Science.gov

Sample records for endogenous murine parkin

  1. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress.

    PubMed

    Pickrell, Alicia M; Huang, Chiu-Hui; Kennedy, Scott R; Ordureau, Alban; Sideris, Dionisia P; Hoekstra, Jake G; Harper, J Wade; Youle, Richard J

    2015-07-15

    Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.

  2. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress

    PubMed Central

    Pickrell, Alicia M.; Huang, Chiu-Hui; Kennedy, Scott R.; Ordureau, Alban; Sideris, Dionisia P.; Hoekstra, Jake G.; Harper, J. Wade; Youle, Richard J.

    2016-01-01

    SUMMARY Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes. PMID:26182419

  3. Endogenous murine Aβ increases amyloid deposition in APP23 but not in APPPS1 transgenic mice.

    PubMed

    Mahler, Jasmin; Morales-Corraliza, Jose; Stolz, Julia; Skodras, Angelos; Radde, Rebecca; Duma, Carmen C; Eisele, Yvonne S; Mazzella, Matthew J; Wong, Harrison; Klunk, William E; Nilsson, K Peter R; Staufenbiel, Matthias; Mathews, Paul M; Jucker, Mathias; Wegenast-Braun, Bettina M

    2015-07-01

    Endogenous murine amyloid-β peptide (Aβ) is expressed in most Aβ precursor protein (APP) transgenic mouse models of Alzheimer's disease but its contribution to β-amyloidosis remains unclear. We demonstrate ∼ 35% increased cerebral Aβ load in APP23 transgenic mice compared with age-matched APP23 mice on an App-null background. No such difference was found for the much faster Aβ-depositing APPPS1 transgenic mouse model between animals with or without the murine App gene. Nevertheless, both APP23 and APPPS1 mice codeposited murine Aβ, and immunoelectron microscopy revealed a tight association of murine Aβ with human Aβ fibrils. Deposition of murine Aβ was considerably less efficient compared with the deposition of human Aβ indicating a lower amyloidogenic potential of murine Aβ in vivo. The amyloid dyes Pittsburgh Compound-B and pentamer formyl thiophene acetic acid did not differentiate between amyloid deposits consisting of human Aβ and deposits of mixed human-murine Aβ. Our data demonstrate a differential effect of murine Aβ on human Aβ deposition in different APP transgenic mice. The mechanistically complex interaction of human and mouse Aβ may affect pathogenesis of the models and should be considered when models are used for translational preclinical studies.

  4. Interleukin-27 signaling promotes immunity against endogenously arising murine tumors.

    PubMed

    Natividad, Karlo D T; Junankar, Simon R; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent.

  5. Interleukin-27 Signaling Promotes Immunity against Endogenously Arising Murine Tumors

    PubMed Central

    Natividad, Karlo D. T.; Junankar, Simon R.; Mohd Redzwan, Norhanani; Nair, Radhika; Wirasinha, Rushika C.; King, Cecile; Brink, Robert; Swarbrick, Alexander; Batten, Marcel

    2013-01-01

    Interleukin-27 (IL-27) is a pleiotropic cytokine but its immunosuppressive effects predominate during many in vivo immunological challenges. Despite this, evidence from tumor cell line transfer models suggested that IL-27 could promote immune responses in the tumor context. However, the role of IL-27 in immunity against tumors that develop in situ and in tumor immunosurveillance remain undefined. In this study, we demonstrate that tumor development and growth are accelerated in IL-27 receptor α (Il27ra)-deficient mice. Enhanced tumor growth in both carcinogen-induced fibrosarcoma and oncogene-driven mammary carcinoma was associated with decreased interferon-γ production by CD4 and CD8 T cells and increased numbers of regulatory T-cells (Treg). This is the first study to show that IL-27 promotes protective immune responses against endogenous tumors, which is critical as the basis for future development of an IL-27 based therapeutic agent. PMID:23554861

  6. Structure, distribution, and expression of an ancient murine endogenous retroviruslike DNA family.

    PubMed Central

    Obata, M M; Khan, A S

    1988-01-01

    An endogenous retroviruslike DNA, B-26, was cloned from a BALB/c mouse embryo gene library by using a generalized murine leukemia virus DNA probe. Southern blot hybridization and nucleotide sequence analyses indicated that B-26 DNA might be a novel member of the GLN DNA family (A. Itin and E. Keshet, J. Virol. 59:301-307, 1986) which contains murine leukemia virus-related pol and env sequences. Northern analysis indicated that B-26-related RNAs of 8.4 and 3.0 kilobases were transcribed in thymus, spleen, brain, and liver tissues of 6-week-old BALB/c mice. Images PMID:3172346

  7. Transcriptomic Analysis of Murine Embryos Lacking Endogenous Retinoic Acid Signaling

    PubMed Central

    Paschaki, Marie; Schneider, Carole; Rhinn, Muriel; Thibault-Carpentier, Christelle; Dembélé, Doulaye; Niederreither, Karen; Dollé, Pascal

    2013-01-01

    Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2−/−) embryos — unable to synthesize RA from maternally-derived retinol — using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic analyses highlighted groups (clusters) of genes displaying similar behaviors in mutant tissues, and biological functions most significantly affected (e.g. mTOR, VEGF, ILK signaling in forebrain tissues; pyrimidine and purine metabolism

  8. Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson's disease

    PubMed Central

    Romaní-Aumedes, J; Canal, M; Martín-Flores, N; Sun, X; Pérez-Fernández, V; Wewering, S; Fernández-Santiago, R; Ezquerra, M; Pont-Sunyer, C; Lafuente, A; Alberch, J; Luebbert, H; Tolosa, E; Levy, O A; Greene, L A; Malagelada, C

    2014-01-01

    Mutations in the PARK2 gene are associated with an autosomal recessive form of juvenile parkinsonism (AR-JP). These mutations affect parkin solubility and impair its E3 ligase activity, leading to a toxic accumulation of proteins within susceptible neurons that results in a slow but progressive neuronal degeneration and cell death. Here, we report that RTP801/REDD1, a pro-apoptotic negative regulator of survival kinases mTOR and Akt, is one of such parkin substrates. We observed that parkin knockdown elevated RTP801 in sympathetic neurons and neuronal PC12 cells, whereas ectopic parkin enhanced RTP801 poly-ubiquitination and proteasomal degradation. In parkin knockout mouse brains and in human fibroblasts from AR-JP patients with parkin mutations, RTP801 levels were elevated. Moreover, in human postmortem PD brains with mutated parkin, nigral neurons were highly positive for RTP801. Further consistent with the idea that RTP801 is a substrate for parkin, the two endogenous proteins interacted in reciprocal co-immunoprecipitates of cell lysates. A potential physiological role for parkin-mediated RTP801 degradation is indicated by observations that parkin protects neuronal cells from death caused by RTP801 overexpression by mediating its degradation, whereas parkin knockdown exacerbates such death. Similarly, parkin knockdown enhanced RTP801 induction in neuronal cells exposed to the Parkinson's disease mimetic 6-hydroxydopamine and increased sensitivity to this toxin. This response to parkin loss of function appeared to be mediated by RTP801 as it was abolished by RTP801 knockdown. Taken together these results indicate that RTP801 is a novel parkin substrate that may contribute to neurodegeneration caused by loss of parkin expression or activity. PMID:25101677

  9. Endogenous glucocorticoids modulate neutrophil function in a murine model of haemolytic uraemic syndrome

    PubMed Central

    Gómez, S A; Fernández, G C; Camerano, G; Dran, G; Rosa, F A; Barrionuevo, P; Isturiz, M A; Palermo, M S

    2005-01-01

    Haemolytic uraemic syndrome (HUS) is caused by Shiga-toxin-producing Escherichia coli (STEC). Although, Shiga toxin type 2 (Stx2) is responsible for the renal pathogenesis observed in patients, the inflammatory response, including cytokines and polymorphonuclear neutrophils (PMN), plays a key role in the development of HUS. Previously, we demonstrated that Stx2 injection generates an anti-inflammatory reaction characterized by endogenous glucocorticoid (GC) secretion, which attenuates HUS severity in mice. Here, we analysed the effects of Stx2 on the pathogenic function of PMN and the potential role of endogenous GC to limit PMN activation during HUS development in a murine model. For this purpose we assessed the functional activity of isolated PMN after in vivo treatment with Stx2 alone or in simultaneous treatment with Ru486 (GC receptor antagonist). We found that Stx2 increased the generation of reactive oxygen intermediates (ROI) under phobol-myristate-acetate (PMA) stimulation and that the simultaneous treatment with Ru486 strengthened this effect. Conversely, both treatments significantly inhibited in vitro phagocytosis. Furthermore, Stx2 augmented in vitro PMN adhesion to fibrinogen (FGN) and bovine serum albumin (BSA) but not to collagen type I (CTI). Stx2 + Ru486 caused enhanced adhesion to BSA and CTI compared to Stx2. Whereas Stx2 significantly increased migration towards N-formyl-methionyl-leucyl-phenylalanine (fMLP), Stx2 + Ru486 treatment enhanced and accelerated this process. The percentage of apoptotic PMN from Stx2-treated mice was higher compared with controls, but equal to Stx2 + Ru486 treated mice. We conclude that Stx2 activates PMN and that the absence of endogenous GC enhances this activation suggesting that endogenous GC can, at least partially, counteract PMN inflammatory functions. PMID:15606615

  10. Direct demonstration of murine thymus-dependent cell surface endogenous immunoglobin.

    PubMed Central

    Szenberg, A; Marchalonis, J J; Warner, N L

    1977-01-01

    Antisera raised in mammals to murine immunoglobulin (Ig) do not detect surface Ig on thymus-dependent (T) lymphoma cells as assessed by immunofluorescence analysis. In contrast, chicken antibodies, produced against the (Fab)2 fragment of normal mouse IgG and purified by binding to and elution from IgG-Sepharose 4B, give strong indirect fluorescence with murine T cells and cultured T lymphoma cells. The surface Ig caps, is shed, and reappears, indicating that it is of endogenous origin. Nonlymphoid tumor cells of various myeloid types do not bind this reagent, even though they bear avid Fc receptors. The capacity of chicken antibodies to bind to both bone-marrow-dependent and T cell lymphomas was abolished by adsorption with myeloma-derived kappa chains coupled to Sepharose. The kappa antigenic determinant recognized by the chicken antibodies may thus be different from that seen by mammalian antibodies, and the degree of exposure of Ig on the T lymphoma surface might also affect ease of detectability with these reagents. These data provide direct evidence that T lymphocytes and T lymphoma cells express and synthesize a surface Ig containing determinants that at least 'crossreact with bone-marrow-cell-derived kappa chains. Images PMID:405673

  11. Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus.

    PubMed Central

    Jenkins, N A; Copeland, N G; Taylor, B A; Lee, B K

    1982-01-01

    The endogenous ecotropic murine leukemia virus DNA content and integration sites were characterized for 54 inbred strains and substrains of mice by restriction enzyme digestion, Southern blotting, and hybridization with an ecotropic murine leukemia virus DNA-specific probe. More than 75% of these strains carried endogenous ecotropic proviruses which were located in at least 29 distinct integration sites in chromosomes of Mus musculus. Fourteen of these proviruses have been assigned specific locus designations. Most, but not all, of the endogenous ecotropic proviruses were structurally indistinguishable by this analysis from the prototype AKR ecotropic virus, and the distribution of these proviruses followed known relationships among the inbred strains and substrains of mice. These results suggest that, in general, viral DNA integration preceded the establishment of inbred mouse strains and that these integrations are relatively stable. Images PMID:6287001

  12. Parkin is ubiquitinated by Nrdp1 and abrogates Nrdp1-induced oxidative stress.

    PubMed

    Yu, Furong; Zhou, Jianhua

    2008-07-25

    Parkin plays an important role in the pathogenesis of Parkinson's disease. We previously described that Nrdp1, a RING-finger ubiquitin E3 ligase, interacted with Parkin by the yeast two-hybrid assay and by co-immunoprecipitation. Here we further demonstrated that overexpression of Nrdp1 significantly reduced the endogenous Parkin level in an Nrdp1 dosage-dependent and proteasome-dependent manner. More importantly, Nrdp1 ubiquitinated Parkin and catalyzed the poly-ubiquitin chains on Parkin in vitro as well as in cells, indicating Parkin is an Nrdp1 substrate. In addition, we demonstrated that overexpression of Nrdp1 increased the production of reactive oxygen species (ROS), which was abrogated by co-expression of Parkin. Conversely, suppression of Nrdp1 by shRNA conferred SH-SY5Y cells a lower ROS level. Together, we provided evidence that interactions between Nrdp1 and Parkin negatively regulated Parkin level and affected ROS production, suggesting that Nrdp1 may play a role in Parkinson's disease.

  13. Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model

    PubMed Central

    Cruz-Martinez, P; González-Granero, S; Molina-Navarro, M M; Pacheco-Torres, J; García-Verdugo, J M; Geijo-Barrientos, E; Jones, J; Martinez, S

    2016-01-01

    Current treatments for demyelinating diseases are generally only capable of ameliorating the symptoms, with little to no effect in decreasing myelin loss nor promoting functional recovery. Mesenchymal stem cells (MSCs) have been shown by many researchers to be a potential therapeutic tool in treating various neurodegenerative diseases, including demyelinating disorders. However, in the majority of the cases, the effect was only observed locally, in the area surrounding the graft. Thus, in order to achieve general remyelination in various brain structures simultaneously, bone marrow-derived MSCs were transplanted into the lateral ventricles (LVs) of the cuprizone murine model. In this manner, the cells may secrete soluble factors into the cerebrospinal fluid (CSF) and boost the endogenous oligodendrogenic potential of the subventricular zone (SVZ). As a result, oligodendrocyte progenitor cells (OPCs) were recruited within the corpus callosum (CC) over time, correlating with an increased myelin content. Electrophysiological studies, together with electron microscopy (EM) analysis, indicated that the newly formed myelin correctly enveloped the demyelinated axons and increased signal transduction through the CC. Moreover, increased neural stem progenitor cell (NSPC) proliferation was observed in the SVZ, possibly due to the tropic factors released by the MSCs. In conclusion, the findings of this study revealed that intraventricular injections of MSCs is a feasible method to elicit a paracrine effect in the oligodendrogenic niche of the SVZ, which is prone to respond to the factors secreted into the CSF and therefore promoting oligodendrogenesis and functional remyelination. PMID:27171265

  14. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    SciTech Connect

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D. )

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.

  15. The role of parkin in the differential susceptibility of tuberoinfundibular and nigrostriatal dopamine neurons to acute toxicant exposure.

    PubMed

    Benskey, Matthew J; Manfredsson, Fredric P; Lookingland, Keith J; Goudreau, John L

    2015-01-01

    Parkinson disease causes degeneration of nigrostriatal dopamine (DA) neurons, while tuberoinfundibular DA neurons remain unaffected. A similar pattern is observed following exposure to 1-methy-4-phenyl-1,2,3,6-tetrahydropyradine (MPTP). The mechanism of tuberoinfundibular neuronal recovery from MPTP is associated with up-regulation of parkin protein. Here we tested if parkin mediates tuberoinfundibular neuronal recovery from MPTP by knocking-down parkin in tuberoinfundibular neurons using recombinant adeno-associated virus (rAAV), expressing a short hairpin RNA (shRNA) directed toward parkin. Following knockdown, axon terminal DA and tyrosine hydroxylase (TH) concentrations were analyzed 24h post-MPTP administration. rAAV-shRNA-mediated knockdown of endogenous parkin rendered tuberoinfundibular neurons susceptible to MPTP induced terminal DA loss, but not TH loss, within 24h post-MPTP. To determine if the neuroprotective benefits of parkin up-regulation could be translated to nigrostriatal neurons, rAAV expressing human parkin was injected into the substantia nigra of mice and axon terminal DA and TH concentrations were analyzed 24h post-MPTP. Nigral parkin over-expression prevented loss of TH in the axon terminals and soma of nigrostriatal neurons, but had no effect on terminal DA loss within 24h post-MPTP. These data show that parkin is necessary for the recovery of terminal DA concentrations within tuberoinfundibular neurons following acute MPTP administration, and parkin can rescue MPTP-induced decreases in TH within nigrostriatal neurons.

  16. Parkin Regulation and Neurodegenerative Disorders

    PubMed Central

    Zhang, Cheng-Wu; Hang, Liting; Yao, Tso-Pang; Lim, Kah-Leong

    2016-01-01

    Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders. PMID:26793099

  17. A locus that enhances the induction of endogenous ecotropic murine leukemia viruses is distinct from genome-length ecotropic proviruses.

    PubMed Central

    Horowitz, J M; Risser, R

    1982-01-01

    The segregation of genes that enhance the induction of ecotropic murine leukemia viruses (In loci) has been compared with the segregation of ecotropic-specific nucleotide sequences in 12 low-leukemic mouse strains and 18 recombinant inbred strains. Endogenous ecotropic viruses of these strains are of genome length and structurally similar to AKR ecotropic proviruses. Low-leukemic strains of related pedigree contain ecotropic proviruses at common integration sites. Loci previously identified which enhance induction of ecotropic viruses (In genes) were correlated with the inheritance of ecotropic viral sequences in inbred low-leukemic mouse strains and in CXB recombinant inbred mouse strains. However, four BXH recombinant inbred strains were observed to possess an In gene(s) yet lack the probed envelope gene region for the corresponding endogenous ecotropic virus. These observations indicate that at least one gene that enhances ecotropic virus expression in vitro is encoded by DNA sequences outside ecotropic proviruses or by subgenomic viral sequences. Images PMID:6294342

  18. Probes of Ubiquitin E3 ligases distinguish different stages of Parkin activation

    PubMed Central

    Pao, Kuan-Chuan; Stanley, Mathew; Han, Cong; Lai, Yu-Chiang; Murphy, Paul; Balk, Kristin; Wood, Nicola T.; Corti, Olga; Corvol, Jean-Christophe; Muqit, Miratul M.K.; Virdee, Satpal

    2016-01-01

    E3 ligases represent an important class of enzymes, yet there are currently no chemical probes to profile their activity. We develop a new class of activity-based probe by reengineering of a ubiquitin-charged E2 conjugating enzyme and demonstrate their utility by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase Parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in Parkin activation. We also profile Parkin patient disease-associated mutations and strikingly demonstrate that they largely mediate their effect by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous Parkin activity revealing that endogenous Parkin is activated in neuronal cell lines (≥75 %) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-Parkin signalling as demonstrated by compatibility with Parkinson’s disease patient-derived samples. PMID:26928937

  19. Endogenous tissue factor pathway inhibitor has a limited effect on host defence in murine pneumococcal pneumonia.

    PubMed

    van den Boogaard, Florry E; van 't Veer, Cornelis; Roelofs, Joris J T H; Meijers, Joost C M; Schultz, Marcus J; Broze, George J; van der Poll, Tom

    2015-07-01

    Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Coagulation and inflammation interact in the host response to infection. Tissue factor pathway inhibitor (TFPI) is a natural anticoagulant protein that inhibits tissue factor (TF), the main activator of inflammation-induced coagulation. It was the objective of this study to investigate the effect of endogenous TFPI levels on coagulation, inflammation and bacterial growth during S. pneumoniae pneumonia in mice. The effect of low endogenous TFPI levels was studied by administration of a neutralising anti-TFPI antibody to wild-type mice, and by using genetically modified mice expressing low levels of TFPI, due to a genetic deletion of the first Kunitz domain of TFPI (TFPIK1(-/-)) rescued with a human TFPI transgene. Pneumonia was induced by intranasal inoculation with S. pneumoniae and samples were obtained at 6, 24 and 48 hours after infection. Anti-TFPI reduced TFPI activity by ~50 %. Homozygous lowTFPI mice and heterozygous controls had ~10 % and ~50 % of normal TFPI activity, respectively. TFPI levels did not influence bacterial growth or dissemination. Whereas lung pathology was unaffected in all groups, mice with ~10 % (but not with ~50 %) of TFPI levels displayed elevated lung cytokine and chemokine concentrations 24 hours after infection. None of the groups with low TFPI levels showed an altered procoagulant response in lungs or plasma during pneumonia. These data argue against an important role for endogenous TFPI in the antibacterial, inflammatory and procoagulant response during pneumococcal pneumonia.

  20. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis.

    PubMed

    Praticò, D; Cyrus, T; Li, H; FitzGerald, G A

    2000-12-01

    Thromboxane A(2) is a potent vasoconstrictor and platelet agonist; prostacyclin is a potent platelet inhibitor and vasodilator. Altered biosynthesis of these eicosanoids is a feature of human hypercholesterolemia and atherosclerosis. This study examined whether in 2 murine models of atherosclerosis their levels are increased and correlated with the evolution of the disease. Urinary 2,3-dinor thromboxane B(2) and 2,3-dinor-6-keto prostaglandin F(1 alpha), metabolites of thromboxane and prostacyclin, respectively, were assayed in apoliprotein E (apoE)-deficient mice on chow and low-density lipoprotein receptor (LDLR)-deficient mice on chow and a Western-type diet. Atherosclerosis lesion area was measured by en face method. Both eicosanoids increased in apoE-deficient mice on chow and in LDLR-deficient mice on a high-fat diet, but not in LDLR-deficient mice on chow by the end of the study. Aspirin suppressed ex vivo platelet aggregation, serum thromboxane B(2), and 2,3-dinor thromboxane B(2), and significantly reduced the excretion of 2,3-dinor-6-keto prostaglandin F(1 alpha) in these animals. This study demonstrates that thromboxane as well as prostacyclin biosynthesis is increased in 2 murine models of atherogenesis and is secondary to increased in vivo platelet activation. Assessment of their generation in these models may afford the basis for future studies on the functional role of these eicosanoids in the evolution and progression of atherosclerosis. (Blood. 2000;96:3823-3826)

  1. Mobilization of Endogenous Stem Cell Populations Enhances Fracture Healing in a Murine Femoral Fracture Model

    PubMed Central

    Toupadakis, Chrisoula A.; Granick, Jennifer L.; Sagy, Myrrh; Wong, Alice; Ghassemi, Ehssan; Chung, Dai-Jung; Borjesson, Dori L.; Yellowley, Clare E.

    2013-01-01

    Background Delivery of bone marrow derived stem and progenitor cells to the site of injury is an effective strategy to enhance bone healing. An alternate approach is to mobilize endogenous, heterogeneous stem cells that will home to the site of injury. AMD3100 is an antagonist of the chemokine receptor 4 (CXCR4) that rapidly mobilizes stem cell populations into peripheral blood. Our hypothesis was that increasing circulating numbers of stem and progenitor cells using AMD3100 will improve bone fracture healing. Methods A transverse femoral fracture was induced in C57BL/6 mice, after which they were subcutaneously injected for 3 days with AMD3100 or saline control. Mesenchymal stem cells (MSCs), hematopoietic stem and progenitor cells (HSPCs), and endothelial progenitor cells (EPCs) in the peripheral blood and bone marrow were evaluated via flow cytometry, automated hematology analysis, and cell culture 24 hours after injection and/or fracture. Healing was assessed up to 84 days after fracture by histomorphometry and µCT. Results AMD3100 injection resulted in higher numbers of circulating MSCs, HSCs, and EPCs. µCT data demonstrated that the fracture callus was significantly larger compared to the saline controls at day 21 and significantly smaller (remodeled) at day 84. AMD3100-treated mice have a significantly higher bone mineral density than saline-treated counterparts at day 84. Discussion Our data demonstrate that early cell mobilization had significant positive effects on healing throughout the regenerative process. Rapid mobilization of endogenous stem cells could provide an effective alternative strategy to cell transplantation for enhancing tissue regeneration. PMID:23831362

  2. Regulation of DNA repair by parkin

    SciTech Connect

    Kao, Shyan-Yuan

    2009-05-01

    Mutation of parkin is one of the most prevalent causes of autosomal recessive Parkinson's disease (PD). Parkin is an E3 ubiquitin ligase that acts on a variety of substrates, resulting in polyubiquitination and degradation by the proteasome or monoubiquitination and regulation of biological activity. However, the cellular functions of parkin that relate to its pathological involvement in PD are not well understood. Here we show that parkin is essential for optimal repair of DNA damage. Parkin-deficient cells exhibit reduced DNA excision repair that can be restored by transfection of wild-type parkin, but not by transfection of a pathological parkin mutant. Parkin also protects against DNA damage-induced cell death, an activity that is largely lost in the pathological mutant. Moreover, parkin interacts with the proliferating cell nuclear antigen (PCNA), a protein that coordinates DNA excision repair. These results suggest that parkin promotes DNA repair and protects against genotoxicity, and implicate DNA damage as a potential pathogenic mechanism in PD.

