Pure uptake blockers of dopamine can reduce prolactin secretion: studies with diclofensine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Renzo, G.; Amoroso, S.; Taglialatela, M.
1988-01-01
The effects of diclofensine, a pure dopamine (DA) uptake inhibitor on 1) /sup 3/H-DA uptake in rat arcuate-periventricular nucleus-median eminence synaptosomes, 2) basal and K+-evoked endogenous DA release from tuberoinfundibular dopaminergic (TIDA) neurons and 3) in vivo prolactin (PRL) secretion were studied. Diclofensine, in concentrations of 0.01, 0.1 and 1 ..mu..M caused a marked decrease of /sup 3/H-DA uptake. In addition, it was unable to stimulate basal endogenous DA release which, on the contrary, was elicited by d-amphetamine in the same concentration. On the other hand, diclofensine caused a 3 fold enhancement on K+-evoked DA release. Finally, the compound, whenmore » administered in vivo to male rats, significantly reduced basal serum PRL levels. The results of the present study seem to indicate that the pharmacological blockade of DA uptake in TIDA neurons is a condition sufficient to cause a reduction of PRL release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, N.Y.; Hower, J.A.; Borchardt, R.T.
1985-09-01
Inhibitors of phenylethanolamine N-methyltransferase (PNMT) and amphetamine were evaluated for their effects on the uptake of (TH)-norepinephrine (TH-NE) and the release of endogenous NE and dopamine (DA) from chopped rat brain tissues. Unlike amphetamine, all of PNMT inhibitors tested produced only slight inhibition of (TH)-NE uptake into chopped cerebral cortex. 2,3-Dichloro-alpha-methylbenzylamine (DCMB) and 7,8-dichloro-1,2,3,4-tetrahydroisoquinoline (SKF64139), but not 2-cyclooctyl-2-hydroxyethylamine (CONH) and 1-aminomethylcycloundecanol (CUNH) produced slight release of endogenous NE and DA from chopped hypothalami, but their effects were less pronounced than those produced by amphetamine.
Analysis of the mechanisms by which amphetamine releases dopamine from striatal dopaminergic neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.M.
1987-01-01
The goals of the studies were (1) to determine the intraneuronal transmitter pools that contribute to the efflux of dopamine (DA) elicited by amphetamine (AMPH) and (2) to determine the biochemical mechanism by which AMPH increases DA efflux from dopaminergic neurons. AMPH increased the efflux of endogenous DA and decreased the electrically-evoked overflow of (/sup 3/H) acetylcholine (ACh) from superfused rabbit striatal slices. These effects were most pronounced when both vesicular DA stores and DA synthesis were intact. Therefore, extravesicular, newly synthesized DA and vesicular stores of DA contribute to AMPH-induced DA efflux. Simultaneous inhibition of monoamine oxidase (MAO) andmore » neuronal DA uptake did not increase the efflux of endogenous DA or inhibit the electrically-evoked overflow of (/sup 3/H)ACh to the same extent as AMPH. Hence, inhibition of MAO and neuronal DA uptake are probably not the major mechanisms by which AMPH increases DA efflux. The AMPH-induced efflux of endogenous or (/sup 3/H)DA was blocked by inhibitors of neuronal DA uptake.« less
ENDOGENOUS PYROGEN RELEASE FROM RABBIT BLOOD CELLS INCUBATED IN VITRO WITH PARAINFLUENZA VIRUS.
ATKINS, E; CRONIN, M; ISACSON, P
1964-12-11
Rabbit blood cells incubated in vitro with purified parainfluenza-5 virus (DA strain) released a rapidly acting pyrogen. Spleen and lymph node cells were inactive. The pyrogen resembled in behavior a pyrogen extracted from granulocytic exudates. Similar cells in the blood are believed to be activated by virus in vivo to produce the circulating endogenous pyrogen that mediates virus-induced fever.
Kim, Sang Eun; Han, Seung-Moo
2009-07-01
The effect of substances which alter extracellular dopamine (DA) concentration has been studied by measuring changes in the binding of radiolabelled raclopride, a DA D2 receptor ligand that is sensitive to endogenous DA. To better characterize the relationship between extracellular DA concentration and DA D2 receptor binding of raclopride, we compared the changes of extracellular DA concentration (measured using in-vivo microdialysis) and in-vivo [3H]raclopride binding induced by different doses of methamphetamine (Meth) and nicotine, drugs that enhance DA release with and without blocking DA transporters (DATs), respectively, in rat striatum. Nicotine elicited a modest increase of striatal extrasynaptic extracellular DA, while Meth produced a marked increase of striatal extrasynaptic DA in a dose-dependent manner. There was a close correlation between the decrease in [3H]raclopride in-vivo binding and the increase in extrasynaptic DA concentration induced by both nicotine (r2=0.95, p<0.001) and Meth (r2=0.98, p=0.001), supporting the usefulness of the radiolabelled raclopride-binding measurement for the non-invasive assessment of DA release following interventions in the living brain. However, the linear regression analysis revealed that the ratio of percent DA increase to percent [3H]raclopride binding reduction was 25-fold higher for Meth (34.8:1) than for nicotine (1.4:1). The apparent discrepancy in the extrasynaptic DA-[3H]raclopride binding relationship between the DA-enhancing drugs with and without DAT-blocking property indicates that the competition between endogenous DA and radiolabelled raclopride takes place at the intrasynaptic rather than extrasynaptic DA D2 receptors and reflects synaptic concentration of DA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, E.; Cubeddu, L.
1986-03-05
A is thought to exert its stimulant effects by releasing DA from a newly synthesized transmitter pool. This hypothesis was evaluated directly by measuring the basal efflux and electrically-evoked release of endogenous DA and dihydroxyphenylacetic acid (DOPAC). In striatal slices from reserpine-treated rabbits A increased DA efflux, reduced DOPAC efflux, and inhibited electrically-evoked /sup 3/H-ACh release in a concentration-dependent manner. These effects could not be mimicked by inhibition of neuronal uptake or MAO, but were blocked by inhibition of DA synthesis or neuronal uptake, and were potentiated by inhibition of MAO. In slices with intact vesicular transmitter stores A inducedmore » DA efflux was 2-fold greater than that seen in slices having no vesicular stores. Inhibition of DA synthesis reduced A-induced DA efflux by 60%, but had little effect on the ability of A to inhibit /sup 3/H-ACh release. A also increased the electrical stimulation-evoked overflow of DA (an effect which was attenuated slightly by synthesis inhibition), and potently inhibited DOPAC overflow. These results suggest that: 1) A facilitates efflux of axoplasmic DA by an accelerated exchange diffusion mechanism. The releasable axoplasmic pool is derived from newly synthesized and vesicular transmitter pools; 2) postsynaptic indices of transmitter release may be misleading; and 3) A increases electrically-evoked DA release possibly by inhibiting neuronal uptake.« less
Robinson, John D; Howard, Christopher D; Pastuzyn, Elissa D; Byers, Diane L; Keefe, Kristen A; Garris, Paul A
2014-08-01
Phasic dopamine (DA) signaling, during which burst firing by DA neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here, we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by means of autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity.
Cui, Xiaoying; Lefevre, Emilia; Turner, Karly M; Coelho, Carlos M; Alexander, Suzy; Burne, Thomas H J; Eyles, Darryl W
2015-02-01
Repeated exposure to psychostimulants that either increase dopamine (DA) release or target N-methyl-D-aspartate (NMDA) receptors can induce behavioural sensitisation, a phenomenon that may be important for the processes of addiction and even psychosis. A critical component of behavioural sensitisation is an increase in DA release within mesocorticolimbic circuits. In particular, sensitisation to amphetamine leads to increased DA release within well-known sub-cortical brain regions and also regulatory regions such as prefrontal cortex (PFC). However, it is unknown how DA release within the PFC of animals is altered by sensitisation to NMDA receptor antagonists. The aims of the present study were twofold, firstly to examine whether a single dose of dizocilpine maleate (MK-801) could induce long-term behavioural sensitisation and secondly to examine DA release in the PFC of sensitised rats. Behavioural sensitisation was assessed by measuring locomotion after drug exposure. DA release in the PFC was measured using freely moving microdialysis. We show that a single dose of MK-801 can induce sensitisation to subsequent MK-801 exposure in a high percentage of rats (66 %). Furthermore, rats sensitised to MK-801 have altered DA release and turnover in the PFC compared with non-sensitised rats. Schizophrenia patients have been postulated to have 'endogenous sensitisation' to psychostimulants. MK-801-induced sensitised rats, in particular when compared with non-sensitised rats, provide a useful model for studying PFC dysfunction in schizophrenia.
Robinson, John D.; Howard, Christopher D.; Pastuzyn, Elissa D.; Byers, Diane L.; Keefe, Kristen A.; Garris, Paul A.
2014-01-01
Phasic dopamine (DA) signaling, during which burst firing by dopamine neurons generates short-lived elevations in extracellular DA in terminal fields called DA transients, is implicated in reinforcement learning. Disrupted phasic DA signaling is proposed to link DA depletions and cognitive-behavioral impairment in methamphetamine (METH)-induced neurotoxicity. Here we further investigated this disruption by assessing effects of METH pretreatment on DA transients elicited by a drug cocktail of raclopride, a D2 DA receptor antagonist, and nomifensine, an inhibitor of the dopamine transporter (DAT). One advantage of this approach is that pharmacological activation provides a large, high-quality data set of transients elicited by endogenous burst firing of DA neurons for analysis of regional differences and neurotoxicity. These pharmacologically evoked DA transients were measured in the dorsomedial (DM) and dorsolateral (DL) striatum of urethane-anesthetized rats by fast-scan cyclic voltammetry. Electrically evoked DA levels were also recorded to quantify DA release and uptake, and DAT binding was determined by autoradiography to index DA denervation. Pharmacologically evoked DA transients in intact animals exhibited a greater amplitude and frequency and shorter duration in the DM compared to the DL striatum, despite similar pre- and post-drug assessments of DA release and uptake in both sub-regions as determined from the electrically evoked DA signals. METH pretreatment reduced transient activity. The most prominent effect of METH pretreatment on transients across striatal sub-region was decreased amplitude, which mirrored decreased DAT binding and was accompanied by decreased DA release. Overall, these results identify marked intrastriatal differences in the activity of DA transients that appear independent of presynaptic mechanisms for DA release and uptake and further support disrupted phasic DA signaling mediated by decreased DA release in rats with METH-induced neurotoxicity. PMID:24562969
Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A
2017-11-15
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking. Copyright © 2017 the authors 0270-6474/17/3711166-15$15.00/0.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T
2013-02-13
Evidence for coexpression of two or more classic neurotransmitters in neurons has increased, but less is known about cotransmission. Ventral tegmental area (VTA) neurons corelease dopamine (DA), the excitatory transmitter glutamate, and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and coexpress markers for DA and GABA. Using an optogenetic approach, we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABA(A) receptor-mediated monosynaptic inhibitory response, followed by DA-D(1)-like receptor-mediated excitatory response in ETCs. The GABA(A) receptor-mediated hyperpolarization activates I(h) current in ETCs; synaptically released DA increases I(h), which enhances postinhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by I(h) to generate an inhibition-to-excitation "switch" in ETCs. Consistent with the established role of I(h) in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA cotransmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array.
Liu, Shaolin; Plachez, Celine; Shao, Zuoyi; Puche, Adam; Shipley, Michael T.
2013-01-01
Evidence for co-expression of two or more classic neurotransmitters in neurons has increased but less is known about co-transmission. Ventral tegmental area (VTA) neurons, co-release dopamine (DA), the excitatory transmitter glutamate and the inhibitory transmitter GABA onto target cells in the striatum. Olfactory bulb (OB) short axon cells (SACs) form interglomerular connections and co-express markers for dopamine (DA) and GABA. Using an optogenetic approach we provide evidence that mouse OB SACs release both GABA and DA onto external tufted cells (ETCs) in other glomeruli. Optical activation of channelrhodopsin specifically expressed in DAergic SACs produced a GABAA receptor-mediated monosynaptic inhibitory response followed by DA-D1-like receptor-mediated excitatory response in ETCs. The GABAA receptor-mediated hyperpolarization activates Ih current in ETCs; synaptically released DA increases Ih, which enhances post-inhibitory rebound spiking. Thus, the opposing actions of synaptically released GABA and DA are functionally integrated by Ih to generate an inhibition-to-excitation “switch” in ETCs. Consistent with the established role of Ih in ETC burst firing, we show that endogenous DA release increases ETC spontaneous bursting frequency. ETCs transmit sensory signals to mitral/tufted output neurons and drive intraglomerular inhibition to shape glomerulus output to downstream olfactory networks. GABA and DA co-transmission from SACs to ETCs may play a key role in regulating output coding across the glomerular array. PMID:23407950
Cocaine-Induced Endocannabinoid Mobilization in the Ventral Tegmental Area.
Wang, Huikun; Treadway, Tyler; Covey, Daniel P; Cheer, Joseph F; Lupica, Carl R
2015-09-29
Cocaine is a highly addictive drug that acts upon the brain's reward circuitry via the inhibition of monoamine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine's effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arachidonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Endogenous dopamine (DA) modulates (3H)spiperone binding in vivo in rat brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bischoff, S.; Krauss, J.; Grunenwald, C.
1991-01-01
(3H)spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable, but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5-HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid greater than nomifensine greater than D-amphetamine greater than or equalmore » to methylphenidate greater than amineptine greater than bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA.« less
Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses.
Scott, David J; Stohler, Christian S; Egnatuk, Christine M; Wang, Heng; Koeppe, Robert A; Zubieta, Jon-Kar
2008-02-01
Placebo and nocebo effects, the therapeutic and adverse effects, respectively, of inert substances or sham procedures, represent serious confounds in the evaluation of therapeutic interventions. They are also an example of cognitive processes, particularly expectations, capable of influencing physiology. To examine the contribution of 2 different neurotransmitters, the endogenous opioid and the dopaminergic (DA) systems, to the development of placebo and nocebo effects. Using a within-subject design, subjects twice underwent a 20-minute standardized pain challenge, in the absence and presence of a placebo with expected analgesic properties. Studies were conducted in a university hospital setting. Twenty healthy men and women aged 20 to 30 years recruited by advertisement. Activation of DA and opioid neurotransmission by a pain stressor with and without placebo (changes in the binding potential of carbon 11 [11C]-labeled raclopride and [11C] carfentanil with positron emission tomography) and ratings of pain, affective state, and anticipation and perception of analgesia. Placebo-induced activation of opioid neurotransmission was detected in the anterior cingulate, orbitofrontal and insular cortices, nucleus accumbens, amygdala, and periaqueductal gray matter. Dopaminergic activation was observed in the ventral basal ganglia, including the nucleus accumbens. Regional DA and opioid activity were associated with the anticipated and subjectively perceived effectiveness of the placebo and reductions in continuous pain ratings. High placebo responses were associated with greater DA and opioid activity in the nucleus accumbens. Nocebo responses were associated with a deactivation of DA and opioid release. Nucleus accumbens DA release accounted for 25% of the variance in placebo analgesic effects. Placebo and nocebo effects are associated with opposite responses of DA and endogenous opioid neurotransmission in a distributed network of regions. The brain areas involved in these phenomena form part of the circuit typically implicated in reward responses and motivated behavior.
2017-01-01
Fast-scan cyclic voltammetry (FCV) is an established method to monitor increases in extracellular dopamine (DA) concentration ([DA]o) in the striatum, which is densely innervated by DA axons. Ex vivo brain slice preparations provide an opportunity to identify endogenous modulators of DA release. For these experiments, local electrical stimulation is often used to elicit release of DA, as well as other transmitters, in the striatal microcircuitry; changes in evoked increases in [DA]o after application of a pharmacological agent (e.g., a receptor antagonist) indicate a regulatory role for the transmitter system interrogated. Optogenetic methods that allow specific stimulation of DA axons provide a complementary, bottom-up approach for elucidating factors that regulate DA release. To this end, we have characterized DA release evoked by local electrical and optical stimulation in striatal slices from mice that genetically express a variant of channelrhodopsin-2 (ChR2). Evoked increases in [DA]o in the dorsal and ventral striatum (dStr and vStr) were examined in a cross of a Cre-dependent ChR2 line (“Ai32” mice) with a DAT::Cre mouse line. In dStr, repeated optical pulse-train stimulation at the same recording site resulted in rundown of evoked [DA]o using heterozygous mice, which contrasted with the stability seen with electrical stimulation. Similar rundown was seen in the presence of a nicotinic acetylcholine receptor (nAChR) antagonist, implicating the absence of concurrent nAChR activation in DA release instability in slices. Rundown with optical stimulation in dStr could be circumvented by recording from a population of sites, each stimulated only once. Same-site rundown was less pronounced with single-pulse stimulation, and a stable baseline could be attained. In vStr, stable optically evoked increases in [DA]o at single sites could be achieved using heterozygous mice, although with relatively low peak [DA]o. Low release could be overcome by using mice with a second copy of the Ai32 allele, which doubled ChR2 expression. The characteristics reported here should help future practitioners decide which Ai32;DAT::Cre genotype and recording protocol is optimal for the striatal subregion to be examined. PMID:28177213
Thomas, David M.; Angoa-Pérez, Mariana; Francescutti-Verbeem, Dina M.; Shah, Mrudang M.; Kuhn, Donald M.
2010-01-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species (ROS). The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by ROS to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5HTP do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine (PCPA) are without effect on METH toxicity, despite the fact that PCPA largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. PMID:20722968
Thomas, David M; Angoa Pérez, Mariana; Francescutti-Verbeem, Dina M; Shah, Mrudang M; Kuhn, Donald M
2010-11-01
Methamphetamine (METH) is a neurotoxic drug of abuse that damages the dopamine (DA) neuronal system in a highly delimited manner. The brain structure most affected by METH is the striatum where long-term DA depletion and microglial activation are maximal. Endogenous DA has been implicated as a critical participant in METH-induced neurotoxicity, most likely as a substrate for non-enzymatic oxidation by METH-generated reactive oxygen species. The striatum is also extensively innervated by serotonin (5HT) nerve endings and this neurochemical system is modified by METH in much the same manner as seen in DA nerve endings (i.e., increased release of 5HT, loss of function in tryptophan hydroxylase and the serotonin transporter, long-term depletion of 5HT stores). 5HT can also be modified by reactive oxygen species to form highly reactive species that damage neurons but its role in METH neurotoxicity has not been assessed. Increases in 5HT levels with 5-hydroxytryptophan do not change METH-induced neurotoxicity to the DA nerve endings as revealed by reductions in DA, tyrosine hydroxylase and dopamine transporter levels. Partial reductions in 5HT with p-chlorophenylalanine are without effect on METH toxicity, despite the fact that p-chlorophenylalanine largely prevents METH-induced hyperthermia. Mice lacking the gene for brain tryptophan hydroxylase 2 are devoid of brain 5HT and respond to METH in the same manner as wild-type controls, despite showing enhanced drug-induced hyperthermia. Taken together, the present results indicate that endogenous 5HT does not appear to play a role in METH-induced damage to DA nerve endings of the striatum. © 2010 The Authors. Journal Compilation © 2010 International Society for Neurochemistry.
Kosonsiriluk, Sunantha; Mauro, Laura J; Chaiworakul, Voravasa; Chaiseha, Yupaporn; El Halawani, Mohamed E
2013-09-01
The pathway for light transmission regulating the reproductive neuroendocrine system in temperate zone birds remains elusive. Based on the evidence provided from our studies with female turkeys, it is suggested that the circadian clock regulating reproductive seasonality is located in putatively photosensitive dopamine-melatonin (DA-MEL) neurons residing in the premammillary nucleus (PMM) of the caudal hypothalamus. Melanopsin is expressed by these neurons; a known photopigment which mediates light information pertaining to the entrainment of the clock. Exposure to a gonad stimulatory photoperiod enhances the activity of the DAergic system within DA-MEL neurons. DAergic activity encoding the light information is transmitted to the pars tuberalis, where thyroid-stimulating hormone, beta (TSHβ) cells reside, and induces the release of TSH. TSH stimulates tanycytes lining the base of the third ventricle and activates type 2 deiodinase in the ependymal which enhances triiodothyronine (T3) synthesis. T3 facilitates the release of gonadotropin-releasing hormone-I which stimulates luteinizing hormone/follicle stimulating hormone release and gonad recrudescence. These data taken together with the findings that clock genes are rhythmically expressed in the PMM where DA-MEL neurons are localized imply that endogenous oscillators containing photoreceptors within DA-MEL neurons are important in regulating the DA and MEL rhythms that drive the circadian cycle controlling seasonal reproduction. Published by Elsevier Inc.
Multiple sites and actions of gabapentin-induced relief of ongoing experimental neuropathic pain.
Bannister, Kirsty; Qu, Chaoling; Navratilova, Edita; Oyarzo, Janice; Xie, Jennifer Yanhua; King, Tamara; Dickenson, Anthony H; Porreca, Frank
2017-12-01
Gabapentin (GBP) is a first-line therapy for neuropathic pain, but its mechanisms and sites of action remain uncertain. We investigated GBP-induced modulation of neuropathic pain following spinal nerve ligation (SNL) in rats. Intravenous or intrathecal GBP reversed evoked mechanical hypersensitivity and produced conditioned place preference (CPP) and dopamine (DA) release in the nucleus accumbens (NAc) selectively in SNL rats. Spinal GBP also significantly inhibited dorsal horn wide-dynamic-range neuronal responses to a range of evoked stimuli in SNL rats. By contrast, GBP microinjected bilaterally into the rostral anterior cingulate cortex (rACC), produced CPP, and elicited NAc DA release selectively in SNL rats but did not reverse tactile allodynia and had marginal effects on wide-dynamic-range neuronal activity. Moreover, blockade of endogenous opioid signaling in the rACC prevented intravenous GBP-induced CPP and NAc DA release but failed to block its inhibition of tactile allodynia. Gabapentin, therefore, can potentially act to produce its pain relieving effects by (a) inhibition of injury-induced spinal neuronal excitability, evoked hypersensitivity, and ongoing pain and (b) selective supraspinal modulation of affective qualities of pain, without alteration of reflexive behaviors. Consistent with previous findings of pain relief from nonopioid analgesics, GBP requires engagement of rACC endogenous opioid circuits and downstream activation of mesolimbic reward circuits reflected in learned pain-motivated behaviors. These findings support the partial separation of sensory and affective dimensions of pain in this experimental model and suggest that modulation of affective-motivational qualities of pain may be the preferential mechanism of GBP's analgesic effects in patients.
Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs.
Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R; McIntosh, J Michael; Brunzell, Darlene H; Cannon, Jason R; Drenan, Ryan M
2014-04-01
α6β2* nicotinic acetylcholine receptors (nAChRs)s in the ventral tegmental area to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9'S mice) that are hypersensitive to nicotine and endogenous acetylcholine. Evoked extracellular dopamine (DA) levels were enhanced in α6L9'S NAc slices compared to control, non-transgenic (non-Tg) slices. Extracellular DA levels in both non-Tg and α6L9'S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by acetylcholine plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9'S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9'S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid, and homovanillic acid compared to non-Tg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid, and norepinephrine (NE) were unchanged in α6L9'S compared to non-Tg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9'S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. © 2013 International Society for Neurochemistry.
Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William
2015-11-01
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.
2013-01-01
The dopaminergic neurons of the nigrostriatal dopamine (DA) projection from the substantia nigra to the dorsal striatum become dysfunctional and slowly degenerate in Parkinson’s disease, a neurodegenerative disorder that afflicts more than one million Americans. There is no specific known cause for idiopathic Parkinson’s disease; however, multiple lines of evidence implicate oxidative stress as an underlying factor in both the initiation and progression of the disease. This involves the enhanced generation of reactive oxygen species, including hydrogen peroxide (H2O2), whose role in complex biological processes is not well understood. Using fast-scan cyclic voltammetry at bare carbon-fiber microelectrodes, we have simultaneously monitored and quantified H2O2 and DA fluctuations in intact striatal tissue under basal conditions and in response to the initiation of oxidative stress. Furthermore, we have assessed the effect of acute increases in local H2O2 concentration on both electrically evoked DA release and basal DA levels. Increases in endogenous H2O2 in the dorsal striatum attenuated electrically evoked DA release, and also decreased basal DA levels in this brain region. These novel results will help to disambiguate the chemical mechanisms underlying the progression of neurodegenerative disease states, such as Parkinson’s disease, that involve oxidative stress. PMID:23556461
Chen, S; Blanck, G; Pollack, R E
1983-09-01
We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.
Chen, S; Blanck, G; Pollack, R E
1983-01-01
We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation. Images PMID:6310588
Analysis of new growth promoting black market products.
Krug, Oliver; Thomas, Andreas; Malerød-Fjeld, Helle; Dehnes, Yvette; Laussmann, Tim; Feldmann, Ingo; Sickmann, Albert; Thevis, Mario
2018-05-19
Detecting agents allegedly or evidently promoting growth such as human growth hormone (GH) or growth hormone releasing peptides (GHRP) in doping controls has represented a pressing issue for sports drug testing laboratories. While GH is a recombinant protein with a molecular weight of 22 kDa, the GHRPs are short (3-6 amino acids long) peptides with GH releasing properties. The endogenously produced GH (22 kDa isoform) consists of 191 amino acids and has a monoisotopic molecular mass of 22,124 Da. Within this study, a slightly modified form of GH was discovered consisting of 192 amino acids carrying an additional alanine at the N-terminus, leading to a monoisotopic mass of 22,195 Da. This was confirmed by top-down and bottom-up experiments using liquid chromatography coupled to high resolution/high accuracy mass spectrometry. Additionally, three analogues of GHRPs were identified as Gly-GHRP-6, Gly-GHRP-2 and Gly-Ipamorelin, representing the corresponding GHRP extended by a N-terminal glycine residue. The structure of these peptides was characterised by means of high resolution (tandem) mass spectrometry, and for Gly-Ipamorelin and Gly-GHRP-2 their identity was additionally confirmed by custom synthesis. Further, established in-vitro experiments provided preliminary information considering the potential metabolism after administration. Copyright © 2018. Published by Elsevier Ltd.
In vivo evaluation of thiolated chitosan tablets for oral insulin delivery.
Millotti, Gioconda; Laffleur, Flavia; Perera, Glen; Vigl, Claudia; Pickl, Karin; Sinner, Frank; Bernkop-Schnürch, Andreas
2014-10-01
Chitosan-6-mercaptonicotinic acid (chitosan-6-MNA) is a thiolated chitosan with strong mucoadhesive properties and a pH-independent reactivity. This study aimed to evaluate the in vivo potential for the oral delivery of insulin. The comparison of the nonconjugated chitosan and chitosan-6-MNA was performed on several studies such as mucoadhesion, release, and in vivo studies. Thiolated chitosan formulations were both about 80-fold more mucoadhesive compared with unmodified ones. The thiolated chitosan tablets showed a sustained release for 5 h for the polymer of 20 kDa and 8 h for the polymer of 400 kDa. Human insulin was quantified in rats' plasma by means of ELISA specific for human insulin with no cross-reactivity with the endogenous insulin. In vivo results showed thiolation having a tremendous impact on the absorption of insulin. The absolute bioavailabilities were 0.73% for chitosan-6-MNA of 20 kDa and 0.62% for chitosan-6-MNA 400 kDa. The areas under the concentration-time curves (AUC) of chitosan-6-MNA formulations compared with unmodified chitosan were 4.8-fold improved for the polymer of 20 kDa and 21.02-fold improved for the polymer of 400 kDa. The improvement in the AUC with regard to the most promising aliphatic thiomer was up to 6.8-fold. Therefore, chitosan-6-MNA represents a promising excipient for the oral delivery of insulin. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Bagosi, Zsolt; Jászberényi, Miklós; Bujdosó, Erika; Szabó, Gyula; Telegdy, Gyula
2006-12-01
The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.
1988-01-01
oxotremorine , pilocarpine, carbachol or bethanecol) or nicotinic (nicotine) agonistt In some experiments DA autoreceptor function was assessed...muscarinic (e.g. oxotremorine , carbachol, be- studies using the ligand, [3H](-)-quinuclidinyl benzi- thanecol) or nicotinic (e.g. nicotine) agonists can... oxotremorine MATERIALS AND METHODS r or carbachol in striatal broken cell preparations pre- pared from young rats (6 months), these agents were Procedure
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-01-01
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
Volkow, N. D.; Wang, G. -J.; Logan, J.; ...
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N. D.; Wang, G. -J.; Logan, J.
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Endogenous opioids regulate moment-to-moment neuronal communication and excitability.
Winters, Bryony L; Gregoriou, Gabrielle C; Kissiwaa, Sarah A; Wells, Oliver A; Medagoda, Danashi I; Hermes, Sam M; Burford, Neil T; Alt, Andrew; Aicher, Sue A; Bagley, Elena E
2017-03-22
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear.
Gutierrez-Franco, Jorge; Hernandez-Gutierrez, Rodolfo; Bueno-Topete, Miriam Ruth; Haramati, Jesse; Navarro-Hernandez, Rosa Elena; Escarra-Senmarti, Marta; Vega-Magaña, Natali; Del Toro-Arreola, Alicia; Pereira-Suarez, Ana Laura; Del Toro-Arreola, Susana
2018-01-01
B7H6, an endogenous ligand expressed on tumor cell surfaces, triggers NKp30-mediated activation of human NK cells. In contrast, the release of soluble B7H6 has been proposed as a novel mechanism by which tumors might evade NK cell-mediated recognition. Since NK cells are critical for the maintenance of early pregnancy, it is not illogical that soluble B7H6 might also be an important factor in directing NK cell activity during normal pregnancy. Thus, this study was focused on the characterization of soluble B7H6 during the development of normal pregnancy. Serum samples were obtained from healthy pregnant women who were experiencing their second pregnancies (n=36). Additionally, 17 of these pregnant participants were longitudinally studied for the presence of B7H6 during their second and third trimesters. Age-matched healthy non-pregnant women served as controls (n=30). The presence of soluble B7H6 was revealed by Western blotting. A further characterization was performed using an immunoproteomic approach based on 2DE-Western blotting combined with MALDI-MS. The results show that sera from all pregnant women were characterized by the presence of two novel isoforms of B7H6, both with lower MW than the reported of 51kDa. These isoforms were either a heavy (∼37kDa) or a light isoform (∼30kDa) and were mutually exclusive. N-glycosylation did not completely explain the different molecular weights exhibited by the two isoforms, as was demonstrated by enzymatic deglycosylation with PNGase F. The confirmation of the identity and molecular mass of each isoform indicates that B7H6, while maintaining the C- and N-termini, is most likely released during pregnancy by a mechanism distinct from proteolytic cleavage. We found that both isoforms, but mainly the heavier B7H6, were released via exosomes; and that the lighter isoform was also released in an exosome-free manner that was not observed in the heavy isoform samples. In conclusion, we find that soluble B7H6 is constitutively expressed during pregnancy and that, moreover, the soluble B7H6 is present in two new isoforms, which are released by exosomal and exosome-free mechanisms. Copyright © 2017 Elsevier GmbH. All rights reserved.
Hsieh, Wen-Ting; Chiang, Been-Huang
2014-07-09
Stimulation of endogenous neurogenesis is a potential approach to compensate for loss of dopaminergic neurons of substantia nigra compacta nigra (SNpc) in patients with Parkinson's disease (PD). This objective was to establish an in vitro model by differentiating pluripotent human embryonic stem cells (hESCs) into midbrain dopaminergic (mDA) neurons for screening phytochemicals with mDA neurogenesis-boosting potentials. Consequently, a five-stage differentiation process was developed. The derived cells expressed many mDA markers including tyrosine hydroxylase (TH), β-III tubulin, and dopamine transporter (DAT). The voltage-gated ion channels and dopamine release were also examined for verifying neuron function, and the dopamine receptor agonists bromocriptine and 7-hydroxy-2-(dipropylamino)tetralin (7-OH-DPAT) were used to validate our model. Then, several potential phytochemicals including green tea catechins and ginsenosides were tested using the model. Finally, ginsenoside Rb1 was identified as the most potent phytochemical which is capable of upregulating neurotrophin expression and inducing mDA differentiation.
Llidó, Anna; Bartolomé, Iris; Darbra, Sònia; Pallarès, Marc
2016-08-01
Endogenous levels of the neurosteroid (NS) allopregnanolone (AlloP) during neonatal stages are crucial for the correct development of the central nervous system (CNS). In a recent work we reported that the neonatal administration of AlloP or finasteride (Finas), an inhibitor of the enzyme 5α-reductase needed for AlloP synthesis, altered the voluntary consumption of ethanol and the ventrostriatal dopamine (DA) levels in adulthood, suggesting that neonatal NS manipulations can increase alcohol abuse vulnerability in adulthood. Moreover, other authors have associated neonatal NS alterations with diverse dopaminergic (DAergic) alterations. Thus, the aim of the present work is to analyse if manipulations of neonatal AlloP alter the DAergic response in the nucleus accumbens (NAcc) during alcohol intake in rats. We administered AlloP or Finas from postnatal day (PND) 5 to PND9. At PND98, we measured alcohol consumption using a two-bottle free-choice model (ethanol 10% (v/v)+glucose 3% (w/v), and glucose 3% (w/v)) for 12 days. On the last day of consumption, we measured the DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in NAcc in response to ethanol intake. The samples were obtained by means of in vivo microdialysis in freely moving rats, and DA and DOPAC levels were determined by means of high-performance liquid chromatography analysis (HPLC). The results revealed that neonatal Finas increased ethanol consumption in some days of the consumption phase, and decreased the DA release in the NAcc in response to solutions (ethanol+glucose) and food presentation. Taken together, these results suggest that neonatal NS alterations can affect alcohol rewarding properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Regulation of serotonin release from enterochromaffin cells of rat cecum mucosa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, C.; Ternaux, J.P.
1990-05-01
The release of endogenous serotonin or previously taken up tritiated serotonin from isolated strips of rat cecum mucosa containing enterochromaffin cells was studied in vitro. Release of tritiated serotonin was increased by potassium depolarization and was decreased by tetrodotoxin, veratridine and the absence of calcium. Endogenous serotonin was released at a lower rate than tritiated serotonin; endogenous serotonin release was stimulated by potassium depolarization but was unaffected by tetrodotoxin, veratridine or the absence of calcium. Carbachol, norepinephrine, clonidine and isoproterenol decreased release of tritiated serotonin but had less or reverse effect on release of endogenous serotonin. The results suggest twomore » different serotoninergic pools within the enterochromaffin cell population.« less
Production of endogenous pyrogen.
Dinarello, C A
1979-01-01
The production and release of endogenous pyrogen by the host is the first step in the pathogenesis of fever. Endogenous pyrogen is a low-molecular-weight protein released from phagocytic leukocytes in response to several substances of diverse nature. Some of these agents stimulate production of endogenous pyrogen because they are toxic; others act as antigens and interact with either antibody or sensitized lymphocytes in order to induce its production. Some tumors of macrophage origin produce the molecule spontaneously. Whatever the mechanism involved, endogenous pyrogen is synthesized following transcription of new DNA and translation of mRNA into new protein. Once synthesis is completed, the molecule is released without significant intracellular storage. Recent evidence suggests that following release, molecular aggregates form which are biologically active. In its monomer form, endogenous pyrogen is a potent fever-producing substance and mediates fever by its action on the thermoregulatory center.
Dopamine transporter-dependent and -independent actions of trace amine beta-phenylethylamine.
Sotnikova, Tatyana D; Budygin, Evgeny A; Jones, Sara R; Dykstra, Linda A; Caron, Marc G; Gainetdinov, Raul R
2004-10-01
Beta-phenylethylamine (beta-PEA) is an endogenous amine that is found in trace amounts in the brain. It is believed that the locomotor-stimulating action of beta-PEA, much like amphetamine, depends on its ability to increase extracellular dopamine (DA) concentrations owing to reversal of the direction of dopamine transporter (DAT)-mediated DA transport. beta-PEA can also bind directly to the recently identified G protein-coupled receptors, but the physiological significance of this interaction is unclear. To assess the mechanism by which beta-PEA mediates its effects, we compared the neurochemical and behavioral effects of this amine in wild type (WT), heterozygous and 'null' DAT mutant mice. In microdialysis studies, beta-PEA, administered either systemically or locally via intrastriatal infusion, produced a pronounced outflow of striatal DA in WT mice whereas no increase was detected in mice lacking the DAT (DAT-KO mice). Similarly, in fast-scan voltammetry studies beta-PEA did not alter DA release and clearance rate in striatal slices from DAT-KO mice. In behavioral studies beta-PEA produced a robust but transient increase in locomotor activity in WT and heterozygous mice. In DAT-KO mice, whose locomotor activity and stereotypy are increased in a novel environment, beta-PEA (10-100 mg/kg) exerted a potent inhibitory action. At high doses, beta-PEA induced stereotypies in WT and heterozygous mice; some manifestations of stereotypy were also observed in the DAT-KO mice. These data demonstrate that the DAT is required for the striatal DA-releasing and hyperlocomotor actions of beta-PEA. The inhibitory action on hyperactivity and certain stereotypies induced by beta-PEA in DAT-KO mice indicate that targets other than the DAT are responsible for these effects.
Somatodendritic dopamine release: recent mechanistic insights
Rice, Margaret E.; Patel, Jyoti C.
2015-01-01
Dopamine (DA) is a key transmitter in motor, reward and cogitative pathways, with DA dysfunction implicated in disorders including Parkinson's disease and addiction. Located in midbrain, DA neurons of the substantia nigra pars compacta project via the medial forebrain bundle to the dorsal striatum (caudate putamen), and DA neurons in the adjacent ventral tegmental area project to the ventral striatum (nucleus accumbens) and prefrontal cortex. In addition to classical vesicular release from axons, midbrain DA neurons exhibit DA release from their cell bodies and dendrites. Somatodendritic DA release leads to activation of D2 DA autoreceptors on DA neurons that inhibit their firing via G-protein-coupled inwardly rectifying K+ channels. This helps determine patterns of DA signalling at distant axonal release sites. Somatodendritically released DA also acts via volume transmission to extrasynaptic receptors that modulate local transmitter release and neuronal activity in the midbrain. Thus, somatodendritic release is a pivotal intrinsic feature of DA neurons that must be well defined in order to fully understand the physiology and pathophysiology of DA pathways. Here, we review recent mechanistic aspects of somatodendritic DA release, with particular emphasis on the Ca2+ dependence of release and the potential role of exocytotic proteins. PMID:26009764
Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2006-11-30
The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
The role of N-methyl-D-aspartate receptors and nitric oxide in cochlear dopamine release.
Halmos, G; Horváth, T; Polony, G; Fekete, A; Kittel, A; Vizi, E S; van der Laan, B F A M; Zelles, T; Lendvai, B
2008-06-23
Dopamine (DA) released from lateral olivocochlear (LOC) terminals may have a neuroprotective effect in the cochlea. To explore the role of N-methyl-d-aspartate (NMDA) receptors and nitric oxide (NO) in the modulation of a cochlear DA release, we measured the release of [3H]DA from isolated mouse cochlea in response to the application of NMDA. NMDA at 100 muM significantly increased the electrical-field stimulation-evoked and resting release of DA from the cochlea. The NO donor sodium nitroprusside enhanced the basal outflow of DA but failed to influence the evoked release. The administration of the nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME) alone was ineffective, but it significantly inhibited the initial phase of the NMDA-induced elevation of DA outflow, which suggested the role of NO in the NMDA-induced DA release. The DA uptake inhibitor nomifensine increased the electrically evoked release of DA. Nomifensine failed to change the effect of NMDA on the resting or electrically-evoked DA release, which suggested that the uptake mechanism does not play a role in NMDA-evoked and NO-mediated DA release. In summary, we provide evidence that NO can modulate the release of DA from the cochlea following NMDA receptor activation, but does not affect the uptake of DA.
Volkow, N D; Wang, G; Fowler, J S; Logan, J; Gerasimov, M; Maynard, L; Ding, Y; Gatley, S J; Gifford, A; Franceschi, D
2001-01-15
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug in children for the treatment of attention deficit hyperactivity disorder (ADHD), yet the mechanisms responsible for its therapeutic effects are poorly understood. Whereas methylphenidate blocks the dopamine transporter (main mechanism for removal of extracellular dopamine), it is unclear whether at doses used therapeutically it significantly changes extracellular dopamine (DA) concentration. Here we used positron emission tomography and [(11)C]raclopride (D2 receptor radioligand that competes with endogenous DA for binding to the receptor) to evaluate whether oral methylphenidate changes extracellular DA in the human brain in 11 healthy controls. We showed that oral methylphenidate (average dose 0.8 +/- 0.11 mg/kg) significantly increased extracellular DA in brain, as evidenced by a significant reduction in B(max)/K(d) (measure of D2 receptor availability) in striatum (20 +/- 12%; p < 0.0005). These results provide direct evidence that oral methylphenidate at doses within the therapeutic range significantly increases extracellular DA in human brain. This result coupled with recent findings of increased dopamine transporters in ADHD patients (which is expected to result in reductions in extracellular DA) provides a mechanistic framework for the therapeutic efficacy of methylphenidate. The increase in DA caused by the blockade of dopamine transporters by methylphenidate predominantly reflects an amplification of spontaneously released DA, which in turn is responsive to environmental stimulation. Because DA decreases background firing rates and increases signal-to-noise in target neurons, we postulate that the amplification of weak DA signals in subjects with ADHD by methylphenidate would enhance task-specific signaling, improving attention and decreasing distractibility. Alternatively methylphenidate-induced increases in DA, a neurotransmitter involved with motivation and reward, could enhance the salience of the task facilitating the "interest that it elicits" and thus improving performance.
Bodel, P; Ralph, P; Wenc, K; Long, J C
1980-02-01
Fever not explained by infection may occur in patients with malignant lymphoma presumably caused by a release of endogenous pyrogen. Although pyrogen has been found in some tumors with a mixed cell population, production of endogenous pyrogen by the neoplastic cells has not been demonstrated. This report documents the apparently spontaneous synthesis and release of such pyrogen by two human tumor cell lines derived from patients with Hodgkin's disease and histiocytic lymphoma. The endogenous pyrogen from the two cell lines was similar and closely resembled that produced by normal human monocytes in antigenic properties as well as heat and pronase sensitivity. The Hodgkin's disease and histiocytic lymphoma cell lines do not require specific stimulation for the production of endogenous pyrogen suggesting that the mechanism of pyrogen release by neoplastic macrophage-related cells differs from that of normal phagocytic cells. The tumor-associated fever in some patients with malignant lymphoma may be caused by a release of endogenous pyrogen by proliferating neoplastic cells.
Bodel, P; Ralph, P; Wenc, K; Long, J C
1980-01-01
Fever not explained by infection may occur in patients with malignant lymphoma presumably caused by a release of endogenous pyrogen. Although pyrogen has been found in some tumors with a mixed cell population, production of endogenous pyrogen by the neoplastic cells has not been demonstrated. This report documents the apparently spontaneous synthesis and release of such pyrogen by two human tumor cell lines derived from patients with Hodgkin's disease and histiocytic lymphoma. The endogenous pyrogen from the two cell lines was similar and closely resembled that produced by normal human monocytes in antigenic properties as well as heat and pronase sensitivity. The Hodgkin's disease and histiocytic lymphoma cell lines do not require specific stimulation for the production of endogenous pyrogen suggesting that the mechanism of pyrogen release by neoplastic macrophage-related cells differs from that of normal phagocytic cells. The tumor-associated fever in some patients with malignant lymphoma may be caused by a release of endogenous pyrogen by proliferating neoplastic cells. PMID:6985918
Antibiotic-Enhanced Phagocytosis of ’Borrelia recurrentis’ by Blood Polymorphonuclear Leukocytes.
1979-11-30
hours after Butler 7 institution of antibiotic treatment. Polymorphonuclear leukocytes are known to release endogenous pyrogen after phagocytosis of...other bacteria (6), and endogenous pyrogen may be one of the mediators of the rigor and temperature rise in the Jarisch-Herxheimer reaction (2). Release...the pathogenesis of fever. XII. The effect of phagocytosis on the release of endogenous pyrogen by polymorphonuclear leukocytes. J. Exp. Med. 119:715
Albers, Shawn; Inthathirath, Fatima; Gill, Sandeep K; Winick-Ng, Warren; Jaworski, Ewa; Wong, Daisy Y L; Gros, Robert; Rylett, R Jane
2014-09-01
Alzheimer disease (AD) is associated with increased amyloidogenic processing of amyloid precursor protein (APP) to β-amyloid peptides (Aβ), cholinergic neuron loss with decreased choline acetyltransferase (ChAT) activity, and cognitive dysfunction. Both 69-kDa ChAT and 82-kDa ChAT are expressed in cholinergic neurons in human brain and spinal cord with 82-kDa ChAT localized predominantly to neuronal nuclei, suggesting potential alternative functional roles for the enzyme. By gene microarray analysis, we found that 82-kDa ChAT-expressing IMR32 neural cells have altered expression of genes involved in diverse cellular functions. Importantly, genes for several proteins that regulate APP processing along amyloidogenic and non-amyloidogenic pathways are differentially expressed in 82-kDa ChAT-containing cells. The predicted net effect based on observed changes in expression patterns of these genes would be decreased amyloidogenic APP processing with decreased Aβ production. This functional outcome was verified experimentally as a significant decrease in BACE1 protein levels and activity and a concomitant reduction in the release of endogenous Aβ1-42 from neurons cultured from brains of AD-model APP/PS1 transgenic mice. The expression of 82-kDa ChAT in neurons increased levels of GGA3, which is involved in trafficking BACE1 to lysosomes for degradation. shRNA-induced decreases in GGA3 protein levels attenuated the 82-kDa ChAT-mediated decreases in BACE1 protein and activity and Aβ1-42 release. Evidence that 82-kDa ChAT can enhance GGA3 gene expression is shown by enhanced GGA3 gene promoter activity in SN56 neural cells expressing this ChAT protein. These studies indicate a novel relationship between cholinergic neurons and APP processing, with 82-kDa ChAT acting as a negative regulator of Aβ production. This decreased formation of Aβ could result in protection for cholinergic neurons, as well as protection of other cells in the vicinity that are sensitive to increased levels of Aβ. Decreasing levels of 82-kDa ChAT due to increasing age or neurodegeneration could alter the balance towards increasing Aβ production, with this potentiating the decline in function of cholinergic neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Édes, István; Papp, Zoltán; Tóth, Attila
2014-01-01
Angiotensin-converting enzyme (ACE) inhibitors represent the fifth most often prescribed drugs. ACE inhibitors decrease 5-year mortality by approximately one-fifth in cardiovascular patients. Surprisingly, there are reports dating back to 1979 suggesting the existence of endogenous ACE inhibitors, which endogenous inhibitory effects are much less characterized than that for the clinically administered ACE inhibitors. Here we aimed to investigate this endogenous ACE inhibition in human sera. It was hypothesized that ACE activity is masked by an endogenous inhibitor, which dissociates from the ACE when its concentration decreases upon dilution. ACE activity was measured by FAPGG hydrolysis first. The specific (dilution corrected) enzyme activities significantly increased by dilution of human serum samples (23.2±0.7 U/L at 4-fold dilution, 51.4±0.3 U/L at 32-fold dilution, n = 3, p = 0.001), suggesting the presence of an endogenous inhibitor. In accordance, specific enzyme activities did not changed by dilution when purified renal ACE was used, where no endogenous inhibitor was present (655±145 U/L, 605±42 U/L, n = 3, p = 0.715, respectively). FAPGG conversion strongly correlated with angiotensin I conversion suggesting that this feature is not related to the artificial substrate. Serum samples were ultra-filtered to separate ACE (MW: 180 kDa) and the hypothesized inhibitor. Filtering through 50 kDa filters was without effect, while filtering through 100 kDa filters eliminated the inhibiting factor (ACE activity after <100 kDa filtering: 56.4±2.4 U/L, n = 4, control: 26.4±0.7 U/L, n = 4, p<0.001). Lineweaver-Burk plot indicated non-competitive inhibition of ACE by this endogenous factor. The endogenous inhibitor had higher potency on the C-terminal active site than N-terminal active site of ACE. Finally, this endogenous ACE inhibition was also present in mouse, donkey, goat, bovine sera besides men (increasing of specific ACE activity from 4-fold to 32-fold dilution: 2.8-fold, 1.7-fold, 1.5-fold, 1.8-fold, 2.6-fold, respectively). We report here the existence of an evolutionary conserved mechanism suppressing circulating ACE activity, in vivo, similarly to ACE inhibitory drugs. PMID:24691160
Hossain, Murad; Wickramasekara, Rochelle N; Carvelli, Lucia
2014-07-01
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hossain, Murad; Wickramasekara, Rochelle N.; Carvelli, Lucia
2013-01-01
β-phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA. PMID:24161617
Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release
Acevedo-Rodriguez, Alexandra; Zhang, Lifen; Zhou, Fuwen; Gong, Suzhen; Gu, Howard; De Biasi, Mariella; Zhou, Fu-Ming; Dani, John A.
2014-01-01
Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors. PMID:25237305
Levodopa-induced plasticity: a double-edged sword in Parkinson's disease?
Calabresi, Paolo; Ghiglieri, Veronica; Mazzocchetti, Petra; Corbelli, Ilenia; Picconi, Barbara
2015-01-01
The long-term replacement therapy with the dopamine (DA) precursor 3,4-dihydroxy-l-phenylalanine (L-DOPA) is a milestone in the treatment of Parkinson's disease (PD). Although this drug precursor can be metabolized into the active neurotransmitter DA throughout the brain, its therapeutic benefit is due to restoring extracellular DA levels within the dorsal striatum, which lacks endogenous DA as a consequence of the neurodegenerative process induced by the disease. In the early phases of PD, L-DOPA treatment is able to restore both long-term depression (LTD) and long-term potentiation (LTP), two major forms of corticostriatal synaptic plasticity that are altered by dopaminergic denervation. However, unlike physiological DA transmission, this therapeutic approach in the advanced phase of the disease leads to abnormal peaks of DA, non-synaptically released, which are supposed to trigger behavioural sensitization, namely L-DOPA-induced dyskinesia. This condition is characterized by a loss of synaptic depotentiation, an inability to reverse previously induced LTP. In the advanced stages of PD, L-DOPA can also induce non-motor fluctuations with cognitive dysfunction and neuropsychiatric symptoms such as compulsive behaviours and impulse control disorders. Although the mechanisms underlying the role of L-DOPA in both motor and behavioural symptoms are still incompletely understood, recent data from electrophysiological and imaging studies have increased our understanding of the function of the brain areas involved and of the mechanisms implicated in both therapeutic and adverse actions of L-DOPA in PD patients. PMID:26009763
Taurine elevates dopamine levels in the rat nucleus accumbens; antagonism by strychnine.
Ericson, Mia; Molander, Anna; Stomberg, Rosita; Söderpalm, Bo
2006-06-01
The mesolimbic dopamine (DA) system, projecting from the ventral tegmental area (VTA) to the nucleus accumbens (nAcc), is involved in reward-related behaviours and addictive processes, such as alcoholism and drug addiction. It was recently suggested that strychnine-sensitive glycine receptors (GlyR) in the nAcc regulate both basal and ethanol-induced mesolimbic DA activity via a neuronal loop involving endogenous activation of nicotinic acetylcholine receptors (nAChR) in the VTA. However, as the nAcc appears to contain few glycine-immunoreactive cell bodies or fibres, the question as to what may be the endogenous ligand for GlyRs in this brain region remains open. Here we have investigated whether the amino acid taurine could serve this purpose using in vivo microdialysis in awake, freely moving male Wistar rats. Local perfusion of taurine (1, 10 or 100 mm in the perfusate) increased DA levels in the nAcc. The taurine (10 mm)-induced DA increase was, similarly to that previously observed after ethanol, completely blocked by (i) perfusion of the competitive GlyR antagonist strychnine in the nAcc, (ii) perfusion of the nAChR antagonist mecamylamine (100 microm) in the VTA, and (iii) systemic administration of the acetylcholine-depleting drug vesamicol (0.4 mg/kg, i.p). The present results suggest that taurine may be an endogenous ligand for GlyRs in the nAcc and that the taurine-induced elevation of DA levels in this area, similarly to that observed after local ethanol, is mediated via a neuronal loop involving endogenous activation of nAChRs in the VTA.
Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M
2017-01-01
The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.
Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa
2015-01-01
The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155
Striatal dopamine neurotransmission: regulation of release and uptake
Sulzer, David; Cragg, Stephanie J.; Rice, Margaret E.
2016-01-01
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients. PMID:27141430
Li, Qin; Bartley, Aundrea F.
2017-01-01
Neuropeptide Y (NPY) has robust anxiolytic properties and is reduced in patients with anxiety disorders. However, the mechanisms by which NPY modulates circuit function to reduce anxiety behavior are not known. Anxiolytic effects of NPY are mediated in the CA1 region of hippocampus, and NPY injection into hippocampus alleviates anxiety symptoms in the predator scent stress model of stress-induced anxiety. The mechanisms that regulate NPY release, and its effects on CA1 synaptic function, are not fully understood. Here we show in acute hippocampal slices from mice that endogenous NPY, released in response to optogenetic stimulation or synaptically evoked spiking of NPY+ cells, suppresses both of the feedforward pathways to CA1. Stimulation of temporoammonic synapses with a physiologically derived spike train causes NPY release that reduces short-term facilitation, whereas the release of NPY that modulates Schaffer collateral synapses requires integration of both the Schaffer collateral and temporoammonic pathways. Pathway specificity of NPY release is conferred by three functionally distinct NPY+ cell types, with differences in intrinsic excitability and short-term plasticity of their inputs. Predator scent stress abolishes the release of endogenous NPY onto temporoammonic synapses, a stress-sensitive pathway, thereby causing enhanced short-term facilitation. Our results demonstrate how stress alters CA1 circuit function through the impairment of endogenous NPY release, potentially contributing to heightened anxiety. SIGNIFICANCE STATEMENT Neuropeptide Y (NPY) has robust anxiolytic properties, and its levels are reduced in patients with post-traumatic stress disorder. The effects of endogenously released NPY during physiologically relevant stimulation, and the impact of stress-induced reductions in NPY on circuit function, are unknown. By demonstrating that NPY release modulates hippocampal synaptic plasticity and is impaired by predator scent stress, our results provide a novel mechanism by which stress-induced anxiety alters circuit function. These studies fill an important gap in knowledge between the molecular and behavioral effects of NPY. This article also advances the understanding of NPY+ cells and the factors that regulate their spiking, which could pave the way for new therapeutic targets to increase endogenous NPY release in patients in a spatially and temporally appropriate manner. PMID:28053027
Hoffman, Alexander F.; Spivak, Charles E.; Lupica, Carl R.
2016-01-01
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple, 5 parameter, two compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using non-linear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altered Ca2+/Mg2+ ratio or tetrodotoxin (TTX), reduced the release parameter with no effect on the uptake parameter. The DAT inhibitors methylenedioxypyrovalerone (MDPV), cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa-opioid receptor (KOR) agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data. PMID:27018734
Hoffman, Alexander F; Spivak, Charles E; Lupica, Carl R
2016-06-15
Fast-scan cyclic voltammetry (FSCV) using carbon fiber electrodes is widely used to rapidly monitor changes in dopamine (DA) levels in vitro and in vivo. Current analytical approaches utilize parameters such as peak oxidation current amplitude and decay times to estimate release and uptake processes, respectively. However, peak amplitude changes are often observed with uptake inhibitors, thereby confounding the interpretation of these parameters. To overcome this limitation, we demonstrate that a simple five-parameter, two-compartment model mathematically describes DA signals as a balance of release (r/ke) and uptake (ku), summed with adsorption (kads and kdes) of DA to the carbon electrode surface. Using nonlinear regression, we demonstrate that our model precisely describes measured DA signals obtained in brain slice recordings. The parameters extracted from these curves were then validated using pharmacological manipulations that selectively alter vesicular release or DA transporter (DAT)-mediated uptake. Manipulation of DA release through altering the Ca(2+)/Mg(2+) ratio or adding tetrodotoxin reduced the release parameter with no effect on the uptake parameter. DAT inhibitors methylenedioxypyrovalerone, cocaine, and nomifensine significantly reduced uptake and increased vesicular DA release. In contrast, a low concentration of amphetamine reduced uptake but had no effect on DA release. Finally, the kappa opioid receptor agonist U50,488 significantly reduced vesicular DA release but had no effect on uptake. Together, these data demonstrate a novel analytical approach to distinguish the effects of manipulations on DA release or uptake that can be used to interpret FSCV data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, T.; Hjemdahl, P.; DiBona, G.F.
1987-02-01
The renal overflow of norepinephrine (NE) and dopamine (DA) to plasma from the innervated kidney was studied at rest and during sympathetic nervous system activation by bilateral carotid artery occlusion (BCO) in vagotomized dogs under barbiturate or barbiturate/nitrous oxide anesthesia. BCO elevated arterial pressure and the arterial plasma concentration of NE, DA, and epinephrine (Epi). Renal vascular resistance (renal arterial pressure kept constant) increased by 15 +/- 7% and the net renal venous outflows (renal veno-arterial concentration difference x renal plasma flow) of NE and DA were enhanced. To obtain more correct estimates of the renal contribution to the renalmore » venous catecholamine outflow, they corrected for the renal extraction of arterial catecholamines, assessed as the extractions of (/sup 3/H)NE, (/sup 3/H)DA, or endogenous Epi. The (/sup 3/H)NE corrected renal NE overflow to plasma increased from 144 +/- 40 to 243 +/- 64 pmol-min/sup -1/ during BCO, which, when compared with a previous study of the (/sup 3/H)NE corrected renal NE overflow to plasma evoked by electrical renal nerve stimulation, corresponds to a 40% increase in nerve impulse frequency from approx. 0.6 Hz. If the renal catecholamine extraction was not taken into account the effect of BCO was underestimated. The renal DA overflow to plasma was about one-fifth of the NE overflow both at rest and during BCO, indicating that there was no preferential activation of noradrenergic or putative dopaminergic nerves by BCO.« less
An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex.
Dreher, Jean-Claude; Burnod, Yves
2002-01-01
This paper presents a model of both tonic and phasic dopamine (DA) effects on maintenance of working memory representations in the prefrontal cortex (PFC). The central hypothesis is that DA modulates the efficacy of inputs to prefrontal pyramidal neurons to prevent interferences for active maintenance. Phasic DA release, due to DA neurons discharges, acts at a short time-scale (a few seconds), while the tonic mode of DA release, independent of DA neurons firing, acts at a long time-scale (a few minutes). The overall effect of DA modulation is modeled as a threshold restricting incoming inputs arriving on PFC neurons. Phasic DA release temporary increases this threshold while tonic DA release progressively increases the basal level of this threshold. Thus, unlike the previous gating theory of phasic DA release, proposing that it facilitates incoming inputs at the time of their arrival, the effect of phasic DA release is supposed to restrict incoming inputs during a period of time after DA neuron discharges. The model links the cellular and behavioral levels during performance of a working memory task. It allows us to understand why a critical range of DA D1 receptors stimulation is required for optimal working memory performance and how D1 receptor agonists (respectively antagonists) increase perseverations (respectively distractability). Finally, the model leads to several testable predictions, including that the PFC regulates DA neurons firing rate to adapt to the delay of the task and that increase in tonic DA release may either improve or decrease performance, depending on the level of DA receptors stimulation at the beginning of the task.
Sasaki, T; Fukai, N; Mann, K; Göhring, W; Olsen, B R; Timpl, R
1998-01-01
The C-terminal domain NC1 of mouse collagen XVIII (38 kDa) and the shorter mouse and human endostatins (22 kDa) were prepared in recombinant form from transfected mammalian cells. The NC1 domain aggregated non-covalently into a globular trimer which was partially cleaved by endogenous proteolysis into several monomers (25-32 kDa) related to endostatin. Endostatins were obtained in a highly soluble, monomeric form and showed a single N-terminal sequence which, together with other data, indicated a compact folding. Endostatins and NC1 showed a comparable binding activity for the microfibrillar fibulin-1 and fibulin-2, and for heparin. Domain NC1, however, was a distinctly stronger ligand than endostatin for sulfatides and the basement membrane proteins laminin-1 and perlecan. Immunological assays demonstrated endostatin epitopes on several tissue components (22-38 kDa) and in serum (120-300 ng/ml), the latter representing the smaller variants. The data indicated that the NC1 domain consists of an N-terminal association region (approximately 50 residues), a central protease-sensitive hinge region (approximately 70 residues) and a C-terminal stable endostatin domain (approximately 180 residues). They also demonstrated that proteolytic release of endostatin can occur through several pathways, which may lead to a switch from a matrix-associated to a more soluble endocrine form. PMID:9687493
Sutera, Flavia Maria; Giannola, Libero Italo; Murgia, Denise; De Caro, Viviana
2017-12-01
The drug development process strives to predict metabolic fate of a drug candidate, together with its uptake in major organs, whether they act as target, deposit or metabolism sites, to the aim of establish a relationship between the pharmacodynamics and the pharmacokinetics and highlight the potential toxicity of the drug candidate. The present study was aimed at evaluating the in vivo uptake of 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide (DA-Phen) - a new dopaminergic neurotransmission modulator, in target and non-target organs of animal subjects and integrating these data with SMARTCyp results, an in silico method that predicts the sites of cytochrome P450-mediated metabolism of drug-like molecules. Wistar rats, subjected to two different behavioural studies in which DA-Phen was intraperitoneally administrated at a dose equal to 0.03mmol/kg, were sacrificed after the experimental protocols and their major organs were analysed to quantify the drug uptake. The data obtained were integrated with in silico prediction of potential metabolites of DA-Phen using the SmartCYP predictive tool. DA-Phen reached quantitatively the Central Nervous System and the results showed that the amide bond of the DA-Phen is scarcely hydrolysed as it was found intact in analyzed organs. As a consequence, it is possible to assume that DA-Phen acts as dopaminergic modulator per se and not as a Dopamine prodrug, thus avoiding peripheral release and toxic side effects due to the endogenous neurotransmitter. Furthermore the identification of potential metabolites related to biotransformation of the drug candidate leads to a more careful evaluation of the appropriate route of administration for future intended therapeutic aims and potential translation into clinical studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Mechanisms of leukocyte formation of endogenous pyrogen].
Rybakina, E G; Sorokin, A V
1982-06-01
A study was made of the kinetics of endogenous pyrogen production by rabbit blood and exudate leukocytes and possible role played by the products of activated leukocytes in autoregulation of the process. It was established that accumulation of endogenous pyrogen in the cell precedes its release by stimulated cells. Then the processes of active pyrogen formation and release gel interdependent: pyrogen formed releases from the cell; the lowering of pyrogen concentration in the cell is accompanied by the decrease of its content in the medium. No stimulating effect of the products activated during leukocyte inflammation on pyrogen formation by blood leukocytes was discovered.
