. 77 FR 21067 - Notice of Meeting of the National Organic Standards Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Service [Document Number AMS-NOP-12-0017; NOP-12-06] Notice of Meeting of the National Organic Standards... forthcoming meeting of the National Organic Standards Board (NOSB). Written public comments are invited in... materials, write to Ms. Michelle Arsenault, Special Assistant, National Organic Standards Board, USDA-AMS...

  19. 77 FR 16802 - National Organic Program Notice of Request for New Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service [Document Number AMS-NOP-12-0011; NOP-12... Marketing Service, USDA. ACTION: Notice and request for comments. SUMMARY: In accordance with the Paperwork Reduction Act of 1995 (44 U.S.C. chapter 35), this notice announces the Agricultural Marketing Service's...

  20. Source-based neurofeedback methods using EEG recordings: training altered brain activity in a functional brain source derived from blind source separation

    PubMed Central

    White, David J.; Congedo, Marco; Ciorciari, Joseph

    2014-01-01

    A developing literature explores the use of neurofeedback in the treatment of a range of clinical conditions, particularly ADHD and epilepsy, whilst neurofeedback also provides an experimental tool for studying the functional significance of endogenous brain activity. A critical component of any neurofeedback method is the underlying physiological signal which forms the basis for the feedback. While the past decade has seen the emergence of fMRI-based protocols training spatially confined BOLD activity, traditional neurofeedback has utilized a small number of electrode sites on the scalp. As scalp EEG at a given electrode site reflects a linear mixture of activity from multiple brain sources and artifacts, efforts to successfully acquire some level of control over the signal may be confounded by these extraneous sources. Further, in the event of successful training, these traditional neurofeedback methods are likely influencing multiple brain regions and processes. The present work describes the use of source-based signal processing methods in EEG neurofeedback. The feasibility and potential utility of such methods were explored in an experiment training increased theta oscillatory activity in a source derived from Blind Source Separation (BSS) of EEG data obtained during completion of a complex cognitive task (spatial navigation). Learned increases in theta activity were observed in two of the four participants to complete 20 sessions of neurofeedback targeting this individually defined functional brain source. Source-based EEG neurofeedback methods using BSS may offer important advantages over traditional neurofeedback, by targeting the desired physiological signal in a more functionally and spatially specific manner. Having provided preliminary evidence of the feasibility of these methods, future work may study a range of clinically and experimentally relevant brain processes where individual brain sources may be targeted by source-based EEG neurofeedback. PMID