  3. Cure of murine thalassemia by bone marrow transplantation without eradication of endogenous stem cells

    SciTech Connect

    Wagemaker, G.; Visser, T.P.; van Bekkum, D.W.

    1986-09-01

    alpha-Thalassemic heterozygous (Hbath/+) mice were used to investigate the possible selective advantage of transplanted normal (+/+) hemopoietic cells. Without conditioning by total-body irradiation (TBI), infusion of large numbers of normal bone marrow cells failed to correct the thalassemic peripheral blood phenotype. Since the recipients' stem cells are normal with respect to number and differentiation capacity, it was thought that the transplanted stem cells were not able to lodge, or that they were not stimulated to proliferate. Therefore, a nonlethal dose of TBI was given to temporarily reduce endogenous stem cell numbers and hemopoiesis. TBI doses of 2 or 3 Gy followed by infusion of normal bone marrow cells proved to be effective in replacing the thalassemic red cells by normal red cells, whereas a dose of 1 Gy was ineffective. It is concluded that cure of thalassemia by bone marrow transplantation does not necessarily require eradication of thalassemic stem cells. Consequently, the objectives of conditioning regimens for bone marrow transplantation of thalassemic patients (and possibly other nonmalignant hemopoietic disorders) should be reconsidered.

  4. Sulfhydration mediates neuroprotective actions of parkin

    PubMed Central

    Vandiver, M. Scott; Paul, Bindu D.; Xu, Risheng; Karuppagounder, Senthilkumar; Rao, Feng; Snowman, Adele M.; Ko, Han Seok; Lee, Yun Il; Dawson, Valina L.; Dawson, Ted M.; Sen, Nilkantha; Snyder, Solomon H.

    2013-01-01

    Increases in S-nitrosylation and inactivation of the neuroprotective ubiquitin E3 ligase, parkin, in the brains of patients with Parkinson’s Disease (PD) are thought to be pathogenic and suggest a possible mechanism linking parkin to sporadic PD. Here we demonstrate that physiologic modification of parkin by hydrogen sulfide (H2S), termed sulfhydration, enhances its catalytic activity. Sulfhydration sites are identified by mass spectrometry analysis and investigated by site directed mutagenesis. Parkin sulfhydration is markedly depleted in the brains of patients with PD, suggesting that this loss may be pathologic. This implies that H2S donors may be therapeutic. PMID:23535647

  5. BAC Transgenic Mice Expressing a Truncated Mutant Parkin Exhibit Age-dependent Hypokinetic Motor Deficits, Dopaminergic Neuron Degeneration, and Accumulation of Proteinase K-Resistant Alpha-Synuclein

    PubMed Central

    Lu, Xiao-Hong; Fleming, Sheila M.; Meurers, Bernhard; Ackerson, Larry C.; Mortazavi, Farzad; Lo, Victor; Hernandez, Daniela; Sulzer, David; Jackson, George R.; Maidment, Nigel T.; Chesselet, Marie-Francoise; Yang, X. William

    2009-01-01

    Summary Recessive mutations in parkin are the most common cause of familial early onset Parkinson's disease (PD). Recent studies suggest that certain parkin mutants may exert dominant toxic effects to cultured cells and such dominant toxicity can lead to progressive dopaminergic (DA) neuron degeneration in Drosophila. To explore whether mutant parkin could exert similar pathogenic effects to mammalian DA neurons in vivo, we developed a Bacterial Artificial Chromosome (BAC) transgenic mouse model expressing a C-terminal truncated human mutant parkin (Parkin-Q311X) in DA neurons driven by a dopamine transporter promoter. Parkin-Q311X mice exhibit multiple late-onset and progressive hypokinetic motor deficits. Stereological analyses reveal that the mutant mice develop age-dependent DA neuron degeneration in substantia nigra accompanied by a significant loss of DA neuron terminals in the striatum. Neurochemical analyses reveal a significant reduction of the striatal dopamine level in mutant mice, which is significantly correlated with their hypokinetic motor deficits. Finally, mutant Parkin-Q311X mice, but not wild-type controls, exhibit age-dependent accumulation of proteinase-K resistant endogenous α-synuclein in substantia nigra and co-localized with 3-nitrotyrosine, a marker for oxidative protein damage. Hence, our study provides the first mammalian genetic evidence that dominant toxicity of a parkin mutant is sufficient to elicit age-dependent hypokinetic motor deficits and DA neuron loss in vivo, and uncovers a causal relationship between dominant parkin toxicity and progressive α-synuclein accumulation in DA neurons. Our study underscores the need to further explore the putative link between parkin dominant toxicity and PD. PMID:19228951

  6. Olfaction in Parkin heterozygotes and compound heterozygotes

    PubMed Central

    Alcalay, R.N.; Siderowf, A.; Ottman, R.; Caccappolo, E.; Mejia-Santana, H.; Tang, M.-X.; Rosado, L.; Louis, E.; Ruiz, D.; Waters, C.; Fahn, S.; Cote, L.; Frucht, S.; Ford, B.; Orbe-Reilly, M.; Ross, B.; Verbitsky, M.; Kisselev, S.; Comella, C.; Colcher, A.; Jennings, D.; Nance, M.; Bressman, S.; Scott, W.K.; Tanner, C.; Mickel, S.; Rezak, M.; Novak, K.E.; Friedman, J.H.; Pfeiffer, R.; Marsh, L.; Hiner, B.; Clark, L.N.

    2011-01-01

    Background: While Parkinson disease (PD) is consistently associated with impaired olfaction, one study reported better olfaction among Parkin mutation carriers than noncarriers. Whether olfaction differs between Parkin mutation heterozygotes and carriers of 2 Parkin mutations (compound heterozygotes) is unknown. Objective: To assess the relationship between Parkin genotype and olfaction in PD probands and their unaffected relatives. Methods: We administered the University of Pennsylvania Smell Identification Test (UPSIT) to 44 probands in the Consortium on Risk for Early-Onset Parkinson Disease study with PD onset ≤50 years (10 Parkin mutation heterozygotes, 9 compound heterozygotes, 25 noncarriers) and 80 of their family members (18 heterozygotes, 2 compound heterozygotes, 60 noncarriers). In the probands, linear regression was used to assess the association between UPSIT score (outcome) and Parkin genotype (predictor), adjusting for covariates. Among family members without PD, we compared UPSIT performance in heterozygotes vs noncarriers using generalized estimating equations, adjusting for family membership, age, gender, and smoking. Results: Among probands with PD, compound heterozygotes had higher UPSIT scores (31.9) than heterozygotes (20.1) or noncarriers (19.9) (p < 0.001). These differences persisted after adjustment for age, gender, disease duration, and smoking. Among relatives without PD, UPSIT performance was similar in heterozygotes (32.5) vs noncarriers (32.4), and better than in heterozygotes with PD (p = 0.001). Conclusion: Olfaction is significantly reduced among Parkin mutation heterozygotes with PD but not among their heterozygous relatives without PD. Compound heterozygotes with PD have olfaction within the normal range. Further research is required to assess whether these findings reflect different neuropathology in Parkin mutation heterozygotes and compound heterozygotes. PMID:21205674

  7. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.

    PubMed

    Palacino, James J; Sagi, Dijana; Goldberg, Matthew S; Krauss, Stefan; Motz, Claudia; Wacker, Maik; Klose, Joachim; Shen, Jie

    2004-04-30

    Loss-of-function mutations in parkin are the predominant cause of familial Parkinson's disease. We previously reported that parkin-/- mice exhibit nigrostriatal deficits in the absence of nigral degeneration. Parkin has been shown to function as an E3 ubiquitin ligase. Loss of parkin function, therefore, has been hypothesized to cause nigral degeneration via an aberrant accumulation of its substrates. Here we employed a proteomic approach to determine whether loss of parkin function results in alterations in abundance and/or modification of proteins in the ventral midbrain of parkin-/- mice. Two-dimensional gel electrophoresis followed by mass spectrometry revealed decreased abundance of a number of proteins involved in mitochondrial function or oxidative stress. Consistent with reductions in several subunits of complexes I and IV, functional assays showed reductions in respiratory capacity of striatal mitochondria isolated from parkin-/- mice. Electron microscopic analysis revealed no gross morphological abnormalities in striatal mitochondria of parkin-/- mice. In addition, parkin-/- mice showed a delayed rate of weight gain, suggesting broader metabolic abnormalities. Accompanying these deficits in mitochondrial function, parkin-/- mice also exhibited decreased levels of proteins involved in protection from oxidative stress. Consistent with these findings, parkin-/- mice showed decreased serum antioxidant capacity and increased protein and lipid peroxidation. The combination of proteomic, genetic, and physiological analyses reveal an essential role for parkin in the regulation of mitochondrial function and provide the first direct evidence of mitochondrial dysfunction and oxidative damage in the absence of nigral degeneration in a genetic mouse model of Parkinson's disease.

  8. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair

    PubMed Central

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A.; Günther, Andreas

    2015-01-01

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0–11; days 0–28) or during later stages (days 6–28 and 14–28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice. PMID:25820524

  9. Attenuating endogenous Fgfr2b ligands during bleomycin-induced lung fibrosis does not compromise murine lung repair.

    PubMed

    MacKenzie, BreAnne; Henneke, Ingrid; Hezel, Stefanie; Al Alam, Denise; El Agha, Elie; Chao, Cho-Ming; Quantius, Jennifer; Wilhelm, Jochen; Jones, Matthew; Goth, Kerstin; Li, Xiaokun; Seeger, Werner; Königshoff, Melanie; Herold, Susanne; Rizvanov, Albert A; Günther, Andreas; Bellusci, Saverio

    2015-05-15

    Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26(rtTA/+);tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury (days 0-11; days 0-28) or during later stages (days 6-28 and 14-28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.

  10. Parkin Regulates the Activity of Pyruvate Kinase M2*

    PubMed Central

    Liu, Kun; Li, Fanzhou; Han, Haichao; Chen, Yue; Mao, Zebin; Luo, Jianyuan; Zhao, Yingming; Zheng, Bin; Gu, Wei; Zhao, Wenhui

    2016-01-01

    Parkin, a ubiquitin E3 ligase, is mutated in most cases of autosomal recessive early onset Parkinson disease. It was discovered that Parkin is also mutated in glioblastoma and other human malignancies and that it inhibits tumor cell growth. Here, we identified pyruvate kinase M2 (PKM2) as a unique substrate for parkin through biochemical purification. We found that parkin interacts with PKM2 both in vitro and in vivo, and this interaction dramatically increases during glucose starvation. Ubiquitylation of PKM2 by parkin does not affect its stability but decreases its enzymatic activity. Parkin regulates the glycolysis pathway and affects the cell metabolism. Our studies revealed the novel important roles of parkin in tumor cell metabolism and provided new insight for therapy of Parkinson disease. PMID:26975375

  11. Essential pathogenic role for endogenous interferon-gamma (IFN-gamma) during disease onset phase of murine experimental autoimmune orchitis. I. In vivo studies.

    PubMed

    Itoh, M; Yano, A; Xie, Q; Iwahashi, K; Takeuchi, Y; Meroni, P L; Nicoletti, F

    1998-03-01

    We previously found that immunization of CH3/He male mice with syngeneic testicular germ cells (TGC) without the aid of any adjuvants was sufficient to induce DTH to TGC and experimental autoimmune orchitis (EAO). To evaluate the role of endogenous IFN-gamma in this model, C3H/He mice immunized subcutaneously with TGC on days 0 and 14 received a single injection of anti-murine IFN-gamma MoAb on day 15, 20 or 25. On day 45, DTH to TGC was tested, testis specimens were collected for histological examination, and blood samples collected for IFN-gamma measurement. The results showed that whilst MoAb treatment on day 15 or 25 did not influence DTH responses, EAO development, and appearance of IFN-gamma in the circulation, treatment on day 20 significantly suppressed all of them. Thus, a single injection with anti-IFN-gamma MoAb may successfully down-regulate testicular autoimmunity, provided that the treatment is given at an optimal time point during disease development.

  12. Characterization of defectiveness in endogenous antigen presentation of novel murine cells established from methylcholanthrene-induced fibrosarcomas.

    PubMed Central

    Kuroda, K; Yamashina, K; Kitatani, N; Kagishima, A; Hamaoka, T; Hosaka, Y

    1995-01-01

    Three cell lines (4A1, 4C2 and 6D1 cells) derived from fibrosarcoma induced by the inoculation of 3-methylcholanthrene into C3H/HeN (H-2k) mice were examined for their ability to present antigens to CD8+ cytotoxic T lymphocytes (CTL). 6D1 and 4C2 cells were deficient in presenting endogenously synthesized influenza virus antigens to CTL, but they were able to present antigens when they were sensitized with a synthetic epitope peptide. The expression of the H-2 Kk gene in 4C2 and 6D1 cells was much reduced and was detectable only with Northern blot hybridization. The expression of two transporter genes (TAP1 and TAP2), examined by Northern hybridization, was also reduced in both cells, and negligible particularly in 4C2 cells. Interferon-gamma (IFN-gamma) treatment of these cells induced expression of Kk, TAP1 and TAP2 genes and rescued the defect of class I-restricted antigen presentation in 4C2 and 6D1 cells. Even after this treatment, however, antigen-presentation capability of 4C2 cells was still much lower than that of normal 4A1 cells. This finding suggests that 4C2 cells might have an additional defective gene(s), whose products are involved in the processing of class I-restricted antigen, besides the Kk and TAP genes, and this may explain the difficulty of 4C2 cells to induce tumour-specific immunity, as described previously. To our knowledge, the 4C2 cell is the first tumour cell postulated to have more than three defective genes involved in class I-restricted antigen presentation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:7890298

  13. Impulsive-compulsive behaviors in parkin-associated Parkinson disease

    PubMed Central

    Fasano, Alfonso; Ginevrino, Monia; Petrucci, Simona; Ricciardi, Lucia; Bove, Francesco; Criscuolo, Chiara; Moccia, Marcello; De Rosa, Anna; Sorbera, Chiara; Bentivoglio, Anna Rita; Barone, Paolo; De Michele, Giuseppe; Pellecchia, Maria Teresa; Valente, Enza Maria

    2016-01-01

    Objective: The aim of this multicenter, case-control study was to investigate the prevalence and severity of impulsive-compulsive behaviors (ICBs) in a cohort of patients with parkin-associated Parkinson disease (PD) compared to a group of patients without the mutation. Methods: We compared 22 patients with biallelic parkin mutations (parkin-PD) and 26 patients negative for parkin, PINK1, DJ-1, and GBA mutations (PD-NM), matched for age at onset, disease duration, levodopa, and dopamine agonist equivalent daily dose. A semistructured interview was used to diagnose each of the following ICBs: compulsive sexual behavior, compulsive buying, binge eating, punding, hobbyism, and compulsive medication use. The Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease–Rating Scale (QUIP-RS) was adopted to rate ICB severity. Results: Frequency of patients with at least one ICB was comparable between parkin-PD and PD-NM. Nevertheless, when analyzing the distribution of specific ICBs, a higher frequency of compulsive shopping, binge eating, and punding/hobbyism was found in the parkin-PD group. Compared to PD-NM, parkin-PD patients with ICB had younger onset age and higher frequency of smokers; in 5 patients, ICB had predated PD onset. Total and partial (compulsive buying, compulsive sexual behavior, binge eating, hobbyism/punding) QUIP-RS scores were higher in patients with parkin-PD compared to patients with PD-NM. Logistic regression analysis showed that the presence of parkin mutations was associated with smoking status and higher QUIP-RS total score. Conclusions: Our data expand the parkin-associated phenotypic spectrum demonstrating higher frequency and severity of specific ICBs, and suggesting an association between the parkin genotype, smoking status, and ICB severity. PMID:27590295

  14. Endogenous CD317/Tetherin limits replication of HIV-1 and murine leukemia virus in rodent cells and is resistant to antagonists from primate viruses.

    PubMed

    Goffinet, Christine; Schmidt, Sarah; Kern, Christian; Oberbremer, Lena; Keppler, Oliver T

    2010-11-01

    Human CD317 (BST-2/tetherin) is an intrinsic immunity factor that blocks the release of retroviruses, filoviruses, herpesviruses, and arenaviruses. It is unclear whether CD317 expressed endogenously in rodent cells has the capacity to interfere with the replication of the retroviral rodent pathogen murine leukemia virus (MLV) or, in the context of small-animal model development, contributes to the well-established late-phase restriction of human immunodeficiency virus type 1 (HIV-1). Here, we show that small interfering RNA (siRNA)-mediated knockdown of CD317 relieved a virion release restriction and markedly enhanced the egress of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) in rat cells, including primary macrophages. Moreover, rodent CD317 potently inhibited MLV release, and siRNA-mediated depletion of CD317 in a mouse T-cell line resulted in the accelerated spread of MLV. Several virus-encoded antagonists have recently been reported to overcome the restriction imposed by human or monkey CD317, including HIV-1 Vpu, envelope glycoproteins of HIV-2 and Ebola virus, Kaposi's sarcoma-associated herpesvirus K5, and SIV Nef. In contrast, both rat and mouse CD317 showed a high degree of resistance to these viral antagonists. These data suggest that CD317 is a broadly acting and conserved mediator of innate control of retroviral infection and pathogenesis that restricts the release of retroviruses and lentiviruses in rodents. The high degree of resistance of the rodent CD317 restriction factors to antagonists from primate viruses has implications for HIV-1 small-animal model development and may guide the design of novel antiviral interventions.

  15. Parkin in cancer: Mitophagy-related/unrelated tasks

    PubMed Central

    Eid, Nabil; Kondo, Yoichi

    2017-01-01

    Dysfunctional mitochondria may produce excessive reactive oxygen species, thus inducing DNA damage, which may be oncogenic if not repaired. As a major role of the PINK1-Parkin pathway involves selective autophagic clearance of damaged mitochondria via a process termed mitophagy, Parkin-mediated mitophagy may be a tumor-suppressive mechanism. As an alternative mechanism for tumor inhibition beyond mitophagy, Parkin has been reported to have other oncosuppressive functions such as DNA repair, negative regulation of cell proliferation and stimulation of p53 tumor suppressor function. The authors recently reported that acute ethanol-induced mitophagy in hepatocytes was associated with Parkin mitochondrial translocation and colocalization with accumulated 8-OHdG (a marker of DNA damage and mutagenicity). This finding suggests: (1) the possibility of Parkin-mediated repair of damaged mitochondrial DNA in hepatocytes of ethanol-treated rats (ETRs) as an oncosuppressive mechanism; and (2) potential induction of cytoprotective mitophagy in ETR hepatocytes if mitochondrial damage is too severe to be repaired. Below is a summary of the various roles Parkin plays in tumor suppression, which may or may not be related to mitophagy. A proper understanding of the various tasks performed by Parkin in tumorigenesis may help in cancer therapy by allowing the PINK1-Parkin pathway to be targeted. PMID:28321271

  16. PINK1/Parkin-mediated mitophagy in mammalian cells.

    PubMed

    Eiyama, Akinori; Okamoto, Koji

    2015-04-01

    Mitochondria-specific autophagy (mitophagy) is a fundamental process critical for maintaining mitochondrial fitness in a myriad of cell types. Particularly, mitophagy contributes to mitochondrial quality control by selectively eliminating dysfunctional mitochondria. In mammalian cells, the Ser/Thr kinase PINK1 and the E3 ubiquitin ligase Parkin act cooperatively in sensing mitochondrial functional state and marking damaged mitochondria for disposal via the autophagy pathway. Notably, ubiquitin and deubiquitinases play vital roles in modulating Parkin activity and mitophagy efficiency. In this review, we highlight recent breakthroughs addressing the key issues of how PINK1 activates Parkin in response to mitochondrial malfunction, how Parkin localizes specifically to impaired mitochondria, and how ubiquitination and deubiquitination regulate PINK1/Parkin-mediated mitophagy.

  17. Regulation of Parkin E3 ubiquitin ligase activity.

    PubMed

    Walden, Helen; Martinez-Torres, R Julio

    2012-09-01

    Parkin is an E3 ubiquitin ligase mutated in autosomal recessive juvenile Parkinson's disease. In addition, it is a putative tumour suppressor, and has roles outside its enzymatic activity. It is critical for mitochondrial clearance through mitophagy, and is an essential protein in most eukaryotes. As such, it is a tightly controlled protein, regulated through an array of external interactions with multiple proteins, posttranslational modifications including phosphorylation and S-nitrosylation, and self-regulation through internal associations. In this review, we highlight some of the recent studies into Parkin regulation and discuss future challenges for gaining a full molecular understanding of the regulation of Parkin E3 ligase activity.

  18. Activation of the E3 ubiquitin ligase Parkin.

    PubMed

    Caulfield, Thomas R; Fiesel, Fabienne C; Springer, Wolfdieter

    2015-04-01

    The PINK1 (phosphatase and tensin homologue-induced putative kinase 1)/Parkin-dependent mitochondrial quality control pathway mediates the clearance of damaged organelles, but appears to be disrupted in Parkinson's disease (PD) [Springer and Kahle (2011) Autophagy 7, 266-278]. Upon mitochondrial stress, PINK1 activates the E3 ubiquitin (Ub) ligase Parkin through phosphorylation of the Ub-like (UBL) domain of Parkin and of the small modifier Ub itself at a conserved residue [Sauvé and Gehring (2014) Cell Res. 24, 1025-1026]. Recently resolved partial crystal structures of Parkin showed a 'closed', auto-inhibited conformation, consistent with its notoriously weak enzymatic activity at steady state [Wauer and Komander (2013) EMBO J. 32, 2099-2112; Riley et al. (2013) Nat. Commun. 4, 1982; Trempe et al. (2013) Science 340, 1451-1455; Spratt et al. (2013) Nat. Commun. 4, 1983]. It has thus become clear that Parkin must undergo major structural rearrangements in order to unleash its catalytic functions. Recent published findings derived from X-ray structures and molecular modelling present a complete structural model of human Parkin at an all-atom resolution [Caulfield et al. (2014) PLoS Comput. Biol. 10, e1003935]. The results of the combined in silico simulations-based and experimental assay-based study indicates that PINK1-dependent Ser65 phosphorylation of Parkin is required for its activation and triggering of 'opening' conformations. Indeed, the obtained structures showed a sequential release of Parkin's intertwined domains and allowed docking of an Ub-charged E2 coenzyme, which could enable its enzymatic activity. In addition, using cell-based screening, select E2 enzymes that redundantly, cooperatively or antagonistically regulate Parkin's activation and/or enzymatic functions at different stages of the mitochondrial autophagy (mitophagy) process were identified [Fiesel et al. (2014) J. Cell Sci. 127, 3488-3504]. Other work that aims to pin-point the particular

  19. Cognitive and motor function in long duration PARKIN PD

    PubMed Central

    Alcalay, RN; Caccappolo, E; Mejia-Santana, H; Tang, M–X; Rosado, L; Orbe Reilly, M; Ruiz, D; Louis, ED; Comella, C; Nance, M; Bressman, S; Scott, WK; Tanner, C; Mickel, S; Waters, C; Fahn, S; Cote, L; Frucht, S; Ford, B; Rezak, M; Novak, K; Friedman, JH; Pfeiffer, R; Marsh, L; Hiner, B; Payami, H; Molho, E; Factor, SA; Nutt, J; Serrano, C; Arroyo, M; Ottman, R; Pauciulo, M; Nichols, W; Clark, LN; Marder, K

    2013-01-01

    Importance The long term cognitive outcome in PARKIN-PD patients is unknown. This data may be meaningful when counseling PARKIN-PD patients. Objective Among early-onset PD (EOPD) patients with long disease durations, we assessed cognitive and motor performances, comparing compound heterozygote/homozygote PARKIN carriers to non-carriers Design Cross sectional study Setting Seventeen movement disorders centers Participants Forty-four participants in the Consortium on Risk for Early-Onset PD (CORE-PD) with PD duration greater than median (>14 years), including PARKIN compound heterozygotes/homozygotes combined (n=21), and non-carriers (n=23). Main outcome measures Unified Parkinson’s Disease Rating Scale Part III (UPDRS), Clinical Dementia Rating (CDR) and neuropsychological performance. Linear regression models were applied to assess the association between PARKIN mutation status and cognitive domain scores and UPDRS. Models were adjusted for age, education, disease duration, language, and levodopa equivalent daily dose. Results Compound heterozygote/homozygote PARKIN mutation carriers had earlier AAO of PD (p<0.001) and were younger (p=0.004) at time of examination than non-carriers. They performed better on the MMSE (p=0.010) and were more likely to receive lower scores on the CDR (p=0.003). In multivariate analyses, PARKIN compound heterozygotes/homozygotes performed better on the UPDRS Part III (p=0.017), and on tests of attention (p=0.022), memory (p=0.025) and visuospatial (p=0.024) domains. Conclusions and Relevance Cross-sectional analyses demonstrate better cognitive and motor performance in compound heterozygote/homozygote PARKIN EOPD carriers than non-carriers with long disease duration, suggesting slower disease progression. Longitudinal follow up is required to confirm these findings. PMID:24190026

  20. RING finger ubiquitin-protein isopeptide ligase Nrdp1/FLRF regulates parkin stability and activity.

    PubMed

    Zhong, Ling; Tan, Ying; Zhou, An; Yu, Qingming; Zhou, Jianhua

    2005-03-11

    Parkin is a ubiquitin-protein isopeptide ligase. It has been suggested that loss of function in parkin causes accumulation and aggregation of its substrates, leading to death of dopaminergic neurons in Parkinson disease. Using the yeast two-hybrid screen, we isolated a RING finger protein that interacted with the N terminus of parkin in a Drosophila cDNA library. Interaction between human parkin and the mammalian RING finger protein homologue Nrdp1/FLRF, a ubiquitin-protein isopeptide ligase that ubiquitinates ErbB3 and ErbB4, was validated by in vitro binding assay, co-immunoprecipitation, and immunofluorescence co-localization. Significantly, pulse-chase experiments showed that cotransfection of Nrdp1 and parkin reduced the half-life of parkin from 5 to 2.5 h. Consistent with these findings, we further observed that degradation of CDCrel-1, a parkin substrate, was facilitated by overexpression of parkin protein. However, co-transfection of Nrdp1 with parkin reversed the effects of parkin on CDCrel-1 degradation. We conclude that Nrdp1 is a parkin modifier that accelerates degradation of parkin, resulting in a reduction of parkin activity.