Timmer, Marco; Cesnulevicius, Konstantin; Winkler, Christian; Kolb, Julia; Lipokatic-Takacs, Esther; Jungnickel, Julia; Grothe, Claudia
2007-01-17
Basic fibroblast growth factor (FGF-2) is involved in the development and maintenance of the nervous system. Exogenous administration of FGF-2 increased dopaminergic (DA) graft survival in different animal models of Parkinson's disease. To study the physiological function of the endogenous FGF-2 system, we analyzed the nigrostriatal system of mice lacking FGF-2, mice overexpressing FGF-2, and FGF-receptor-3 (FGFR3)-deficient mice both after development and after 6-hydroxydopamine lesion. FGFR3-deficient mice (+/-) displayed a reduced number of DA neurons compared with the respective wild type. Whereas absence of FGF-2 led to significantly increased numbers of DA neurons, enhanced amount of the growth factor in mice overexpressing FGF-2 resulted in less tyrosine hydroxylase expression and a reduced DA cell density. The volumes of the substantia nigra were enlarged in both FGF-2(-/-) and in FGF-2 transgenic mice, suggesting an important role of FGF-2 for the establishment of the proper number of DA neurons and a normal sized substantia nigra during development. In a second set of experiments, the putative relevance of endogenous FGF-2 after neurotoxin application was investigated regarding the number of rescued DA neurons after partial 6-OHDA lesion. Interestingly, the results after lesion were directly opposed to the results after development: significantly less DA neurons survived in FGF-2(-/-) mice compared with wild-type mice. Together, the results indicate that FGFR3 is crucially involved in regulating the number of DA neurons. The lack of FGF-2 seems to be (over)compensated during development, but, after lesion, compensation mechanisms fail. The transgenic mice showed that endogenous FGF-2 protects DA neurons from 6-OHDA neurotoxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mubarak Hossain, Muhammad; Suzuki, Tadahiko; United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193
2006-11-15
In order to obtain a more complete understanding of pyrethroid neurotoxicity, effects of the pyrethroid insecticides, allethrin (type I), cyhalothrin (type II) and deltamethrin (type II) on extracellular levels of dopamine (DA) and its metabolites in the striatum of conscious rats were studied by in vivo microdialysis. Rats were treated i.p. with pyrethroids or vehicle. Allethrin had a dual effect on DA release. The increase in the extracellular level of striatal DA by 10 mg/kg allethrin reached a maximum of 178% of baseline but 20 and 60 mg/kg inhibited DA release to 63% and 52% of baseline with a peakmore » effect at 60-80 min after injection. Cyhalothrin 10, 20 and 60 mg/kg inhibited DA release to 65%, 56% and 45% of basal release, respectively, with a peak time of inhibition 40-80 min past injection. Deltamethrin (10 and 20 mg/kg) increased DA release to maximum of 187% and 252% of basal release whereas 60 mg/kg first reduced the efflux for 40 min to 50% of basal release and then increased the efflux to a maximum of 344% of basal release with a peak time of 120 min. Local infusion of 1 {mu}M tetrodotoxin, a Na{sup +} blocker through the dialysis probe completely prevented the effect of allethrin (10 and 60 mg/kg), cyhalothrin (60 mg/kg) and deltamethrin (20 mg/kg) on DA release but only partially blocked the effects of 60 mg/kg deltamethrin. The effect of deltamethrin (60 mg/kg) on DA release was completely prevented by local infusion of 10 {mu}M nimodipine, an L-type Ca{sup ++} channel blocker. All three pyrethroids did not alter the extracellular levels of DOPAC, 3-MT and HVA except that 20 and 60 mg/kg of allethrin and cyhalothrin increased 3-MT levels. Effect of the pyrethroids on synaptosomal DA uptake was also examined. The DA uptake was decreased in rats exposed to 60 mg/kg of allethrin and cyhalothrin but was increased in rats exposed to 60 mg/kg of deltamethrin. Our results demonstrate that striatal DA release and DA uptake are differentially affected by type I and the two type II pyrethroids indicating that dopaminergic circuitry, striatal DA in particular, may be a pyrethroid target and that pyrethroids may be acting on striatal DA by multiple mechanisms.« less
Barr, Travis P; Kornberg, Daniel; Montmayeur, Jean-Pierre; Long, Melinda; Reichheld, Stephen; Strichartz, Gary R
2015-01-01
Antibodies are important tools for the study of protein expression but are often used without full validation. In this study, we used Western blots to characterize antibodies targeted to the N or C terminal (NT or CT, respectively) and the second or third intracellular loop (IL2 or IL3, respectively) of the endothelin B receptor (ETB). The IL2-targeted antibody accurately detected endogenous ETB expression in rat brain and cultured rat astrocytes by labeling a 50-kDa band, the expected weight of full-length ETB. However, this antibody failed to detect transfected ETB in HEK293 cultures. In contrast, the NT-targeted antibody accurately detected endogenous ETB in rat astrocyte cultures and transfected ETB in HEK293 cultures by labeling a 37-kDa band but failed to detect endogenous ETB in rat brain. Bands detected by the CT- or IL3-targeted antibody were found to be unrelated to ETB. Our findings show that functional ETB can be detected at 50 or 37kDa on Western blot, with drastic differences in antibody affinity for these bands. The 37-kDa band likely reflects ETB processing, which appears to be dependent on cell type and/or culture condition. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.
1995-01-01
Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.
Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Walker, S J; Mickey, B J; Koeppe, R A; Langenecker, S A; Zubieta, J-K
2015-02-01
The μ-opioid receptor (MOR) system, well known for dampening physical pain, is also hypothesized to dampen 'social pain.' We used positron emission tomography scanning with the selective MOR radioligand [(11)C]carfentanil to test the hypothesis that MOR system activation (reflecting endogenous opioid release) in response to social rejection and acceptance is altered in medication-free patients diagnosed with current major depressive disorder (MDD, n=17) compared with healthy controls (HCs, n=18). During rejection, MDD patients showed reduced endogenous opioid release in brain regions regulating stress, mood and motivation, and slower emotional recovery compared with HCs. During acceptance, only HCs showed increased social motivation, which was positively correlated with endogenous opioid release in the nucleus accumbens, a reward structure. Altered endogenous opioid activity in MDD may hinder emotional recovery from negative social interactions and decrease pleasure derived from positive interactions. Both effects may reinforce depression, trigger relapse and contribute to poor treatment outcomes.
NASA Technical Reports Server (NTRS)
Farber, S. A.; Kischka, U.; Marshall, D. L.; Wurtman, R. J.
1993-01-01
We examined the release of acetylcholine (ACh) and dopamine (DA) using a novel probe through which striatal neurons could be both superfused and stimulated electrically in both anesthetized and freely moving awake animals. Optimal stimulation parameters for eliciting ACh release from cholinergic neurons differed from those required for eliciting DA release from dopaminergic terminals: at 0.6 ms pulse duration, 20 Hz and 200 microA, ACh release increased to 357 +/- 30% (P < 0.01) of baseline and was blocked by the addition of tetrodotoxin (TTX). Pulse durations of 2.0 ms or greater were required to increase DA release. Unlike ACh release, DA release showed no frequency dependence above 5 Hz. The maximal evoked releases of ACh and DA were 556 +/- 94% (P < 0.01) and 254 +/- 38% (P < 0.05) of baseline, respectively. Peripheral administration of choline (Ch) chloride (30-120 mg/kg) to anesthetized animals caused dose-related (r = 0.994, P < 0.01) increases in ACh release; basal release rose from 117 +/- 7% to 141 +/- 5% of initial baseline levels (P < 0.05) and electrically evoked ACh release rose from 386 +/- 38% to 600 +/- 34% (P < 0.01) in rats given 120 mg/kg. However, Ch failed to affect basal or evoked DA release although neostigmine (10 microM) significantly elevated basal DA release (from 36.7 fmol/10 min to 71.5 fmol/10 min; P < 0.05). In awake animals, Ch (120 mg/kg) also elevated both basal (from 106 +/- 7% to 154 +/- 17%; P < 0.05) and electrically evoked (from 146 +/- 13 to 262 +/- 16%; P < 0.01) ACh release.(ABSTRACT TRUNCATED AT 250 WORDS).
Preoperative oral carbohydrate treatment attenuates endogenous glucose release 3 days after surgery.
Soop, Mattias; Nygren, Jonas; Thorell, Anders; Weidenhielm, Lars; Lundberg, Mari; Hammarqvist, Folke; Ljungqvist, Olle
2004-08-01
Postoperative metabolism is characterised by insulin resistance and a negative whole-body nitrogen balance. Preoperative carbohydrate treatment reduces insulin resistance in the first day after surgery. We hypothesised that preoperative oral carbohydrate treatment attenuates insulin resistance and improves whole-body nitrogen balance 3 days after surgery. Fourteen patients undergoing total hip replacement were double-blindly randomised to preoperative oral carbohydrate treatment (12.5%, 800 + 400 ml, n = 8) or placebo (n = 6). Glucose kinetics (6,6-D2-glucose), substrate utilisation (indirect calorimetry) and insulin sensitivity (hyperinsulinaemic-euglycaemic clamp) were measured preoperatively and on the third day after surgery. Nitrogen losses were monitored for 3 days after surgery. Values are mean (SEM). Analysis of variance (ANOVA) statistics were used. Endogenous glucose release during insulin infusion increased after surgery in the placebo group. Preoperative carbohydrate treatment, as compared to placebo, significantly attenuated postoperative endogenous glucose release (0.69 (0.07) vs. 1.21 (0.13)mg kg(-1) x min(-1), P < 0.01), while whole-body glucose disposal and nitrogen balance were similar between groups. While insulin resistance in the first day after surgery has previously been characterised by reduced glucose disposal, enhanced endogenous glucose release was the main component of postoperative insulin resistance on the third postoperative day. Preoperative carbohydrate treatment attenuated endogenous glucose release on the third postoperative day. Copyright 2004 Elsevier Ltd.
Martorana, Alessandro; Martella, Giuseppina; D'Angelo, Vincenza; Fusco, Francesca Romana; Spadoni, Francesca; Bernardi, Giorgio; Stefani, Alessandro
2006-10-01
The tridecapeptide neurotensin (NT) is involved in the modulation of dopamine (DA)-mediated functions in the nigrostriatal and mesocorticolimbic pathways. Its relevance in mammalian globus pallidus (GP) is questioned. A recent electrophysiological study on GP slices described NT-mediated robust membrane depolarization, depending upon the suppression of potassium conductance and/or the activation of cation current. Here, we have studied whether NT also affected high-voltage-activated calcium (Ca(2+)) currents, by means of whole-cell recordings on isolated GP neurons. In our hands, the full peptide and the segment NT8-13 reversibly inhibited N-like Ca(2+) current in about 60% of the recorded dissociated neurons, irrespective of their capacitance. The NT-mediated modulation showed no desensitization and was antagonized by the NT1 antagonists SR48692 and SR142948. These results imply an abundant expression of NTS(1) on GP cell somata. Then, we performed a light and immunofluorescence-confocal microscopy study of NTS(1) localization among GP neurons. We found that NTS(1) is localized in about 56% of GP neurons in both subpopulations of neurons, namely parvalbumin positive and negative. We conclude that NT, likely released from the striatal terminals in GP, acts through the postsynaptic NTS(1) preferentially localized in the lateral aspects of the GP. These data suggest a new implication (neither merely presynaptic nor simply "excitatory") for NT in the modulation of GP firing pattern. In addition, NT might have a role in affecting the interplay among the endogenous release of GABA/glutamate and DA. This hypothesis might have implications on both sensori-motor and associative functions of the GP and should be tested in DA-denervated disease models.
Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.
2015-01-01
Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413
Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors
Wen, Xiangyi; Saltzgaber, Grant W.; Thoreson, Wallace B.
2017-01-01
Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods involves kiss-and-run with 2.3–4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses. PMID:28979188
Van Hook, Matthew J; Thoreson, Wallace B
2015-01-01
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977
Phasic dopamine release in the rat nucleus accumbens predicts approach and avoidance performance
Gentry, Ronny N.; Lee, Brian; Roesch, Matthew R.
2016-01-01
Dopamine (DA) is critical for reward processing, but significantly less is known about its role in punishment avoidance. Using a combined approach-avoidance task, we measured phasic DA release in the nucleus accumbens (NAc) of rats during presentation of cues that predicted reward, punishment or neutral outcomes and investigated individual differences based on avoidance performance. Here we show that DA release within a single microenvironment is higher for reward and avoidance cues compared with neutral cues and positively correlated with poor avoidance behaviour. We found that DA release delineates trial-type during sessions with good avoidance but is non-selective during poor avoidance, with high release correlating with poor performance. These data demonstrate that phasic DA is released during cued approach and avoidance within the same microenvironment and abnormal processing of value signals is correlated with poor performance. PMID:27786172
Social Laughter Triggers Endogenous Opioid Release in Humans.
Manninen, Sandra; Tuominen, Lauri; Dunbar, Robin I; Karjalainen, Tomi; Hirvonen, Jussi; Arponen, Eveliina; Hari, Riitta; Jääskeläinen, Iiro P; Sams, Mikko; Nummenmaa, Lauri
2017-06-21
The size of human social networks significantly exceeds the network that can be maintained by social grooming or touching in other primates. It has been proposed that endogenous opioid release after social laughter would provide a neurochemical pathway supporting long-term relationships in humans (Dunbar, 2012), yet this hypothesis currently lacks direct neurophysiological support. We used PET and the μ-opioid-receptor (MOR)-specific ligand [ 11 C]carfentanil to quantify laughter-induced endogenous opioid release in 12 healthy males. Before the social laughter scan, the subjects watched laughter-inducing comedy clips with their close friends for 30 min. Before the baseline scan, subjects spent 30 min alone in the testing room. Social laughter increased pleasurable sensations and triggered endogenous opioid release in thalamus, caudate nucleus, and anterior insula. In addition, baseline MOR availability in the cingulate and orbitofrontal cortices was associated with the rate of social laughter. In a behavioral control experiment, pain threshold-a proxy of endogenous opioidergic activation-was elevated significantly more in both male and female volunteers after watching laughter-inducing comedy versus non-laughter-inducing drama in groups. Modulation of the opioidergic activity by social laughter may be an important neurochemical pathway that supports the formation, reinforcement, and maintenance of human social bonds. SIGNIFICANCE STATEMENT Social contacts are vital to humans. The size of human social networks significantly exceeds the network that can be maintained by social grooming in other primates. Here, we used PET to show that endogenous opioid release after social laughter may provide a neurochemical mechanism supporting long-term relationships in humans. Participants were scanned twice: after a 30 min social laughter session and after spending 30 min alone in the testing room (baseline). Endogenous opioid release was stronger after laughter versus the baseline scan. Opioid receptor density in the frontal cortex predicted social laughter rates. Modulation of the opioidergic activity by social laughter may be an important neurochemical mechanism reinforcing and maintaining social bonds between humans. Copyright © 2017 the authors 0270-6474/17/376125-07$15.00/0.
Age-related changes in dopamine signaling in Nurr1 deficient mice as a model of Parkinson’s disease
Zhang, Lifen; Le, Weidong; Xie, Wenjie; Dani, John A.
2011-01-01
The nuclear receptor related 1 (Nurr1) transcription factor contributes to the development and maintenance of dopamine (DA) neurons in the brain. We found that heterozygous Nurr1 knock-out (Nurr1 +/−) influenced the age-dependent decline in the number of DA neurons and influenced DA signaling. We examined the DA marker, tyrosine hydroxylase, using immunohistochemistry, and we measured DA signaling using fast-scan cyclic voltammetry in 3 age groups of wild-type (Nurr1 +/+) and mutant (Nurr1 +/−) mice: 3–6, 9–12, and 15–23 months old. Prior to significant loss of DA neurons and to the onset of parkinsonian symptoms, young Nurr1 +/− mice (3–6 months) exhibited a decrease in peak evoked DA release that was partially countered by a decrease in the rate of DA reuptake. As peak evoked DA release declined with age for both the wild-type and Nurr1 +/− mice, both genotypes manifested decreased DA reuptake. As the DA release fell further with age, decreased DA reuptake eventually could not adequately compensate the Nurr1 +/− mice. The results indicated that Nurr1 deficiency led to impaired DA release even before significant DA neuron loss. PMID:21531044
Kasparek, Michael S; Fatima, Javairiah; Iqbal, Corey W; Duenes, Judith A; Sarr, Michael G
2009-12-03
Age-related changes in non-adrenergic, non-cholinergic (NANC) neurotransmission might contribute to differences in gastrointestinal motility. Our aim was to determine age-related changes in functional innervation with vasoactive intestinal polypeptide (VIP) and substance P (Sub P) in rat jejunum. We hypothesized that maturation causes changes in neurotransmission with these two neuropeptides. Longitudinal and circular jejunal muscle strips from young (3 months) and middle-aged (15 months) rats (total: 24 rats) were studied; the response to exogenous VIP and Sub P and the effect of their endogenous release from the enteric nervous system during electrical field stimulation (EFS) were evaluated. In longitudinal muscle, response to exogenous VIP and endogenously released VIP during EFS were increased in middle-aged rats, while the effect of endogenously released Sub P was decreased. In the circular muscle, the response to endogenously released VIP was increased in middle-aged rats, while the effects of exogenous VIP and endogenously released Sub P were unchanged. Response to exogenous Sub P was unaffected by maturation in both muscle layers. Spontaneous contractile activity was increased in the longitudinal and circular muscle of the older rats. In the jejunum of middle-aged rats, participation of VIP in functional NANC innervation was increased, while functional innervation with Sub P was decreased. These changes in the balance of inhibitory and excitatory neurotransmission occur during the year of maturation in rats and demonstrate an age-dependant plasticity of neuromuscular bowel function.
Yohn, Samantha; Covey, Daniel; Foster, Daniel; Moehle, Mark; Galbraith, Jordan; Cheer, Joseph; Lindsley, Craig; Jeffrey Conn, P
2018-01-01
Abstract Background Clinical and preclinical studies suggest that selective activators of the muscarinic M4 receptor have exciting potential as a novel approach for treatment of schizophrenia. M4 reduces striatal dopamine (DA) though release of endocannabinoids (eCB), providing a mechanism for local effects on DA signaling in the striatum. M4 signals through Gαi/o and does not couple to Gαq/11 or induce calcium (Ca++) mobilization. This raises the possibility that M4-induced eCB release and inhibition of DA release may require co-activation of another receptor that activates Gαq/11. If so, this receptor could provide a novel target that may be more proximal to inhibition of DA release. Interestingly, the group 1 metabotropic glutamate (mGlu) receptors (mGlu1 and Glu5), couple to Gαq/11 and activate eCB signaling in multiple brain regions. Methods We tested the hypothesis that M4-induced reductions in DA release and subsequent antipsychotic-effect requires co-activation of group 1 mGlu receptors. The effect of M4 activation on electrically-evoked DA release in striatal slices was assessed using fast-scan cyclic voltammetry (FSCV) in the absence or presence of selective negative allosteric modulators (NAMs) of group 1 mGlu receptor subtypes. To evaluate the potential role of mGlu1, we determined the effects of a selective mGlu1 positive allosteric modulators (PAMs) on striatal DA release and antipsychotic-like activity in rodent models that are dependent on increased DA transmission. Since reductions in DA signaling, including D1 signaling have been implicated in reduced motivation, we also determined the effects of an mGlu1 PAM, M4 PAM, and the typical antipsychotic haloperidol on motivational responding in a progressive ratio (PR) schedule. Results We now present exciting new data in which we found that activation of mGlu1 through application of exogenous agonists or selective stimulation of thalamostriatal afferents induces a reduction of striatal DA release and that selective mGlu1 PAMs have robust antipsychotic-like effects in rodent models. Interestingly, our studies also suggest that mGlu1 activation is required for M4 PAM-induced inhibition of DA release and antipsychotic-like effects. However, in contrast to available antipsychotic agents, the present results and previous studies suggest that mGlu1 and M4 PAMs reduce DA signaling through local release of an eCB from striatal SPNs and activation of CB2 receptors on neighboring DA terminals to reduce DA release. While these studies suggest that the effects of M4 PAMs on DA release require activation of mGlu1, we have also found that these targets have important differences. Most notably, M4 PAMs also directly inhibits D1 signaling in D1-SPN terminals in the substatnia nigra pars reticulata (SNr). Unlike M4, mGlu1 does not directly inhibit DA D1 receptor signaling and does not induce behavioral changes that could be associated with negative symptoms. Discussion Our findings are especially interesting in light of recent findings that multiple loss of function single nucleotide polymorphisms (SNPs) in the human gene encoding mGlu1 (GRM1) are associated with schizophrenia, and points to GRM1/mGlu1 as a gene within the “druggable genome” that could be targeted for treatment of schizophrenia. Recent clinical imaging studies suggesting that symptoms in schizophrenia patients are associated with selective increases in striatal DA signaling and while extrastriatal regions display hypo-dopaminergic function; thus, mGlu1 and M4 PAMs may provide a mechanism for selective inhibition of DA release in striatal regions that are important for antipsychotic efficacy, without further disruptions in extrastriatal DA signaling.
An updated view on the role of dopamine in myopia.
Feldkaemper, Marita; Schaeffel, Frank
2013-09-01
A large body of data is available to support the hypothesis that dopamine (DA) is one of the retinal neurotransmitters involved in the signaling cascade that controls eye growth by vision. Initially, reduced retinal DA levels were observed in eyes deprived of sharp vision by either diffusers ("deprivation myopia", DM) or negative lenses ("lens induced myopia", LIM). Simulating high retinal DA levels by intravitreal application of a DA agonist can suppress the development of both DM and LIM. Also more recent studies using knock-out mouse models of DA receptors support the idea of an association between decreased DA levels and DM. There seem to be differences in the magnitude of the effects of DA on DM and LIM, with larger changes in DM but the degrees of image degradation by both treatments need to be matched to support this conclusion. Although a number of studies have shown that the inhibitory effects of dopamine agonists on DM and LIM are mediated through stimulation of the D2-receptor, there is also recent evidence that the balance of D2- and D1-receptor activation is important. Inhibition of D2-receptors can also slow the development of spontaneous myopia in albino guinea pigs. Retinal DA content displays a distinct endogenous diurnal, and partially circadian rhythm. In addition, retinal DA is regulated by a number of visual stimuli like retinal illuminance, spatial frequency content of the image, temporal contrast and, in chicks, by the light input from the pineal organ. A close interaction was found between muscarinergic and dopaminergic systems, and between nitric oxide and dopaminergic pathways, and there is evidence for crosstalk between the different pathways, perhaps multiple binding of the ligands to different receptors. It was shown that DA agonists interact with the immediate early signaling molecule ZENK which triggers the first steps in eye growth regulation. However, since long treatment periods were often needed to induce significant changes in retinal dopamine synthesis and release, the role of dopamine in the early steps is unclear. The wide spatial distribution of dopaminergic amacrine cells in the retina and the observation that changes in dopamine levels can be locally induced by local retinal deprivation is in line with the assumption that dopaminergic mechanisms control both central and peripheral eye growth. The protective effect of outdoor activity on myopia development in children seems to be partly mediated by the stimulatory effect of light on retinal dopamine production and release. However, the dose-response function linking light exposure to dopamine and to the suppression of myopia is not known and requires further studies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cacciapaglia, Fabio; Wightman, R. Mark; Carelli, Regina M.
2015-01-01
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. SIGNIFICANCE STATEMENT Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. PMID:26290234
Chronic lithium treatment rectifies maladaptive dopamine release in the nucleus accumbens.
Can, Adem; Frost, Douglas O; Cachope, Roger; Cheer, Joseph F; Gould, Todd D
2016-11-01
Chronic lithium treatment effectively reduces behavioral phenotypes of mania in humans and rodents. The mechanisms by which lithium exerts these actions are poorly understood. Pre-clinical and clinical evidence have implicated increased mesolimbic dopamine (DA) neurotransmission with mania. We used fast-scan cyclic voltammetry to characterize changes in extracellular DA concentrations in the nucleus accumbens (NAc) core evoked by 20 and 60 Hz electrical stimulation of the ventral tegmental area (VTA) in C57BL6/J mice treated either acutely or chronically with lithium. The effects of chronic lithium treatment on the availability of DA for release were assessed by depleting readily releasable DA using short inter-train intervals, or administering d-amphetamine acutely to mobilize readily releasable DA. Chronic, but not acute, lithium treatment decreased the amplitude of DA responses in the NAc following 60 Hz pulse train stimulation. Neither lithium treatment altered the kinetics of DA release or reuptake. Chronic treatment did not impact the progressive reduction in the amplitude of DA responses when, using 20 or 60 Hz pulse trains, the VTA was stimulated every 6 s to deplete DA. Specifically, the amplitude of DA responses to 60 Hz pulse trains was initially reduced compared to control mice, but by the fifth pulse train, there was no longer a treatment effect. However, chronic lithium treatment attenuated d-amphetamine-induced increases in DA responses to 20 Hz pulse trains stimulation. Our data suggest that long-term administration of lithium may ameliorate mania phenotypes by normalizing the readily releasable DA pool in VTA axon terminals in the NAc. Read the Editorial Highlight for this article on Page 520. © 2016 International Society for Neurochemistry.
Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; O'Connor, Sean J; Yoder, Karmen K; Kareken, David A
2015-03-01
Although striatal dopamine (DA) is important in alcohol abuse, the nature of DA release during actual alcohol drinking is unclear, since drinking includes self-administration of both conditioned flavor stimuli (CS) of the alcoholic beverage and subsequent intoxication, the unconditioned stimulus (US). Here, we used a novel self-administration analog to distinguish nucleus accumbens (NAcc) DA responses specific to the CS and US. Right-handed male heavy drinkers (n = 26) received three positron emission tomography (PET) scans with the D2/D3 radioligand [(11)C]raclopride (RAC) and performed a pseudo self-administration task that separately administered a flavor CS of either a habitually consumed beer or the appetitive control Gatorade®, concomitant with the US of ethanol intoxication (0.06 g/dL intravenous (IV) administration) or IV saline. Scan conditions were Gatorade flavor + saline (Gat&Sal), Gatorade flavor + ethanol (Gat&Eth), and beer flavor + ethanol (Beer&Eth). Ethanol (US) reduced RAC binding (inferring DA release) in the left (L) NAcc [Gat&Sal > Gat&Eth]. Beer flavor (CS) increased DA in the right (R) NAcc [Gat&Eth > Beer&Eth]. The combination of beer flavor and ethanol (CS + US), [Gat&Sal > Beer&Eth], induced DA release in bilateral NAcc. Self-reported intoxication during scanning correlated with L NAcc DA release. Relative to saline, infusion of ethanol increased alcoholic drink wanting. Our findings suggest lateralized DA function in the NAcc, with L NAcc DA release most reflecting intoxication, R NAcc DA release most reflecting the flavor CS, and the conjoint CS + US producing a bilateral NAcc response.
Simonyan, Kristina; Herscovitch, Peter; Horwitz, Barry
2013-01-01
Considerable progress has been recently made in understanding the brain mechanisms underlying speech and language control. However, the neurochemical underpinnings of normal speech production remain largely unknown. We investigated the extent of striatal endogenous dopamine release and its influences on the organization of functional striatal speech networks during production of meaningful English sentences using a combination of positron emission tomography (PET) with the dopamine D2/D3 receptor radioligand [11C]raclopride and functional MRI (fMRI). In addition, we used diffusion tensor tractography (DTI) to examine the extent of dopaminergic modulatory influences on striatal structural network organization. We found that, during sentence production, endogenous dopamine was released in the ventromedial portion of the dorsal striatum, in its both associative and sensorimotor functional divisions. In the associative striatum, speech-induced dopamine release established a significant relationship with neural activity and influenced the left-hemispheric lateralization of striatal functional networks. In contrast, there were no significant effects of endogenous dopamine release on the lateralization of striatal structural networks. Our data provide the first evidence for endogenous dopamine release in the dorsal striatum during normal speaking and point to the possible mechanisms behind the modulatory influences of dopamine on the organization of functional brain circuits controlling normal human speech. PMID:23277111
Tanaka, C; Taniyama, K
1985-01-01
The release of [3H]gamma-aminobutyric acid (GABA) from the isolated small intestine of the guinea-pig pre-loaded with [3H]GABA was measured in the presence of substance P and vasoactive intestinal polypeptide (VIP). Substance P (10(-10)-10(-7) M) produced a dose-dependent increase in the fractional rate of [3H]GABA release. VIP, even at 10(-7) M, did not affect the spontaneous [3H]GABA release nor the release of [3H]GABA evoked by electrical transmural stimulation (0.5 ms, 15 V, 10 Hz for 30 s). The release of endogenous GABA from the isolated small intestine was measured in the presence of substance P (10(-9) M). After 60 min superfusion, the spontaneous release of GABA was 4.61 +/- 0.14 pmol min-1 g-1 wet wt. (n = 20). Substance P (10(-9) M) produced an approximate 2-fold spontaneous release of endogeneous GABA (8.74 +/- 0.21 pmol min-1 g-1 wet wt. (n = 10)). Perfusion with Ca-free medium containing 1 mM-EGTA and tetrodotoxin (3 X 10(-7) M) inhibited the release of endogenous GABA evoked by substance P (10(-9) M). (D-Pro2, D-Trp7,9) substance P (10(-6) M) antagonized the release of endogenous GABA evoked by substance P (10(-9) M). These results indicate that substance P induces a neuronal release of GABA through its receptor located in the guinea-pig small intestine. Substance P (10(-11)-10(-7) M) produced a dose-dependent increase in the fractional rate of [3H]acetylcholine (ACh) release from the isolated small intestine pre-loaded with [3H]choline. The release of [3H]ACh evoked by substance P (10(-9) M) was inhibited by perfusion with Ca-free medium containing 1 mM-EGTA, tetrodotoxin (3 X 10(-7) M) and (D-Pro2, D-Trp7,9)substance P (10(-6) M). Bicuculline (10(-6) M) inhibited the release of [3H]ACh evoked by substance P (10(-9) M) by 68.1 +/- 4.6% (n = 5), thereby suggesting that the substance P-evoked ACh release is partly mediated through the endogenous GABA released by substance P. These results provide evidence for the neurotransmitter role of GABA and a possible excitatory role of substance P on the GABAergic neurones in the myenteric plexus of the guinea-pig small intestine. PMID:2410602
Tzeng, Wen-Yu; Cherng, Chian-Fang G; Wang, Shyi-Wu; Yu, Lung
2016-06-01
This study aimed to assess the impact of companions on the rewarding effects of cocaine. Three cage mates, serving as companions, were housed with each experimental mouse throughout cocaine-place conditioning in a cocaine-induced conditioned place preference (CPP) paradigm using conditioning doses of 10 and 20mg/kg. The presence of companions decreased the magnitude of the CPP. At 20mg/kg, cocaine stimulated dopamine (DA) release in the nucleus accumbens as evidenced by a significant decrease in total (spontaneous and electrical stimulation-provoked) DA release in accumbal superfusate samples. The presence of companions prevented this cocaine-stimulated DA release; such a reduction in cocaine-induced DA release may account for the reduction in the magnitude of the CPP in the presence of the companions. Furthermore, cocaine pretreatment (2.5mg/kg) was found to prevent the companion-produced decreases in cocaine (10mg/kg/conditioning)-induced CPP as well as the cocaine (10mg/kg)-stimulated DA release. Moreover, the presence of methamphetamine (MA) (1mg/kg)-treated companions decreased cocaine (20mg/kg/conditioning)-induced CPP and prevented the cocaine (20mg/kg)-stimulated DA release. Finally, the presence of companions decreased the magnitude of the CPP could not seem to be accounted for by cocaine-stimulated corticosterone (CORT) release. Taken together, these results indicate that familiar companions, regardless of their pharmacological status, may exert dampening effects on CPP induced by moderate to high conditioning doses of cocaine, at least in part, by preventing cocaine-stimulated DA release in the nucleus accumbens. Copyright © 2016 Elsevier B.V. All rights reserved.
Striatal dopamine dynamics in mice following acute and repeated toluene exposure.
Apawu, Aaron K; Mathews, Tiffany A; Bowen, Scott E
2015-01-01
The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine.
Malave, Lauren B; Broderick, Patricia A
2014-06-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE ® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo , in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction.
Caffeine's Attenuation of Cocaine-Induced Dopamine Release by Inhibition of Adenosine
Malave, Lauren B.
2014-01-01
Background: It is well known that the reinforcing properties of cocaine addiction are caused by the sharp increase of dopamine (DA) in the reward areas of the brain. However, other mechanisms have been speculated to contribute to the increase. Adenosine is one system that is associated with the sleep-wake cycle and is most important in regulating neuronal activity. Thus, more and more evidence is pointing to its involvement in regulating DA release. The current study set out to examine the role of adenosine in cocaine-induced DA release. Methods: Increasing doses of cocaine, caffeine, and their combination, as well as, 8-cyclopentyltheophylline (CPT), an adenosine A1 antagonist (alone and in combination with cocaine) were used to denote a response curve. A novel biosensor, the BRODERICK PROBE® was implanted in the nucleus accumbens to image the drug-induced surge of DA release in vivo, in the freely moving animal in real time. Results: Combinations of cocaine and caffeine were observed to block the increased release of DA moderately after administration of the low dose (2.5 mg/kg cocaine and 12.5 mg/kg caffeine) and dramatically after administration of the high dose (10 mg/kg cocaine and 50 mg/kg caffeine), suggesting neuroprotection. Similarly, CPT and cocaine showed a decreased DA surge when administered in combination. Thus, the low and high dose of a nonselective adenosine antagonist, caffeine, and a moderate dose of a selective adenosine antagonist, CPT, protected against the cocaine-induced DA release. Conclusions: These results show a significant interaction between adenosine and DA release and suggest therapeutic options for cocaine addiction and disorders associated with DA dysfunction. PMID:25054079
Górska, A M; Gołembiowska, K
2015-04-01
3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.
Saddoris, Michael P; Cacciapaglia, Fabio; Wightman, R Mark; Carelli, Regina M
2015-08-19
Mesolimbic dopamine (DA) is phasically released during appetitive behaviors, though there is substantive disagreement about the specific purpose of these DA signals. For example, prediction error (PE) models suggest a role of learning, while incentive salience (IS) models argue that the DA signal imbues stimuli with value and thereby stimulates motivated behavior. However, within the nucleus accumbens (NAc) patterns of DA release can strikingly differ between subregions, and as such, it is possible that these patterns differentially contribute to aspects of PE and IS. To assess this, we measured DA release in subregions of the NAc during a behavioral task that spatiotemporally separated sequential goal-directed stimuli. Electrochemical methods were used to measure subsecond NAc dopamine release in the core and shell during a well learned instrumental chain schedule in which rats were trained to press one lever (seeking; SL) to gain access to a second lever (taking; TL) linked with food delivery, and again during extinction. In the core, phasic DA release was greatest following initial SL presentation, but minimal for the subsequent TL and reward events. In contrast, phasic shell DA showed robust release at all task events. Signaling decreased between the beginning and end of sessions in the shell, but not core. During extinction, peak DA release in the core showed a graded decrease for the SL and pauses in release during omitted expected rewards, whereas shell DA release decreased predominantly during the TL. These release dynamics suggest parallel DA signals capable of supporting distinct theories of appetitive behavior. Dopamine signaling in the brain is important for a variety of cognitive functions, such as learning and motivation. Typically, it is assumed that a single dopamine signal is sufficient to support these cognitive functions, though competing theories disagree on how dopamine contributes to reward-based behaviors. Here, we have found that real-time dopamine release within the nucleus accumbens (a primary target of midbrain dopamine neurons) strikingly varies between core and shell subregions. In the core, dopamine dynamics are consistent with learning-based theories (such as reward prediction error) whereas in the shell, dopamine is consistent with motivation-based theories (e.g., incentive salience). These findings demonstrate that dopamine plays multiple and complementary roles based on discrete circuits that help animals optimize rewarding behaviors. Copyright © 2015 the authors 0270-6474/15/3511572-11$15.00/0.
Li, Fengrui; Tian, Xiaofei; Zhou, Yishu; Zhu, Lanhui; Wang, Baojie; Ding, Mei; Pang, Hao
2012-12-01
The neurotoxins paraquat (PQ) and dopamine (DA or 6-OHDA) cause apoptosis of dopaminergic neurons in the substantia nigra pars compacta (SNpc), reproducing an important pathological feature of Parkinson's disease (PD). Secretogranin III (SCG3), a member of the multifunctional granin family, plays a key role in neurotransmitter storage and transport and in secretory granule biogenesis, which involves the uptake of exogenous toxins and endogenous "toxins" in neuroendocrine cells. However, the molecular mechanisms of neurotoxin-induced apoptosis in dopaminergic neurons and the role of SCG3-associated signaling pathways in neuroendocrine regulation are unclear. To address this, we used PQ- and DA-induced apoptosis in SH-SY5Y human dopaminergic cells as an in vitro model to investigate the association between SCG3 expression level and apoptosis. SCG3 was highly expressed in SH-SY5Y cells, and SCG3 mRNA and protein levels were dramatically decreased after PQ treatment. Apoptosis induced by PQ is associated with caspase activation and decreased SCG3 expression, and restoration of SCG3 expression is observed after treatment with caspase inhibitors. Overexpressed SCG3 in nonneuronal cells and endogenous SCG3 in SH-SY5Y cells are cleaved into specific fragments by recombinant caspase-3 and -7, but the fragments were not detected in PQ-treated SH-SY5Y cells. Therefore, SCG3 may be involved in apoptosis signal transduction as a caspase substrate, leading to loss of its original biological functions. In addition, SCG3 may be a pivotal component of the neuroendocrine pathway and play an important role in neuronal communication and neurotransmitter release, possibly representing a new potential target in the course of PD pathogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Muto, Masaki; Fukuda, Yorikane; Nemoto, Michiko; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2013-02-01
A genetic transformation system for the marine pennate diatom, Fistulifera sp. JPCC DA0580, was established using microparticle bombardment methods. Strain JPCC DA0580 has been recently identified as the highest triglyceride (60 % w/w) producer from a culture collection of 1,393 strains of marine microalgae, and it is expected to be a feasible source of biodiesel fuel. The transformation conditions for strain JPCC DA0580 were optimised using the green fluorescent protein gene (gfp) and the gene encoding neomycin phosphotransferase II (nptII). The most efficient rate of transformation was attained when tungsten particles (0.6 μm in diameter) were used for microparticle bombardment. The effect of endogenous and exogenous promoters on the expression of nptII was examined. Endogenous promoters were more efficient for obtaining transformants compared with exogenous promoters. Southern hybridisation analysis suggested that nptII integrated into the nuclear genome. This genetic manipulation technique should allow us to understand the mechanisms of high triglyceride accumulation in this strain, thereby contributing to improving BDF production.
Zhou, Jingjing; Liu, Dan; Zhang, Wenjing; Chen, Xuequn; Huan, Ying; Yu, Xipeng
2017-06-01
Changes to groundwater hydrodynamics and chemistry can lead to colloid release that can have a major impact on the groundwater environment. To analyze the effects of colloid release caused by artificial groundwater recharge, field and laboratory tests on colloid characterization and colloid release were conducted. The field tests were carried out at an artificial recharge test site in Shandong Province. In the field investigation, one recharge water sample and five groundwater samples were collected and filtered through three levels of ultrafiltration membranes, with pore sizes of 0.45 μm, 100 kDa, and 50 kDa. The field results indicated that the colloid mass concentrations in groundwater retained between membranes with pore sizes of 100 kDa-0.45 μm and 50 kDa-100 kDa were 19 and 62 mg/L, respectively. In recharge water, the colloid mass concentrations retained by 100-kDa-0.45-μm and 50-kDa-100-kDa membranes were 3 and 99 mg/L, respectively. Colloids detected on the ultrafiltration membranes were mainly inorganic between 100 kDa and 0.45 μm, and mainly organic between 50 and 100 kDa. Based on the field colloid investigation results, the organic colloid was chosen in the laboratory experiments to reveal its release behavior under different conditions. Porous media diameter, flux, ionic strength (IS), and ion valence were changed to determine their influences on organic colloid concentration outflow from undisturbed porous media. The experiment's results indicate that decreasing the diameter, and increasing the flux, ionic strength, and the number of divalent cations, can promote organic colloid release. The organic colloid release rate in the early stage was high and is thus likely to affect the quality of groundwater. The results provide a useful scientific basis for minimizing changes to hydrodynamic and hydrochemical conditions during artificial recharge, thus safeguarding groundwater quality.
Ramsson, Eric S.; Howard, Christopher D.; Covey, Dan P.; Garris, Paul A.
2011-01-01
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action. PMID:21806614
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcucci, Katherine T.; Kellogg School of Science and Technology, Scripps Research Institute, La Jolla, CA, 92037; Martina, Yuri
2008-06-05
The porcine endogenous retrovirus (PERV) Gag protein contains two late (L) domain motifs, PPPY and P(F/S)AP. Using viral release assays we demonstrate that PPPY is the dominant L domain involved in PERV release. PFAP represents a novel retroviral L domain variant and is defined by abnormal viral assembly phenotypes visualized by electron microscopy and attenuation of early PERV release as measured by viral genomes. PSAP is functionally dominant over PFAP in early PERV release. PSAP virions are 3.5-fold more infectious in vitro by TCID{sub 50} and in vivo results in more RNA positive tissues and higher levels of proviral DNAmore » using our human PERV-A receptor (HuPAR-2) transgenic mouse model [Martina, Y., Marcucci, K.T., Cherqui, S., Szabo, A., Drysdale, T., Srinivisan, U., Wilson, C.A., Patience, C., Salomon, D.R., 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80 (7), 3135-3146]. The functional hierarchies displayed by PERV L domains, demonstrates that L domain selection in viral evolution exists to promote efficient viral assembly, release and infectivity in the virus-host context.« less
Ferrada, Carla; Sotomayor-Zárate, Ramón; Abarca, Jorge; Gysling, Katia
2017-01-01
The mesocorticolimbic circuit projects to the prefrontal cortex, hippocampus, amygdala, and nucleus accumbens, among others, and it originates in the dopaminergic neurons of the ventral tegmental area (VTA). The VTA receives glutamatergic inputs from the prefrontal cortex and several subcortical regions. The glutamate released activates dopaminergic neurons and its action depends on the activation of ionotropic and metabotropic glutamate receptors. VTA dopaminergic neurons release dopamine (DA) from axon terminals in the innervated regions and somatodendritically in the VTA itself. DA release in the VTA is directly correlated with the activity of dopaminergic neurons. We hypothesized that metabotropic glutamate 5 receptors (mGlu5) directly regulate the activity of VTA dopaminergic neurons. To test this hypothesis, the extracellular levels of VTA DA and glutamate were studied by in-vivo microdialysis after an intra-VTA perfusion of (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), selective mGlu5 agonist. We observed that CHPG induced a significant increase in VTA DA and glutamate extracellular levels. To determine whether the effect of CHPG on DA levels is because of the increase in glutamate release, we perfused kynurenic acid, an ionotropic glutamate receptor antagonist, through the probe. Our results showed that kynurenic acid did not block the ability of CHPG to cause DA release. Thus, our results suggest that CHPG acts directly on mGlu5 in dopaminergic neurons to induce the release of DA.
32 CFR 516.43 - Release of Army and other agency records.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Preservation of originals. To preserve the integrity of DA records, DA personnel will submit properly... otherwise by Litigation Division. (See 28 U.S.C. 1733.) (b) Authentication of copies. Copies of DA records approved for release can be authenticated for introduction in evidence by use of DA Form 4. (See § 516.25...
Monoamine transporter and receptor interaction profiles of a new series of designer cathinones.
Simmler, L D; Rickli, A; Hoener, M C; Liechti, M E
2014-04-01
Psychoactive β-keto amphetamines (cathinones) are sold as "bath salts" or "legal highs" and recreationally abused. We characterized the pharmacology of a new series of cathinones, including methedrone, 4-methylethcathinone (4-MEC), 3-fluoromethcathinone (3-FMC), pentylone, ethcathinone, buphedrone, pentedrone, and N,N-dimethylcathinone. We investigated norepinephrine (NE), dopamine (DA), and serotonin (5-HT) uptake inhibition using human embryonic kidney 293 (HEK 293) cells that express the respective human monoamine transporter, the drug-induced efflux of NE, DA, and 5-HT from monoamine-preloaded cells, and binding affinity to monoamine transporters and receptors. All of the cathinones were potent NE uptake inhibitors but differed in their DA vs. 5-HT transporter inhibition profiles and monoamine release effects. Methedrone was a more potent 5-HT than DA transporter inhibitor and released NE and 5-HT similar to para-methoxymethamphetamine (PMMA), para-methoxyamphetamine (PMA), 4-methylthioamphetamine (4-MTA), and 3,4-methylenedioxymethamphetamine (MDMA). 4-MEC and pentylone equipotently inhibited all of the monoamine transporters and released 5-HT. Ethcathinone and 3-FMC inhibited NE and DA uptake and released NE, and 3-FMC also released DA similar to N-ethylamphetamine and methamphetamine. Pentedrone and N,N-dimethylcathinone were non-releasing NE and DA uptake inhibitors as previously shown for pyrovalerone cathinones. Buphedrone preferentially inhibited NE and DA uptake and also released NE. None of the cathinones bound to rodent trace amine-associated receptor 1, in contrast to the non-β-keto-amphetamines. None of the cathinones exhibited relevant binding to other monoamine receptors. In summary, we found considerable differences in the monoamine transporter interaction profiles among different cathinones and compared with related amphetamines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Turton, Samuel; Myers, James Fm; Mick, Inge; Colasanti, Alessandro; Venkataraman, Ashwin; Durant, Claire; Waldman, Adam; Brailsford, Alan; Parkin, Mark C; Dawe, Gemma; Rabiner, Eugenii A; Gunn, Roger N; Lightman, Stafford L; Nutt, David J; Lingford-Hughes, Anne
2018-06-25
Addiction has been proposed as a 'reward deficient' state, which is compensated for with substance use. There is growing evidence of dysregulation in the opioid system, which plays a key role in reward, underpinning addiction. Low levels of endogenous opioids are implicated in vulnerability for developing alcohol dependence (AD) and high mu-opioid receptor (MOR) availability in early abstinence is associated with greater craving. This high MOR availability is proposed to be the target of opioid antagonist medication to prevent relapse. However, changes in endogenous opioid tone in AD are poorly characterised and are important to understand as opioid antagonists do not help everyone with AD. We used [ 11 C]carfentanil, a selective MOR agonist positron emission tomography (PET) radioligand, to investigate endogenous opioid tone in AD for the first time. We recruited 13 abstinent male AD and 15 control participants who underwent two [ 11 C]carfentanil PET scans, one before and one 3 h following a 0.5 mg/kg oral dose of dexamphetamine to measure baseline MOR availability and endogenous opioid release. We found significantly blunted dexamphetamine-induced opioid release in 5 out of 10 regions-of-interest including insula, frontal lobe and putamen in AD compared with controls, but no significantly higher MOR availability AD participants compared with HC in any region. This study is comparable to our previous results of blunted dexamphetamine-induced opioid release in gambling disorder, suggesting that this dysregulation in opioid tone is common to both behavioural and substance addictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHaven, D.L.; Steranka, L.R.
Raiteri et al have suggested that muscarinic receptor subtypes can be differentiated in striatal synaptosomes by the release of DA (M1) or ACh (M2). The authors attempted to replicate this finding and to characterize responses of selective and non-selective cholinergic agonists and antagonists using K+-stimulated release of transmitters from rat striatal slices. The non-selective agonists ACh, carbachol and oxotremorine stimulated release of (/sup 3/H)-DA and inhibited release of (/sup 14/C)-ACh with EC50 values of 10.6, 9.2 and 4.2 ..mu..M (DA) and 1.2, 0.77 and 0.43 ..mu..M (ACh), respectively. The M1 agonist McN-A-343-11 selectively inhibited release of DA with an EC50more » value of 4.8 ..mu..M. Pilocarpine was ineffective in this system. The M1 antagonist pirenzepine reversed the effects of 10/sup -4/ M carbachol on release with an eight-fold selectivity for release of (/sup 3/H)-DA (IC50 = 0.77 ..mu..M) vs (/sup 14/C)-ACh (IC50 = 6.3 ..mu..M). These results suggest that although this system can determine relative subtype selectivities, the results obtained in this assay do not always correlate with those obtained from phosphatidyl inositol turnover or adenylate cyclase activity.« less
Ohno-Shosaku, T; Maejima, T; Kano, M
2001-03-01
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.
STUDIES ON TUBERCULIN FEVER. 3. MECHANISMS INVOLVED IN THE RELEASE OF ENDOGENOUS PYROGEN IN VITRO.
ATKINS, E; HEIJN, C
1965-08-01
In a search for the source of the circulating endogenous pyrogen (EP) that mediates tuberculin-induced fever, tuberculin was incubated in vitro with various tissues of rabbits sensitized by intravenous infection with BCG. Evidence was obtained that tuberculin specifically stimulates cells in the blood of sensitized rabbits to generate pyrogen in vitro, whereas both lymph node and spleen cells from the same donors were inactive. Since normal blood cells, incubated in plasma of sensitized donors, were similarly activated, it is postulated that circulating antibodies play a role in sensitizing cells (presumably granulocytes) to release pyrogen on contact with tuberculin) both in vitro and in vivo. Release of endogenous pyrogen in vitro may be a sensitive means of detecting immunologic reactions between antigen and specifically sensitized blood cells-in other allergic states accompanied by fever.
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Torres, Gonzalo E; Wagner, Amy K
2015-03-02
Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can assess real-time in vivo dopamine (DA) concentration changes to study the kinetics of DA neurotransmission. Electrical stimulation of dopaminergic (DAergic) pathways can elicit FSCV DA responses that largely reflect a balance of DA release and reuptake. Interpretation of these evoked DA responses requires a framework to discern the contribution of DA release and reuptake. The current, widely implemented interpretive framework for doing so is the Michaelis-Menten (M-M) model, which is grounded on two assumptions- (1) DA release rate is constant during stimulation, and (2) DA reuptake occurs through dopamine transporters (DAT) in a manner consistent with M-M enzyme kinetics. Though the M-M model can simulate evoked DA responses that rise convexly, response types that predominate in the ventral striatum, the M-M model cannot simulate dorsal striatal responses that rise concavely. Based on current neurotransmission principles and experimental FSCV data, we developed a novel, quantitative, neurobiological framework to interpret DA responses that assumes DA release decreases exponentially during stimulation and continues post-stimulation at a diminishing rate. Our model also incorporates dynamic M-M kinetics to describe DA reuptake as a process of decreasing reuptake efficiency. We demonstrate that this quantitative, neurobiological model is an extension of the traditional M-M model that can simulate heterogeneous regional DA responses following manipulation of stimulation duration, frequency, and DA pharmacology. The proposed model can advance our interpretive framework for future in vivo FSCV studies examining regional DA kinetics and their alteration by disease and DA pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.
Presynaptic control of dopamine release by BETA-phenylethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zharikova, A.D.; Godukhin, O.V.
The authors study the effect of extracellular ions (Ca/sup 2 +/, Na/sup 2 +/) on the beta-phenylethylamine (beta-PEA) releasing effect, dependence of this effect on the membrane potential of dopaminergic endings, and the participation of dopamine presynaptic autoreceptors in the realization of the effects of beta-PEA on dopamine (DA) release. Experi ments were carried out on noninbred male albino rats. By means of a microsyringe, (/sup 3/H)-DA hydrochloride was injected. The significance of the difference in levels of (/sup 3/H)-DA release during analogous periods of perfusion in the groups of animals compared was estimated by Student's test. These experiments inmore » vivo thus demonstrated the ability of beta-PEA to regulate DA release in different directions depending on the functional state of the dopaminergic neuron.« less
Possible human endogenous cryogens.
Shido, Osamu; Sugimoto, Naotoshi
2011-06-01
Anapyrexia, which is a regulated fall in core temperature, is beneficial for animals and humans when the oxygen supply is limited, e.g., hypoxic, ischemic, or histotoxic hypoxia, since at low body temperature the tissues require less oxygen due to Q(10). Besides hypoxia, anapyrexia can be induced various exogenous and endogenous substances, named cryogens. However, there are only a few reports investigating endogenous cryogens in mammals. We have experienced one patient who suffered from severe hypothermia. The patient seemed to be excessively producing endogenous peptidergic cryogenic substances the molecular weight of which may be greater than 30 kDa. In animal studies, the patient's cryogen appeared to affect metabolic functions, including thermogenic threshold temperatures, and then to produce hypothermia. Since endogenous cryogenic substances may be regarded as useful tool in human activities, e.g., during brain hypothermia therapy or staying in a space station or spaceship, further studies may be needed to identify human endogenous cryogens.
Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function.
Fleshner, M; Johnson, J D
2005-08-01
Exposure to acute physical and/or psychological stressors induces a cascade of physiological changes collectively termed the stress response. The stress response is demonstrable at the behavioural, neural, endocrine and cellular levels. Stimulation of the stress response functions to improve an organism's chance of survival during acute stressor challenge. The current review focuses on one ubiquitous cellular stress response, up-regulation of heat shock protein 72 (Hsp72). Although a great deal is known about the function of intra-cellular Hsp72 during exposure to acute stressors, little is understood about the potential function of endogenous extra-cellular Hsp72 (eHsp72). The current review will develop the hypothesis that eHsp72 release may be a previously unrecognized feature of the acute stress response and may function as an endogenous 'danger signal' for the immune system. Specifically, it is proposed that exposure to physical or psychological acute stressors stimulate the release of endogenous eHsp72 into the blood via an alpha1-adrenergic receptor-mediated mechanism and that elevated eHsp72 functions to facilitate innate immunity in the presence of bacterial challenge.
Harun, Rashed; Grassi, Christine M; Munoz, Miranda J; Wagner, Amy K
2017-06-05
Central dopaminergic (DAergic) pathways have an important role in a wide range of functions, such as attention, motivation, and movement. Dopamine (DA) is implicated in diseases and disorders including attention deficit hyperactivity disorder, Parkinson's disease, and traumatic brain injury. Thus, DA neurotransmission and the methods to study it are of intense scientific interest. In vivo fast-scan cyclic voltammetry (FSCV) is a method that allows for selectively monitoring DA concentration changes with fine temporal and spatial resolution. This technique is commonly used in conjunction with electrical stimulations of ascending DAergic pathways to control the impulse flow of dopamine neurotransmission. Although the stimulated DA neurotransmission paradigm can produce robust DA responses with clear morphologies, making them amenable for kinetic analysis, there is still much debate on how to interpret the responses in terms of their DA release and clearance components. To address this concern, a quantitative neurobiological (QN) framework of stimulated DA neurotransmission was recently developed to realistically model the dynamics of DA release and reuptake over the course of a stimulated DA response. The foundations of this model are based on experimental data from stimulated DA neurotransmission and on principles of neurotransmission adopted from various lines of research. The QN model implements 12 parameters related to stimulated DA release and reuptake dynamics to model DA responses. This work describes how to simulate DA responses using QNsim1.0 and also details principles that have been implemented to systematically discern alterations in the stimulated dopamine release and reuptake dynamics.
Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs.
Bauchart, Caroline; Morzel, Martine; Chambon, Christophe; Mirand, Philippe Patureau; Reynès, Christelle; Buffière, Caroline; Rémond, Didier
2007-12-01
Characterisation and identification of peptides (800 to 5000 Da) generated by intestinal digestion of fish or meat were performed using MS analyses (matrix-assisted laser desorption ionisation time of flight and nano-liquid chromatography electrospray-ionisation ion trap MS/MS). Four pigs fitted with cannulas at the duodenum and jejunum received a meal exclusively made of cooked Pectoralis profundus beef meat or cooked trout fillets. A protein-free meal, made of free amino acids, starch and fat, was used to identify peptides of endogenous origin. Peptides reproducibly detected in digesta (i.e. from at least three pigs) were evidenced predominantly in the first 3 h after the meal. In the duodenum, most of the fish- and meat-derived peptides were characteristic of a peptic digestion. In the jejunum, the majority of peptides appeared to result from digestion by chymotrypsin and trypsin. Despite slight differences in gastric emptying kinetics and overall peptide production, possibly in relation to food structure and texture, six and four similar peptides were released after ingestion of fish or meat in the duodenum and jejunum. A total of twenty-six different peptides were identified in digesta. All were fragments of major structural (actin, myosin) or sarcoplasmic (creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and myoglobin) muscle proteins. Peptides were short ( < 2000 Da) and particularly rich in proline residues. Nineteen of them contained bioactive sequences corresponding mainly to an antihypertensive activity. The present work showed that after fish or meat ingestion, among the wide variety of peptides produced by enzymic digestion, some of them can be reproducibly observed in intestinal digesta.
Kahn, R S; Davidson, M; Kanof, P; McQueeney, R T; Singh, R R; Davis, K L
1991-01-01
In laboratory animals, prostaglandins have been shown to act as endogenous neuromodulators of central dopamine (DA) activity. To examine the interaction between prostaglandins and DA in man, the effect of a prostaglandin synthesis inhibitor, indomethacin, was studied on plasma concentrations of the DA metabolite, homovanillic acid (pHVA). Indomethacin (150 mg PO) as compared to placebo significantly elevated mean pHVA concentrations in eight normal subjects. Results of this study support the hypothesis that, as in animals, inhibition of prostaglandin synthesis increases central DA turnover in man.
Robertson, G S; Damsma, G; Fibiger, H C
1991-07-01
Dopamine (DA) is released not only from the terminals of the nigrostriatal projection, but also from the dendrites of these neurons, which arborize in the substantia nigra pars reticulata (SNR). Although striatal DA release has been extensively studied by in vivo microdialysis, dendritic DA release in the SNR has not been characterized by this technique. Extracellular DA was monitored simultaneously in the ipsilateral striatum and SNR. The nigral probe was implanted at a 50 degree angle, permitting 2.5 mm of SNR to be dialyzed. Delivery of the tracer Fluoro-Gold into the striatal probe retrogradely labeled tyrosine hydroxylase-positive cell bodies and dendrites in the vicinity of the nigral probe. Hence, it could be demonstrated that dopaminergic neurons near the nigral probe projected to the vicinity of the striatal probe. Addition of 50 mM KCl to the SNR perfusion solution produced a 3.5-fold increase in DA and a 50% reduction in dihydroxyphenylacetic acid (DOPAC) in the SNR; in contrast, this manipulation in the SNR caused DA release in the striatum to be decreased by 20%, while striatal DOPAC was increased by 50%. Local administration of nomifensine (10 microM) in the SNR produced a sevenfold increase in SNR DA but had no effect on striatal DA. Systemic injection of d-amphetamine (2 mg/kg, s.c.) elevated DA in the SNR and striatum five- to sevenfold, while DOPAC was decreased in both structures by at least 40%. To determine the effect of tetrodotoxin (TTX), basal concentrations of DA in the SNR were first elevated threefold by including nomifensine (1 microM) in the nigral perfusion solution.(ABSTRACT TRUNCATED AT 250 WORDS)
Cytoprotection by Endogenous Zinc in the Vertebrate Retina
Anastassov, Ivan; Ripps, Harris; Chappell, Richard L.
2014-01-01
Our recent studies have shown that endogenous zinc, co-released with glutamate from the synaptic terminals of vertebrate retinal photoreceptors, provides a feedback mechanism that reduces calcium entry and the concomitant vesicular release of glutamate. We hypothesized that zinc feedback may serve to protect the retina from glutamate excitotoxicity, and conducted in vivo experiments on the retina of the skate (Raja erinacea) to determine the effects of removing endogenous zinc by chelation. These studies showed that removal of zinc by injecting the zinc chelator histidine results in inner retinal damage similar to that induced by the glutamate receptor agonist kainic acid. In contrast, when an equimolar quantity of zinc followed the injection of histidine, the retinal cells were unaffected. Our results are a good indication that zinc, co-released with glutamate by photoreceptors, provides an auto-feedback system that plays an important cytoprotective role in the retina. PMID:24286124
Mechanism of aminopyridine-induced release of [3H]dopamine from rat brain synaptosomes.
Scheer, H W; Lavoie, P A
1991-01-01
1. Aminopyridines (APs) induced the release of [3H]dopamine (3H-DA) from rat synaptosomal preparations. 2. 4-AP and 3,4-DAP were of equal efficacy in inducing release of 3H-DA; 3-AP, 2-AP and 2,6-AP were less active; pyridine and pyridine-4-carboxylamide were inactive. 3. Cd2+ was more effective in inhibiting 4-AP-induced release of 3H-DA (IC50 approximately 4 microM) than Co2+ and Ni2+ (IC50s approximately 500 microM). 4. While 4-AP increased the 45Ca2+ content of whole synaptosomal preparations, no effect of 4-AP on 45Ca2+ content was observed in lysed synaptosomal preparations. 5. 4-AP-induced 45Ca2+ uptake was inhibited by Cd2+, Ni2+ and Co2+ in concentration ranges similar to those inhibiting 3H-DA release.
Jang, Eun Young; Yang, Chae Ha; Hedges, David M; Kim, Soo Phil; Lee, Jun Yeon; Ekins, Tyler G; Garcia, Brandon T; Kim, Hee Young; Nelson, Ashley C; Kim, Nam Jun; Steffensen, Scott C
2017-09-01
Methamphetamine (METH) markedly increases dopamine (DA) release in the mesolimbic DA system, which plays an important role in mediating the reinforcing effects of METH. METH-induced DA release results in the formation of reactive oxygen species (ROS), leading to oxidative damage. We have recently reported that ROS are implicated in behavior changes and DA release in the nucleus accumbens (NAc) following cocaine administration. The aim of this study was to evaluate the involvement of ROS in METH-induced locomotor activity, self-administration and enhancement of DA release in the NAc. Systemic administration of a non-specific ROS scavenger, N-tert-butyl-α-phenylnitrone (PBN; 0, 50 and 75 mg/kg, IP) or a superoxide-selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL; 0, 50 and 100 mg/kg, IP), attenuated METH-induced locomotor activity without affecting generalized behavior in METH-naïve rats. PBN and TEMPOL significantly attenuated METH self-administration without affecting food intake. Increased oxidative stress was found in neurons, but not astrocytes, microglia or oligodendrocytes, in the NAc of METH self-administering rats. In addition, TEMPOL significantly decreased METH enhancement of DA release in the NAc. Taken together, these results suggest that enhancement of ROS in the NAc contributes to the reinforcing effect of METH. © 2016 Society for the Study of Addiction.
Krieger, J R; Ogle, M E; McFaline-Figueroa, J; Segar, C E; Temenoff, J S; Botchwey, E A
2016-01-01
Tissue repair processes are characterized by the biphasic recruitment of distinct subpopulations of blood monocytes, including classical ("inflammatory") monocytes (IMs, Ly6C(hi)Gr1(+)CX3CR1(lo)) and non-classical anti-inflammatory monocytes (AMs, Ly6C(lo)Gr1(-)CX3CR1(hi)). Drug-eluting biomaterial implants can be used to tune the endogenous repair process by the preferential recruitment of pro-regenerative cells. To enhance recruitment of AMs during inflammatory injury, a novel N-desulfated heparin-containing poly(ethylene glycol) diacrylate (PEG-DA) hydrogel was engineered to deliver exogenous stromal derived factor-1α (SDF-1α), utilizing the natural capacity of heparin to sequester and release growth factors. SDF-1α released from the hydrogels maintained its bioactivity and stimulated chemotaxis of bone marrow cells in vitro. Intravital microscopy and flow cytometry demonstrated that SDF-1α hydrogels implanted in a murine dorsal skinfold window chamber promoted spatially-localized recruitment of AMs relative to unloaded internal control hydrogels. SDF-1α delivery stimulated arteriolar remodeling that was correlated with AM enrichment in the injury niche. SDF-1α, but not unloaded control hydrogels, supported sustained arteriogenesis and microvascular network growth through 7 days. The recruitment of AMs correlated with parameters of vascular remodeling suggesting that tuning the innate immune response by biomaterial SDF-1α release is a promising strategy for promoting vascular remodeling in a spatially controlled manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents.
Burma, Nicole E; Bonin, Robert P; Leduc-Pessah, Heather; Baimel, Corey; Cairncross, Zoe F; Mousseau, Michael; Shankara, Jhenkruthi Vijaya; Stemkowski, Patrick L; Baimoukhametova, Dinara; Bains, Jaideep S; Antle, Michael C; Zamponi, Gerald W; Cahill, Catherine M; Borgland, Stephanie L; De Koninck, Yves; Trang, Tuan
2017-03-01
Opiates are essential for treating pain, but termination of opiate therapy can cause a debilitating withdrawal syndrome in chronic users. To alleviate or avoid the aversive symptoms of withdrawal, many of these individuals continue to use opiates. Withdrawal is therefore a key determinant of opiate use in dependent individuals, yet its underlying mechanisms are poorly understood and effective therapies are lacking. Here, we identify the pannexin-1 (Panx1) channel as a therapeutic target in opiate withdrawal. We show that withdrawal from morphine induces long-term synaptic facilitation in lamina I and II neurons within the rodent spinal dorsal horn, a principal site of action for opiate analgesia. Genetic ablation of Panx1 in microglia abolished the spinal synaptic facilitation and ameliorated the sequelae of morphine withdrawal. Panx1 is unique in its permeability to molecules up to 1 kDa in size and its release of ATP. We show that Panx1 activation drives ATP release from microglia during morphine withdrawal and that degrading endogenous spinal ATP by administering apyrase produces a reduction in withdrawal behaviors. Conversely, we found that pharmacological inhibition of ATP breakdown exacerbates withdrawal. Treatment with a Panx1-blocking peptide ( 10 panx) or the clinically used broad-spectrum Panx1 blockers, mefloquine or probenecid, suppressed ATP release and reduced withdrawal severity. Our results demonstrate that Panx1-mediated ATP release from microglia is required for morphine withdrawal in rodents and that blocking Panx1 alleviates the severity of withdrawal without affecting opiate analgesia.