  1. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis

    PubMed Central

    Lao, Yuanzhi; Liao, Weijie; Liao, Meijian; Luo, Xuan; Wu, Jiangbin; Xie, Weidong; Zhang, Yaou; Xu, Naihan

    2016-01-01

    Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases. PMID:27281615

  2. Normal cardiovascular reflex testing in patients with parkin disease.

    PubMed

    Del Sorbo, Francesca; Elia, Antonio E; De Joanna, Gabriella; Romito, Luigi M; Garavaglia, Barbara; Albanese, Alberto

    2007-03-15

    The objective of this study was to investigate cardiovascular autonomic function in patients with parkin disease. Ten patients with a genetically confirmed diagnosis were compared to 11 healthy controls. Symptoms related to autonomic dysfunction were collected by structured interviews. Cardiovascular autonomic reflex function was evaluated using a standard battery of eight tests. Autonomic tests included the study of sympathetic function through the analysis of blood pressure responses to head-up tilt, standing, isometric hand grip, cold pressor, mental arithmetic, Valsalva maneuver (Valsalva overshoot), and the study of parasympathetic function through the analysis of heart rate responses to deep breathing, hyperventilation, and Valsalva ratio. Seven out of 10 patients reported symptoms involving different aspects of autonomic function, while 5 out of 11 controls reported symptoms related exclusively to orthostatic dizziness and constipation. Symptoms related to bladder dysfunction were the most frequent autonomic abnormality occurring in six patients, followed by orthostatic dizziness and dry mouth (in four patients each). Constipation occurred in three patients, sialorrhea in two, and erectile dysfunction, dry eye, and warm intolerance in one each. Cardiovascular reflex testing revealed no difference between patients and controls in quantitative assessment of both sympathetic and parasympathetic functions, except for diastolic blood pressure after isometric hand grip that did not increase normally in parkin patients compared to controls (P = 0.007). These data show that cardiovascular dysautonomia is not associated to the parkin phenotype, whereas urinary complaints are more frequently reported by parkin patients than by controls. Urinary dysautonomia warrants further investigation in patients with parkin disease.

  3. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation.

    PubMed

    Wong, Yvette C; Holzbaur, Erika L F

    2014-10-21

    Mitophagy is a cellular quality control pathway in which the E3 ubiquitin ligase parkin targets damaged mitochondria for degradation by autophagosomes. We examined the role of optineurin in mitophagy, as mutations in optineurin are causative for amyotrophic lateral sclerosis (ALS) and glaucoma, diseases in which mitochondrial dysfunction has been implicated. Using live cell imaging, we demonstrate the parkin-dependent recruitment of optineurin to mitochondria damaged by depolarization or reactive oxygen species. Parkin's E3 ubiquitin ligase activity is required to ubiquitinate outer mitochondrial membrane proteins, allowing optineurin to stably associate with ubiquitinated mitochondria via its ubiquitin binding domain; in the absence of parkin, optineurin transiently localizes to damaged mitochondrial tips. Following optineurin recruitment, the omegasome protein double FYVE-containing protein 1 (DFCP1) transiently localizes to damaged mitochondria to initialize autophagosome formation and the recruitment of microtubule-associated protein light chain 3 (LC3). Optineurin then induces autophagosome formation around damaged mitochondria via its LC3 interaction region (LIR) domain. Depletion of endogenous optineurin inhibits LC3 recruitment to mitochondria and inhibits mitochondrial degradation. These defects are rescued by expression of siRNA-resistant wild-type optineurin, but not by an ALS-associated mutant in the ubiquitin binding domain (E478G), or by optineurin with a mutation in the LIR domain. Optineurin and p62/SQSTM1 are independently recruited to separate domains on damaged mitochondria, and p62 is not required for the recruitment of either optineurin or LC3 to damaged mitochondria. Thus, our study establishes an important role for optineurin as an autophagy receptor in parkin-mediated mitophagy and demonstrates that defects in a single pathway can lead to neurodegenerative diseases with distinct pathologies.

  4. Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson's disease model.

    PubMed

    Ham, Sangwoo; Lee, Yun-Il; Jo, Minkyung; Kim, Hyojung; Kang, Hojin; Jo, Areum; Lee, Gum Hwa; Mo, Yun Jeong; Park, Sang Chul; Lee, Yun Song; Shin, Joo-Ho; Lee, Yunjong

    2017-04-03

    Dysfunctional parkin due to mutations or post-translational modifications contributes to dopaminergic neurodegeneration in Parkinson's disease (PD). Overexpression of parkin provides protection against cellular stresses and prevents dopamine cell loss in several PD animal models. Here we performed an unbiased high-throughput luciferase screening to identify chemicals that can increase parkin expression. Among promising parkin inducers, hydrocortisone possessed the most favorable profiles including parkin induction ability, cell protection ability, and physicochemical property of absorption, distribution, metabolism, and excretion (ADME) without inducing endoplasmic reticulum stress. We found that hydrocortisone-induced parkin expression was accountable for cell protection against oxidative stress. Hydrocortisone-activated parkin expression was mediated by CREB pathway since gRNA to CREB abolished hydrocortisone's ability to induce parkin. Finally, hydrocortisone treatment in mice increased brain parkin levels and prevented 6-hydroxy dopamine induced dopamine cell loss when assessed at 4 days after the toxin's injection. Our results showed that hydrocortisone could stimulate parkin expression via CREB pathway and the induced parkin expression was accountable for its neuroprotective effect. Since glucocorticoid is a physiological hormone, maintaining optimal levels of glucocorticoid might be a potential therapeutic or preventive strategy for Parkinson's disease.

  5. Parkin and PINK1: Much More than Mitophagy

    PubMed Central

    Scarffe, Leslie A.; Stevens, Daniel A.; Dawson, Valina L.; Dawson, Ted M.

    2014-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease that causes a debilitating movement disorder. While most cases of PD appear to be sporadic, rare Mendelian forms have provided tremendous insight into disease pathogenesis. Accumulating evidence suggests that impaired mitochondria underpin PD pathology. In support of this theory, data from multiple PD models has linked PINK1 and parkin, two recessive PD genes, in a common pathway impacting mitochondrial health, prompting a flurry of research to identify their mitochondrial targets. Recent work has focused on the role of PINK1 and parkin in mediating mitochondrial autophagy (mitophagy), however, emerging evidence casts parkin and PINK1 as key players in multiple domains of mitochondrial health and quality control. PMID:24735649

  6. Parkin Plays a Role in Sporadic Parkinson’s Disease

    PubMed Central

    Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Background Parkinson’s Disease (PD) is a chronic progressive neurologic disorder, which affects approximately one million men and women in the U.S. alone. PD represents a heterogeneous disorder with common clinical manifestations and for the most part common neuropathological findings. Objective This short article reviews the role of the ubiquitin E3 ligase in sporadic PD. Methods The role of parkin in sporadic PD was reviewed by querying PubMed Results Parkin is inactivated in sporadic PD via S-nitrosylation, oxidative and dopaminergic stress, and phosphorylation by the stress activated kinase, c-Abl leading to the accumulation of AIMP2 and PARIS (ZNF746). Conclusion Strategies aimed at maintaining parkin in a catalytically active state or interfering with toxicity of AIMP2 and PARIS (ZNF746) offer new therapeutic opportunities. PMID:24029689

  7. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain

    PubMed Central

    Kageyama, Yusuke; Hoshijima, Masahiko; Seo, Kinya; Bedja, Djahida; Sysa-Shah, Polina; Andrabi, Shaida A; Chen, Weiran; Höke, Ahmet; Dawson, Valina L; Dawson, Ted M; Gabrielson, Kathleen; Kass, David A; Iijima, Miho; Sesaki, Hiromi

    2014-01-01

    Mitochondrial dynamics and mitophagy have been linked to cardiovascular and neurodegenerative diseases. Here, we demonstrate that the mitochondrial division dynamin Drp1 and the Parkinson's disease-associated E3 ubiquitin ligase parkin synergistically maintain the integrity of mitochondrial structure and function in mouse heart and brain. Mice lacking cardiac Drp1 exhibited lethal heart defects. In Drp1KO cardiomyocytes, mitochondria increased their connectivity, accumulated ubiquitinated proteins, and decreased their respiration. In contrast to the current views of the role of parkin in ubiquitination of mitochondrial proteins, mitochondrial ubiquitination was independent of parkin in Drp1KO hearts, and simultaneous loss of Drp1 and parkin worsened cardiac defects. Drp1 and parkin also play synergistic roles in neuronal mitochondrial homeostasis and survival. Mitochondrial degradation was further decreased by combination of Drp1 and parkin deficiency, compared with their single loss. Thus, the physiological importance of parkin in mitochondrial homeostasis is revealed in the absence of mitochondrial division in mammals. PMID:25349190

  8. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control

    PubMed Central

    Zhuang, Na; Li, Lin; Chen, She; Wang, Tao

    2016-01-01

    Mitochondrial dysfunction has been linked to the pathogenesis of a large number of inherited diseases in humans, including Parkinson's disease, the second most common neurodegenerative disorder. The Parkinson's disease genes pink1 and parkin, which encode a mitochondrially targeted protein kinase, and an E3 ubiquitin ligase, respectively, participate in a key mitochondrial quality-control pathway that eliminates damaged mitochondria. In the current study, we established an in vivo PINK1/Parkin-induced photoreceptor neuron degeneration model in Drosophila with the aim of dissecting the PINK1/Parkin pathway in detail. Using LC-MS/MS analysis, we identified Serine 346 as the sole autophosphorylation site of Drosophila PINK1 and found that substitution of Serine 346 to Alanine completely abolished the PINK1 autophosphorylation. Disruption of either PINK1 or Parkin phosphorylation impaired the PINK1/Parkin pathway, and the degeneration phenotype of photoreceptor neurons was obviously alleviated. Phosphorylation of PINK1 is not only required for the PINK1-mediated mitochondrial recruitment of Parkin but also induces its kinase activity toward Parkin. In contrast, phosphorylation of Parkin by PINK1 is dispensable for its translocation but required for its activation. Moreover, substitution with autophosphorylation-deficient PINK1 failed to rescue pink1 null mutant phenotypes. Taken together, our findings suggest that autophosphorylation of PINK1 is essential for the mitochondrial translocation of Parkin and for subsequent phosphorylation and activation of Parkin. PMID:27906179

  9. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis.

    PubMed

    Kumar, Atul; Aguirre, Jacob D; Condos, Tara E C; Martinez-Torres, R Julio; Chaugule, Viduth K; Toth, Rachel; Sundaramoorthy, Ramasubramanian; Mercier, Pascal; Knebel, Axel; Spratt, Donald E; Barber, Kathryn R; Shaw, Gary S; Walden, Helen

    2015-10-14

    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N-terminal ubiquitin-like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin-binding interface, provide a model for the phosphoubiquitin-parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin-binding site used by the E2~Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2~Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin.

  10. Parkin cooperates with GDNF/RET signaling to prevent dopaminergic neuron degeneration

    PubMed Central

    Meka, Durga Praveen; Müller-Rischart, Anne Kathrin; Nidadavolu, Prakash; Mohammadi, Behnam; Motori, Elisa; Ponna, Srinivas Kumar; Aboutalebi, Helia; Bassal, Mahmoud; Annamneedi, Anil; Finckh, Barbara; Miesbauer, Margit; Rotermund, Natalie; Lohr, Christian; Tatzelt, Jörg; Winklhofer, Konstanze F.; Kramer, Edgar R.

    2015-01-01

    Parkin and the glial cell line–derived neurotrophic factor (GDNF) receptor RET have both been independently linked to the dopaminergic neuron degeneration that underlies Parkinson’s disease (PD). In the present study, we demonstrate that there is genetic crosstalk between parkin and the receptor tyrosine kinase RET in two different mouse models of PD. Mice lacking both parkin and RET exhibited accelerated dopaminergic cell and axonal loss compared with parkin-deficient animals, which showed none, and RET-deficient mice, in which we found moderate degeneration. Transgenic expression of parkin protected the dopaminergic systems of aged RET-deficient mice. Downregulation of either parkin or RET in neuronal cells impaired mitochondrial function and morphology. Parkin expression restored mitochondrial function in GDNF/RET-deficient cells, while GDNF stimulation rescued mitochondrial defects in parkin-deficient cells. In both cases, improved mitochondrial function was the result of activation of the prosurvival NF-κB pathway, which was mediated by RET through the phosphoinositide-3-kinase (PI3K) pathway. Taken together, these observations indicate that parkin and the RET signaling cascade converge to control mitochondrial integrity and thereby properly maintain substantia nigra pars compacta dopaminergic neurons and their innervation in the striatum. The demonstration of crosstalk between parkin and RET highlights the interplay in the protein network that is altered in PD and suggests potential therapeutic targets and strategies to treat PD. PMID:25822020

  11. Harnessing endogenous miR-181a to segregate transgenic antigen receptor expression in developing versus post-thymic T cells in murine hematopoietic chimeras.

    PubMed

    Papapetrou, Eirini P; Kovalovsky, Damian; Beloeil, Laurent; Sant'angelo, Derek; Sadelain, Michel

    2009-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression by targeting complementary sequences, referred to as miRNA recognition elements (MREs), typically located in the 3' untranslated region of mRNAs. miR-181a is highly expressed in developing thymocytes and markedly downregulated in post-thymic T cells. We investigated whether endogenous miR-181a can be harnessed to segregate expression of chimeric antigen receptors (CARs) and TCRs between developing and mature T cells. Lentiviral-encoded antigen receptors were tagged with a miR-181a-specific MRE and transduced into mouse BM cells that were used to generate hematopoietic chimeras. Expression of a CAR specific for human CD19 (hCD19) was selectively suppressed in late double-negative and double-positive thymocytes, coinciding with the peak in endogenous miR-181a expression. Receptor expression was fully restored in post-thymic resting and activated T cells, affording protection against a subsequent challenge with hCD19+ tumors. Hematopoietic mouse chimeras engrafted with a conalbumin-specific TCR prone to thymic clonal deletion acquired peptide-specific T cell responsiveness only when the vector-encoded TCR transcript was similarly engineered to be subject to regulation by miR-181a. These results demonstrate the potential of miRNA-regulated transgene expression in stem cell-based therapies, including cancer immunotherapy.

  12. Parallel Parkin: Cdc20 Takes a New Partner.

    PubMed

    Meza-Gutierrez, Fernando; Hundley, Frances V; Toczyski, David P

    2015-10-01

    CDC20 and CDH1 are well-established substrate receptors for the Anaphase Promoting Complex/Cyclosome (APC/C). In this issue of Molecular Cell, Lee et al. (2015) show that these adaptors can also target cell cycle proteins for destruction through a second ubiquitin ligase, Parkin.

  13. Parkin Regulates Mitochondrial Autophagy After Myocardial Infarction in Rats.

    PubMed

    Wu, Li; Maimaitirexiati, Xiemuziya; Jiang, Yun; Liu, Liang

    2016-05-08

    BACKGROUND To study the role of Parkin in the regulation of mitochondrial autophagy in the heart by assessing mitochondrial autophagy and changes in Parkin protein expression in rat myocardium after myocardial infarction (MI). MATERIAL AND METHODS Rats were randomly assigned to three groups: control, sham, and MI. Four weeks after induction of MI, ultrasonic examination of the rats was performed to measure left ventricular end systolic diameter (LVESD), left ventricular end diastolic diameter (LVEDD), left ventricular ejection fraction (EF), left ventricular fractional shortening (FS), and left ventricular diastolic/systolic volume. Rat myocardium was collected from each group and examined for changes in morphology, size, and amount of mitochondria and autophagosomes by transmission electronic microscopy. A Western blot was performed to analyze the levels of Parkin and the autophagy-related protein LC3. RESULTS Four weeks after MI, cardiac function of the MI rats was impaired compared with the control rats. Both LVESD and LVEDD were elevated in the MI rats (p<0.05) while EF was decreased, indicating that the MI model was constructed successfully. After MI, increased numbers of mitochondria and autophagosomes were observed in the myocardium (p<0.05), and the mitochondrial morphology was destroyed. Chloroquine (CQ) treatment increased the number of autophagosomes in the myocardium of the control rats (p<0.05) but not in MI rats (p>0.05). In addition, the levels of the autophagy-related proteins LC3II/LC3I were elevated in the myocardium after MI (p<0.05) and the activity of Parkin was significantly reduced (p<0.05). CONCLUSIONS Under conditions of chronic MI, mitochondrial dysfunction and disruption of autophagosomal clearance are associated with Parkin expression.

  14. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model.

    PubMed

    Lee, Eun-Sol; Lim, Jung-Yeon; Im, Keon-Il; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2015-01-01

    Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy. Treg cells were generated from eGFP-expressing C57BL/6 mice (Tregegfp cells) to distinguish the transferred Treg cells; recipients were then examined at different time points after BMT. Systemic infusion of MSCs and Treg cells improved survival and GVHD scores, effectively downregulating pro-inflammatory Th×and Th17 cells. These therapeutic effects of combined cell therapy resulted in an increased Foxp3+ Treg cell population. Compared to single cell therapy, adoptively transferred Tregegfp cells only showed prolonged survival in the combined cell therapy group on day 21 after allogeneic BMT. In addition, Foxp3+ Treg cells, generated endogenously from recipients, significantly increased. Significantly higher levels of Tregegfp cells were also detected in aGVHD target organs in the combined cell therapy group compared to the Treg cells group. Thus, our data indicate that MSCs may induce the long-term survival of transferred Treg cells, particularly in aGVHD target organs, and may increase the repopulation of endogenous Treg cells in recipients after BMT. Together, these results support the potential of combined cell therapy using MSCs and Treg cells for preventing aGVHD.

  15. Parkin Regulates Mitosis and Genomic Stability through Cdc20/Cdh1.

    PubMed

    Lee, Seung Baek; Kim, Jung Jin; Nam, Hyun-Ja; Gao, Bowen; Yin, Ping; Qin, Bo; Yi, Sang-Yeop; Ham, Hyoungjun; Evans, Debra; Kim, Sun-Hyun; Zhang, Jun; Deng, Min; Liu, Tongzheng; Zhang, Haoxing; Billadeau, Daniel D; Wang, Liewei; Giaime, Emilie; Shen, Jie; Pang, Yuan-Ping; Jen, Jin; van Deursen, Jan M; Lou, Zhenkun

    2015-10-01

    Mutations in the E3 ubiquitin ligase Parkin have been linked to familial Parkinson's disease. Parkin has also been implicated in mitosis through mechanisms that are unclear. Here we show that Parkin interacts with anaphase promoting complex/cyclosome (APC/C) coactivators Cdc20 and Cdh1 to mediate the degradation of several key mitotic regulators independent of APC/C. We demonstrate that ordered progression through mitosis is orchestrated by two distinct E3 ligases through the shared use of Cdc20 and Cdh1. Furthermore, Parkin is phosphorylated and activated by polo-like kinase 1 (Plk1) during mitosis. Parkin deficiency results in overexpression of its substrates, mitotic defects, genomic instability, and tumorigenesis. These results suggest that the Parkin-Cdc20/Cdh1 complex is an important regulator of mitosis.

  16. The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications.

    PubMed

    Durcan, Thomas M; Fon, Edward A

    2015-05-15

    Two Parkinson's disease (PD)-associated proteins, the mitochondrial kinase PINK1 and the E3-ubiquitin (Ub) ligase PARKIN, are central to mitochondrial quality control. In this pathway, PINK1 accumulates on defective mitochondria, eliciting the translocation of PARKIN from the cytosol to mediate the clearance of damaged mitochondria via autophagy (mitophagy). Throughout the different stages of mitophagy, post-translational modifications (PTMs) are critical for the regulation of PINK1 and PARKIN activity and function. Indeed, activation and recruitment of PARKIN onto damaged mitochondria involves PINK1-mediated phosphorylation of both PARKIN and Ub. Through a stepwise cascade, PARKIN is converted from an autoinhibited enzyme into an active phospho-Ub-dependent E3 ligase. Upon activation, PARKIN ubiquitinates itself in concert with many different mitochondrial substrates. The Ub conjugates attached to these substrates can in turn be phosphorylated by PINK1, which triggers further cycles of PARKIN recruitment and activation. This feed-forward amplification loop regulates both PARKIN activity and mitophagy. However, the precise steps and sequence of PTMs in this cascade are only now being uncovered. For instance, the Ub conjugates assembled by PARKIN consist predominantly of noncanonical K6-linked Ub chains. Moreover, these modifications are reversible and can be disassembled by deubiquitinating enzymes (DUBs), including Ub-specific protease 8 (USP8), USP15, and USP30. However, PINK1-mediated phosphorylation of Ub can impede the activity of these DUBs, adding a new layer of complexity to the regulation of PARKIN-mediated mitophagy by PTMs. It is therefore evident that further insight into how PTMs regulate the PINK1-PARKIN pathway will be critical for our understanding of mitochondrial quality control.

  17. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6

    PubMed Central

    2010-01-01

    Background Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated

  18. Negative regulatory element associated with potentially functional promoter and enhancer elements in the long terminal repeats of endogenous murine leukemia virus-related proviral sequences

    SciTech Connect

    Ch'ang, L.Y.; Yang, W.K.; Myer, F.E.; Yang, D.M.

    1989-06-01

    Three series of recombinant DNA clones were constructed, with the bacterial chloramphenical acetyltransferase (CAT) gene as a quantitative indicator, to examine the activities of promoter and enhancer sequence elements in the 5' long terminal repeat (LTR) of murine leukemia virus (MuLV)-related proviral sequences isolated from the mouse genome. Transient CAT expression was determined in mouse NIH 3T3, human HT1080, and mink CCL64 cultured cells transfected with the LTR-CAT constructs. The 700-base pair (bp) LTRs of three polytropic MuLV-related proviral clones and the 750-bp LTRs of four modified polytropic proviral clones, in complete structures either with or without the adjacent downstream sequences, all showed very little or negligible activities for CAT expression, while ecotropic MuLV LTRs were highly active. The MuLV-related LTRs were divided into three portions and examined separately. The 3' portion of the MuLV-related LTRs that contains the CCAAC and TATAA boxes was found to be a functional promoter, being about one-half to one-third as active as the corresponding portion of the ecotropic MuLV LTRs. A MboI-Bg/II fragment, representing the distinct 190- to 200-pb inserted segment in the middle, was found to be a potential enhancer, especially when examined in combination with the simian virus 40 promoter in CCL64 cells. A PstI-MboI fragment of the 5' portion, which contains the protein-binding motifs on the enhancer segment as well as the upstream LTF sequences, showed moderate enhancer activities in CCL6 cells but was virtually inactive in NIH 3T3 cells and HT1080 cells; addition of this fragment to the ecotropic LTR-CAT constructs depressed CAT expression.

  19. Versatile members of the DNAJ family show Hsp70 dependent anti-aggregation activity on RING1 mutant parkin C289G

    PubMed Central

    Kakkar, Vaishali; Kuiper, E. F. Elsiena; Pandey, Abhinav; Braakman, Ineke; Kampinga, Harm H.

    2016-01-01

    Parkinson’s disease is one of the most common neurodegenerative disorders and several mutations in different genes have been identified to contribute to the disease. A loss of function parkin RING1 domain mutant (C289G) is associated with autosomal-recessive juvenile-onset Parkinsonism (AR-JP) and displays altered solubility and sequesters into aggregates. Single overexpression of almost each individual member of the Hsp40 (DNAJ) family of chaperones efficiently reduces parkin C289G aggregation and requires interaction with and activity of endogenously expressed Hsp70 s. For DNAJB6 and DNAJB8, potent suppressors of aggregation of polyglutamine proteins for which they rely mainly on an S/T-rich region, it was found that the S/T-rich region was dispensable for suppression of parkin C289G aggregation. Our data implies that different disease-causing proteins pose different challenges to the protein homeostasis system and that DNAJB6 and DNAJB8 are highly versatile members of the DNAJ protein family with multiple partially non-overlapping modes of action with respect to handling disease-causing proteins, making them interesting potential therapeutic targets. PMID:27713507

  20. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.

    PubMed

    Aguirre, Jacob D; Dunkerley, Karen M; Mercier, Pascal; Shaw, Gary S

    2017-01-10

    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.

  1. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.

    PubMed

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan M F; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul M K

    2015-08-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser(65))--which lies within its ubiquitin-like domain (Ubl)--and indirectly through phosphorylation of ubiquitin at Ser(65). How Ser(65)-phosphorylated ubiquitin (ubiquitin(Phospho-Ser65)) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitin(Phospho-Ser65) binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser(65) by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitin(Phospho-Ser65), thereby promoting Parkin Ser(65) phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser(65) phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitin(Phospho-Ser65) to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser(65). Finally, purified Parkin maximally phosphorylated at Ser(65) in vitro cannot be further activated by the addition of ubiquitin(Phospho-Ser65). Our results thus suggest that a major role of ubiquitin(Phospho-Ser65) is to promote PINK1-mediated phosphorylation of Parkin at Ser(65), leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser(65)-binding pocket on the surface of Parkin that is critical for the ubiquitin(Phospho-Ser65) interaction. This study provides new mechanistic insights into Parkin activation by ubiquitin(Phospho-Ser65), which could aid in the development of Parkin

  2. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation

    PubMed Central

    Kazlauskaite, Agne; Martínez-Torres, R Julio; Wilkie, Scott; Kumar, Atul; Peltier, Julien; Gonzalez, Alba; Johnson, Clare; Zhang, Jinwei; Hope, Anthony G; Peggie, Mark; Trost, Matthias; van Aalten, Daan MF; Alessi, Dario R; Prescott, Alan R; Knebel, Axel; Walden, Helen; Muqit, Miratul MK

    2015-01-01

    Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin-like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho-Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site-directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho-Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho-Ser65 to Parkin disrupts the interaction between the Ubl domain and C-terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho-Ser65. Our results thus suggest that a major role of ubiquitinPhospho-Ser65 is to promote PINK1-mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho-Ser65-binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho-Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho-Ser65, which could aid in the development of Parkin activators that mimic the effect of

  3. Glial dysfunction in parkin null mice: effects of aging.

    PubMed

    Solano, Rosa M; Casarejos, Maria J; Menéndez-Cuervo, Jamie; Rodriguez-Navarro, Jose A; García de Yébenes, Justo; Mena, Maria A

    2008-01-16

    Parkin mutations in humans produce parkinsonism whose pathogenesis is related to impaired protein degradation, increased free radicals, and abnormal neurotransmitter release. The role of glia in parkin deficiency is little known. We cultured midbrain glia from wild-type (WT) and parkin knock-out (PK-KO) mice. After 18-20 d in vitro, PK-KO glial cultures had less astrocytes, more microglia, reduced proliferation, and increased proapoptotic protein expression. PK-KO glia had greater levels of intracellular glutathione (GSH), increased mRNA expression of the GSH-synthesizing enzyme gamma-glutamylcysteine synthetase, and greater glutathione S-transferase and lower glutathione peroxidase activities than WT. The reverse happened in glia cultured in serum-free defined medium (EF12) or in old cultures. PK-KO glia was more susceptible than WT to transference to EF12 or neurotoxins (1-methyl-4-phenylpyridinium, blockers of GSH synthesis or catalase, inhibitors of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3 kinases), aging of the culture, or combination of these insults. PK-KO glia was less susceptible than WT to Fe2+ plus H2O2 and less responsive to protection by deferoxamine. Old WT glia increased the expression of heat shock protein 70, but PK-KO did not. Glia conditioned medium (GCM) from PK-KO was less neuroprotective and had lower levels of GSH than WT. GCM from WT increased the levels of dopamine markers in midbrain neuronal cultures transferred to EF12 more efficiently than GCM from PK-KO, and the difference was corrected by supplementation with GSH. PK-KO-GCM was a less powerful suppressor of apoptosis and microglia in neuronal cultures. Our data prove that abnormal glial function is critical in parkin mutations, and its role increases with aging.

  4. Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation

    PubMed Central

    Tang, Matthew Y.; Vranas, Marta; Krahn, Andrea I.; Pundlik, Shayal; Trempe, Jean- François; Fon, Edward A.

    2017-01-01

    Parkin and PINK1 function in a common pathway to clear damaged mitochondria. Parkin exists in an auto-inhibited conformation stabilized by multiple interdomain interactions. The binding of PINK1-generated phospho-ubiquitin and the phosphorylation of the ubiquitin-like (Ubl) domain of Parkin at Ser65 release its auto-inhibition, but how and when these events take place in cells remain to be defined. Here we show that mutations that we designed to activate Parkin by releasing the Repressor Element of Parkin (REP) domain, or by disrupting the interface between the RING0:RING2 domains, can completely rescue mutations in the Parkin Ubl that are defective in mitochondrial autophagy. Using a FRET reporter assay we show that Parkin undergoes a conformational change upon phosphorylation that can be mimicked by mutating Trp403 in the REP. We propose a hierarchical model whereby pUb binding on mitochondria enables Parkin phosphorylation, which, in turn, leads to REP removal, E3 ligase activation and mitophagy. PMID:28276439

  5. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth.

  6. [Endogenous hypertriglyceridemia].

    PubMed

    Tsukamoto, Kazuhisa

    2013-09-01

    Endogenous hypertriglyceridemia, which includes familial hypertriglyceridemia and idiopathic hypertriglyceridemia, is characterized by the increased level of VLDL-triglycerides in the blood. Increased production of VLDL from the liver and the decreased catabolism of VLDL-TG in the vessel, which are also the main metabolic features of insulin resistance, have been proposed to be the causes of endogenous hypertriglyceridemia. Genetic factors responsible for endogenous hypertriglyceridemia have been elucidated in several studies, however, these factors have so far not been clearly identified yet; thus the causes of endogenous hypertriglyceridemia would be polygenic. Recent advances in the genetic analytical methods like genome-wide association study would hopefully unveil the whole pictures of endogenous hypertriglyceridemia.

  7. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin

    PubMed Central

    Yun, Jina; Puri, Rajat; Yang, Huan; Lizzio, Michael A; Wu, Chunlai; Sheng, Zu-Hang; Guo, Ming

    2014-01-01

    Parkinson's disease (PD) genes PINK1 and parkin act in a common pathway that regulates mitochondrial integrity and quality. Identifying new suppressors of the pathway is important for finding new therapeutic strategies. In this study, we show that MUL1 suppresses PINK1 or parkin mutant phenotypes in Drosophila. The suppression is achieved through the ubiquitin-dependent degradation of Mitofusin, which itself causes PINK1/parkin mutant-like toxicity when overexpressed. We further show that removing MUL1 in PINK1 or parkin loss-of-function mutant aggravates phenotypes caused by loss of either gene alone, leading to lethality in flies and degeneration in mouse cortical neurons. Together, these observations show that MUL1 acts in parallel to the PINK1/parkin pathway on a shared target mitofusin to maintain mitochondrial integrity. The MUL1 pathway compensates for loss of PINK1/parkin in both Drosophila and mammals and is a promising therapeutic target for PD. DOI: http://dx.doi.org/10.7554/eLife.01958.001 PMID:24898855

  8. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation

    PubMed Central

    Tang, Jiayu; Hu, Zhiping; Tan, Jieqiong; Yang, Sonlin

    2016-01-01

    Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders. PMID:27597885

  9. Parkin Protects against Oxygen-Glucose Deprivation/Reperfusion Insult by Promoting Drp1 Degradation.

    PubMed

    Tang, Jiayu; Hu, Zhiping; Tan, Jieqiong; Yang, Sonlin; Zeng, Liuwang

    2016-01-01

    Ischemic stroke results in severe brain damage and remains one of the leading causes of death and disability worldwide. Effective neuroprotective therapies are needed to reduce brain damage resulting from ischemic stroke. Mitochondria are crucial for cellular energy production and homeostasis. Modulation of mitochondrial function mediates neuroprotection against ischemic brain damage. Dynamin-related protein 1 (Drp1) and parkin play a key role in regulating mitochondrial dynamics. They are potential therapeutic targets for neuroprotection in ischemic stroke. Protective effects of parkin-Drp1 pathway on mitochondria were assessed in a cellular ischemia-reperfusion injury model. Mouse neuroblastoma Neuro2a (N2a) cells were subjected to oxygen-glucose deprivation/reperfusion (OGDR) insult. OGDR induces mitochondrial fragmentation. The expression of Drp1 protein is increased after OGDR insult, while the parkin protein level is decreased. The altered protein level of Drp1 after OGDR injury is mediated by parkin through ubiquitin proteasome system (UPS). Drp1 depletion protects against OGDR induced mitochondrial damage and apoptosis. Meanwhile, parkin overexpression protects against OGDR induced apoptosis and mitochondrial dysfunction, which is attenuated by increased expression of Drp1. Our data demonstrate that parkin protects against OGDR insult through promoting degradation of Drp1. This neuroprotective potential of parkin-Drp1 pathway against OGDR insult will pave the way for developing novel neuroprotective agents for cerebral ischemia-reperfusion related disorders.

  10. Neuropsychological profile of parkin mutation carriers with and without Parkinson disease: the CORE-PD study

    PubMed Central

    Caccappolo, Elise; Alcalay, Roy N.; Mejia-Santana, Helen; Tang, Ming-X.; Rakitin, Brian; Rosado, Llency; Louis, Elan D.; Comella, Cynthia L.; Colcher, Amy; Jennings, Danna; Nance, Martha A.; Bressman, Susan; Scott, William K.; Tanner, Caroline M.; Mickel, Susan F.; Andrews, Howard F.; Waters, Cheryl; Fahn, Stanley; Cote, Lucien J.; Frucht, Steven; Ford, Blair; Rezak, Michael; Novak, Kevin; Friedman, Joseph H.; Pfeiffer, Ronald F.; Marsh, Laura; Hiner, Brad; Siderowf, Andrew D.; Ross, Barbara M.; Verbitsky, Miguel; Kisselev, Sergey; Ottman, Ruth; Clark, Lorraine N.; Marder, Karen S.

    2012-01-01

    Background The cognitive profile of early onset Parkinson’s disease (EOPD) has not been clearly defined. Mutations in the parkin gene are the most common genetic risk factor for EOPD and may offer information about the neuropsychological pattern of performance in both symptomatic and asymptomatic mutation carriers. Methods EOPD probands and their first-degree relatives who did not have Parkinson’s disease (PD) were genotyped for mutations in the parkin gene and administered a comprehensive neuropsychological battery. Performance was compared between EOPD probands with (N=43) and without (N=52) parkin mutations. The same neuropsychological battery was administered to 217 first-degree relatives to assess neuropsychological function in individuals who carry parkin mutations but do not have PD. Results No significant differences in neuropsychological test performance were found between parkin carrier and non-carrier probands. Performance also did not differ between EOPD non-carriers and carrier subgroups (i.e. heterozygotes, compound heterozygotes/homozygotes). Similarly, no differences were found among unaffected family members across genotypes. Mean neuropsychological test performance was within normal range in all probands and relatives. Conclusions Carriers of parkin mutations, whether or not they have PD, do not perform differently on neuropsychological measures as compared to non-carriers. The cognitive functioning of parkin carriers over time warrants further study. PMID:21092386

  11. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo.

    PubMed

    Vincow, Evelyn S; Merrihew, Gennifer; Thomas, Ruth E; Shulman, Nicholas J; Beyer, Richard P; MacCoss, Michael J; Pallanck, Leo J

    2013-04-16

    The accumulation of damaged mitochondria has been proposed as a key factor in aging and the pathogenesis of many common age-related diseases, including Parkinson disease (PD). Recently, in vitro studies of the PD-related proteins Parkin and PINK1 have found that these factors act in a common pathway to promote the selective autophagic degradation of damaged mitochondria (mitophagy). However, whether Parkin and PINK1 promote mitophagy under normal physiological conditions in vivo is unknown. To address this question, we used a proteomic approach in Drosophila to compare the rates of mitochondrial protein turnover in parkin mutants, PINK1 mutants, and control flies. We found that parkin null mutants showed a significant overall slowing of mitochondrial protein turnover, similar to but less severe than the slowing seen in autophagy-deficient Atg7 mutants, consistent with the model that Parkin acts upstream of Atg7 to promote mitophagy. By contrast, the turnover of many mitochondrial respiratory chain (RC) subunits showed greater impairment in parkin than Atg7 mutants, and RC turnover was also selectively impaired in PINK1 mutants. Our findings show that the PINK1-Parkin pathway promotes mitophagy in vivo and, unexpectedly, also promotes selective turnover of mitochondrial RC subunits. Failure to degrade damaged RC proteins could account for the RC deficits seen in many PD patients and may play an important role in PD pathogenesis.

  12. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin.

    PubMed

    Durcan, Thomas M; Tang, Matthew Y; Pérusse, Joëlle R; Dashti, Eman A; Aguileta, Miguel A; McLelland, Gian-Luca; Gros, Priti; Shaler, Thomas A; Faubert, Denis; Coulombe, Benoit; Fon, Edward A

    2014-11-03

    Mutations in the Park2 gene, encoding the E3 ubiquitin-ligase parkin, are responsible for a familial form of Parkinson's disease (PD). Parkin-mediated ubiquitination is critical for the efficient elimination of depolarized dysfunctional mitochondria by autophagy (mitophagy). As damaged mitochondria are a major source of toxic reactive oxygen species within the cell, this pathway is believed to be highly relevant to the pathogenesis of PD. Little is known about how parkin-mediated ubiquitination is regulated during mitophagy or about the nature of the ubiquitin conjugates involved. We report here that USP8/UBPY, a deubiquitinating enzyme not previously implicated in mitochondrial quality control, is critical for parkin-mediated mitophagy. USP8 preferentially removes non-canonical K6-linked ubiquitin chains from parkin, a process required for the efficient recruitment of parkin to depolarized mitochondria and for their subsequent elimination by mitophagy. This work uncovers a novel role for USP8-mediated deubiquitination of K6-linked ubiquitin conjugates from parkin in mitochondrial quality control.

  13. Structural insights into Parkin substrate lysine targeting from minimal Miro substrates

    PubMed Central

    Klosowiak, Julian L.; Park, Sungjin; Smith, Kyle P.; French, Michael E.; Focia, Pamela J.; Freymann, Douglas M.; Rice, Sarah E.

    2016-01-01

    Hereditary Parkinson’s disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific proteins for modification remain largely unexplored. Here, we show that the C-terminal GTPase (cGTPase) of the Parkin primary substrate human Miro is necessary and sufficient for efficient ubiquitination. We present several new X-ray crystal structures of both human Miro1 and Miro2 that reveal substrate recognition and ubiquitin transfer to be specific to particular protein domains and lysine residues. We also provide evidence that Parkin substrate recognition is functionally separate from substrate modification. Finally, we show that prioritization for modification of a specific lysine sidechain of the cGTPase (K572) within human Miro1 is dependent on both its location and chemical microenvironment. Activation of Parkin by phosphorylation or by binding of pUb is required for prioritization of K572 for modification, suggesting that Parkin activation and acquisition of substrate specificity are coupled. PMID:27605430

  14. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation

    PubMed Central

    Aguirre, Jacob D.; Dunkerley, Karen M.; Mercier, Pascal; Shaw, Gary S.

    2017-01-01

    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson’s disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin’s UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2–ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin’s ubiquitin ligase potential. PMID:28007983

  15. Novel Regulation of Parkin Function Through c-Abl-Mediated Tyrosine Phosphorylation: Implications for Parkinson's Disease

    PubMed Central

    Imam, Syed Z.; Zhou, Qing; Yamamoto, Ayako; Valente, Anthony J.; Ali, Syed F.; Bains, Mona; Roberts, James L.; Kahle, Philipp J.; Clark, Robert A.; Li, Senlin

    2011-01-01

    Mutations in parkin, an E3 ubiquitin ligase, are most common cause of autosomal-recessive Parkinson's disease (PD). Here, we show that the stress-signaling non-receptor tyrosine-kinase c-Abl links parkin to sporadic forms of PD via tyrosine phosphorylation. Under oxidative and dopaminergic stress, c-Abl was activated in cultured neuronal cells and in striatum of adult C57 mice. Activated c-Abl was found in the striatum of PD patients. Concomitantly, parkin was tyrosine-phosphorylated, causing loss ofit's ubiquitin ligase and cytoprotective activities, and the accumulation of parkin substrates, AIMP2 (p38/JTV-1) and FBP-1. STI-571, a selective c-Abl inhibitor, prevented tyrosine phosphorylation of parkin and restored its E3 ligase activity and cytoprotective function both in vitro and in vivo. Our results suggest that tyrosine phosphorylation of parkin by c-Abl is a major post-translational modification that leads to loss of parkin function and disease progression in sporadic PD. Moreover, inhibition of c-Abl offers new therapeutic opportunities for blocking PD progression. PMID:21209200

  16. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    PubMed Central

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell

  17. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    PubMed Central

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  18. Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1.

    PubMed

    Haque, M Emdadul; Mount, Matthew P; Safarpour, Farzaneh; Abdel-Messih, Elizabeth; Callaghan, Steve; Mazerolle, Chantal; Kitada, Tohru; Slack, Ruth S; Wallace, Valerie; Shen, Jie; Anisman, Hymie; Park, David S

    2012-06-29

    Mutations in the mitochondrial PTEN-induced kinase 1 (Pink1) gene have been linked to Parkinson disease (PD). Recent reports including our own indicated that ectopic Pink1 expression is protective against toxic insult in vitro, suggesting a potential role for endogenous Pink1 in mediating survival. However, the role of endogenous Pink1 in survival, particularly in vivo, is unclear. To address this critical question, we examined whether down-regulation of Pink1 affects dopaminergic neuron loss following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the adult mouse. Two model systems were utilized: virally delivered shRNA-mediated knockdown of Pink1 and germ line-deficient mice. In both instances, loss of Pink1 generated significant sensitivity to damage induced by systemic MPTP treatment. This sensitivity was associated with greater loss of dopaminergic neurons in the Substantia Nigra pars compacta and terminal dopamine fiber density in the striatum region. Importantly, we also show that viral mediated expression of two other recessive PD-linked familial genes, DJ-1 and Parkin, can protect dopaminergic neurons even in the absence of Pink1. This evidence not only provides strong evidence for the role of endogenous Pink1 in neuronal survival, but also supports a role of DJ-1 and Parkin acting parallel or downstream of endogenous Pink1 to mediate survival in a mammalian in vivo context.

  19. Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling.

    PubMed

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates beta-catenin protein levels in vivo. Stabilization of beta-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of beta-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and beta-catenin-induced cell death.

  20. Parkin protects dopaminergic neurons from excessive Wnt/{beta}-catenin signaling

    SciTech Connect

    Rawal, Nina; Corti, Olga; Sacchetti, Paola; Ardilla-Osorio, Hector; Sehat, Bita; Brice, Alexis; Arenas, Ernest

    2009-10-23

    Parkinson's disease (PD) is caused by degeneration of the dopaminergic (DA) neurons of the substantia nigra but the molecular mechanisms underlying the degenerative process remain elusive. Several reports suggest that cell cycle deregulation in post-mitotic neurons could lead to neuronal cell death. We now show that Parkin, an E3 ubiquitin ligase linked to familial PD, regulates {beta}-catenin protein levels in vivo. Stabilization of {beta}-catenin in differentiated primary ventral midbrain neurons results in increased levels of cyclin E and proliferation, followed by increased levels of cleaved PARP and loss of DA neurons. Wnt3a signaling also causes death of post-mitotic DA neurons in parkin null animals, suggesting that both increased stabilization and decreased degradation of {beta}-catenin results in DA cell death. These findings demonstrate a novel regulation of Wnt signaling by Parkin and suggest that Parkin protects DA neurons against excessive Wnt signaling and {beta}-catenin-induced cell death.

  1. Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity.

    PubMed

    Staropoli, John F; McDermott, Caroline; Martinat, Cécile; Schulman, Brenda; Demireva, Elena; Abeliovich, Asa

    2003-03-06

    Mutations in parkin, which encodes a RING domain protein associated with ubiquitin ligase activity, lead to autosomal recessive Parkinson's disease characterized by midbrain dopamine neuron loss. Here we show that parkin functions in a multiprotein ubiquitin ligase complex that includes the F-box/WD repeat protein hSel-10 and Cullin-1. HSel-10 serves to target the parkin ubiquitin ligase activity to cyclin E, an hSel-10-interacting protein previously implicated in the regulation of neuronal apoptosis. Consistent with the notion that cyclin E is a substrate of the parkin ubiquitin ligase complex, parkin deficiency potentiates the accumulation of cyclin E in cultured postmitotic neurons exposed to the glutamatergic excitotoxin kainate and promotes their apoptosis. Furthermore, parkin overexpression attenuates the accumulation of cyclin E in toxin-treated primary neurons, including midbrain dopamine neurons, and protects them from apoptosis.

  2. On the existence of category-specific impairments. A reply to Parkin and Stewart.

    PubMed

    Job, R; Miozzo, M; Sartori, G

    1993-08-01

    Parkin and Stewart (this issue) criticize Sartori, Miozzo, and Job's (this issue) demonstration of a category-specific naming impairment for living things when sets of living and non-living things were matched for familiarity, visual complexity, name frequency, and visual similarity. In this paper we discuss the points raised by Parkin and Stewart and argue that they do not undermine our demonstration of a category-specific impairment.

  3. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.