Oberlin, Brandon G; Dzemidzic, Mario; Tran, Stella M; Soeurt, Christina M; Albrecht, Daniel S; Yoder, Karmen K; Kareken, David A
2013-08-01
Striatal dopamine (DA) is increased by virtually all drugs of abuse, including alcohol. However, drug-associated cues are also known to provoke striatal DA transmission- a phenomenon linked to the motivated behaviors associated with addiction. To our knowledge, no one has tested if alcohol's classically conditioned flavor cues, in the absence of a significant pharmacologic effect, are capable of eliciting striatal DA release in humans. Employing positron emission tomography (PET), we hypothesized that beer's flavor alone can reduce the binding potential (BP) of [(11)C]raclopride (RAC; a reflection of striatal DA release) in the ventral striatum, relative to an appetitive flavor control. Forty-nine men, ranging from social to heavy drinking, mean age 25, with a varied family history of alcoholism underwent two [(11)C]RAC PET scans: one while tasting beer, and one while tasting Gatorade. Relative to the control flavor of Gatorade, beer flavor significantly increased self-reported desire to drink, and reduced [(11)C]RAC BP, indicating that the alcohol-associated flavor cues induced DA release. BP reductions were strongest in subjects with first-degree alcoholic relatives. These results demonstrate that alcohol-conditioned flavor cues can provoke ventral striatal DA release, absent significant pharmacologic effects, and that the response is strongest in subjects with a greater genetic risk for alcoholism. Striatal DA responses to salient alcohol cues may thus be an inherited risk factor for alcoholism.
1983-09-30
BETHESDA ND A I FADEN 38 SEP 83 UNCLASSIFIED MPR-2509 FG 6/15 NL EIihlllIEllllI EIIhlEEE~llllE E/I/I/IEE/IlhI EIIIEEEEEEIIE = " W lo 111.2.0 1111IL25 LA 11_L...blood flow related to the release of endogenous opioi 1 ,,;. I LCV;0,,;’ ’ W i-’, ; . .- I:I, opiate receptor antagonist naloxone improve,; 1,ou- spinal...34iorl-one (TRH), which acts in part as a physiologic antaT-, iL endogenous opicii’ -;’’,tems, also significantly" i -rov s bloo (l Fo., .-,nd netir
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Fà, Mauro; Gessa, Gian Luigi
2005-01-01
Background Previous studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ. The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled. PMID:15865626
Feeding-associated alterations in striatal neurotransmitter release
NASA Technical Reports Server (NTRS)
Acworth, I. N.; Ressler, K.; Wurtman, R. J.
1989-01-01
Published evidence suggests a role for dopaminergic (DA) brain pathways in feeding-associated behaviors. Using the novel technique of brain microdialysis of striatal extracellular fluid (ECF) as an index of DA release, Church et al. described increases in levels of DA when animals had limited access to pellets, but not with free access. Dopamine release from the nucleus accumbens did increase with free access to pellets post starvation or after food reward. We used permanently implanted microdialysis probes to measure ECF levels of DA, DOPAC, HVA, and large neutral amino acids (LNAA) for up to 72 hours after implantation among rats experiencing different dietary regimens.
Photoreduction and incorporation of iron into ferritins.
Laulhère, J P; Labouré, A M; Briat, J F
1990-01-01
Pea seed ferritin is able to incorporate ferrous iron into the mineral core. Fe2+ may be formed by reduction of exogenous Fe3+ with ascorbate or by photoreduction by ferritin and by ferric citrate. In our experimental conditions the bulk of the photoreduction is carried out by ferritin, which is able to photoreduce its endogenous iron. Citrate does not enhance the photoreduction capacity of ferritin, and exogenous ferric citrate improves the yield of the reaction by about 30%. The mineral core of the ferritin is shown to photoreduce actively, and the protein shell does not participate directly in the photoreduction. Low light intensities and low concentration of reducing agents do not allow a release of iron from ferritins, but induce a 'redox mill' of photoreduction and simultaneous ferroxidase-mediated incorporation. High ascorbate concentrations induce the release of ferritin iron. These reactions are accompanied by the correlated occurrence of damage caused by radicals arising from Fenton reactions, leading to specific cleavages in the 28 kDa phytoferritin subunit. This damage caused by radicals occurs during the oxidative incorporation into the mineral core and is prevented by o-phenanthroline or by keeping the samples in the dark. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. PMID:2375759
Sphingosine regulates the NLRP3-inflammasome and IL-1β release from macrophages
Luheshi, Nadia M; Giles, James A; Lopez-Castejon, Gloria; Brough, David
2012-01-01
Abstract Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that regulates inflammatory responses to injury and infection. IL-1β secretion requires the protease caspase-1, which is activated following recruitment to inflammasomes. Endogenous danger-associated molecular patterns (DAMPs) released from necrotic cells activate caspase-1 through an NLRP3-inflammasome. Here, we show that the endogenous lipid metabolite sphingosine (Sph) acts as a DAMP by inducing the NLRP3-inflammasome-dependent secretion of IL-1β from macrophages. This process was dependent upon serine/threonine protein phosphatases since the PP1/PP2A inhibitors okadaic acid and calyculin A inhibited Sph-induced IL-1β release. IL-1β release induced by other well-characterized NLRP3-inflammasome activators, such as ATP and uric acid crystals, in addition to NLRC4 and AIM2 inflammasome activators was also blocked by these inhibitors. Thus, we propose Sph as a new DAMP, and that a serine/threonine phosphatase (PP1/PP2A)-dependent signal is central to the endogenous host mechanism through which diverse stimuli regulate inflammasome activation. PMID:22105559
McRae, A; Hjorth, S; Mason, D; Dillon, L; Tice, T
1990-01-01
Biodegradable controlled-release microcapsule systems made with the biocompatible biodegradable polyester excipient poly [DL-lactide-co-gly-colide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microcapsules encapsulated within two different polymer excipients into denervated striatal tissue assures a prolonged release of the transmitter in vivo. This technology has a considerable potential for basic and possibly clinical research.
Browne, Caleb J; Ji, Xiaodong; Higgins, Guy A; Fletcher, Paul J; Harvey-Lewis, Colin
2017-10-01
Converging lines of behavioral, electrophysiological, and biochemical evidence suggest that 5-HT 2C receptor signaling may bidirectionally influence reward-related behavior through an interaction with the mesolimbic dopamine (DA) system. Here we directly test this hypothesis by examining how modulating 5-HT 2C receptor activity affects DA-dependent behaviors and relate these effects to changes in nucleus accumbens (NAc) DA release. In C57BL/6 mice, locomotor activity and responding for a conditioned reinforcer (CRf), a measure of incentive motivation, were examined following treatment with three 5-HT 2C receptor ligands: the agonist CP809101 (0.25-3 mg/kg), the antagonist SB242084 (0.25-1 mg/kg), or the antagonist/inverse agonist SB206553 (1-5 mg/kg). We further tested whether doses of these compounds that changed locomotor activity and responding for a CRf (1 mg/kg CP809101, 0.5 mg/kg SB242084, or 2.5 mg/kg SB206553) also altered NAc DA release using in vivo microdialysis in anesthetized mice. CP809101 reduced locomotor activity, responding for a CRf, and NAc DA release. In contrast, both SB242084 and SB206553 enhanced locomotor activity, responding for a CRf, and NAc DA release, although higher doses of SB206553 produced opposite behavioral effects. Pretreatment with the non-selective DA receptor antagonist α-flupenthixol prevented SB242084 from enhancing responding for a CRf. Thus blocking tonic 5-HT 2C receptor signaling can release serotonergic inhibition of mesolimbic DA activity and enhance reward-related behavior. The observed bidirectional effects of 5-HT 2C receptor ligands may have important implications when considering the 5-HT 2C receptor as a therapeutic target for psychiatric disorders, particularly those presenting with motivational dysfunctions.
Kasanova, Zuzana; Ceccarini, Jenny; Frank, Michael J; Amelsvoort, Thérèse van; Booij, Jan; Heinzel, Alexander; Mottaghy, Felix; Myin-Germeys, Inez
2017-07-01
Much human behavior is driven by rewards. Preclinical neurophysiological and clinical positron emission tomography (PET) studies have implicated striatal phasic dopamine (DA) release as a primary modulator of reward processing. However, the relationship between experimental reward-induced striatal DA release and responsiveness to naturalistic rewards, and therefore functional relevance of these findings, has been elusive. We therefore combined, for the first time, a DA D 2/3 receptor [ 18 F]fallypride PET during a probabilistic reinforcement learning (RL) task with a six day ecological momentary assessments (EMA) of reward-related behavior in the everyday life of 16 healthy volunteers. We detected significant reward-induced DA release in the bilateral putamen, caudate nucleus and ventral striatum, the extent of which was associated with better behavioral performance on the RL task across all regions. Furthermore, individual variability in the extent of reward-induced DA release in the right caudate nucleus and ventral striatum modulated the tendency to be actively engaged in a behavior if the active engagement was previously deemed enjoyable. This study suggests a link between striatal reward-related DA release and ecologically relevant reward-oriented behavior, suggesting an avenue for the inquiry into the DAergic basis of optimal and impaired motivational drive. Copyright © 2017 Elsevier B.V. All rights reserved.
Oja, Simo S; Saransaari, Pirjo
2009-09-01
The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K(+)-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, L-glutamate and L-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active L-glutamine, L-alanine, L-threonine and L-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K(+) stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.
Reward system and addiction: what dopamine does and doesn't do.
Di Chiara, Gaetano; Bassareo, Valentina
2007-02-01
Addictive drugs share with palatable food the property of increasing extracellular dopamine (DA), preferentially in the nucleus accumbens shell rather than in the core. However, by acting directly on the brain, drugs bypass the adaptive mechanisms (habituation) that constrain the responsiveness of accumbens shell DA to food reward, abnormally facilitating Pavlovian incentive learning and promoting the acquisition of abnormal DA-releasing properties by drug conditioned stimuli. Thus, whereas Pavlovian food conditioned stimuli release core but not shell DA, drug conditioned stimuli do the opposite, releasing shell but not core DA. This process, which results in the acquisition of excessive incentive-motivational properties by drug conditioned stimuli, initiates the drug addiction process. Neuroadaptive processes related to the chronic influence of drugs on subcortical DA might secondarily impair the function of prefronto-striatal loops, resulting in impairments in impulse control and decision making that form the basis for the compulsive feature of drug seeking and its relapsing character.
Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping
2015-07-24
One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.
Siviy, Stephen M; McDowell, Lana S; Eck, Samantha R; Turano, Alexandra; Akopian, Garnik; Walsh, John P
2015-12-01
Previous work from our laboratories has shown that juvenile Fischer 344 (F344) rats are less playful than other strains and also appear to be compromised in dopamine (DA) functioning. To determine whether the dysfunctional play in this strain is associated with deficits in the handling and delivery of vesicular DA, the following experiments assessed the extent to which F344 rats are differentially sensitive to the effects of amphetamine. When exposed to amphetamine, striatal slices obtained from F344 rats showed a small increase in unstimulated DA release when compared with slices from Sprague-Dawley rats; they also showed a more rapid high K+-mediated release of DA. These data provide tentative support for the hypothesis that F344 rats have a higher concentration of cytoplasmic DA than Sprague-Dawley rats. When rats were tested for activity in an open field, F344 rats presented a pattern of results that was consistent with either an enhanced response to amphetamine (3 mg/kg) or a more rapid release of DA (10 mg/kg). Although there was some indication that amphetamine had a dose-dependent differential effect on play in the two strains, play in F344 rats was not enhanced to any degree by amphetamine. Although these results are not consistent with our working hypothesis that F344 rats are less playful because of a deficit in vesicular release of DA, they still suggest that this strain may be a useful model for better understanding the role of DA in social behavior during the juvenile period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurse, B.; Russell, V.A.; Taljaard, J.J.
1988-05-01
The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotoninmore » agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.« less
Shirane, M; Nakamura, K
2001-10-19
Aniracetam, a cognition enhancer, has been recently found to preferentially increase extracellular levels of dopamine (DA) and serotonin (5-HT) in the prefrontal cortex (PFC), basolateral amygdala and dorsal hippocampus of the mesocorticolimbic system in stroke-prone spontaneously hypertensive rats. In the present study, we aimed to identify actually active substances among aniracetam and its major metabolites and to clarify the mode of action in DA and 5-HT release in the PFC. Local perfusion of mecamylamine, a nicotinic acetylcholine (nACh) and N-methyl-D-aspartate (NMDA) receptor antagonist, into the ventral tegmental area (VTA) and dorsal raphe nucleus (DRN) completely blocked DA and 5-HT release, respectively, in the PFC elicited by orally administered aniracetam. The effects of aniracetam were mimicked by local perfusion of N-anisoyl-gamma-aminobutyric acid [corrected] (N-anisoyl-GABA), one of the major metabolites of aniracetam, into the VTA and DRN. The cortical DA release induced by N-anisoyl-GABA applied to the VTA was also completely abolished by co-perfusion of mecamylamine. Additionally, when p-anisic acid, another metabolite of aniracetam, and N-anisoyl-GABA were locally perfused into the PFC, they induced DA and 5-HT release in the same region, respectively. These results indicate that aniracetam enhances DA and 5-HT release by mainly mediating the action of N-anisoyl-GABA that targets not only somatodendritic nACh and NMDA receptors but also presynaptic nACh receptors.
Dobrev, Dobromir; Milde, Alexander S; Andreas, Klaus; Ravens, Ursula
1999-01-01
The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to ω-conotoxin GVIA (ω-CTx-GVIA), ω-agatoxin IVA (ω-Aga-IVA) and ω-conotoxin MVIIC (ω-CTx-MVIIC), respectively.KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 μM). It was significantly blocked by ω-CTx-GVIA (1 μM), ω-Aga-IVA (30 nM) and was confirmed to be abolished by ω-CTx-MVIIC (3 μM), indicating involvement of N-, P- and Q-type channel subtypes.Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 μM) were fully additive to the effect of ω-CTx-GVIA (1 μM), whereas co-application with ω-Aga-IVA (30 nM) produced similar effects to those of ω-Aga-IVA alone.As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 μM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 μM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 μM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved.Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only. PMID:10385261
Bassareo, Valentina; De Luca, Maria Antonietta; Di Chiara, Gaetano
2007-04-01
Conditioned stimuli (CSs) by pavlovian association with reinforcing drugs (US) are thought to play an important role in the acquisition, maintenance and relapse of drug dependence. The aim of this study was to investigate by microdialysis the impact of pavlovian drug CSs on behaviour and on basal and drug-stimulated dopamine (DA) in three terminal DA areas: nucleus accumbens shell, core and prefrontal cortex (PFCX). Conditioned rats were trained once a day for 3 days by presentation of Fonzies filled box (FFB, CS) for 10 min followed by administration of morphine (1 mg/kg), nicotine (0.4 mg/kg) or saline, respectively. Pseudo-conditioned rats were presented with the FFB 10 h after drug or saline administration. Rats were implanted with microdialysis probes in the shell, core and PFCX. The effect of stimuli conditioned with morphine and nicotine on DA and on DA response to drugs was studied. Drug CSs elicited incentive reactions and released DA in the shell and PFCX but not in the core. Pre-exposure to morphine CS potentiated DA release to morphine challenge in the shell but not in the core and PFCX. This effect was related to the challenge dose of morphine and was stimulus-specific since a food CS did not potentiate the shell DA response to morphine. Pre-exposure to nicotine CS potentiated DA release in the shell and PFCX. The results show that drug CSs stimulate DA release in the shell and medial PFCX and specifically potentiate the primary stimulant drug effects on DA transmission.
Pirger, Zsolt; Rácz, Boglárka; Kiss, Tibor
2009-02-01
PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands). SG cells in active feeding animals revealed multiple morphological changes characteristic of PCD. Nerve stimulation and DA (dopamine) increased the number of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling)-positive cells both in inactive and feeding animals. The DA-induced PCD was prevented by TEA (tetraethylammonium chloride) and eticlopride, emphasizing the role of K channels and D2 receptors in the PCD of cystic cells. DA enhanced cyto-c (cytochrome c) translocation into the cytosol and methyl-beta-cyclodextrin prevented it, suggesting apoptosome formation and ceramide involvement in the PCD linking of the surface DA receptor to mitochondria. Western blot analysis revealed that the release of cyto-c was under the control of Bcl-2 and Bad. DA also increased the active caspase-3 in gland cells while D2 receptor antagonists and TEA attenuated it. Our results provide evidence for a type of transmitter-mediated pathway that regulates the PCD of secretory cells in a mitochondrial-caspase-dependent manner. The activation of specific molecules, such as K channels, DA receptors, cyto-c, ceramide, Bcl-2 proteins and caspase-3, but not caspase-8, was demonstrated in cells involved in the DA-induced PCD, suggesting that PCD is a physiological method for the release of saliva from SG cells.
Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel
2007-09-05
The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.
Bourdois, P.S.; Mitchell, J.F.; Somogyi, G.T.; Szerb, J.C.
1974-01-01
1 The release of endogenous acetylcholine (ACh) from cerebral cortical slices stimulated at 0.25, 1, 4, 16 and 64 Hz was measured in the presence either of physostigmine or of physostigmine and atropine. 2 Atropine potentiated the evoked release of endogenous ACh especially at low frequencies resulting in an output per stimulus which sharply declined with increasing frequency of stimulation, while in the absence of atropine the output of ACh per stimulus was low and fairly constant. 3 The evoked release of [3H]-ACh per stimulus following the incubation of the slices with [3H]-choline, as estimated by means of rate constants of the evoked release of total radioactivity, showed a frequency dependence similar to endogenous ACh when the two were tested under identical conditions. 4 In the absence of an anticholinesterase the evoked release of [3H]-ACh per stimulus was dependent on frequency of stimulation in a similar way to that in the presence of physostigmine and atropine. 5 Results suggest that under physiological conditions, i.e. in the absence of an anti-cholinesterase, the release of ACh per stimulus decreases with increasing frequency of stimulation and that this decrease is due to a lag in the mobilization of stored ACh rather than in the synthesis of new ACh. PMID:4455327
Induction of Hypozincemia and Hepatic Metallothionein Synthesis in Hypersensitivity Reactions.
1978-06-19
cells to produce endogenous pyrogen (EP), the mediator of febrile response. Controversial evidence exists, however , concerning the differentiation of LEM...hypersensitivity reactions, Kampschmid t and Pulliam (1) proposed that leukocytic endogenous mediator (LEN) is released from phagocytic cells after... endogenous mediator(s) such as LEN, no conclusive evidence is available to indicate a mRNA requirement for the production of potential mediator(s
Heat shock protein 60: an endogenous inducer of dopaminergic cell death in Parkinson disease
2014-01-01
Background Increasing evidence suggests that inflammation associated with microglial cell activation in the substantia nigra (SN) of patients with Parkinson disease (PD) is not only a consequence of neuronal degeneration, but may actively sustain dopaminergic (DA) cell loss over time. We aimed to study whether the intracellular chaperone heat shock protein 60 (Hsp60) could serve as a signal of CNS injury for activation of microglial cells. Methods Hsp60 mRNA expression in the mesencephalon and the striatum of C57/BL6 mice treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and the Hsp60/TH mRNA ratios in the SN of PD patients and aged-matched subjects were measured. To further investigate a possible link between the neuronal Hsp60 response and PD-related cellular stress, Hsp60 immunoblot analysis and quantification in cell lysates from SH-SY5Y after treatment with 100 μM MPP+ (1-methyl-4-phenylpyridinium) at different time points (6, 12, 24 and 48 hours) compared to control cells were performed. Additional MTT and LDH assay were used. We next addressed the question as to whether Hsp60 influences the survival of TH+ neurons in mesencephalic neuron-glia cultures treated either with MPP+ (1 μM), hHsp60 (10 μg/ml) or a combination of both. Finally, we measured IL-1β, IL-6, TNF-α and NO-release by ELISA in primary microglial cell cultures following treatment with different hHsp60 preparations. Control cultures were exposed to LPS. Results In the mesencephalon and striatum of mice treated with MPTP and also in the SN of PD patients, we found that Hsp60 mRNA was up-regulated. MPP+, the active metabolite of MPTP, also caused an increased expression and release of Hsp60 in the human dopaminergic cell line SH-SY5Y. Interestingly, in addition to being toxic to DA neurons in primary mesencephalic cultures, exogenous Hsp60 aggravated the effects of MPP+. Yet, although we demonstrated that Hsp60 specifically binds to microglial cells, it failed to stimulate the production of pro-inflammatory cytokines or NO by these cells. Conclusions Overall, our data suggest that Hsp60 is likely to participate in DA cell death in PD but via a mechanism unrelated to cytokine release. PMID:24886419
Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.
Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J
2014-09-01
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Wang, Lei; Pooler, Amy M; Albrecht, Meredith A; Wurtman, Richard J
2005-01-01
Membrane phospholipids like phosphatidylcholine (PC) are required for cellular growth and repair, and specifically for synaptic function. PC synthesis is controlled by cellular levels of its precursor, cytidine-5'-diphosphate choline (CDP-choline), which is produced from cytidine triphosphate (CTP) and phosphocholine. In rat PC12 cells exogenous uridine was shown to elevate intracellular CDP-choline levels, by promoting the synthesis of uridine triphosphate (UTP), which was partly converted to CTP. In such cells uridine also enhanced the neurite outgrowth produced by nerve growth factor (NGF). The present study assessed the effect of dietary supplementation with uridine-5'-monophosphate disodium (UMP-2Na+, an additive in infant milk formulas) on striatal dopamine (DA) release in aged rats. Male Fischer 344 rats consumed either a control diet or one fortified with 2.5% UMP for 6 wk, ad libitum. In vivo microdialysis was then used to measure spontaneous and potassium (K+)-evoked DA release in the right striatum. Potassium (K+)-evoked DA release was significantly greater among UMP-treated rats, i.e., 341+/-21% of basal levels vs. 283+/-9% of basal levels in control rats (p<0.05); basal DA release was unchanged. In general, each animal's K+-evoked DA release correlated with its striatal DA content, measured postmortem. The levels of neurofilament-70 and neurofilament-M proteins, biomarkers of neurite outgrowth, increased to 182+/-25% (p<0.05) and 221+/-34% (p<0.01) of control values, respectively, with UMP consumption. Hence, UMP treatment not only enhances membrane phosphatide production but also can modulate two membrane-dependent processes, neurotransmitter release and neurite outgrowth, in vivo.
Gastrointestinal Endogenous Proteins as a Source of Bioactive Peptides - An In Silico Study
Dave, Lakshmi A.; Montoya, Carlos A.; Rutherfurd, Shane M.; Moughan, Paul J.
2014-01-01
Dietary proteins are known to contain bioactive peptides that are released during digestion. Endogenous proteins secreted into the gastrointestinal tract represent a quantitatively greater supply of protein to the gut lumen than those of dietary origin. Many of these endogenous proteins are digested in the gastrointestinal tract but the possibility that these are also a source of bioactive peptides has not been considered. An in silico prediction method was used to test if bioactive peptides could be derived from the gastrointestinal digestion of gut endogenous proteins. Twenty six gut endogenous proteins and seven dietary proteins were evaluated. The peptides present after gastric and intestinal digestion were predicted based on the amino acid sequence of the proteins and the known specificities of the major gastrointestinal proteases. The predicted resultant peptides possessing amino acid sequences identical to those of known bioactive peptides were identified. After gastrointestinal digestion (based on the in silico simulation), the total number of bioactive peptides predicted to be released ranged from 1 (gliadin) to 55 (myosin) for the selected dietary proteins and from 1 (secretin) to 39 (mucin-5AC) for the selected gut endogenous proteins. Within the intact proteins and after simulated gastrointestinal digestion, angiotensin converting enzyme (ACE)-inhibitory peptide sequences were the most frequently observed in both the dietary and endogenous proteins. Among the dietary proteins, after in silico simulated gastrointestinal digestion, myosin was found to have the highest number of ACE-inhibitory peptide sequences (49 peptides), while for the gut endogenous proteins, mucin-5AC had the greatest number of ACE-inhibitory peptide sequences (38 peptides). Gut endogenous proteins may be an important source of bioactive peptides in the gut particularly since gut endogenous proteins represent a quantitatively large and consistent source of protein. PMID:24901416
Dave, Lakshmi A.; Hayes, Maria; Mora, Leticia; Montoya, Carlos A.; Moughan, Paul J.; Rutherfurd, Shane M.
2016-01-01
A recently proposed paradigm suggests that, like their dietary counterparts, digestion of gastrointestinal endogenous proteins (GEP) may also produce bioactive peptides. With an aim to test this hypothesis, in vitro digests of four GEP namely; trypsin (TRYP), lysozyme (LYS), mucin (MUC), serum albumin (SA) and a dietary protein chicken albumin (CA) were screened for their angiotensin-I converting (ACE-I), renin, platelet-activating factor-acetylhydrolase (PAF-AH) and dipeptidyl peptidase-IV inhibitory (DPP-IV) and antioxidant potential following simulated in vitro gastrointestinal digestion. Further, the resultant small intestinal digests were enriched to obtain peptides between 3–10 kDa in size. All in vitro digests of the four GEP were found to inhibit ACE-I compared to the positive control captopril when assayed at a concentration of 1 mg/mL, while the LYS < 3-kDa permeate fraction inhibited renin by 40% (±1.79%). The LYS < 10-kDa fraction inhibited PAF-AH by 39% (±4.34%), and the SA < 3-kDa fraction inhibited DPP-IV by 45% (±1.24%). The MUC < 3-kDa fraction had an ABTS-inhibition antioxidant activity of 150 (±24.79) µM trolox equivalent and the LYS < 10-kDa fraction inhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) by 54% (±1.62%). Moreover, over 190 peptide-sequences were identified from the bioactive GEP fractions. The findings of the present study indicate that GEP are a significant source of bioactive peptides which may influence gut function. PMID:27043546
Sousa, Joana Beatriz; Vieira-Rocha, Maria Sofia; Sá, Carlos; Ferreirinha, Fátima; Correia-de-Sá, Paulo; Fresco, Paula; Diniz, Carmen
2014-01-01
Increased sympathetic activity has been implicated in hypertension. Adenosine has been shown to play a role in blood flow regulation. In the present study, the endogenous adenosine neuromodulatory role, in mesenteric arteries from normotensive and spontaneously hypertensive rats, was investigated. The role of endogenous adenosine in sympathetic neurotransmission was studied using electrically-evoked [3H]-noradrenaline release experiments. Purine content was determined by HPLC with fluorescence detection. Localization of adenosine A1 or A2A receptors in adventitia of mesenteric arteries was investigated by Laser Scanning Confocal Microscopy. Results indicate a higher electrically-evoked noradrenaline release from hypertensive mesenteric arteries. The tonic inhibitory modulation of noradrenaline release is mediated by adenosine A1 receptors and is lacking in arteries from hypertensive animals, despite their purine levels being higher comparatively to those determined in normotensive ones. Tonic facilitatory adenosine A2A receptor-mediated effects were absent in arteries from both strains. Immunohistochemistry revealed an adenosine A1 receptors redistribution from sympathetic fibers to Schwann cells, in adventitia of hypertensive mesenteric arteries which can explain, at least in part, the absence of effects observed for these receptors. Data highlight the role of purines in hypertension revealing that an increase in sympathetic activity in hypertensive arteries is occurring due to a higher noradrenaline/ATP release from sympathetic nerves and the loss of endogenous adenosine inhibitory tonus. The observed nerve-to-glial redistribution of inhibitory adenosine A1 receptors in hypertensive arteries may explain the latter effect.
Sex, Drugs and Gluttony: How the Brain Controls Motivated Behaviors
Hull, Elaine M.
2011-01-01
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornicalLH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel’s emphasis on neural systems and interactions among brain areas and neurotransmitters. PMID:21554895
Peptidase modulation of airway effects of neuropeptides.
Lilly, C M; Drazen, J M; Shore, S A
1993-09-01
SP and NKA are potent endogenous bronchoconstrictors, whereas VIP is a potent endogenous bronchodilator. There is abundant evidence that these neuropeptides are released in the lung in a variety of conditions and that they have the capacity to modulate the bronchoactivity of the same stimuli that release them. On many occasions, their bronchoactive effects are masked by their degradation at or near the site of their release. However, when the microenvironment is modified to decrease their cleavage, they can express enhanced physiologic effects. Although it appears that the human asthmatic lung may be an environment in which the effects of neuropeptides can be amplified, the role of neuropeptides in the pathogenesis of airway obstruction remains speculative.
Cocaine cue-induced dopamine release in the human prefrontal cortex.
Milella, Michele S; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2016-08-01
Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms.
Dual-Functionalization Device for Therapy through Dopamine Release and Monitoring.
Fabregat, Georgina; Giménez, Alessia; Díaz, Angélica; Puiggalí, Jordi; Alemán, Carlos
2018-05-01
A dual-functional device is fabricated to release progressively dopamine (DA) from a biohydrogel under real-time monitoring via electrochemical detection. For this purpose, a poly-γ-glutamic acid biohydrogel is assembled with a poly(3,4-ethylenedioxythiophene) (PEDOT) layer, previously deposited onto a screen printed electrode. The biohydrogel is formulated to achieve dimensional stability and maximum DA-loading capacity. Conditions for DA-loading are influenced by the oxidation of the neurotransmitter in acid environments and the poor resistance of PEDOT to the lyophilization. The performance of the device is proved in a medium with the physiological pH of blood and the cerebrospinal fluid. The progressive release of DA is successfully monitored by the device, the limit of detection and sensitivity of the integrated sensor being 450 × 10 -9 m and 8 × 10 -5 mA µm -1 , respectively. The effect of electrochemical stimulation in the kinetics of the DA release is also investigated applying potential ramps in cyclic phase to alter the biohydrogel morphology. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKenna, D.J.; Guan, X.M.; Shulgin, A.T.
1991-03-01
The effect of various analogues of the neurotoxic amphetamine derivative, MDA (3,4-methylenedioxyamphetamine) on carrier-mediated, calcium-independent release of 3H-5-HT and 3H-DA from rat brain synaptosomes was investigated. Both enantiomers of the neurotoxic analogues MDA and MDMA (3,4-methylenedioxymethamphetamine) induce synaptosomal release of 3H-5-HT and 3H-DA in vitro. The release of 3H-5-HT induced by MDMA is partially blocked by 10(-6) M fluoxetine. The (+) enantiomers of both MDA and MDMA are more potent than the (-) enantiomers as releasers of both 3H-5-HT and 3H-DA. Eleven analogues, differing from MDA with respect to the nature and number of ring and/or side chain substituents, alsomore » show some activity in the release experiments, and are more potent as releasers of 3H-5-HT than of 3H-DA. The amphetamine derivatives {plus minus}fenfluramine, {plus minus}norfenfluramine, {plus minus}MDE, {plus minus}PCA, and d-methamphetamine are all potent releasers of 3H-5-HT and show varying degrees of activity as 3H-DA releasers. The hallucinogen DOM does not cause significant release of either 3H-monoamine. Possible long-term serotonergic neurotoxicity was assessed by quantifying the density of 5-HT uptake sites in rats treated with multiple doses of selected analogues using 3H-paroxetine to label 5-HT uptake sites. In the neurotoxicity study of the compounds investigated, only (+)MDA caused a significant loss of 5-HT uptake sites in comparison to saline-treated controls. These results are discussed in terms of the apparent structure-activity properties affecting 3H-monoamine release and their possible relevance to neurotoxicity in this series of MDA congeners.« less
Shimizu, Shuji; Akiyama, Tsuyoshi; Kawada, Toru; Sata, Yusuke; Turner, Michael James; Fukumitsu, Masafumi; Yamamoto, Hiromi; Kamiya, Atsunori; Shishido, Toshiaki; Sugimachi, Masaru
2017-09-01
This study examined the mechanism of release of endogenous acetylcholine (ACh) in rabbit renal cortex by applying a microdialysis technique. In anesthetized rabbits, a microdialysis probe was implanted into the renal cortex and perfused with Ringer's solution containing high potassium concentration, high sodium concentration, a Na + /K + -ATPase inhibitor (ouabain), or an epithelial Na + channel blocker (benzamil). Dialysate samples were collected at baseline and during exposure to each agent, and ACh concentrations in the samples were measured by high-performance liquid chromatography. High potassium had no effect on renal ACh release. High sodium increased dialysate ACh concentrations significantly. Ouabain increased dialysate ACh concentration significantly. Benzamil decreased dialysate ACh concentrations significantly both at baseline and under high sodium. The finding that high potassium-induced depolarization does not increase ACh release suggests that endogenous ACh is released in renal cortex mainly by non-neuronal mechanism. Sodium ion transport may be involved in the non-neuronal ACh release.
Yousufzai, S Y; Ye, Z; Abdel-Latif, A A
1996-09-01
Prostaglandin F2 alpha (PGF 2 alpha) and its analog latanoprost are effective in lowering intraocular pressure (IOP) in both animal and human subjects. There is mounting experimental evidence now which indicates that the IOP-lowering effect of these PGs occurs through an increased uveoscleral outflow of aqueous humor. The ciliary muscle constitutes the main resistance in this pathway. Work from several laboratories, including our own, has shown that in this smooth muscle PGF 2 alpha has little effect on cAMP accumulation or on Ca2+ mobilization. In the present study, we hypothesized that some of the effects of PGF2 alpha and its analogs may be mediated through the release of endogenous PGs. The purpose of this work was to determine whether or not PGF2 alpha and its analogs can enhance the release of endogenous PGs in iris and ciliary muscles isolated from different species. This report documents for the first time that exogenous PGF2 alpha and its analogs, PhXA85 and latanoprost, stimulate the formation of PGE2, PGD2 and PGF2 alpha in iris and ciliary muscles isolated from cat, bovine, rabbit, dog, rhesus monkey and human. PG-induced PG release was demonstrated by means of both radioimmunoassay and radiochromatography. Kinetic studies on cat iris revealed that PGF2 alpha-induced PGE2 release is time (t 1/2 = 1.7 min) and dose-dependent (EC50 = 45 nM). The increase in PGE2 release was blocked by indomethacin (Indo) and by dexamethasone in a dose-dependent manner with IC50 s of 9.2 nM and 2.6 microM, respectively. Furthermore, dexamethasone inhibited arachidonic acid (AA) release, suggesting the involvement of phospholipase A2 in PGF2 alpha-induced PG release. The data presented demonstrate that PGF2 alpha and its analogs interact with the PG receptor to stimulate phospholipase A2 and release AA for PG synthesis. Relaxation of ciliary muscle by PGF2 alpha and its analogs, via release of endogenous PGE2, a potent activator of the adenylate cyclase system, could in part explain how these PGs may increase uveoscleral outflow and consequently lower IOP.
Soft-food diet induces oxidative stress in the rat brain.
Yoshino, Fumihiko; Yoshida, Ayaka; Hori, Norio; Ono, Yumie; Kimoto, Katsuhiko; Onozuka, Minoru; Lee, Masaichi Chang-il
2012-02-02
Decreased dopamine (DA) release in the hippocampus may be caused by dysfunctional mastication, although the mechanisms involved remain unclear. The present study examined the effects of soft- and hard-food diets on oxidative stress in the brain, and the relationship between these effects and hippocampal DA levels. The present study showed that DA release in the hippocampus was decreased in rats fed a soft-food diet. Electron spin resonance studies using the nitroxyl spin probe 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl directly demonstrated a high level of oxidative stress in the rat brain due to soft-food diet feeding. In addition, we confirmed that DA directly react with reactive oxygen species such as hydroxyl radical and superoxide. These observations suggest that soft-food diet feeding enhances oxidative stress, which leads to oxidation and a decrease in the release of DA in the hippocampus of rats. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Tatemoto, K; Nozaki, Y; Tsuda, R; Kaneko, S; Tomura, K; Furuno, M; Ogasawara, H; Edamura, K; Takagi, H; Iwamura, H; Noguchi, M; Naito, T
2018-05-01
Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through 2 main pathways, immunoglobulin E-dependent and E-independent activation. In the latter pathway, mast cells are activated by a diverse range of basic molecules (collectively known as basic secretagogues) through Mas-related G protein-coupled receptors (MRGPRs). In addition to the known basic secretagogues, here, we discovered several endogenous protein and enzyme fragments (such as chaperonin-10 fragment) that act as bioactive peptides and induce immunoglobulin E-independent mast cell activation via MRGPRX2 (previously known as MrgX2), leading to the degranulation of mast cells. We discuss the possibility that MRGPRX2 responds various as-yet-unidentified endogenous ligands that have specific characteristics, and propose that MRGPRX2 plays an important role in regulating inflammatory responses to endogenous harmful stimuli, such as protein breakdown products released from damaged or dying cells. © 2018 The Foundation for the Scandinavian Journal of Immunology.
Bioresorbable polyelectrolytes for smuggling drugs into cells.
Jaganathan, Sripriya
2016-06-01
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Ohngemach, S; Feldkaemper, M; Schaeffel, F
2001-09-01
Retinal dopamine (DA) and the DA D2-receptor have been implicated in the development of "deprivation myopia", induced by frosted eye occluders. We have studied the changes in D2-mediated dopaminergic transmission in the retina, their possible relations to eye growth rhythms and myopia, and their control by the pineal gland. (1) We found that the sensitivity of eye growth to retinal image degradation varied over the day. Intermittent periods of normal vision inhibited deprivation myopia more if they occurred in the evening than in the morning. (2) Diurnal growth rhythms in both eyes interacted even though it was previously shown that both deprivation myopia and the accompanying changes in retinal DA release can be monocularly induced. (3) The D2-receptor mRNA concentration in the retina showed no systemic diurnal changes and was not affected by deprivation myopia, but was increased after 2 days in darkness. Since DA release varies over the day, the gain of dopaminergic transmission may also vary, which could explain the observation described in (1) above. (4) Depletion of retinal DA by intravitreal application of reserpine, which lowers DA content severely, had little effect on D2-receptor mRNA concentration. (5) Selective illumination of the pineal gland reduced the D2-receptor mRNA content in the retina to a similar level to full illumination, indicating that the pineal gland controls the D2-receptor mRNA content in the retina. The pineal also controlled DA release in the retina. These results show that the pineal has a surprisingly large influence on both the retinal DA receptor gene transcription and DA release. It can probably control the gain of dopaminergic transmission in the retina and deprivation myopia and mediate the interactions of the growth rhythms in both eyes.
A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system.
Geadkaew, Amornrat; Kosa, Nanthawat; Siricoon, Sinee; Grams, Suksiri Vichasri; Grams, Rudi
2014-09-01
Cystatins are functional as intra- and extracellular inhibitors of cysteine proteases and are expressed as single or multi-domain proteins. We have previously described two single domain type 1 cystatins in the trematode Fasciola gigantica that are released into the parasite's intestinal tract and exhibit inhibitory activity against endogenous and host cathepsin L and B proteases. In contrast, the here presented 170kDa multi-domain cystatin (FgMDC) comprises signal peptide and 12 tandem repeated cystatin-like domains with similarity to type 2 single domain cystatins. The domains show high sequence divergence with identity values often <20% and at only 26.8% between the highest matching domains 6 and 10. Several domains contain degenerated QVVAG core motifs and/or lack other important residues of active type 2 cystatins. Domain-specific antisera detected multiple forms of FgMDC ranging from <10 to >120kDa molecular mass in immunoblots of parasite crude extracts and ES product with different banding patterns for each antiserum demonstrating complex processing of the proprotein. The four domains with the highest conserved QVVAG motifs were expressed in Escherichia coli and the refolded recombinant proteins blocked cysteine protease activity in the parasite's ES product. Strikingly, immunohistochemical analysis using seven domain-specific antisera localized FgMDC in testis lobes and sperm. It is speculated that the processed cystatin-like domains have function analogous to the mammalian group of male reproductive tissue-specific type 2 cystatins and are functional in spermiogenesis and fertilization. Copyright © 2014 Elsevier B.V. All rights reserved.
Gross, W; Yang, W; Boss, W F
1992-02-19
Plasma membranes were isolated from carrot (Daucus carota L.) cells grown in suspension culture and treated with phospholipase A2 from snake or bee venom for 10 min. As a result of this treatment, phosphatidylinositol kinase activity was recovered in the soluble fraction. There was no detectable diacylglycerol kinase or phosphatidylinositol monophosphate kinase activity released from the membranes after the phospholipase A2 treatment. Treating the plasma membranes with phospholipase C or D did not release PI kinase activity. The phospholipase A2-released PI kinase was activated over 2-fold by a heat stable, soluble 70 kDa protein. The partially purified 70 kDa activator increases the Vmax but does not affect the Km of the phospholipase A2-released PI kinase.
Endogenous pyrogen activity in human plasma after exercise.
Cannon, J G; Kluger, M J
1983-05-06
Plasma obtained from human subjects after exercise and injected intraperitoneally into rats elevated rat rectal temperature and depressed plasma iron and zinc concentrations. The pyrogenic component was heat-denaturable and had an apparent molecular weight of 14,000 daltons. Human mononuclear leukocytes obtained after exercise and incubated in vitro released a factor into the medium that also elevated body temperature in rats and reduced trace metal concentrations. These results suggest that endogenous pyrogen, a protein mediator of fever and trace metal metabolism during infection, is released during exercise.
Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill
2016-08-17
Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.
Protection by serine peptidase inhibitors of endogenous cholecystokinin released from brain slices.
Rose, C; Camus, A; Schwartz, J C
1989-01-01
Endogenous cholecystokinin immunoreactivity released by depolarization of slices of rat cerebral cortex undergoes extensive degradation (85% of released immunoreactivity) before reaching the incubation medium. In order to identify the responsible peptidases, a large number of inhibitors of the four catalytic classes were tested for their protective effects. Inhibitors of metallopeptidases (bestatin, amastatin, puromycin, Thiorphan, captopril, o-phenantroline), thiol-peptidases, (leupeptin, antipain, p-hydroxymercuribenzoate) or carboxyl-peptidases (pepstatin) had generally low if any protective effect. By contrast, several serine peptidase inhibitors, i.e. diisopropyl-fluorophosphate, phenylmethylsulphonylfluoride or the chloromethylketone Ala-Ala-Pro-Val-CH2Cl, doubled the recovery of cholecystokinin immunoreactivity and the effect was amplified in the co-presence of bestatin, an aminopeptidase inhibitor and/or Thiorphan, an enkephalinase inhibitor. High-performance liquid chromatographic analysis of the cholecystokinin immunoreactivity recovered in medium in the absence of any inhibitor showed cholecystokinin-8 to be the major peak, representing 8% of the released immunoreactive material. Non-sulphated cholecystokinin-8 represented less than 1%, indicating that desulphation does not constitute a major inactivation pathway for the endogenous octapeptide. Cholecystokinin-5 was the major clearly identifiable immunoreactive fragment, representing 9% of released immunoreactivity in the absence of inhibitors. Its formation was decreased by about 50% in the presence of either diisopropyl-fluorophosphate or bestatin and Thiorphan and abolished when they were associated, suggesting that it resulted from the actions of a serine peptidase(s) and an aminopeptidase(s). Cholecystokinin-6 (or cholecystokinin-7) was less abundant, representing 4% of the released immunoreactivity, and its level was augmented in the presence of diisopropyl-fluorophosphate. Hence a serine endopeptidase cleaving the Met3-Gly4 bond of cholecystokinin-8 may represent a major inactivating peptidase for the endogenous neuropeptide. Additional metabolic pathways not blocked by serine peptidase inhibitors and resulting in the formation of cholecystokinin-6 (or cholecystokinin-7) and, possibly, cholecystokinin-4, are also suggested by the present approach.
Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L
2015-10-01
Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The results indicate that nepicastat enhances DA release from noradrenergic terminals supposedly by removing NA from α2-autoreceptors. In addition to the inhibition of DA uptake, the latter mechanism may explain the synergistic effect of cocaine on nepicastat-induced DA release.
Kim, Jeong Soo; Cha, Kwang Ho; Kang, Seung Yeob; Won, Donghan; Jang, Sun Woo; Son, Miwon; Son, Moon Ho; Choi, Ho Jung; Lee, Young Won; Kang, Myung Joo
2016-01-01
Objective DA-9601, an extract of Artemisia asiatica containing eupatilin and jaceosidin as active compounds, has been prescribed to treat gastritis in Asia. In recent times, sustained-release, floating gastroretentive (GR) tablets of DA-9601 are available on the market. In the present study, the physical properties and in vitro drug release profile, in vivo gastric residence time, and gastroprotective effect of GR tablet were compared to those of immediate release (IR) tablets of DA-9601. Method In vitro buoyancy behavior (floating lag time and duration) and release profile of eupatilin were assessed in acidic medium. The in vivo intragastric behaviors of the barium sulfate-loaded IR and GR tablets were evaluated in beagle dogs by radiographic studies. Local gastroprotective effect was compared in an experimentally induced gastric lesion in beagle dogs after oral administration of IR (three times per day) or GR (twice daily) tablets for 15 days. Results Upon contact with gastric juice, a low-density floating tablet (apparent density of 0.93 g/cm3) was buoyant on the medium and was upheld for 14 hours, providing sustained drug release profile, whereas the IR tablet disintegrated within 10 minutes, showing complete drug release within 2 hours. In vivo radiographic studies showed that the GR tablet was retained for >4 hours in the stomach. Both DA-9601 formulations remarkably alleviated gastric mucosal injury compared to placebo group, when observed by gastric endoscopy. Conclusion Twice-daily GR tablets exhibited a prolonged gastric residence time and a remarkable mucosal restoration effect in animal models. Therefore, the GR system of DA-9601 could be a substitute dosage form for the treatment of gastritis, while reducing the dosing frequency and thus improving patient compliance. PMID:27354765
Kim, Jeong Soo; Cha, Kwang Ho; Kang, Seung Yeob; Won, Donghan; Jang, Sun Woo; Son, Miwon; Son, Moon Ho; Choi, Ho Jung; Lee, Young Won; Kang, Myung Joo
2016-01-01
DA-9601, an extract of Artemisia asiatica containing eupatilin and jaceosidin as active compounds, has been prescribed to treat gastritis in Asia. In recent times, sustained-release, floating gastroretentive (GR) tablets of DA-9601 are available on the market. In the present study, the physical properties and in vitro drug release profile, in vivo gastric residence time, and gastroprotective effect of GR tablet were compared to those of immediate release (IR) tablets of DA-9601. In vitro buoyancy behavior (floating lag time and duration) and release profile of eupatilin were assessed in acidic medium. The in vivo intragastric behaviors of the barium sulfate-loaded IR and GR tablets were evaluated in beagle dogs by radiographic studies. Local gastroprotective effect was compared in an experimentally induced gastric lesion in beagle dogs after oral administration of IR (three times per day) or GR (twice daily) tablets for 15 days. Upon contact with gastric juice, a low-density floating tablet (apparent density of 0.93 g/cm(3)) was buoyant on the medium and was upheld for 14 hours, providing sustained drug release profile, whereas the IR tablet disintegrated within 10 minutes, showing complete drug release within 2 hours. In vivo radiographic studies showed that the GR tablet was retained for >4 hours in the stomach. Both DA-9601 formulations remarkably alleviated gastric mucosal injury compared to placebo group, when observed by gastric endoscopy. Twice-daily GR tablets exhibited a prolonged gastric residence time and a remarkable mucosal restoration effect in animal models. Therefore, the GR system of DA-9601 could be a substitute dosage form for the treatment of gastritis, while reducing the dosing frequency and thus improving patient compliance.
van Duin, Esther D A; Kasanova, Zuzana; Hernaus, Dennis; Ceccarini, Jenny; Heinzel, Alexander; Mottaghy, Felix; Mohammadkhani-Shali, Siamak; Winz, Oliver; Frank, Michael; Beck, Merrit C H; Booij, Jan; Myin-Germeys, Inez; van Amelsvoort, Thérèse
2018-06-01
22q11.2 deletion syndrome (22q11DS) is a genetic disorder caused by a microdeletion on chromosome 22q11.2 and associated with an increased risk for developing psychosis. The catechol-O-methyltransferase (COMT) gene is located in the deleted region and involved in dopamine (DA) breakdown. Impaired reinforcement learning (RL) is a recurrent feature in psychosis and thought to be related to abnormal striatal DA function. This study aims to examine RL and the potential association with striatal DA-ergic neuromodulation in 22q11DS. Twelve non-psychotic adults with 22q11DS and 16 healthy controls (HC) were included. A dopamine D 2/3 receptor [ 18 F]fallypride positron emission tomography (PET) scan was acquired while participants performed a modified version of the probabilistic stimulus selection task. RL-task performance was significantly worse in 22q11DS compared to HC. There were no group difference in striatal nondisplaceable binding potential (BP ND ) and task-induced DA release. In HC, striatal task-induced DA release was positively associated with task performance, but no such relation was found in 22q11DS subjects. Moreover, higher caudate nucleus task-induced DA release was found in COMT Met hemizygotes relative to Val hemizygotes. This study is the first to show impairments in RL in 22q11DS. It suggests that potentially motivational impairments are not only present in psychosis, but also in this genetic high risk group. These deficits may be underlain by abnormal striatal task-induced DA release, perhaps as a consequence of COMT haplo-insufficiency. Copyright © 2018 Elsevier B.V. and ECNP. All rights reserved.
Cocaine cue–induced dopamine release in the human prefrontal cortex
Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2016-01-01
Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Volkow, Nora D; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S; Telang, Frank; Logan, Jean; Tomasi, Dardo
2015-11-01
Methamphetamine's widepread abuse and concerns that it might increase Parkinson's disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [(11)C]cocaine to measure DAT, and with [(11)C]raclopride to measure dopamine release (assessed as changes in specific binding of [(11)C]raclopride between placebo and methylphenidate), which was used as a marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals. Published by Elsevier Inc.
Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; ...
2015-07-21
Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [ 11C]cocaine to measure DAT, and with [ 11C]raclopride to measure dopamine release (assessed as changes in specific binding of [ 11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when comparedmore » to controls (n=15). In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less
Nora, Gerald J; Harun, Rashed; Fine, David F; Hutchison, Daniel; Grobart, Adam C; Stezoski, Jason P; Munoz, Miranda J; Kochanek, Patrick M; Leak, Rehana K; Drabek, Tomas; Wagner, Amy K
2017-07-01
Cardiac arrest survival rates have improved with modern resuscitation techniques, but many survivors experience impairments associated with hypoxic-ischemic brain injury (HIBI). Currently, little is understood about chronic changes in striatal dopamine (DA) systems after HIBI. Given the common empiric clinical use of DA enhancing agents in neurorehabilitation, investigation evaluating dopaminergic alterations after cardiac arrest (CA) is necessary to optimize rehabilitation approaches. We hypothesized that striatal DA neurotransmission would be altered chronically after ventricular fibrillation cardiac arrest (VF-CA). Fast-scan cyclic voltammetry was used with median forebrain bundle (MFB) maximal electrical stimulations (60Hz, 10s) in rats to characterize presynaptic components of DA neurotransmission in the dorsal striatum (D-Str) and nucleus accumbens 14 days after a 5-min VF-CA when compared to Sham or Naïve. VF-CA increased D-Str-evoked overflow [DA], total [DA] released, and initial DA release rate versus controls, despite also increasing maximal velocity of DA reuptake (V max ). Methylphenidate (10 mg/kg), a DA transporter inhibitor, was administered to VF-CA and Shams after establishing a baseline, pre-drug 60 Hz, 5 s stimulation response. Methylphenidate increased initial evoked overflow [DA] more-so in VF-CA versus Sham and reduced D-Str V max in VF-CA but not Shams; these findings are consistent with upregulated striatal DA transporter in VF-CA versus Sham. Our work demonstrates that 5-min VF-CA increases electrically stimulated DA release with concomitant upregulation of DA reuptake 2 weeks after brief VF-CA insult. Future work should elucidate how CA insult duration, time after insult, and insult type influence striatal DA neurotransmission and related cognitive and motor functions. © 2017 International Society for Neurochemistry.
Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers
Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R
2016-01-01
Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847
Sex, drugs and gluttony: how the brain controls motivated behaviors.
Hull, Elaine M
2011-07-25
Bart Hoebel has forged a view of an integrated neural network that mediates both natural rewards and drug use. He pioneered the use of microdialysis, and also effectively used electrical stimulation, lesions, microinjections, and immunohistochemistry. He found that feeding, stimulant drug administration, and electrical stimulation of the lateral hypothalamus (LH) all increased dopamine (DA) release in the nucleus accumbens (NAc). However, whereas DA in the NAc enhanced motivation, DA in the LH inhibited motivated behaviors. The Hull lab has pursued some of those ideas. We have suggested that serotonin (5-HT) in the perifornical LH inhibits sexual behavior by inhibiting orexin/hypocretin neurons (OX/HCRT), which would otherwise excite neurons in the mesocorticolimbic DA tract. We have shown that DA release in the medial preoptic area (MPOA) is very important for male sexual behavior, and that testosterone, glutamate, nitric oxide (NO) and previous sexual experience promote MPOA DA release and mating. Future research should follow Bart Hoebel's emphasis on neural systems and interactions among brain areas and neurotransmitters. Copyright © 2011 Elsevier Inc. All rights reserved.
Endogenous Prolactin Generated During Peripheral Inflammation Contributes to Thermal Hyperalgesia
Scotland, Phoebe E.; Patil, Mayur; Belugin, Sergei; Henry, Michael A.; Goffin, Vincent; Hargreaves, Kenneth M.; Akopian, Armen N.
2011-01-01
Prolactin (PRL) is a hormone and a neuromodulator. PRL sensitizes TRPV1 responses in sensory neurons, but it is not clear whether peripheral inflammation results in the release of endogenous PRL, or whether endogenous PRL is capable of acting as an inflammatory mediator in a sex-dependent manner. To address these questions, we examined inflammation-induced release of endogenous PRL, and its regulation of thermal hyperalgesia in female and male rats. PRL is expressed in several types of peripheral neuronal and non-neuronal cells, including TRPV1-positive nerve fibers, preadipocytes and activated macrophages/monocytes localized in the vicinity of nerves. Evaluation of PRL levels in hindpaws and plasma indicated that complete Freund’s adjuvant (CFA) stimulates release of peripheral, but not systemic PRL within 6–48h in both ovariectomized females with estradiol replacement (OVX-E) and male rats. The time course of release varies in OVX-E and male rats. We next employed the prolactin receptor (PRL-R) antagonist, Δ1-9-G129R-hPRL to assess the role of locally-produced PRL in nociception. Applied at a ratio of 1:1 (PRL:Δ1-9-G129R-hPRL; 40nM each), this antagonist was able to nearly (≈80%) reverse PRL-induced sensitization of capsaicin responses in rat sensory neurons. CFA-induced inflammatory thermal hyperalgesia in OVX-E rat hindpaws was significantly reduced in a dose-dependent manner by the PRL-R antagonist at the 6h, but not the 24h time point. In contrast, PRL contributed to inflammatory thermal hyperalgesia in male rats at 24h, but not 6h. In summary, these findings indicate that inflammation leads to accumulation of endogenous PRL in female and male rats. Further, PRL acts as an inflammatory mediator at different time points for female and male rats. PMID:21777304
Endogenous prolactin generated during peripheral inflammation contributes to thermal hyperalgesia.
Scotland, Phoebe E; Patil, Mayur; Belugin, Sergei; Henry, Michael A; Goffin, Vincent; Hargreaves, Kenneth M; Akopian, Armen N
2011-09-01
Prolactin (PRL) is a hormone and a neuromodulator. It sensitizes TRPV1 (transient receptor potential cation channel subfamily V member 1) responses in sensory neurons, but it is not clear whether peripheral inflammation results in the release of endogenous PRL, or whether endogenous PRL is capable of acting as an inflammatory mediator in a sex-dependent manner. To address these questions, we examined inflammation-induced release of endogenous PRL, and its regulation of thermal hyperalgesia in female and male rats. PRL is expressed in several types of peripheral neuronal and non-neuronal cells, including TRPV1-positive nerve fibers, preadipocytes and activated macrophages/monocytes localized in the vicinity of nerves. Evaluation of PRL levels in hindpaws and plasma indicated that complete Freund's adjuvant (CFA) stimulates release of peripheral, but not systemic, PRL within 6-48 h in both ovariectomized females with estradiol replacement (OVX-E) and intact male rats. The time course of release varies in OVX-E and intact male rats. We next employed the prolactin receptor (PRL-R) antagonist Δ1-9-G129R-hPRL to assess the role of locally produced PRL in nociception. Applied at a ratio of 1 : 1 (PRL:Δ1-9-G129R-hPRL; 40 nm each), this antagonist was able to nearly (≈ 80%) reverse PRL-induced sensitization of capsaicin responses in rat sensory neurons. CFA-induced inflammatory thermal hyperalgesia in OVX-E rat hindpaws was significantly reduced in a dose-dependent manner by the PRL-R antagonist at 6 h but not at 24 h. In contrast, PRL contributed to inflammatory thermal hyperalgesia in intact male rats at 24, but not at 6 h. These findings indicate that inflammation leads to accumulation of endogenous PRL in female and male rats. Furthermore, PRL acts as an inflammatory mediator at different time points for female and intact male rats. © 2011 UT Health Science Center San Antonio. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Neuropeptide W acts in brain to control prolactin, corticosterone, and growth hormone release.
Baker, Jennifer R; Cardinal, Kara; Bober, Cynthia; Taylor, Meghan M; Samson, Willis K
2003-07-01
The endogenous, peptide ligand for the orphan receptors GPR7 and GPR8 was identified to be neuropeptide W (NPW). Because these receptors are expressed in brain and in particular in hypothalamus, we hypothesized that NPW might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPW were observed on the in vitro releases of prolactin (PRL), ACTH, or GH when log molar concentrations ranging from 1 pM to 100 nM NPW were incubated with dispersed anterior pituitary cells. However, NPW, when injected into the lateral cerebroventricle of conscious, unrestrained male rats, in a dose-related fashion elevated PRL and corticosterone and lowered GH levels in circulation. The threshold dose for all three effects was 1.0 nmol. We conclude that endogenous NPW may play a regulatory role in the organization of neuroendocrine signals accessing the anterior pituitary gland but does not itself act as a true releasing or inhibiting factor in the gland. Central administration of NPW23 also stimulated water drinking and food intake. The ability of exogenous peptide to decrease GH but stimulate PRL secretion and activate the hypothalamo-pituitary adrenal axis, together with the observed behavioral effects, suggests that endogenous NPW may play a role in the hypothalamic response to stress.
Fuqua, Joshua L; Littrell, Ofelia M; Lundblad, Martin; Turchan-Cholewo, Jadwiga; Abdelmoti, Lina G; Galperin, Emilia; Bradley, Luke H; Cass, Wayne A; Gash, Don M; Gerhardt, Greg A
2014-04-01
Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function. Copyright © 2014 Elsevier Inc. All rights reserved.
Biesdorf, C; Wang, A-L; Topic, B; Petri, D; Milani, H; Huston, J P; de Souza Silva, M A
2015-09-01
Microdialysis studies in rat have generally shown that appetitive stimuli release dopamine (DA) in the nucleus accumbens (NAc) shell and core. Here we examined the release of DA in the NAc during delivery of reward (food) and during extinction of food reward in the freely moving animal by use of in vivo microdialysis and HPLC. Fifty-two male Wistar rats were trained to receive food reward associated with appearance of cue-lights in a Skinner-box during in vivo microdialysis. Different behavioral protocols were used to assess the effects of extinction on DA and its metabolites. Results Exp. 1: (a) During a 20-min period of cued reward delivery, DA increased significantly in the NAc core, but not shell subregion; (b) for the next 60min period half of the rats underwent immediate extinction (with the CS light presented during non-reward) and the other half did not undergo extinction to the cue lights (CS was not presented during non-reward). DA remained significantly increased in both groups, providing no evidence for a decrease in DA during extinction in either NAc core or shell regions. (c) In half of the animals of the group that was not subjected to extinction, the cue lights were turned on for 30min, thus, initiating extinction to cue CS at a 1h delay from the period of reward. In this group DA in the NAc core, but not shell, significantly decreased. Behavioral analysis showed that while grooming is an indicator of extinction-induced behavior, glances toward the cue-lights (sign tracking) are an index of resistance to extinction. Results Exp. 2: (a) As in Exp. 1, during a 30-min period of cued reward delivery, DA levels again increased significantly in the NAc core but not in the NAc shell. (b) When extinction (the absence of reward with the cue lights presented) was administered 24h after the last reward session, DA again significantly decreased in the NAc core, but not in the NAc shell. (a) These results confirm the importance of DA release in the NAc for reward-related states, with DA increasing in the core, but not shell subregion. (b) They provide first evidence that during the withholding of expected reward, DA decreases in the NAc core, but not shell region. (c) This decrease in DA appears only after a delay between delivery of reward and extinction likely due to it being masked by persisting DA release. We hypothesize the decrease in extinction-induced release of DA in the NAc core to be a marker for the despair/depression that is known to accompany the failure to obtain expected rewards/reinforcers. Copyright © 2015 Elsevier Inc. All rights reserved.
Methylphenidate and Cocaine Self-Administration Produce Distinct Dopamine Terminal Alterations
Calipari, Erin S.; Ferris, Mark J.; Melchior, James R.; Bermejo, Kristel; Salahpour, Ali; Roberts, David C. S.; Jones, Sara R.
2012-01-01
Methylphenidate (MPH) is a commonly abused psychostimulant prescribed for the treatment of attention deficit hyperactivity disorder. MPH has a mechanism of action similar to cocaine (COC) and is commonly characterized as a dopamine transporter (DAT) blocker. While there has been extensive work aimed at understanding dopamine (DA) nerve terminal changes following COC self-administration, very little is known about the effects of MPH self-administration on the DA system. We used fast scan cyclic voltammetry in nucleus accumbens core slices from animals with a five-day self-administration history of 40 injections/day of either MPH (0.56 mg/kg) or COC (1.5 mg/kg) to explore alterations in baseline DA release and uptake kinetics as well as alterations in the interaction of each compound with the DAT. Although MPH and COC have similar behavioral effects, the consequences of self-administration on DA system parameters were found to be divergent. We show that COC self-administration reduced DAT levels and maximal rates of DA uptake, as well as reducing electrically stimulated release, suggesting decreased DA terminal function. In contrast, MPH self-administration increased DAT levels, DA uptake rates, and DA release, suggesting enhanced terminal function, which was supported by findings of increased metabolite/DA tissue content ratios. Tyrosine hydroxylase mRNA, protein and phosphorylation levels were also assessed in both groups. Additionally, COC self-administration reduced COC-induced DAT inhibition, while MPH self-administration increased MPH-induced DAT inhibition, suggesting opposite pharmacodynamic effects of these two drugs. These findings suggest that the factors governing DA system adaptations are more complicated than simple DA uptake blockade. PMID:22458761
Cunningham, Kathryn A.
2015-01-01
Cocaine exhibits prominent abuse liability, and chronic abuse can result in cocaine use disorder with significant morbidity. Major advances have been made in delineating neurobiological mechanisms of cocaine abuse; however, effective medications to treat cocaine use disorder remain to be discovered. The present review will focus on the role of serotonin (5-HT; 5-hydroxytryptamine) neurotransmission in the neuropharmacology of cocaine and related abused stimulants. Extensive research suggests that the primary contribution of 5-HT to cocaine addiction is a consequence of interactions with dopamine (DA) neurotransmission. The literature on the neurobiological and behavioral effects of cocaine is well developed, so the focus of the review will be on cocaine with inferences made about other monoamine uptake inhibitors and releasers based on mechanistic considerations. 5-HT receptors are widely expressed throughout the brain, and several different 5-HT receptor subtypes have been implicated in mediating the effects of endogenous 5-HT on DA. However, the 5-HT2A and 5-HT2C receptors in particular have been implicated as likely candidates for mediating the influence of 5-HT in cocaine abuse as well as to traits (e.g., impulsivity) that contribute to the development of cocaine use disorder and relapse in humans. Lastly, new approaches are proposed to guide targeted development of serotonergic ligands for the treatment of cocaine use disorder. PMID:25505168
An endogenous 55 kDa TNF receptor mediates cell death in a neural cell line.