    PubMed

    Um, Ji Won; Park, Hyun Jung; Song, Jihwan; Jeon, Iksoo; Lee, Gwang; Lee, Phil Hyu; Chung, Kwang Chul

    2010-03-19

    Parkinson's disease (PD) is a devastating neurodegenerative disease characterized by a distinct set of motor symptoms. Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) or parkin have been linked to early-onset autosomal recessive forms of familial PD. We have recently shown that parkin (an E3 ubiquitin ligase) and PINK1 (a serine/threonine kinase) affect one other's stability, solubility, and tendency to form cytoprotective aggresomes (Um et al., 2009). Here we validated the functional relevance of this mutual interaction under pathologic PD conditions, by investigating the changes of expression and solubility of these factors in response to PD-linked toxins. Consistent with our previous cell culture data, exposure of human dopaminergic neuroblastoma SH-SY5Y cells to PD-linked toxins (1-methyl-4-phenylpyridinium ion, 6-hydroxydopamine, or MG132) reduced Nonidet P-40-soluble parkin levels and induced PINK1 accumulation. Consistent with our previous findings from parkin knockout mice, rat models of PD (6-hydroxydopamine-, rotenone-, or MG132-induced PD) were also associated with an increase in soluble and insoluble PINK1 levels as well as enhanced formation of parkin aggregates. These findings suggest that both PINK1 and parkin play important roles in regulating the formation of Lewy bodies during the pathogenesis of sporadic and familial PD.

  4. Mitochondrial impairment observed in fibroblasts from South African Parkinson's disease patients with parkin mutations.

    PubMed

    van der Merwe, Celia; Loos, Ben; Swart, Chrisna; Kinnear, Craig; Henning, Franclo; van der Merwe, Lize; Pillay, Komala; Muller, Nolan; Zaharie, Dan; Engelbrecht, Lize; Carr, Jonathan; Bardien, Soraya

    2014-05-02

    Parkinson's disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients' fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD pathogenesis will have important implications for the design of new and more effective therapies.

  5. Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration

    PubMed Central

    Stevens, Daniel A.; Lee, Yunjong; Kang, Ho Chul; Lee, Byoung Dae; Lee, Yun-Il; Bower, Aaron; Jiang, Haisong; Kang, Sung-Ung; Andrabi, Shaida A.; Dawson, Valina L.; Shin, Joo-Ho; Dawson, Ted M.

    2015-01-01

    Mutations in parkin lead to early-onset autosomal recessive Parkinson’s disease (PD) and inactivation of parkin is thought to contribute to sporadic PD. Adult knockout of parkin in the ventral midbrain of mice leads to an age-dependent loss of dopamine neurons that is dependent on the accumulation of parkin interacting substrate (PARIS), zinc finger protein 746 (ZNF746), and its transcriptional repression of PGC-1α. Here we show that adult knockout of parkin in mouse ventral midbrain leads to decreases in mitochondrial size, number, and protein markers consistent with a defect in mitochondrial biogenesis. This decrease in mitochondrial mass is prevented by short hairpin RNA knockdown of PARIS. PARIS overexpression in mouse ventral midbrain leads to decreases in mitochondrial number and protein markers and PGC-1α–dependent deficits in mitochondrial respiration. Taken together, these results suggest that parkin loss impairs mitochondrial biogenesis, leading to declining function of the mitochondrial pool and cell death. PMID:26324925

  6. Exon dosage analysis of parkin gene in Chinese sporadic Parkinson's disease.

    PubMed

    Guo, Ji-Feng; Dong, Xiao-Li; Xu, Qian; Li, Nan; Yan, Xin-Xiang; Xia, Kun; Tang, Bei-Sha

    2015-09-14

    Parkin gene mutations are by far the most common mutations in both familial Parkinson's disease (PD) and sporadic PD. Approximately, 50% of parkin mutations is exon dosage mutations (i.e., deletions and duplications of entire exons). Here, we first established a MLPA assay for quick detection of parkin exon rearrangements. Then, we studied parkin exon dosage mutations in 755 Chinese sporadic PDdisease patients using the established MLPA assay. We found that there were 25 (3.3%) patients with exon dosage alterations including deletions and duplications, 20 (11.4%) patients with exon rearrangements in 178 early-onset patients, and 5 (0.86%) patients with exon rearrangement mutations in 579 later-onset patients. The percentage of individuals with parkin dosage mutations is more than 33% when the age at onset is less than 30 years old, but less than 7% when the age at onset is more than 30. In these mutations, deletion is the main mutational style, especially in exon 2-5. Our results indicated that exon dosage mutations in parkin gene might be the main cause for sporadic PD, especially in EOP.

  7. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure.

    PubMed

    Brennan, Lisa; Khoury, Josef; Kantorow, Marc

    2017-01-01

    Age-related cataract is associated with oxidative stress and death of lens epithelial cells (LECs) whose survival is dependent on functional mitochondrial populations. Oxidative stress-induced depolarization/damage of LEC mitochondria results in increased reactive oxygen species (ROS) levels and cell death suggesting the need for a LEC mechanism to remove mitochondria depolarized/damaged upon oxidative stress exposure to prevent ROS release and LEC death. To date, a mechanism(s) for removal of depolarized/damaged LEC mitochondria has yet to be identified and the importance of eliminating oxidative stress-damaged mitochondria to prevent LEC ROS release and death has not been established. Here, we demonstrate that Parkin levels increase in LECs exposed to H2O2-oxidative stress. We establish that Parkin translocates to LEC mitochondria depolarized upon oxidative stress exposure and that Parkin recruits p62/SQSTM1 to depolarized LEC mitochondria. We demonstrate that translocation of Parkin results in the elimination of depolarized/damaged mitochondria and that Parkin clearance of LEC mitochondria is dependent on its ubiquitin ligase activity. Importantly, we demonstrate that Parkin elimination of damaged LEC mitochondria results in reduced ROS levels and increased survival upon oxidative stress exposure. These results establish that Parkin functions to eliminate LEC mitochondria depolarized/damaged upon oxidative stress exposure and that elimination of damaged mitochondria by Parkin is important for LEC homeostasis and survival. The data also suggest that mitochondrial quality control by Parkin could play a role in lens transparency.

  8. Manganese-Induced Toxicity in Normal and Human B Lymphocyte Cell Lines Containing a Homozygous Mutation in Parkin

    PubMed Central

    Roth, Jerome A.; Ganapathy, Balakrishnan; Ghio, Andrew J.

    2012-01-01

    Mutations in the parkin gene are linked to development of juvenile onset of Parkinson’s disease and recent studies have reported that parkin can protect against increased oxidative stress and mitochondrial dysfunction caused by a variety of oxidative and toxic insults. Overexpression of parkin has also been reported to selectively protect dopaminergic neurons from Mn toxicity. Accordingly, in this paper we compare the effect that mutations in parkin have on Mn toxicity and associated apoptotic signals in normal and human B lymphocyte cell lines containing a homozygous mutation in the gene. Results of these studies reveal that Mn toxicity was similar in both control and mutant parkin lymphocyte cells indicating that cell death caused by Mn was not altered in cells devoid of parkin activity. In contrast, Mn did inhibit mitochondrial function to a greater extent in cells devoid of active parkin as indicated by a decrease in ATP production although mitochondrial membrane potential was essentially unaffected. Consistent with inactive parkin influencing the Mn response is the observation of increased activity in the down-stream apoptotic signal, caspase 3. In summary, results reported in this paper demonstrate that mutations in parkin can lead to functional changes in potential signaling processes known to provoke Mn toxicity. The selectivity and magnitude of this response, however, does not necessarily lead to cell death in lymphocytes which are devoid of dopamine. PMID:22841634

  9. Behavioral and Neurotransmitter Abnormalities in Mice Deficient for Parkin, DJ-1 and Superoxide Dismutase

    PubMed Central

    Hennis, Meghan R.; Seamans, Katherine W.; Marvin, Marian A.; Casey, Bradford H.; Goldberg, Matthew S.

    2013-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin-/-DJ-1-/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities. PMID:24386432

  10. Nitric Oxide Induction of Parkin Translocation in PTEN-induced Putative Kinase 1 (PINK1) Deficiency

    PubMed Central

    Han, Ji-Young; Kang, Min-Ji; Kim, Kyung-Hee; Han, Pyung-Lim; Kim, Hyun-Seok; Ha, Ji-Young; Son, Jin H.

    2015-01-01

    The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease. PMID:25716315

  11. Mitochondrial impairment observed in fibroblasts from South African Parkinson’s disease patients with parkin mutations

    SciTech Connect

    Merwe, Celia van der; Loos, Ben; Swart, Chrisna; Kinnear, Craig; Merwe, Lize van der; Pillay, Komala; Muller, Nolan; Zaharie, Dan; Engelbrecht, Lize; Carr, Jonathan; and others

    2014-05-02

    Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD

  12. Parkin, A Top Level Manager in the Cell’s Sanitation Department

    PubMed Central

    Rankin, Carolyn A; Roy, Ambrish; Zhang, Yang; Richter, Mark

    2011-01-01

    Parkin belongs to a class of multiple RING domain proteins designated as RBR (RING, in between RING, RING) proteins. In this review we examine what is known regarding the structure/function relationship of the Parkin protein. Parkin contains three RING domains plus a ubiquitin-like domain and an in-between-RING (IBR) domain. RING domains are rich in cysteine amino acids that act as ligands to bind zinc ions. RING domains may interact with DNA or with other proteins and perform a wide range of functions. Some function as E3 ubiquitin ligases, participating in attachment of ubiquitin chains to signal proteasome degradation; however, ubiquitin may be attached for purposes other than proteasome degradation. It was determined that the C-terminal most RING, RING2, is essential for Parkin to function as an E3 ubiquitin ligase and a number of substrates have been identified. However, Parkin also participates in a number of other fiunctions, such as DNA repair, microtubule stabilization, and formation of aggresomes. Some functions, such as participation in a multi-protein complex implicated in NMDA activity at the post synaptic density, do not require ubiquitination of substrate molecules. Recent observations of RING proteins suggest their function may be regulated by zinc ion binding. We have modeled the three RING domains of Parkin and have identified a new set of RING2 ligands. This set allows for binding of two rather than just one zinc ion, opening the possibility that the number of zinc ions bound acts as a molecular switch to modulate Parkin function. PMID:21633666

  13. Structural and Functional Impact of Parkinson Disease-Associated Mutations in the E3 Ubiquitin Ligase Parkin.

    PubMed

    Fiesel, Fabienne C; Caulfield, Thomas R; Moussaud-Lamodière, Elisabeth L; Ogaki, Kotaro; Dourado, Daniel F A R; Flores, Samuel C; Ross, Owen A; Springer, Wolfdieter

    2015-08-01

    Mutations in the PARKIN/PARK2 gene that result in loss-of-function of the encoded, neuroprotective E3 ubiquitin ligase Parkin cause recessive, familial early-onset Parkinson disease. As an increasing number of rare Parkin sequence variants with unclear pathogenicity are identified, structure-function analyses will be critical to determine their disease relevance. Depending on the specific amino acids affected, several distinct pathomechanisms can result in loss of Parkin function. These include disruption of overall Parkin folding, decreased solubility, and protein aggregation. However pathogenic effects can also result from misregulation of Parkin autoinhibition and of its enzymatic functions. In addition, interference of binding to coenzymes, substrates, and adaptor proteins can affect its catalytic activity too. Herein, we have performed a comprehensive structural and functional analysis of 21 PARK2 missense mutations distributed across the individual protein domains. Using this combined approach, we were able to pinpoint some of the pathogenic mechanisms of individual sequence variants. Similar analyses will be critical in gaining a complete understanding of the complex regulations and enzymatic functions of Parkin. These studies will not only highlight the important residues, but will also help to develop novel therapeutics aimed at activating and preserving an active, neuroprotective form of Parkin.

  14. Restless legs syndrome, rapid eye movement sleep behavior disorder, and hypersomnia in patients with two parkin mutations.

    PubMed

    Limousin, Nadège; Konofal, Eric; Karroum, Elias; Lohmann, Ebba; Theodorou, Ioannis; Dürr, Alexandra; Arnulf, Isabelle

    2009-10-15

    Parkin gene mutations cause a juvenile parkinsonism. Patients with these mutations may commonly exhibit REM sleep behaviour disorders, but other sleep problems (insomnia, sleepiness, restless legs syndrome) have not been studied. The aim of this study was to evaluate the sleep-wake phenotype in patients with two parkin mutations, compared with patients with idiopathic Parkinson's disease (iPD). Sleep interview and overnight video-polysomnography, followed by multiple sleep latency tests, were assessed in 11 consecutive patients with two parkin mutations (aged 35-60 years, from seven families) and 11 sex-matched patients with iPD (aged 51-65 years). Sleep complaints in the parkin group included insomnia (73% patients versus 45% in the iPD group), restless legs syndrome (45%, versus none in the iPD group, P = 0.04), and daytime sleepiness (45%, versus 54% in the iPD group). Of the parkin patients, 45% had REM sleep without atonia, but only 9% had a definite REM sleep behavior disorder. All sleep measures were similar in the parkin and iPD groups. Two parkin siblings had a central hypersomnia, characterized by mean daytime sleep latencies of 3 min, no sleep onset REM periods, and normal nighttime sleep. Although the patients with two parkin mutations were young, their sleep phenotype paralleled the clinical and polygraphic sleep recording abnormalities reported in iPD, except that restless legs syndrome was more prevalent and secondary narcolepsy was absent.

  15. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson’s disease

    PubMed Central

    Koentjoro, Brianada; Park, Jin-Sung; Sue, Carolyn M.

    2017-01-01

    Therapeutic targets are needed to develop neuroprotective treatments for Parkinson’s disease (PD). Mitophagy, the selective autophagic elimination of dysfunctional mitochondria, is essential for the maintenance of mitochondrial integrity and is predominantly regulated by the PINK1/Parkin-mediated pathway. Loss of function mutations in Parkin and PINK1 cause an accumulation of dysfunctional mitochondria, leading to nigral neurodegeneration and early-onset PD with a high penetrance rate. We previously identified an asymptomatic homozygous Parkin mutation carrier who had not developed PD by her eighth decade despite the loss of functional Parkin. Here we discover a putative mechanism that protects her against PD. In contrast to Parkin-related PD patient-derived cells, the asymptomatic carrier cells show preserved mitochondrial function and mitophagy which is mediated by mitochondrial receptor Nip3-like protein X (Nix). Nix-mediated mitophagy was not affected by PINK1 knockdown. Both genetic and pharmacological induction of Nix restores mitophagy in PINK1- and Parkin-related PD patient cell lines, confirming its ability to induce mitophagy in the absence of PINK1/Parkin-mediated pathway. Moreover, Nix over-expression improves mitochondrial ATP production in these patient cells. Our results demonstrate that Nix can serve as an alternative mediator of mitophagy to maintain mitochondrial turnover, identifying Nix as a promising target for neuroprotective treatment in PINK1/Parkin-related PD. PMID:28281653

  16. Compensatory premotor activity during affective face processing in subclinical carriers of a single mutant Parkin allele.

    PubMed

    Anders, Silke; Sack, Benjamin; Pohl, Anna; Münte, Thomas; Pramstaller, Peter; Klein, Christine; Binkofski, Ferdinand

    2012-04-01

    Patients with Parkinson's disease suffer from significant motor impairments and accompanying cognitive and affective dysfunction due to progressive disturbances of basal ganglia-cortical gating loops. Parkinson's disease has a long presymptomatic stage, which indicates a substantial capacity of the human brain to compensate for dopaminergic nerve degeneration before clinical manifestation of the disease. Neuroimaging studies provide evidence that increased motor-related cortical activity can compensate for progressive dopaminergic nerve degeneration in carriers of a single mutant Parkin or PINK1 gene, who show a mild but significant reduction of dopamine metabolism in the basal ganglia in the complete absence of clinical motor signs. However, it is currently unknown whether similar compensatory mechanisms are effective in non-motor basal ganglia-cortical gating loops. Here, we ask whether asymptomatic Parkin mutation carriers show altered patterns of brain activity during processing of facial gestures, and whether this might compensate for latent facial emotion recognition deficits. Current theories in social neuroscience assume that execution and perception of facial gestures are linked by a special class of visuomotor neurons ('mirror neurons') in the ventrolateral premotor cortex/pars opercularis of the inferior frontal gyrus (Brodmann area 44/6). We hypothesized that asymptomatic Parkin mutation carriers would show increased activity in this area during processing of affective facial gestures, replicating the compensatory motor effects that have previously been observed in these individuals. Additionally, Parkin mutation carriers might show altered activity in other basal ganglia-cortical gating loops. Eight asymptomatic heterozygous Parkin mutation carriers and eight matched controls underwent functional magnetic resonance imaging and a subsequent facial emotion recognition task. As predicted, Parkin mutation carriers showed significantly stronger activity in

  17. The relationship between Obsessive-Compulsive symptoms and PARKIN genotype: The CORE-PD study

    PubMed Central

    Sharp, ME; Caccappolo, E; Mejia-Santana, H; Tang, M–X; Rosado, L; Orbe Reilly, M; Ruiz, D; Louis, ED; Comella, C; Nance, M; Bressman, S; Scott, WK; Tanner, C; Waters, C; Fahn, S; Cote, L; Ford, B; Rezak, M; Novak, K; Friedman, JH; Pfeiffer, R; Payami, H; Molho, E; Factor, SA; Nutt, J; Serrano, C; Arroyo, M; Pauciulo, MW; Nichols, WC; Clark, LN; Alcalay, RN; Marder, KS

    2014-01-01

    Background Few studies have systematically investigated the association between PARKIN genotype and psychiatric co-morbidities of PD. PARKIN-associated PD is characterized by severe nigral dopaminergic neuronal loss, a finding that may have implications for behaviors rooted in dopaminergic circuits such as obsessive-compulsive symptoms (OCS). Methods The Schedule of Compulsions and Obsessions Patient Inventory (SCOPI) was administered to 104 patients with early-onset PD and 257 asymptomatic first-degree relatives. Carriers of one and two PARKIN mutations were compared to non-carriers. Results Among patients, carriers scored lower than non-carriers in adjusted models (one-mutation: 13.9 point difference, p=0.03; two-mutation: 24.1, p=0.001), where lower scores indicate less OCS. Among asymptomatic relatives, there was a trend towards the opposite: mutation carriers scored higher than non-carriers (one mutation p = 0.05; two mutations p = 0.13). Conclusions First, there was a significant association between PARKIN mutation status and obsessive-compulsive symptom level in both PD and asymptomatics, suggesting that OCS might represent an early non-motor dopamine-dependent feature. Second, irrespective of disease status, heterozygotes were significantly different that non-carriers suggesting that PARKIN heterozygosity may contribute to phenotype. PMID:25393808

  18. The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process

    SciTech Connect

    Park, Jeehye; Lee, Gina; Chung, Jongkyeong

    2009-01-16

    The two Parkinson's disease (PD) genes, PTEN-induced kinase 1 (PINK1) and parkin, are linked in a common pathway which affects mitochondrial integrity and function. However, it is still not known what this pathway does in the mitochondria. Therefore, we investigated its physiological function in Drosophila. Because Drosophila PINK1 and parkin mutants show changes in mitochondrial morphology in both indirect flight muscles and dopaminergic neurons, we here investigated whether the PINK1-Parkin pathway genetically interacts with the regulators of mitochondrial fusion and fission such as Drp1, which promotes mitochondrial fission, and Opa1 or Marf, which induces mitochondrial fusion. Surprisingly, DrosophilaPINK1 and parkin mutant phenotypes were markedly suppressed by overexpression of Drp1 or downregulation of Opa1 or Marf, indicating that the PINK1-Parkin pathway regulates mitochondrial remodeling process in the direction of promoting mitochondrial fission. Therefore, we strongly suggest that mitochondrial fusion and fission process could be a prominent therapeutic target for the treatment of PD.

  19. Parkin functionally interacts with PGC-1α to preserve mitochondria and protect dopaminergic neurons.

    PubMed

    Zheng, Lu; Bernard-Marissal, Nathalie; Moullan, Norman; D'Amico, Davide; Auwerx, Johan; Moore, Darren J; Knott, Graham; Aebischer, Patrick; Schneider, Bernard L

    2017-01-04

    To understand the cause of Parkinson's disease (PD), it is important to determine the functional interactions between factors linked to the disease. Parkin is associated with autosomal recessive early-onset PD, and controls the transcription of PGC-1α, a master regulator of mitochondrial biogenesis. These two factors functionally interact to regulate the turnover and quality of mitochondria, by increasing both mitophagic activity and mitochondria biogenesis. In cortical neurons, co-expressing PGC-1α and Parkin increases the number of mitochondria, enhances maximal respiration, and accelerates the recovery of the mitochondrial membrane potential following mitochondrial uncoupling. PGC-1α enhances Mfn2 transcription, but also leads to increased degradation of the Mfn2 protein, a key ubiquitylation target of Parkin on mitochondria. In vivo, Parkin has significant protective effects on the survival and function of nigral dopaminergic neurons in which the chronic expression of PGC-1α is induced. Ultrastructural analysis shows that these two factors together control the density of mitochondria and their interaction with the endoplasmic reticulum These results highlight the combined effects of Parkin and PGC-1α in the maintenance of mitochondrial homeostasis in dopaminergic neurons. These two factors synergistically control the quality and function of mitochondria, which is important for the survival of neurons in Parkinson's disease.

  20. Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease

    PubMed Central

    Celardo, I; Costa, A C; Lehmann, S; Jones, C; Wood, N; Mencacci, N E; Mallucci, G R; Loh, S H Y; Martins, L M

    2016-01-01

    Mutations in PINK1 and PARKIN cause early-onset Parkinson's disease (PD), thought to be due to mitochondrial toxicity. Here, we show that in Drosophila pink1 and parkin mutants, defective mitochondria also give rise to endoplasmic reticulum (ER) stress signalling, specifically to the activation of the protein kinase R-like endoplasmic reticulum kinase (PERK) branch of the unfolded protein response (UPR). We show that enhanced ER stress signalling in pink1 and parkin mutants is mediated by mitofusin bridges, which occur between defective mitochondria and the ER. Reducing mitofusin contacts with the ER is neuroprotective, through suppression of PERK signalling, while mitochondrial dysfunction remains unchanged. Further, both genetic inhibition of dPerk-dependent ER stress signalling and pharmacological inhibition using the PERK inhibitor GSK2606414 were neuroprotective in both pink1 and parkin mutants. We conclude that activation of ER stress by defective mitochondria is neurotoxic in pink1 and parkin flies and that the reduction of this signalling is neuroprotective, independently of defective mitochondria. A video abstract for this article is available online in the supplementary information PMID:27336715

  1. Triggering of Parkin Mitochondrial Translocation in Mitophagy: Implications for Liver Diseases

    PubMed Central

    Eid, Nabil; Ito, Yuko; Otsuki, Yoshinori

    2016-01-01

    A growing body of evidence based on in vitro studies indicates that mitophagy (selective autophagic clearance of damaged mitochondria) is a prosurvival mechanism associated with cellular exposure to various mitochondrial stressors. Very recently, a limited number of publications on animal-based models of alcoholic fatty liver diseases have reported that Parkin-mediated mitophagy may mitigate hepatocyte apoptosis, improve mitochondrial quality and suppress steatosis (lipid accumulation). From this perspective, the authors focus on the mechanisms of Parkin mitochondrial translocation (a key consideration in mitophagy activation) and therapeutic implications of mitophagy in liver disease. DNA repair and other functions of Parkin beyond mitophagy are also briefly discussed. The paper additionally shows original data from the authors’ current research indicating enhanced hepatic mitophagy in ethanol-treated rats, which is associated with Parkin mitochondrial translocation triggered by oxidative mitochondrial DNA damage. Natural or pharmaceutical products that may trigger Parkin mitochondrial translocation in hepatocytes and/or suppress repressors of such translocation could be a potential therapeutic target in alcoholic and non-alcoholic fatty liver disease. PMID:27199746

  2. ATM mediates spermidine-induced mitophagy via PINK1 and Parkin regulation in human fibroblasts.

    PubMed

    Qi, Yongmei; Qiu, Qian; Gu, Xueyan; Tian, Yihong; Zhang, Yingmei

    2016-04-19

    The ATM (ataxia telangiectasia mutated) protein has recently been proposed to play critical roles in the response to mitochondrial dysfunction by initiating mitophagy. Here, we have used ATM-proficient GM00637 cells and ATM-deficient GM05849 cells to investigate the mitophagic effect of spermidine and to elucidate the role of ATM in spermdine-induced mitophagy. Our results indicate that spermidine induces mitophagy by eliciting mitochondrial depolarization, which triggers the formation of mitophagosomes and mitolysosomes, thereby promoting the accumulation of PINK1 and translocation of Parkin to damaged mitochondria, finally leading to the decreased mitochondrial mass in GM00637 cells. However, in GM05849 cells or GM00637 cells pretreated with the ATM kinase inhibitor KU55933, the expression of full-length PINK1 and the translocation of Parkin are blocked, and the colocalization of Parkin with either LC3 or PINK1 is disrupted. These results suggest that ATM drives the initiation of the mitophagic cascade. Our study demonstrates that spermidine induces mitophagy through ATM-dependent activation of the PINK1/Parkin pathway. These findings underscore the importance of a mitophagy regulatory network of ATM and PINK1/Parkin and elucidate a novel mechanism by which ATM influences spermidine-induced mitophagy.

  3. Phosphorylation by PINK1 Releases the UBL Domain and Initializes the Conformational Opening of the E3 Ubiquitin Ligase Parkin

    PubMed Central

    Moussaud-Lamodière, Elisabeth L.; Dourado, Daniel F. A. R.; Flores, Samuel C.; Springer, Wolfdieter

    2014-01-01

    Loss-of-function mutations in PINK1 or PARKIN are the most common causes of autosomal recessive Parkinson's disease. Both gene products, the Ser/Thr kinase PINK1 and the E3 Ubiquitin ligase Parkin, functionally cooperate in a mitochondrial quality control pathway. Upon stress, PINK1 activates Parkin and enables its translocation to and ubiquitination of damaged mitochondria to facilitate their clearance from the cell. Though PINK1-dependent phosphorylation of Ser65 is an important initial step, the molecular mechanisms underlying the activation of Parkin's enzymatic functions remain unclear. Using molecular modeling, we generated a complete structural model of human Parkin at all atom resolution. At steady state, the Ub ligase is maintained inactive in a closed, auto-inhibited conformation that results from intra-molecular interactions. Evidently, Parkin has to undergo major structural rearrangements in order to unleash its catalytic activity. As a spark, we have modeled PINK1-dependent Ser65 phosphorylation in silico and provide the first molecular dynamics simulation of Parkin conformations along a sequential unfolding pathway that could release its intertwined domains and enable its catalytic activity. We combined free (unbiased) molecular dynamics simulation, Monte Carlo algorithms, and minimal-biasing methods with cell-based high content imaging and biochemical assays. Phosphorylation of Ser65 results in widening of a newly defined cleft and dissociation of the regulatory N-terminal UBL domain. This motion propagates through further opening conformations that allow binding of an Ub-loaded E2 co-enzyme. Subsequent spatial reorientation of the catalytic centers of both enzymes might facilitate the transfer of the Ub moiety to charge Parkin. Our structure-function study provides the basis to elucidate regulatory mechanisms and activity of the neuroprotective Parkin. This may open up new avenues for the development of small molecule Parkin activators through

  4. Parp mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson's disease

    PubMed Central

    Lehmann, S; Costa, A C; Celardo, I; Loh, S H Y; Martins, L M

    2016-01-01

    The co-enzyme nicotinamide adenine dinucleotide (NAD+) is an essential co-factor for cellular energy generation in mitochondria as well as for DNA repair mechanisms in the cell nucleus involving NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Mitochondrial function is compromised in animal models of Parkinson's disease (PD) associated with PARKIN mutations. Here, we uncovered alterations in NAD+ salvage metabolism in Drosophila parkin mutants. We show that a dietary supplementation with the NAD+ precursor nicotinamide rescues mitochondrial function and is neuroprotective. Further, by mutating Parp in parkin mutants, we show that this increases levels of NAD+ and its salvage metabolites. This also rescues mitochondrial function and suppresses dopaminergic neurodegeneration. We conclude that strategies to enhance NAD+ levels by administration of dietary precursors or the inhibition of NAD+-dependent enzymes, such as PARP, that compete with mitochondria for NAD+ could be used to delay neuronal death associated with mitochondrial dysfunction. PMID:27031963

  5. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria.

    PubMed

    Cunningham, Christian N; Baughman, Joshua M; Phu, Lilian; Tea, Joy S; Yu, Christine; Coons, Mary; Kirkpatrick, Donald S; Bingol, Baris; Corn, Jacob E

    2015-02-01

    Multiple lines of evidence indicate that mitochondrial dysfunction is central to Parkinson's disease. Here we investigate the mechanism by which parkin, an E3 ubiquitin ligase, and USP30, a mitochondrion-localized deubiquitylase, regulate mitophagy. We find that mitochondrial damage stimulates parkin to assemble Lys 6, Lys 11 and Lys 63 chains on mitochondria, and that USP30 is a ubiquitin-specific deubiquitylase with a strong preference for cleaving Lys 6- and Lys 11-linked multimers. Using mass spectrometry, we show that recombinant USP30 preferentially removes these linkage types from intact ubiquitylated mitochondria and counteracts parkin-mediated ubiquitin chain formation in cells. These results, combined with a series of chimaera and localization studies, afford insights into the mechanism by which a balance of ubiquitylation and deubiquitylation regulates mitochondrial homeostasis, and suggest a general mechanism for organelle autophagy.

  6. Mutational analysis of parkin and PINK1 in multiple system atrophy

    PubMed Central

    Brooks, Janet A.; Houlden, Henry; Melchers, Anna; Islam, Ansha J.; Ding, Jinhui; Li, Abi; Paudel, Reema; Revesz, Tamas; Holton, Janice L.; Wood, Nick; Lees, Andrew; Singleton, Andrew B.; Scholz, Sonja W.

    2009-01-01

    Multiple system atrophy (MSA) and Parkinson’s disease (PD) are progressive neurodegenerative disorders with overlapping clinical, biochemical and genetic features. To test the hypothesis that the Parkinson’s disease genes parkin and PINK1 also play a role in the pathogenesis of MSA, we performed a mutational screening study involving 87 pathology-proven MSA cases. In parkin we identified eight sequence variants and four heterozygous deletions, and in PINK1 we identified nine variants of which two silent mutations have not been previously reported (p.Gly189Gly and p.Arg337Arg). The frequencies of the observed variants were not significantly different from previously published control data and none of the possibly pathogenic variants were found in a homozygous state. Our results indicate that genetic variants at the parkin and PINK1 loci do not play a critical role in the pathogenesis of MSA. PMID:20034704

  7. USP8 and PARK2/parkin-mediated mitophagy.

    PubMed

    Durcan, Thomas M; Fon, Edward A

    2015-01-01

    The Parkinson disease (PD)-associated E3-ubiquitin (Ub) ligase PARK2/parkin plays a central role in many stress response pathways, and in particular, in mitochondrial quality control. Within this pathway, PARK2 activation is accompanied by a robust increase in its autoubiquitination, followed by clearance of the damaged mitochondria by selective autophagy (mitophagy). Yet, little is known about how this auto-ubiquitination is regulated during mitophagy. In our study, we demonstrate that PARK2 forms predominantly K6-linked Ub conjugates on itself. Moreover, PARK2 interacts with the deubiquitinating enzyme USP8 that preferentially removes these K6-linked conjugates, thereby regulating the activity and function of PARK2 in the pathway. When USP8 is silenced, a persistence of K6-linked Ub conjugates on PARK2 delays both its translocation to damaged mitochondria and successful completion of mitophagy. Taken together, these findings implicate a novel role for K6-linked Ub conjugates and USP8-mediated deubiquitination in the regulation of PARK2 in mitochondrial quality control.

  8. MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity

    PubMed Central

    Thomas, Bobby; von Coelln, Rainer; Mandir, Allen S.; Trinkaus, Daniel B.; Farah, Mohamed H.; Lim, Kah Leong; Calingasan, Noel Y.; Beal, M. Flint; Dawson, Valina L.; Dawson, Ted M.

    2007-01-01

    Mutations in the parkin gene cause autosomal recessive familial Parkinson’s disease (PD). Parkin-deficient mouse models fail to recapitulate nigrostriatal dopaminergic neurodegeneration as seen in PD, but produce deficits in dopaminergic neurotransmission and noradrenergic-dependent behavior. Since sporadic PD is thought to be caused by a combination of genetic susceptibilities and environmental factors, we hypothesized that neurotoxic insults from catecholaminergic toxins would render parkin knockout mice more vulnerable to neurodegeneration. Accordingly, we investigated the susceptibility of catecholaminergic neurons in parkin knockout mice to the potent dopaminergic and noradrenergic neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) respectively. We report that nigrostriatal dopaminergic neurons in parkin knockout mice do not show increased susceptibility to the parkinsonian neurotoxin, MPTP, in acute, subacute and chronic dose regimens of the neurotoxin. Additionally, parkin knockout mice do not show increased vulnerability to the noradrenergic neurotoxin, DSP-4, regarding levels of norepinephrine in cortex, brain stem and spinal cord. These findings suggest that absence of parkin in mice does not increase susceptibility to the loss of catecholaminergic neurons upon exposure to both dopaminergic and noradrenergic neurotoxins. PMID:17336077

  9. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic p53

    PubMed Central

    Song, Young Mi; Lee, Woo Kyung; Lee, Yong-ho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Byung-Wan

    2016-01-01

    Metformin is known to alleviate hepatosteatosis by inducing 5’ adenosine monophosphate (AMP)-kinase-independent, sirtuin 1 (SIRT1)-mediated autophagy. Dysfunctional mitophagy in response to glucolipotoxicities might play an important role in hepatosteatosis. Here, we investigated the mechanism by which metformin induces mitophagy through restoration of the suppressed Parkin-mediated mitophagy. To this end, our ob/ob mice were divided into three groups: (1) ad libitum feeding of a standard chow diet; (2) intraperitoneal injections of metformin 300 mg/kg; and (3) 3 g/day caloric restriction (CR). HepG2 cells were treated with palmitate (PA) plus high glucose in the absence or presence of metformin. We detected enhanced mitophagy in ob/ob mice treated with metformin or CR, whereas mitochondrial spheroids were observed in mice fed ad libitum. Metabolically stressed ob/ob mice and PA-treated HepG2 cells showed an increase in expression of endoplasmic reticulum (ER) stress markers and cytosolic p53. Cytosolic p53 inhibited mitophagy by disturbing the mitochondrial translocation of Parkin, as demonstrated by immunoprecipitation. However, metformin decreased ER stress and p53 expression, resulting in induction of Parkin-mediated mitophagy. Furthermore, pifithrin-α, a specific inhibitor of p53, increased mitochondrial incorporation into autophagosomes. Taken together, these results indicate that metformin treatment facilitates Parkin-mediated mitophagy rather than mitochondrial spheroid formation by decreasing the inhibitory interaction with cytosolic p53 and increasing degradation of mitofusins. PMID:26784190

  10. Novel parkin mutations detected in patients with early-onset Parkinson's disease.

    PubMed

    Bertoli-Avella, Aida M; Giroud-Benitez, José L; Akyol, Ali; Barbosa, Egberto; Schaap, Onno; van der Linde, Herma C; Martignoni, Emilia; Lopiano, Leonardo; Lamberti, Paolo; Fincati, Emiliana; Antonini, Angelo; Stocchi, Fabrizio; Montagna, Pasquale; Squitieri, Ferdinando; Marini, Paolo; Abbruzzese, Giovanni; Fabbrini, Giovanni; Marconi, Roberto; Dalla Libera, Alessio; Trianni, Giorgio; Guidi, Marco; De Gaetano, Antonio; Boff Maegawa, Gustavo; De Leo, Antonino; Gallai, Virgilio; de Rosa, Giulia; Vanacore, Nicola; Meco, Giuseppe; van Duijn, Cornelia M; Oostra, Ben A; Heutink, Peter; Bonifati, Vincenzo

    2005-04-01

    A multiethnic series of patients with early-onset Parkinson's disease (EOP) was studied to assess the frequency and nature of parkin/PARK2 gene mutations and to investigate phenotype-genotype relationships. Forty-six EOP probands with an onset age of < 45 years, and 14 affected relatives were ascertained from Italy, Brazil, Cuba, and Turkey. The genetic screening included direct sequencing and exon dosage using a new, cost-effective, real-time polymerase chain reaction method. Mutations were found in 33% of the indexes overall, and in 53% of those with family history compatible with autosomal recessive inheritance. Fifteen parkin alterations (10 exon deletions and five point mutations) were identified, including four novel mutations: Arg402Cys, Cys418Arg, IVS11-3C > G, and exon 8-9-10 deletion. Homozygous mutations, two heterozygous mutations, and a single heterozygous mutation were found in 8, 6, and 1 patient, respectively. Heterozygous exon deletions represented 28% of the mutant alleles. The patients with parkin mutations showed significantly earlier onset, longer disease duration, more frequently symmetric onset, and slower disease progression than the patients without mutations, in agreement with previous studies. This study confirms the frequent involvement of parkin and the importance of genetic testing in the diagnostic work-up of EOP.

  11. Lithium prevents parkinsonian behavioral and striatal phenotypes in an aged parkin mutant transgenic mouse model.

    PubMed

    Lieu, Christopher A; Dewey, Colleen M; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Batir, Sean; Kim, Yong-Hwan; Andersen, Julie K

    2014-12-03

    Lithium has long been used as a treatment for the psychiatric disease bipolar disorder. However, previous studies suggest that lithium provides neuroprotective effects in neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease. The exact mechanism by which lithium exerts these effects still remains unclear. In the present study, we evaluated the effects of low-dose lithium treatment in an aged mouse model expressing a parkin mutation within dopaminergic neurons. We found that low-dose lithium treatment prevented motor impairment as demonstrated by the open field test, pole test, and rearing behavior. Furthermore, lithium prevented dopaminergic striatal degeneration in parkin animals. We also found that parkin-induced striatal astrogliosis and microglial activation were prevented by lithium treatment. Our results further corroborate the use of this parkin mutant transgenic mouse line as a model for PD for testing novel therapeutics. The findings of the present study also provide further validation that lithium could be re-purposed as a therapy for PD and suggest that anti-inflammatory effects may contribute to its neuroprotective mechanisms.

  12. MiT/TFE transcription factors are activated during mitophagy downstream of Parkin and Atg5

    PubMed Central

    Nezich, Catherine L.; Wang, Chunxin; Fogel, Adam I.

    2015-01-01

    The kinase PINK1 and ubiquitin ligase Parkin can regulate the selective elimination of damaged mitochondria through autophagy (mitophagy). Because of the demand on lysosomal function by mitophagy, we investigated a role for the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, in this process. We show that during mitophagy TFEB translocates to the nucleus and displays transcriptional activity in a PINK1- and Parkin-dependent manner. MITF and TFE3, homologues of TFEB belonging to the same microphthalmia/transcription factor E (MiT/TFE) family, are similarly regulated during mitophagy. Unlike TFEB translocation after starvation-induced mammalian target of rapamycin complex 1 inhibition, Parkin-mediated TFEB relocalization required Atg9A and Atg5 activity. However, constitutively active Rag guanosine triphosphatases prevented TFEB translocation during mitophagy, suggesting cross talk between these two MiT/TFE activation pathways. Analysis of clustered regularly interspaced short palindromic repeats–generated TFEB/MITF/TFE3/TFEC single, double, and triple knockout cell lines revealed that these proteins partly facilitate Parkin-mediated mitochondrial clearance. These results illuminate a pathway leading to MiT/TFE transcription factor activation, distinct from starvation-induced autophagy, which occurs during mitophagy. PMID:26240184

  13. A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment.

    PubMed

    Okatsu, Kei; Uno, Midori; Koyano, Fumika; Go, Etsu; Kimura, Mayumi; Oka, Toshihiko; Tanaka, Keiji; Matsuda, Noriyuki

    2013-12-20

    Parkinsonism typified by sporadic Parkinson disease is a prevalent neurodegenerative disease. Mutations in PINK1 (PTEN-induced putative kinase 1), a mitochondrial Ser/Thr protein kinase, or PARKIN, a ubiquitin-protein ligase, cause familial parkinsonism. The accumulation and autophosphorylation of PINK1 on damaged mitochondria results in the recruitment of Parkin, which ultimately triggers quarantine and/or degradation of the damaged mitochondria by the proteasome and autophagy. However, the molecular mechanism of PINK1 in dissipation of the mitochondrial membrane potential (ΔΨm) has not been fully elucidated. Here we show by fluorescence-based techniques that the PINK1 complex formed following a decrease in ΔΨm is composed of two PINK1 molecules and is correlated with intermolecular phosphorylation of PINK1. Disruption of complex formation by the PINK1 S402A mutation weakened Parkin recruitment onto depolarized mitochondria. The most disease-relevant mutations of PINK1 inhibit the complex formation. Taken together, these results suggest that formation of the complex containing dyadic PINK1 is an important step for Parkin recruitment onto damaged mitochondria.

  14. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism.

    PubMed

    Asai, Hirohide; Hirano, Makito; Kiriyama, Takao; Ikeda, Masanori; Ueno, Satoshi

    2010-01-01

    Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF(hSel-10) ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.

  15. Naturally- and experimentally-designed restorations of the Parkin gene deficit in autosomal recessive juvenile parkinsonism

    SciTech Connect

    Asai, Hirohide; Hirano, Makito; Kiriyama, Takao; Ikeda, Masanori; Ueno, Satoshi

    2010-01-01

    Intranuclear events due to mutations in the Parkin gene remain elusive in autosomal recessive juvenile parkinsonism (ARJP). We identified a mutant PARKIN protein in fibroblast cultures from a pair of siblings with ARJP who were homozygous for the exon 4-deleted Parkin gene. Disease was mild in one patient and debilitating in the other. The detected mutant, encoded by a transcript lacking exon 3 as well as exon 4, is an in-frame deletion that removes 121 aa, resulting in a 344-aa protein (PaDel3,4). Cell culture and transfection studies revealed negative correlations between expression levels of PaDel3,4 and those of cell cycle proteins, including cyclin E, CDK2, ppRb, and E2F-1, and demonstrated that GFP-PaDel3,4 entered nucleus and ubiquitinated cyclin E as a part of SCF{sup hSel-10} ligase complex in the patient cells. In addition, nuclear localization signal-tagged PaDel3,4 expressed in the transfected patient cells most effectively ubiquitinated cyclin E and reduced DNA damage, protecting cells from oxidative stress. Antisense-oligonucleotide treatment promoted skipping of exon 3 and thus generated PaDel3,4, increasing cell survival. Collectively, we propose that naturally- and experimentally-induced exon skipping at least partly restores the mutant Parkin gene deficit, providing a molecular basis for the development of therapeutic exon skipping.

  16. Targeting Pink1-Parkin-mediated mitophagy for treating liver injury.

    PubMed

    Williams, Jessica A; Ding, Wen-Xing

    2015-12-01

    Alcoholic liver disease and acetaminophen overdose are common causes of severe liver disease and liver failure in the United States for which there is no cure. Therefore, development of new therapeutic strategies for treatment of liver injury caused by acetaminophen and alcohol is needed. We demonstrated that autophagy protects against alcohol and acetaminophen-induced liver injuries by removing damaged mitochondria via mitophagy, which is a selective form of autophagy specific for degradation of damaged mitochondria. Parkin is well-known to be required for mitophagy induction in in vitro models, and we previously showed that the Parkin-mediated mitophagy pathway likely plays a protective role against alcohol and acetaminophen-induced liver injuries. Therefore, pharmacological upregulation of the Parkin-mediated mitophagy pathway in the liver may provide a novel and effective therapeutic option for treatment of acetaminophen and alcohol-induced liver injuries. In this review, we discuss regulation of Parkin-mediated mitophagy and possible therapeutic targets of intervention in this pathway.

  17. Genome Screen to Identify Susceptibility Genes for Parkinson Disease in a Sample without parkin Mutations

    PubMed Central

    Pankratz, Nathan; Nichols, William C.; Uniacke, Sean K.; Halter, Cheryl; Rudolph, Alice; Shults, Cliff; Conneally, P. Michael; Foroud, Tatiana

    2002-01-01

    Parkinson disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity, and postural instability, as well as by a clinically significant response to treatment with levodopa. Mutations in the α-synuclein gene have been found to result in autosomal dominant PD, and mutations in the parkin gene produce autosomal recessive juvenile-onset PD. We have studied 203 sibling pairs with PD who were evaluated by a rigorous neurological assessment based on (a) inclusion criteria consisting of clinical features highly associated with autopsy-confirmed PD and (b) exclusion criteria highly associated with other, non-PD pathological diagnoses. Families with positive LOD scores for a marker in an intron of the parkin gene were prioritized for parkin-gene testing, and mutations in the parkin gene were identified in 22 families. To reduce genetic heterogeneity, these families were not included in subsequent genome-screen analysis. Thus, a total of 160 multiplex families without evidence of a parkin mutation were used in multipoint nonparametric linkage analysis to identify PD-susceptibility genes. Two models of PD affection status were considered: model I included only those individuals with a more stringent diagnosis of verified PD (96 sibling pairs from 90 families), whereas model II included all examined individuals as affected, regardless of their final diagnostic classification (170 sibling pairs from 160 families). Under model I, the highest LOD scores were observed on chromosome X (LOD score 2.1) and on chromosome 2 (LOD score 1.9). Analyses performed with all available sibling pairs (model II) found even greater evidence of linkage to chromosome X (LOD score 2.7) and to chromosome 2 (LOD score 2.5). Evidence of linkage was also found to chromosomes 4, 5, and 13 (LOD scores >1.5). Our findings are consistent with those of other linkage studies that have reported linkage to chromosomes 5 and X. PMID:12058349

  18. Evaluation of PARKIN gene variants in West Bengal Parkinson's disease patients.

    PubMed

    Sanyal, Jaya; Jana, Arpita; Ghosh, Epsita; Banerjee, Tapas K; Chakraborty, Durga P; Rao, Vadlamudi R

    2015-09-01

    Little information is available regarding the molecular pathogenesis of Parkinson's disease (PD) among the Bengalee population in West Bengal, India. This study was undertaken to determine the contribution of Parkin variants in well-defined ethnically identical Bengalee population of India and further to describe the clinical spectrum associated with these mutations. A total of 150 unrelated PD patients and 150 controls were recruited for the study. The entire cohort was screened for mutations in all the 12 exons of the gene along with flanking splice junctions by polymerase chain reaction and DNA sequencing. Eleven nucleotide variants including two novel changes were detected. Cerebrospinal fluid (CSF) parkin protein expression of the novel mutation, Val186Ile (found in heterozygous condition in one patient only) was almost 2.7 folds lower than the controls and other PD patients. Molecular characterization of polymorphisms Ser167Asn and Val380Leu depicted that homozygous Ser167 and Val380 are significantly associated with the disease. We did not find any linkage disequilibrium among the SNPs, the low r(2) for every pair of single-nucleotide polymorphisms (SNPs) indicated that these SNPs cannot be tagged by each other. Another novel intronic change, IVS8+48C>T was present in almost equally in PD patients and controls. Among the ethnically defined Bengalee population of West Bengal, occurrence of Parkin mutation is 4% (6/150) of the PD patient pool supported with decreased folds of expression of CSF PARKIN protein. Parkin polymorphisms, Ser167 and Val380 are risk factors for the progression of the disease, and their frequency is greatly influenced by ethnic origin.

  19. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells

    PubMed Central

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313

  20. HSP72 Is a Mitochondrial Stress Sensor Critical for Parkin Action, Oxidative Metabolism, and Insulin Sensitivity in Skeletal Muscle

    PubMed Central

    Drew, Brian G.; Ribas, Vicente; Le, Jamie A.; Henstridge, Darren C.; Phun, Jennifer; Zhou, Zhenqi; Soleymani, Teo; Daraei, Pedram; Sitz, Daniel; Vergnes, Laurent; Wanagat, Jonathan; Reue, Karen; Febbraio, Mark A.; Hevener, Andrea L.