Sipe, K J; Srisawasdi, D; Dantzer, R; Kelley, K W; Weyhenmeyer, J A
1996-06-01
Tumor necrosis factor-alpha (TNF) is associated with developmental and injury-related events in the central nervous system (CNS). In the present study, we have examined the role of TNF on neurons using the clonal murine neuroblastoma line, N1E-115 (N1E). N1E cells represent a well-defined model for studying neuronal development since they can be maintained as either undifferentiated, mitotically active neuroblasts or as differentiated, mature neurons. Northern and reverse transcription-polymerase chain reaction (RT-PCR) analyses revealed that both undifferentiated and differentiated N1Es express transcripts for the 55 kDa TNF receptor (TNFR), but not the 75 kDa TNFR. The biological activity of the expressed TNF receptor was demonstrated by a dose dependent cytotoxicity to either recombinant murine or human TNF when the cells were incubated with the transcriptional inhibitor actinomycin D. The lack of the 75 kDa receptor mRNA expression and the dose dependent response to rHuTNF, an agonist specific for the murine 55 kDa receptor, suggest that the TNF induced cytotoxicity is mediated through the 55 kDa receptor in both the undifferentiated and differentiated N1Es. Light microscopic observations, flow cytometric analysis of hypodiploid DNA, and electrophoretic analysis of nucleosomal DNA fragmentation of N1Es treated with actinomycin D and TNF revealed features characteristic of both necrotic and apoptotic cell death. These findings demonstrate that blast and mature N1E cells express the 55 kDa TNF receptor which is responsible for inducing both necrotic and apoptotic death in these cells. The observation that actinomycin D renders N1E cells susceptible to the cytotoxic effects of TNF indicates that a sensitization step, such as removal of an endogenous protective factor or viral-mediated inhibition of transcription, may be necessary for TNF cytotoxicity in neurons.
Pathomechanisms of Dopamine Dysregulation in DYT1 Dystonia: Targets for Therapeutics
2016-10-01
DA release in DYT1(ΔE) knockin mice by assessing VMAT2 function, vesicle utilization, the ultrastructure of DA terminals, and D2 DA...in slice, the ultrastructure of DA terminals, D2 DA autoreceptor function nicotinic AChR (nAChR) heteroreceptors function. 2) To determine the
Papaxanthos-Roche, A; Taupin, J L; Mayer, G; Daniel, J Y; Moreau, J F
1994-09-01
In the light of the newly discovered implications of human interleukin for DA cells and leukemia inhibitory factor in embryology, we searched for the presence of this soluble cytokine in the supernatant of Vero cell coculture systems. Using a bioassay as well as a specific ELISA, we demonstrated that Vero cells are able to release large quantities of human interleukin for DA cells and leukemia inhibitory factor in the embryo-growing medium of such cocultures.
Carta, Manolo; Tronci, Elisabetta
2014-01-01
In the recent years, the serotonin system has emerged as a key player in the induction of l-DOPA-induced dyskinesia (LID) in animal models of Parkinson’s disease. In fact, serotonin neurons possess the enzymatic machinery able to convert exogenous l-DOPA to dopamine (DA), and mediate its vesicular storage and release. However, serotonin neurons lack a feedback control mechanism able to regulate synaptic DA levels. While in a situation of partial DA depletion spared DA terminals can buffer DA released from serotonin neurons, the progression of DA neuron degeneration impairs this protective mechanism, causing swings in synaptic DA levels and pulsatile stimulation of post-synaptic DA receptors. In line with this view, removal of serotonin neurons by selective toxin, or pharmacological silencing of their activity, produced complete suppression of LID in animal models of Parkinson’s disease. In this article, we will revise the experimental evidence pointing to the important role of serotonin neurons in dyskinesia, and we will discuss the clinical implications. PMID:24904522
Ishida, Kota; Murata, Mikio; Katagiri, Nobuyuki; Ishikawa, Masago; Abe, Kenji; Kato, Masatoshi; Utsunomiya, Iku; Taguchi, Kyoji
2005-08-01
The effects of systemic administration of beta-phenylethylamine (beta-PEA) and microiontophoretically applied beta-PEA on the spontaneous discharge of dopamine (DA) neurons in the ventral tegmental area (VTA) of the anesthetized rat were examined. Intravenous administration of beta-PEA (1.0, 2.5, and 5.0 mg/kg) and microiontophoretic applications of beta-PEA caused inhibitory responses in DA neurons. Systemic administration and microiontophoretic applications of beta-PEA induced dose- or current-dependent responses. The systemic beta-PEA-induced inhibitory responses were reversed by pretreatment with the DA D(2) receptor antagonists haloperidol (0.5 mg/kg i.p.) and sulpiride (10 mg/kg i.p). Pretreatment with reserpine (5 mg/kg i.p. 24 h earlier) did not completely block the systemic administration of beta-PEA (2.5 mg/kg) inhibition. A microdialysis study of freely moving rats demonstrated that the extracellular DA level increased significantly in response to local application of beta-PEA (100 muM) in the VTA via a microdialysis probe, and local application of beta-PEA-stimulated somatodendritic DA release in the VTA. The beta-PEA-induced release of DA was calcium ion-independent and was enhanced by pretreatment with pertussis toxin. These findings indicate that beta-phenylethylamine inhibits DA neuron activity via DA D(2) autoreceptors in the rat VTA and that this inhibitory effect is mediated by the somatodendritic DA release.
Increased salt consumption induces body water conservation and decreases fluid intake.
Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens
2017-05-01
The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.
Increased salt consumption induces body water conservation and decreases fluid intake
Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.
2017-01-01
BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever. PMID:28414302
Chronic stress triggers social aversion via glucocorticoid receptor in dopaminoceptive neurons.
Barik, Jacques; Marti, Fabio; Morel, Carole; Fernandez, Sebastian P; Lanteri, Christophe; Godeheu, Gérard; Tassin, Jean-Pol; Mombereau, Cédric; Faure, Philippe; Tronche, François
2013-01-18
Repeated traumatic events induce long-lasting behavioral changes that are key to organism adaptation and that affect cognitive, emotional, and social behaviors. Rodents subjected to repeated instances of aggression develop enduring social aversion and increased anxiety. Such repeated aggressions trigger a stress response, resulting in glucocorticoid release and activation of the ascending dopamine (DA) system. We bred mice with selective inactivation of the gene encoding the glucocorticoid receptor (GR) along the DA pathway, and exposed them to repeated aggressions. GR in dopaminoceptive but not DA-releasing neurons specifically promoted social aversion as well as dopaminergic neurochemical and electrophysiological neuroadaptations. Anxiety and fear memories remained unaffected. Acute inhibition of the activity of DA-releasing neurons fully restored social interaction in socially defeated wild-type mice. Our data suggest a GR-dependent neuronal dichotomy for the regulation of emotional and social behaviors, and clearly implicate GR as a link between stress resiliency and dopaminergic tone.
Lee, Chang H; Rodeo, Scott A; Fortier, Lisa Ann; Lu, Chuanyong; Erisken, Cevat; Mao, Jeremy J
2014-12-10
Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGFβ3) from a three-dimensional (3D)-printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D-printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D-printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs. Copyright © 2014, American Association for the Advancement of Science.
Whiting, Lynda; McCutcheon, James E; Boyle, Christina N; Roitman, Mitchell F; Lutz, Thomas A
2017-07-01
The pancreatic hormone amylin and its agonist salmon calcitonin (sCT) act via the area postrema (AP) and the lateral parabrachial nucleus (PBN) to reduce food intake. Investigations of amylin and sCT signaling in the ventral tegmental area (VTA) and nucleus accumbens (NAc) suggest that the eating inhibitory effect of amylin is, in part, mediated through the mesolimbic 'reward' pathway. Indeed, administration of the sCT directly to the VTA decreased phasic dopamine release (DA) in the NAc. However, it is not known if peripheral amylin modulates the mesolimbic system directly or whether this occurs via the AP and PBN. To determine whether and how peripheral amylin or sCT affect mesolimbic reward circuitry we utilized fast scan cyclic voltammetry under anesthesia to measure phasic DA release in the NAc evoked by electrical stimulation of the VTA in intact, AP lesioned and bilaterally PBN lesioned rats. Amylin (50μg/kg i.p.) did not change phasic DA responses compared to saline control rats. However, sCT (50μg/kg i.p.) decreased evoked DA release to VTA-stimulation over 1h compared to saline treated control rats. Further investigations determined that AP and bilateral PBN lesions abolished the ability of sCT to suppress evoked phasic DA responses to VTA-stimulation. These findings implicate the AP and the PBN as important sites for peripheral sCT to decrease evoked DA release in the NAc and suggest that these nuclei may influence hedonic and motivational processes to modulate food intake. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levin, J.A.; Schmidt, C.J.; Lovenberg, W.
1986-03-05
MDMA is a phenylisopropylamine which is reported to have unique behavioral effects in man. Because of its structural similarities to the amphetamines the authors have compared the effects of MDMA and two related amphetamines on the spontaneous release of tritiated dopamine (DA) and serotonin (5HT) from superfused rat striatal slices. At concentrations of 10/sup -7/ - 10/sup -5/M MDMA and the serotonergic neurotoxin, p-chloroamphetamine, were equipotent releasers of (/sup 3/H)5HT being approximately 10x more potent than methamphetamine. However, methamphetamine was the more potent releaser of (/sup 3/H)DA by a factor of approximately 10x. MDMA-induced release of both (/sup 5/H)5HT andmore » (/sup 3/H)DA was Ca/sup 2 +/-independent and inhibited by selective monoamine uptake blockers suggesting a carrier-dependent release mechanism. Synaptosomal uptake experiments with (+)(/sup 3/H)MDMA indicated no specific uptake of the drug further suggesting the effect of uptake blockers may be to inhibit the carrier-mediated export of amines displaced by MDMA.« less
Methotrexate-loaded porous polymeric adsorbents as oral sustained release formulations.
Wang, Xiuyan; Yan, Husheng
2017-09-01
Methotrexate as a model drug with poor aqueous solubility was adsorbed into porous polymeric adsorbents, which was used as oral sustained release formulations. In vitro release assay in simulated gastrointestinal fluids showed that the methotrexate-loaded adsorbents showed distinct sustained release performance. The release rate increased with increase in pore size of the adsorbents. In vivo pharmacokinetic study showed that the maximal plasma methotrexate concentrations after oral administration of free methotrexate and methotrexate-loaded DA201-H (a commercial porous polymeric adsorbent) to rats occurred at 40min and 5h post-dose, respectively; and the plasma concentrations decreased to 22% after 5h for free methotrexate and 44% after 24h for methotrexate-loaded DA201-H, respectively. The load of methotrexate into the porous polymeric adsorbents not only resulted in obvious sustained release, but also enhanced the oral bioavailability of methotrexate. The areas under the curve, AUC 0-24 and AUC 0-inf , for methotrexate-loaded DA201-H increased 3.3 and 7.7 times, respectively, compared to those for free methotrexate. Copyright © 2017 Elsevier B.V. All rights reserved.
Zheng, Xinyan; Hasegawa, Hiroshi
2016-10-01
Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia.
KING, M K; WOOD, W B
1958-02-01
The evolution of an acute inflammatory exudate produced in rabbits by the intraperitoneal injection of saline has been described. Evidence has been presented that polymorphonuclear leucocytes release endogenous pyrogen into the cell-free fluid of the exudate. Leucocytes from such exudates have also been shown to release pyrogen into the surrounding medium during incubation in vitro at 37 degrees C. The results of parallel cytological studies have provided evidence which suggests that the leucocytes give up their pyrogen while functionally intact. These observations add further support to the hypothesis that polymorphonuclear leucocytes play a significant role in the pathogenesis of fever.
Aizawa, H; Miyazaki, N; Inoue, H; Ikeda, T; Shigematsu, N
1990-01-01
To elucidate the effect of endogenous tachykinins on neuro-effector transmission of vagal nerves, we performed in vitro experiments using guinea-pig tracheal smooth muscle. The subthreshold dose (the highest dose which did not induce any smooth muscle contraction) of capsaicin (10(-8) to 10(-7) M) increased the amplitudes of contractions evoked by electrical field stimulation (EFS) significantly, but not those by acetylcholine (ACh). The inhibitor of neutral endopeptidase, phosphoramidon (10(-7) to 10(-6) M), increased the contractions evoked by EFS significantly. The inhibitor of cholinesterase, physostigmine (10(-6) to 10(-5) M), induced smooth muscle contractions, but such contractions were inhibited by atropine, suggesting the spontaneous release of ACh from the vagal nerve terminals. The subthreshold dose of substance P or capsaicin increased the contractions evoked by physostigmine. These results indicated that endogenous tachykinins increase the spontaneous ACh release as well as the ACh release in response to vagal stimulation from the nerve terminals. Furthermore, it is suggested that the excitatory effects of the tachykinins on the vagal neuro-effector transmission may be modulated by neutral endopeptidase in the guinea pig.
Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van
2012-02-01
Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.
Activation of VTA GABA neurons disrupts reward consumption
van Zessen, Ruud; Phillips, Jana L.; Budygin, Evgeny A.; Stuber, Garret D.
2012-01-01
The activity of Ventral Tegmental Area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors, however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior, but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release, but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons, as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors. PMID:22445345
Stefano, G B; Zhu, W; Cadet, P; Bilfinger, T V; Mantione, K
2004-03-01
Studies from our laboratory have revealed a novel micro opiate receptor, micro(3), which is expressed in both human vascular tissues and leukocytes. The micro(3) receptor is selective for opiate alkaloids, insensitive to opioid peptides and is coupled to constitutive nitric oxide (cNO) release. We now identify the micro(3) receptor characteristics in mammalian gut tissues. It appears that the various regions of the mouse gut release low levels of NO (0.02 to 4.6 nM ) in a pulsatile manner. We demonstrate that morphine stimulates cNO release (peak level 17 nM) in the mouse stomach, small intestine and large intestine in a naloxone and L-NAME antagonizable manner. Opioid peptides do not exhibit cNO-stimulating capabilities in these tissues. Taken together, we surmise morphine acts as a hormone to limit gut activity via micro(3) coupled to NO release since micro opiate receptors are found in the gut and endogenous morphine is not but is found in blood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozhanets, V.V.; Anosov, A.K.
1986-01-01
The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before andmore » after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test.« less
Dopamine, the medial preoptic area, and male sexual behavior.
Dominguez, Juan M; Hull, Elaine M
2005-10-15
The medial preoptic area (MPOA), at the rostral end of the hypothalamus, is important for the regulation of male sexual behavior. Results showing that male sexual behavior is impaired following MPOA lesions and enhanced with MPOA stimulation support this conclusion. The neurotransmitter dopamine (DA) facilitates male sexual behavior in all studied species, including rodents and humans. Here, we review data indicating that the MPOA is one site where DA may act to regulate male sexual behavior. DA agonists microinjected into the MPOA facilitate sexual behavior, whereas DA antagonists impair copulation, genital reflexes, and sexual motivation. Moreover, microdialysis experiments showed increased release of DA in the MPOA as a result of precopulatory exposure to an estrous female and during copulation. DA may remove tonic inhibition in the MPOA, thereby enhancing sensorimotor integration, and also coordinate autonomic influences on genital reflexes. In addition to sensory stimulation, other factors influence the release of DA in the MPOA, including testosterone, nitric oxide, and glutamate. Here we summarize and interpret these data.
Schizophrenia: an integrated sociodevelopmental-cognitive model
Howes, Oliver D; Murray, Robin M
2014-01-01
Schizophrenia remains a major burden1. The dopamine (DA) and neurodevelopmental hypotheses attempt to explain the pathogenic mechanisms and origins of the disorder respectively2-4. Recently an alternative, the cognitive model, has gained popularity5. However the first two theories have not been satisfactorily integrated, and the most influential iteration of the cognitive model makes no mention of DA, neurodevelopment, or indeed the brain5. Here we show that developmental alterations secondary to variant genes, early hazards to the brain and childhood adversity, sensitise the DA system, and result in excessive presynaptic DA synthesis and DA release. Social adversity biases the cognitive schema that the individual uses to interpret experiences towards paranoid interpretations. Subsequent stress results in dysregulated DA release, causing the misattribution of salience to stimuli, which are then misinterpreted by the biased cognitive processes. The resulting paranoia and hallucinations in turn cause further stress, and eventually repeated DA dysregulation hard-wires the psychotic beliefs. Finally we consider the implications of this model for understanding and treating schizophrenia. PMID:24315522
Dopamine release in the medial preoptic area is related to hormonal action and sexual motivation.
Kleitz-Nelson, Hayley K; Dominguez, Juan M; Ball, Gregory F
2010-12-01
To help elucidate how general the role of dopamine (DA) release in the medial preoptic area (mPOA) is for the activation of male sexual behavior in vertebrates, we recently developed an in vivo microdialysis procedure in the mPOA of Japanese quail. Using these techniques in the present experiment, the temporal pattern of DA release in relation to the precopulatory exposure to a female and to the expression of both appetitive and consummatory aspects of male sexual behavior was investigated. Extracellular samples from the mPOA of adult sexually experienced male quail were collected every 6 min before, while viewing, while in physical contact with, and after exposure to a female. In the absence of a precopulatory rise in DA, males failed to copulate when the barrier separating them from the female was removed. In contrast, males that showed a substantial increase in mPOA DA during precopulatory interactions behind the barrier, copulated with females after its removal. However, there was no difference in DA during periods when the quail were copulating as compared to when the female was present but the males were not copulating. In addition, we show that precopulatory DA predicts future DA levels and copulatory behavior frequency. Furthermore, the size of the cloacal gland, an accurate indicator of testosterone action, is positively correlated with precopulatory DA. Taken together, these results provide further support for the hypothesis that DA action in the mPOA is specifically linked to sexual motivation as compared to copulatory behavior per se. © 2010 APA, all rights reserved.
Nalbant, Ayten; Kant, Melis
2016-01-01
Aggregatibacter actinomycetemcomitans (Aa) expresses a 64-kDa GroEL protein belonging to the heat shock family of proteins. This protein has been shown to influence human host cells, but the apoptotic capacity of the GroEL protein regarding T cells is not yet known. The purpose of this study was to investigate the ability of A. actinomycetemcomitans GroEL (AaGroEL) protein to induce human peripheral blood T-cell apoptosis. Endogenous, purified AaGroEL protein was used as an antigen. In AaGroEL-treated T cells, the data indicated that phosphatidylserine exposure, an early apoptotic event, was dose- and time-dependent. The AaGroEL-treated T cells were also positive for active caspase-3 in a dose-dependent manner. The rate of AaGroEL-induced apoptosis was suppressed by the addition of the general caspase inhibitor Z-VAD-FMK. Furthermore, cleaved caspase-8 bands (40/36 kDa and 23 kDa) were identified in cells responding to AaGroEL. DNA fragmentation was also detected in the AaGroEL-treated T cells. Overall, we demonstrated that the endogenous GroEL from A. actinomycetemcomitans has the capacity to induce T-cell apoptosis. PMID:27736933
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-01-01
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level. PMID:28406431
Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong
2017-04-13
In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD NPs in combination with US may provide a promising drug delivery system to enhance the therapeutic effects of these chemotherapeutics at the cellular level.
[Endogenous pyrogen formation by bone marrow cells].
Efremov, O M; Sorokin, A V; El'kina, O A
1978-01-01
The cells of the rabbit bone marrow produced endogenous pyrogen in response to stimulation with bacterial lipopolysaccharide. Incubation of the cells in medium No 199 containing a 15% homologous serum is optimal for the release of pyrogen. It is supposed that the cells of the bone marrow take part in the formation of endgenous pyrogen and in the mechanism of pyrexia in the organism.
Characterization of the nitrogen compounds released during yeast autolysis in a model wine system.
Martínez-Rodríguez, A J; Polo, M C
2000-04-01
The nitrogen composition of wines aged with yeast for a long period of time, as in the case of sparkling wines, depends on the composition of the base wine and on the compounds released by the yeast. In this paper, the release of the different classes of nitrogen compounds during autolysis of one of the strains of yeast used in the manufacture of sparkling wines has been studied. The yeast, Saccharomyces bayanus, was suspended in a model wine buffer, pH 3.0 and 10% ethanol, and incubated at 30 degrees C. Samples of the autolysate were taken after 4, 24, 48, 72, 168, and 360 h of autolysis. An electrophoretic and chromatographic study was conducted of the proteins, peptides with molecular weights higher and lower than 700 Da, and amino acids released during the autolysis. Using SDS-PAGE, it was observed that it was predominantly polypeptides with molecular weights lower than 10 000 that were released. Through HPLC of the fraction lower than 10 000 Da, it was observed that it is polypeptides with molecular weights of between 10 000 and 700 Da that are released first and that these later break up to give rise to peptides with molecular weights lower than 700 Da, which in turn break down into amino acids. This indicates that the nature of the nitrogen compounds present in wines aged with yeast depends on the aging time, being less polymerized as the aging time increases.
Amphetamine and Methamphetamine Differentially Affect Dopamine Transporters in Vitro and in Vivo*S⃞
Goodwin, J. Shawn; Larson, Gaynor A.; Swant, Jarod; Sen, Namita; Javitch, Jonathan A.; Zahniser, Nancy R.; De Felice, Louis J.; Khoshbouei, Habibeh
2009-01-01
The psychostimulants d-amphetamine (AMPH) and methamphetamine (METH) release excess dopamine (DA) into the synaptic clefts of dopaminergic neurons. Abnormal DA release is thought to occur by reverse transport through the DA transporter (DAT), and it is believed to underlie the severe behavioral effects of these drugs. Here we compare structurally similar AMPH and METH on DAT function in a heterologous expression system and in an animal model. In the in vitro expression system, DAT-mediated whole-cell currents were greater for METH stimulation than for AMPH. At the same voltage and concentration, METH released five times more DA than AMPH and did so at physiological membrane potentials. At maximally effective concentrations, METH released twice as much [Ca2+]i from internal stores compared with AMPH. [Ca2+]i responses to both drugs were independent of membrane voltage but inhibited by DAT antagonists. Intact phosphorylation sites in the N-terminal domain of DAT were required for the AMPH- and METH-induced increase in [Ca2+]i and for the enhanced effects of METH on [Ca2+]i elevation. Calmodulin-dependent protein kinase II and protein kinase C inhibitors alone or in combination also blocked AMPH- or METH-induced Ca2+ responses. Finally, in the rat nucleus accumbens, in vivo voltammetry showed that systemic application of METH inhibited DAT-mediated DA clearance more efficiently than AMPH, resulting in excess external DA. Together these data demonstrate that METH has a stronger effect on DAT-mediated cell physiology than AMPH, which may contribute to the euphoric and addictive properties of METH compared with AMPH. PMID:19047053
Savitz, Jonathan; Hodgkinson, Colin A.; Martin-Soelch, Chantal; Shen, Pei-Hong; Szczepanik, Joanna; Nugent, Allison; Herscovitch, Peter; Grace, Anthony A.; Goldman, David; Drevets, Wayne C.
2013-01-01
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis. PMID:23365649
Multiple-scale neuroendocrine signals connect brain and pituitary hormone rhythms
Romanò, Nicola; Guillou, Anne; Martin, Agnès O; Mollard, Patrice
2017-01-01
Small assemblies of hypothalamic “parvocellular” neurons release their neuroendocrine signals at the median eminence (ME) to control long-lasting pituitary hormone rhythms essential for homeostasis. How such rapid hypothalamic neurotransmission leads to slowly evolving hormonal signals remains unknown. Here, we show that the temporal organization of dopamine (DA) release events in freely behaving animals relies on a set of characteristic features that are adapted to the dynamic dopaminergic control of pituitary prolactin secretion, a key reproductive hormone. First, locally generated DA release signals are organized over more than four orders of magnitude (0.001 Hz–10 Hz). Second, these DA events are finely tuned within and between frequency domains as building blocks that recur over days to weeks. Third, an integration time window is detected across the ME and consists of high-frequency DA discharges that are coordinated within the minutes range. Thus, a hierarchical combination of time-scaled neuroendocrine signals displays local–global integration to connect brain–pituitary rhythms and pace hormone secretion. PMID:28193889
Alteration of Galectin-3 in Tears of Patients with Dry Eye Disease
Uchino, Yuichi; Mauris, Jerome; Woodward, Ashley M.; Dieckow, Julia; Amparo, Francisco; Dana, Reza; Mantelli, Flavio; Argüeso, Pablo
2015-01-01
Purpose To investigate the expression, release, and proteolytic degradation of galectin-3 in patients with dry eye disease. Design Observational case series with a comparison group. Methods Tear washes and conjunctival impression cytology specimens were collected through standard procedures from 16 patients with dry eye and 11 age-matched healthy subjects. Galectin-3 content in tears was analyzed by quantitative Western blot, using recombinant galectin-3 protein to generate a calibration curve. The relative expression of galectin-3 and matrix metalloproteinase 9 (MMP9) was evaluated by quantitative polymerase chain reaction. The cleavage of galectin-3 was studied in vitro using activated recombinant MMP9 and protease inhibitors. Results The concentration of galectin-3 protein in tears, but not galectin-3 expression in conjunctival epithelium, was significantly higher in tears of patients with dry eye (0.38 ng/μg total protein, range 0.04-1.36) compared to healthy subjects (0.12 ng/μg total protein, range 0.00-0.41) (P < .01). By Western blot, an intact (∼28.0 kDa) galectin-3 band was identified in tear samples from healthy subjects, whereas 50% of the dry eye samples were characterized by the additional presence of a partially degraded form (∼25.4 kDa). In our experiments, elevated expression of MMP9 in dry eye subjects correlated with the ability of active MMP9 to cleave galectin-3 from recombinant origin. Interestingly, cleavage of endogenous galectin-3 in tear samples was impaired using a broad-spectrum proteinase inhibitor cocktail, but not the pan-specific MMP inhibitor GM6001, suggesting the presence of proteases other than MMPs in promoting galectin-3 degradation in dry eye. Conclusions Our results indicate that release of cellular galectin-3 into tears is associated with epithelial dysfunction in dry eye, and that galectin-3 proteolytic cleavage may contribute to impaired ocular surface barrier function. PMID:25703476
Alteration of galectin-3 in tears of patients with dry eye disease.
Uchino, Yuichi; Mauris, Jerome; Woodward, Ashley M; Dieckow, Julia; Amparo, Francisco; Dana, Reza; Mantelli, Flavio; Argüeso, Pablo
2015-06-01
To investigate the expression, release, and proteolytic degradation of galectin-3 in patients with dry eye disease. Observational case series with a comparison group. Tear washes and conjunctival impression cytology specimens were collected through standard procedures from 16 patients with dry eye and 11 age-matched healthy subjects. Galectin-3 content in tears was analyzed by quantitative Western blot, using recombinant galectin-3 protein to generate a calibration curve. The relative expression of galectin-3 and matrix metalloproteinase 9 (MMP9) was evaluated by quantitative polymerase chain reaction. The cleavage of galectin-3 was studied in vitro using activated recombinant MMP9 and protease inhibitors. The concentration of galectin-3 protein in tears, but not galectin-3 expression in conjunctival epithelium, was significantly higher in tears of patients with dry eye (0.38 ng/μg total protein, range 0.04-1.36) compared to healthy subjects (0.12 ng/μg total protein, range 0.00-0.41) (P < .01). By Western blot, an intact (∼28.0 kDa) galectin-3 band was identified in tear samples from healthy subjects, whereas 50% of the dry eye samples were characterized by the additional presence of a partially degraded form (∼25.4 kDa). In our experiments, elevated expression of MMP9 in dry eye subjects correlated with the ability of active MMP9 to cleave galectin-3 from recombinant origin. Interestingly, cleavage of endogenous galectin-3 in tear samples was impaired using a broad-spectrum proteinase inhibitor cocktail, but not the pan-specific MMP inhibitor GM6001, suggesting the presence of proteases other than MMPs in promoting galectin-3 degradation in dry eye. Our results indicate that release of cellular galectin-3 into tears is associated with epithelial dysfunction in dry eye, and that galectin-3 proteolytic cleavage may contribute to impaired ocular surface barrier function. Copyright © 2015 Elsevier Inc. All rights reserved.
Tryptophan availability modulates serotonin release from rat hypothalamic slices
NASA Technical Reports Server (NTRS)
Schaechter, Judith D.; Wurtman, Richard J.
1989-01-01
The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.
Kakizawa, Sho; Yamazawa, Toshiko; Iino, Masamitsu
2013-01-01
Ryanodine receptors (RyRs), located in the sarcoplasmic/endoplasmic reticulum (SR/ER) membrane, are required for intracellular Ca2+ release that is involved in a wide range of cellular functions. In addition to Ca2+-induced Ca2+ release in cardiac cells and voltage-induced Ca2+ release in skeletal muscle cells, we recently identified another mode of intracellular Ca2+ mobilization mediated by RyR, i.e., nitric oxide-induced Ca2+ release (NICR), in cerebellar Purkinje cells. NICR is evoked by neuronal activity, is dependent on S-nitrosylation of type 1 RyR (RyR1) and is involved in the induction of long-term potentiation (LTP) of cerebellar synapses. In this addendum, we examined whether peroxynitrite, which is produced by the reaction of nitric oxide with superoxide, may also have an effect on the Ca2+ release via RyR1 and the cerebellar LTP. We found that scavengers of peroxynitrite have no significant effect either on the Ca2+ release via RyR1 or on the cerebellar LTP. We also found that an application of a high concentration of peroxynitrite does not reproduce neuronal activity-dependent Ca2+ release in Purkinje cells. These results support that NICR is induced by endogenous nitric oxide produced by neuronal activity through S-nitrosylation of RyR1.
Models of Acetylcholine and Dopamine Signals Differentially Improve Neural Representations
Holca-Lamarre, Raphaël; Lücke, Jörg; Obermayer, Klaus
2017-01-01
Biological and artificial neural networks (ANNs) represent input signals as patterns of neural activity. In biology, neuromodulators can trigger important reorganizations of these neural representations. For instance, pairing a stimulus with the release of either acetylcholine (ACh) or dopamine (DA) evokes long lasting increases in the responses of neurons to the paired stimulus. The functional roles of ACh and DA in rearranging representations remain largely unknown. Here, we address this question using a Hebbian-learning neural network model. Our aim is both to gain a functional understanding of ACh and DA transmission in shaping biological representations and to explore neuromodulator-inspired learning rules for ANNs. We model the effects of ACh and DA on synaptic plasticity and confirm that stimuli coinciding with greater neuromodulator activation are over represented in the network. We then simulate the physiological release schedules of ACh and DA. We measure the impact of neuromodulator release on the network's representation and on its performance on a classification task. We find that ACh and DA trigger distinct changes in neural representations that both improve performance. The putative ACh signal redistributes neural preferences so that more neurons encode stimulus classes that are challenging for the network. The putative DA signal adapts synaptic weights so that they better match the classes of the task at hand. Our model thus offers a functional explanation for the effects of ACh and DA on cortical representations. Additionally, our learning algorithm yields performances comparable to those of state-of-the-art optimisation methods in multi-layer perceptrons while requiring weaker supervision signals and interacting with synaptically-local weight updates. PMID:28690509
Baumann, Michael H.; Clark, Robert D.; Rothman, Richard B.
2008-01-01
(±)-3,4-Methylenedioxymethamphetmine (MDMA, or Ecstasy) is an illicit drug that evokes transporter-mediated release of monoamines, including serotonin (5-HT) and dopamine (DA). Here we monitored the effects of MDMA on neurochemistry and motor activity in rats, as a means to evaluate relationships between 5-HT, DA, and behavior. Male rats undergoing in vivo microdialysis were housed in chambers equipped with photobeams for measurement of ambulation (i.e., forward locomotion) and stereotypy (i.e., head weaving and forepaw treading). Microdialysis probes were placed into the n. accumbens, striatum or prefrontal cortex in separate groups of rats. Dialysate samples were assayed for 5-HT and DA by microbore HPLC-ECD. Rats received two i.v. injections of MDMA, 1 mg/kg followed by 3 mg/kg 60 min later; neurochemical and locomotor parameters were measured concurrently. MDMA produced dose-related elevations in extracellular 5-HT and DA in all regions, with the magnitude of 5-HT release always exceeding that of DA release. MDMA-induced ambulation was positively correlated with dialysate DA levels in all regions (P<0.05-0.0001) and with dialysate 5-HT in striatum and cortex (P<0.001-0.0001). Stereotypy was strongly correlated with dialysate 5-HT in all areas (P<0.001-0.0001) and with dialysate DA in accumbens and striatum (P<0.001-0.0001). These data support previous work and suggest the complex spectrum of behaviors produced by MDMA involves 5-HT and DA in a region- and modality-specific manner. PMID:18403002
Mertz-Nielsen, A; Eskerod, O; Bukhave, K; Rask-Madsen, J
1995-01-01
Prostaglandin analogues of the E-series theoretically offer the ideal antiulcer drugs. Peptic ulcer healing with prostaglandin analogues is, however, no better than would be predicted from their ability to inhibit gastric acid secretion and they are less effective than histamine H2 receptor antagonists in preventing ulcer relapse. It could be that prostaglandin analogues inhibit gastric mucosal synthesis or release of endogenous eicosanoids, thereby abrogating their own effects. This study, therefore, examined how a single therapeutic dose (200 micrograms) of misoprostol, a synthetic analogue of prostaglandin E1, influences gastric mucosal release of endogenous prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and chemotactic leukotriene B4 (LTB4) during basal conditions and in response to gastric luminal acidification (0.1 M HCl; 5 ml/min for 10 minutes). Nine healthy volunteers were studied in a single blind, cross over design. In each subject misoprostol or placebo was instilled in randomised order into the stomach, which was subsequently perfused with isotonic mannitol. Misoprostol significantly decreased basal as well as acid stimulated output of PGE2 and TXB2, without affecting output of LTB4. These data show that misoprostol inhibits gastric mucosal synthesis of prostanoids. Decreased concentrations, or even a changed profile, of native eicosanoids modulating the release of inflammatory mediators from immune cells might explain why prostaglandin analogues have a comparatively poor clinical performance in ulcer healing and prevention. PMID:7737555
Bernatchez, Pascal; Sharma, Arpeeta; Bauer, Philip M.; Marin, Ethan; Sessa, William C.
2011-01-01
Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A–Cav-1 and a mutant cell–permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1–deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A–Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release. PMID:21804187
Shi, Yin-Ze; Chen, Jiann-Chu; Chen, Yu-Yuan; Kuo, Yi-Hsuan; Li, Hui-Fang
2018-05-01
White shrimp Litopenaeus vannamei haemocytes receiving immunostimulating Sargassum oligocystum extract (SE) caused necrosis in haemocyte cells, which released endogenous EM-SE molecules. This study examined the immune response of white shrimp L. vannamei receiving SE and EM-SE in vitro and in vivo. Shrimp haemocytes receiving SE exhibited degranulation, changes in cell size and cell viability, necrosis and a release of EM-SE. Shrimp haemocytes receiving SE, EM-SE, and the SE + EM-SE mixture (SE + EM-SE) increased their phenoloxidase (PO) activity which was significantly higher in shrimp haemocytes receiving the SE + EM-SE mixture. Furthermore, shrimp haemocytes receiving EM-SE showed degranulation and changes in cell size and cell viability. Shrimp receiving SE, EM-SE, and SE + EM-SE all increased their immune parameters, phagocytic activity, clearance efficiency and resistance to Vibrio alginolyticus, being significantly higher in shrimp receiving SE + EM-SE. Meanwhile, the recombinant lipopolysaccharide- and β-1,3-glucan binding protein of L. vannamei (rLvLGBP) was bound to SE, EM-SE, and SE + EM-SE. We conclude that in shrimp haemocytes receiving a non-self molecule, SE in dying cells released EM-SE which led to downstream activation and synergization of the immune response. This study demonstrated that the innate immunity of shrimp was elicited and enhanced by a mixture of endogenous molecules and exogenous substances (or immunostimulants). Copyright © 2018 Elsevier Ltd. All rights reserved.
Marvizon, Juan Carlos G; Wang, Xueren; Lao, Li-Jun; Song, Bingbing
2003-12-01
The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration-response curves for substance P and neurokinin A were obtained in the presence and absence of 10 microm thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 microm captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nm, and the EC50 of neurokinin A from 170 to 60 nm. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nm). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nm substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency.
Oberlin, Brandon G; Dzemidzic, Mario; Harezlak, Jaroslaw; Kudela, Maria A; Tran, Stella M; Soeurt, Christina M; Yoder, Karmen K; Kareken, David A
2016-09-01
Cue-evoked drug-seeking behavior likely depends on interactions between frontal activity and ventral striatal (VST) dopamine (DA) transmission. Using [(11) C]raclopride (RAC) positron emission tomography (PET), we previously demonstrated that beer flavor (absent intoxication) elicited VST DA release in beer drinkers, inferred by RAC displacement. Here, a subset of subjects from this previous RAC-PET study underwent a similar paradigm during functional magnetic resonance imaging (fMRI) to test how orbitofrontal cortex (OFC) and VST blood oxygenation level-dependent (BOLD) responses to beer flavor are related to VST DA release and motivation to drink. Male beer drinkers (n = 28, age = 24 ± 2, drinks/wk = 16 ± 10) from our previous PET study participated in a similar fMRI paradigm wherein subjects tasted their most frequently consumed brand of beer and Gatorade(®) (appetitive control). We tested for correlations between BOLD activation in fMRI and VST DA responses in PET, and drinking-related variables. Compared to Gatorade, beer flavor increased wanting and desire to drink, and induced BOLD responses in bilateral OFC and right VST. Wanting and desire to drink correlated with both right VST and medial OFC BOLD activation to beer flavor. Like the BOLD findings, beer flavor (relative to Gatorade) again induced right VST DA release in this fMRI subject subset, but there was no correlation between DA release and the magnitude of BOLD responses in frontal regions of interest. Both imaging modalities showed a right-lateralized VST response (BOLD and DA release) to a drug-paired conditioned stimulus, whereas fMRI BOLD responses in the VST and medial OFC also reflected wanting and desire to drink. The data suggest the possibility that responses to drug-paired cues may be rightward biased in the VST (at least in right-handed males) and that VST and OFC responses in this gustatory paradigm reflect stimulus wanting. Copyright © 2016 by the Research Society on Alcoholism.
Wickham, Robert J; Park, Jinwoo; Nunes, Eric J; Addy, Nii A
2015-08-12
Rapid, phasic dopamine (DA) release in the mammalian brain plays a critical role in reward processing, reinforcement learning, and motivational control. Fast scan cyclic voltammetry (FSCV) is an electrochemical technique with high spatial and temporal (sub-second) resolution that has been utilized to examine phasic DA release in several types of preparations. In vitro experiments in single-cells and brain slices and in vivo experiments in anesthetized rodents have been used to identify mechanisms that mediate dopamine release and uptake under normal conditions and in disease models. Over the last 20 years, in vivo FSCV experiments in awake, freely moving rodents have also provided insight of dopaminergic mechanisms in reward processing and reward learning. One major advantage of the awake, freely moving preparation is the ability to examine rapid DA fluctuations that are time-locked to specific behavioral events or to reward or cue presentation. However, one limitation of combined behavior and voltammetry experiments is the difficulty of dissociating DA effects that are specific to primary rewarding or aversive stimuli from co-occurring DA fluctuations that mediate reward-directed or other motor behaviors. Here, we describe a combined method using in vivo FSCV and intra-oral infusion in an awake rat to directly investigate DA responses to oral tastants. In these experiments, oral tastants are infused directly to the palate of the rat--bypassing reward-directed behavior and voluntary drinking behavior--allowing for direct examination of DA responses to tastant stimuli.
The structure of tracheobronchial mucins from cystic fibrosis and control patients.
Gupta, R; Jentoft, N
1992-02-15
Tracheobronchial mucin samples from control and cystic fibrosis patients were purified by gel filtration chromatography on Sephacryl S-1000 and by density gradient centrifugation. Normal secretions contained high molecular weight (approximately 10(7] mucins, whereas the cystic fibrosis secretions contained relatively small amounts of high molecular weight mucin together with larger quantities of lower molecular weight mucin fragments. These probably represent products of protease digestion. Reducing the disulfide bonds in either the control or cystic fibrosis high molecular weight mucin fractions released subunits of approximately 2000 kDa. Treating these subunits with trypsin released glycopeptides of 300 kDa. Trypsin treatment of unreduced mucin also released fragments of 2000 kDa that could be converted into 300-kDa glycopeptides upon disulfide bond reduction. Thus, protease-susceptible linkages within these mucins must be cross-linked by disulfide bonds so that the full effects of proteolytic degradation of mucins remain cryptic until disulfide bonds are reduced. Since various combinations of protease treatment and disulfide bond reduction release either 2000- or 300-kDa fragments, these fragments must represent important elements of mucin structure. The high molecular weight fractions of cystic fibrosis mucins appear to be indistinguishable from control mucins. Their amino acid compositions are the same, and various combinations of disulfide bond reduction and protease treatment release products of identical size and amino acid composition. Sulfate and carbohydrate compositions did vary considerably from sample to sample, but the limited number of samples tested did not demonstrate a cystic fibrosis-specific pattern. Thus, tracheobronchial mucins from cystic fibrosis and control patients are very similar, and both share the same generalized structure previously determined for salivary, cervical, and intestinal mucins.
Kramer, Edgar R; Aron, Liviu; Ramakers, Geert M. J; Seitz, Sabine; Zhuang, Xiaoxi; Beyer, Klaus; Smidt, Marten P; Klein, Rüdiger
2007-01-01
Support of ageing neurons by endogenous neurotrophic factors such as glial cell line–derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) may determine whether the neurons resist or succumb to neurodegeneration. GDNF has been tested in clinical trials for the treatment of Parkinson disease (PD), a common neurodegenerative disorder characterized by the loss of midbrain dopaminergic (DA) neurons. BDNF modulates nigrostriatal functions and rescues DA neurons in PD animal models. The physiological roles of GDNF and BDNF signaling in the adult nigrostriatal DA system are unknown. We generated mice with regionally selective ablations of the genes encoding the receptors for GDNF (Ret) and BDNF (TrkB). We find that Ret, but not TrkB, ablation causes progressive and adult-onset loss of DA neurons specifically in the substantia nigra pars compacta, degeneration of DA nerve terminals in striatum, and pronounced glial activation. These findings establish Ret as a critical regulator of long-term maintenance of the nigrostriatal DA system and suggest conditional Ret mutants as useful tools for gaining insights into the molecular mechanisms involved in the development of PD. PMID:17298183
Lok, Hiu Chuen; Sahni, Sumit; Jansson, Patric J.; Kovacevic, Zaklina; Hawkins, Clare L.; Richardson, Des R.
2016-01-01
Nitric oxide (NO) is integral to macrophage cytotoxicity against tumors due to its ability to induce iron release from cancer cells. However, the mechanism for how activated macrophages protect themselves from endogenous NO remains unknown. We previously demonstrated by using tumor cells that glutathione S-transferase P1 (GSTP1) sequesters NO as dinitrosyl-dithiol iron complexes (DNICs) and inhibits NO-mediated iron release from cells via the transporter multidrug resistance protein 1 (MRP1/ABCC1). These prior studies also showed that MRP1 and GSTP1 protect tumor cells against NO cytotoxicity, which parallels their roles in defending cancer cells from cytotoxic drugs. Considering this, and because GSTP1 and MRP1 are up-regulated during macrophage activation, this investigation examined whether this NO storage/transport system protects macrophages against endogenous NO cytotoxicity in two well characterized macrophage cell types (J774 and RAW 264.7). MRP1 expression markedly increased upon macrophage activation, and the role of MRP1 in NO-induced 59Fe release was demonstrated by Mrp1 siRNA and the MRP1 inhibitor, MK571, which inhibited NO-mediated iron efflux. Furthermore, Mrp1 silencing increased DNIC accumulation in macrophages, indicating a role for MRP1 in transporting DNICs out of cells. In addition, macrophage 59Fe release was enhanced by silencing Gstp1, suggesting GSTP1 was responsible for DNIC binding/storage. Viability studies demonstrated that GSTP1 and MRP1 protect activated macrophages from NO cytotoxicity. This was confirmed by silencing nuclear factor-erythroid 2-related factor 2 (Nrf2), which decreased MRP1 and GSTP1 expression, concomitant with reduced 59Fe release and macrophage survival. Together, these results demonstrate a mechanism by which macrophages protect themselves against NO cytotoxicity. PMID:27866158
2013-01-01
Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555
BERLIN, R D; WOOD, W B
1964-05-01
The metabolic reactions responsible for the release of endogenous pyrogen from rabbit granulocytes incubated in 0.15 M NaCl are specifically inhibited by the presence of K(+) (and by related alkali metal ions, Rb(+) and Cs(+)) in the medium. The inhibitory action of K(+) apparently involves penetration of the cell membrane and is directly antagonized by the cardiac glycoside, ouabain. It is concluded, therefore, that the inhibition of pyrogen release by extracellular K(+) is due to transport of K(+) into the cell. Although the precise molecular mechanisms which are responsible for the release of pyrogen from granulocytes incubated in K-free saline have not been elucidated, further study of the process has revealed: (a) that it is preceded by the accumulation of pyrogen within the cell, (b) that it depends upon the catalytic action of one or more sulfhydryl-containing enzymes, (c) that it does not require energy, either from glycolysis or from reactions depending on molecular oxygen, and (d) that its inhibition by K(+) and by arsenite is qualitatively similar to the depression caused by these same reagents on the release of other leucocytic proteins; i.e., lysozyme and aldolase.
Ruggieri, Alessia; Maldener, Esther; Sauter, Marlies; Mueller-Lantzsch, Nikolaus; Meese, Eckart; Fackler, Oliver T; Mayer, Jens
2009-01-01
Background The human endogenous retrovirus HERV-K(HML-2) family is associated with testicular germ cell tumors (GCT). Various HML-2 proviruses encode viral proteins such as Env and Rec. Results We describe here that HML-2 Env gives rise to a 13 kDa signal peptide (SP) that harbors a different C-terminus compared to Rec. Subsequent to guiding Env to the endoplasmatic reticulum (ER), HML-2 SP is released into the cytosol. Biochemical analysis and confocal microscopy demonstrated that similar to Rec, SP efficiently translocates to the granular component of nucleoli. Unlike Rec, SP does not shuttle between nucleus and cytoplasm. SP is less stable than Rec as it is subjected to proteasomal degradation. Moreover, SP lacks export activity towards HML-2 genomic RNA, the main function of Rec in the original viral context, and SP does not interfere with Rec's RNA export activity. Conclusion SP is a previously unrecognized HML-2 protein that, besides targeting and translocation of Env into the ER lumen, may exert biological functions distinct from Rec. HML-2 SP represents another functional similarity with the closely related Mouse Mammary Tumor Virus that encodes an Env-derived SP named p14. Our findings furthermore support the emerging concept of bioactive SPs as a conserved retroviral strategy to modulate their host cell environment, evidenced here by a "retroviral fossil". While the specific role of HML-2 SP remains to be elucidated in the context of human biology, we speculate that it may be involved in immune evasion of GCT cells or tumorigenesis. PMID:19220907
32 CFR 516.49 - Expert witnesses.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RELATIONS LITIGATION Release of Information and Appearance of Witnesses Scope Da Personnel As Witnesses in Private Litigation § 516.49 Expert witnesses. (a) General rule. Present DA personnel will not provide... in which the United States has an interest for a party other than the United States. Former DA...
Sheptovitsky, Y G; Brudvig, G W
1996-12-17
Photosystem II (PSII) membranes exhibit catalase and polyphenol oxidase (PPO) activities. Mild heat treatment of PSII membranes for 90 min at 30 degrees C releases most of these enzyme activities into the supernatant, accompanied by a 7-fold activation of PPO. In contrast, mild heat treatment of thylakoid membranes does not release significant amounts of either activity, indicating that both enzymes are bound to the luminal surface of the thylakoid membrane. The heat-released PSII membrane-associated catalase and PPO have been purified and characterized. Catalase activity was correlated with a 63 kDa polypeptide which was purified by batch adsorption to anion-exchange beads followed by gel filtration. The PSII membrane-associated catalase is unstable in solution, probably due to irreversible aggregation. The enzyme was characterized in terms of molecular and subunit size, amino-acid composition, UV-visible absorption, heme content, pH optimum, inhibitor sensitivity, and K(m) value for H2O2. Its properties indicate that the PSII membrane-associated catalase is a luminal thylakoid membrane-bound heme enzyme that has not been identified previously. The residual catalase activity of PSII membranes after mild heat treatment is irreversibly inhibited with 3-amino-1,2,4-triazole, a specific inhibitor of heme catalases, without inhibition of O2-evolution activity. This result indicates that little, if any, of the catalase activity from PSII membranes in the dark is catalyzed by the O2-evolving center of PSII. PPO activity was correlated with a 48 kDa polypeptide. However, the 48 kDa polypeptide and another heat-released polypeptide of 72 kDa have the same N-terminal sequence, which is also identical to that of a known 64 kDa protein [Hind, G., Marshak, D. R., & Coughlan, S. J. (1995) Biochemistry 34, 8157-8164]. During heat treatment of PSII membranes and further manipulations it was found that the 72 kDa polypeptide was largely converted into the 48 kDa polypeptide. Thus, the 72 kDa polypeptide appears to be a latent precursor of the active 48 kDa PPO. The PSII membrane-associated PPO was purified by anion-exchange chromatography and was characterized in terms of substrate specificity, pH optimum, inhibitor sensitivity and native molecular weight. The heat-released PPO appears to be identical to the enzyme previously isolated from spinach thylakoid membranes [Golbeck, J. H., & Cammarata, K. V. (1981) Plant Physiol. 67, 977-984].
Li, S Q
2001-11-01
An endogenous inhibitor of the sodium pump from the Chinese medication Chansu was purified. The dry substance Chansu was extracted with methanol. The dry residue dissolved in water and filtered subsequently through membrane filters with the exclusion size of 1000 Da, 3000 Da and 10000 Da in a Filtron Pro Vario-3-System and applied to thin-layer chromatographic plate made of Silica gel 60 F254 + 366 developed with a mixture of CHCl3-MeOH-H2O(75:20:5, volume ratio). The fractions with Rf 0.55 inhibiting the sodium pump were purified on an HPLC C18-RP column using a linear H2O-methanol gradient with 220 nm and 300 nm DAD detection. The bioactivity was measured by 86Rb-uptake into human red blood cells. The results showed that a low molecular weight, water soluble compound, which inhibited the sodium pump activity in the red blood cells and had a maximum absorbance at 250 nm was isolated from the Chinese medication Chansu. Several mg of the compound in pure state could be obtained from 1 kg Chansu. It was different from ouabain and proscillaridin A in chemical structure, because ouabain and proscillaridin A show a UV maximum absorption at 220 nm and 300 nm, while the new inhibitor at 250 nm.
1980-01-01
neutrophilic pyrogen, the fever-producing factors of cellular origin are now generally known as endogenous NEURONE $ M E pyrogen, or EP. FFECTS , ,, The entire...which release well known hormones. EP in turn produces its effect on a distant Assay of EP . target tissue, i.e., certein.. neurons within the central...expenditure, since it is not blocked by fluoride, cause CAMP formation within the neurons , or they could alter the In combination, these data suggest that
Endogenous cannabinoid receptor agonists inhibit neurogenic inflammations in guinea pig airways.
Yoshihara, Shigemi; Morimoto, Hiroshi; Ohori, Makoto; Yamada, Yumi; Abe, Toshio; Arisaka, Osamu
2005-09-01
Although neurogenic inflammation via the activation of C fibers in the airway must have an important role in the pathogenesis of asthma, their regulatory mechanism remains uncertain. The pharmacological profiles of endogenous cannabinoid receptor agonists on the activation of C fibers in airway tissues were investigated and the mechanisms how cannabinoids regulate airway inflammatory reactions were clarified. The effects of endogenous cannabinoid receptor agonists on electrical field stimulation-induced bronchial smooth muscle contraction, capsaicin-induced bronchoconstriction and capsaicin-induced substance P release in guinea pig airway tissues were investigated. The influences of cannabinoid receptor antagonists and K+ channel blockers to the effects of cannabinoid receptor agonists on these respiratory reactions were examined. Both endogenous cannabinoid receptor agonists, anandamide and palmitoylethanolamide, inhibited electrical field stimulation-induced guinea pig bronchial smooth muscle contraction, but not neurokinin A-induced contraction. A cannabinoid CB2 antagonist, SR 144528, reduced the inhibitory effect of endogenous agonists, but not a cannabinoid CB1 antagonist, SR 141716A. Inhibitory effects of agonists were also reduced by the pretreatment of large conductance Ca2+ -activated K+ channel (maxi-K+ channel) blockers, iberiotoxin and charybdotoxin, but not by other K+ channel blockers, dendrotoxin or glibenclamide. Anandamide and palmitoylethanolamide blocked the capsaicin-induced release of substance P-like immunoreactivity from guinea pig airway tissues. Additionally, intravenous injection of palmitoylethanolamide dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, but not neurokinin A-induced reaction. However, anandamide did not reduce capsaicin-induced guinea pig bronchoconstriction. These findings suggest that endogenous cannabinoid receptor agonists inhibit the activation of C fibers via cannabinoid CB2 receptors and maxi-K+ channels in guinea pig airways. Copyright (c) 2005 S. Karger AG, Basel.
Amphetamine Augments Action Potential-Dependent Dopaminergic Signaling in the Striatum in Vivo
Ramsson, Eric S.; Covey, Daniel P.; Daberkow, David P.; Litherland, Melissa T.; Juliano, Steven A.; Garris, Paul A.
2011-01-01
Amphetamine (AMPH) is thought to disrupt normal patterns of action potential-dependent dopaminergic signaling by depleting dopamine (DA) vesicular stores and promoting non-exocytotic DA efflux. Voltammetry in brain slices concurrently demonstrates these key drug effects, along with competitive inhibition of neuronal DA uptake. Here we perform comparable kinetic and voltammetric analyses in vivo to determine whether AMPH acts qualitatively and quantitatively similar in the intact brain. Fast-scan cyclic voltammetry measured extracellular DA in dorsal and ventral striata of urethane-anesthetized rats. Electrically evoked recordings were analyzed to determine Km and Vmax for DA uptake and vesicular DA release, while background voltammetric current indexed basal DA concentration. AMPH (0.5, 3, and 10 mg/kg i.p.) robustly increased evoked DA responses in both striatal subregions. The predominant contributor to these elevated levels was competitive uptake inhibition, as exocytotic release was unchanged in the ventral striatum and only modestly decreased in the dorsal striatum. Increases in basal DA levels were not detected. These results are consistent with AMPH augmenting action potential-dependent dopaminergic signaling in vivo across a wide, behaviorally relevant dose range. Future work should be directed at possible causes for the distinct in vitro and in vivo pharmacology of AMPH. PMID:21443523
Paradoxical Abatement of Striatal Dopaminergic Transmission by Cocaine and Methylphenidate*
Federici, Mauro; Latagliata, Emanuele Claudio; Ledonne, Ada; Rizzo, Francesca R.; Feligioni, Marco; Sulzer, Dave; Dunn, Matthew; Sames, Dalibor; Gu, Howard; Nisticò, Robert; Puglisi-Allegra, Stefano; Mercuri, Nicola B.
2014-01-01
We combined in vitro amperometric, optical analysis of fluorescent false neurotransmitters and microdialysis techniques to unveil that cocaine and methylphenidate induced a marked depression of the synaptic release of dopamine (DA) in mouse striatum. In contrast to the classical dopamine transporter (DAT)-dependent enhancement of the dopaminergic signal observed at concentrations of cocaine lower than 3 μm, the inhibitory effect of cocaine was found at concentrations higher than 3 μm. The paradoxical inhibitory effect of cocaine and methylphenidate was associated with a decrease in synapsin phosphorylation. Interestingly, a cocaine-induced depression of DA release was only present in cocaine-insensitive animals (DAT-CI). Similar effects of cocaine were produced by methylphenidate in both wild-type and DAT-CI mice. On the other hand, nomifensine only enhanced the dopaminergic signal either in wild-type or in DAT-CI mice. Overall, these results indicate that cocaine and methylphenidate can increase or decrease DA neurotransmission by blocking reuptake and reducing the exocytotic release, respectively. The biphasic reshaping of DA neurotransmission could contribute to different behavioral effects of psychostimulants, including the calming ones, in attention deficit hyperactivity disorder. PMID:24280216
DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission
NASA Astrophysics Data System (ADS)
Girven, J.; Gänsicke, B. T.; Steeghs, D.; Koester, D.
2011-10-01
We present a method which uses colour-colour cuts on the Sloan Digital Sky Survey (SDSS) photometry to select white dwarfs with hydrogen-rich (DA) atmospheres without the recourse to spectroscopy. This method results in a sample of DA white dwarfs that is 95 per cent complete at an efficiency of returning a true DA white dwarf of 62 per cent. The approach was applied to SDSS Data Release 7 for objects with and without SDSS spectroscopy. This led to 4636 spectroscopicially confirmed DA white dwarfs with g≤ 19; a ˜70 per cent increase compared to Eisenstein et al.'s 2006 sample. Including the photometric-only objects, we estimate a factor of 3 increase in DA white dwarfs. We find that the SDSS spectroscopic follow-up is 44 per cent complete for DA white dwarfs with Teff≳ 8000 K. We further cross-correlated the SDSS sample with Data Release 8 of the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey. The spectral energy distributions (SED) of both subsets, with and without SDSS spectroscopy, were fitted with white dwarf models to determine the fraction of DA white dwarfs with low-mass stellar companions or dusty debris discs via the detection of excess near-infrared emission. From the spectroscopic sample we find that 2.0 per cent of white dwarfs have an excess consistent with a brown dwarf type companion, with a firm lower limit of 0.8 per cent. From the white dwarfs with photometry only, we find that 1.8 per cent are candidates for having brown dwarf companions. Similarly, both samples show that ˜1 per cent of white dwarfs are candidates for having a dusty debris disc.
Yu, Z J; Wecker, L
1994-07-01
The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]-dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]-serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 mumol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 microM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 microM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 microM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration.(ABSTRACT TRUNCATED AT 250 WORDS)
Induction of infectious petunia vein clearing (pararetro) virus from endogenous provirus in petunia
Richert-Pöggeler, Katja R.; Noreen, Faiza; Schwarzacher, Trude; Harper, Glyn; Hohn, Thomas
2003-01-01
Infection by an endogenous pararetrovirus using forms of both episomal and chromosomal origin has been demonstrated and characterized, together with evidence that petunia vein clearing virus (PVCV) is a constituent of the Petunia hybrida genome. Our findings allow comparative and direct analysis of horizontally and vertically transmitted virus forms and demonstrate their infectivity using biolistic transformation of a provirus-free petunia species. Some integrants within the genome of P.hybrida are arranged in tandem, allowing direct release of virus by transcription. In addition to known inducers of endogenous pararetroviruses, such as genome hybridization, tissue culture and abiotic stresses, we observed activation of PVCV after wounding. Our data also support the hypothesis that the host plant uses DNA methylation to control the endogenous pararetrovirus. PMID:12970195
Di Matteo, V; Di Giovanni, G; Di Mascio, M; Esposito, E
2000-01-01
The hydromethanolic extract of Hypericum perforatum has been shown to be an effective antidepressant, although its mechanism of action is still unclear. In this study, in vivo microdialysis was used to investigate the effects of Hypericum perforatum-CO2 extract on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) release in various areas of brain. Administration of Hypericum perforatum extract (1 mg/kg, p.o.) caused a slight, but significant increase of DA outflow both in the nucleus accumbens and the striatum. The maximal increase of DA efflux (+19.22+/-1.93%, relative to the control group) in the nucleus accumbens occurred 100 min after administration of Hypericum perforatum. In the striatum, the extract maximally enhanced DA outflow (+24.83+/-7.49 %, relative to the control group) 80 min after administration. Extraneuronal DOPAC levels were not significantly affected by Hypericum perforatum treatment. Moreover, Hypericum perforatum (1 mg/kg, p.o.) did not produce any significant effect on either 5-HT or 5-HIAA efflux in the ventral hippocampus. This study shows for the first time that Hypericum perforatum extract is capable of increasing in vivo DA release.
Parillo, Francesco; Maranesi, Margherita; Mignini, Fiorenzo; Marinelli, Lisa; Di Stefano, Antonio; Boiti, Cristiano; Zerani, Massimo
2014-01-01
Dopamine (DA) receptor (DR) type 1 (D1R) has been found to be expressed in luteal cells of various species, but the intrinsic role of the DA/DRs system on corpora lutea (CL) function is still unclear. Experiments were devised to characterize the expression of DR types and the presence of DA, as well as the in vitro effects of DA on hormone productions by CL in pseudopregnant rabbits. Immunoreactivity and gene expression for D1R decreased while that for D3R increased in luteal and blood vessel cells from early to late pseudopregnant stages. DA immunopositivity was evidenced only in luteal cells. The DA and D1R agonist increased in vitro release of progesterone and prostaglandin E2 (PGE2) by early CL, whereas the DA and D3R agonist decreased progesterone and increased PGF2α in vitro release by mid- and late CL. These results provide evidence that the DA/DR system exerts a dual modulatory function in the lifespan of CL: the DA/D1R is luteotropic while the DA/D3R is luteolytic. The present data shed new light on the physiological mechanisms regulating luteal activity that might improve our ability to optimize reproductive efficiency in mammal species, including humans.
Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D
2014-11-04
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903
No evidence for attenuated stress-induced extrastriatal dopamine signaling in psychotic disorder
Hernaus, D; Collip, D; Kasanova, Z; Winz, O; Heinzel, A; van Amelsvoort, T; Shali, S M; Booij, J; Rong, Y; Piel, M; Pruessner, J; Mottaghy, F M; Myin-Germeys, I
2015-01-01
Stress is an important risk factor in the etiology of psychotic disorder. Preclinical work has shown that stress primarily increases dopamine (DA) transmission in the frontal cortex. Given that DA-mediated hypofrontality is hypothesized to be a cardinal feature of psychotic disorder, stress-related extrastriatal DA release may be altered in psychotic disorder. Here we quantified for the first time stress-induced extrastriatal DA release and the spatial extent of extrastriatal DA release in individuals with non-affective psychotic disorder (NAPD). Twelve healthy volunteers (HV) and 12 matched drug-free NAPD patients underwent a single infusion [18F]fallypride positron emission tomography scan during which they completed the control and stress condition of the Montreal Imaging Stress Task. HV and NAPD did not differ in stress-induced [18F]fallypride displacement and the spatial extent of stress-induced [18F]fallypride displacement in medial prefrontal cortex (mPFC) and temporal cortex (TC). In the whole sample, the spatial extent of stress-induced radioligand displacement in right ventro-mPFC, but not dorso-mPFC or TC, was positively associated with task-induced subjective stress. Psychotic symptoms during the scan or negative, positive and general subscales of the Positive and Negative Syndrome Scale were not associated with stress-induced [18F]fallypride displacement nor the spatial extent of stress-induced [18F]fallypride displacement in NAPD. Our results do not offer evidence for altered stress-induced extrastriatal DA signaling in NAPD, nor altered functional relevance. The implications of these findings for the role of the DA system in NAPD and stress processing are discussed. PMID:25871972
Marvizón, Juan Carlos G; Wang, Xueren; Lao, Li-Jun; Song, Bingbing
2003-01-01
The ability of peptidases to restrict neurokinin 1 receptor (NK1R) activation by exogenously applied or endogenously released neurokinins was investigated by measuring NK1R internalization in rat spinal cord slices. Concentration–response curves for substance P and neurokinin A were obtained in the presence and absence of 10 μM thiorphan, an inhibitor of neutral endopeptidase (EC 3.4.24.11), plus 10 μM captopril, an inhibitor of dipeptidyl carboxypeptidase (EC 3.4.15.1). These inhibitors significantly decreased the EC50 of substance P to produce NK1R internalization from 32 to 9 nM, and the EC50 of neurokinin A from 170 to 60 nM. Substance P was significantly more potent than neurokinin A, both with and without these peptidase inhibitors. In the presence of peptidase inhibitors, neurokinin B was 10 times less potent than neurokinin A and 64 times less potent than substance P (EC50=573 nM). Several aminopeptidase inhibitors (actinonin, amastatin, bacitracin, bestatin and puromycin) failed to further increase the effect of thiorphan plus captopril on the NK1R internalization produced by 10 nM substance P. Electrical stimulation of the dorsal root produced NK1R internalization by releasing endogenous neurokinins. Thiorphan plus captopril increased NK1R internalization produced by 1 Hz stimulation, but not by 30 Hz stimulation. Therefore, NEN and DCP restrict NK1R activation by endogenous neurokinins when they are gradually released by low-frequency firing of primary afferents, but become saturated or inhibited when primary afferents fire at a high frequency. PMID:14623771
Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1
Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.