    2014-01-01

    Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In wild-type cells, we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin-null myotubes, confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases, including type 2 diabetes. PMID:24379352

  1. HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle.

    PubMed

    Drew, Brian G; Ribas, Vicente; Le, Jamie A; Henstridge, Darren C; Phun, Jennifer; Zhou, Zhenqi; Soleymani, Teo; Daraei, Pedram; Sitz, Daniel; Vergnes, Laurent; Wanagat, Jonathan; Reue, Karen; Febbraio, Mark A; Hevener, Andrea L

    2014-05-01

    Increased heat shock protein (HSP) 72 expression in skeletal muscle prevents obesity and glucose intolerance in mice, although the underlying mechanisms of this observation are largely unresolved. Herein we show that HSP72 is a critical regulator of stress-induced mitochondrial triage signaling since Parkin, an E3 ubiquitin ligase known to regulate mitophagy, was unable to ubiquitinate and control its own protein expression or that of its central target mitofusin (Mfn) in the absence of HSP72. In wild-type cells, we show that HSP72 rapidly translocates to depolarized mitochondria prior to Parkin recruitment and immunoprecipitates with both Parkin and Mfn2 only after specific mitochondrial insult. In HSP72 knockout mice, impaired Parkin action was associated with retention of enlarged, dysmorphic mitochondria and paralleled by reduced muscle respiratory capacity, lipid accumulation, and muscle insulin resistance. Reduced oxygen consumption and impaired insulin action were recapitulated in Parkin-null myotubes, confirming a role for the HSP72-Parkin axis in the regulation of muscle insulin sensitivity. These data suggest that strategies to maintain HSP72 may provide therapeutic benefit to enhance mitochondrial quality and insulin action to ameliorate complications associated with metabolic diseases, including type 2 diabetes.

  2. Parkin regulates Eg5 expression by Hsp70 ubiquitination-dependent inactivation of c-Jun NH2-terminal kinase.

    PubMed

    Liu, Min; Aneja, Ritu; Sun, Xiaodong; Xie, Songbo; Wang, Hongxia; Wu, Xiaojing; Dong, Jin-Tang; Li, Minggang; Joshi, Harish C; Zhou, Jun

    2008-12-19

    Eg5 is a motor protein of the kinesin family that is critical for spindle assembly during mitosis and has recently been implicated in tumorigenesis. It is largely unknown how Eg5 expression is regulated in cells. In this study, we present the first evidence that the cellular Eg5 level is down-regulated by Parkin, an E3 ubiquitin ligase well known for its role in the development of Parkinson disease. Our data show that Parkin does not trigger Eg5 protein degradation through the ubiquitin-proteasome pathway. Instead, Parkin represses Eg5 gene transcription by blocking c-Jun binding to the activator protein 1 site present in the Eg5 promoter. Our data further show that Parkin inactivates c-Jun NH2-terminal kinase (JNK), resulting in decreased phosphorylation of c-Jun. The inactivation of JNK is further mediated by multiple monoubiquitination of Hsp70. Importantly, both the ubiquitination of Hsp70 and the subsequent inactivation of the JNK-c-Jun pathway are crucial for Parkin to down-regulate Eg5 expression. These results thus uncover a novel function for Parkin in modulating the expression of Eg5 through the Hsp70-JNK-c-Jun signaling pathway.

  3. Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function.

    PubMed

    Davison, Eleanor J; Pennington, Kyla; Hung, Chao-Chun; Peng, Jianhe; Rafiq, Rumana; Ostareck-Lederer, Antje; Ostareck, Dirk H; Ardley, Helen C; Banks, Rosamonde E; Robinson, Philip A

    2009-09-01

    Parkin is an ubiquitin-protein ligase (E3), mutations of which cause juvenile onset - autosomal recessive Parkinson's disease, and result in reduced enzymic activity. In contrast, increased levels are protective against mitochondrial dysfunction and neurodegeneration, the mechanism of which is largely unknown. In this study, 2-DE and MS proteomic techniques were utilised to investigate the effects of increased Parkin levels on protein expression in whole cell lysates using in an inducible Parkin expression system in HEK293 cells, and also to isolate potential interactants of Parkin using tandem affinity purification and MS. Nine proteins were significantly differentially expressed (+/-2-fold change; p<0.05) using 2-DE analysis. MS revealed the identity of these proteins to be ACAT2, HNRNPK, HSPD1, PGK1, PRDX6, VCL, VIM, TPI1, and IMPDH2. The first seven of these were reduced in expression. Western blot analysis confirmed the reduction in one of these proteins (HNRNPK), and that its levels were dependent on 26S proteasomal activity. Tandem affinity purification/MS revealed 14 potential interactants of Parkin; CKB, DBT, HSPD1, HSPA9, LRPPRC, NDUFS2, PRDX6, SLC25A5, TPI1, UCHL1, UQCRC1, VCL, YWHAZ, YWHAE. Nine of these are directly involved in mitochondrial energy metabolism and glycolysis; four were also identified in the 2-DE study (HSP60, PRDX6, TPI1, and VCL). This study provides further evidence for a role for Parkin in regulating mitochondrial activity within cells.

  4. Murine Typhus

    PubMed Central

    Dzul-Rosado, Karla R; Zavala Velázquez, Jorge Ernesto; Zavala-Castro, Jorge

    2012-01-01

    Rickettsia typhi: is an intracellular bacteria who causes murine typhus. His importance is reflected in the high frequency founding specific antibodies against Rickettsia typhi in several worldwide seroepidemiological studies, the seroprevalence ranging between 3-36%. Natural reservoirs of R. typhi are rats (some species belonging the Rattus Genus) and fleas (Xenopsylla cheopis) are his vector. This infection is associated with overcrowding, pollution and poor hygiene. Typically presents fever, headache, rash on trunk and extremities, in some cases may occur organ-specific complications, affecting liver, kidney, lung or brain. Initially the disease is very similar to other diseases, is very common to confuse the murine typhus with Dengue fever, therefore, ignorance of the disease is a factor related to complications or non-specific treatments for the resolution of this infection. This paper presents the most relevant information to consider about the rickettsiosis caused by Rickettsia typhi. PMID:24893060

  5. S-Nitrosylation of parkin as a novel regulator of p53-mediated neuronal cell death in sporadic Parkinson’s disease

    PubMed Central

    2013-01-01

    Background Mutations in the gene encoding parkin, a neuroprotective protein with dual functions as an E3 ubiquitin ligase and transcriptional repressor of p53, are linked to familial forms of Parkinson’s disease (PD). We hypothesized that oxidative posttranslational modification of parkin by environmental toxins may contribute to sporadic PD. Results We first demonstrated that S-nitrosylation of parkin decreased its activity as a repressor of p53 gene expression, leading to upregulation of p53. Chromatin immunoprecipitation as well as gel-shift assays showed that parkin bound to the p53 promoter, and this binding was inhibited by S-nitrosylation of parkin. Additionally, nitrosative stress induced apoptosis in cells expressing parkin, and this death was, at least in part, dependent upon p53. In primary mesencephalic cultures, pesticide-induced apoptosis was prevented by inhibition of nitric oxide synthase (NOS). In a mouse model of pesticide-induced PD, both S-nitrosylated (SNO-)parkin and p53 protein levels were increased, while administration of a NOS inhibitor mitigated neuronal death in these mice. Moreover, the levels of SNO-parkin and p53 were simultaneously elevated in postmortem human PD brain compared to controls. Conclusions Taken together, our data indicate that S-nitrosylation of parkin, leading to p53-mediated neuronal cell death, contributes to the pathophysiology of sporadic PD. PMID:23985028

  6. Parkin disease in a Brazilian kindred: Manifesting heterozygotes and clinical follow-up over 10 years.

    PubMed

    Khan, Naheed L; Horta, Wagner; Eunson, Louise; Graham, Elizabeth; Johnson, Janel O; Chang, Shannon; Davis, Mary; Singleton, Andrew; Wood, Nicholas W; Lees, Andrew J

    2005-04-01

    We report on a large Brazilian kindred with young-onset parkinsonism due to either a homozygous or heterozygous mutation in parkin. A total of 6 members were affected: 5 were homozygous and 1 heterozygous for a deletion in exon 4. Two other heterozygotes also had extrapyramidal signs. All affected subjects showed characteristic features of parkin disease with foot dystonia and an excellent response to levodopa complicated by motor fluctuations and dyskinesia within 3 years of therapy. Careful clinical follow-up over 10 years showed the phenotype was similar in all the homozygotes with asymmetrical limb bradykinesia and early walking difficulties. Some acceleration of disability was observed in some of the cases as they entered the third decade of illness, but dementia was absent.

  7. Counteracting PINK/Parkin Deficiency in the Activation of Mitophagy: A Potential Therapeutic Intervention for Parkinson’s Disease

    PubMed Central

    Nardin, Alice; Schrepfer, Emilie; Ziviani, Elena

    2016-01-01

    Parkinson’s Disease (PD) related genes PINK1, a protein kinase [1], and Parkin, an E3 ubiquitin ligase [2], operate within the same pathway [3-5], which controls, via specific elimination of dysfunctional mitochondria, the quality of the organelle network [6]. Parkin translocates to impaired mitochondria and drives their elimination via autophagy, a process known as mitophagy [6]. PINK1 regulates Parkin translocation through a not yet completely understood mechanism [7, 8]. Mitochondrial outer membrane proteins Mitofusin (MFN), VDAC, Fis1 and TOM20 were found to be targets for Parkin mediated ubiquitination [9-11]. By adding ubiquitin molecules to its targets expressed on mitochondria, Parkin tags and selects dysfunctional mitochondria for clearance, contributing to maintain a functional and healthy mitochondrial network. Abnormal accumulation of misfolded proteins and unfunctional mitochondria is a characteristic hallmark of PD pathology. Therefore a therapeutic approach to enhance clearance of misfolded proteins and potentiate the ubiquitin-proteosome system (UPS) could be instrumental to ameliorate the progression of the disease. Recently, much effort has been put to identify specific de-ubiquitinating enzymes (DUBs) that oppose Parkin in the ubiquitination of its targets. Similar to other post-translational modifications, such as phosphorylation and acetylation, ubiquitination is also a reversible modification, mediated by a large family of DUBs [12]. DUBs inhibitors or activators can affect cellular response to stimuli that induce mitophagy via ubiquitination of mitochondrial outer membrane proteins MFN, VDAC, Fis1 and TOM20. In this respect, the identification of a Parkin-opposing DUB in the regulation of mitophagy, might be instrumental to develop specific isopeptidase inhibitors or activators that can modulate the fundamental biological process of mitochondria clearance and impact on cell survival. PMID:26517048

  8. Defining the ends of Parkin exon 4 deletions in two different families with Parkinson's disease.

    PubMed

    Clarimon, Jordi; Johnson, Janel; Dogu, Okan; Horta, Wagner; Khan, Naheed; Lees, Andrew J; Hardy, John; Singleton, Andrew

    2005-02-05

    Autosomal recessive juvenile parkinsonism (AR-JP, PARK2) is characterized by an early onset parkinsonism, often presenting with dystonia as an early feature. Mutations in Parkin are a relatively common cause of AR-JP and are estimated to be present in approximately 30% of familial young onset Parkinson disease (PD) [Abbas et al. (1999); Hum Mol Genet 8:567-574]. These mutations include exon rearrangements (deletions and duplications), point mutations, and small deletions. Similar genomic mutations have been described in unrelated patients, thereby indicating independent mutational events or ancient founder effects. We have identified homozygous deletion mutations of exon 4 in Parkin in two unrelated families, one from Brazil and the other from Turkey [Dogu et al. (2004); Mov Dis 9:812-816; Khan et al., Mov Dis, in press]. We have performed molecular analysis of the deletion breakpoints and this data indicates these mutations originated independently. We present here data demonstrating that the mutation responsible for disease in the Brazilian kindred consists of two separate deletions (1,069 and 1,750 bp) surrounding and including exon 4. The deletion removing parkin exon 4 identified in the Turkish family extended 156,203 bp. In addition to demonstrating that disease in these families is not caused by a single founder mutation, these data show that there is no common fragile site between these mutational events.

  9. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1

    PubMed Central

    Burbulla, L F; Fitzgerald, J C; Stegen, K; Westermeier, J; Thost, A-K; Kato, H; Mokranjac, D; Sauerwald, J; Martins, L M; Woitalla, D; Rapaport, D; Riess, O; Proikas-Cezanne, T; Rasse, T M; Krüger, R

    2014-01-01

    The mitochondrial chaperone mortalin was implicated in Parkinson's disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes. PMID:24743735

  10. Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin

    PubMed Central

    Wang, Zhi-hao; Luo, Yu; Zhang, Xiangnan; Liu, Xiu-Ping; Feng, Qiong; Wang, Qun; Yue, Zhenyu; Chen, Zhong; Ye, Keqiang; Wang, Jian-Zhi; Liu, Gong-Ping

    2016-01-01

    Intracellular accumulation of wild type tau is a hallmark of sporadic Alzheimer's disease (AD). However, the molecular mechanisms underlying tau toxicity is not fully understood. Here, we detected mitophagy deficits evidenced by the increased levels of mitophagy markers, including COX IV, TOMM20, and the ratio of mtDNA to genomic DNA indexed as mt-Atp6/Rpl13, in the AD brains and in the human wild type full-length tau (htau) transgenic mice. More interestingly, the mitophagy deficit was only shown in the AD patients who had an increased total tau level. Further studies demonstrated that overexpression of htau induced mitophagy deficits in HEK293 cells, the primary hippocampal neurons and in the brains of C57 mice. Upon overexpression of htau, the mitochondrial membrane potential was increased and the levels of PTEN-induced kinase 1 (PINK1) and Parkin decreased in the mitochondrial fraction, while upregulation of Parkin attenuated the htau-induced mitophagy deficits. Finally, we detected a dose-dependent allocation of tau proteins into the mitochondrial outer membrane fraction along with its cytoplasmic accumulation. These data suggest that intracellular accumulation of htau induces mitophagy deficits by direct inserting into the mitochondrial membrane and thus increasing the membrane potential, which impairs the mitochondrial residence of PINK1/Parkin. Our findings reveal a novel mechanism underlying the htau-induced neuronal toxicities in AD and other tauopathies. PMID:26943044

  11. PINK1, Parkin, and Mitochondrial Quality Control: What can we Learn about Parkinson’s Disease Pathobiology?

    PubMed Central

    Truban, Dominika; Hou, Xu; Caulfield, Thomas R.; Fiesel, Fabienne C.; Springer, Wolfdieter

    2016-01-01

    The first clinical description of Parkinson’s disease (PD) will embrace its two century anniversary in 2017. For the past 30 years, mitochondrial dysfunction has been hypothesized to play a central role in the pathobiology of this devastating neurodegenerative disease. The identifications of mutations in genes encoding PINK1 (PTEN-induced kinase 1) and Parkin (E3 ubiquitin ligase) in familial PD and their functional association with mitochondrial quality control provided further support to this hypothesis. Recent research focused mainly on their key involvement in the clearance of damaged mitochondria, a process known as mitophagy. It has become evident that there are many other aspects of this complex regulated, multifaceted pathway that provides neuroprotection. As such, numerous additional factors that impact PINK1/Parkin have already been identified including genes involved in other forms of PD. A great pathogenic overlap amongst different forms of familial, environmental and even sporadic disease is emerging that potentially converges at the level of mitochondrial quality control. Tremendous efforts now seek to further detail the roles and exploit PINK1 and Parkin, their upstream regulators and downstream signaling pathways for future translation. This review summarizes the latest findings on PINK1/Parkin-directed mitochondrial quality control, its integration and cross-talk with other disease factors and pathways as well as the implications for idiopathic PD. In addition, we highlight novel avenues for the development of biomarkers and disease-modifying therapies that are based on a detailed understanding of the PINK1/Parkin pathway. PMID:27911343

  12. VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations

    PubMed Central

    Kim, Nam Chul; Tresse, Emilie; Kolaitis, Regina M.; Molliex, Amandine; Thomas, Ruth E.; Alami, Nael H.; Wang, Bo; Joshi, Aashish; Smith, Rebecca B.; Ritson, Gillian P.; Winborn, Brett J.; Moore, Jennifer; Lee, Joo-Yong; Yao, Tso-Pang; Pallanck, Leo; Kundu, Mondira; Taylor, J. Paul

    2013-01-01

    Mutations in VCP cause multisystem degeneration impacting the nervous system, muscle, and/or bone. Patients may present with ALS, Parkinsonism, frontotemporal dementia, myopathy, Paget’s disease or a combination of these. The disease mechanism is unknown. We developed a Drosophila model of VCP mutation-dependent degeneration. The phenotype is reminiscent of PINK1 and parkin mutants, including a pronounced mitochondrial defect. Indeed, VCP interacts genetically with the PINK1/parkin pathway in vivo. Paradoxically, VCP complements PINK1 deficiency but not parkin deficiency. The basis of this paradox is resolved by mechanistic studies in vitro showing that VCP recruitment to damaged mitochondria requires Parkin-mediated ubiquitination of mitochondrial targets. VCP recruitment coincides temporally with mitochondrial fission, and VCP is required for proteasome-dependent degradation of Mitofusins in vitro and in vivo. Further, VCP and its adaptor Npl4/Ufd1 are required for clearance of damaged mitochondria via the PINK1/Parkin pathway, and this is impaired by pathogenic mutations in VCP. PMID:23498974

  13. Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system.

    PubMed

    Kimura, Yoko; Fukushi, Junpei; Hori, Seiji; Matsuda, Noriyuki; Okatsu, Kei; Kakiyama, Yukie; Kawawaki, Junko; Kakizuka, Akira; Tanaka, Keiji

    2013-12-01

    VCP/p97 is a hexameric ring-shaped AAA(+) ATPase that participates in various ubiquitin-associated cellular functions. Mis-sense mutations in VCP gene are associated with the pathogenesis of two inherited diseases: inclusion body myopathy associated with Paget's disease of the bone and front-temporal dementia (IBMPFD) and familial amyotrophic lateral sclerosis (ALS). These pathogenic VCPs have higher affinities for several cofactors, including Npl4, Ufd1 and p47. In Parkin-dependent mitochondrial quality control systems, VCP migrates to damaged mitochondria (e.g., those treated with uncouplers) to aid in the degradation of mitochondrial outer membrane proteins and to eliminate mitochondria. We showed that endogenous Npl4 and p47 also migrate to mitochondria after uncoupler treatment, and Npl4, Ufd1 or p47 silencing causes defective mitochondria clearance after uncoupler treatment. Moreover, pathogenic VCPs show impaired migration to mitochondria, and the exogenous pathogenic VCP expression partially inhibits Npl4 and p47 localization to mitochondria. These results suggest that the increased affinities of pathogenic VCPs for these cofactors cause the impaired movement of pathogenic VCPs. In adult flies, exogenous expression of wild-type VCP, but not pathogenic VCPs, reduces the number of abnormal mitochondria in muscles. Failure of pathogenic VCPs to function on damaged mitochondria may be related to the pathogenesis of IBMPFD and ALS.

  14. PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane.

    PubMed

    Gehrke, Stephan; Wu, Zhihao; Klinkenberg, Michael; Sun, Yaping; Auburger, Georg; Guo, Su; Lu, Bingwei

    2015-01-06

    Mitochondria play essential roles in many aspects of biology, and their dysfunction has been linked to diverse diseases. Central to mitochondrial function is oxidative phosphorylation (OXPHOS), accomplished by respiratory chain complexes (RCCs) encoded by nuclear and mitochondrial genomes. How RCC biogenesis is regulated in metazoans is poorly understood. Here we show that Parkinson's disease (PD)-associated genes PINK1 and Parkin direct localized translation of certain nuclear-encoded RCC (nRCC) mRNAs. Translationally repressed nRCC mRNAs are localized in a PINK1/Tom20-dependent manner to mitochondrial outer membrane, where they are derepressed and activated by PINK1/Parkin through displacement of translation repressors, including Pumilio and Glorund/hnRNP-F, a Parkin substrate, and enhanced binding of activators such as eIF4G. Inhibiting the translation repressors rescued nRCC mRNA translation and neuromuscular-degeneration phenotypes of PINK1 mutant, whereas inhibiting eIF4G had opposite effects. Our results reveal previously unknown functions of PINK1/Parkin in RNA metabolism and suggest new approaches to mitochondrial restoration and disease intervention.

  15. Syntaxin-17 delivers PINK1/parkin-dependent mitochondrial vesicles to the endolysosomal system

    PubMed Central

    McLelland, Gian-Luca

    2016-01-01

    Mitochondria are considered autonomous organelles, physically separated from endocytic and biosynthetic pathways. However, recent work uncovered a PINK1/parkin-dependent vesicle transport pathway wherein oxidized or damaged mitochondrial content are selectively delivered to the late endosome/lysosome for degradation, providing evidence that mitochondria are indeed integrated within the endomembrane system. Given that mitochondria have not been shown to use canonical soluble NSF attachment protein receptor (SNARE) machinery for fusion, the mechanism by which mitochondrial-derived vesicles (MDVs) are targeted to the endosomal compartment has remained unclear. In this study, we identify syntaxin-17 as a core mitochondrial SNARE required for the delivery of stress-induced PINK1/parkin-dependent MDVs to the late endosome/lysosome. Syntaxin-17 remains associated with mature MDVs and forms a ternary SNARE complex with SNAP29 and VAMP7 to mediate MDV–endolysosome fusion in a manner dependent on the homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Syntaxin-17 can be traced to the last eukaryotic common ancestor, hinting that the removal of damaged mitochondrial content may represent one of the earliest vesicle transport routes in the cell. PMID:27458136

  16. Effects of cinnarizine, a calcium antagonist that produces human parkinsonism, in parkin knock out mice.

    PubMed

    Serrano, A; Menéndez, J; Casarejos, M J; Solano, R M; Gallego, E; Sánchez, M; Mena, M A; García de Yebenes, J

    2005-08-01

    Cinnarizine, a calcium antagonist that produces parkinsonism in humans, induces behavioural changes such as alopecia, buco-lingual dyskinesia and reduction of motor activity in female parkin knock out (PK-KO) mice but not in wild-type (WT) controls. PK-KO mice have high striatal dopamine levels and increased dopamine metabolism in spite of low reduced tyrosine hydroxylase protein. Cinnarizine, which blocks dopamine receptors and increases dopamine release, further increased dopamine metabolism. PK-KO mice increased GSH levels as a compensatory mechanism against enhanced free radical production related to acceleration of dopamine turnover. Neuronal markers, such as beta-tubulin slightly increased in PK-KO and furthermore with cinnarizine. Astroglial markers were decreased in PK-KO mice, and this effect was potentiated by cinnarizine, suggesting abnormal glia in these animals. Microglia was hyperactivated in PK-KO midbrain, suggesting inflammation in these animals. Proapoptotic proteins were increased by cinnarizine and, to a lesser extent, in PK-KO mice. Our data indicate that mutation of parkin is a risk factor for drug-induced parkinsonism.

  17. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance.

    PubMed

    Hammerling, Babette C; Najor, Rita H; Cortez, Melissa Q; Shires, Sarah E; Leon, Leonardo J; Gonzalez, Eileen R; Boassa, Daniela; Phan, Sébastien; Thor, Andrea; Jimenez, Rebecca E; Li, Hong; Kitsis, Richard N; Dorn Ii, Gerald W; Sadoshima, Junichi; Ellisman, Mark H; Gustafsson, Åsa B

    2017-01-30

    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes.

  18. A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance

    PubMed Central

    Hammerling, Babette C.; Najor, Rita H.; Cortez, Melissa Q.; Shires, Sarah E.; Leon, Leonardo J.; Gonzalez, Eileen R.; Boassa, Daniela; Phan, Sébastien; Thor, Andrea; Jimenez, Rebecca E.; Li, Hong; Kitsis, Richard N.; Dorn II, Gerald W.; Sadoshima, Junichi; Ellisman, Mark H.; Gustafsson, Åsa B.

    2017-01-01

    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes. PMID:28134239

  19. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  20. The endoplasmic reticulum/mitochondria interface: a subcellular platform for the orchestration of the functions of the PINK1-Parkin pathway?

    PubMed

    Erpapazoglou, Zoi; Corti, Olga

    2015-04-01

    Mitochondrial dysfunction is a hallmark of both idiopathic and familial Parkinson's disease (PD). Mutations in the PARK2 and PARK6 genes, coding for the cytosolic E3 ubiquitin protein ligase Parkin and the mitochondrial serine/threonine kinase PINK1 [phosphatase and tensin homologue (PTEN)-induced putative kinase 1], lead to clinically similar early-onset Parkinsonian syndromes. PINK1 and Parkin cooperate within a conserved pathway to preserve mitochondrial quality through the regulation of a variety of processes, including mitochondrial dynamics, transport, bioenergetics, biogenesis and turnover. The molecular mechanisms behind the orchestration of this plethora of functions remain poorly understood. In the present review, we emphasize the functional overlap between the PINK1-Parkin pathway and the endoplasmic reticulum (ER)-mitochondria interface, a subcellular compartment critically involved in neurodegeneration. We discuss how this compartment may constitute a hub for the spatiotemporal organization of the activities of the PINK1-Parkin pathway.