1983-01-01
The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227
Tucker, Kristal R; Block, Ethan R; Levitan, Edwin S
2015-08-11
Based on lysotracker red imaging in cultured hippocampal neurons, antipsychotic drugs (APDs) were proposed to accumulate in synaptic vesicles by acidic trapping and to be released in response to action potentials. Because many APDs are dopamine (DA) D2 receptor (D2R) antagonists, such a mechanism would be particularly interesting if it operated in midbrain DA neurons. Here, the APD cyamemazine (CYAM) is visualized directly by two-photon microscopy in substantia nigra and striatum brain slices. CYAM accumulated slowly into puncta based on vacuolar H(+)-ATPase activity and dispersed rapidly upon dissipating organelle pH gradients. Thus, CYAM is subject to acidic trapping and released upon deprotonation. In the striatum, Ca(2+)-dependent reduction of the CYAM punctate signal was induced by depolarization or action potentials. Striatal CYAM overlapped with the dopamine transporter (DAT). Furthermore, parachloroamphetamine (pCA), acting via vesicular monoamine transporter (VMAT), and a charged VMAT, substrate 1-methyl-4-phenylpyridinium (MPP(+)), reduced striatal CYAM. In vivo CYAM administration and in vitro experiments confirmed that clinically relevant CYAM concentrations result in vesicular accumulation and pCA-dependent release. These results show that some CYAM is in DA neuron VMAT vesicles and suggests a new drug interaction in which amphetamine induces CYAM deprotonation and release as a consequence of the H(+) countertransport by VMAT that accompanies vesicular uptake, but not by inducing exchange or acting as a weak base. Therefore, in the striatum, APDs are released with DA in response to action potentials and an amphetamine. This synaptic corelease is expected to enhance APD antagonism of D2Rs where and when dopaminergic transmission occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krebs, M.O.; Trovero, F.; Desban, M.
1991-05-01
Striosome- and matrix-enriched striatal zones were defined in coronal and sagittal brain sections of the rat, on the basis of {sup 3}H-naloxone binding to mu-opiate receptors (a striosome-specific marker). Then, using a new in vitro microsuperfusion device, the NMDA (50 microM)-evoked release of newly synthesized {sup 3}H-dopamine ({sup 3}H-DA) was examined in these four striatal areas under Mg(2+)-free conditions. The amplitudes of the responses were different in striosomal (171 +/- 6% and 161 +/- 5% of the spontaneous release) than in matrix areas (223 +/- 6% and 248 +/- 12%), even when glycine (1 or 100 microM) was coapplied (inmore » the presence of 1 microM strychnine). In the four areas, the NMDA-evoked release of {sup 3}H-DA was blocked completely by Mg{sup 2}{sup +} (1 mM) or (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801; 1 microM) and almost totally abolished by kynurenate (100 microM). Because the tetrodotoxin (TTX)-resistant NMDA-evoked release of {sup 3}H-DA was similar in striosome- (148 +/- 5% and 152 +/- 6%) or matrix-enriched (161 +/- 5% and 156 +/- 7%) areas, the indirect (TTX-sensitive) component of NMDA-evoked responses, which involves striatal neurons and/or afferent fibers, seems more important in the matrix- than in the striosome-enriched areas. The modulation of DA release by cortical glutamate and/or aspartate-containing inputs through NMDA receptors in the matrix appears thus to be partly distinct from that observed in the striosomes, providing some functional basis for the histochemical striatal heterogeneity.« less
77 FR 72348 - Notice of Exemption Dismissals and Obligation To Begin Providing Closed Captioning
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-05
... FEDERAL COMMUNICATIONS COMMISSION [CG Docket No. 06-181; DA 12-1833] Notice of Exemption...: This is a synopsis of the Commission's Public Notice, document DA 12-1833, released November 14, 2012..., DC 20554. Document DA 12-1833 and copies of subsequently filed documents in this matter may also be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somogyi, G.T.; de Groat, W.C.
Modulation of (3H)NE release was studied in rat urinary bladder strips prelabeled with (3H)NE. (3H)NE uptake occurred in strips from the bladder base and body, but was very prominent in the base where the noradrenergic innervation is most dense. Electrical field stimulation markedly increased (3H)NE outflow from the superfused tissue. The quantity of (3H)NE release was approximately equal during three consecutive periods of stimulation. Activation of presynaptic muscarinic receptors by 1.0 microM oxotremorine reduced (3H)NE release to 46% of the control. Atropine (1 microM) blocked the effect of oxotremorine and increased the release to 147% of predrug control levels. Activationmore » of presynaptic alpha-2 adrenoceptors by 1 microM clonidine reduced (3H)NE release to 55% of control. Yohimbine blocked the action of clonidine and increased the release to 148% of control. The release of (3H)NE from the bladder base and body was increased by both 1 microM atropine (to 167% and 174% of control, respectively) and 1 microM yohimbine (to 286% and 425% of control, respectively). Atropine and yohimbine administered in combination had similar facilitatory effects as when administered alone. We conclude that the release of (3H)NE from adrenergic nerve endings in electrically stimulated bladder strips is modulated via endogenous transmitters acting on both muscarinic and alpha-2 adrenergic presynaptic receptors and that the latter provide the most prominent control.« less
Ebner, Karl; Rjabokon, Alesja; Pape, Hans-Christian; Singewald, Nicolas
2011-10-01
Intracerebral microdialysis in conjunction with a highly sensitive radioimmunoassay was used to study the in vivo release of neuropeptide S (NPS) within the amygdala of freely moving rats. NPS was consistently detected in basolateral amygdala dialysates and the release considerably enhanced in response to local depolarisation as well as exposure to forced swim stress. Thus, our data demonstrate for the first time emotional stress-induced release of NPS in the amygdala supporting a functional role of endogenous NPS in stress/anxiety-related phenomena.
Tannert, Astrid; Kurz, Anke; Erlemann, Karl-Rudolf; Müller, Karin; Herrmann, Andreas; Schiller, Jürgen; Töpfer-Petersen, Edda; Manjunath, Puttaswamy; Müller, Peter
2007-04-01
The bovine seminal plasma protein PDC-109 modulates the maturation of bull sperm cells by removing lipids, mainly phosphatidylcholine and cholesterol, from their cellular membrane. Here, we have characterized the process of extraction of endogenous phospholipids and of their respective analogues. By measuring the PDC-109-mediated release of fluorescent phospholipid analogues from lipid vesicles and from biological membranes (human erythrocytes, bovine epididymal sperm cells), we showed that PDC-109 extracts phospholipids with a phosphorylcholine headgroup mainly from the outer leaflet of these membranes. The ability of PDC-109 to extract endogenous phospholipids from epididymal sperm cells was followed by mass spectrometry, which allowed us to characterize the fatty acid pattern of the released lipids. From these cells, PDC-109 extracted phosphatidylcholine and sphingomyelin that contained an enrichment of mono- and di-unsaturated fatty acids as well as short-chain and lyso-phosphatidylcholine species. Based on the results, a model explaining the phospholipid specificity of PDC-109-mediated lipid release is presented.
Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A
2000-11-01
Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal corticosterone levels observed strains during a prolonged arthritic process. No correlation between ability to secrete corticosterone and susceptibility to inflammation could be demonstrated. Basal levels of endogenous corticosterone appeared to restrain inflammation in beta-glucan-challenged DA rats whereas resistance to inflammation in PVG.1AV1 rats may be mediated via corticosterone-independent mechanisms.
DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.
Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min
2014-04-01
DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.
Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)
Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.
2007-01-01
Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.
Linehan, Victoria; Trask, Robert B.; Briggs, Chantalle; Rowe, Todd M.; Hirasawa, Michiru
2017-01-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups, where orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying DA action on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using whole cell patch clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration dependent, bidirectional manner. Low (1 μM) and high concentrations (100 μM) of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors, whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. PMID:26036709
Cameron, Courtney M.; Wightman, R. Mark; Carelli, Regina M.
2014-01-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n=8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. PMID:25174553
PETERSDORF, R G; KEENE, W R; BENNETT, I L
1957-12-01
The "endogenous serum pyrogen" that appears in the circulating blood after a single intravenous injection of endotoxin does not produce leukopenia in normal animals, fails to provoke the local Shwartzman reaction, and elicits no "tolerance" when injected daily. Suppression of the febrile response to endotoxin by prednisone does not prevent the appearance of pyrogen in the blood. Animals given large amounts of endotoxin daily continue to respond with high fevers despite failure of endogenous serum pyrogen to appear in detectable amounts after the first two or three injections. Analysis of the response to daily injections shows clearly that the fever during the first 2 hours after administration of endotoxin is unrelated to levels of endogenous serum pyrogen; in contrast, the magnitude of the fever after the 2nd hour correlates well with endogenous pyrogen in some instances. The leukopenic response to endotoxin could not be correlated with the appearance of endogenous serum pyrogen. The differences between endotoxin and endogenous pyrogen and the similarities between leukocyte extracts (sterile exudates) and endogenous pyrogen are summarized and discussed. Dissociation of the febrile response to bacterial endotoxin and levels of endogenous serum pyrogen are discussed and it is concluded that a mechanism involving both direct and indirect action of endotoxins offers the best explanation for the pyrogenic action of these bacterial products.
Chandrashekar, K N; Muralidhara
2008-07-01
The objective of the present study was to investigate the oxidative induction response following in vitro treatment with D-aspartic acid (DA) in prepubertal rat testis (homogenates, explants, and cell suspensions). In all three preparations, DA enhanced (P<0.001) lipid peroxidation, manifest as increased reactive oxygen species (ROS) and malondialdehyde (MDA). Further, DA-induced oxidative induction was potentiated (P<0.001) in the presence of iron (5 microM) and 3-amino triazole and mercaptosuccinate (P<0.001), known inhibitors of the peroxide metabolizing enzymes, catalase and glutathione peroxidase, respectively. Testis homogenates exposed to L-arginine (LA) per se had reduced (P<0.001) endogenous levels of ROS and MDA; furthermore, pre-incubation with L-arginine markedly suppressed (P<0.001) DA-induced oxidative induction, suggesting an antagonistic action, perhaps due to LA-derived nitric oxide. In conclusion, DA caused significant oxidative induction in prepubertal rat testis, but this action was abrogated by L-arginine. The relevance of this phenomenon in vivo merits further study, as both of these molecules have specific physiological functions in the testis.
BERLIN, R D; WOOD, W B
1964-05-01
1. Phagocytosis promotes the release of endogenous pyrogen from polymorphonuclear leucocytes. 2. The release of pyrogen, though initiated by the phagocytic event, is not synchronous with it. 3. The postphagocytic release mechanism is not inhibited by sodium fluoride and, therefore, appears not to require continued production of energy by the cell. 4. The release process, on the other hand, is inhibited by arsenite, suggesting the participation of one or more sulfhydryl-dependent enzymes in the over-all reaction. 5. Particle for particle, the ingestion of heat-killed rough pneumococci causes the release of approximately 100 times as much pyrogen as the ingestion of polystyrene beads of the same size. 6. The pyrogen release mechanism of polymorphonuclear leucocytes separated directly from blood, unlike that of granulocytes in acute inflammatory exudates, is not readily activated by incubation of the cells in K-free saline. Despite this difference, both blood and exudate leucocytes following phagocytosis release large amounts of pyrogen, even in the presence of K(+). The fact that the postphagocytic reaction is uninhibited by the concentrations of K(+) which are present in plasma and extracellular fluids, suggests that this mechanism of pyrogen release may well operate in vivo. 7. As might be expected from the foregoing observations, the intravenous injection of a sufficiently large number of heat-killed pneumococci causes fever in the intact host. Intravenously injected polystyrene beads, on the other hand, are significantly less pyrogenic. Evidence is presented to support the conclusion that the fever in both instances is caused by pyrogen released from the circulating leucocytes which have phagocyted the injected particles. 8. The possible relationships of these findings to the pathogenesis of fevers caused by acute bacterial infections are discussed.
Xie, Jennifer Y; Qu, Chaoling; Patwardhan, Amol; Ossipov, Michael H; Navratilova, Edita; Becerra, Lino; Borsook, David; Porreca, Frank
2014-08-01
Preclinical assessment of pain has increasingly explored operant methods that may allow behavioral assessment of ongoing pain. In animals with incisional injury, peripheral nerve block produces conditioned place preference (CPP) and activates the mesolimbic dopaminergic reward pathway. We hypothesized that activation of this circuit could serve as a neurochemical output measure of relief of ongoing pain. Medications commonly used clinically, including gabapentin and nonsteroidal anti-inflammatory drugs (NSAIDs), were evaluated in models of post-surgical (1 day after incision) or neuropathic (14 days after spinal nerve ligation [SNL]) pain to determine whether the clinical efficacy profile of these drugs in these pain conditions was reflected by extracellular dopamine (DA) release in the nucleus accumbens (NAc) shell. Microdialysis was performed in awake rats. Basal DA levels were not significantly different between experimental groups, and no significant treatment effects were seen in sham-operated animals. Consistent with clinical observation, spinal clonidine produced CPP and produced a dose-related increase in net NAc DA release in SNL rats. Gabapentin, commonly used to treat neuropathic pain, produced increased NAc DA in rats with SNL but not in animals with incisional, injury. In contrast, ketorolac or naproxen produced increased NAc DA in animals with incisional but not neuropathic pain. Increased extracellular NAc DA release was consistent with CPP and was observed selectively with treatments commonly used clinically for post-surgical or neuropathic pain. Evaluation of NAc DA efflux in animal pain models may represent an objective neurochemical assay that may serve as a biomarker of efficacy for novel pain-relieving mechanisms. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping
2016-01-01
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID:27469513
78 FR 44121 - FCC Extends Reply Comment Dates for Indecency Cases Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... FEDERAL COMMUNICATIONS COMMISSION [GN Docket No. 13-86; DA 13-1560] FCC Extends Reply Comment... number of this Notice, GN Docket No. 13-86, on the front page. The Public Notice, DA 13-1560, released... documents from BCPI, please provide the appropriate FCC document number DA 13-1560. The Public Notice is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-17
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 1 [GC Docket No. 10-44; DA 12-1401] Notice of... . SUPPLEMENTARY INFORMATION: This is a synopsis of the Commission's Public Notice, document DA 12-1401, released... Procedure of Serving Parties in an Electronic Format. The full text of DA [[Page 57036
Goodin, Burel; Kindler, Lindsay L.; Caudle, Robert M.; Edwards, Robert R.; Gravenstein, Nikolaus; Riley, Joseph L.; Fillingim, Roger B.
2013-01-01
The current study tested the hypothesis that conditioned pain modulation is mediated by the release of endogenous opioids with a placebo-controlled (sugar pill) study of naltrexone (50 mg) in 33 healthy volunteers over two counter-balanced sessions. Pain modulation consisted of rating of heat pain (palm) during concurrent cold water immersion (foot). Compared to baseline heat pain ratings, concurrent foot immersion lowered pain intensity ratings, which suggests an inhibitory effect, was reduced with naltrexone, suggesting at least partial dependence of inhibition on endogenous opioids. An exploratory analysis revealed that individual differences in catastrophizing moderated the effects of naltrexone; endogenous opioid blockade abolished modulation in subjects lower in catastrophizing while modulation was unaffected by naltrexone among high catastrophizers. The results suggest a role of endogenous opioids in endogenous analgesia, but hint that multiple systems might contribute to conditioned pain modulation, and that these systems might be differentially activated as a function of individual differences in responses to pain. PMID:22534819
Ulich, T R; del Castillo, J; Ni, R X; Bikhazi, N
1989-06-01
Endotoxin reduces the release among other cytokines of tumor necrosis factor (TNF) and interleukin 1 (IL-1) and causes peripheral lymphopenia and a dose-response-dependent initial neutropenia followed by a monophasic neutrophilia. TNF alone induces lymphopenia and an initial neutropenia followed by a biphasic neutrophilia. IL-1 alone induces lymphopenia and a monophasic neutrophilia. TNF-plus-IL-1 caused a greater lymphopenia than either monokine alone, suggesting that both monokines contribute to LPS-induced lymphopenia. TNF-plus-IL-1 induced neutropenia similar in magnitude to that induced by TNF alone and induced a neutrophilia significantly greater than that induced by either monokine alone, suggesting that LPS-induced neutropenia is caused by TNF, while LPS-induced neutrophilia is due to the combined effects of TNF and II-1. TNF and IL-1 were administered together with LPS to simulate the in vivo condition of endogenous monokine release during gram-negative bacteremia. TNF combined with LPS increased both the duration and magnitude of LPS-induced lymphopenia, LPS-induced neutropenia, and LPS-induced neutrophilia. TNF-plus-LPS treated rats at 2 hours after injection exhibited a striking 93% decrease in bone marrow neutrophils even though no peripheral neutrophilia was yet apparent, suggesting that the subsequent neutrophilia was due to demargination and recirculation of neutrophils sequestered in the peripheral vasculature immediately after their release from the bone marrow. Epinephrine, which causes neutrophilia by demargination but not by release of marrow neutrophils, reversed the initial neutropenia in TNF-plus-LPS-treated rats and increased the neutrophilia. IL-1 combined with LPS increased LPS-induced neutrophilia, suggesting that endogenous IL-1 also contributed to LPS-induced neutrophilia. Corynebacterium parvum-primed rats with hyperplasia of the monocyte-macrophage system and treated with TNF differed from naive rats treated with TNF in that the second peak was as great as the initial peak of neutrophilia, supporting the hypothesis that the second peak of TNF-induced neutrophilia is due to the release of endogenous monokines. In conclusion, exogenous TNF, IL-1, and adrenal hormones affect circulating numbers of lymphocytes and neutrophils in a fashion consistent with their postulated endogenous role in the regulation of leukocyte trafficking during bacterial infection.
NASA Astrophysics Data System (ADS)
Chen, Fei-Yan; Yi, Jing-Wei; Gu, Zhe-Jia; Tang, Bin-Bing; Li, Jian-Qi; Li, Li; Kulkarni, Padmakar; Liu, Li; Mason, Ralph P.; Tang, Qun
2016-03-01
On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced toxicity compared to the free drug. These results suggest a new drug delivery strategy which might be applied for ATO therapy on solid tumors.On-demand drug delivery is becoming feasible via the design of either exogenous or endogenous stimulus-responsive drug delivery systems. Herein we report the development of gadolinium arsenite nanoparticles as a self-delivery platform to store, deliver and release arsenic trioxide (ATO, Trisenox), a clinical anti-cancer drug. Specifically, unloading of the small molecule drug is triggered by an endogenous stimulus: inorganic phosphate (Pi) in the blood, fluid, and soft or hard tissue. Kinetics in vitro demonstrated that ATO is released with high ON/OFF specificity and no leakage was observed in the silent state. The nanoparticles induced tumor cell apoptosis, and reduced cancer cell migration and invasion. Plasma pharmacokinetics verified extended retention time, but no obvious disturbance of phosphate balance. Therapeutic efficacy on a liver cancer xenograft mouse model was dramatically potentiated with reduced toxicity compared to the free drug. These results suggest a new drug delivery strategy which might be applied for ATO therapy on solid tumors. Electronic supplementary information (ESI) available: HRTEM image and electron diffraction pattern of individual GdAsOx NPs, cell viability measurements after 48 and 72 hours of incubation, body weight change curves, hematology curves, liver function curves, and renal function curves. See DOI: 10.1039/c6nr00536e
Chiang, T M; Wang, Y B; Kang, E S
2000-12-01
Nitric oxide plays an important role in platelet function and platelets possess the endothelial isoform of nitric oxide synthase. Several reports have indicated that nitric oxide is released upon exposure of platelets to collagen. We have reported that a non-integrin platelet protein of 65 kDa is a receptor for type I collagen. By direct measurement of NO release from washed human platelets suspended in Tyrode buffer with a ISO-NO Mark II, World Precision Instruments, Sarasota, FL, USA, p30 sensor, type I collagen, but not ADP and epinephrine, induces the release of NO in a time-dependent manner. The production of NO is inhibited either by preincubation of type I collagen with the platelet type I collagen receptor recombinant protein or by preincubation of platelets with the antibody to the receptor protein, the anti-65 antibody. However, preincubation of platelets with anti-P-selectin and anti-glycoprotein IIb/IIIa did not affect the release of NO by platelets. These results suggest that the 65 kDa platelet receptor for type I collagen is specifically linked to the generation of NO, and that the 65 kDa platelet receptor for type I collagen plays an important new role in platelet function.
Diaz-Ruiz, Oscar; Zhang, Yajun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R; Tagliaferro, Adriana; Brusco, Alicia; Bäckman, Cristina M
2012-07-20
In the present study, we analyzed mice with a targeted deletion of β-catenin in DA neurons (DA-βcat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-βcat KO mice showed significant deficits in their ability to form long-term memories and displayed reduced expression of methamphetamine-induced behavioral sensitization after subsequent challenge doses with this drug, suggesting that motor learning and drug-induced learning plasticity are altered in these mice. Morphological analyses showed no changes in the number or distribution of tyrosine hydroxylase-labeled neurons in the ventral midbrain. While electrochemical measurements in the striatum determined no changes in acute DA release and uptake, a small but significant decrease in DA release was detected in mutant animals after prolonged repetitive stimulation, suggesting a possible deficit in the DA neurotransmitter vesicle reserve pool. However, electron microscopy analyses did not reveal significant differences in the content of synaptic vesicles per terminal, and striatal DA levels were unchanged in DA-βcat KO animals. In contrast, striatal mRNA levels for several markers known to regulate synaptic plasticity and DA neurotransmission were altered in DA-βcat KO mice. This study demonstrates that ablation of β-catenin in DA neurons leads to alterations of motor and reward-associated memories and to adaptations of the DA neurotransmitter system and suggests that β-catenin signaling in DA neurons is required to facilitate the synaptic remodeling underlying the consolidation of long-term memories.
Kaiser, Alexander; Hartzendorf, Sandra; Wobschall, Annabell; Hetz, Stefan K
2010-05-01
Understanding the mechanisms of gas exchange regulation in insects currently is a hot topic of insect physiology. Endogenous variation of metabolism during pupal development offers a great opportunity to study the regulation of respiratory patterns in insects. Here we show that metabolic rates during pupal development of the tenebrionid beetle Zophobas rugipes reveal a typical U-shaped curve and that, with the exception of 9-day-old pupae, the time between two bursts of CO(2) (interburst phase) was the only parameter of cyclic CO(2) gas exchange patterns that was adjusted to changing metabolic rates. The volume of CO(2) released in a burst was kept constant, suggesting a regulation for accumulation and release of a fixed amount of CO(2) throughout pupal development. We detected a variety of discontinuous and cyclic gas exchange patterns, which were not correlated with any periods of pupal development, suggesting a high among individual variability. An occasional occurrence of continuous CO(2) release patterns at low metabolic rates was very likely caused by single defective non-occluding spiracles. Copyright 2009 Elsevier Ltd. All rights reserved.
Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W
1999-01-29
Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.
Elliott, P J; Alpert, J E; Bannon, M J; Iversen, S D
1986-01-15
Microinfusion of the metabolically stable substance P (SP) agonist, [pGlu5,MePhe8,Sar9]-SP5-11 (DiMe-C7), into the ventral tegmental area (VTA) of rat brain increased levels of the dopamine (DA) metabolite dihydroxyphenylacetic acid in the prefrontal cortex (+ 120%) and nucleus accumbens (+30%) but not in other regions of forebrain. In contrast, infusions of DiMe-C7 or SP into the lateral ventricles or microinfusions of SP into VTA failed to elicit increases in DOPAC levels in forebrain. DA levels were unaffected by SP or DiMe-C7 regardless of the route of administration. These data and previous studies suggest a role for endogenous SP in the modulation of mesocortical and mesolimbic DA neurones.
Rodgers, EW; Krenz, W-D; Baro, DJ
2012-01-01
Neuromodulatory effects can vary with their mode of transmission. Phasic release produces local and transient increases in dopamine (DA) up to micromolar concentrations. Additionally, since DA is released from open synapses and reuptake mechanisms are not nearby, tonic nanomolar DA exists in the extracellular space. Do phasic and tonic transmissions similarly regulate voltage dependent ionic conductances in a given neuron? It was previously shown that DA could immediately alter the transient potassium current (IA) of identified neurons in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus. Here we show that DA can also persistently alter IA, and that DA’s immediate and persistent effects oppose one another. The lateral pyloric neuron (LP) exclusively expresses type 1 DA receptors (D1Rs). Micromolar DA produces immediate depolarizing shifts in the voltage dependence of LP IA, whereas tonic nanomolar DA produces a persistent increase in LP IA maximal conductance (Gmax) through a translation dependent mechanism involving target of rapamycin (TOR). The pyloric dilator neuron (PD) exclusively expresses type 2 DA receptors (D2Rs). Micromolar DA produces an immediate hyperpolarizing shift in PD IA voltage dependence of activation, whereas tonic DA persistently decreases PD IA Gmax through a translation dependent mechanism not involving TOR. The persistent effects on IA Gmax do not depend on LP or PD activity. These data suggest a role for tonic modulators in the regulation of voltage gated ion channel number; and furthermore, that dopaminergic systems may be organized to limit the amount of change they can impose on a circuit. PMID:21917788
Beggiato, Sarah; Borelli, Andrea Celeste; Borroto-Escuela, Dasiel; Corbucci, Ilaria; Tomasini, Maria Cristina; Marti, Matteo; Antonelli, Tiziana; Tanganelli, Sergio; Fuxe, Kjell; Ferraro, Luca
2017-12-01
The effects of nanomolar cocaine concentrations, possibly not blocking the dopamine transporter activity, on striatal D 2 -σ 1 heteroreceptor complexes and their inhibitory signaling over Gi/o, have been tested in rat striatal synaptosomes and HEK293T cells. Furthermore, the possible role of σ 1 receptors (σ 1 Rs) in the cocaine-provoked amplification of D 2 receptor (D 2 R)-induced reduction of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes, has also been investigated. The dopamine D 2 -likeR agonist quinpirole (10nM-1μM), concentration-dependently reduced K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. The σ 1 R antagonist BD1063 (100nM), amplified the effects of quinpirole (10 and 100nM) on K + -evoked [ 3 H]-DA, but not glutamate, release. Nanomolar cocaine concentrations significantly enhanced the quinpirole (100nM)-induced decrease of K + -evoked [ 3 H]-DA and glutamate release from rat striatal synaptosomes. In the presence of BD1063 (10nM), cocaine failed to amplify the quinpirole (100nM)-induced effects. In cotransfected σ 1 R and D 2L R HEK293T cells, quinpirole had a reduced potency to inhibit the CREB signal versus D 2L R singly transfected cells. In the presence of cocaine (100nM), the potency of quinpirole to inhibit the CREB signal was restored. In D 2L singly transfected cells cocaine (100nM and 10μM) exerted no modulatory effects on the inhibitory potency of quinpirole to bring down the CREB signal. These results led us to hypothesize the existence of functional D 2 -σ 1 R complexes on the rat striatal DA and glutamate nerve terminals and functional D 2 -σ 1 R-DA transporter complexes on the striatal DA terminals. Nanomolar cocaine concentrations appear to alter the allosteric receptor-receptor interactions in such complexes leading to enhancement of Gi/o mediated D 2 R signaling. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Xiaodong; Wu, Sushu; Zhu, Min; Weng, Songgan; Guo, Liuchao
2017-06-01
The changes of nitrogen and phosphorus release with time from sediment in Taihu Lake after ecological dredging were tested in laboratory. Experiment results showed that in a simulated environment of Taihu Lake, dredging was effective to reduce the endogenous pollution release, and the effect weakened gradually along with time. When the velocity of flow increased, nitrogen and phosphorus release intensity increased, so did the largest nitrogen and phosphorus emission. Considered the resedimentation, the release of nitrogen and phosphorus were similar in the area of five years after dredging and just dredging. Re-dredging should be considered.
Velykopols'ka, O Iu; Man'ko, B O; Man'ko, V V
2012-01-01
Using Clark oxygen electrode, dependence of mitochondrial functions on Ca(2+)-release channels activity of Chironomus plumosus L. larvae salivary glands suspension was investigated. Cells were ATP-permeabilized in order to enable penetration of exogenous oxidative substrates. Activation of plasmalemmal P2X-receptors (as well as P2Y-receptors) per se does not modify the endogenous respiration of salivary gland suspension. That is, Ca(2+)-influx from extracellular medium does not influence functional activity of mitochondria, although they are located along the basal part of the plasma membrane. Activation of RyRs intensifies endogenous respiration and pyruvate-malate-stimulated respiration, but not succinate-stimulated respiration. Neither activation of IP3Rs (via P2Y-receptors activation), nor their inhibition alters endogenous respiration. Nevertheless, IP3Rs inhibition by 2-APB intensifies succinate-stimulated respiration. All abovementioned facts testify that Ca2+, released from stores via channels, alters functional activity of mitochondria, and undoubtedly confirm the existence of endoplasmic-mitochondrial Ca(2+)-functional unit in Ch. plumosus larvae salivary glands secretory cells. In steady state of endoplasmic-mitochondrial Ca(2+)-functional unit the spontaneous activity of IP3Rs is observed; released through IP3Rs, Ca2+ is accumulated in mitochondria via uniporter and modulates oxidative processes. Activation of RyRs induces the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to the active state, which is required to intensify cell respiration and oxidative phosphorylation. As expected, the transition of endoplasmic-mitochondrial Ca(2+)-functional unit to inactivated state (i. e. inhibition of Ca(2+)-release channels at excessive [Ca2+]i) limits the duration of signal transduction, has protective nature and prevents apoptosis.
Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V
2016-01-01
Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.
Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic?
Xenias, Harry S.; Ibáñez-Sandoval, Osvaldo; Koós, Tibor
2015-01-01
Striatal GABAergic interneurons that express the gene for tyrosine hydroxylase (TH) have been identified previously by several methods. Although generally assumed to be dopaminergic, possibly serving as a compensatory source of dopamine (DA) in Parkinson's disease, this assumption has never been tested directly. In TH–Cre mice whose nigrostriatal pathway had been eliminated unilaterally with 6-hydroxydopamine, we injected a Cre-dependent virus coding for channelrhodopsin-2 and enhanced yellow fluorescent protein unilaterally into the unlesioned midbrain or bilaterally into the striatum. Fast-scan cyclic voltammetry in striatal slices revealed that both optical and electrical stimulation readily elicited DA release in control striata but not from contralateral striata when nigrostriatal neurons were transduced. In contrast, neither optical nor electrical stimulation could elicit striatal DA release in either the control or lesioned striata when the virus was injected directly into the striatum transducing only striatal TH interneurons. This demonstrates that striatal TH interneurons do not release DA. Fluorescence immunocytochemistry in enhanced green fluorescent protein (EGFP)–TH mice revealed colocalization of DA, l-amino acid decarboxylase, the DA transporter, and vesicular monoamine transporter-2 with EGFP in midbrain dopaminergic neurons but not in any of the striatal EGFP–TH interneurons. Optogenetic activation of striatal EGFP–TH interneurons produced strong GABAergic inhibition in all spiny neurons tested. These results indicate that striatal TH interneurons are not dopaminergic but rather are a type of GABAergic interneuron that expresses TH but none of the other enzymes or transporters necessary to operate as dopaminergic neurons and exert widespread GABAergic inhibition onto direct and indirect spiny neurons. PMID:25904808
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-03
.... 98-170; DA 13-1807] Empowering Consumers To Prevent and Detect Billing for Unauthorized Charges... Notice DA 13-1807, released August 27, 2013 in CG Docket Nos. 11-116 and 09-158, and CC Docket No. 98-170. The full text of document DA 13- 1807 and copies of any subsequently filed documents in this matter...
Measurement in vivo of dopamine receptor density II: Effect of d-amphetamine on spiroperidol binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.M.; De Jesus, O.T.; Woolverton, W.
1984-01-01
In the authors continuing studies to measure dopamine (DA) receptors in vivo using the DA antagonist bromospiroperidol (BrSP) and positron emission tomography (PET). The authors have examined the effect of d-amphetamine (d-AMP) on BrSP distribution in primate brain. Using the University of Chicago PETT VI scanner, /sup 76/Br-BrSP was found to localize in the caudate and putamen of anesthetized rhesus monkeys. The maximum level of this drug in these regions was reached at 100 minutes post-injection and remained constant for the next 200 minutes. Levels in the cerebellum, on the other hand, decline steadily after an hour post-injection. This ismore » consistent with the presence of high level of DA receptors in the basal ganglia and low levels in the cerebellum. Preliminary studies showed that the administration of d-AMP (0.5 mg/kg i.v.) resulted in a small but statistically significant decrease in caudate /sup 76/Br-BrSP levels. Since d-AMP is known to release DA in the caudate, these findings are consistent with the competition of released DA for BrSP binding at caudate DA binding sites.« less
Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru
2015-08-01
Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Li, Tie-Mei; Liu, Weilong; Lu, Shan; Zhang, Yan-Ping; Jia, Le-Mei; Chen, Jie; Li, Xiangke; Lei, Xiaoguang; Dong, Meng-Qiu
2015-05-12
The steroid hormone dafachronic acid (DA) regulates dauer formation and lifespan in Caenorhabditis elegans by binding to the nuclear receptor DAF-12. However, little is known about how DA concentrations change under various physiologic conditions and about how DA/DAF-12 signaling interacts with other signaling pathways that also regulate dauer formation and lifespan. Using a sensitive bioanalytical method, we quantified the endogenous DA concentrations in a long-lived germline-less glp-1 mutant and in the Dauer formation-defective (Daf-d) mutants daf-12, daf-16, daf-5, and daf-3. We found that the DA concentration in the glp-1 mutant was similar to that in the wild type (WT). This result is contrary to the long-held belief that germline loss-induced longevity involves increased DA production and suggests instead that this type of longevity involves an enhanced response to DA. We also found evidence suggesting that increased DA sensitivity underlies lifespan extension triggered by exogenous DA. At the L2/L3 stage, the DA concentration in a daf-12 null mutant decreased to 22% of the WT level. This finding is consistent with the previously proposed positive feedback regulation between DAF-12 and DA production. Surprisingly, the DA concentrations in the daf-16, daf-5, and daf-3 mutants were only 19-34% of the WT level at the L2/L3 stage, slightly greater than those in the Dauer formation-constitutive (Daf-c) mutants at the pre-dauer stage (4-15% of the WT L2 control). Our experimental evidence suggested that the positive feedback between DA and DAF-12 was partially induced in the three Daf-d mutants. Copyright © 2015 Li et al.
Cameron, Courtney M; Wightman, R Mark; Carelli, Regina M
2014-11-01
Electrophysiological studies show that distinct subsets of nucleus accumbens (NAc) neurons differentially encode information about goal-directed behaviors for intravenous cocaine versus natural (food/water) rewards. Further, NAc rapid dopamine signaling occurs on a timescale similar to phasic cell firing during cocaine and natural reward-seeking behaviors. However, it is not known whether dopamine signaling is reinforcer specific (i.e., is released during responding for only one type of reinforcer) within discrete NAc locations, similar to neural firing dynamics. Here, fast-scan cyclic voltammetry (FSCV) was used to measure rapid dopamine release during multiple schedules involving sucrose reward and cocaine self-administration (n = 8 rats) and, in a separate group of rats (n = 6), during a sucrose/food multiple schedule. During the sucrose/cocaine multiple schedule, dopamine increased within seconds of operant responding for both reinforcers. Although dopamine release was not reinforcer specific, more subtle differences were observed in peak dopamine concentration [DA] across reinforcer conditions. Specifically, peak [DA] was higher during the first phase of the multiple schedule, regardless of reinforcer type. Further, the time to reach peak [DA] was delayed during cocaine-responding compared to sucrose. During the sucrose/food multiple schedule, increases in dopamine release were also observed relative to operant responding for both natural rewards. However, peak [DA] was higher relative to responding for sucrose than food, regardless of reinforcer order. Overall, the results reveal the dynamics of rapid dopamine signaling in discrete locations in the NAc across reward conditions, and provide novel insight into the functional role of this system in reward-seeking behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Saida, K; Twort, C; van Breemen, C
1988-01-01
Exogenous GTP was required for the induction of Ca2+ release from smooth muscle SR by IP3 if endogenous GTP was depleted. NaN3 could function as a partial substitute for GTP as a cofactor for the IP3-induced Ca2+ release from the SR. In contrast to the IP3-induced Ca2+ release, caffeine-induced Ca2+ release from the SR did not require GTP. Pertussis toxin inhibited the IP3-induced Ca2+ release from the SR, whereas it had no effect on caffeine-induced Ca2+ release. These results indicate that in smooth muscle two different Ca2+ release-channels exist in the SR: (a) activated by IP3, and (b) activated by caffeine or Ca2+.
Murphy, P A; Cebula, T A; Windle, B E
1981-10-01
Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause.
Murphy, P A; Cebula, T A; Windle, B E
1981-01-01
Rabbit endogenous pyrogens were of about the same molecular size, but showed considerable heterogeneity of their isoelectric points. We attempted to show that this heterogeneity was attributable to variable glycosylation of a single polypeptide chain. When peritoneal exudate cells were stimulated to make pyrogens in the presence of 2-deoxy-D-glucose, there was a relatively trivial suppression of pyrogen release, and analysis by isoelectric focusing showed parallel inhibition of secretion of all the forms of endogenous pyrogen. When cells were stimulated in the presence of 3H-labeled amino acids and 14C-labeled glucosamine or glucose, the purified pyrogens were labeled with 3H but not with 14C. Macrophage membrane preparations were made which contained glycosyl transferases and could transfer sugar residues from sugar nucleotides to deglycosylated fetuin. These macrophage membrane preparations did not transfer sugars to the pI 7.3 endogenous pyrogen. Treatment of endogenous pyrogens with neuraminidase or with periodate produced no evidence suggesting that the pyrogens were glycosylated. Last, endogenous pyrogens did not bind to any of four lectins with different carbohydrate specificities. This evidence suggests that the heterogeneity of rabbit endogenous pyrogens is not attributable to glycosylation and must have some other cause. PMID:6271680
Pyrogen release in vitro by lymphoid tissues from patients with Hodgkin's disease.
Bodel, P
1974-01-01
The mechanism of fever in patients with Hodgkin's disease was investigated by examining endogenous pyrogen production by blood, spleen, and lymph node cells incubated in vitro. Blood leucocytes from febrile or afebrile patients with Hodgkin's disease did not produce pyrogen spontaneously. Spleen cells, however, frequently released pyrogen during initial incubations, unlike spleen cells from patients with non-malignant diseases. Pyrogen production occurred from spleens without observed pathologic infiltrates of Hodgkin's disease. Lymph nodes involved with Hodgkin's disease produced pyrogen more frequently than did nodes involved with other diseases. Pyrogen production by tissue cells was prolonged, required protein synthesis, and in some cases was due to mononuclear cells; it did not correlate with fever in the patient. These studies demonstrate spontaneous production of endogenous pyrogen in vitro by lymphoid tissue cells from patients with Hodgkin's disease.
Boireau, A; Bordier, F; Dubédat, P; Doble, A
1995-07-28
The effects of riluzole and lamotrigine, two agents which interfere with the release of glutamate (GLU), and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of methamphetamine-induced depletion of dopamine (DA) levels in mice. Repeated injections with methamphetamine (4 x 5 mg/kg i.p.) markedly decreased levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. When mice were treated with riluzole (2 x 10 mg/kg p.o.), no protection was observed against the decrease in DA and the two metabolites. Lamotrigine (2 x 10 mg/kg p.o.) was also inactive. Treatment with MK-801 (2 x 2.5 mg/kg i.p.) antagonized the decrease in DA, DOPAC and HVA levels induced by the neurotoxin. Thus, unlike an NMDA blocker, drugs that interfere with GLU release did not antagonize the methamphetamine-induced DA neurotoxicity in mice. The consequences of this inactivity are discussed in terms of the reliability of this model to test new drugs with putative efficacy in the treatment of Parkinson's disease.
STUDIES ON THE PATHOGENESIS OF FEVER
Petersdorf, Robert G.; Bennett, Ivan L.
1957-01-01
Intravenous administration of bacterial endotoxins in dogs is followed within 2 hours by the appearance of a fever-producing substance in the blood. This endogenous pyrogen differs from the endotoxins originally administered by its ability to produce fever in tolerant recipients and failure to promote tolerance after repeated daily injections. Endogenous serum pyrogen is destroyed by heating at 90°C. for 30 minutes, and is also inactivated to some degree by incubation at 37°C. for 24 hours. Suppression of fever by aminopyrine does not affect appearance of the endogenous factor. Animals made febrile with dinitrophenol, kaolin, or lysergic acid do not elaborate a fever-promoting substance in the blood. Sterile abscesses, accompanied by elevations in body temperature of the host, are unassociated with detectable amounts of secondary pyrogen in the serum. The absence of endogenous pyrogen in the blood of febrile dogs made leukopenic with nitrogen mustard favors the idea that polymorphonuclear leukocytes injured by endotoxins release the endogenous factor. On the other hand, the finding that the granulocytopenic animals are febrile when no circulating endogenous pyrogen is present, casts doubt upon the essential role of this substance in endotoxin fever. PMID:13449238
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection.
Lu, Tingli; Wang, Zhao; Ma, Yufan; Zhang, Yang; Chen, Tao
2012-01-01
Background Liposomes containing pH-sensitive polymers are promising candidates for the treatment of tumors and localized infection. This study aimed to identify parameters influencing the extent of contents release from poly(ethylacrylic acid) (PEAA) vesicles, focusing on the effects of polymer size, lipid composition, vesicle surface charge, and temperature. Methods Anchored lipid pH-sensitive PEAA was synthesized using PEAA with a molecular weight of 8.4 kDa. PEAA vesicles were prepared by insertion of the lipid-anchored PEAA into preformed large unilamellar vesicles. The preformed liposomes were manipulated by varying the phosphocholine and cholesterol content, and by adding negative or positive charges to the liposomes. A calcein release assay was used to evaluate the effects of polymer size, liposome composition, surface charge, and temperature on liposomal permeability. Results The release efficiency of the calcein-entrapped vesicles was found to be dependent on the PEAA polymer size. PEAA vesicles containing a phosphatidylcholine to cholesterol ratio of 60:40 (mol/mol) released more than 80% of their calcein content when the molecular weight of PEAA was larger than 8.4 kDa. Therefore, the same-sized polymer of 8.4 kDa was used for the rest of study. The calcein release potential was found to decrease as the percentage of cholesterol increased and with an increase in the phosphocholine acyl chain length (DMPC DPPC DSPC). Negatively charged and neutral vesicles released similar amounts of calcein, whereas positively charged liposomes released a significant amount of their contents. pH-sensitive release was dependent on temperature. Dramatic content release was observed at higher temperatures. Conclusion The observed synergistic effect of pH and temperature on release of the contents of PEAA vesicles suggests that this pH-sensitive liposome might be a good candidate for intracellular drug delivery in the treatment of tumors or localized infection. PMID:23028220
Effect of parasitic infection on dopamine biosynthesis in dopaminergic cells
Martin, H.L.; Alsaady, I.; Howell, G.; Prandovszky, E.; Peers, C.; Robinson, P.; McConkey, G.A.
2015-01-01
Infection by the neurotropic agent Toxoplasma gondii alters rodent behavior and can result in neuropsychiatric symptoms in humans. Little is understood regarding the effects of infection on host neural processes but alterations to dopaminergic neurotransmission are implicated. We have previously reported elevated levels of dopamine (DA) in infected dopaminergic cells however the involvement of the host enzymes and fate of the produced DA were not defined. In order to clarify the effects of infection on host DA biosynthetic enzymes and DA packaging we examined enzyme levels and activity and DA accumulation and release in T. gondii-infected neurosecretory cells. Although the levels of the host tyrosine hydroxylase (TH) and DOPA decarboxylase and AADC (DDC) did not change significantly in infected cultures, DDC was found within the parasitophorous vacuole (PV), the vacuolar compartment where the parasites reside, as well as in the host cytosol in infected dopaminergic cells. Strikingly, DDC was found within the intracellular parasite cysts in infected brain tissue. This finding could provide some explanation for observations of DA within tissue cysts in infected brain as a parasite-encoded enzyme with TH activity was also localized within tissue cysts. In contrast, cellular DA packaging appeared unchanged in single-cell microamperometry experiments and only a fraction of the increased DA was accessible to high potassium-induced release. This study provides some understanding of how this parasite produces elevated DA within dopaminergic cells without the toxic ramifications of free cytosolic DA. The mechanism for synthesis and packaging of DA by T. gondii-infected dopaminergic cells may have important implications for the effects of chronic T. gondii infection on humans and animals. PMID:26297895
Bruno, J P; Byrnes, E M; Johnson, B J
1995-11-01
The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.
Bodel, P
1974-09-01
Some characteristics of the process by which endogenous pyrogen (EP), the mediator of fever, is released from cells were examined by using human blood leukocytes incubated in vitro. Studies were designed to examine a possible role for leukocyte products, including EP, in the induction, augmentation, or suppression of pyrogen release by blood leukocytes. Products of stimulated leukocytes, including a partially purified preparation of EP, did not induce significant activation of nonstimulated cells. Also, no evidence was obtained that stimulated cell products either augment or inhibit pyrogen production by other stimulated cells. A feedback control of EP production was thus not observed. A crude preparation of EP, containing other products of activated cells, maintained its pyrogenicity when incubated at pH 7.4 but not at pH 5.0. These studies thus provide no support for hypothesized control mechanisms regulating production of EP by blood leukocytes. By contrast, local inactivation of EP at inflammatory sites may modify the amount of EP entering the blood, and hence fever.
Bodel, Phyllis
1974-01-01
Some characteristics of the process by which endogenous pyrogen (EP), the mediator of fever, is released from cells were examined by using human blood leukocytes incubated in vitro. Studies were designed to examine a possible role for leukocyte products, including EP, in the induction, augmentation, or suppression of pyrogen release by blood leukocytes. Products of stimulated leukocytes, including a partially purified preparation of EP, did not induce significant activation of nonstimulated cells. Also, no evidence was obtained that stimulated cell products either augment or inhibit pyrogen production by other stimulated cells. A feedback control of EP production was thus not observed. A crude preparation of EP, containing other products of activated cells, maintained its pyrogenicity when incubated at pH 7.4 but not at pH 5.0. These studies thus provide no support for hypothesized control mechanisms regulating production of EP by blood leukocytes. By contrast, local inactivation of EP at inflammatory sites may modify the amount of EP entering the blood, and hence fever. PMID:4426696
The Jeremiah Metzger Lecture. The pathogenesis of fever in human subjects.
Wolff, S. M.; Dinarello, C. A.
1980-01-01
The pathogenesis of fever in man begins with the production of endogenous pyrogen by phagocytic leukocytes in response to exogenous pyrogens (toxic, immunologic or infectious agents). Endogenous pyrogen, a protein, is released from a variety of phagocytic leukocytes and enters the circulation after new messenger RNA and protein are synthesized. Fever is caused by an interaction of endogenous pyrogen with specialized receptors on or near thermosensitive neurons in the thermoregulatory center of the anterior hypothalamus. This interaction may cause local hypothalamic production of prostaglandins, monoamines and, possibly, cyclic AMP. From the anterior hypothalamus, information is transmitted through the posterior hypothalamus to the vasomotor center, which directs sympathetic-nerve fibers to constrict peripheral vessels and decrease heat dissipation. PMID:552177
Smolders, I
2005-01-01
Several researchers are currently trying to unravel neurobiological relationships between epilepsy and depression. After all, these disorders often develop in the same vulnerable brain regions and the importance of comorbid depression and epilepsy is still underscored. Facilitation of central serotonin (5-HT), dopamine (DA) and noradrenaline (NAD) release seems to be associated with both anticonvulsant and antidepressant effects. We show that selective ionotropic and metabotropic glutamate receptor ligands with anticonvulsant properties differentially modulate NAD, DA and 5-HT in rat limbic lobe structures.
A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.
Rose, C; Camus, A; Schwartz, J C
1988-11-01
A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.
A serine peptidase responsible for the inactivation of endogenous cholecystokinin in brain.
Rose, C; Camus, A; Schwartz, J C
1988-01-01
A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide. PMID:3186727
Repin-induced neurotoxicity in rodents.
Robles, M; Choi, B H; Han, B; Santa Cruz, K; Kim, R C
1998-07-01
Russian knapweed is a perennial weed found in many parts of the world, including southern California. Chronic ingestion of this plant by horses has been reported to cause equine nigropallidal encephalomalacia (ENE), which is associated with a movement disorder simulating Parkinson's disease (PD). Repin, a principal ingredient purified from Russian knapweed, is a sesquiterpene lactone containing an alpha-methylenebutyrolactone moiety and epoxides and is a highly reactive electrophile that can readily undergo conjugation with various biological nucleophiles, such as proteins, DNA, and glutathione (GSH). We show in this study that repin is highly toxic to C57BL/6J mice and Sprague-Dawley rats and acutely induces uncoordinated locomotion associated with postural tremors, hypothermia, and inability to respond to sonic and tactile stimuli. We also show that repin intoxication reduces striatal and hippocampal GSH and increases total striatal dopamine (DA) levels in mice. Striatal microdialysis in rats, however, has demonstrated a significant reduction of extracellular DA levels. These findings, coupled with the absence of any demonstrable change in striatal DOPAC levels, suggest that repin acts by inhibiting DA release, a hypothesis that is further supported by our demonstration that, in cultured PC12 cells, repin inhibits the release of DA without affecting its uptake. We believe, therefore, that inhibition of DA release represents one of the earliest pathogenetic events in ENE, leading eventually to striatal extracellular DA denervation, oxidative stress, and degeneration of nigrostriatal pathways. Since the neurotoxic effects of repin appear to be mediated via oxidative stress, and since repin is a natural product isolated from a plant in our environment that can cause a movement disorder associated with degeneration of nigrostriatal pathways, clarification of the mechanism of repin neurotoxicity may provide new insights into our understanding of the pathogenesis of PD. Copyright 1998 Academic Press.
Endogenous mitigation of H2S inside of the landfills.
Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang
2016-02-01
Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.
McRae, Amanda; Hjorth, Stephan; Mason, David W.; Dillon, Lynn; Tice, Thomas R.
1991-01-01
Biodegradable controlled-release microsphere systems made with the biocompatible biodegradable polyester excipient poly [DL lactide-co-glycolide] constitute an exciting new technology for drug delivery to the central nervous system (CNS). The present study describes functional observations indicating that implantation of dopamine (DA) microspheres encapsulated within two different polymer excipients into denervated- striatal tissue assures a prolonged release of the transmitter in vivo. Moreover, in this regard, the results show that there were clear cut temporal differences in the effect of the two DA microsphere formulations compared in this study, probably reflecting variations in the actual composition (i.e., lactide to glycolide ratio) of the two copolymer excipients examined. This technology has considerable potential for basic research with possible clinical application. PMID:1782252
Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates.
Johnson, B J; Bruno, J P
1995-02-01
A repeated sessions, in vivo microdialysis design was used to determine the D1- and D2-like receptor modulation of striatal ACh efflux in intact adult rats and those depleted of DA on postnatal Day 3. Systemic administration of the D1-like agonist SKF 38393 (1.0 or 10.0 mg/kg, or the D2-like antagonist clebopride (1.0 or 10.0 mg/kg) increased ACh efflux in both controls and DA-depleted animals. Systemic administration of the D1-like antagonist SCH 23390 (0.05 or 0.2 mg/kg) or D2-like agonist quinpirole (0.5 or 1.0 mg/kg) decreased ACh efflux in both groups of animals. DA-depleted animals exhibited a larger response than did controls to the lower doses of these drugs. Intrastriatal administration of clebopride (10 microM) increased ACh efflux in DA-depleted animals. Finally, basal and clebopride-stimulated ACh efflux were unaffected by the repeated microdialysis sessions. These data demonstrate that the reciprocal modulation of striatal ACh efflux, seen in controls and in rats depleted of DA as adults, is also present in adults depleted of DA as neonates. Because the roles of D1- and D2-receptors in the expression of motor behavior differ between rats depleted of DA as adults vs as neonates, these data suggest that alterations in the dopaminergic modulation of striatal ACh release do not underlie the sparing from motoric deficits seen in animals depleted of DA as neonates.
Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J
2015-07-28
The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier. Copyright © 2015. Published by Elsevier B.V.
Hanna, Ramsey D; Naro, Yuta; Deiters, Alexander; Floreancig, Paul E
2016-10-12
α-Boryl ethers, carbonates, and acetals, readily prepared from the corresponding alcohols that are accessed through ketone diboration, react rapidly with hydrogen peroxide to release alcohols, aldehydes, and ketones through the collapse of hemiacetal intermediates. Experiments with α-boryl acetals containing a latent fluorophore clearly demonstrate that cargo can be released inside cells in the presence of exogenous or endogenous hydrogen peroxide. These experiments show that this protocol can be used for drug activation in an oxidative environment without generating toxic byproducts.
Stress-induced release of HSC70 from human tumors.
Barreto, Alfonso; Gonzalez, John Mario; Kabingu, Edith; Asea, Alexzander; Fiorentino, Susana
2003-04-01
In this study, we demonstrate that the pro-inflammatory cytokine interferon-gamma (IFN-gamma) induces the active release of the constitutive form of the 70-kDa heat shock protein (HSC70) from K562 erythroleukemic cells. Treatment of K562 cells with IFN-gamma induced the upregulation of the inducible form of the 70-kDa heat shock protein (HSP70), but not the constitutive form of HSC70 within the cytosol, in a proteasome-dependent manner. In addition, IFN-gamma induced the downregulation of surface-bound HSC70, but did not significantly alter surface-bound HSP70 expression. These findings indicate that HSC70 can be actively released from tumor cells and is indicative of a previously unknown mechanism by which immune modulators stimulate the release of intracellular HSC70. This mechanism may account for the potent chaperokine activity of heat shock proteins recently observed during heat shock protein-based immunotherapy against a variety of cancers.
Resch-Sedlmeier, G; Sedlmeier, D
1999-06-01
Vertebrate gastrointestinal hormones were tested on their ability to liberate digestive enzymes from the crustacean midgut gland. CCK-8 (desulfated form), gastrin, bombesin, secretin, and substance P were detected to release enzymes. Maximal concentrations observed were 5 nM CCK for protease release, 1 nM gastrin for protease and 100 nM for amylase release, 100 nM bombesin for protease release, 10 nM secretin for amylase and protease release, and 100 nM substance P for protease release. Unlike in vertebrates, glucagon was unable to stimulate enzyme release in crustaceans, this also applies to the counterpart insulin. These results may support the assumption that Crustacea possess endogenous factors resembling the above mentioned vertebrate hormones, at least in such a way that the appropriate receptors have the capacity to accept these hormones.
Badrinarayan, Aneesha; Wescott, Seth A.; Vander Weele, Caitlin M.; Saunders, Benjamin T.; Couturier, Brenann E.; Maren, Stephen
2012-01-01
Although fear directs adaptive behavioral responses, how aversive cues recruit motivational neural circuitry is poorly understood. Specifically, while it is known that dopamine (DA) transmission within the nucleus accumbens (NAc) is imperative for mediating appetitive motivated behaviors, its role in aversive behavior is controversial. It has been proposed that divergent phasic DA transmission following aversive events may correspond to segregated mesolimbic dopamine pathways; however, this prediction has never been tested. Here, we used fast-scan cyclic voltammetry to examine real-time DA transmission within NAc core and shell projection systems in response to a fear-evoking cue. In male Sprague Dawley rats, we first demonstrate that a fear cue results in decreased DA transmission within the NAc core, but increased transmission within the NAc shell. We examined whether these changes in DA transmission could be attributed to modulation of phasic transmission evoked by cue presentation. We found that cue presentation decreased the probability of phasic DA release in the core, while the same cue enhanced the amplitude of release events in the NAc shell. We further characterized the relationship between freezing and both changes in DA as well as local pH. Although we found that both analytes were significantly correlated with freezing in the NAc across the session, changes in DA were not strictly associated with freezing while basic pH shifts in the core more consistently followed behavioral expression. Together, these results provide the first real-time neurochemical evidence that aversive cues differentially modulate distinct DA projection systems. PMID:23136417
Wakabayashi, Ken T; Bruno, Michael J; Bass, Caroline E; Park, Jinwoo
2016-06-21
The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.
Michel, Christian; Perras, Boris; Born, Jan
2011-01-01
Contributions of somatotropic hormonal activity to memory functions in humans, which are suggested by clinical observations, have not been systematically examined. With previous experiments precluding a direct effect of systemic growth hormone (GH) on acute memory formation, we assessed the role of central nervous somatotropic signaling in declarative memory consolidation. We examined the effect of intranasally administered growth hormone releasing-hormone (GHRH; 600 µg) that has direct access to the brain and suppresses endogenous GHRH via an ultra-short negative feedback loop. Twelve healthy young men learned word-pair associates at 2030 h and were administered GHRH and placebo, respectively, at 2100 h. Retrieval was tested after 11 hours of wakefulness. Compared to placebo, intranasal GHRH blunted GH release within 3 hours after substance administration and reduced the number of correctly recalled word-pairs by ∼12% (both P<0.05). The impairment of declarative memory consolidation was directly correlated to diminished GH concentrations (P<0.05). Procedural memory consolidation as examined by the parallel assessment of finger sequence tapping performance was not affected by GHRH administration. Our findings indicate that intranasal GHRH, by counteracting endogenous GHRH release, impairs hippocampal memory processing. They provide first evidence for a critical contribution of central nervous somatotropic activity to hippocampus-dependent memory consolidation. PMID:21850272
Growth hormone in sports: detecting the doped or duped.
Ho, Ken K Y; Nelson, Anne E
2011-01-01
Doping with growth hormone (GH) is banned; however, there is anecdotal evidence that it is widely abused. GH is reportedly often used in combination with anabolic steroids at high doses for several months. Development of a robust test for detecting GH has been challenging since recombinant human 22-kDa GH used in doping is indistinguishable analytically from endogenous GH and there are wide physiological fluctuations in circulating GH concentrations. One approach to GH testing is based on measurement of different circulating GH isoforms using immunoassays that differentiate between 22-kDa and other GH isoforms. Administration of 22-kDa GH results in a change in its abundance relative to other endogenous pituitary GH isoforms. The differential isoform method is, however, limited by its short time window of detection. A second approach that extends the time window of detection is based on detection of increased levels of circulating GH-responsive proteins, such as the insulin-like growth factor (IGF) axis and collagen peptides. As age and gender are the major determinants of variability for IGF-I and the collagen markers, a test based on these markers must take these factors into account. Extensive data now validate the GH-responsive marker approach, and implementation is largely dependent on establishing an assured supply of standardized assays. Robust tests are available to detect GH and enforce the ban on its abuse in sports. Novel approaches that include gene expression and proteomic profiling must continue to be pursued to expand the repertoire of testing approaches available and to maintain deterrence of GH doping. Copyright © 2011 S. Karger AG, Basel.
De Maio, Anna; Natale, Emiliana; Rotondo, Sergio; Di Cosmo, Anna; Faraone-Mennella, Maria Rosaria
2013-09-01
Our previous behavioural, biochemical and immunohistochemical analyses conducted in selected regions (supra/sub oesophageal masses) of the Octopus vulgaris brain detected a cytoplasmic poly-ADP-ribose polymerase (more than 90% of total enzyme activity). The protein was identified as the vault-free form of vault-poly-ADP-ribose polymerase. The present research extends and integrates the biochemical characterization of poly-ADP-ribosylation system, namely, reaction product, i.e., poly-ADP-ribose, and acceptor proteins, in the O. vulgaris brain. Immunochemical analyses evidenced that the sole poly-ADP-ribose acceptor was the octopus cytoskeleton 50-kDa actin. It was present in both free, endogenously poly-ADP-ribosylated form (70kDa) and in complex with V-poly-ADP-ribose polymerase and poly-ADP-ribose (260kDa). The components of this complex, alkali and high salt sensitive, were purified and characterized. The kind and the length of poly-ADP-ribose corresponded to linear chains of 30-35 ADP-ribose units, in accordance with the features of the polymer synthesized by the known vault-poly-ADP-ribose polymerase. In vitro experiments showed that V-poly-ADP-ribose polymerase activity of brain cytoplasmic fraction containing endogenous actin increased upon the addition of commercial actin and was highly reduced by ATP. Anti-actin immunoblot of the mixture in the presence and absence of ATP showed that the poly-ADP-ribosylation of octopus actin is a dynamic process balanced by the ATP-dependent polymerization of the cytoskeleton protein, a fundamental mechanism for synaptic plasticity. © 2013 Elsevier Inc. All rights reserved.
Shahmoradi, Zeynab; Tamaskani, Fatemeh; Sadeghipour, Hamid Reza; Abdolzadeh, Ahmad
2013-01-01
Alterations in the redox state of storage proteins and the associated proteolytic processes were investigated in moist-chilled and warm-incubated walnut (Juglans regia L.) kernels prior to germination. The kernel total protein labeling with a thiol-specific fluorochrome i.e. monobromobimane (mBBr) revealed more reduction of 29-32 kDa putative glutelins, while in the soluble proteins, both putative glutelins and 41, 55 and 58 kDa globulins contained reduced disulfide bonds during mobilization. Thus, the in vivo more reduced disulfide bonds of storage proteins corresponds to greater solubility. After the in vitro reduction of walnut kernel proteins pre-treated by N-ethyl maleimide (NEM) with dithioerythrethiol (DTT) and bacterial thioredoxin, the 58 kDa putative globulin and a 6 kDa putative albumin were identified as disulfide proteins. Thioredoxin stimulated the reduction of the H(2)O(2)-oxidized 6 kDa polypeptide, but not the 58 kDa polypeptide by DTT. The solubility of 6 kDa putative albumin, 58 and 19-24 kDa putative globulins and glutelins, respectively, were increased by DTT. The in vitro specific mobilization of the 58 kDa polypeptide that occurred at pH 5.0 by the kernel endogenous protease was sensitive to the serine-protease inhibitor phenylmethylsulfonyl fluoride (PMSF) and stimulated by DTT. The specific degradation of the 58 kDa polypeptide might be achieved through thioredoxin-mediated activation of a serine protease and/or reductive unfolding of its 58 kDa polypeptide substrate. As redox changes in storage proteins occurred equally in both moist chilled and warm incubated walnut kernels, the regulatory functions of thioredoxins in promoting seed germination may be due to other germination related processes. Copyright © 2012 Elsevier GmbH. All rights reserved.
Nishikiori, Masaki; Dohi, Koji; Mori, Masashi; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki
2006-01-01
Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity. PMID:16912296
Amphetamine regulation of mesolimbic dopamine/cholecystokinin neurotransmission.
Hurd, Y L; Lindefors, N; Brodin, E; Brené, S; Persson, H; Ungerstedt, U; Hökfelt, T
1992-04-24
The effects of acute and repeated amphetamine administration on mesolimbic dopamine (DA) neurons was assessed by studying DA and cholecystokinin (CCK) release in the nucleus accumbens (Acc), as well as effects on mRNA genes regulating DA and CCK synthesis in ventral tegmental area (VTA) cells in rats. Amphetamine (1.5 mg/kg) markedly increased extracellular levels of DA in the medial Acc (assessed by in vivo microdialysis) in drug-naive animals, about twice the amount released in animals repeatedly administered the drug for the previous 7 days (twice daily). CCK overflow was found to mirror the DA responses in that the very transient elevation of CCK monitored in drug-naive animals was attenuated in those with prior amphetamine use. The attenuation of both DA and CCK overflow in the medial Acc was found to be associated with a decrease in the number of CCK mRNA-positive VTA neurons (assessed by in situ hybridization histochemistry). Although the number of cells expressing CCK mRNA were decreased, the gene expression in those positive CCK and tyrosine hydroxylase mRNA cells in the VTA was significantly increased. The CCK mRNA neurons in the VTA were positively identified as those projecting to the medial Acc by the local perfusion of Fluoro-gold retrograde tracer via microdialysis probes located in the Acc.
Zhong, L R; Artinian, L; Rehder, V
2013-01-03
Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Thomas, David M; Francescutti-Verbeem, Dina M; Kuhn, Donald M
2008-05-01
The neurotransmitter dopamine (DA) has long been implicated as a participant in the neurotoxicity caused by methamphetamine (METH), yet, its mechanism of action in this regard is not fully understood. Treatment of mice with the tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (AMPT) lowers striatal cytoplasmic DA content by 55% and completely protects against METH-induced damage to DA nerve terminals. Reserpine, by disrupting vesicle amine storage, depletes striatal DA by more than 95% and accentuates METH-induced neurotoxicity. l-DOPA reverses the protective effect of AMPT against METH and enhances neurotoxicity in animals with intact TH. Inhibition of MAO-A by clorgyline increases pre-synaptic DA content and enhances METH striatal neurotoxicity. In all conditions of altered pre-synaptic DA homeostasis, increases or decreases in METH neurotoxicity paralleled changes in striatal microglial activation. Mice treated with AMPT, l-DOPA, or clorgyline + METH developed hyperthermia to the same extent as animals treated with METH alone, whereas mice treated with reserpine + METH were hypothermic, suggesting that the effects of alterations in cytoplasmic DA on METH neurotoxicity were not strictly mediated by changes in core body temperature. Taken together, the present data reinforce the notion that METH-induced release of DA from the newly synthesized pool of transmitter into the extracellular space plays an essential role in drug-induced striatal neurotoxicity and microglial activation. Subtle alterations in intracellular DA content can lead to significant enhancement of METH neurotoxicity. Our results also suggest that reactants derived from METH-induced oxidation of released DA may serve as neuronal signals that lead to microglial activation early in the neurotoxic process associated with METH.
Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo
2016-11-15
Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamik, Barbara; Islam, Aminul; Rouhani, Farshid N.
The type I, 55-kDa tumor necrosis factor receptor (TNFR1) is released to the extracellular space by two mechanisms, the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains. Both pathways appear to be regulated by an interaction between TNFR1 and ARTS-1 (aminopeptidase regulator of TNFR1 shedding). Here, we sought to identify ARTS-1-interacting proteins that modulate TNFR1 release. Co-immunoprecipitation identified an association between ARTS-1 and RBMX (RNA-binding motif gene, X chromosome), a 43-kDa heterogeneous nuclear ribonucleoprotein. RNA interference attenuated RBMX expression, which reduced both the constitutive release of TNFR1 exosome-like vesicles and the IL-1{beta}-mediated inducible proteolyticmore » cleavage of soluble TNFR1 ectodomains. Reciprocally, over-expression of RBMX increased TNFR1 exosome-like vesicle release and the IL-1{beta}-mediated inducible shedding of TNFR1 ectodomains. This identifies RBMX as an ARTS-1-associated protein that regulates both the constitutive release of TNFR1 exosome-like vesicles and the inducible proteolytic cleavage of TNFR1 ectodomains.« less
Cencioni, Chiara; Spallotta, Francesco; Savoia, Matteo; Kuenne, Carsten; Guenther, Stefan; Re, Agnese; Wingert, Susanne; Rehage, Maike; Sürün, Duran; Siragusa, Mauro; Smith, Jacob G; Schnütgen, Frank; von Melchner, Harald; Rieger, Michael A; Martelli, Fabio; Riccio, Antonella; Fleming, Ingrid; Braun, Thomas; Zeiher, Andreas M; Farsetti, Antonella; Gaetano, Carlo
2018-03-29
Nitric oxide (NO) synthesis is a late event during differentiation of mouse embryonic stem cells (mESC) and occurs after release from serum and leukemia inhibitory factor (LIF). Here we show that after release from pluripotency, a subpopulation of mESC, kept in the naive state by 2i/LIF, expresses endothelial nitric oxide synthase (eNOS) and endogenously synthesizes NO. This eNOS/NO-positive subpopulation (ESNO+) expresses mesendodermal markers and is more efficient in the generation of cardiovascular precursors than eNOS/NO-negative cells. Mechanistically, production of endogenous NO triggers rapid Hdac2 S-nitrosylation, which reduces association of Hdac2 with the transcriptional repression factor Zeb1, allowing mesendodermal gene expression. In conclusion, our results suggest that the interaction between Zeb1, Hdac2, and eNOS is required for early mesendodermal differentiation of naive mESC.
Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto
2008-10-01
The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.
CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SWAMINATHAN,S.; ESWARAMOORTHY,S.
2001-11-19
The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases [1]. Clostvidium botulinum neurotoxinsmore » are extremely poisonous proteins with their LD{sub 50} for humans in the range of 0.1 - 1 ng kg{sup -1} [2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and {gamma}-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization [3].« less
[Hemoglobin oxygen transport capacity in surgical endotoxicosis ].
Poryadin, G V; Vlasov, A P; Trofimov, V A; Vlasova, T I; Kamkina, O V; Grigoryev, A G; Vlasov, P A
2016-01-01
In surgical endointoxication hemoglobin oxygen transport capacity of red blood cells (hemoglobin affinity ligands: the ability to bind and release ligands) is reduced and is associated with the severity of endogenous intoxication. Violation of oxygen transport function of hemoglobin at endogenous intoxication is associated with conformational changes of a biomolecule, and its possible influence on reactive oxygen species, which confirmed in experiments in vitro: under the influence of oxygen-iron ascorbate ability of hemoglobin deteriorates. Largely similar structural and functional changes in hemoglobin occur in patients with surgical endotoxicosis.
Impact of the opioid system on the reproductive axis.
Böttcher, Bettina; Seeber, Beata; Leyendecker, Gerhard; Wildt, Ludwig
2017-08-01
Endogenous opioids, first described more than 40 years ago, have long been recognized for their main role as important neuromodulators within the central nervous system. More recently endogenous opioids and their receptor have been identified in a variety of reproductive and nonreproductive tissues outside the central nervous system. Their role within these tissues and organs, however, is only incompletely understood. In the central nervous system, endogenous opioids inhibit pulsatile GnRH release, in part mediating the stress response within the central nervous-pituitary gonadal axis, resulting in hypothalamic amenorrhea. In the ovary, the presence of endogenous opioids primarily produced by granulosa cells has been demonstrated within the follicular fluid, likely influencing oocyte maturation. In hypothalamic amenorrhea, normal cycles can be restored by the administration of opioid antagonists, such as naltrexone. In polycystic ovarian syndrome, endogenous opioids have found to be elevated and may stimulate insulin secretion from the endocrine pancreas. This effect can be inhibited by opioid antagonists, resulting in a decrease of circulating insulin levels in response to glucose challenge. Endogenous opioids may also play a role in the pathogenesis of ovarian hyperstimulation syndrome. In summary, endogenous opioids exert a wide variety of actions within the reproductive system and are worthy of further scientific study. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
The effects of four major chlorotriazine metabolites on the constitutive synthesis of the catecholamines dopamine (DA) and norepinephrine (NE) were examined using undifferentiated PC12 cells. NE release and intracellular DA and NE concentrations were quantified following treatme...
Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko
2012-10-01
Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.
Opposite Roles of Furin and PC5A in N-Cadherin Processing12
Maret, Deborah; Sadr, Mohamad Seyed; Sadr, Emad Seyed; Colman, David R; Del Maestro, Rolando F; Seidah, Nabil G
2012-01-01
We recently demonstrated that lack of Furin-processing of the N-cadherin precursor (proNCAD) in highly invasive melanoma and brain tumor cells results in the cell-surface expression of a nonadhesive protein favoring cell migration and invasion in vitro. Quantitative polymerase chain reaction analysis of malignant human brain tumor cells revealed that of all proprotein convertases (PCs) only the levels of Furin and PC5A are modulated, being inversely (Furin) or directly (PC5A) correlated with brain tumor invasive capacity. Intriguingly, the N-terminal sequence following the Furin-activated NCAD site (RQKR↓DW161, mouse nomenclature) reveals a second putative PC-processing site (RIRSDR↓DK189) located in the first extracellular domain. Cleavage at this site would abolish the adhesive functions of NCAD because of the loss of the critical Trp161. This was confirmed upon analysis of the fate of the endogenous prosegment of proNCAD in human malignant glioma cells expressing high levels of Furin and low levels of PC5A (U343) or high levels of PC5A and negligible Furin levels (U251). Cellular analyses revealed that Furin is the best activating convertase releasing an ∼17-kDa prosegment, whereas PC5A is the major inactivating enzyme resulting in the secretion of an ∼20-kDa product. Like expression of proNCAD at the cell surface, cleavage of the NCAD molecule at RIRSDR↓DK189 renders the U251 cancer cells less adhesive to one another and more migratory. Our work modifies the present view on posttranslational processing and surface expression of classic cadherins and clarifies how NCAD possesses a range of adhesive potentials and plays a critical role in tumor progression. PMID:23097623
Scanlin, Heather L.; Carroll, Elizabeth A.; Jenkins, Victoria K.; Balkowiec, Agnieszka
2008-01-01
Recent evidence indicates that endomorphins, endogenous mu-opioid receptor (MOR) agonists, modulate synaptic transmission in both somatic and visceral sensory pathways. Here we show that endomorphin-2 (END-2) is expressed in newborn rat dorsal root ganglion (DRG) and nodose-petrosal ganglion complex (NPG) neurons, and rarely co-localizes with brain-derived neurotrophic factor (BDNF). In order to examine activity-dependent release of END-2 from neurons, we established a model using dispersed cultures of DRG and NPG cells activated by patterned electrical field stimulation. To detect release of END-2, we developed a novel rapid capture ELISA, in which END-2 capture antibody was added to neuronal cultures shortly before their electrical stimulation. The conventional assay was effective at reliably detecting END-2 only when the cells were stimulated in the presence of CTAP, a MOR-selective antagonist. This suggests that the strength of the novel assay is related primarily to rapid capture of released END-2 before it binds to endogenous MORs. Using the rapid capture ELISA, we found that stimulation protocols known to induce plastic changes at sensory synapses were highly effective at releasing END-2. Removal of extracellular calcium or blocking voltage-activated calcium channels significantly reduced the release. Together, our data provide the first evidence that END-2 is expressed by newborn DRG neurons of all sizes found in this age group, and can be released from these, as well as from NPG neurons, in an activity-dependent manner. These results point to END-2 as a likely mediator of activity-dependent plasticity in sensory pathways. PMID:18513316
Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana
2014-09-01
The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karrikin and cyanohydrin smoke signals provide clues to new endogenous plant signaling compounds.
Flematti, Gavin R; Waters, Mark T; Scaffidi, Adrian; Merritt, David J; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M
2013-01-01
Two new types of signaling compounds have been discovered in wildfire smoke due to their ability to stimulate seed germination. The first discovered were karrikins, which share some structural similarity with the strigolactone class of plant hormones, and both signal through a common F-box protein. However, karrikins and strigolactones operate through otherwise distinct signaling pathways, each distinguished by a specific α/β hydrolase protein. Genetic analysis suggests that plants contain endogenous compounds that signal specifically through the karrikin pathway. The other active compounds discovered in smoke are cyanohydrins that release germination-stimulating cyanide upon hydrolysis. Cyanohydrins occur widely in plants and have a role in defense against other organisms, but an additional role in endogenous cyanide signaling should also now be considered.
Effects of endogenous pyrogen and prostaglandin E2 on hypothalamic neurons in rat brain slices.
Watanabe, T; Morimoto, A; Murakami, N
1987-06-01
We investigated the effects of endogenous pyrogen and prostaglandin E2 (PGE2) on the preoptic and anterior hypothalamic (POAH) neurons using brain slice preparations from the rat. Partially purified endogenous pyrogen did not change the activities of most of the neurons in the POAH region when applied locally through a micropipette attached to the recording electrode in proximity to the neurons. This indicates that partially purified endogenous pyrogen does not act directly on the neuronal activity in the POAH region. The partially purified endogenous pyrogen, applied into a culture chamber containing a brain slice, facilitated the activities in 24% of the total neurons tested, regardless of the thermal specificity of the neurons. Moreover, PGE2 added to the culture chamber facilitated 48% of the warm-responsive, 33% of the cold-responsive, and 29% of the thermally insensitive neurons. The direction of change in neuronal activity induced by partially purified endogenous pyrogen appears to be almost the same as that induced by PGE2 when these substances were applied by perfusion to the same neuron in the culture chamber. These results suggest that partially purified pyrogen applied to the perfusate of the culture chamber stimulates some constituents of brain tissue to synthesize and release prostaglandin, which in turn affects the neuronal activity of the POAH region.
Maize arabinoxylan gels as protein delivery matrices.
Berlanga-Reyes, Claudia M; Carvajal-Millán, Elizabeth; Lizardi-Mendoza, Jaime; Rascón-Chu, Agustin; Marquez-Escalante, Jorge A; Martínez-López, Ana Luisa
2009-04-08
The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v) in the presence of insulin or beta-lactoglobulin at 0.1% (w/v) was investigated. Insulin and beta-lacto-globulin did not modify either the gel elasticity (9 Pa) or the cross-links content (0.03 and 0.015 microg di- and triferulic acids/mg arabinoxylan, respectively). The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 x 10(-7) and 0.79 x 10(-7) cm(2)/s for insulin (5 kDa) and beta-lactoglobulin (18 kDa), respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.
Michaels, Katarzyna Kaczmarek; Wolschendorf, Frank; Schiralli Lester, Gillian M.; Natarajan, Malini; Kutsch, Olaf; Henderson, Andrew J.
2015-01-01
Since HIV-1 has a propensity to integrate into actively expressed genes, transcriptional interference from neighboring host promoters has been proposed to contribute to the establishment and maintenance HIV-1 latency. To gain insights into how endogenous promoters influence HIV-1 transcription we utilized a set of inducible T cell lines and characterized whether there were correlations between expression of endogenous genes, provirus and long terminal repeat architecture. We show that neighboring promoters are active but have minimal impact on HIV-1 transcription, in particular, expression of the endogenous gene did not prevent expression of HIV-1 following induction of latent provirus. We also demonstrate that releasing paused RNAP II by diminishing negative elongation factor (NELF) is sufficient to reactivate transcriptionally repressed HIV-1 provirus regardless of the integration site and orientation of the provirus suggesting that NELF-mediated RNAP II pausing is a common mechanism of maintaining HIV-1 latency. PMID:26379089
Trypsin inhibitory activity and gel-enhancing effect of sarcoplasmic proteins from common carp.
Siriangkanakun, Siriphon; Yongsawatdigul, Jirawat
2012-10-01
Proteinase inhibitory activity of sarcoplasmic protein (SP) extracted from common carp (Cyprinus carpio) muscle and its gel-improving ability were investigated. SPs displayed 89% and 54% inhibitory activity toward trypsin at 40 and 65 °C, respectively. Protein bands with molecular mass of 69, 50, 44, 41, and 35 kDa appeared on trypsin inhibitory activity staining under nonreducing condition when incubated at 40 °C, while 2 protein bands at 54 and 35 kDa were observed at 65 °C. Addition of SP at 0.18 g protein/100 g increased textural properties of threadfin bream surimi gel. However, when SP was added in combination with various CaCl(2) concentrations (0.1% to 0.5%) it did not further improve textural properties as compared to the addition of SP alone. Retention of myosin heavy chain of threadfin bream surimi was greater with the addition of SP. These results indicated that the gel-enhancing effect of common carp SP was due to the inhibitory activity toward endogenous trypsin-like proteinases in threadfin bream surimi. Sarcoplasmic protein from common carp muscle could be used as a functional protein ingredient that minimizes muscle proteolysis and improves textural properties of surimi containing trypsin-like endogenous proteinases. © 2012 Institute of Food Technologists®
Striatal dopamine transmission in healthy humans during a passive monetary reward task.
Hakyemez, Hélène S; Dagher, Alain; Smith, Stephen D; Zald, David H
2008-02-15
Research on dopamine (DA) transmission has emphasized the importance of increased phasic DA cell firing in the presence of unpredictable rewards. Using [(11)C]raclopride PET, we previously reported that DA transmission was both suppressed and enhanced in different regions of the striatum during an unpredictable reward task [Zald, D.H., Boileau, I., El Dearedy, W., Gunn, R., McGlone, F., Dichter, G.S. et al. (2004). Dopamine transmission in the human striatum during monetary reward tasks. J. Neurosci. 24, 4105-4112]. However, it was unclear if reductions in DA release during this task reflected a response to the high proportion of nonrewarding trials, and whether the behavioral demands of the task influenced the observed response. To test these issues, we presented 10 healthy subjects with an automated (passive) roulette wheel game in which the amount of reward and its timing were unpredictable and the rewarding trials greatly outnumbered the nonrewarding ones. As in the previous study, DA transmission in the putamen was significantly suppressed relative to a predictable control condition. A similar suppression occurred when subjects were presented with temporally unpredictable novel pictures and sounds. At present, models of DA functioning during reward do not account for this suppression, but given that it has been observed in two different studies using different reward paradigms, this phenomenon warrants attention. Neither the unpredictable reward nor the novelty conditions produced consistent increases in striatal DA transmission. These data suggest that active behavioral engagement may be necessary to observe robust statewise increases in DA release in the striatum.
Singer, Bryan F.; Guptaroy, Bipasha; Austin, Curtis J.; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A.; Gnegy, Margaret E.; Robinson, Terry E.; Aragona, Brandon J.
2015-01-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive, wanted, and elicits reward-seeking behavior to a greater extent in some rats (“sign-trackers”; STs), than others (“goal-trackers”; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically-evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs, while others do not. PMID:26613374
Meyer, Andrew C; Neugebauer, Nichole M; Zheng, Guangrong; Crooks, Peter A; Dwoskin, Linda P; Bardo, Michael T
2013-10-01
Vesicular monoamine transporter-2 (VMAT2) inhibitors reduce methamphetamine (METH) reward in rats. The current study determined the effects of VMAT2 inhibitors lobeline (LOB; 1 or 3 mg/kg) and N-(1,2R-dihydroxylpropyl)-2,6-cis-di(4-methoxyphenethyl)piperidine hydrochloride (GZ-793A; 15 or 30 mg/kg) on METH-induced (0.5 mg/kg, SC) changes in extracellular dopamine (DA) and its metabolite dihydroxyphenylacetic acid (DOPAC) in the reward-relevant nucleus accumbens (NAc) shell using in vivo microdialysis. The effect of GZ-793A (15 mg/kg) on DA synthesis in tissue also was investigated in NAc, striatum, medial prefrontal cortex and orbitofrontal cortex. In NAc shell, METH produced a time-dependent increase in extracellular DA and decrease in DOPAC. Neither LOB nor GZ-793A alone altered extracellular DA; however, both drugs increased extracellular DOPAC. In combination with METH, LOB did not alter the effects of METH on DA; however, GZ-793A, which has greater selectivity than LOB for inhibiting VMAT2, reduced the duration of the METH-induced increase in extracellular DA. Both LOB and GZ-793A enhanced the duration of the METH-induced decrease in extracellular DOPAC. METH also increased tissue DA synthesis in NAc and striatum, whereas GZ-793A decreased synthesis; no effect of METH or GZ-793A on DA synthesis was found in medial prefrontal cortex or orbitofrontal cortex. These results suggest that selective inhibition of VMAT2 produces a time-dependent decrease in DA release in NAc shell as a result of alterations in tyrosine hydroxylase activity, which may play a role in the ability of GZ-793A to decrease METH reward. © 2013 International Society for Neurochemistry.
Birkedal, R; Gesser, H
2004-04-01
In skinned rat cardiac fibres, mitochondrial affinity for endogenous ADP generated by creatine kinase and Ca2+-activated ATPases is higher than for exogenous ADP added to the surrounding medium, suggesting that mitochondria are functionally coupled to creatine kinase and ATPases. Such a coupling may be weaker or absent in ectothermic vertebrate cardiac cells, because they typically have less elaborate intracellular membrane structures, higher glycolytic capacity and lower working temperature. Therefore, we examined skinned cardiac fibres from rainbow trout at 10 degrees C. The apparent mitochondrial affinity for endogenous ADP was obtained by stimulation with ATP and recording of the release of ADP into the surrounding medium. The apparent affinity for endogenous ADP was much higher than for exogenous ADP suggesting a functional coupling between mitochondria and ATPases. The apparent affinity for exogenous ADP and ATP was increased by creatine or an increase in Ca2+-activity, which should increase intrafibrillar turnover of ATP to ADP. In conclusion, ADP seems to be channelled from creatine kinase and ATPases to mitochondria without being released to the surrounding medium. Thus, despite difference in structure, temperature and metabolic capacity, trout myocardium resembles that of rat with regard to the regulation of mitochondrial respiration. Copyright 2004 Springer-Verlag
Twiss, Sean D.; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P.
2017-01-01
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg−1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. PMID:28539519
Robinson, Kelly J; Twiss, Sean D; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P
2017-05-31
The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals ( Halichoerus grypus ) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg -1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. © 2017 The Authors.
Yoon, Juhan; Oyoshi, Michiko K.; Hoff, Sabine; Chervonsky, Alexander; Oppenheim, Joost J.; Rosenstiel, Philip
2016-01-01
Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4+ T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4+ T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD. PMID:27551155
Biochemical Composition of Dissolved Organic Matter Released During Experimental Diatom Blooms
NASA Technical Reports Server (NTRS)
Mannino, Antonio; Harvey, H. Rodger
2002-01-01
An axenic culture of Skeletonema costatum was grown to late-log phase to examine the molecular weight distribution and the biochemical composition of high molecular weight dissolved organic matter released in the absence of actively growing bacteria. A second culture was grown in a 5 m(exp 3) mesocosm and placed in darkness for a period of 51 days to examine the impact of phytoplankton bloom dynamics and microbial decomposition on dissolved (DOM) and particulate organic matter (POM) composition. DOM was separated using tangential-flow ultrafiltration into three nominal size fractions: LDOM (less than 1 kDa DOM), HDOM (1-30 kDa) and VHDOM (30 kDa-0.2 micron) and characterized. Both axenic and mesocosm diatom blooms released 28-33% of net primary production as dissolved organic carbon (DOC). In the axenic culture, HDOM and LDOM each comprised about half of the diatom-released DOC with less than l% as VHDOM. Diatoms from both experiments released carbohydrate-rich high molecular weight DOM. Much of the axenic diatom-released high molecular weight DOC could be chemically characterized (61% of HDOM and 78% of VHDOM) with carbohydrates as the primary component (45% of HDOM and 55% of VHDOM). Substantial amounts of hydrolyzable amino acids (16% of HDOM and 22% of VHDOM) and small amounts of lipids (less than 1%) were also released. Proportions of recognizable biochemical components in DOM produced in the mesocosm bloom were lower compared to the axenic culture. The presence of bacterial fatty acids and peptidoglycan-derived D-amino acids within high molecular weight fractions from the mesocosm bloom revealed that bacteria contributed a variety of macromolecules to DOM during the growth and decay of the diatom bloom. Release of significant amounts of DOC by diatoms demonstrates that DOM excretion is an important component of phytoplankton primary production. Similarities in high molecular weight DOM composition in marine waters and diatom cultures highlight the importance of phytoplankton to DOM composition in the ocean.
Specificity and impact of adrenergic projections to the midbrain dopamine system
Mejias-Aponte, Carlos A.
2016-01-01
Dopamine (DA) is a neuromodulator that regulates different brain circuits involved in cognitive functions, motor coordination, and emotions. Dysregulation of DA is associated with many neurological and psychiatric disorders such as Parkinson’s disease and substance abuse. Several lines of research have shown that the midbrain DA system is regulated by the central adrenergic system. This review focuses on adrenergic interactions with midbrain DA neurons. It discusses the current neuroanatomy including source of adrenergic innervation, type of synapses, and adrenoceptors expression. It also discusses adrenergic regulation of DA cell activity and neurotransmitter release. Finally, it reviews several neurological and psychiatric disorders where changes in adrenergic system are associated with dysregulation of the midbrain DA system. PMID:26820641
Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2014-01-01
Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035
Christian, Catherine A.
2013-01-01
Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors. PMID:23843428
Christian, Catherine A; Huguenard, John R
2013-10-01
Allosteric modulators exert actions on neurotransmitter receptors by positively or negatively altering the effective response of these receptors to their respective neurotransmitter. γ-Aminobutyric acid (GABA) type A ionotropic receptors (GABAARs) are major targets for allosteric modulators such as benzodiazepines, neurosteroids, and barbiturates. Analysis of substances that produce similar effects has been hampered by the lack of techniques to assess the localization and function of such agents in brain slices. Here we describe measurement of the sniffer patch laser uncaging response (SPLURgE), which combines the sniffer patch recording configuration with laser photolysis of caged GABA. This methodology enables the detection of allosteric GABAAR modulators endogenously present in discrete areas of the brain slice and allows for the application of exogenous GABA with spatiotemporal control without altering the release and localization of endogenous modulators within the slice. Here we demonstrate the development and use of this technique for the measurement of allosteric modulation in different areas of the thalamus. Application of this technique will be useful in determining whether a lack of modulatory effect on a particular category of neurons or receptors is due to insensitivity to allosteric modulation or a lack of local release of endogenous ligand. We also demonstrate that this technique can be used to investigate GABA diffusion and uptake. This method thus provides a biosensor assay for rapid detection of endogenous GABAAR modulators and has the potential to aid studies of allosteric modulators that exert effects on other classes of neurotransmitter receptors, such as glutamate, acetylcholine, or glycine receptors.
Ebenezer, I. S.; Baldwin, B. A.
1995-01-01
1. The demonstration that systemic administration of the CCKA receptor antagonist, devazepide, increases food intake in rats has provided the strongest support for the hypothesis that endogenous peripherally released cholecystokinin (CCK) acts as a satiety factor. However, interpretation of these results has been confounded by the fact that devazepide can enter the brain from the systemic circulation and may increase food intake by a central action. The present study was therefore undertaken to confirm the hypothesis that endogenous peripheral CCK is a satiety factor by investigating the effects of a novel CCKA receptor antagonist, 2-NAP, which is unlikely to cross the blood brain barrier, on food intake in rats. 2. 2-NAP (1-16 mg kg-1, i.p.) had no significant effects on the intake of a test meal in rats. 3. Pretreatment of rats with 2-NAP (2 mg kg-1, s.c.) abolished the inhibitory effects of exogenous peripheral CCK (5 micrograms kg-1, i.p.) on food intake. 4. In agreement with previous results, devazepide (50-200 micrograms kg-1, i.p.) significantly increased the intake of a test meal in rats. 5. The observations that 2-NAP, which is unlikely to penetrate the blood brain barrier, had no effect on food intake, but that 2-NAP abolished the suppressant effect of exogenous peripheral CCK, suggest that endogenously released peripheral CCK is not important as a satiety factor in rats. PMID:8581271
NASA Astrophysics Data System (ADS)
Wu, Yiduo
Nitric oxide (NO) is a potent signaling molecule secreted by healthy vascular endothelial cells (EC) that is capable of inhibiting the activation and adhesion of platelets, preventing inflammation and inducing vasodilation. Polymeric materials that mimic the EC through the continuous release or generation of NO are expected to exhibit enhanced biocompatibility in vivo. In this dissertation research, the biocompatibility of novel NO-releasing/generating materials has been evaluated via both in vitro and in vivo studies. A new in vitro platelet adhesion assay has been designed to quantify platelet adhesion on NO-releasing/generating polymer surfaces via their innate lactate dehydrogenase (LDH) content. Using this assay, it was discovered that continuous NO fluxes of up to 7.05 x10-10 mol cm-2 min-1 emitted from the polymer surfaces could reduce platelet adhesion by almost 80%. Such an in vitro biocompatibility assay can be employed as a preliminary screening method in the development of new NO-releasing/generating materials. In addition, the first in vivo biocompatibility evaluation of NO-generating polymers was conducted in a porcine artery model for intravascular oxygen sensing catheters. The Cu(I)-catalyzed decomposition of endogenous S-nitrosothiols (RSNOs) generated NO in situ at the polymer/blood interface and offered enhanced biocompatibility to the NO-generating catheters along with more accurate analytical results for intra-arterial measurements of PO2 levels. NO-generating polymers can also be utilized to fabricate electrochemical RSNO sensors based on the amperometric detection of NO generated by the reaction of RSNOs with immobilized catalysts. Unlike conventional methodologies employed to measure labile RSNO, the advantage of the RSNO sensor method is that measurement in whole blood samples is possible and this minimizes sample processing artifacts in RSNO measurements. An electrochemical RSNO sensor with organoselenium crosslinked polyethylenimine (RSePEI) catalyst was used to determine the endogenous RSNO levels in the whole blood of rabbits and pigs, and substantial variations of RSNO levels were found within the same animal species. The photo-decomposition of RSNOs during sample collection was also studied. The results show that complete insulation from external light during the blood sampling step is critical for the accurate determination of endogenous RSNOs.
Davy, S K; Cook, C B
2001-06-01
Symbiotic dinoflagellates (zooxanthellae) typically respond to extracts of host tissue with enhanced release of short-term photosynthetic products. We examined this "host release factor" (HRF) response using freshly isolated zooxanthellae of differing nutritional status. The nutritional status was manipulated by either feeding or starving the sea anemone Aiptasia pallida (Verrill). The release of fixed carbon from isolated zooxanthellae was measured using 14C in 30 min experiments. Zooxanthellae in filtered seawater alone released approximately 5% of photosynthate irrespective of host feeding history. When we used a 10-kDa ultrafiltrate of A. pallida host tissue as a source of HRF, approximately 14% of photosynthate was released to the medium. This increased to over 25% for zooxanthellae from anemones starved for 29 days or more. The cell-specific photosynthetic rate declined with starvation in these filtrate experiments, but the decline was offset by the increased percentage release. Indeed, the total amount of released photosynthate remained unchanged, or even increased, as zooxanthellae became more nutrient deficient. Similar trends were also observed when zooxanthellae from A. pallida were incubated in a 3-kDa ultrafiltrate of the coral Montastraea annularis, suggesting that HRF in the different filtrates operated in a similar manner. Our results support the suggestion that HRF diverts surplus carbon away from storage compounds to translocated compounds such as glycerol.
Yao, Yu; Vieira, Amandio
2007-01-01
Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction, and provide a basis for in vivo testing of these flavonoids and their physiological metabolites in the context of neuro- and mitochondrio-protective effects.
Fotros, Aryandokht; Casey, Kevin F; Larcher, Kevin; Verhaeghe, Jeroen A J; Cox, Sylvia M L; Gravel, Paul; Reader, Andrew J; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco
2013-08-01
Drug-related cues are potent triggers for relapse in people with cocaine dependence. Dopamine (DA) release within a limbic network of striatum, amygdala and hippocampus has been implicated in animal studies, but in humans it has only been possible to measure effects in the striatum. The objective here was to measure drug cue-induced DA release in the amygdala and hippocampus using high-resolution PET with [(18)F]fallypride. Twelve cocaine-dependent volunteers (mean age: 39.6 ± 8.0 years; years of cocaine use: 15.9 ± 7.4) underwent two [(18)F]fallypride high-resolution research tomography-PET scans, one with exposure to neutral cues and one with cocaine cues. [(18)F]Fallypride non-displaceable-binding potential (BPND) values were derived for five regions of interest (ROI; amygdala, hippocampus, ventral limbic striatum, associative striatum, and sensorimotor striatum). Subjective responses to the cues were measured with visual analog scales and grouped using principal component analysis. Drug cue exposure significantly decreased BPND values in all five ROI in subjects who had a high-, but not low-, craving response (limbic striatum: p=0.019, associative striatum: p=0.008, sensorimotor striatum: p=0.004, amygdala: p=0.040, and right hippocampus: p=0.025). Individual differences in the cue-induced craving response predicted the magnitude of [(18)F]fallypride responses within the striatum (ventral limbic: r=0.581, p=0.048; associative: r=0.589, p=0.044; sensorimotor: r=0.675, p=0.016). To our knowledge this study provides the first evidence of drug cue-induced DA release in the amygdala and hippocampus in humans. The preferential induction of DA release among high-craving responders suggests that these aspects of the limbic reward network might contribute to drug-seeking behavior.
Pooryasin, Atefeh; Fiala, André
2015-09-16
Animals show different levels of activity that are reflected in sensory responsiveness and endogenously generated behaviors. Biogenic amines have been determined to be causal factors for these states of arousal. It is well established that, in Drosophila, dopamine and octopamine promote increased arousal. However, little is known about factors that regulate arousal negatively and induce states of quiescence. Moreover, it remains unclear whether global, diffuse modulatory systems comprehensively affecting brain activity determine general states of arousal. Alternatively, individual aminergic neurons might selectively modulate the animals' activity in a distinct behavioral context. Here, we show that artificially activating large populations of serotonin-releasing neurons induces behavioral quiescence and inhibits feeding and mating. We systematically narrowed down a role of serotonin in inhibiting endogenously generated locomotor activity to neurons located in the posterior medial protocerebrum. We identified neurons of this cell cluster that suppress mating, but not feeding behavior. These results suggest that serotonin does not uniformly act as global, negative modulator of general arousal. Rather, distinct serotoninergic neurons can act as inhibitory modulators of specific behaviors. An animal's responsiveness to external stimuli and its various types of endogenously generated, motivated behavior are highly dynamic and change between states of high activity and states of low activity. It remains unclear whether these states are mediated by unitary modulatory systems globally affecting brain activity, or whether distinct neurons modulate specific neuronal circuits underlying particular types of behavior. Using the model organism Drosophila melanogaster, we find that activating large proportions of serotonin-releasing neurons induces behavioral quiescence. Moreover, distinct serotonin-releasing neurons that we genetically isolated and identified negatively affect aspects of mating behavior, but not food uptake. This demonstrates that individual serotoninergic neurons can modulate distinct types of behavior selectively. Copyright © 2015 the authors 0270-6474/15/3512792-21$15.00/0.
Gwynne, Rachel M; Clarke, Amanda J; Furness, John B; Bornstein, Joel C
2014-01-01
The roles of 5-HT3 and 5-HT4 receptors in the modulation of intestinal propulsion by luminal application of 5-HT and augmentation of endogenous 5-HT effects were studied in segments of guinea-pig ileum in vitro. Persistent propulsive contractions evoked by saline distension were examined using a modified Trendelenburg method. When 5-HT (30 nM), fluoxetine (selective serotonin reuptake inhibitor; 1 nM), 2-methyl-5-HT (5-HT3 receptor agonist; 1 mM), or RS 67506 (5-HT4 receptor agonist, 1 μM) was infused into the lumen, the pressure needed to initiate persistent propulsive activity fell significantly. A specific 5-HT4 receptor antagonist, SB 207266 (10 nM in lumen), abolished the effects of 5-HT, fluoxetine, and RS 67506, but not those of 2-methyl-5-HT. Granisetron (5-HT3 receptor antagonist; 1 μM in lumen) abolished the effect of 5-HT, fluoxetine, RS 67506, and 2-methyl-5-HT. The NK3 receptor antagonist SR 142801 (100 nM in lumen) blocked the effects of 5-HT, fluoxetine, and 2-methyl-5-HT. SB 207266, granisetron, and SR 142801 had no effect by themselves. Higher concentrations of fluoxetine (100 and 300 nM) and RS 67506 (3 and 10 μM) had no effect on the distension threshold for propulsive contractions. These results indicate that luminal application of exogenous 5-HT, or increased release of endogenous mucosal 5-HT above basal levels, acts to lower the threshold for propulsive contractions in the guinea-pig ileum via activation of 5-HT3 and 5-HT4 receptors and the release of tachykinins. The results further indicate that basal release of 5-HT is insufficient to alter the threshold for propulsive motor activity.
The role of endogenous opiates in athletic amenorrhea.
Samuels, M H; Sanborn, C F; Hofeldt, F; Robbins, R
1991-03-01
We hypothesized that menstrual disturbances in female athletes arise from opioid-induced abnormalities in gonadotropin and/or prolactin (PRL) secretion. To investigate this hypothesis, we measured luteinizing hormone, follicle-stimulating hormone, and PRL levels in eumenorrheic and amenorrheic athletes during thyrotropin-releasing hormone and gonadotropin-releasing hormone tests at baseline, after naloxone infusions, after exercise to exhaustion, and after similar exercise during naloxone infusions. Contrary to our hypothesis, amenorrheic runners did not have significant alterations in basal, postexercise, or stimulated hormone levels compared with eumenorrheic runners. In addition, opioid blockade by naloxone did not enhance gonadotropin release by amenorrheic athletes.
Loche, S; Carta, D; Muntoni, A C; Corda, R; Pintor, C
1993-10-01
We have evaluated the effect of oral administration of arginine chlorhydrate on the growth hormone response to growth hormone releasing hormone in a group of nine short prepubertal children (six boys and four girls). Arginine chlorhydrate 10 g, administered orally 60 min before an i.v. bolus injection of growth hormone releasing hormone 1-29, 1 microgram/kg, significantly enhanced the growth hormone response to the neuropeptide, confirming the results of previous studies which used the i.v. route. Furthermore, our data strengthen the view that the effects of arginine chlorhydrate on growth hormone secretion are mediated by inhibition of endogenous somatostatin release.
Rybakina, E G; Sorokin, A V
1980-08-01
The pyrogen-releasing capacity of rabbit exudate granulocytes can be temporarily suppressed during incubation in the whole plasma and then recovered during cell transfer into 0.15 M NaCl or stimulation with the bacterial lipopolysaccharide, pyrogenal. The inhibitors of protein synthesis added to the granulocytes when they are being transferred from plasma to 0.15 M NaCl do not suppress the pyrogen release. The inhibitory action of the whole plasma on the pyrogen release is due to the presence in it of potassium and calcium ions. The inhibitory factors of plasma reversibly suppress the pyrogen release but do not eliminate the leukocyte activation.
Dopamine release in chronic cannabis users: a [11C]raclopride Positron Emission Tomography study
Urban, Nina B.L.; Slifstein, Mark; Thompson, Judy L.; Xu, Xiaoyan; Girgis, Ragy R.; Raheja, Sonia; Haney, Margaret; Abi-Dargham, Anissa
2012-01-01
Introduction Low striatal dopamine 2/3 receptor (D2/3) availability and low ventrostriatal (VST) dopamine (DA) release have been observed in alcoholism, cocaine and heroin dependence. Less is known about the dopaminergic system in cannabis dependence. We assessed D2/3 availability and DA release in abstinent cannabis users compared to controls and explored relationships to parameters of cannabis use history, using [11C]raclopride Positron Emission Tomography (PET) and an amphetamine challenge paradigm. Methods 16 recently abstinent, medically and psychiatrically healthy cannabis-using participants (CD, 27.3 ± 6.1 years, 1 female, 15 males) and 16 matched controls (HC, 28.1 ± 6.7 years, 2 females, 14 males) completed two PET scans, before and after injection of i.v. d-amphetamine (0.3 mg/kg). Percent change in [11C]raclopride binding after amphetamine (ΔBPND) in subregions of the striatum was compared between groups. Correlations with clinical parameters were examined. Results Cannabis dependent participants had an average consumption of 517± 465 estimated puffs per month, indicating overall mild to moderate cannabis dependence. Neither baseline BPND nor ΔBPND differed from controls in any ROI, including VST. In CD, earlier age of onset of use correlated with lower [ΔBPND] in the associative striatum (AST) when controlling for current age. Conclusions Unlike other addictions, cannabis dependence of mild to moderate severity is not associated with striatal DA alterations. However, earlier use, or longer duration of use, is related to lower DA release in the AST. These observations suggest a more harmful effect of use during adolescence; more research is needed to distinguish effects of chronicity versus onset. PMID:22290115
Dopamine release in chronic cannabis users: a [11c]raclopride positron emission tomography study.
Urban, Nina B L; Slifstein, Mark; Thompson, Judy L; Xu, Xiaoyan; Girgis, Ragy R; Raheja, Sonia; Haney, Margaret; Abi-Dargham, Anissa
2012-04-15
Low striatal dopamine 2/3 receptor (D(2/3)) availability and low ventrostriatal dopamine (DA) release have been observed in alcoholism and cocaine and heroin dependence. Less is known about the dopaminergic system in cannabis dependence. We assessed D(2/3) availability and DA release in abstinent cannabis users compared with control subjects and explored relationships to cannabis use history using [(11)C]raclopride positron emission tomography and an amphetamine challenge paradigm. Sixteen recently abstinent, psychiatrically healthy cannabis-using participants (27.3 ± 6.1 years, 1 woman, 15 men) and 16 matched control subjects (28.1 ± 6.7 years, 2 women, 14 men) completed two positron emission tomography scans, before and after injection of intravenous d-amphetamine (.3 mg/kg). Percent change in [(11)C]raclopride binding after amphetamine (change in nondisplaceable binding potential, ΔBP(ND)) in subregions of the striatum was compared between groups. Correlations with clinical parameters were examined. Cannabis users had an average consumption of 517 ± 465 estimated puffs per month, indicating mild to moderate cannabis dependence. Neither baseline BP(ND) nor ΔBP(ND) differed from control subjects in any region of interest, including ventral striatum. In cannabis-dependent subjects, earlier age of onset of use correlated with lower [ΔBP(ND)] in the associative striatum when controlling for current age. Unlike other addictions, cannabis dependence of mild to moderate severity is not associated with striatal DA alterations. However, earlier or longer duration of use is related to lower DA release in the associative striatum. These observations suggest a more harmful effect of use during adolescence; more research is needed to distinguish effects of chronicity versus onset. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lhoste, E; Aprahamian, M; Pousse, A; Hoeltzel, A; Stock-Damge, C
1985-01-01
This work investigates the effect, on the rat pancreas, of a chronic administration of bombesin in function of the dose and duration of treatment and examines whether this effect may be mediated by the release of endogenous gastrin or cholecystokinin. Bombesin, administered three times daily for 5 or 15 days, induced a marked increase in pancreatic weight, its protein, RNA and enzyme contents with the dose of 10 micrograms/kg body weight; the ratios of pancreatic weight, protein and RNA contents to DNA contents increased significantly after a 5 day treatment, suggesting cellular hypertrophy. Pancreatic DNA content was markedly enhanced after a 15 day treatment, suggesting cellular hyperplasia. Antrectomy decreased plasma gastrin levels, but did not alter the pancreatico-trophic action of a 10 micrograms/kg bombesin treatment for 5 days. Proglumide, an inhibitor of cholecystokinin and gastrin in the pancreas, did not affect the growth of the pancreas induced by a 10 micrograms/kg bombesin treatment for 5 days. It is concluded that chronic bombesin induces, in the rat pancreas, cellular hypertrophy or hyperplasia depending on the duration of treatment. Pancreatic hypertrophy is not mediated by the release of endogenous gastrin or cholecystokinin.
Dominguez, J M; Hull, E M
2001-11-02
Increased dopamine (DA) in the medial preoptic area (MPOA) facilitates male sexual behavior. A major source of innervation to the MPOA is the medial amygdala (MeA). We now report that chemical stimulation of the MeA enhanced levels of extracellular MPOA DA in anesthetized male rats. These results suggest that DA activity in the MPOA can be regulated by input from the MeA to the MPOA.
Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.
Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi
2016-01-01
Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.
Oken, M M; Peterson, P K; Wilkinson, B J
1981-01-01
To determine the properties of Staphylococcus aureus contributing to its pyrogenicity, we compared, in human monocytes, endogenous pyrogen production stimulated by heat-killed S. aureus with that stimulated by purified S. aureus cell walls or by particulate peptidoglycan prepared from the same strain. Peptidoglycan, but not the purified cell wall preparation, was found comparable to S. aureus as an endogenous pyrogen stimulus. This finding was associated with a more effective monocyte phagocytosis of S. aureus and peptidoglycan as compared with that of purified cell walls. Lysostaphin digestion of peptidoglycan markedly reduced its pyrogenicity. To test whether the chemical composition of the ingested particles is important, latex particles were tested as possible stimuli for monocyte endogenous pyrogen release. Although 40 to 68% of monocytes ingested latex particles during the first hour, there was no evidence of endogenous pyrogen activity in the supernatant even when supernatants equivalent to 5.2 X 10(6) monocytes were tested. This study demonstrates that the pyrogenic moiety of the S. aureus cell wall resides in the peptidoglycan component. Phagocytosis is not in itself a pyrogenic stimulus, but rather serves as an effective mechanism to bring about contact between the chemical stimulus and the monocyte.
Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses.
Byrd-Leotis, Lauren; Liu, Renpeng; Bradley, Konrad C; Lasanajak, Yi; Cummings, Sandra F; Song, Xuezheng; Heimburg-Molinaro, Jamie; Galloway, Summer E; Culhane, Marie R; Smith, David F; Steinhauer, David A; Cummings, Richard D
2014-06-03
Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.
Decreased striatal and enhanced thalamic dopaminergic responsivity in detoxified cocaine abusers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N.D.; Wang, G.J.; Fowler, J.S.
It has been hypothesized that cocaine addiction could result from decreased brain dopamine (DA) function. However, little is known about changes in (DA) neurotransmission in human cocaine addiction. We used PET and [C-11]raclopride, a DA D2 receptor ligand sensitive to competition with endogenous DA, to measure relative changes in extracellular DA induced by methylphenidate (MP) in 20 cocaine abusers (3-6 weeks after cocaine discontinuation) and 23 controls. MP did not affect the transport of [C-11]raclopride from blood to brain (K1); however it induced a significant reduction in DA D2 receptor availability (Bmax/Kd) in striatum. The magnitude of ND-induced changes inmore » striatal [C-11]raclopride binding were significantly larger in controls (21 + 13% change from baseline) than in cocaine abusers (9 {+-} 13 %) (ANOVA p < 0.005). In cocaine abusers, but not in controls, MP also decreased Bmax/Kd values in thalamus (29 {+-} 35 %) (ANOVA p < 0.005). There were no differences in plasma MP concentration between the groups. In striatum MP-induced changes in Bmax/Kd were significantly correlated with MP-induced changes in self reports of restlessness (r = 0.49, df 42, p < 0.002). In thalamus MP-induced changes in Bmax/Kd were significantly correlated with ND-induced changes in self reports of cocaine craving (r = 0.57, df 42, p < 0.0001). These results are compatible with a decrease in striatal DA brain function in cocaine abusers. They also suggest a participation of thalamic DA pathways in cocaine addiction.« less
Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.
Kampschmidt, R F; Upchurch, H F; Worthington, M L
1983-07-01
It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen.
ATKINS, E; HUANG, W C
1958-03-01
Observations have been made on the fever-inducing properties of an endogenous pyrogen found in the circulation of rabbits after the intravenous inoculation of Newcastle disease virus (NDV). When endogenous pyrogen was given to a normal recipient, a biphasic fever was produced which simulated that seen with bacterial endotoxins. With the use of a technique of serial passive transfer, it has been shown that the "double-humped" response results from two separate actions of the injected pyrogen. The first of these appears to be a direct stimulation of the thermoregulatory centers. The second involves the release of further endogenous pyrogen in the normal recipient to cause, in turn, the second fever peak. Since the injection of endogenous pyrogen did not produce a significant change in the number of circulating leukocytes, it is inferred that this substance is different from either bacterial or tissue polysaccharides. In rabbits rendered tolerant by a previous injection of virus the second fever peak failed to appear and the response to endogenous pyrogen was monophasic. Evidence indicates that the absence of a second fever peak in the tolerant recipient was not due to rise in temperature on the preceding day of virus injection or to the development of either serum inhibitors or tolerance to virus itself. It is postulated that prior mobilization of endogenous pyrogen by virus may have modified the ability of the tolerant recipient to liberate further amounts of this substance in response to an injection of endogenous pyrogen.
Further comparisons of endogenous pyrogens and leukocytic endogenous mediators.
Kampschmidt, R F; Upchurch, H F; Worthington, M L
1983-01-01
It was recently shown (Murphy et al., Infect. Immun. 34:177-183), that rabbit macrophages produce two biochemically and immunologically distinct endogenous pyrogens. One of these has or copurifies with substances having a molecular weight of 13,000 and a pI of 7.3. This protein was produced by blood monocytes or inflammatory cells elicited in 16-h rabbit peritoneal exudates. These acute peritoneal exudates were produced by the intraperitoneal injection of large volumes of saline containing shellfish glycogen. When the leukocytes in these exudates were washed and incubated at 37 degrees C in saline, they released an endogenous pyrogen. The injection of this pyrogen into rabbits, rats, or mice caused the biological manifestations which have been attributed to leukocytic endogenous mediator. These effects were increases in blood neutrophils, the lowering of plasma iron and zinc levels, and the increased synthesis of the acute-phase proteins. The other rabbit endogenous pyrogen seems to be a family of proteins with isoelectric points between 4.5 and 5.0. These proteins are produced by macrophages in the lung, liver, or in chronic peritoneal exudates. In these experiments, the lower-isoelectric-point endogenous pyrogens were produced by macrophages from the peritoneal cavity of rabbits that had been injected 4 days earlier with 50 ml of light mineral oil. These rabbit pyrogens were found to have leukocytic endogenous mediator activity in mice but to be completely inactive in rats. When injected into rabbits, these proteins produced fever, lowered plasma iron, increased blood neutrophils, but failed to elevate plasma fibrinogen. PMID:6862633
Do nitric oxide donors mimic endogenous NO-related response in plants?
Floryszak-Wieczorek, J; Milczarek, G; Arasimowicz, M; Ciszewski, A
2006-11-01
Huge advances achieved recently in elucidating the role of NO in plants have been made possible by the application of NO donors. However, the application of NO to plants in various forms and doses should be subjected to detailed verification criteria. Not all metabolic responses induced by NO donors are reliable and reproducible in other experimental designs. The aim of the presented studies was to investigate the half-life of the most frequently applied donors (SNP, SNAP and GSNO), the rate of NO release under the influence of light and reducing agents. At a comparable donor concentration (500 microM) and under light conditions the highest rate of NO generation was found for SNAP, followed by GSNO and SNP. The measured half-life of the donor in the solution was 3 h for SNAP, 7 h for GSNO and 12 h for SNP. A temporary lack of light inhibited NO release from SNP, both in the solution and SNP-treated leaf tissue, which was measured by the electrochemical method. Also a NO, selective fluorescence indicator DAF-2DA in leaves supplied with different donors showed green fluorescence spots in the epidermal cells mainly in the light. SNP as a NO donor was the most photosensitive. The activity of PAL, which plays an important role in plant defence, was also activated by SNP in the light, not in the dark. S-nitrosothiols (SNAP and GSNO) also underwent photodegradation, although to a lesser degree than SNP. Additionally, NO generation capacity from S-nitrosothiols was shown in the presence of reducing agents, i.e. ascorbic acid and GSH, and the absence of light. The authors of this paper would like to polemicize with the commonly cited statement that "donors are compounds that spontaneously break down to release NO" and wish to point out the fact that the process of donor decomposition depends on the numerous external factors. It may be additionally stimulated or inhibited by live plant tissue, thus it is necessary to take into consideration these aspects and monitor the amount of NO released by the donor.
Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces
NASA Astrophysics Data System (ADS)
Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen
1998-03-01
We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.
Presynaptic gain control by endogenous cotransmission of dopamine and GABA in the olfactory bulb.
Vaaga, Christopher E; Yorgason, Jordan T; Williams, John T; Westbrook, Gary L
2017-03-01
In the olfactory bulb, lateral inhibition mediated by local juxtaglomerular interneurons has been proposed as a gain control mechanism, important for decorrelating odorant responses. Among juxtaglomerular interneurons, short axon cells are unique as dual-transmitter neurons that release dopamine and GABA. To examine their intraglomerular function, we expressed channelrhodopsin under control of the DAT-cre promoter and activated olfactory afferents within individual glomeruli. Optical stimulation of labeled cells triggered endogenous dopamine release as measured by cyclic voltammetry and GABA release as measured by whole cell GABA A receptor currents. Activation of short axon cells reduced the afferent presynaptic release probability via D 2 and GABA B receptor activation, resulting in reduced spiking in both mitral and external tufted cells. Our results suggest that short axon cells influence glomerular activity not only by direct inhibition of external tufted cells but also by inhibition of afferent inputs to external tufted and mitral cells. NEW & NOTEWORTHY Sensory systems, including the olfactory system, encode information across a large dynamic range, making synaptic mechanisms of gain control critical to proper function. Here we demonstrate that a dual-transmitter interneuron in the olfactory bulb controls the gain of intraglomerular afferent input via two distinct mechanisms, presynaptic inhibition as well as inhibition of a principal neuron subtype, and thereby potently controls the synaptic gain of afferent inputs. Copyright © 2017 the American Physiological Society.
Gerritsen, M E; Cheli, C D
1983-01-01
Isolated microvessels and isolated and cultured microvessel endothelial cells were prepared from rabbit cardiac muscle. Pathways of arachidonic acid metabolism were determined by measurement of exogenous substrate utilization [( 1-14C]arachidonic acid incorporation and release from intact tissue and cells; [1-14C]prostaglandin H2 (PGH2) metabolism by broken cell preparations) and by quantification of endogenous products (immunoreactive 6-keto-prostaglandin F1 alpha (PGF1 alpha) and prostaglandin E (PGE) release) by selective radioimmunoassay. Rabbit coronary microvessels and derived microvascular endothelial cells (RCME cells) synthesized two major products of the cyclooxygenase pathway: 6-keto-PGF1 alpha (hydrolytic product of prostaglandin I2) and PGE2. A reduced glutathione requiring PGH-E isomerase was demonstrated in coronary microvessels and RCME cells, but not in rabbit circumflex coronary artery or aorta. In addition, a minor amount of a compound exhibiting similar characteristics to 6-keto-PGE1 was found to be produced by microvessels and RCME cells. Measurement of endogenously released prostaglandins indicated that under basal and stimulated conditions, PGE release exceeded that of 6-keto-PGF1 alpha. Microvessels and microvessel endothelial cells derived from cardiac muscle of rabbit exhibit pathways of arachidonate metabolism that are different from those of many large blood vessels and derived endothelial cells. Images PMID:6415116
STUDIES ON THE PATHOGENESIS OF FEVER WITH INFLUENZAL VIRUSES
Atkins, Elisha; Huang, Wei Cheng
1958-01-01
Observations have been made on the fever-inducing properties of an endogenous pyrogen found in the circulation of rabbits after the intravenous inoculation of Newcastle disease virus (NDV). When endogenous pyrogen was given to a normal recipient, a biphasic fever was produced which simulated that seen with bacterial endotoxins. With the use of a technique of serial passive transfer, it has been shown that the "double-humped" response results from two separate actions of the injected pyrogen. The first of these appears to be a direct stimulation of the thermoregulatory centers. The second involves the release of further endogenous pyrogen in the normal recipient to cause, in turn, the second fever peak. Since the injection of endogenous pyrogen did not produce a significant change in the number of circulating leukocytes, it is inferred that this substance is different from either bacterial or tissue polysaccharides. In rabbits rendered tolerant by a previous injection of virus the second fever peak failed to appear and the response to endogenous pyrogen was monophasic. Evidence indicates that the absence of a second fever peak in the tolerant recipient was not due to rise in temperature on the preceding day of virus injection or to the development of either serum inhibitors or tolerance to virus itself. It is postulated that prior mobilization of endogenous pyrogen by virus may have modified the ability of the tolerant recipient to liberate further amounts of this substance in response to an injection of endogenous pyrogen. PMID:13513909
Mori, Tomohisa; Hayashi, Teruo
2012-01-01
The endoplasmic reticulum (ER) chaperone σ-1 receptor (Sig-1R) is cytoprotective against ER stress-induced apoptosis. The level of Sig-1Rs in the brain was reported to be lower in early parkinsonian patients. Because dopamine (DA) toxicity is well known to be involved in the etiology of Parkinson's disease, we tested in this study whether a relationship might exist between Sig-1Rs and DA-induced cytotoxicity in a cellular model by using Chinese hamster ovary (CHO) cells. DA in physiological concentrations (e.g., lower than 10 μM) does not cause apoptosis. However, the same concentrations of DA cause apoptosis in Sig-1R knockdown CHO cells. In search of a mechanistic explanation, we found that unfolded protein response is not involved. Rather, the level of protective protein Bcl-2 is critically involved in this DA/Sig-1R knockdown-induced apoptosis. Specifically, the DA/Sig-1R knockdown causes a synergistic proteasomal conversion of nuclear factor κB (NF-κB) p105 to the active form of p50, which is known to down-regulate the transcription of Bcl-2. It is noteworthy that the DA/Sig-1R knockdown-induced apoptosis is blocked by the overexpression of Bcl-2. Our results therefore indicate that DA is involved in the activation of NF-κB and suggest that endogenous Sig-1Rs are tonically inhibiting the proteasomal conversion/activation of NF-κB caused by physiologically relevant concentrations of DA that would otherwise cause apoptosis. Thus, Sig-1Rs and associated ligands may represent new therapeutic targets for the treatment of parkinsonism. PMID:22399814
[Formation of endogenous pyrogen by mononuclear phagocytes].
Agasarov, L G
1980-03-01
Incubation of alveolar macrophages of rabbits and peritoneal macrophages of the abdominal cavity washing of albino mice does not lead to endogenous pyrogen release. Peritoneal macrophages obtained after peritoneal administration to mice of thioglycollate, glycogen or heterologous blood cells do not discharge pyrogen either during incubation without additional stimulation. Macrophages isolated after intraperitoneal administration of heterologous blood cells do not exhibit pyrogenic activity possibly because of a long period of time elapsed after phagocytosis of foreign agents. The triggering of pyrogen formation by macrophages can be effected by means of in vitro phagocytosis of corpuscular particles: staphylococci or heterologous blood cells.
Oleic acid exposure of cultured endothelial cells alters lipid mediator production
Diesel, biodiesel, and other combustion sources contain free fatty acid (FFA) components capable of entering the body through particulate inhalation. FFA can also be endogenously released into circulation in response to stress. When in circulation, bioactive FFA may interact with...
Biogeochemistry of vertebrate decomposition in a forest ecosystem
USDA-ARS?s Scientific Manuscript database
Decomposing plants and animals provide critical nutrients for ecosystems, including forests. During vertebrate decay, the rapid release of limiting nutrients, including N, P, C, and S fundamentally transforms the soil environment by stimulating endogenous organisms. The goal of this study was t...
Quissell, D O; Deisher, L M
1992-04-01
Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.
Ren, Tian-Bing; Xu, Wang; Zhang, Qian-Ling; Zhang, Xing-Xing; Wen, Si-Yu; Yi, Hai-Bo; Yuan, Lin; Zhang, Xiao-Bing
2018-06-18
Two-photon imaging is an emerging tool for biomedical research and clinical diagnostics. Electron donor-acceptor (D-A) type molecules are the most widely employed two-photon scaffolds. However, current D-A type fluorophores suffer from solvatochromic quenching in aqueous biological samples. To address this issue, we devised a novel class of D-A type green fluorescent protein (GFP) chromophore analogues that form a hydrogen-bond network in water to improve the two-photon efficiency. Our design results in two-photon chalcone (TPC) dyes with 0.80 quantum yield and large two-photon action cross section (210 GM) in water. This strategy to form hydrogen bonds can be generalized to design two-photon materials with anti-solvatochromic fluorescence. To demonstrate the improved in vivo imaging, we designed a sulfide probe based on TPC dyes and monitored endogenous H 2 S generation and scavenging in the cirrhotic rat liver for the first time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2014-11-01
Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d-1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.40 μm, <1000 kDa, <100 kDa and <10 kDa) of DO14C and HMW-dCCHO. Our results revealed relatively low ER during steady state growth, corresponding to ∼4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size (<10 kDa) fraction of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentages of glucose (74-80 Mol%), the composition of HMW-dCCHO size-classes >10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
Suyama, Julie A.; Sakloth, Farhana; Kolanos, Renata; Glennon, Richard A.; Lazenka, Matthew F.; Negus, S. Stevens
2016-01-01
Methcathinone (MCAT) is a monoamine releaser and parent compound to a new class of designer drugs that includes the synthetic cathinones mephedrone and flephedrone. Using MCAT and a series of para-substituted (or 4-substituted) MCAT analogs, it has been previously shown that expression of abuse-related behavioral effects in rats correlates both with the volume of the para substituent and in vitro neurochemical selectivity to promote monoamine release via the dopamine (DA) versus serotonin (5-HT) transporters in rat brain synaptosomes. The present study used in vivo microdialysis to determine the relationship between these previous measures and the in vivo neurochemical selectivity of these compounds to alter nucleus accumbens (NAc) DA and 5-HT levels. Male Sprague-Dawley rats were implanted with bilateral guide cannulae targeting the NAc. MCAT and five para-substituted analogs (4-F, 4-Cl, 4-Br, 4-CH3, and 4-OCH3) produced dose- and time-dependent increases in NAc DA and/or 5-HT levels. Selectivity was determined as the dose required to increase peak 5-HT levels by 250% divided by the dose required to increase peak DA levels by 250%. This measure of in vivo neurochemical selectivity varied across compounds and correlated with 1) in vivo expression of abuse-related behavioral effects (r = 0.89, P = 0.02); 2) in vitro selectivity to promote monoamine release via DA and 5-HT transporters (r = 0.95, P < 0.01); and 3) molecular volume of the para substituent (r = −0.85, P = 0.03). These results support a relationship between these molecular, neurochemical, and behavioral measures and support a role for molecular structure as a determinant of abuse-related neurochemical and behavioral effects of MCAT analogs. PMID:26645638
Samson, W K; Baker, J R; Samson, C K; Samson, H W; Taylor, M M
2004-10-01
Neuropeptide B (NPB) was identified to be an endogenous, peptide ligand for the orphan receptors GPR7 and GPR8. Because GPR7 is expressed in rat brain and, in particular, in the hypothalamus, we hypothesized that NPB might interact with neuroendocrine systems that control hormone release from the anterior pituitary gland. No significant effects of NPB were observed on the in vitro releases of prolactin, adrenocorticotropic hormone (ACTH) or growth hormone (GH) when log molar concentrations ranging from 1 pM to 100 nM NPB were incubated with dispersed anterior pituitary cells harvested from male rats. In addition NPB (100 nM) did not alter the concentration response stimulation of prolactin secretion by thyrotropin-releasing hormone, ACTH secretion by corticotropin-releasing factor (CRF) and GH secretion by GH-releasing hormone. However, NPB, when injected into the lateral cerebroventricle (i.c.v.) of conscious, unrestrained male rats, elevated prolactin and corticosterone, and lowered GH levels in circulation. The threshold dose for the effect on corticosterone and prolactin levels was 1.0 nmol, while that for the effect on GH release was 3.0 nmol NPB. Pretreatment with a polyclonal anti-CRF antiserum completely blocked the ability of NPB to stimulate ACTH release and significantly inhibited the effect of NPB on plasma corticosterone levels. NPB administration i.c.v. did not significantly alter plasma vasopressin and oxytocin levels in conscious rats. It did stimulate feeding (minimum effective dose 1.0 nmol) in sated animals in a manner similar to that of the other endogenous ligand for GPR7, neuropeptide W. We conclude that NPB can act in the brain to modulate neuroendocrine signals accessing the anterior pituitary gland, but does not itself act as a releasing or inhibiting factor in the gland, at least with regard to prolactin, ACTH and GH secretion.
Konturek, J W; Gillessen, A; Konturek, S J; Domschke, W
1995-01-01
Helicobacter pylori infection may be associated with duodenal ulcer (DU) and accompanied by enhanced gastrin release but the mechanism of this H pylori related hypergastrinaemia in DU patients is unclear. Cholecystokinin (CCK) has been implicated in the feedback control of gastrin release and gastric acid secretion in healthy subjects. This study therefore investigated if CCK participates in the impairment of postprandial gastrin release and gastric secretion in six DU patients. Tests were undertaken with and without elimination of endogenous CCK by loxiglumide, a selective CCK-A receptors antagonist, before and after eradication of H pylori with triple therapy (omeprazole, amoxicyllin, bismuth). In H pylori positive DU patients, the post-prandial decline in pH (with median pH 3.5) was accompanied by a pronounced increment in plasma gastrin but the administration of loxiglumide did not affect significantly this postprandial rise in plasma gastrin and gastric pH profile. After eradication of H pylori, the plasma gastrin concentration was reduced while the median postprandial pH was significantly increased (median pH 4.3). The administration of loxiglumide resulted in significantly greater increase in postprandial plasma gastrin and greater decrease in pH (median pH 3.1) in these patients. This study shows that (a) infection with H pylori is accompanied by an enhanced gastrin release and gastric acidity in DU patients, (b) the failure of loxiglumide to affect plasma gastrin or gastric acid secretion in H pylori infected DU patients could be attributed, at least in part, to the failure of endogenous CCK to control gastrin release and gastric secretion by releasing somatostatin, and (c) the test with loxiglumide may be useful in the identification of patients with impaired feedback control of gastrin release and gastric secretion resulting from infection with H pylori. PMID:7489932
Aiba, Isamu; Carlson, Andrew P.; Sheline, Christian T.
2012-01-01
Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn2+ is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn2+ accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn2+ concentrations with exogenous ZnCl2 reduced SD propagation rates. Selective chelation of endogenous Zn2+ (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn2+ derived from synaptic vesicles. Thus, in tissues where synaptic Zn2+ release was absent [knockout (KO) of vesicular Zn2+ transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn2+ in these tissues. The role of synaptic Zn2+ was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn2+ can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn2+ on SD may counteract to some extent the neurotoxic effects of intracellular Zn2+ accumulation in acute brain injury models. PMID:22131381
Aiba, Isamu; Carlson, Andrew P; Sheline, Christian T; Shuttleworth, C William
2012-02-01
Cortical spreading depression (CSD) is a consequence of a slowly propagating wave of neuronal and glial depolarization (spreading depolarization; SD). Massive release of glutamate contributes to SD propagation, and it was recently shown that Zn(2+) is also released from synaptic vesicles during SD. The present study examined consequences of extracellular Zn(2+) accumulation on the propagation of SD. SD mechanisms were studied first in murine brain slices, using focal KCl applications as stimuli and making electrical and optical recordings in hippocampal area CA1. Elevating extracellular Zn(2+) concentrations with exogenous ZnCl(2) reduced SD propagation rates. Selective chelation of endogenous Zn(2+) (using TPEN or CaEDTA) increased SD propagation rates, and these effects appeared due to chelation of Zn(2+) derived from synaptic vesicles. Thus, in tissues where synaptic Zn(2+) release was absent [knockout (KO) of vesicular Zn(2+) transporter ZnT-3], SD propagation rates were increased, and no additional increase was observed following chelation of endogenous Zn(2+) in these tissues. The role of synaptic Zn(2+) was then examined on CSD in vivo. ZnT-3 KO animals had higher susceptibility to CSD than wild-type controls as evidenced by significantly higher propagation rates and frequencies. Studies of candidate mechanisms excluded changes in neuronal excitability, presynaptic release, and GABA receptors but left open a possible contribution of N-methyl-d-aspartate (NMDA) receptor inhibition. These results suggest the extracellular accumulation of synaptically released Zn(2+) can serve as an intrinsic inhibitor to limit SD events. The inhibitory action of extracellular Zn(2+) on SD may counteract to some extent the neurotoxic effects of intracellular Zn(2+) accumulation in acute brain injury models.
Release of an endogenous pyrogen in vitro from rabbit mononuclear cells.
Atkins, E; Bodel, P; Francis, L
1967-08-01
The capacity of rabbit mononuclear cells to release an endogenous pyrogen (EP) in vitro has been studied. After incubation with tuberculin, preparations of predominantly monocytic cells, derived from the respiratory passages of the lungs of rabbits sensitized with BCG, were activated to release EP. Pyrogen production occurred more slowly with lung monocytes than with blood leukocytes of similarly sensitized rabbits and 9 to 10 hr incubation in a fully supportive medium was required to produce clear-cut results. As previously reported with blood leukocytes, mononuclear cells from the lungs of normal animals were also activated by tuberculin but to a lesser degree than were those from specifically sensitized rabbits. Under a variety of conditions, mononuclear cells from either spleen or lymph nodes of the same sensitized rabbits failed to release detectable amounts of pyrogen when incubated with tuberculin in vitro but were activated in a majority of instances when phagocytosis of heat-killed staphylococci was used as the stimulus. Release of pyrogen from lung monocytes appears to be an active process that is both temperature-dependent and requires protein synthesis. Neither serum antibody nor complement appears to play a role in this process. Evidence is presented that the granulocyte is the main source of pyrogen evolved by blood leukocytes incubated in vitro with OT or heat-killed staphylococci, whereas the lung macrophage and/or monocyte is responsible for most of the pyrogen released from the lung cell preparations. From these studies, it is concluded that mononuclear cells can be activated in vitro by several microbial stimuli and must be considered an additional cellular source of EP. The clinical implications of these findings for the pathogenesis of fever in granulomatous diseases where the monocyte is the predominant cell are discussed.
L'Heureux, R; Dennis, T; Curet, O; Scatton, B
1986-06-01
The release of endogenous noradrenaline was measured in the cerebral cortex of the halothane-anesthetized rat by using the technique of brain dialysis coupled to a radioenzymatic assay. A thin dialysis tube was inserted transversally in the cerebral cortex (transcortical dialysis) and perfused with Ringer medium (2 microliter min-1). Under basal conditions, the cortical output of noradrenaline was stable over a period of at least 6 h and amounted to 8.7 pg/20 min (not corrected for recovery). Histological control of the perfused area revealed very little damage and normal morphology in the vicinity of the dialysis tube. Omission of calcium from the perfusion medium caused a marked drop in cortical noradrenaline output. Bilateral electrical stimulation (for 10 min) of the ascending noradrenergic pathways in the medial forebrain bundle caused a frequency-dependent increase in cortical noradrenaline output over the range 5-20 Hz. Stimulation at a higher frequency (50 Hz) resulted in a levelling off of the increase in cortical noradrenaline release. Systemic administration of the dopamine-beta-hydroxylase inhibitor bis-(4-methyl-1-homopiperazinylthiocarbonyl) disulfide (FLA 63) (25 mg/kg i.p.) markedly reduced, whereas injection of the monoamine oxidase inhibitor pargyline (75 mg/kg i.p.) resulted in a progressive increase in, cortical noradrenaline output. d-Amphetamine (2 mg/kg i.p.) provoked a sharp increase in cortical noradrenaline release (+450% over basal values within 40 min). Desmethylimipramine (10 mg/kg i.p.) produced a twofold increase of cortical noradrenaline release. Finally, idazoxan (20 mg/kg i.p.) and clonidine (0.3 mg/kg i.p.), respectively, increased and decreased the release of noradrenaline from the cerebral cortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters
Bermingham, Daniel P.
2016-01-01
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies. PMID:27591044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.
2002-03-01
Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appearsmore » to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.« less
Solinski, Hans Jürgen; Petermann, Franziska; Rothe, Kathrin; Boekhoff, Ingrid; Gudermann, Thomas; Breit, Andreas
2013-01-01
Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain. PMID:23505557
Failure of systemic hypoxia to blunt α-adrenergic vasoconstriction in the human forearm
Dinenno, Frank A; Joyner, Michael J; Halliwill, John R
2003-01-01
Systemic hypoxia in humans evokes forearm vasodilatation despite significant reflex increases in sympathetic vasoconstrictor nerve activity and noradrenaline spillover. We sought to determine whether post-junctional α-adrenergic vasoconstrictor responsiveness to endogenous noradrenaline release is blunted during systemic hypoxia. To do so, we conducted a two-part study in healthy young adults. In protocol 1, we measured forearm blood flow (FBF; venous occlusion plethysmography) and calculated the vascular conductance (FVC) responses to brachial artery infusions of two doses of tyramine (evokes endogenous noradrenaline release) in 10 adults during normoxia and mild systemic hypoxia (85 % O2 saturation; pulse oximetry of the earlobe). Systemic hypoxia evoked significant forearm vasodilatation as indicated by the increases in FBF and FVC (∼20–23 %; P < 0.05). The low and high doses of tyramine evoked significant reductions in FVC (vasoconstriction) that were similar in magnitude during normoxia (−29 ± 3 and −53 ± 4 %) and mild hypoxia (−35 ± 4 and −58 ± 3 %; P = 0.33). In protocol 2, forearm vasoconstrictor responses to the high dose of tyramine were determined in eight young adults during normoxia and during graded levels of systemic hypoxia (85, 80 and 75 % O2 saturation). The reductions in FVC were similar during normoxia (−59 ± 2 %) and the three levels of hypoxia (85 % O2 saturation, −64 ± 3 %; 80 % O2 saturation, −62 ± 1 %; 75 % O2 saturation, −61 ± 3 %; P = 0.37). In both protocols, the tyramine-induced increases in deep venous noradrenaline concentrations were similar during normoxia and all levels of hypoxia. Our results demonstrate that post-junctional α-adrenergic receptor vasoconstrictor responsiveness to endogenous noradrenaline release is not blunted during mild-to-moderate systemic hypoxia in healthy humans. PMID:12730336
Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela
2018-05-15
Sexual experience modifies brain functioning and copulatory efficiency. Sexual activity, ejaculation in particular, is a rewarding behavior associated with the release of endogenous opioids, which modulate the activity of the mesolimbic dopaminergic system (MLS). In sexually exhausted rats, repeated ejaculation produces μ (MOR) and δ opioid receptor (DOR) internalization in ventral tegmental area (VTA) neurons, as well as long-lasting behavioral changes suggestive of brain plasticity processes. We hypothesized that in sexually naïve rats the endogenous opioids released during sexual experience acquisition, might contribute to brain plasticity processes involved in the generation of the behavioral changes induced by sexual experience. To this aim, using double immunohistochemistry and confocal microscopy, we compared in vivo MOR, DOR and β-arrestin2 densities and activation in the VTA of sexually naïve males, sexually experienced rats not executing sexual activity prior to sacrifice and sexually experienced animals that ejaculated once before sacrifice. Results showed that sexual experience acquisition improved male's copulatory ability and induced persistent changes in the density, cellular distribution and activation of MOR and β-arrestin2 in VTA neurons. DOR density was not modified, but its cellular location changed after sexual experience, revealing that these two opioid receptors were differentially activated during sexual experience acquisition. It is concluded that the endogenous opioids released during sexual activity produce adjustments in VTA neurons of sexually naïve male rats that might contribute to the behavioral plasticity expressed as an improvement in male copulatory parameters, promoted by the acquisition of sexual experience. Copyright © 2018 Elsevier Inc. All rights reserved.
Russell, V; Allie, S; Wiggins, T
2000-12-20
Spontaneously hypertensive rats (SHR) are used as a model for attention-deficit/hyperactivity disorder (ADHD) since SHR are hyperactive and they show defective sustained attention in behavioral tasks. Using an in vitro superfusion technique we showed that norepinephrine (NE) release from prefrontal cortex slices of SHR was not different from that of their Wistar-Kyoto (WKY) control rats when stimulated either electrically or by exposure to buffer containing 25 mM K(+). The monoamine vesicle transporter is, therefore, unlikely to be responsible for the deficiency in DA observed in SHR, since, in contrast to DA, vesicle stores of NE do not appear to be depleted in SHR. In addition, alpha(2)-adrenoceptor mediated inhibition of NE release was reduced in SHR, suggesting that autoreceptor function was deficient in prefrontal cortex of SHR. So, while DA neurotransmission appears to be down-regulated in SHR, the NE system appears to be under less inhibitory control than in WKY suggesting hypodopaminergic and hypernoradrenergic activity in prefrontal cortex of SHR. These findings are consistent with the hypothesis that the behavioral disturbances of ADHD are the result of an imbalance between NE and DA systems in the prefrontal cortex, with inhibitory DA activity being decreased and NE activity increased relative to controls.
Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites
Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.
2012-01-01
Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413
Rodriguez-Menchaca, Aldo A; Solis Jr, Ernesto; Cameron, Krasnodara; De Felice, Louis J
2012-01-01
BACKGROUND AND PURPOSE Wherever they are located, dopamine transporters (DATs) clear dopamine (DA) from the extracellular milieu to help regulate dopaminergic signalling. Exposure to amphetamine (AMPH) increases extracellular DA in the synaptic cleft, which has been ascribed to DAT reverse transport. Increased extracellular DA prolongs postsynaptic activity and reinforces abuse and hedonic behaviour. EXPERIMENTAL APPROACH Xenopus laevis oocytes expressing human (h) DAT were voltage-clamped and exposed to DA, R(-)AMPH, or S(+)AMPH. KEY RESULTS At -60mV, near neuronal resting potentials, S(+)AMPH induced a depolarizing current through hDAT, which after removing the drug, persisted for more than 30 min. This persistent leak in the absence of S(+)AMPH was in contrast to the currents induced by R(-)AMPH and DA, which returned to baseline immediately after their removal. Our data suggest that S(+)AMPH and Na+ carry the initial S(+)AMPH-induced current, whereas Na+ and Cl- carry the persistent leak current. We propose that the persistent current results from the internal action of S(+)AMPH on hDAT because the temporal effect was consistent with S(+)AMPH influx, and intracellular S(+)AMPH activated the effect. The persistent current was dependent on Na+ and was blocked by cocaine. Intracellular injection of S(+)AMPH also activated a DA-induced persistent leak current. CONCLUSIONS AND IMPLICATIONS We report a hitherto unknown action of S(+)AMPH on hDAT that potentially affects AMPH-induced DA release. We propose that internal S(+)AMPH acts as a molecular stent that holds the transporter open even after external S(+)AMPH is removed. Amphetamine-induced persistent leak currents are likely to influence dopaminergic signalling, DA release mechanisms, and amphetamine abuse. PMID:22014068
Singer, Bryan F; Guptaroy, Bipasha; Austin, Curtis J; Wohl, Isabella; Lovic, Vedran; Seiler, Jillian L; Vaughan, Roxanne A; Gnegy, Margaret E; Robinson, Terry E; Aragona, Brandon J
2016-03-01
Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Jiang, Quan; Lian, Anji; He, Qi
2016-07-01
Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.
Amaral, Maria Vitória França DO; Guimarães, José Ricardo; Volpe, Paula; Oliveira, Flávio Malcher Martins DE; Domene, Carlos Eduardo; Roll, Sérgio; Cavazzola, Leandro Totti
2017-01-01
We describe the preliminary national experience and the early results of the use of robotic surgery to perform the posterior separation of abdominal wall components by the Transversus Abdominis Release (TAR) technique for the correction of complex defects of the abdominal wall. We performed the procedures between 04/2/2015 and 06/15/2015 and the follow-up time was up to six months, with a minimum of two months. The mean surgical time was five hours and 40 minutes. Two patients required laparoscopic re-intervention, since one developed hernia by peritoneal migration of the mesh and one had mesh extrusion. The procedure proved to be technically feasible, with a still long surgical time. Considering the potential advantages of robotic surgery and those related to TAR and the results obtained when these two techniques are associated, we conclude that they seem to be a good option for the correction of complex abdominal wall defects. RESUMO Descrevemos a experiência preliminar nacional na utilização da cirurgia robótica para realizar a separação posterior de componentes da parede abdominal pela técnica transversus abdominis release (TAR) na correção de defeitos complexos da parede abdominal e seus resultados precoces. As cirurgias foram realizadas entre 02/04/2015 e 15/06/2015 e o tempo de acompanhamento dos resultados foi de até seis meses, com tempo mínimo de dois meses. O tempo cirúrgico médio foi de cinco horas e 40 minutos. Dois pacientes necessitaram reintervenção por laparoscopia, pois um desenvolveu hérnia por migração peritoneal da tela e um teve escape da tela. A cirurgia provou ser factível do ponto de vista técnico, com um tempo cirúrgico ainda elevado. Tendo em vista as vantagens potenciais da cirurgia robótica e aquelas relacionadas ao TAR e os resultados obtidos ao se associar essas duas técnicas, conclui-se que elas parecem ser uma boa opção para a correção de defeitos complexos da parede abdominal.
Lamusuo, S; Hirvonen, J; Lindholm, P; Martikainen, I K; Hagelberg, N; Parkkola, R; Taiminen, T; Hietala, J; Helin, S; Virtanen, A; Pertovaara, A; Jääskeläinen, S K
2017-10-01
Repetitive transcranial magnetic stimulation (rTMS) at M1/S1 cortex has been shown to alleviate neuropathic pain. To investigate the possible neurobiological correlates of cortical neurostimulation for the pain relief. We studied the effects of M1/S1 rTMS on nociception, brain dopamine D2 and μ-opioid receptors using a randomized, sham-controlled, double-blinded crossover study design and 3D-positron emission tomography (PET). Ten healthy subjects underwent active and sham rTMS treatments to the right M1/S1 cortex with E-field navigated device. Dopamine D2 and μ-receptor availabilities were assessed with PET radiotracers [ 11 C]raclopride and [ 11 C]carfentanil after each rTMS treatment. Thermal quantitative sensory testing (QST), contact heat evoked potential (CHEP) and blink reflex (BR) recordings were performed between the PET scans. μ-Opioid receptor availability was lower after active than sham rTMS (P ≤ 0.0001) suggested release of endogenous opioids in the right ventral striatum, medial orbitofrontal, prefrontal and anterior cingulate cortices, and left insula, superior temporal gyrus, dorsolateral prefrontal cortex and precentral gyrus. There were no differences in striatal dopamine D2 receptor availability between active and sham rTMS, consistent with lack of long-lasting measurable dopamine release. Active rTMS potentiated the dopamine-regulated habituation of the BR compared to sham (P = 0.02). Thermal QST and CHEP remained unchanged after active rTMS. rTMS given to M1/S1 activates the endogenous opioid system in a wide brain network associated with processing of pain and other salient stimuli. Direct enhancement of top-down opioid-mediated inhibition may partly explain the clinical analgesic effects of rTMS. Neurobiological correlates of rTMS for the pain relief are unclear. rTMS on M1/S1 with 11 C-carfentanyl-PET activates endogenous opioids. Thermal and heat pain thresholds remain unchanged. rTMS induces top-down opioid-mediated inhibition but not change the sensory discrimination of painful stimuli. © 2017 European Pain Federation - EFIC®.
NASA Astrophysics Data System (ADS)
Pédrot, M.; Dia, A.; Davranche, M.
2009-04-01
Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.
Arnsten, Amy F T
2009-01-01
Recent advances in neurobiology have aided our understanding of attention-deficit hyperactivity disorder (ADHD). The higher-order association cortices in the temporal and parietal lobes and prefrontal cortex (PFC) interconnect to mediate aspects of attention. The parietal association cortices are important for orienting attentional resources in time/space, while the temporal association cortices analyse visual features critical for identifying objects/places. These posterior cortices are engaged by the salience of a stimulus (its physical characteristics such as movement and colour). Conversely, the PFC is critical for regulating attention based on relevance (i.e. its meaning). The PFC is important for screening distractions, sustaining attention and shifting/dividing attention in a task-appropriate manner. The PFC is critical for regulating behaviour/emotion, especially for inhibiting inappropriate emotions, impulses and habits. The PFC is needed for allocating/planning to achieve goals and organizing behaviour/thought. These regulatory abilities are often referred to as executive functions. In humans, the right hemisphere of the PFC is important for regulating distractions, inappropriate behaviour and emotional responses. Imaging studies of patients with ADHD indicate that these regions are underactive with weakened connections to other parts of the brain. The PFC regulates attention and behaviour through networks of interconnected pyramidal cells. These networks excite each other to store goals/rules to guide actions and are highly dependent on their neurochemical environment, as small changes in the catecholamines noradrenaline (NA) or dopamine (DA) can have marked effects on PFC function. NA and DA are released in the PFC according to our arousal state; too little (during fatigue or boredom) or too much (during stress) impairs PFC function. Optimal amounts are released when we are alert/interested. The beneficial effects of NA occur at postsynaptic alpha(2A)-receptors on the dendritic spines of PFC pyramidal cells. Stimulation of these receptors initiates a series of chemical events inside the cell. These chemical signals lead to the closing of special ion channels, thus strengthening the connectivity of network inputs to the cell. Conversely, the beneficial effects of moderate amounts of DA occur at D(1) receptors, which act by weakening irrelevant inputs to the cells on another set of spines. Genetic linkage studies of ADHD suggest that these catecholamine pathways may be altered in some families with ADHD, e.g. alterations in the enzyme that synthesizes NA (DA beta-hydroxylase) are associated with weakened PFC abilities. Pharmacological studies in animals indicate catecholamine actions in the PFC are highly relevant to ADHD. Blocking NA alpha(2A)-receptors in the PFC with yohimbine produces a profile similar to ADHD: locomotor hyperactivity, impulsivity and poor working memory. Conversely, drugs that enhance alpha(2)-receptor stimulation improve PFC function. Guanfacine directly stimulates postsynaptic alpha(2A)-receptors in the PFC and improves functioning, while methylphenidate and atomoxetine increase endogenous NA and DA levels and indirectly improve PFC function via alpha(2A)- and D(1) receptor actions. Methylphenidate and atomoxetine have more potent actions in the PFC than in subcortical structures, which may explain why proper administration of stimulant medications does not lead to abuse. Further understanding of the neurobiology of attention and impulse control will allow us to better tailor treatments for specific patient needs.
FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †
Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.
2011-01-01
FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226
Current research on methamphetamine-induced neurotoxicity: animal models of monoamine disruption.
Kita, Taizo; Wagner, George C; Nakashima, Toshikatsu
2003-07-01
Methamphetamine (METH)-induced neurotoxicity is characterized by a long-lasting depletion of striatal dopamine (DA) and serotonin as well as damage to striatal dopaminergic and serotonergic nerve terminals. Several hypotheses regarding the mechanism underlying METH-induced neurotoxicity have been proposed. In particular, it is thought that endogenous DA in the striatum may play an important role in mediating METH-induced neuronal damage. This hypothesis is based on the observation of free radical formation and oxidative stress produced by auto-oxidation of DA consequent to its displacement from synaptic vesicles to cytoplasm. In addition, METH-induced neurotoxicity may be linked to the glutamate and nitric oxide systems within the striatum. Moreover, using knockout mice lacking the DA transporter, the vesicular monoamine transporter 2, c-fos, or nitric oxide synthetase, it was determined that these factors may be connected in some way to METH-induced neurotoxicity. Finally a role for apoptosis in METH-induced neurotoxicity has also been established including evidence of protection of bcl-2, expression of p53 protein, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), activity of caspase-3. The neuronal damage induced by METH may reflect neurological disorders such as autism and Parkinson's disease.
Liu, Ji; Conde, Kristie; Zhang, Peng; Lilascharoen, Varoth; Xu, Zihui; Lim, Byung Kook; Seeley, Randy J.; Zhu, Julius J.; Scott, Michael M.; Pang, Zhiping P.
2017-01-01
SUMMARY Glucagon Like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA) dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. PMID:29056294
Peptidase modulation of the pulmonary effects of tachykinins.
Martins, M A; Shore, S A; Drazen, J M
1991-01-01
The physiological effects of the tachykinin peptides substance P (SP) and neurokinin A (NKA) are limited by their microenvironmental degradation. We used the isolated tracheally superfused guinea pig lung to examine the importance of various degradative enzymes in limiting the physiological effects of exogenously administered and endogenously released tachykinins. When SP and NKA are administered via the airway epithelium, neutral endopeptidase (NEP; EC 3.4.24.11) is the major degradative enzyme as indicated by the effects of NEP inhibitors alone compared to the effects of a NEP inhibitor along with a cocktail of other peptidase inhibitors. The effects of enzyme inhibitors on physiological responses is mirrored in the amounts of peptide recovered from lung perfusates as determined using an enzyme-linked immunosorbent assay. We found similar effects when SP and NKA were released endogenously by the acute infusion of capsaicin. These data indicate that NEP is the predominant degradative enzyme modulating the effects of SP and NKA administered via the airways.
Formalin produces depolarizations in human airway smooth muscle in vitro.
Richards, Ira S; DeHate, Robin B
2006-03-01
Respiratory irritants may result in airway smooth muscle (ASM) depolarization and bronchoconstriction. We examined the effect of formalin on membrane potentials in human ASM in two types of in vitro preparations: strip preparations, which contain functional sensory and motor nerve endings and cultured cells, which lack these nerve endings due to the tissue dissociation process. Depolarizations occurred in atropine-treated strip preparations in response to formalin exposures, but not in similarly-treated cultured cells, suggesting a role for non-cholinergic mediators in formalin-induced depolarization. It is suggested that formalin may act as an irritant to produce bronchoconstriction that is mediated by the release of endogenous substance P (SP) from peripheral sensory nerve endings. This is supported by our observation that exogenous SP produced depolarizations of a magnitude similar to those produced by formalin in both strip preparations and cultured cells. In addition, capsaicin, which releases endogenous SP from nerve endings, produced depolarizations of a magnitude similar to formalin in strip preparations, but was without effect in cultured cells.
Linnstaedt, Sarah D; Hu, JunMei; Bortsov, Andrey V; Soward, April C; Swor, Robert; Jones, Jeffrey; Lee, David; Peak, David; Domeier, Robert; Rathlev, Niels; Hendry, Phyllis; McLean, Samuel A
2015-07-01
The μ-opioid receptor 1 (OPRM1) binds endogenous opioids. Increasing evidence suggests that endogenous OPRM1 agonists released at the time of trauma may contribute to the development of posttraumatic musculoskeletal pain (MSP). In this prospective observational study, we evaluated the hypothesis that individuals with an AG or GG genotype at the OPRM1 A118 G allele, which results in a reduced response to opioids, would have less severe MSP 6 weeks after motor vehicle collision (MVC). Based on previous evidence, we hypothesized that this effect would be sex-dependent and most pronounced among women with substantial peritraumatic distress. European American men and women ≥ 18 years of age presenting to the emergency department after MVC and discharged to home after evaluation (N = 948) were enrolled. Assessments included genotyping and 6-week evaluation of overall MSP severity (0-10 numeric rating scale). In linear regression modeling, a significant A118 G Allele × Sex interaction was observed: an AG/GG genotype predicted reduced MSP severity among women with substantial peritraumatic distress (β = -.925, P = .014) but not among all women. In contrast, men with an AG/GG genotype experienced increased MSP severity at 6 weeks (β = .827, P = .019). Further studies are needed to understand the biologic mechanisms mediating observed sex differences in A118 G effects. These results suggest a sex-dependent mechanism by which an emotional response to trauma (distress) contributes to a biologic mechanism (endogenous opioid release) that increases MSP in the weeks after stress exposure. These results also support the hypothesis that endogenous opioids influence pain outcomes differently in men and women. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Zhang, Feng; Leong, Wenyan; Su, Kai; Fang, Yu; Wang, Dong-An
2013-05-01
Stromal cell-derived factor-1 (SDF-1), also known as a homing factor, is a potent chemokine that activates and directs mobilization, migration, and retention of certain cell species via systemic circulation. The responding homing cells largely consist of activated stem cells, so that, in case of tissue lesions, such SDF-1-induced cell migration may execute recruitment of endogenous stem cells to perform autoreparation and compensatory regeneration in situ. In this study, a recombinant adenoviral vector carrying SDF-1 transgene was constructed and applied to transduce a novel scaffold-free living hyaline cartilage graft (SDF-t-LhCG). As an engineered transgenic living tissue, SDF-t-LhCG is capable of continuously producing and releasing SDF-1 in vitro and in vivo. The in vitro trials were examined with ELISA, while the in vivo trials were subsequently performed via a subcutaneous implantation of SDF-t-LhCG in a nude mouse model, followed by series of biochemical and biological analyses. The results indicate that transgenic SDF-1 enhanced the presence of this chemokine in mouse's circulation system; in consequence, SDF-1-induced activation and recruitment of endogenous stem cells were also augmented in both peripheral blood and SDF-t-LhCG implant per se. These results were obtained via flow cytometry analyses on mouse blood samples and implanted SDF-t-LhCG samples, indicating an upregulation of the CXCR4(+)(SDF-1 receptor) cell population, accompanied by upregulation of the CD34(+), CD44(+), and Sca-1(+) cell populations as well as a downregulation of the CD11b(+) cell population. With the supply of SDF-1-recruited endogenous stem cells, enhanced chondrogenesis was observed in SDF-t-LhCG implants in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galat, Andrzej, E-mail: galat@dsvidf.cea.fr; Thai, Robert
Highlights: • The hFKBP25 interacts with diverse components of macromolecular entities. • We show that the endogenous human FKBP25 is bound to polyribosomes. • The endogenous hFKBP25 co-immunoprecipitated with nucleosomal proteins. • FKBP25 could induce conformational switch in macromolecular complexes. - Abstract: In this paper, we show some evidence that a member of the FK506-binding proteins, FKBP25 is associated to diverse components that are part of several different intracellular large-molecular mass entities. The FKBP25 is a high-affinity rapamycin-binding immunophilin, which has nuclear translocation signals present in its PPIase domain but it was detected both in the cytoplasm compartment and inmore » the nuclear proteome. Analyses of antiFKBP25-immunoprecipitated proteins have revealed that the endogenous FKBP25 is associated to the core histones of the nucleosome, and with several proteins forming spliceosomal complexes and ribosomal subunits. Using polyclonal antiFKBP25 we have detected FKBP25 associated with polyribosomes. Added RNAs or 0.5 M NaCl release FKBP25 that was associated with the polyribosomes indicating that the immunophilin has an intrinsic capacity to form complexes with polyribonucleotides via its charged surface patches. Rapamycin or FK506 treatments of the polyribosomes isolated from porcine brain, HeLa and K568 cells caused a residual release of the endogenous FKBP25, which suggests that the immunophilin also binds to some proteins via its PPIase cavity. Our proteomics study indicates that the nuclear pool of the FKBP25 targets various nuclear proteins that are crucial for packaging of DNA, chromatin remodeling and pre-mRNA splicing whereas the cytosolic pool of this immunophilin is bound to some components of the ribosome.« less
GENETIC INFLUENCES ON IN VITRO PARTICULATE MATTER-INDUCED AIRWAY EPITHELIAL INJURY AND INFLAMMATORY MEDIATOR RELEASE.
JA Dye, JH Richards, DA Andrews, UP Kodavanti. US EPA, RTP, NC, USA.
Particulate matter (PM) air pollution is capable of damaging the airway epitheli...
Effect of mosquito mats (pyrethroid-based) vapor inhalation on rat brain cytochrome P450s.
Vences-Mejía, Araceli; Gómez-Garduño, Josefina; Caballero-Ortega, Heriberto; Dorado-González, Víctor; Nosti-Palacios, Rosario; Labra-Ruíz, Norma; Espinosa-Aguirre, J Javier
2012-01-01
The effect of transfluthrin (TF) or D-allethrin (DA) pyrethroid (PYR) vapors, often contained as main ingredients in two commercially available mosquito repellent mats, on cytochrome P450 (CYP) enzymes of rat brain and liver was assessed. Immunodetection of CYP2E1 and CYP3A2 proteins revealed their induction in cerebrum and cerebellum, but not in liver microsomes of rats exposed by inhalation to TF or DA. This overexpression of proteins correlated with an increase of their catalytic activities. The specifically increased expression of CYP isoenzymes, due to PYR exposure in the rat brain, could perturb the normal metabolism of endogenous and xenobiotic compounds and leads to increased risks of neurotoxicity by bioactivation, lipid peroxidation and DNA damage.
Górska, Anna Maria; Kamińska, Katarzyna; Wawrzczak-Bargieła, Agnieszka; Costa, Giulia; Morelli, Micaela; Przewłocki, Ryszard; Kreiner, Grzegorz; Gołembiowska, Krystyna
2018-04-01
MDMA (3,4-methylenedioxymethamphetamine) is a psychostimulant popular as a recreational drug because of its effect on mood and social interactions. MDMA acts at dopamine (DA) transporter (DAT) and serotonin (5-HT) transporter (SERT) and is known to induce damage of dopamine and serotonin neurons. MDMA is often ingested with caffeine. Caffeine as a non-selective adenosine A1/A2A receptor antagonist affects dopaminergic and serotonergic transmissions. The aim of the present study was to determine the changes in DA and 5-HT release in the mouse striatum induced by MDMA and caffeine after their chronic administration. To find out whether caffeine aggravates MDMA neurotoxicity, the content of DA and 5-HT, density of brain DAT and SERT, and oxidative damage of nuclear DNA were determined. Furthermore, the effect of caffeine on MDMA-induced changes in striatal dynorphin and enkephalin and on behavior was assessed. The DA and 5-HT release was determined with in vivo microdialysis, and the monoamine contents were measured by HPLC with electrochemical detection. DNA damage was assayed with the alkaline comet assay. DAT and SERT densities were determined by immunohistochemistry, while prodynorphin (PDYN) and proenkephalin were determined by quantitative PCR reactions. The behavioral changes were measured by the open-field (OF) test and novel object recognition (NOR) test. Caffeine potentiated MDMA-induced DA release while inhibiting 5-HT release in the mouse striatum. Caffeine also exacerbated the oxidative damage of nuclear DNA induced by MDMA but diminished DAT decrease in the striatum and worsened a decrease in SERT density produced by MDMA in the frontal cortex. Neither the striatal PDYN expression, increased by MDMA, nor exploratory and locomotor activities of mice, decreased by MDMA, were affected by caffeine. The exploration of novel object in the NOR test was diminished by MDMA and caffeine. Our data provide evidence that long-term caffeine administration has a powerful influence on functions of dopaminergic and serotonergic neurons in the mouse brain and on neurotoxic effects evoked by MDMA.
Neuronal activity determines distinct gliotransmitter release from a single astrocyte
Covelo, Ana
2018-01-01
Accumulating evidence indicates that astrocytes are actively involved in brain function by regulating synaptic activity and plasticity. Different gliotransmitters, such as glutamate, ATP, GABA or D-serine, released form astrocytes have been shown to induce different forms of synaptic regulation. However, whether a single astrocyte may release different gliotransmitters is unknown. Here we show that mouse hippocampal astrocytes activated by endogenous (neuron-released endocannabinoids or GABA) or exogenous (single astrocyte Ca2+ uncaging) stimuli modulate putative single CA3-CA1 hippocampal synapses. The astrocyte-mediated synaptic modulation was biphasic and consisted of an initial glutamate-mediated potentiation followed by a purinergic-mediated depression of neurotransmitter release. The temporal dynamic properties of this biphasic synaptic regulation depended on the firing frequency and duration of the neuronal activity that stimulated astrocytes. Present results indicate that single astrocytes can decode neuronal activity and, in response, release distinct gliotransmitters to differentially regulate neurotransmission at putative single synapses. PMID:29380725
TAGLIAFERRO, PATRICIA; MORALES, MARISELA
2008-01-01
Interactions between stress and the mesocorticolimbic dopamine (DA) system have been suggested from behavioral and electrophysiological studies. Because corticotropin-releasing factor (CRF) plays a role in stress responses, we investigated possible interactions between neurons containing CRF and those producing DA in the ventral tegmental area (VTA). We first investigated the cellular distribution of CRF in the VTA by immunolabeling VTA sections with anti-CRF antibodies and analyzing these sections by electron microscopy. We found CRF immunoreactivity present mostly in axon terminals establishing either symmetric or asymmetric synapses with VTA dendrites. We established that nearly all CRF asymmetric synapses are glutamatergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed the vesicular glutamate transporter 2, and that the majority of CRF symmetric synapses are GABAergic, insofar as the CRF-immunolabeled axon terminals in these synapses coexpressed glutamic acid decarboxylase, findings that are of functional importance. We then looked for synaptic interactions between CRF- and DA-containing neurons, by using antibodies against CRF and tyrosine hydroxylase (TH; a marker for DA neurons). We found that most synapses between CRF-immunoreactive axon terminals and TH neurons are asymmetric (in the majority likely to be glutamatergic) and suggest that glutamatergic neurons containing CRF may be part of the neuronal circuitry that mediates stress responses involving the mesocorticolimbic DA system. The presence of CRF synapses in the VTA offers a mechanism for interactions between the stress-associated neuropeptide CRF and the mesocorticolimbic DA system. PMID:18067140
NASA Astrophysics Data System (ADS)
Zhou, Yujuan; Weng, Yajun; Zhang, Liping; Jing, Fengjuan; Huang, Nan; Chen, Junying
2011-12-01
Poor haemocompatibility is a main issue of artificial cardiovascular materials in clinical application. Nitric oxide (NO), produced by vascular endothelial cells, is a well known inhibitor of platelet adhesion and activation. Thus, NO-releasing biomaterials are beneficial for improving haemocompatibility of blood-contacting biomedical devices. In this paper, a novel method was developed for enhancement of haemocompatibility by exploiting endogenous NO donors. TiO 2 films were firstly synthesized on Si (1 0 0) wafers via unbalanced magnetron sputtering technology, and then polydopamine was grafted on TiO 2 films and used as a linker for further immobilization of cystamine. The obtained surfaces were characterized by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis. NO generation is evaluated by saville-griess reagents, and it shows that cystamine immobilized samples are able to catalytically generate NO by decomposing endogenous S-nitrosothiols (RSNO). In vitro platelet adhesion results reveal that cystamine modified surfaces can inhibit collagen-induced platelet activation. ELISA analysis reveals that cGMP in platelets obviously increases on cystamine immobilized surface, which suggests the reducing of platelet activation is through NO/cGMP signal channel. It can be concluded that cystamine immobilized surface shows better blood compatibility by catalyzing NO release from the endogenous NO donor. It may be a promising method for improvement of haemocompatibility of blood-contacting implants.
Meens, Merlijn J. P. M. T.; Compeer, Matthijs G.; Hackeng, Tilman M.; van Zandvoort, Marc A.; Janssen, Ben J. A.; De Mey, Jo G. R.
2010-01-01
Background Endothelin-1 (ET-1), a long-acting paracrine mediator, is implicated in cardiovascular diseases but clinical trials with ET-receptor antagonists were not successful in some areas. We tested whether the quasi-irreversible receptor-binding of ET-1 (i) limits reversing effects of the antagonists and (ii) can be selectively dissociated by an endogenous counterbalancing mechanism. Methodology/Principal findings In isolated rat mesenteric resistance arteries, ETA-antagonists, endothelium-derived relaxing factors and synthetic vasodilators transiently reduced contractile effects of ET-1 but did not prevent persistent effects of the peptide. Stimuli of peri-vascular vasodilator sensory-motor nerves such as capsaicin not only reduced but also terminated long-lasting effects of ET-1. This was prevented by CGRP-receptor antagonists and was mimicked by exogenous calcitonin gene-related peptide (CGRP). Using 2-photon laser scanning microscopy in vital intact arteries, capsaicin and CGRP, but not ETA-antagonism, were observed to promote dissociation of pre-existing ET-1/ETA-receptor complexes. Conclusions Irreversible binding and activation of ETA-receptors by ET-1 (i) occur at an antagonist-insensitive site of the receptor and (ii) are selectively terminated by endogenously released CGRP. Hence, natural stimuli of sensory-motor nerves that stimulate release of endogenous CGRP can be considered for therapy of diseases involving ET-1. PMID:20532232
Liu, Haiyan; Garrett, Timothy J; Su, Zhihua; Khoo, Christina; Gu, Liwei
2017-07-01
Plasma metabolome in young women following cranberry juice consumption were investigated using a global UHPLC-Q-Orbitrap-HRMS approach. Seventeen female college students, between 21 and 29 years old, were given either cranberry juice or apple juice for three days using a cross-over design. Plasma samples were collected before and after juice consumption. Plasma metabolomes were analyzed using UHPLC-Q-Orbitrap-HRMS followed by orthogonal partial least squares-discriminant analyses (OPLS-DA). S-plot was used to identify discriminant metabolites. Validated OPLS-DA analyses showed that the plasma metabolome in young women, including both exogenous and endogenous metabolites, were altered following cranberry juice consumption. Cranberry juice caused increases of exogenous metabolites including quinic acid, vanilloloside, catechol sulfate, 3,4-dihydroxyphenyl ethanol sulfate, coumaric acid sulfate, ferulic acid sulfate, 5-(trihydroxphenyl)-gamma-valerolactone, 3-(hydroxyphenyl)proponic acid, hydroxyphenylacetic acid and trihydroxybenzoic acid. In addition, the plasma levels of endogenous metabolites including citramalic acid, aconitic acid, hydroxyoctadecanoic acid, hippuric acid, 2-hydroxyhippuric acid, vanilloylglycine, 4-acetamido-2-aminobutanoic acid, dihydroxyquinoline, and glycerol 3-phosphate were increased in women following cranberry juice consumption. The metabolic differences and discriminant metabolites observed in this study may serve as biomarkers of cranberry juice consumption and explain its health promoting properties in human. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daughaday, W.H.; Kapadia, M.
1989-09-01
The authors reported that serum and tumor from a hypoglycemic patient with a fibrosarcoma contained insulin-like growth factor II (IGF-II), mostly in a large molecular form designated big IGF-II. They now describe two additional patients with non-islet-cell tumor with hypoglycemia (NICTH) whose sera contained big IGF-II. Removal of the tumor eliminated most of the big IGF-II from the sera of two patients. Because specific IGF-binding proteins modify the bioactivity of IGFs, the sizes of the endogenous IGF-binding protein complexes were determined after neutral gel filtration through Sephadex G-200. Normally about 75% of IGFs are carried as a ternary complex ofmore » 150 kDa consisting of IGF, a growth hormone (GH)-dependent IGF-binding protein, and an acid-labile complexing component. The three patients with NICTH completely lacked the 150-kDa complex. IGF-II was present as a 60-kDa complex with variable contributions of smaller complexes. In the immediate postoperative period, a 110-kDa complex appeared rather than the expected 150-kDa complex. Abnormal IGF-II binding may be important in NICTH because the 150-kDa complexes cross the capillary membrane poorly. The smaller complexes present in our patients' sera would be expected to enter interstitial fluid readily, and a 4- to 5-fold increase in the fraction of IGFs reaching the target cells would result.« less
Oh, Tae Young; Ahn, Gook Jun; Choi, Seul Min; Ahn, Byoung Ok; Kim, Won Bae
2005-01-01
AIM: To examine the effect of DA-9601, a new gastroprotective agent, on the vulnerability of ethanol-treated rat’s stomach to naproxen (NAP). METHODS: Male Sprague-Dawley rats were pretreated with 1 mL of 50% ethanol twice a day for 5 d and then NAP (50 mg/kg) was administered. DA-9601 was administered 1 h before NAP. Four hours after NAP, the rats were killed to examine gross injury index (mm2), histologic change and to determine mucosal levels of malondialdehyde (MDA), prostaglandin E2 (PGE2), glutathione (GSH) and myeloperoxidase (MPO). RESULTS: Pretreatment of ethanol significantly increased NAP-induced gastric lesions, as well as an increase in MDA and MPO. On the contrary, mucosal PGE2 and GSH contents were decreased dramatically by ethanol pretreatment, which were aggravated by NAP. DA-9601 significantly reduced NAP-induced gastric injury grossly and microscopically, regardless of pretreatment with ethanol. DA-9601 preserved, or rather, increased mucosal PGE2 and GSH in NAP-treated rats (P<0.05), with reduction in mucosal MDA and MPO levels. CONCLUSION: These results suggest that repeated alcohol consumption renders gastric mucosa more susceptible to NSAIDs though, at least in part, reduction of endogenous cytoprotectants including PGE2 and GSH, and increase in MPO activation, and that DA-9601, a new gastroprotectant, can reduce the increased vulnerability of ethanol consumers to NSAIDs-induced gastric damage via the mechanism in which PGE2 and GSH are involved. PMID:16437715
Oh, Tae Young; Ahn, Gook Jun; Choi, Seul Min; Ahn, Byoung Ok; Kim, Won Bae
2005-12-21
To examine the effect of DA-9601, a new gastroprotective agent, on the vulnerability of ethanol-treated rat's stomach to naproxen (NAP). Male Sprague-Dawley rats were pretreated with 1 mL of 50% ethanol twice a day for 5 d and then NAP (50 mg/kg) was administered. DA-9601 was administered 1 h before NAP. Four hours after NAP, the rats were killed to examine gross injury index (mm2), histologic change and to determine mucosal levels of malondialdehyde (MDA), prostaglandin E2 (PGE2), glutathione (GSH) and myeloperoxidase (MPO). Pretreatment of ethanol significantly increased NAP-induced gastric lesions, as well as an increase in MDA and MPO. On the contrary, mucosal PGE2 and GSH contents were decreased dramatically by ethanol pretreatment, which were aggravated by NAP. DA-9601 significantly reduced NAP-induced gastric injury grossly and microscopically, regardless of pretreatment with ethanol. DA-9601 preserved, or rather, increased mucosal PGE2 and GSH in NAP-treated rats (P<0.05), with reduction in mucosal MDA and MPO levels. These results suggest that repeated alcohol consumption renders gastric mucosa more susceptible to NSAIDs though, at least in part, reduction of endogenous cytoprotectants including PGE2 and GSH, and increase in MPO activation, and that DA-9601, a new gastroprotectant, can reduce the increased vulnerability of ethanol consumers to NSAIDs-induced gastric damage via the mechanism in which PGE2 and GSH are involved.
VanDuyn, Natalia; Nass, Richard
2013-01-01
Parkinson’s disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans (C. elegans) modulates whole animal and DA neuron sensitivity to MeHg. In this study we demonstrate that genetic knockdown of MRP-7 results in a 2-fold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. PMID:24266639
VanDuyn, Natalia; Nass, Richard
2014-03-01
Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder worldwide, and results in the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta. Gene-environment interactions are believed to play a significant role in the vast majority of PD cases, yet the toxicants and the associated genes involved in the neuropathology are largely ill-defined. Recent epidemiological and biochemical evidence suggests that methylmercury (MeHg) may be an environmental toxicant that contributes to the development of PD. Here, we report that a gene coding for the putative multidrug resistance protein MRP-7 in Caenorhabditis elegans modulates whole animal and DA neuron sensitivity to MeHg. In this study, we demonstrate that genetic knockdown of MRP-7 results in a twofold increase in Hg levels and a dramatic increase in stress response proteins associated with the endoplasmic reticulum, golgi apparatus, and mitochondria, as well as an increase in MeHg-associated animal death. Chronic exposure to low concentrations of MeHg induces MRP-7 gene expression, while exposures in MRP-7 genetic knockdown animals results in a loss of DA neuron integrity without affecting whole animal viability. Furthermore, transgenic animals expressing a fluorescent reporter behind the endogenous MRP-7 promoter indicate that the transporter is expressed in DA neurons. These studies show for the first time that a multidrug resistance protein is expressed in DA neurons, and its expression inhibits MeHg-associated DA neuron pathology. © 2013 International Society for Neurochemistry.
Vuong, Helen E.; Hardi, Claudia N.; Barnes, Steven
2015-01-01
An inner retinal microcircuit composed of dopamine (DA)-containing amacrine cells and melanopsin-containing, intrinsically photosensitive retinal ganglion cells (M1 ipRGCs) process information about the duration and intensity of light exposures, mediating light adaptation, circadian entrainment, pupillary reflexes, and other aspects of non-image-forming vision. The neural interaction is reciprocal: M1 ipRGCs excite DA amacrine cells, and these, in turn, feed inhibition back onto M1 ipRGCs. We found that the neuropeptide somatostatin [somatotropin release inhibiting factor (SRIF)] also inhibits the intrinsic light response of M1 ipRGCs and postulated that, to tune the bidirectional interaction of M1 ipRGCs and DA amacrine cells, SRIF amacrine cells would provide inhibitory modulation to both cell types. SRIF amacrine cells, DA amacrine cells, and M1 ipRGCs form numerous contacts. DA amacrine cells and M1 ipRGCs express the SRIF receptor subtypes sst2A and sst4 respectively. SRIF modulation of the microcircuit was investigated with targeted patch-clamp recordings of DA amacrine cells in TH–RFP mice and M1 ipRGCs in OPN4–EGFP mice. SRIF increases K+ currents, decreases Ca2+ currents, and inhibits spike activity in both cell types, actions reproduced by the selective sst2A agonist L-054,264 (N-[(1R)-2-[[[(1S*,3R*)-3-(aminomethyl)cyclohexyl]methyl]amino]-1-(1H-indol-3-ylmethyl)-2-oxoethyl]spiro[1H-indene-1,4′-piperidine]-1′-carboxamide) in DA amacrine cells and the selective sst4 agonist L-803,087 (N2-[4-(5,7-difluoro-2-phenyl-1H-indol-3-yl)-1-oxobutyl]-l-arginine methyl ester trifluoroacetate) in M1 ipRGCs. These parallel actions of SRIF may serve to counteract the disinhibition of M1 ipRGCs caused by SRIF inhibition of DA amacrine cells. This allows the actions of SRIF on DA amacrine cells to proceed with adjusting retinal DA levels without destabilizing light responses by M1 ipRGCs, which project to non-image-forming targets in the brain. SIGNIFICANCE STATEMENT Amacrine cells form multiple microcircuits in the inner retina to mediate visual processing, although their organization and function remain incompletely understood. The somatostatin [somatotropin release inhibiting factor (SRIF)]- and dopamine (DA)-releasing amacrine cells act globally, and, in this study, they are shown to interact and modulate the light response of intrinsically photosensitive retinal ganglion cells (ipRGCs). SRIF amacrine cells target both DA amacrine cells and M1 ipRGCs for inhibition. The parallel actions of SRIF may serve to compensate for the loss of DA-mediated inhibition of M1 ipRGCs. This inhibitory tuning is of particular importance because the DA system mediates a broad range of light adaptational actions in the retina and M1 ipRGCs project to brain areas that influence sleep, mood, cognition, circadian entrainment, and pupillary reflexes. PMID:26631476
Gallos, George; Gleason, Neil R; Virag, Laszlo; Zhang, Yi; Mizuta, Kentaro; Whittington, Robert A; Emala, Charles W
2009-04-01
Emerging evidence indicates that an endogenous autocrine/paracrine system involving gamma-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors, and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. The authors sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a prorelaxant component to contracted airway smooth muscle. The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. GABA levels increased and localized to airway smooth muscle after contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine that was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. These studies demonstrate that GABA is endogenously present and increases after contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic prorelaxant component in the maintenance of airway smooth muscle tone.
( sup 3 H)Dopamine uptake by platelet storage granules in schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabey, J.M.; Graff, E.; Oberman, Z.
1992-01-01
({sup 3}H)Dopamine (DA) uptake by platelet storage granules was determined in 26 schizophrenic male patients, paranoid type (14 acute stage; 12 in remission) and 20 age-matched, normal controls. maximum velocity (Vmax) of DA uptake was significantly higher in acute patients, than patients in remission or controls (p>0.05). The apparent Michaelis constant (kM) of DA uptake in acute patients was also significantly different from chronic patients a substantial diminution of DA uptake, while haloperidol produced a substantial diminution of DA uptake, while haloperidol (10{sup {minus}4}, 10{sup {minus}5} M) did not affect the assay. Considering that a DA disequilibrium in schizophrenia maymore » be expressed not only in the brain, but also in the periphery and that an increased amount of DA accumulated in the vesicles, implies that an increased quantity of catecholamine is available for release, our findings suggest additional evidence for the role of DA overactivity in the pathophysiology of this disorder.« less
Endogenous Synthesis of 2-Aminoacrylate Contributes to Cysteine Sensitivity in Salmonella enterica
Ernst, Dustin C.; Lambrecht, Jennifer A.; Schomer, Rebecca A.
2014-01-01
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5′-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes. PMID:25002544
Garcia, N; Santafe, M M; Tomàs, M; Lanuza, M A; Besalduch, N; Tomàs, J
2010-05-15
We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75(NTR) in the neuromuscular synapses of postnatal rats (P6-P7) during the synapse elimination period. The receptor protein p75(NTR) is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2-8 nM) does not modulate release at P6-P7. Blocking the receptors trkB and p75(NTR) (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75(NTR) receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75(NTR)-mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. (c) 2009 Wiley-Liss, Inc.
Ding, Zheng-Ming; Ingraham, Cynthia M; Rodd, Zachary A; McBride, William J
2016-10-01
Repeated local administration of ethanol (EtOH) sensitized the posterior ventral tegmental area (pVTA) to the local dopamine (DA)-stimulating effects of EtOH. Chronic alcohol drinking increased nucleus accumbens (NAC) DA transmission and pVTA glutamate transmission in alcohol-preferring (P) rats. The objectives of the present study were to determine the effects of chronic alcohol drinking by P rats on the (a) sensitivity and response of the pVTA DA neurons to the DA-stimulating actions of EtOH, and (b) negative feedback control of DA (via D2 auto-receptors) and glutamate (via group II mGlu auto-receptors) release in the pVTA. EtOH (50 or 150 mg%) or the D2/3 receptor antagonist sulpiride (100 or 200 μM) was microinjected into the pVTA while DA was sampled with microdialysis in the NAC shell (NACsh). The mGluR2/3 antagonist LY341495 (1 or 10 μM) was perfused through the pVTA via reverse microdialysis and local extracellular glutamate and DA levels were measured. EtOH produced a more robust increase of NACsh DA in the 'EtOH' than 'Water' groups (e.g., 150 mg% EtOH: to ∼ 210 vs 150% of baseline). In contrast, sulpiride increased DA release in the NACsh more in the 'Water' than 'EtOH' groups (e.g., 200 μM sulpiride: to ∼ 190-240 vs 150-160% of baseline). LY341495 (at 10 μM) increased extracellular glutamate and DA levels in the 'Water' (to ∼ 150-180% and 180-230% of baseline, respectively) but not the 'EtOH' groups. These results indicate that alcohol drinking enhanced the DA-stimulating effects of EtOH, and attenuated the functional activities of D2 auto-receptors and group II mGluRs within the pVTA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M
1978-06-15
DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.
[Beta-endorphin--physiologic role and menstrual cycle disorders].
Meczekalski, B; Warenik-Szymankiewicz, A
1995-10-01
There are three classes of endogenous opioid peptides: endorphins, enkephalins, dynorphins. Beta-endorphin is the main representative of endogenous opioid peptides. Beta-endorphin plays a role in the regulation of the normal menstrual cycle and possibly in the onset of puberty. This peptide is also involved in the pathophysiology of such menstrual disorders as: exercise-associated amenorrhoea, stress-induced amenorrhoea, weight loss related amenorrhoea and premenstrual syndrome. Probable mechanism is that alterations in the levels of beta-endorphin may change the pulsatile release of GnRH. This article reviews contemporary views on the role of beta-endorphin in the physiology and disorders of the menstrual cycle.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-21
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 54 [WC Docket No. 10-90; DA 13-309] Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local.... SUPPLEMENTARY INFORMATION: This is a summary of the FCC's Erratum, DA 13-309, released on March 1, 2013. The...
Lazarevic, Vesna; Fieńko, Sandra; Andres-Alonso, Maria; Anni, Daniela; Ivanova, Daniela; Montenegro-Venegas, Carolina; Gundelfinger, Eckart D.; Cousin, Michael A.; Fejtova, Anna
2017-01-01
Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration. PMID:28785201
d’Anglemont de Tassigny, Xavier; Pascual, Alberto; López-Barneo, José
2015-01-01
The glial cell line-derived neurotrophic factor (GDNF) is a well-established trophic agent for dopaminergic (DA) neurons in vitro and in vivo. GDNF is necessary for maintenance of neuronal morphological and neurochemical phenotype and protects DA neurons from toxic damage. Numerous studies on animal models of Parkinson’s disease (PD) have reported beneficial effects of GDNF on nigrostriatal DA neuron survival. However, translation of these observations to the clinical setting has been hampered so far by side effects associated with the chronic continuous intra-striatal infusion of recombinant GDNF. In addition, double blind and placebo-controlled clinical trials have not reported any clinically relevant effect of GDNF on PD patients. In the past few years, experiments with conditional Gdnf knockout mice have suggested that GDNF is necessary for maintenance of DA neurons in adulthood. In parallel, new methodologies for exogenous GDNF delivery have been developed. Recently, it has been shown that a small population of scattered, electrically interconnected, parvalbumin positive (PV+) GABAergic interneurons is responsible for most of the GDNF produced in the rodent striatum. In addition, cholinergic striatal interneurons appear to be also involved in the modulation of striatal GDNF. In this review, we summarize current knowledge on brain GDNF delivery, homeostasis, and its effects on nigrostriatal DA neurons. Special attention is paid to the therapeutic potential of endogenous GDNF stimulation in PD. PMID:25762899
Gu, Bing; Burgess, Diane J
2015-11-10
Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. Copyright © 2015 Elsevier B.V. All rights reserved.
París, Ramiro; Vazquez, María M; Graziano, Magdalena; Terrile, María C; Miller, Nathan D; Spalding, Edgar P; Otegui, Marisa S; Casalongué, Claudia A
2018-01-01
High-resolution and automated image analysis of individual roots demonstrated that endogenous nitric oxide (NO) contribute significantly to gravitropism of Arabidopsis roots. Lowering of endogenous NO concentrations strongly reduced and even reversed gravitropism, resulting in upward bending, without affecting root growth rate. Notably, the asymmetric accumulation of NO along the upper and lower sides of roots correlated with a positive gravitropic response. Detection of NO by the specific DAF-FM DA fluorescent probe revealed that NO was higher at the lower side of horizontally-oriented roots returning to initial values 2 h after the onset of gravistimulation. We demonstrate that NO promotes plasma membrane re-localization of PIN2 in epidermal cells, which is required during the early root gravitropic response. The dynamic and asymmetric localization of both auxin and NO is critical to regulate auxin polar transport during gravitropism. Our results collectively suggest that, although auxin and NO crosstalk occurs at different levels of regulation, they converge in the regulation of PIN2 membrane trafficking in gravistimulated roots, supporting the notion that a temporally and spatially coordinated network of signal molecules could participate in the early phases of auxin polar transport during gravitropism.
ERIC Educational Resources Information Center
Qi, Zhenghan; Gold, Paul E.
2009-01-01
Intra-amygdala injections of anisomycin produce large increases in the release of norepinephrine (NE), dopamine (DA), and serotonin in the amygdala. Pretreatment with intra-amygdala injections of the beta-adrenergic receptor antagonist propranolol attenuates anisomycin-induced amnesia without reversing the inhibition of protein synthesis, and…
MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight
NASA Astrophysics Data System (ADS)
Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria
2012-09-01
Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.
Boger, Heather A.; Mannangatti, Padmanabhan; Samuvel, Devadoss J.; Saylor, Alicia J.; Bender, Tara S.; McGinty, Jacqueline F.; Fortress, Ashley M.; Zaman, Vandana; Huang, Peng; Middaugh, Lawrence D.; Randall, Patrick K.; Jayanthi, Lankupalle D.; Rohrer, Baerbel; Helke, Kristi L.; Granholm, Ann-Charlotte; Ramamoorthy, Sammanda
2010-01-01
Brain-derived neurotrophic factor (BDNF) is critical in synaptic plasticity and in the survival and function of midbrain dopamine neurons. In the present study, we assessed the effects of a partial genetic deletion of BDNF on motor function and dopamine (DA) neurotransmitter measures by comparing (Bdnf+/−) with wildtype mice (WT) at different ages. Bdnf+/ and WT mice had similar body weights until 12 months of age; however, at 21 months, Bdnf+/− mice were significantly heavier than WT mice. Horizontal and vertical motor activity was reduced for Bdnf+/− compared to WT mice; but was not influenced by Age. Performance on an accelerating rotarod declined with age for both genotypes and was exacerbated for Bdnf+/− mice. Body weight did not correlate with any of the three behavioral measures studied. DA neurotransmitter markers indicated no genotypic difference in striatal tyrosine hydroxylase (TH), dopamine transporter (DAT), or vesicular monoamine transporter 2 (VMAT2) immunoreactivity at any age. However, DA transport via DAT (starting at 12 months) and VMAT2 (starting at 3 months) as well as KCl-stimulated DA release were reduced in Bdnf+/− mice and declined with age suggesting an increasingly important role for BDNF in the release and uptake of DA with the aging process. These findings suggest that a BDNF expression deficit becomes more critical to dopaminergic dynamics and related behavioral activities with increasing age. PMID:20860702
Harun, R; Munoz, M; Grassi, C; Hare, K; Brough, E; Torres, GE; Grace, AA; Wagner, AK
2016-01-01
Parkinson’s disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. Levodopa (L-Dopa) was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-Dopa to augment striatal DA production are well known, little is actually known about how L-Dopa alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-Dopa administration (100mg/kg carbidopa/250mg/kg L-Dopa) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry (FSCV) in anesthetized rats. We demonstrate that L-Dopa enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR, a finding that may be related to high-dose L-Dopa effects. In both regions, L-Dopa progressively attenuated reuptake kinetics through a decrease in Vmax and an increase in Km. This finding is consistent with recent clinical studies suggesting that L-Dopa chronically down-regulates the DA transporter (DAT), which may relate to the common development of L-Dopa induced dyskinesias (LID) in PD subjects. PMID:26611352
Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-01-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972
Thibault, Dominic; Giguère, Nicolas; Loustalot, Fabien; Bourque, Marie-Josée; Ducrot, Charles; El Mestikawy, Salah; Trudeau, Louis-Éric
2016-05-01
Striatal medium spiny neurons (MSNs) are contacted by glutamatergic axon terminals originating from cortex, thalamus and other regions. The striatum is also innervated by dopaminergic (DAergic) terminals, some of which release glutamate as a co-transmitter. Despite evidence for functional DA release at birth in the striatum, the role of DA in the establishment of striatal circuitry is unclear. In light of recent work suggesting activity-dependent homeostatic regulation of glutamatergic terminals on MSNs expressing the D2 DA receptor (D2-MSNs), we used primary co-cultures to test the hypothesis that stimulation of DA and glutamate receptors regulates the homeostasis of glutamatergic synapses on MSNs. Co-culture of D2-MSNs with mesencephalic DA neurons or with cortical neurons produced an increase in spines and functional glutamate synapses expressing VGLUT2 or VGLUT1, respectively. The density of VGLUT2-positive terminals was reduced by the conditional knockout of this gene from DA neurons. In the presence of both mesencephalic and cortical neurons, the density of synapses reached the same total, compatible with the possibility of a homeostatic mechanism capping excitatory synaptic density. Blockade of D2 receptors increased the density of cortical and mesencephalic glutamatergic terminals, without changing MSN spine density or mEPSC frequency. Combined blockade of AMPA and NMDA glutamate receptors increased the density of cortical terminals and decreased that of mesencephalic VGLUT2-positive terminals, with no net change in total excitatory terminal density or in mEPSC frequency. These results suggest that DA and glutamate signaling regulate excitatory inputs to striatal D2-MSNs at both the pre- and postsynaptic level, under the influence of a homeostatic mechanism controlling functional output of the circuit.
Amphetamine self-administration attenuates dopamine D2 autoreceptor function.
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-07-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.
Reduced levels of Cacna1c attenuate mesolimbic dopamine system function.
Terrillion, C E; Dao, D T; Cachope, R; Lobo, M K; Puche, A C; Cheer, J F; Gould, T D
2017-06-01
Genetic variation in CACNA1C, which codes for the L-type calcium channel (LTCC) Ca v 1.2, is associated with clinical diagnoses of bipolar disorder, depression and schizophrenia. Dysregulation of the mesolimbic-dopamine (ML-DA) system is linked to these syndromes and LTCCs are required for normal DAergic neurotransmission between the ventral tegmental area (VTA) and nucleus accumbens (NAc). It is unclear, however, how variations in CACNA1C genotype, and potential subsequent changes in expression levels in these regions, modify risk. Using constitutive and conditional knockout mice, and treatment with the LTCC antagonist nimodipine, we examined the role of Cacna1c in DA-mediated behaviors elicited by psychomotor stimulants. Using fast-scan cyclic voltammetry, DA release and reuptake in the NAc were measured. We find that subsecond DA release in Cacna1c haploinsufficient mice lacks normal sensitivity to inhibition of the DA transporter (DAT). Constitutive haploinsufficiency of Cacna1c led to attenuation of hyperlocomotion following acute administration of stimulants specific to DAT, and locomotor sensitization of these mice to the DAT antagonist GBR12909 did not reach the same level as wild-type mice. The maintenance of sensitization to GBR12909 was attenuated by administration of nimodipine. Sensitization to GBR12909 was attenuated in mice with reduced Cacna1c selectively in the VTA but not in the NAc. Our findings show that Cacna1c is crucial for normal behavioral responses to DA stimulants and that its activity in the VTA is required for behavioral sensitization. Cacna1c likely exerts these effects through modifications to presynaptic ML-DA system function. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Hypothalamic control of pituitary and adrenal hormones during hypothermia.
Okuda, C; Miyazaki, M; Kuriyama, K
1986-01-01
In order to investigate neuroendocrinological mechanisms of hypothermia, we determined the changes in plasma concentrations of corticosterone (CS), prolactin (PRL), and thyrotropin (TSH), and their correlations with alterations in hypothalamic dopamine (DA) and thyrotropin releasing hormone (TRH), in rats restrained and immersed in a water bath at various temperatures. A graded decrease of body temperature induced a progressive increase in the plasma level of CS, whereas that of PRL showed a drastic decrease. The plasma level of TSH also showed an increase during mild hypothermia (about 35 degrees C), but this increase was not evident during profound hypothermia (below 24 degrees C). The changes in these hormones were readily reversed by rewarming animals. Although DA content in the hypothalamus was not affected, its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), showed an increase following the decrease of body temperature. Pretreatment of the animals with sulpiride, a D2-antagonist, prevented the hypothermia-induced inhibition of PRL release. Hypothalamic TRH was significantly decreased during mild hypothermia, and it returned to control levels after rewarming. These results suggest that the decrease in plasma PRL induced by hypothermia may be associated with the activation of hypothalamic DA neurons, whereas the increase in plasma TSH during mild hypothermia seems to be caused by the increased release of TRH in the hypothalamus.
Wang, Li; Xu, Huiren; Song, Yilin; Luo, Jinping; Wei, Wenjing; Xu, Shengwei; Cai, Xinxia
2015-04-15
For the measurement of events of dopamine (DA) release as well as the coordinating neurotransmission in the nerve system, a neural microelectrode array (nMEA) electrodeposited directionally with polypyrrole graphene (PG) nanocomposites was fabricated. The deposited graphene significantly increased the surface area of working electrode, which led to the nMEA (with diameter of 20 μm) with excellent selectivity and sensitivity to DA. Furthermore, PG film modification exhibited low detection limit (4 nM, S/N = 3.21), high sensitivity, and good linearity in the presence of ascorbic acid (e.g., 13933.12 μA mM(-1) cm(-2) in the range of 0.8-10 μM). In particular, the nMEA combined with the patch-clamp system was used to detect quantized DA release from pheochromocytoma cells under 100 mM K(+) stimulation. The nMEA that integrates 60 microelectrodes is novel for detecting a large number of samples simultaneously, which has potential for neural communication research.
Sherry, B A; Alava, G; Tracey, K J; Martiney, J; Cerami, A; Slater, A F
1995-01-01
A characteristic feature of malaria infection is the occurrence of periodic bouts of fever. Experimental and clinical studies have strongly implicated inflammatory cytokines, like tumour necrosis factor (TNF), in the induction of these intermittent fevers [Clark et al., Infect Immunol 32:1058-1066, 1981; Clark et al., Am J Pathol 129:192-199, 1987; Karunaweera et al., Proc Natl Acad Sci USA 89:3200-3203, 1992], but the malaria-specific metabolite(s) which induce the production of such endogenous pyrogens have not yet been fully characterized. It is well known that during the course of malaria infection, a unique schizont component, alternatively referred to as "malaria pigment" or hemozoin, is released along with merozoites as the host erythrocyte bursts [Urquhart, Clin Infect Dis 19:117-131, 1994]. We have recently determined that the core structure of hemozoin comprises a novel insoluble polymer of heme units linked by iron-carboxylate bonds [Slater et al., Proc Natl Acad Sci USA 88:325-329, 1991; Slater et al., Nature 355:167-169, 1992]. We now report that purified native, as well as chemically synthesized, hemozoin crystals potently induce the release of several pyrogenic cytokines, including TNF, MIP-1 alpha, and MIP-1 beta, from murine macrophages and human peripheral blood monocytes in vitro. Also, intravenous administration of chemically synthesized preparations of hemozoin to anaesthetized rats results in a marked drop in body temperature. A similar drop in body temperature is observed following the intravenous injection of other well-characterized pyrogenic cytokines (e.g., TNF) which are known to induce a fever response in awake animals, and is thought to reflect the inability of rats to appropriately regulate their body temperature while anaesthetized. As a consequence of its ability to induce pyrogenic cytokines in vitro, and thermal dysregulation in vivo, we propose that this unique parasite metabolite is an important pyrogen released by malaria parasites at schizogomy, which acts by eliciting the production of a group of potent endogenous pyrogens, which include MIP-1 alpha and MIP-1 beta, as well as TNF, in macrophages.
Benskey, Matthew J.; Sellnow, Rhyomi C.; Sandoval, Ivette M.; Sortwell, Caryl E.; Lipton, Jack W.; Manfredsson, Fredric P.
2018-01-01
Human studies and preclinical models of Parkinson’s disease implicate the involvement of both the innate and adaptive immune systems in disease progression. Further, pro-inflammatory markers are highly enriched near neurons containing pathological forms of alpha synuclein (α-syn), and α-syn overexpression recapitulates neuroinflammatory changes in models of Parkinson’s disease. These data suggest that α-syn may initiate a pathological inflammatory response, however the mechanism by which α-syn initiates neuroinflammation is poorly understood. Silencing endogenous α-syn results in a similar pattern of nigral degeneration observed following α-syn overexpression. Here we aimed to test the hypothesis that loss of α-syn function within nigrostriatal neurons results in neuronal dysfunction, which subsequently stimulates neuroinflammation. Adeno-associated virus (AAV) expressing an short hairpin RNA (shRNA) targeting endogenous α-syn was unilaterally injected into the substantia nigra pars compacta (SNc) of adult rats, after which nigrostriatal pathology and indices of neuroinflammation were examined at 7, 10, 14 and 21 days post-surgery. Removing endogenous α-syn from nigrostriatal neurons resulted in a rapid up-regulation of the major histocompatibility complex class 1 (MHC-1) within transduced nigral neurons. Nigral MHC-1 expression occurred prior to any overt cell death and coincided with the recruitment of reactive microglia and T-cells to affected neurons. Following the induction of neuroinflammation, α-syn knockdown resulted in a 50% loss of nigrostriatal neurons in the SNc and a corresponding loss of nigrostriatal terminals and dopamine (DA) concentrations within the striatum. Expression of a control shRNA did not elicit any pathological changes. Silencing α-syn within glutamatergic neurons of the cerebellum did not elicit inflammation or cell death, suggesting that toxicity initiated by α-syn silencing is specific to DA neurons. These data provide evidence that loss of α-syn function within nigrostriatal neurons initiates a neuronal-mediated neuroinflammatory cascade, involving both the innate and adaptive immune systems, which ultimately results in the death of affected neurons. PMID:29497361
Chappell, Patrick E; White, Rachel S; Mellon, Pamela L
2003-12-03
Although it has long been established that episodic secretion of gonadotropin-releasing hormone (GnRH) from the hypothalamus is required for normal gonadotropin release, the molecular and cellular mechanisms underlying the synchronous release of GnRH are primarily unknown. We used the GT1-7 mouse hypothalamic cell line as a model for GnRH secretion, because these cells release GnRH in a pulsatile pattern similar to that observed in vivo. To explore possible molecular mechanisms governing secretory timing, we investigated the role of the molecular circadian clock in regulation of GnRH secretion. GT1-7 cells express many known core circadian clock genes, and we demonstrate that oscillations of these components can be induced by stimuli such as serum and the adenylyl cyclase activator forskolin, similar to effects observed in fibroblasts. Strikingly, perturbation of circadian clock function in GT1-7 cells by transient expression of the dominant-negative Clock-Delta19 gene disrupts normal ultradian patterns of GnRH secretion, significantly decreasing mean pulse frequency. Additionally, overexpression of the negative limb clock gene mCry1 in GT1-7 cells substantially increases GnRH pulse amplitude without a commensurate change in pulse frequency, demonstrating that an endogenous biological clock is coupled to the mechanism of neurosecretion in these cells and can regulate multiple secretory parameters. Finally, mice harboring a somatic mutation in the Clock gene are subfertile and exhibit a substantial increase in estrous cycle duration as revealed by examination of vaginal cytology. This effect persists in normal light/dark (LD) cycles, suggesting that a suprachiasmatic nucleus-independent endogenous clock in GnRH neurons is required for eliciting normal pulsatile patterns of GnRH secretion.
Xin, Yanmei; Li, Zhenzhen; Wu, Wenlong; Fu, Baihe; Wu, Hongjun; Zhang, Zhonghai
2017-01-15
For implementing sensitive and selective detection of biological molecules, the biosensors are been designed more and more complicated. The exploration of detection platform in a simple way without loss their sensitivity and selectivity is always a big challenge. Herein, a prototype of recognition biomolecule unit-free photoelectrochemical (PEC) sensing platform with self-cleaning activity is proposed with TiO 2 nanotube photonic crystal (TiO 2 NTPCs) materials as photoelectrode, and dopamine (DA) molecule as both sensitizer and target analyte. The unique adsorption between DA and TiO 2 NTPCs induces the formation of charge transfer complex, which not only expends the optical absorption of TiO 2 into visible light region, thus significantly boosts the PEC performance under illumination of visible light, but also implements the selective detection of DA on TiO 2 photoelectrode. This simple but efficient PEC analysis platform presents a low detection limit of 0.15nm for detection of DA, which allows to realize the sensitive and selective determination of DA release from the mouse brain for its practical application after coupled with a microdialysis probe. The DA functionalized TiO 2 NTPCs PEC sensing platform opens up a new PEC detection model, without using extra-biomolecule auxiliary, just with target molecule naturally adsorbed on the electrode for sensitive and selective detection, and paves a new avenue for biosensors design with minimalism idea. Copyright © 2016 Elsevier B.V. All rights reserved.
Nagaya, Noritoshi; Kojima, Masakazu; Kangawa, Kenji
2006-01-01
Ghrelin is a novel growth hormone (GH)-releasing peptide, isolated from the stomach, which has been identified as an endogenous ligand for GH secretagogue receptor. The discovery of ghrelin indicates that the release of GH from the pituitary might be regulated not only by hypothalamic GH-releasing hormone, but also by ghrelin derived from the stomach. This peptide also stimulates food intake and induces adiposity through GH-independent mechanisms. In addition, ghrelin acts directly on the central nervous system to decrease sympathetic nerve activity. Thus, ghrelin plays important roles for maintaining GH release and energy homeostasis. Repeated administration of ghrelin improves body composition, muscle wasting, functional capacity, and sympathetic augmentation in cachectic patients with heart failure or chronic obstructive pulmonary disease. These results suggest that ghrelin has anti-cachectic effects through GH-dependent and independent mechanisms. Thus, administration of ghrelin may be a new therapeutic strategy for the treatment of cardiopulmonary-associated cachexia.
Goldstein, David S.; Jinsmaa, Yunden; Sullivan, Patti; Holmes, Courtney; Kopin, Irwin J.; Sharabi, Yehonatan
2016-01-01
The catecholaldehyde hypothesis predicts that monoamine oxidase (MAO) inhibition should slow the progression of Parkinson’s disease, by decreasing production of the autotoxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL). Inhibiting MAO, however, diverts the fate of cytoplasmic dopamine toward potentially harmful spontaneous oxidation products, indicated by increased 5-S-cysteinyl-dopamine (Cys-DA) levels. 3,4-Dihydroxyphenylethanol (hydroxytyrosol) is an abundant anti-oxidant phenol in constituents of the Mediterranean diet. Whether hydroxytyrosol alters enzymatic or spontaneous oxidation of dopamine has been unknown. Rat pheochromocytoma PC12 cells were incubated with hydroxytyrosol (10 μM, 180 minutes) alone or with the MAO-A inhibitor clorgyline (1 nM) or the MAO-B inhibitors rasagiline or selegiline (0.5 μM). Hydroxytyrosol decreased levels of DOPAL by 30% and Cys-DA by 49% (p<0.0001 each). Co-incubation with hydroxytyrosol prevented the increases in Cys-DA seen with all 3 MAO inhibitors. Hydroxytyrosol therefore inhibits both enzymatic and spontaneous oxidation of endogenous dopamine and mitigates the increase in spontaneous oxidation during MAO inhibition. PMID:27220335
Dunn, Julia P; Kessler, Robert M; Feurer, Irene D; Volkow, Nora D; Patterson, Bruce W; Ansari, Mohammad S; Li, Rui; Marks-Shulman, Pamela; Abumrad, Naji N
2012-05-01
Midbrain dopamine (DA) neurons, which are involved with reward and motivation, are modulated by hormones that regulate food intake (insulin, leptin, and acyl ghrelin [AG]). We hypothesized that these hormones are associated with deficits in DA signaling in obesity. We assessed the relationships between fasting levels of insulin and leptin, and AG, BMI, and insulin sensitivity index (S(I)) with the availability of central DA type 2 receptor (D2R). We measured D2R availability using positron emission tomography and [(18)F]fallypride (radioligand that competes with endogenous DA) in lean (n = 8) and obese (n = 14) females. Fasting hormones were collected prior to scanning and S(I) was determined by modified oral glucose tolerance test. Parametric image analyses revealed associations between each metabolic measure and D2R. The most extensive findings were negative associations of AG with clusters involving the striatum and inferior temporal cortices. Regional regression analyses also found extensive negative relationships between AG and D2R in the caudate, putamen, ventral striatum (VS), amygdala, and temporal lobes. S(I) was negatively associated with D2R in the VS, while insulin was not. In the caudate, BMI and leptin were positively associated with D2R availability. The direction of associations of leptin and AG with D2R availability are consistent with their opposite effects on DA levels (decreasing and increasing, respectively). After adjusting for BMI, AG maintained a significant relationship in the VS. We hypothesize that the increased D2R availability in obese subjects reflects relatively reduced DA levels competing with the radioligand. Our findings provide evidence for an association between the neuroendocrine hormones and DA brain signaling in obese females.
Osman, T A; Buck, K W
1997-01-01
A sucrose density gradient-purified, membrane-bound tobacco mosaic virus (tomato strain L) (TMV-L) RNA polymerase containing endogenous RNA template was efficiently solubilized with sodium taurodeoxycholate. Solubilization resulted in an increase in the synthesis of positive-strand, 6.4-kb genome-length single-stranded RNA (ssRNA) and a decrease in the production of 6.4-kbp double-stranded RNA (dsRNA) to levels close to the limits of detection. The solubilized TMV-L RNA polymerase was purified by chromatography on columns of DEAE-Bio-Gel and High Q. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining showed that purified RNA polymerase preparations consistently contained proteins with molecular masses of 183, 126, 56, 54, and 50 kDa, which were not found in equivalent material from healthy plants. Western blotting showed that the two largest of these proteins are the TMV-L-encoded 183- and 126-kDa replication proteins and that the 56-kDa protein is related to the 54.6-kDa GCD10 protein, the RNA-binding subunit of yeast eIF-3. The 126-, 183-, and 56-kDa proteins were coimmunoaffinity selected by antibodies against the TMV-L 126-kDa protein and by antibodies against the GCD10 protein. Antibody-linked polymerase assays showed that active TMV-L RNA polymerase bound to antibodies against the TMV-L 126-kDa protein and to antibodies against the GCD10 protein. Synthesis of genome-length ssRNA and dsRNA by a template-dependent, membrane-bound RNA polymerase was inhibited by antibodies against the GCD10 protein, and this inhibition was reversed by prior addition of GCD10 protein. PMID:9223501
Gallos, George; Gleason, Neil R.; Virag, Laszlo; Zhang, Yi; Mizuta, Kentauro; Whittington, Robert A.; Emala, Charles W.
2009-01-01
Background Emerging evidence indicates that an endogenous autocrine/paracrine system involving γ-aminobutyric acid (GABA) is present in airways. GABAA channels, GABAB receptors and the enzyme that synthesizes GABA have been identified in airway epithelium and smooth muscle. However, the endogenous ligand itself, GABA, has not been measured in airway tissues. We sought to demonstrate that GABA is released in response to contractile agonists and tonically contributes a pro-relaxant component to contracted airway smooth muscle. Methods The amount and cellular localization of GABA in upper guinea pig airways under resting and contracted tone was determined by high pressure liquid chromatography and immunohistochemistry, respectively. The contribution that endogenous GABA imparts on the maintenance of airway smooth muscle acetylcholine-induced contraction was assessed in intact guinea pig airway tracheal rings using selective GABAA antagonism (gabazine) under resting or acetylcholine-contracted conditions. The ability of an allosteric agent (propofol) to relax a substance P-induced relaxation in an endogenous GABA-dependent manner was assessed. Results GABA levels increased and localized to airway smooth muscle following contractile stimuli in guinea pig upper airways. Acetylcholine-contracted guinea pig tracheal rings exhibited an increase in contracted force upon addition of the GABAA antagonist gabazine which was subsequently reversed by the addition of the GABAA agonist muscimol. Propofol dose-dependently relaxed a substance P contraction that was blocked by gabazine. Conclusion These studies demonstrate that GABA is endogenously present and increases following contractile stimuli in guinea pig upper airways and that endogenous GABA contributes a tonic pro-relaxant component in the maintenance of airway smooth muscle tone. PMID:19322939
Alkrad, Jamal Alyoussef; Mrestani, Yahya; Neubert, Reinhard H H
2003-07-01
A multi-layer membrane system was used to measure in vitro release of hydrophilic macromolecules such as hyaluronic acid (HA) from semisolid formulations. One enzymatically digested HA-derivative with molecular mass of 22 kDa (HA-D) and 1200 kDa intact HA (HA) were incorporated into three semisolid formulations: water-containing hydrophilic ointment (WHO), amphiphilic cream (AC) and water-containing wool wax alcohol ointment (WWO). Because of the high hydrophilic properties of HA-D and HA, the artificial model membranes consisted of collodion as the matrix and glycerol as the hydrophilic acceptor phase. The area under the concentration-time curve and the mean dissolution time were used as a quantitative parameter to characterise the rate and extent of release in vitro. This study showed that the HA-D and HA release as hydrophilic substances from WHO was higher than both from AC and WWO. It was observed that 83% of HA-D1 was released from WHO after 2 h; in contrast, only 10% was released from 2% HA from the same vehicle during the same time. In conclusion, the in vitro availability of enzymatically digested HA-D was higher for WHO than for the other formulations, AC and WWO. Similarly, the availability of HA-D was higher than that of HA from the same formulations.
Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo
2017-01-01
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB1 receptor blockade and dopamine (DA) D1/5 and D2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [123I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [3H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health. PMID:28824464
Ossato, Andrea; Uccelli, Licia; Bilel, Sabrine; Canazza, Isabella; Di Domenico, Giovanni; Pasquali, Micol; Pupillo, Gaia; De Luca, Maria Antonietta; Boschi, Alessandra; Vincenzi, Fabrizio; Rimondo, Claudia; Beggiato, Sarah; Ferraro, Luca; Varani, Katia; Borea, Pier Andrea; Serpelloni, Giovanni; De-Giorgio, Fabio; Marti, Matteo
2017-01-01
JWH-018 and AKB48 are two synthetic cannabinoids (SCBs) belonging to different structural classes and illegally marketed as incense, herbal preparations, or chemical supply for theirs psychoactive cannabis-like effects. Clinical reports from emergency room reported psychomotor agitation as one of the most frequent effects in people assuming SCBs. This study aimed to investigate the psychostimulant properties of JWH-018 and AKB48 in male CD-1 mice and to compare their behavioral and biochemical effects with those caused by cocaine and amphetamine. In vivo studies showed that JWH-018 and AKB48, as cocaine and amphetamine, facilitated spontaneous locomotion in mice. These effects were prevented by CB 1 receptor blockade and dopamine (DA) D 1/5 and D 2/3 receptors inhibition. SPECT-CT studies on dopamine transporter (DAT) revealed that, as cocaine and amphetamine, JWH-018 and AKB48 decreased the [ 123 I]-FP-CIT binding in the mouse striatum. Conversely, in vitro competition binding studies revealed that, unlike cocaine and amphetamine, JWH-018 and AKB48 did not bind to mouse or human DAT. Moreover, microdialysis studies showed that the systemic administration of JWH-018, AKB48, cocaine, and amphetamine stimulated DA release in the nucleus accumbens (NAc) shell of freely moving mice. Finally, unlike amphetamine and cocaine, JWH-018 and AKB48 did not induce any changes on spontaneous [ 3 H]-DA efflux from murine striatal synaptosomes. The present results suggest that SCBs facilitate striatal DA release possibly with different mechanisms than cocaine and amphetamine. Furthermore, they demonstrate, for the first time, that JWH-018 and AKB48 induce a psychostimulant effect in mice possibly by increasing NAc DA release. These data, according to clinical reports, outline the potential psychostimulant action of SCBs highlighting their possible danger to human health.
Karkhanis, Anushree N; Rose, Jamie H; Weiner, Jeffrey L; Jones, Sara R
2016-01-01
Chronic early-life stress increases vulnerability to alcoholism and anxiety disorders during adulthood. Similarly, rats reared in social isolation (SI) during adolescence exhibit augmented ethanol intake and anxiety-like behaviors compared with group housed (GH) rats. Prior studies suggest that disruption of dopamine (DA) signaling contributes to SI-associated behaviors, although the mechanisms underlying these alterations are not fully understood. Kappa opioid receptors (KORs) have an important role in regulating mesolimbic DA signaling, and other kinds of stressors have been shown to augment KOR function. Therefore, we tested the hypothesis that SI-induced increases in KOR function contribute to the dysregulation of NAc DA and the escalation in ethanol intake associated with SI. Our ex vivo voltammetry experiments showed that the inhibitory effects of the kappa agonist U50,488 on DA release were significantly enhanced in the NAc core and shell of SI rats. Dynorphin levels in NAc tissue were observed to be lower in SI rats. Microdialysis in freely moving rats revealed that SI was also associated with reduced baseline DA levels, and pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI) increased DA levels selectively in SI subjects. Acute ethanol elevated DA in SI and GH rats and nor-BNI pretreatment augmented this effect in SI subjects, while having no effect on ethanol-stimulated DA release in GH rats. Together, these data suggest that KORs may have increased responsiveness following SI, which could lead to hypodopaminergia and contribute to an increased drive to consume ethanol. Indeed, SI rats exhibited greater ethanol intake and preference and KOR blockade selectively attenuated ethanol intake in SI rats. Collectively, the findings that nor-BNI reversed SI-mediated hypodopaminergic state and escalated ethanol intake suggest that KOR antagonists may represent a promising therapeutic strategy for the treatment of alcohol use disorders, particularly in cases linked to chronic early-life stress. PMID:26860203
Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi
NASA Astrophysics Data System (ADS)
Seabra, A. B.; Kitice, N. A.; Pelegrino, M. T.; Lancheros, C. A. C.; Yamauchi, L. M.; Pinge-Filho, P.; Yamada-Ogatta, S. F.
2015-05-01
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite, Trypanosoma cruzi (T. cruzi), and the disease remains a major health problem in many Latin American countries. Several papers report that the killing of the parasite is dependent on the production of nitric oxide (NO). The endogenous free radical NO is an important cellular signalling molecule that plays a key role in the defense against pathogens, including T. cruzi. As T. cruzi is able to compromise host macrophages decreasing endogenous NO production, the administration of exogenous NO donors represents an interesting strategy to combat Chagas disease. Thus, the aims of this study were to prepare and evaluate the antimicrobial activity of NO-releasing polymeric nanoparticles against T. cruzi. Biocompatible polymeric nanoparticles composed of chitosan/sodium tripolyphosphate(TPP) were prepared and used to encapsulate mercaptosuccinic acid (MSA), which is a thiol-containing molecule. Nitrosation of free thiols (SH) groups of MSA were performed by the addition of equimolar amount of sodium nitrite (NaNO2), leading to the formation of S-nitroso-MSA-containing nanoparticles. These polymeric nanoparticles act as spontaneous NO donors, with free NO release. The results show the formation of nanoparticles with average hydrodynamic diameter ranging from 270 to 500 nm, average of polydispersity index of 0.35, and encapsulation efficiency in the range of 99%. The NO release kinetics from the S-nitroso-MSA-containing nanoparticles showed sustained and controlled NO release over several hours. The microbicidal activity of S-nitroso-MSA-containing nanoparticles was evaluated by incubating NO-releasing nanoparticles (200 - 600 μg/mL) with replicative and non-infective epimastigote, and non-replicative and infective trypomastigote forms of T. cruzi. In addition, a significant decrease in the percentage of macrophage-infected (with amastigotes) and NO-releasing nanoparticle-treated cells was observed. Taken together, our results reveal a potent toxic effect of NO-releasing polymeric nanoparticles against different life cycle forms of T. cruzi, indicating that the encapsulation of the NO donor S-nitroso-MSA represents an interesting approach to combat and to prevent Chagas disease.
Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba
2015-11-01
Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.
Gerth, Ashlynn I; Alhadeff, Amber L; Grill, Harvey J; Roitman, Mitchell F
2017-01-15
Cocaine increases dopamine concentration in the nucleus accumbens through competitive binding to the dopamine transporter (DAT). However, it also increases the frequency of dopamine release events, a finding that cannot be explained by action at the DAT alone. Rather, this effect may be mediated by cocaine-induced modulation of brain regions that project to dopamine neurons. To explore regional contributions of cocaine to dopamine signaling, we administered cocaine to the lateral or fourth ventricles and compared the effects on dopamine release in the nucleus accumbens evoked by electrical stimulation of the ventral tegmental area to that of systemically-delivered cocaine. Stimulation trains caused a sharp rise in dopamine followed by a slower return to baseline. The magnitude of dopamine release ([DA]max) as well as the latency to decay to fifty percent of the maximum (t(1/2); index of DAT activity) by each stimulation train were recorded. All routes of cocaine delivery caused an increase in [DA]max; only systemic cocaine caused an increase in t(1/2). Importantly, these data are the first to show that hindbrain (fourth ventricle)-delivered cocaine modulates phasic dopamine signaling. Fourth ventricular cocaine robustly increased cFos immunoreactivity in the nucleus of the solitary tract (NTS), suggesting a neural substrate for hindbrain cocaine-mediated effects on [DA]max. Together, the data demonstrate that cocaine-induced effects on phasic dopamine signaling are mediated via actions throughout the brain including the hindbrain. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
CCL5-Glutamate Cross-Talk in Astrocyte-Neuron Communication in Multiple Sclerosis.
Pittaluga, Anna
2017-01-01
The immune system (IS) and the central nervous system (CNS) are functionally coupled, and a large number of endogenous molecules (i.e., the chemokines for the IS and the classic neurotransmitters for the CNS) are shared in common between the two systems. These interactions are key elements for the elucidation of the pathogenesis of central inflammatory diseases. In recent years, evidence has been provided supporting the role of chemokines as modulators of central neurotransmission. It is the case of the chemokines CCL2 and CXCL12 that control pre- and/or post-synaptically the chemical transmission. This article aims to review the functional cross-talk linking another endogenous pro-inflammatory factor released by glial cells, i.e., the chemokine Regulated upon Activation Normal T-cell Expressed and Secreted (CCL5) and the principal neurotransmitter in CNS (i.e., glutamate) in physiological and pathological conditions. In particular, the review discusses preclinical data concerning the role of CCL5 as a modulator of central glutamatergic transmission in healthy and demyelinating disorders. The CCL5-mediated control of glutamate release at chemical synapses could be relevant either to the onset of psychiatric symptoms that often accompany the development of multiple sclerosis (MS), but also it might indirectly give a rationale for the progression of inflammation and demyelination. The impact of disease-modifying therapies for the cure of MS on the endogenous availability of CCL5 in CNS will be also summarized. We apologize in advance for omission in our coverage of the existing literature.
Chang, Nai-Fang; Chen, Yi-Shyan; Lin, Ying-Ju; Tai, Ting-Hsuan; Chen, An-Ni; Huang, Chen-Hsuan; Lin, Chih-Chien
2017-01-01
Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds. However, no study has verified the properties of Ultra-Violet B (UVB)-irradiated Arb and dA. In this work, we investigated the cytotoxicity and hypopigmentation effects of UVB-irradiated Arb and dA in Detroit 551 human fibroblast cells and B16-F10 mouse melanoma cells. The results showed that UVB-irradiated Arb and dA have strong cytotoxicity for the fibroblast cells, especially for dA, the caspase-3 is also activated by the treatment of UVB-irradiated dA in Detroit 551 cells. The results correlated with the produced HQ. In addition, UVB-irradiated Arb and dA suppressed the production of melanin in melanoma cells; this is due to the release of HQ that compensates for the UVB triggered Arb and dA decomposition. PMID:28467382
Chang, Nai-Fang; Chen, Yi-Shyan; Lin, Ying-Ju; Tai, Ting-Hsuan; Chen, An-Ni; Huang, Chen-Hsuan; Lin, Chih-Chien
2017-05-03
Arbutin (Arb) and deoxyArbutin (dA) are both effective hypopigmentation agents. However, they are glucoside derivatives of hydroquinone (HQ), which may be decayed into HQ under higher energy environments. Therefore, safety and toxicity are very important issues when considering the usage of these compounds. However, no study has verified the properties of Ultra-Violet B (UVB)-irradiated Arb and dA. In this work, we investigated the cytotoxicity and hypopigmentation effects of UVB-irradiated Arb and dA in Detroit 551 human fibroblast cells and B16-F10 mouse melanoma cells. The results showed that UVB-irradiated Arb and dA have strong cytotoxicity for the fibroblast cells, especially for dA, the caspase-3 is also activated by the treatment of UVB-irradiated dA in Detroit 551 cells. The results correlated with the produced HQ. In addition, UVB-irradiated Arb and dA suppressed the production of melanin in melanoma cells; this is due to the release of HQ that compensates for the UVB triggered Arb and dA decomposition.
Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin
2015-10-01
The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.
The history of fever, leukocytic pyrogen and interleukin-1.
Dinarello, Charles A
2015-01-01
There has been great progress in the 30 y since the reporting in 1984 of the cDNA for interleukin1 (IL1) β in the human and IL1α in the mouse. However, the history of IL1 begins in the early 1940s with investigations into the nature of an endogenous fever-producing protein released rabbit peritoneal neutrophils. Most researchers in immunology today are unaware that the field of cytokines, particularly the field of inflammatory cytokines. Toll-like receptors and innate immunity traces back to studies on fever. Researchers in infectious diseases wanted to know about an endogenous protein that caused fever, independent of infection. The endogenous fever-producing protein was called by various names: granulocyte, endogenous or leukocytic pyrogen. It is a fascinating and sometimes controversial story for biology and medicine and for the treatment of inflammatory diseases. Few imagined that this fever-producing protein would play such a major role in nearly every cell and in most diseases. This paper reviews the true background and milestones of interleukin1 from the purification of leukocytic pyrogen to the first cDNA of IL1β and the validation of cytokine biology from ill-defined factors to its present day importance.
Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P
2004-12-15
Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.
Jin, Yang; Xu, Lina; Zhao, Yong; Wang, Muwen; Jin, Xunbo; Zhang, Haiyang
2017-04-01
Defocused low-energy shock wave (DLSW) has been shown effects on activating mesenchymal stromal cells (MSCs) in vitro. In this study, recruitment of endogenous stem cells was firstly examined as an important pathway during the healing process of diabetic bladder dysfunction (DBD) treated by DLSW in vivo. Neonatal rats received intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) and then DBD rat model was created by injecting streptozotocin. Four weeks later, DLSW treatment was performed. Afterward, their tissues were examined by histology. Meanwhile, adipose tissue-derived stem cells (ADSCs) were treated by DLSW in vitro. Results showed DLSW ameliorated voiding function of diabetic rats by recruiting EdU + Stro-1 + CD34 - endogenous stem cells to release abundant nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). Some EdU + cells overlapped with staining of smooth muscle actin. After DLSW treatment, ADSCs showed higher migration ability, higher expression level of stromal cell-derived factor-1 and secreted more NGF and VEGF. In conclusion, DLSW could ameliorate DBD by recruiting endogenous stem cells. Beneficial effects were mediated by secreting NGF and VEGF, resulting into improved innervation and vascularization in bladder.
We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...
Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is ...
Hydroxy-oleic acid, but not oleic acid, inhibits vascular responsiveness in isolated aortic tissue
Oleic acid (OA) and other fatty acids can become abundant in circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet estab...
Liu, Ji; Conde, Kristie; Zhang, Peng; Lilascharoen, Varoth; Xu, Zihui; Lim, Byung Kook; Seeley, Randy J; Zhu, J Julius; Scott, Michael M; Pang, Zhiping P
2017-11-15
Glucagon-like Peptide 1 (GLP-1)-expressing neurons in the hindbrain send robust projections to the paraventricular nucleus of the hypothalamus (PVN), which is involved in the regulation of food intake. Here, we describe that stimulation of GLP-1 afferent fibers within the PVN is sufficient to suppress food intake independent of glutamate release. We also show that GLP-1 receptor (GLP-1R) activation augments excitatory synaptic strength in PVN corticotropin-releasing hormone (CRH) neurons, with GLP-1R activation promoting a protein kinase A (PKA)-dependent signaling cascade leading to phosphorylation of serine S845 on GluA1 AMPA receptors and their trafficking to the plasma membrane. Finally, we show that postnatal depletion of GLP-1R in the PVN increases food intake and causes obesity. This study provides a comprehensive multi-level (circuit, synaptic, and molecular) explanation of how food intake behavior and body weight are regulated by endogenous central GLP-1. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Zinc as a paracrine effector in pancreatic islet cell death.
Kim, B J; Kim, Y H; Kim, S; Kim, J W; Koh, J Y; Oh, S H; Lee, M K; Kim, K W; Lee, M S
2000-03-01
Because of a huge amount of Zn2+ in secretory granules of pancreatic islet beta-cells, Zn2+ released in certain conditions might affect the function or survival of islet cells. We studied potential paracrine effects of endogenous Zn2+ on beta-cell death. Zn2+ induced insulinoma/islet cell death in a dose-dependent manner. Chelation of released endogenous Zn2+ by CaEDTA significantly decreased streptozotocin (STZ)-induced islet cell death in an in vitro culture system simulating in vivo circumstances but not in the conventional culture system. Zn2+ chelation in vivo by continuous CaEDTA infusion significantly decreased the incidence of diabetes after STZ administration. N-(6-methoxy-quinolyl)-para-toluene-sulfonamide staining revealed that Zn2+ was densely deposited in degenerating islet cells 24 h after STZ treatment, which was decreased by CaEDTA infusion. We show here that Zn2+ is not a passive element for insulin storage but an active participant in islet cell death in certain conditions, which in time might contribute to the development of diabetes in aged people.
Xu, Yanshun; Li, Lin; Regenstein, Joe Mac; Gao, Pei; Zang, Jinhong; Xia, Wenshui; Jiang, Qixing
2018-08-01
To investigate the contribution of autochthonous microflora on free fatty acids (FFA) release and flavor development in low-salt fermented fish, three groups of processed fish, including bacteriostatic-acidification group (BAG), bacteriostatic group (BG), and spontaneous fermented fish (CG) were established. Results showed that addition of NaN 3 reduced microbial load in BAG and BG below 3.5 log CFU/g after 3 weeks of incubation. Activities of lipases and lipoxygenase declined markedly with increasing time, where BG had the highest activities, followed by CG and BAG. There is a 36.3% higher in the total FFA content in CG than that in BAG, indicating both microbial and endogenous lipases contributed to the FFA liberation in fermented fish while endogenous lipases play a major role. However, compared to BAG and BG, largely higher levels of volatile compounds were observed in CG, suggesting that autochthonous microflora dominated the generation of volatile flavor compounds in fermented fish. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seckl, J R; Johnson, M; Shakespear, C; Lightman, S L
1988-05-01
The effects of the opioid antagonist naloxone on the vasopressin (AVP) and oxytocin (OT) responses to nicotine were studied in male non-smokers (21-30 years old). Either saline (n = 6) or naloxone (4 mg bolus + 6 mg/h, n = 6) was infused i.v. during the study. After 60 min infusion the subjects smoked one high-nicotine content cigarette. Naloxone infusion for 60 min did not alter basal plasma AVP or OT levels. Smoking led to a significant rise in plasma vasopressin in both saline and naloxone-infused subjects (P less than 0.05). There was no significant difference in the plasma AVP response to smoking between the two groups. Saline-infused subjects did not show any change in plasma OT in response to smoking. Naloxone infusion was associated with a significant rise in OT from 1.3 +/- 0.1 pmol/l to 4.3 +/- 2.4 pmol/l 5 min after smoking (P less than 0.05). We conclude that there is endogenous opioid-mediated inhibition of OT which prevents its release when AVP is secreted in response to nicotine in man.
Brito, Haissa Oliveira; Barbosa, Felipe L; Reis, Renata Cristiane Dos; Fraga, Daniel; Borges, Beatriz S; Franco, Celia R C; Zampronio, Aleksander Roberto
2016-04-15
Substance P (SP) is involved in fever that is induced by lipopolysaccharide (LPS) but not by interleukin-1β or macrophage inflammatory protein-1α. Intracerebroventricular (i.c.v.) administration of the neurokinin-1 (NK1) receptor antagonist SR140333B in rats reduced fever that was induced by an i.c.v. injection of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2), corticotropin-releasing factor (CRF), endothelin-1 (ET-1), and morphine (MOR). Furthermore, an i.c.v. injection of SP induced a febrile response that was inhibited by indomethacin concomitant with an increase in PGE2 levels in cerebrospinal fluid. Lipopolysaccharide and PGE2 caused higher expression and internalization of NK1 receptors in the hypothalamus which were prevented by SR140333B. These data suggest that SP is an important mediator of fever, in which it induces a prostaglandin-dependent response and is released after TNF-α, IL-6, PGE2, CRF, endogenous opioids, and ET-1. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal glucocorticoid therapy.
Debono, Miguel; Ross, Richard J
2011-01-01
The rhythmic regulation of human physiology and behaviour is controlled by a central endogenous clock located in the suprachiasmatic nucleus. Most tissues have peripheral clocks that oscillate in time with this central clock. How the central time keeper controls peripheral clocks is not established, however there is evidence to suggest that the cortisol rhythm is one important secondary messenger. Loss of the endogenous cortisol rhythm is associated with sleep disturbance, depression, and metabolic abnormalities. In adrenal insufficiency, current glucocorticoid replacement regimens cannot replace the normal circadian rhythm of cortisol, and patients have an increased mortality and impaired quality of life. We propose that reproducing circadian cortisol levels may improve quality of life in patients with adrenal insufficiency and we have been investigating the impact of circadian hydrocortisone replacement. Using Chronocort, a modified release preparation of hydrocortisone, we have demonstrated that it is possible to simulate the overnight rise in cortisol release and, in preliminary studies in patients with congenital adrenal hyperplasia, control morning androgen levels. Future studies are now required to determine whether Chronocort can improve quality of life in patients with adrenal insufficiency. Copyright © 2011 S. Karger AG, Basel.
Guerrero, Andres; Dallas, David C.; Contreras, Stephanie; Chee, Sabrina; Parker, Evan A.; Sun, Xin; Dimapasoc, Lauren; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2014-01-01
An extensive mass spectrometry analysis of the human milk peptidome has revealed almost 700 endogenous peptides from 30 different proteins. Two in-house computational tools were created and used to visualize and interpret the data through both alignment of the peptide quasi-molecular ion intensities and estimation of the differential enzyme participation. These results reveal that the endogenous proteolytic activity in the mammary gland is remarkably specific and well conserved. Certain proteins—not necessarily the most abundant ones—are digested by the proteases present in milk, yielding endogenous peptides from selected regions. Our results strongly suggest that factors such as the presence of specific proteases, the position and concentration of cleavage sites, and, more important, the intrinsic disorder of segments of the protein drive this proteolytic specificity in the mammary gland. As a consequence of this selective hydrolysis, proteins that typically need to be cleaved at specific positions in order to exert their activity are properly digested, and bioactive peptides encoded in certain protein sequences are released. Proteins that must remain intact in order to maintain their activity in the mammary gland or in the neonatal gastrointestinal tract are unaffected by the hydrolytic environment present in milk. These results provide insight into the intrinsic structural mechanisms that facilitate the selectivity of the endogenous milk protease activity and might be useful to those studying the peptidomes of other biofluids. PMID:25172956
Endogenous purines modulate K+ -evoked ACh secretion at the mouse neuromuscular junction.
Guarracino, Juan F; Cinalli, Alejandro R; Veggetti, Mariela I; Losavio, Adriana S
2018-06-01
At the mouse neuromuscular junction, adenosine triphosphate (ATP) is co-released with the neurotransmitter acetylcholine (ACh), and once in the synaptic cleft, it is hydrolyzed to adenosine. Both ATP/adenosine diphosphate (ADP) and adenosine modulate ACh secretion by activating presynaptic P2Y 13 and A 1 , A 2A , and A 3 receptors, respectively. To elucidate the action of endogenous purines on K + -dependent ACh release, we studied the effect of purinergic receptor antagonists on miniature end-plate potential (MEPP) frequency in phrenic diaphragm preparations. At 10 mM K + , the P2Y 13 antagonist N-[2-(methylthio)ethyl]-2-[3,3,3-trifluoropropyl]thio-5'-adenylic acid, monoanhydride with (dichloromethylene)bis[phosphonic acid], tetrasodium salt (AR-C69931MX) increased asynchronous ACh secretion while the A 1 , A 3 , and A 2A antagonists 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), (3-Ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1, 4-(±)-dihydropyridine-3,5-, dicarboxylate (MRS-1191), and 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH-58261) did not modify neurosecretion. The inhibition of equilibrative adenosine transporters by S-(p-nitrobenzyl)-6-thioinosine provoked a reduction of 10 mM K + -evoked ACh release, suggesting that the adenosine generated from ATP is being removed from the synaptic space by the transporters. At 15 and 20 mM K + , endogenous ATP/ADP and adenosine bind to inhibitory P2Y 13 and A 1 and A 3 receptors since AR-C69931MX, DPCPX, and MRS-1191 increased MEPP frequency. Similar results were obtained when the generation of adenosine was prevented by using the ecto-5'-nucleotidase inhibitor α,β-methyleneadenosine 5'-diphosphate sodium salt. SCH-58261 only reduced neurosecretion at 20 mM K + , suggesting that more adenosine is needed to activate excitatory A 2A receptors. At high K + concentration, the equilibrative transporters appear to be saturated allowing the accumulation of adenosine in the synaptic cleft. In conclusion, when motor nerve terminals are depolarized by increasing K + concentrations, the ATP/ADP and adenosine endogenously generated are able to modulate ACh secretion by sequential activation of different purinergic receptors. © 2018 Wiley Periodicals, Inc.
Jakeman, K J; Bird, C R; Thorpe, R; Smith, H; Sweet, C
1991-03-01
Fever in influenza results from the release of endogenous pyrogen (EP) following virus-phagocyte interaction and its level correlates with the differing virulence of virus strains. However, the different levels of fever produced in ferrets by intracardial inoculation of EP obtained from the interaction of different virus strains with ferret of human phagocytes did not correlate with the levels of interleukin 1 (IL-1), IL-6 or tumour necrosis factor in the same samples as assayed by conventional in vitro methods. Hence, the EP produced by influenza virus appears to be different to these cytokines.
Lovatt, Ditte; Xu, Qiwu; Liu, Wei; Takano, Takahiro; Smith, Nathan A.; Schnermann, Jurgen; Tieu, Kim; Nedergaard, Maiken
2012-01-01
Adenosine is a potent anticonvulsant acting on excitatory synapses through A1 receptors. Cellular release of ATP, and its subsequent extracellular enzymatic degradation to adenosine, could provide a powerful mechanism for astrocytes to control the activity of neural networks during high-intensity activity. Despite adenosine's importance, the cellular source of adenosine remains unclear. We report here that multiple enzymes degrade extracellular ATP in brain tissue, whereas only Nt5e degrades AMP to adenosine. However, endogenous A1 receptor activation during cortical seizures in vivo or heterosynaptic depression in situ is independent of Nt5e activity, and activation of astrocytic ATP release via Ca2+ photolysis does not trigger synaptic depression. In contrast, selective activation of postsynaptic CA1 neurons leads to release of adenosine and synaptic depression. This study shows that adenosine-mediated synaptic depression is not a consequence of astrocytic ATP release, but is instead an autonomic feedback mechanism that suppresses excitatory transmission during prolonged activity. PMID:22421436
Obesity, growth hormone and exercise.
Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S
2013-09-01
Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.
The Rab11 Effector Protein FIP1 Regulates Adiponectin Trafficking and Secretion
Moreno-Navarrete, Jose Maria; Fernandez-Real, Jose Manuel; Mora, Silvia
2013-01-01
Adiponectin is an adipokine secreted by white adipocytes involved in regulating insulin sensitivity in peripheral tissues. Secretion of adiponectin in adipocytes relies on the endosomal system, however, the intracellular machinery involved in mediating adiponectin release is unknown. We have previously reported that intracellular adiponectin partially compartmentalizes with rab 5 and rab11, markers for the early/sorting and recycling compartments respectively. Here we have examined the role of several rab11 downstream effector proteins (rab11 FIPs) in regulating adiponectin trafficking and secretion. Overexpression of wild type rab11 FIP1, FIP3 and FIP5 decreased the amount of secreted adiponectin expressed in HEK293 cells, whereas overexpression of rab11 FIP2 or FIP4 had no effect. Furthermore shRNA-mediated depletion of FIP1 enhanced adiponectin release whereas knock down of FIP5 decreased adiponectin secretion. Knock down of FIP3 had no effect. In 3T3L1 adipocytes, endogenous FIP1 co-distributed intracellularly with endogenous adiponectin and FIP1 depletion enhanced adiponectin release without altering insulin-mediated trafficking of the glucose transporter Glut4. While adiponectin receptors internalized with transferrin receptors, there were no differences in transferrin receptor recycling between wild type and FIP1 depleted adipocytes. Consistent with its inhibitory role, FIP1 expression was decreased during adipocyte differentiation, by treatment with thiazolidinediones, and with increased BMI in humans. In contrast, FIP1 expression increased upon exposure of adipocytes to TNFα. In all, our findings identify FIP1 as a novel protein involved in the regulation of adiponectin trafficking and release. PMID:24040321
Marchi, Mario; Zappettini, Stefania; Olivero, Guendalina; Pittaluga, Anna; Grilli, Massimo
2012-05-01
The effect of chronic nicotine treatment on the release of endogenous glutamate (GLU), aspartate (ASP) and GABA evoked in vitro by KCl, 4-aminopyridine (4AP) and nicotinic agonists in synaptosomes of rat hippocampus was investigated. Rats were chronically administered with nicotine bitartrate or saline vehicle each for 14 days using osmotic mini-pumps. Hippocampal synaptosomes were stimulated with KCl, 4AP, nicotine or with choline (Ch) and 5-iodo-A-85380 dihydrochloride (5IA85380). The GLU and ASP overflow evoked by Ch, nicotine, KCl and 4AP were increased in treated animals while the nicotine-evoked GABA overflow was reduced and that evoked by Ch, KCl and 4AP was unaffected. The 5IA85380-evoked overflow of the three aminoacids (AAs) was always reduced. The increase of ASP and GLU overflow evoked by KCl, 4AP or Ch was blocked by dl-threo-β-benzyloxyaspartic acid (dl-TBOA), a carrier transporter inhibitor, and by inhibitors of the Na(+)/Ca(2+) exchangers 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-4-thiazolidinecarboxylic acid ethyl ester (SN-6) and 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943). In conclusion long-term nicotine treatment may selectively increase GLU and ASP overflow elicited by KCl, 4AP and Ch through the activation of a carrier-mediated release mechanism and completely abolished the stimulatory effects of α4β2 nAChRs which modulate the release of all the three AA. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sekiguchi, Mari; Katayama, Syouichi; Hatano, Naoya; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu
2013-07-15
Cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase predominantly expressed in brain and mutations of its gene are known to be associated with neurodevelopmental disorders such as X-linked West syndrome and Rett syndrome. However, the physiological substrates of CDKL5 that are directly linked to these neurodevelopmental disorders are currently unknown. In this study, we explored endogenous substrates for CDKL5 in mouse brain extracts fractionated by a liquid-phase isoelectric focusing. In conjunction with CDKL5 phosphorylation assay, this approach detected a protein band with an apparent molecular mass of 120kDa that is remarkably phosphorylated by CDKL5. This 120-kDa protein was identified as amphiphysin 1 (Amph1) by LC-MS/MS analysis, and the site of phosphorylation by CDKL5 was determined to be Ser-293. The phosphorylation mimic mutants, Amph1(S293E) and Amph1(S293D), showed significantly reduced affinity for endophilin, a protein involved in synaptic vesicle endocytosis. Introduction of point mutations in the catalytic domain of CDKL5, which are disease-causing missense mutations found in Rett patients, resulted in the impairment of kinase activity toward Amph1. These results suggest that Amph1 is the cytoplasmic substrate for CDKL5 and that its phosphorylation may play crucial roles in the neuronal development. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendrick, J.L.; Iglewski, W.J.
1989-01-01
Polyoma virus-transformed baby hamster kidney (pyBHK) cells were cultured in medium containing ({sup 32}P)orthophosphate and 105 (vol/vol) fetal bovine serum. A {sup 32}P-labeled protein with an apparent molecular mass of 97 kDa was immunoprecipitated from cell lysates with antiserum to ADP-ribosylated elongation factor 2 (EF-2). The {sup 32}P labeling of the protein was enhanced by culturing cells in medium containing 2% serum instead of 10% serum. The {sup 32}P label was completely removed from the protein by treatment with snake venom phosphodiesterase and the digestion product was identified as ({sup 32}P)AMP, indicating the protein was mono-ADP-ribosylated. HPLC analysis of trypticmore » peptides of the {sup 32}P-labeled 97-kDa protein and purified EF-2, which was ADP-ribosylated in vitro with diphtheria toxin fragment A and ({sup 32}P)NAD, demonstrated an identical labeled peptide in the two proteins. The data strongly suggest that EF-2 was endogenously ADP-ribosylated in pyBHK cells. Maximum incorporation of radioactivity in EF-2 occurred by 12 hr and remained constant over the subsequent 12 hr. It was estimated that 30-35% of the EF-2 was ADP-ribosylated in cells cultured in medium containing 2% serum. When {sup 32}P-labeled cultures were incubated in medium containing unlabeled phosphate, the {sup 32}P label was lost from the EF-2 within 30 min.« less
Tyrosine Phosphorylation Regulates Maturation of Receptor Tyrosine Kinases
Schmidt-Arras, Dirk-E.; Böhmer, Annette; Markova, Boyka; Choudhary, Chunaram; Serve, Hubert; Böhmer, Frank-D.
2005-01-01
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPα promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants. PMID:15831474
Holroyd, Kathryn B; Adrover, Martin F; Fuino, Robert L; Bock, Roland; Kaplan, Alanna R; Gremel, Christina M; Rubinstein, Marcelo; Alvarez, Veronica A
2015-01-01
A prominent aspect of drug addiction is the ability of drug-associated cues to elicit craving and facilitate relapse. Understanding the factors that regulate cue reactivity will be vital for improving treatment of addictive disorders. Low availability of dopamine (DA) D2 receptors (D2Rs) in the striatum is associated with high cocaine intake and compulsive use. However, the role of D2Rs of nonstriatal origin in cocaine seeking and taking behavior and cue reactivity is less understood and possibly underestimated. D2Rs expressed by midbrain DA neurons function as autoreceptors, exerting inhibitory feedback on DA synthesis and release. Here, we show that selective loss of D2 autoreceptors impairs the feedback inhibition of DA release and amplifies the effect of cocaine on DA transmission in the nucleus accumbens (NAc) in vitro. Mice lacking D2 autoreceptors acquire a cued-operant self-administration task for cocaine faster than littermate control mice but acquire similarly for a natural reward. Furthermore, although mice lacking D2 autoreceptors were able to extinguish self-administration behavior in the absence of cocaine and paired cues, they exhibited perseverative responding when cocaine-paired cues were present. This enhanced cue reactivity was selective for cocaine and was not seen during extinction of sucrose self-administration. We conclude that low levels of D2 autoreceptors enhance the salience of cocaine-paired cues and can contribute to the vulnerability for cocaine use and relapse. PMID:25547712
Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S
1997-10-01
The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.
Monde, Kazuaki; Contreras-Galindo, Rafael; Kaplan, Mark H; Markovitz, David M; Ono, Akira
2012-10-01
Human endogenous retroviruses (HERVs), which are remnants of ancestral retroviruses integrated into the human genome, are defective in viral replication. Because activation of HERV-K and coexpression of this virus with HIV-1 have been observed during HIV-1 infection, it is conceivable that HERV-K could affect HIV-1 replication, either by competition or by cooperation, in cells expressing both viruses. In this study, we found that the release efficiency of HIV-1 Gag was 3-fold reduced upon overexpression of HERV-K(CON) Gag. In addition, we observed that in cells expressing Gag proteins of both viruses, HERV-K(CON) Gag colocalized with HIV-1 Gag at the plasma membrane. Furthermore, HERV-K(CON) Gag was found to coassemble with HIV-1 Gag, as demonstrated by (i) processing of HERV-K(CON) Gag by HIV-1 protease in virions, (ii) coimmunoprecipitation of virion-associated HERV-K(CON) Gag with HIV-1 Gag, and (iii) rescue of a late-domain-defective HERV-K(CON) Gag by wild-type (WT) HIV-1 Gag. Myristylation-deficient HERV-K(CON) Gag localized to nuclei, suggesting cryptic nuclear trafficking of HERV-K Gag. Notably, unlike WT HERV-K(CON) Gag, HIV-1 Gag failed to rescue myristylation-deficient HERV-K(CON) Gag to the plasma membrane. Efficient colocalization and coassembly of HIV-1 Gag and HERV-K Gag also required nucleocapsid (NC). These results provide evidence that HIV-1 Gag heteromultimerizes with HERV-K Gag at the plasma membrane, presumably through NC-RNA interaction. Intriguingly, HERV-K Gag overexpression reduced not only HIV-1 release efficiency but also HIV-1 infectivity in a myristylation- and NC-dependent manner. Altogether, these results indicate that Gag proteins of endogenous retroviruses can coassemble with HIV-1 Gag and modulate the late phase of HIV-1 replication.
2010-01-01
Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very low concentrations of these structurally related xenoestrogens. Because of their non-classical dose-responses, they must be studied in detail to pinpoint effective concentrations and the directions of response changes. PMID:20950447
Kępczyński, Jan; Cembrowska-Lech, Danuta
2018-04-27
A simple and rapid method involving flow cytometry and NO-specific probe (DAF-FM DA) proved useful for detection and determination of intracellular NO production in Medicago truncatula suspension cells and leaves as well as in cells of Avena fatua, Amaranthus retroflexus embryos and leaves. The measurement of nitric oxide (NO) in plant material is important for examining the regulatory roles of endogenous NO in various physiological processes. The possibility of detecting and determining intracellular NO production by flow cytometry (FCM) with 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA), an NO-specific probe in Medicago truncatula cells in suspension and leaves as well as in cells of embryos and leaves of Avena fatua L. or Amaranthus retroflexus L. was explored. To detect and measure NO production by cell suspension or embryos and leaves, the recommended DAF-FM DA concentration is 5 or 10 µM, respectively, applied for 30 min. Exogenous NO increased the intensity of the fluorescent signal in embryos and leaves of both plants, while carboxy-PTIO (cPTIO), an NO scavenger, decreased it. Thus, these results demonstrate that NO can be detected and an increase and a decrease of its intracellular level can be estimated. Wounding was observed to increase the fluorescence signal, indicating an increase in the intracellular NO level. In addition, the levels of exogenous and endogenous ascorbic acid were demonstrated to have no effect on the NO-related fluorescence signal, indicating the signal's specificity only in relation with NO. The applicability of the proposed method for detection and determination of NO was confirmed (1) by in situ NO imaging in cell suspensions and (2) by determining the NO concentration in embryos and leaves using the Griess reagent. In view of the data obtained, FCM is recommended as a rapid and simple method with which to detect and determine intracellular NO production in plant cells.
1993-01-01
behavioral func- agonists (as assessed by examining oxotremorine enhancement tions such as coordination and muscle strength [for reviews, of K4-evoked...interface and by comparing the response to oxotremorine -en- made by examining the oxotremorine (OXO)-enhanced hanced K4-evoked release of dopamine...Results showed that al- K+-evoked release of dopamine (DA) from perifused stria- though oxotremorine -enhanced K4-evoked release of dopamine tal slices
Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Amanda M.; Kim, Hoon; Ralph, John
Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. During pretreatment, endogenous acetate hydrolyzes to acetic acid that can subsequently catalyze the breakdown of poplar wood, increasing the efficiency of biomass pretreatment. Poplar genotypes varying in cell wall composition were pretreated in 0.3% H 2SO 4 in non-isothermal batch reactors. Acetic acid released from the wood was positively related to sugar release during pretreatment ( R ≥ 0.9), and inversely proportional to the lignin content of the poplar wood ( R = 0.6). There is significant variation in wood chemistry amongmore » P. trichocarpa genotypes. As a result, this study elucidated patterns of cell wall deconstruction and clearly links carbohydrate solubilization to acetate release. Tailoring biomass feedstocks for acetate release could enhance pretreatment efficiencies.« less
Natural acetylation impacts carbohydrate recovery during deconstruction of Populus trichocarpa wood
Johnson, Amanda M.; Kim, Hoon; Ralph, John; ...
2017-02-23
Significant variation in the inherent degree of acetylation naturally exists in the xylem cell walls of Populus trichocarpa. During pretreatment, endogenous acetate hydrolyzes to acetic acid that can subsequently catalyze the breakdown of poplar wood, increasing the efficiency of biomass pretreatment. Poplar genotypes varying in cell wall composition were pretreated in 0.3% H 2SO 4 in non-isothermal batch reactors. Acetic acid released from the wood was positively related to sugar release during pretreatment ( R ≥ 0.9), and inversely proportional to the lignin content of the poplar wood ( R = 0.6). There is significant variation in wood chemistry amongmore » P. trichocarpa genotypes. As a result, this study elucidated patterns of cell wall deconstruction and clearly links carbohydrate solubilization to acetate release. Tailoring biomass feedstocks for acetate release could enhance pretreatment efficiencies.« less
Kanabar, V; Page, C P; Simcock, D E; Karner, C; Mahn, K; O'Connor, B J; Hirst, S J
2008-06-01
The glycosaminoglycan heparin has anti-inflammatory activity and is exclusively found in mast cells, which are localized within airway smooth muscle (ASM) bundles of asthmatic airways. Interleukin (IL)-13 induces the production of multiple inflammatory mediators from ASM including the eosinophil chemoattractant chemokine, eotaxin-1. Heparin and related glycosaminoglycan polymers having structurally heterogeneous polysaccharide side chains that varied in molecular weight, sulphation and anionic charge were used to identify features of the heparin molecule linked to anti-inflammatory activity. Cultured human ASM cells were stimulated with interleukin (IL)-13 in the absence or presence of heparin and related polymers. Eotaxin-1 was quantified using chemokine antibody arrays and ELISA. Unfractionated heparin attenuated IL-13-dependent eotaxin-1 production and this effect was reproduced with low molecular weight heparins (3 and 6 kDa), demonstrating a minimum activity fragment of at least 3 kDa. N-desulphated, 20% re-N-acetylated heparin (anticoagulant) was ineffective against IL-13-dependent eotaxin-1 production compared with 90% re-N-acetylated (anticoagulant) or O-desulphated (non-anticoagulant) heparin, suggesting a requirement for N-sulphation independent of anticoagulant activity. Other sulphated molecules with variable anionic charge and molecular weight exceeding 3 kDa (dextran sulphate, fucoidan, chondroitin sulphate B) inhibited IL-13-stimulated eotaxin-1 release to varying degrees. However, non-sulphated dextran had no effect. Inhibition of IL-13-dependent eotaxin-1 release by heparin involved but did not depend upon sulphation, though loss of N-sulphation reduced the attenuating activity, which could be restored by N-acetylation. This anti-inflammatory effect was also partially dependent on anionic charge, but independent of molecular size above 3 kDa and the anticoagulant action of heparin.
NASA Astrophysics Data System (ADS)
Raeder, K.; Hoar, T. J.; Anderson, J. L.; Collins, N.; Hendricks, J.; Kershaw, H.; Ha, S.; Snyder, C.; Skamarock, W. C.; Mizzi, A. P.; Liu, H.; Liu, J.; Pedatella, N. M.; Karspeck, A. R.; Karol, S. I.; Bitz, C. M.; Zhang, Y.
2017-12-01
The capabilities of the Data Assimilation Research Testbed (DART) at NCAR have been significantly expanded with the recent "Manhattan" release. DART is an ensemble Kalman filter based suite of tools, which enables researchers to use data assimilation (DA) without first becoming DA experts. Highlights: significant improvement in efficient ensemble DA for very large models on thousands of processors, direct read and write of model state files in parallel, more control of the DA output for finer-grained analysis, new model interfaces which are useful to a variety of geophysical researchers, new observation forward operators and the ability to use precomputed forward operators from the forecast model. The new model interfaces and example applications include the following: MPAS-A; Model for Prediction Across Scales - Atmosphere is a global, nonhydrostatic, variable-resolution mesh atmospheric model, which facilitates multi-scale analysis and forecasting. The absence of distinct subdomains eliminates problems associated with subdomain boundaries. It demonstrates the ability to consistently produce higher-quality analyses than coarse, uniform meshes do. WRF-Chem; Weather Research and Forecasting + (MOZART) Chemistry model assimilates observations from FRAPPÉ (Front Range Air Pollution and Photochemistry Experiment). WACCM-X; Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension assimilates observations of electron density to investigate sudden stratospheric warming. CESM (weakly) coupled assimilation; NCAR's Community Earth System Model is used for assimilation of atmospheric and oceanic observations into their respective components using coupled atmosphere+land+ocean+sea+ice forecasts. CESM2.0; Assimilation in the atmospheric component (CAM, WACCM) of the newly released version is supported. This version contains new and extensively updated components and software environment. CICE; Los Alamos sea ice model (in CESM) is used to assimilate multivariate sea ice concentration observations to constrain the model's ice thickness, concentration, and parameters.
Aerobic exercise modulates anticipatory reward processing via the μ-opioid receptor system.
Saanijoki, Tiina; Nummenmaa, Lauri; Tuulari, Jetro J; Tuominen, Lauri; Arponen, Eveliina; Kalliokoski, Kari K; Hirvonen, Jussi
2018-06-08
Physical exercise modulates food reward and helps control body weight. The endogenous µ-opioid receptor (MOR) system is involved in rewarding aspects of both food and physical exercise, yet interaction between endogenous opioid release following exercise and anticipatory food reward remains unresolved. Here we tested whether exercise-induced opioid release correlates with increased anticipatory reward processing in humans. We scanned 24 healthy lean men after rest and after a 1 h session of aerobic exercise with positron emission tomography (PET) using MOR-selective radioligand [ 11 C]carfentanil. After both PET scans, the subjects underwent a functional magnetic resonance imaging (fMRI) experiment where they viewed pictures of palatable versus nonpalatable foods to trigger anticipatory food reward responses. Exercise-induced changes in MOR binding in key regions of reward circuit (amygdala, thalamus, ventral and dorsal striatum, and orbitofrontal and cingulate cortices) were used to predict the changes in anticipatory reward responses in fMRI. Exercise-induced changes in MOR binding correlated negatively with the exercise-induced changes in neural anticipatory food reward responses in orbitofrontal and cingulate cortices, insula, ventral striatum, amygdala, and thalamus: higher exercise-induced opioid release predicted higher brain responses to palatable versus nonpalatable foods. We conclude that MOR activation following exercise may contribute to the considerable interindividual variation in food craving and consumption after exercise, which might promote compensatory eating and compromise weight control. © 2018 Wiley Periodicals, Inc.
Andrews, Zane B.; Erion, Derek; Beiler, Rudolph; Liu, Zhong-Wu; Abizaid, Alfonso; Zigman, Jeffrey; Elsworth, John D.; Savitt, Joseph M.; DiMarchi, Richard; Tschoep, Matthias; Roth, Robert H.; Gao, Xiao-Bing; Horvath, Tamas L.
2010-01-01
Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors (growth hormone secretagogue receptor, GHSR) are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson’s disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, ROS production and biogenesis. Taken together, our data reveals that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. PMID:19906954
A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain
Tedjakumala, Stevanus R.; Rouquette, Jacques; Boizeau, Marie-Laure; Mesce, Karen A.; Hotier, Lucie; Massou, Isabelle; Giurfa, Martin
2017-01-01
Dopamine (DA) plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US). Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH) immunoreactivity (ir) to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1–C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES) and the antennal lobe (AL); the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL) of the mushroom body (MB); the C3 cluster is located below the calyces (CA) of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning. PMID:28740466
Dellu-Hagedorn, Françoise; Rivalan, Marion; Fitoussi, Aurélie; De Deurwaerdère, Philippe
2018-04-19
Several impulse control disorders such as ADHD, mania, personality disorders or substance abuse share common behavioural traits, like impulsiveness, risk-taking or inflexible behaviour. These disorders are treated with drugs targeting dopamine (DA) and/or serotonin (5-HT). However, the patient's monoamine imbalance that these neurotransmitters compensate is unclear. This study aims to investigate the patterns of DA and 5-HT metabolisms at rest within selected brain regions related to inter-individual variability in six main components of impulsivity/compulsivity (anticipatory hyperactivity, premature responses, delay discounting, risk-taking, perseveration, flexibility). Rats with adaptive and highly inadaptive behaviours were identified in each task and a sensitive biochemical approach allowed mapping of post-mortem endogenous monoamine tissue content in 20 brain areas. Distinct patterns of 5-HT and DA metabolisms were revealed according to the behavioural traits. Except for hyperactive responses, lower control of actions was mainly associated with a lower DA or 5-HT metabolism in prefrontal and/or subcortical areas (i.e. in orbitofrontal cortex (DA), amygdala and anterior cingulate cortex (5-HT) for inflexible and risk-prone rats). Our results reveal the complex nature of behavioural traits related to impulse control disorders through their associated monoaminergic networks at rest, paving the way for understanding the link between mental disorders and drug therapeutic actions.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
METHAMPHETAMINE-INDUCED NEUROTOXICITY DISRUPTS NATURALLY OCCURRING PHASIC DOPAMINE SIGNALING
Howard, Christopher D.; Daberkow, David P.; Ramsson, Eric S.; Keefe, Kristen A.; Garris, Paul A.
2013-01-01
Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson’s disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, prior studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called “spontaneous” phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these sub-second DA changes may play a role in enhancing reward-cue associations. METH-pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits. PMID:23574406