  1. Cinnamon Treatment Upregulates Neuroprotective Proteins Parkin and DJ-1 and Protects Dopaminergic Neurons in a Mouse Model of Parkinson’s Disease

    PubMed Central

    Khasnavis, Saurabh

    2014-01-01

    Upregulation and/or maintenance of Parkinson’s disease (PD)-related beneficial proteins such as Parkin and DJ-1 in astrocytes during neurodegenerative insults may have therapeutic efficacy in PD. Cinnamon is a commonly used natural spice and flavoring material throughout the world. Here we have explored a novel use of cinnamon in upregulating Parkin and DJ-1 and protecting dopaminergic neurons in MPTP mouse model of PD. Recently we have delineated that oral feeding of cinnamon (Cinnamonum verum) powder produces sodium benzoate (NaB) in blood and brain of mice. Proinflammatory cytokine IL-1β decreased the level of Parkin/DJ-1 in mouse astrocytes. However, cinnamon metabolite NaB abrogated IL-1β-induced loss of these proteins. Inability of TNF-α to produce nitric oxide (NO) and decrease the level of Parkin/DJ-1 in wild type (WT) astrocytes, failure of IL-1β to reduce Parkin/DJ-1 in astrocytes isolated from iNOS (−/−) mice, and decrease in Parkin/DJ-1 in WT astrocytes by NO donor DETA-NONOate suggest that NO is a negative regulator of Parkin/DJ-1. Furthermore, suppression of IL-1β-induced expression of iNOS in astrocytes by NaB and reversal of NaB-mediated protection of Parkin/DJ-1 by DETA-NONOate in astrocytes indicate that NaB protects Parkin/DJ-1 in activated astrocytes via suppressing iNOS. Similarly MPTP intoxication also increased the level of iNOS and decreased the level of Parkin/DJ-1 in vivo in the nigra. However, oral treatment of MPTP-intoxicated mice with cinnamon powder and NaB reduced the expression of iNOS and protected Parkin/DJ-1 in the nigra. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions by cinnamon in MPTP-intoxicated mice. These results suggest that cinnamon may be beneficial for PD patients. PMID:24946862

  2. The Endogenous Exposome

    PubMed Central

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  3. Tissue- and Cell-Specific Mitochondrial Defect in Parkin-Deficient Mice

    PubMed Central

    Bulteau, Anne-Laure; Ferrando-Miguel, Rosa; Gouarne, Caroline; Paoli, Marc Giraudon; Pruss, Rebecca; Auchère, Françoise; L'Hermitte-Stead, Caroline; Bouillaud, Frédéric; Brice, Alexis; Corti, Olga; Lombès, Anne

    2014-01-01

    Loss of Parkin, encoded by PARK2 gene, is a major cause of autosomal recessive Parkinson's disease. In Drosophila and mammalian cell models Parkin has been shown in to play a role in various processes essential to maintenance of mitochondrial quality, including mitochondrial dynamics, biogenesis and degradation. However, the relevance of altered mitochondrial quality control mechanisms to neuronal survival in vivo is still under debate. We addressed this issue in the brain of PARK2−/− mice using an integrated mitochondrial evaluation, including analysis of respiration by polarography or by fluorescence, respiratory complexes activity by spectrophotometric assays, mitochondrial membrane potential by rhodamine 123 fluorescence, mitochondrial DNA content by real time PCR, and oxidative stress by total glutathione measurement, proteasome activity, SOD2 expression and proteins oxidative damage. Respiration rates were lowered in PARK2−/− brain with high resolution but not standard respirometry. This defect was specific to the striatum, where it was prominent in neurons but less severe in astrocytes. It was present in primary embryonic cells and did not worsen in vivo from 9 to 24 months of age. It was not associated with any respiratory complex defect, including complex I. Mitochondrial inner membrane potential in PARK2−/− mice was similar to that of wild-type mice but showed increased sensitivity to uncoupling with ageing in striatum. The presence of oxidative stress was suggested in the striatum by increased mitochondrial glutathione content and oxidative adducts but normal proteasome activity showed efficient compensation. SOD2 expression was increased only in the striatum of PARK2−/− mice at 24 months of age. Altogether our results show a tissue-specific mitochondrial defect, present early in life of PARK2−/− mice, mildly affecting respiration, without prominent impact on mitochondrial membrane potential, whose underlying mechanisms remain to be

  4. Altered protein expression pattern in skin fibroblasts from parkin-mutant early-onset Parkinson's disease patients.

    PubMed

    Lippolis, Rosa; Siciliano, Rosa Anna; Pacelli, Consiglia; Ferretta, Anna; Mazzeo, Maria Fiorella; Scacco, Salvatore; Papa, Francesco; Gaballo, Antonio; Dell'Aquila, Claudia; De Mari, Michele; Papa, Sergio; Cocco, Tiziana

    2015-09-01

    Parkinson's disease (PD) is the most common neurodegenerative movement disorder caused primarily by selective degeneration of the dopaminergic neurons in substantia nigra. In this work the proteomes extracted from primary fibroblasts of two unrelated, hereditary cases of PD patients, with different parkin mutations, were compared with the proteomes extracted from commercial adult normal human dermal fibroblasts (NHDF) and primary fibroblasts from the healthy mother of one of the two patients. The results show that the fibroblasts from the two different cases of parkin-mutant patients display analogous alterations in the expression level of proteins involved in different cellular functions, like cytoskeleton structure-dynamics, calcium homeostasis, oxidative stress response, protein and RNA processing.

  5. Melatonin rescues zebrafish embryos from the parkinsonian phenotype restoring the parkin/PINK1/DJ-1/MUL1 network.

    PubMed

    Díaz-Casado, María E; Lima, Elena; García, José A; Doerrier, Carolina; Aranda, Paula; Sayed, Ramy Ka; Guerra-Librero, Ana; Escames, Germaine; López, Luis C; Acuña-Castroviejo, Darío

    2016-08-01

    Multiple studies reporting mitochondrial impairment in Parkinson's disease (PD) involve knockout or knockdown models to inhibit the expression of mitochondrial-related genes, including parkin, PINK1, and DJ-1 ones. Melatonin has significant neuroprotective properties, which have been related to its ability to boost mitochondrial bioenergetics. The meaning and molecular targets of melatonin in PD are yet unclear. Zebrafish are an outstanding model of PD because they are vertebrates, their dopaminergic system is comparable to the nigrostriatal system of humans, and their brains express the same genes as mammals. The exposure of 24 hpf zebrafish embryos to MPTP leads to a significant inhibition of the mitochondrial complex I and the induction of sncga gene, responsible for enhancing γ-synuclein accumulation, which is related to mitochondrial dysfunction. Moreover, MPTP inhibited the parkin/PINK1/DJ-1 expression, impeding the normal function of the parkin/PINK1/DJ-1/MUL1 network to remove the damaged mitochondria. This situation remains over time, and removing MPTP from the treatment did not stop the neurodegenerative process. On the contrary, mitochondria become worse during the next 2 days without MPTP, and the embryos developed a severe motor impairment that cannot be rescued because the mitochondrial-related gene expression remained inhibited. Melatonin, added together with MPTP or added once MPTP was removed, prevented and recovered, respectively, the parkinsonian phenotype once it was established, restoring gene expression and normal function of the parkin/PINK1/DJ-1/MUL1 loop and also the normal motor activity of the embryos. The results show, for the first time, that melatonin restores brain function in zebrafish suffering with Parkinson-like disease.

  6. PINK1 and Parkin cooperatively protect neurons against constitutively active TRP channel-induced retinal degeneration in Drosophila.

    PubMed

    Huang, Z; Ren, S; Jiang, Y; Wang, T

    2016-04-07

    Calcium has an important role in regulating numerous cellular activities. However, extremely high levels of intracellular calcium can lead to neurotoxicity, a process commonly associated with degenerative diseases. Despite the clear role of calcium cytotoxicity in mediating neuronal cell death in this context, the pathological mechanisms remain controversial. We used a well-established Drosophila model of retinal degeneration, which involves the constitutively active TRP(P365) channels, to study calcium-induced neurotoxicity. We found that the disruption of mitochondrial function was associated with the degenerative process. Further, increasing autophagy flux prevented cell death in Trp(P365) mutant flies, and this depended on the PINK1/Parkin pathway. In addition, the retinal degeneration process was also suppressed by the coexpression of PINK1 and Parkin. Our results provide genetic evidence that mitochondrial dysfunction has a key role in the pathology of cellular calcium neurotoxicity. In addition, the results demonstrated that maintaining mitochondrial homeostasis via PINK1/Parkin-dependent mitochondrial quality control can potentially alleviate cell death in a wide range of neurodegenerative diseases.

  7. Label free fragment screening using surface plasmon resonance as a tool for fragment finding - analyzing parkin, a difficult CNS target.

    PubMed

    Regnström, Karin; Yan, Jiangli; Nguyen, Lan; Callaway, Kari; Yang, Yanli; Diep, Linnea; Xing, Weimei; Adhikari, Anirban; Beroza, Paul; Hom, Roy K; Riley, Brigit; Rudolph, Don; Jobling, Michael F; Baker, Jeanne; Johnston, Jennifer; Konradi, Andrei; Bova, Michael P; Artis, Dean R; Artis, Rick D

    2013-01-01

    Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3 ligase Parkin. As a prerequisite for the screen, a large number of SPR tests were performed to characterize and validate the active form of Parkin. A set of compounds was designed and used to define optimal SPR assay conditions for this fragment screen. Using these conditions, more than 5000 pre-selected fragments from our in-house library were screened for binding to Parkin. Additionally, all fragments were simultaneously screened for binding to two off target proteins to exclude promiscuous binding compounds. A low hit rate was observed that is in line with hit rates usually obtained by other HTS screening assays. All hits were further tested in dose responses on the target protein by SPR for confirmation before channeling the hits into Nuclear Magnetic Resonance (NMR) and other hit-confirmation assays.

  8. Stimulating endogenous cardiac repair

    PubMed Central

    Finan, Amanda; Richard, Sylvain

    2015-01-01

    The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players. PMID:26484341

  9. Endogenous Pyrogen Physiology

    DTIC Science & Technology

    1980-01-01

    Intracerebroventricular injection of rats: a sensitive directed to the photoreceptor system for phototaxis of the proto- assay method for endogenous...spinal heating and cooling and photobiologists. The remainder of the book is devoted to the eye. intracerebroventricular injections of monoamines and...photobehavior and vision discussed, such as histamine /antihistamines, cough remedies, of invertebrates. h i e nd slep-aids and laxatives. The few citations

  10. Folic acid supplementation rescues anomalies associated with knockdown of parkin in dopaminergic and serotonergic neurons in Drosophila model of Parkinson's disease.

    PubMed

    Srivastav, Saurabh; Singh, Sandeep Kumar; Yadav, Amarish Kumar; Srikrishna, Saripella

    2015-05-08

    parkin loss associated early-onset of Parkinson's disease, involves mitochondrial dysfunction and oxidative stress as the plausible decisive molecular mechanisms in disease pathogenesis. Mitochondrial dysfunction involves several up/down regulation of gene products, one of which being p53 is found to be elevated. Elevated p53 is involved in mitochondrial mediated apoptosis of neuronal cells in Parkinson's patients who are folate deficient as well. The present study therefore attempts to examine the effect of Folic acid (FA) supplementation in alleviation of anomalies associated with parkin knockdown using RNAi approach, specific to Dopaminergic (DA) neurons in Drosophila model system. Here we show that FA supplementation provide protection against parkin RNAi associated discrepancies, thereby improves locomotor ability, reduces mortality and oxidative stress, and partially improves Zn levels. Further, metabolic active cell status and ATP levels were also found to be improved thereby indicating improved mitochondrial function. To corroborate FA supplementation in mitochondrial functioning further, status of p53 and spargel was checked by qRT-PCR. Here we show that folic acid supplementation enrich mitochondrial functioning as depicted from improved spargel level and lowered p53 level, which was originally vice versa in parkin knockdown flies cultured in standard media. Our data thus support the potential of folic acid in alleviating the behavioural defects, oxidative stress, augmentation of zinc and ATP levels in parkin knock down flies. Further, folic acid role in repressing mitochondrial dysfunction is encouraging to further explore its possible mechanistic role to be utilized as potential therapeutics for Parkinson's disease.

  11. Parkin-mediated K63-polyubiquitination targets ubiquitin C-terminal hydrolase L1 for degradation by the autophagy-lysosome system.

    PubMed

    McKeon, Jeanne E; Sha, Di; Li, Lian; Chin, Lih-Shen

    2015-05-01

    Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a key neuronal deubiquitinating enzyme which is mutated in Parkinson disease (PD) and in childhood-onset neurodegenerative disorder with optic atrophy. Furthermore, reduced UCH-L1 protein levels are associated with a number of neurodegenerative diseases, whereas up-regulation of UCH-L1 protein expression is found in multiple types of cancer. However, very little is known about how UCH-L1 protein level is regulated in cells. Here, we report that UCH-L1 is a novel interactor and substrate of PD-linked E3 ubiquitin-protein ligase parkin. We find that parkin mediates K63-linked polyubiquitination of UCH-L1 in cooperation with the Ubc13/Uev1a E2 ubiquitin-conjugating enzyme complex and promotes UCH-L1 degradation by the autophagy-lysosome pathway. Targeted disruption of parkin gene expression in mice causes a significant decrease in UCH-L1 ubiquitination with a concomitant increase in UCH-L1 protein level in brain, supporting an in vivo role of parkin in regulating UCH-L1 ubiquitination and degradation. Our findings reveal a direct link between parkin-mediated ubiquitin signaling and UCH-L1 regulation, and they have important implications for understanding the roles of these two proteins in health and disease.

  12. Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC) to Mitochondria and Attenuation of Innate Immunity

    PubMed Central

    Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem

    2016-01-01

    Hepatitis B virus (HBV) suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA) can be sensed by RIG-I and activates MAVS to mediate interferon (IFN) λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN) synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC) to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity. PMID:27348524

  13. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  14. Pushing the endogenous envelope

    PubMed Central

    Henzy, Jamie E.; Johnson, Welkin E.

    2013-01-01

    The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the ‘fossil record’ provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution. PMID:23938755

  15. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network 'purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  16. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network `purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  17. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1

    PubMed Central

    Rojansky, Rebecca; Cha, Moon-Yong; Chan, David C

    2016-01-01

    A defining feature of mitochondria is their maternal mode of inheritance. However, little is understood about the cellular mechanism through which paternal mitochondria, delivered from sperm, are eliminated from early mammalian embryos. Autophagy has been implicated in nematodes, but whether this mechanism is conserved in mammals has been disputed. Here, we show that cultured mouse fibroblasts and pre-implantation embryos use a common pathway for elimination of mitochondria. Both situations utilize mitophagy, in which mitochondria are sequestered by autophagosomes and delivered to lysosomes for degradation. The E3 ubiquitin ligases PARKIN and MUL1 play redundant roles in elimination of paternal mitochondria. The process is associated with depolarization of paternal mitochondria and additionally requires the mitochondrial outer membrane protein FIS1, the autophagy adaptor P62, and PINK1 kinase. Our results indicate that strict maternal transmission of mitochondria relies on mitophagy and uncover a collaboration between MUL1 and PARKIN in this process. DOI: http://dx.doi.org/10.7554/eLife.17896.001 PMID:27852436

  18. Expression and localization of the Parkin co-regulated gene in mouse CNS suggests a role in ependymal cilia function.

    PubMed

    Wilson, Gabrielle R; Tan, Jacqueline T; Brody, Kate M; Taylor, Juliet M; Delatycki, Martin B; Lockhart, Paul J

    2009-08-21

    Parkin Co-Regulated Gene (PACRG) is a gene that shares a bi-directional promoter with the Parkinson's disease associated gene parkin. The functional role of PACRG is not well understood, although the gene has been associated with parkinsonian syndromes and more recently with eukaryotic cilia and flagella. We investigated the expression of Pacrg in the mouse brain by in situ hybridization and observed robust expression of Pacrg in the cells associated with the lateral, third and fourth ventricle, in addition to the aqueduct of Sylvius and choroid plexus. For all regions of Pacrg expression identified, strong expression was observed in the newborn period and this was maintained into adulthood. Immunohistochemical analysis showed that Pacrg was a component of the ependymal cells and cilia lining the ventricles. Based on our results and the previous association of PACRG homologues with cilia and flagella, we propose that Pacrg is a component of the ependymal cilia and may play an important role in motile cilia development and/or function in the CNS.

  19. Endogenous prion protein attenuates experimentally induced colitis.

    PubMed

    Martin, Gary R; Keenan, Catherine M; Sharkey, Keith A; Jirik, Frank R

    2011-11-01

    Although the cellular prion protein (PrP(C)) is expressed in the enteric nervous system and lamina propria, its function(s) in the gut is unknown. Because PrP(C) may exert a cytoprotective effect in response to various physiologic stressors, we hypothesized that PrP(C) expression levels might modulate the severity of experimental colitis. We evaluated the course of dextran sodium sulfate (DSS)-induced colitis in hemizygous Tga20 transgenic mice (approximately sevenfold overexpression of PrP(C)), Prnp(-/-) mice, and wild-type mice. On day 7, colon length, disease severity, and histologic activity indices were determined. Unlike DSS-treated wild-type and Prnp(-/-) animals, PrP(C) overexpressing mice were resistant to colitis induction, exhibited much milder histopathologic features, and did not exhibit weight loss or colonic shortening. In keeping with these results, pro-survival molecule expression and/or phosphorylation levels were elevated in DSS-treated Tga20 mice, whereas pro-inflammatory cytokine production and pSTAT3 levels were reduced. In contrast, DSS-treated Prnp(-/-) mice exhibited increased BAD protein expression and a cytokine expression profile predicted to favor inflammation and differentiation. PrP(C) expression from both the endogenous Prnp locus or the Tga20 transgene was increased in the colons of DSS-treated mice. Considered together, these findings demonstrate that PrP(C) has a previously unrecognized cytoprotective and/or anti-inflammatory function within the murine colon.

  20. Identification of receptors for pig endogenous retrovirus.

    PubMed

    Ericsson, Thomas A; Takeuchi, Yasuhiro; Templin, Christian; Quinn, Gary; Farhadian, Shelli F; Wood, James C; Oldmixon, Beth A; Suling, Kristen M; Ishii, Jennifer K; Kitagawa, Yoshinori; Miyazawa, Takayuki; Salomon, Daniel R; Weiss, Robin A; Patience, Clive

    2003-05-27

    Xenotransplantation of porcine tissues has the potential to treat a wide variety of major health problems including organ failure and diabetes. Balanced against the potential benefits of xenotransplantation, however, is the risk of human infection with a porcine microorganism. In particular, the transmission of porcine endogenous retrovirus (PERV) is a major concern [Chapman, L. E. & Bloom, E. T. (2001) J. Am. Med. Assoc. 285, 2304-2306]. Here we report the identification of two, sequence-related, human proteins that act as receptors for PERV-A, encoded by genes located on chromosomes 8 and 17. We also describe homologs from baboon and porcine cells that also are active as receptors. Conversely, activity could not be demonstrated with a syntenic murine receptor homolog. Sequence analysis indicates that PERV-A receptors [human PERV-A receptor (HuPAR)-1, HuPAR-2, baboon PERV-A receptor 2, and porcine PERV-A receptor] are multiple membrane-spanning proteins similar to receptors for other gammaretroviruses. Expression is widespread in human tissues including peripheral blood mononuclear cells, but their biological functions are unknown. The identification of the PERV-A receptors opens avenues of research necessary for a more complete assessment of the retroviral risks of pig to human xenotransplantation.

  1. Endogenous Antibodies for Tumor Detection

    PubMed Central

    Rich, Barrie S.; Honeyman, Joshua N.; Darcy, David G.; Smith, Peter T.; Williams, Andrew R.; Lim, Irene Isabel P.; Johnson, Linda K.; Gönen, Mithat; Simon, Joel S.; LaQuaglia, Michael P.; Simon, Sanford M.

    2014-01-01

    The study of cancer immunology has provided diagnostic and therapeutic instruments through serum autoantibody biomarkers and exogenous monoclonal antibodies. While some endogenous antibodies are found within or surrounding transformed tissue, the extent to which this exists has not been entirely characterized. We find that in transgenic and xenograft mouse models of cancer, endogenous gamma immunoglobulin (IgG) is present at higher concentration in malignantly transformed organs compared to non-transformed organs in the same mouse or organs of cognate wild-type mice. The enrichment of endogenous antibodies within the malignant tissue provides a potential means of identifying and tracking malignant cells in vivo as they mutate and diversify. Exploiting these antibodies for diagnostic and therapeutic purposes is possible through the use of agents that bind endogenous antibodies. PMID:24875800

  2. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy.

    PubMed

    Meissner, Cathrin; Lorenz, Holger; Hehn, Beate; Lemberg, Marius K

    2015-01-01

    Mutations in PINK1 and PARK2/Parkin are a main risk factor for familial Parkinson disease. While the physiological mechanism of their activation is unclear, these proteins have been shown in tissue culture cells to serve as a key trigger for autophagy of depolarized mitochondria. Here we show that ablation of the mitochondrial rhomboid protease PARL leads to retrograde translocation of an intermembrane space-bridging PINK1 import intermediate. Subsequently, it is rerouted to the outer membrane in order to recruit PARK2, which phenocopies mitophagy induction by uncoupling agents. Consistent with a role of this retrograde translocation mechanism in neurodegenerative disease, we show that pathogenic PINK1 mutants which are not cleaved by PARL affect PINK1 kinase activity and the ability to induce PARK2-mediated mitophagy. Altogether we suggest that PARL is an important intrinsic player in mitochondrial quality control, a system substantially impaired in Parkinson disease as indicated by reduced removal of damaged mitochondria in affected patients.

  3. Endogenous rhythms influence interpersonal synchrony.

    PubMed

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination.

  4. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  5. Quantitative analysis of endogenous compounds.

    PubMed

    Thakare, Rhishikesh; Chhonker, Yashpal S; Gautam, Nagsen; Alamoudi, Jawaher Abdullah; Alnouti, Yazen

    2016-09-05

    Accurate quantitative analysis of endogenous analytes is essential for several clinical and non-clinical applications. LC-MS/MS is the technique of choice for quantitative analyses. Absolute quantification by LC/MS requires preparing standard curves in the same matrix as the study samples so that the matrix effect and the extraction efficiency for analytes are the same in both the standard and study samples. However, by definition, analyte-free biological matrices do not exist for endogenous compounds. To address the lack of blank matrices for the quantification of endogenous compounds by LC-MS/MS, four approaches are used including the standard addition, the background subtraction, the surrogate matrix, and the surrogate analyte methods. This review article presents an overview these approaches, cite and summarize their applications, and compare their advantages and disadvantages. In addition, we discuss in details, validation requirements and compatibility with FDA guidelines to ensure method reliability in quantifying endogenous compounds. The standard addition, background subtraction, and the surrogate analyte approaches allow the use of the same matrix for the calibration curve as the one to be analyzed in the test samples. However, in the surrogate matrix approach, various matrices such as artificial, stripped, and neat matrices are used as surrogate matrices for the actual matrix of study samples. For the surrogate analyte approach, it is required to demonstrate similarity in matrix effect and recovery between surrogate and authentic endogenous analytes. Similarly, for the surrogate matrix approach, it is required to demonstrate similar matrix effect and extraction recovery in both the surrogate and original matrices. All these methods represent indirect approaches to quantify endogenous compounds and regardless of what approach is followed, it has to be shown that none of the validation criteria have been compromised due to the indirect analyses.

  6. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  7. Endogenous opiates and behavior: 2014.

    PubMed

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  8. Endogenous respiration of Polyporus sulphureus

    SciTech Connect

    Li, S.M.W.; Siehr, D.J.

    1980-01-01

    Thirty percent of the dry weight of the basidiomycete Polyporus sulphureus is triterpenoid acid. The endogenous respiratory quotient of this organism is 0.8 indicating that the triterpenoid is being used as an endogenous storage material. Monosaccharides did not seem to be utilized as exogenous substrates but Krebs-cycle intermediates stimulated oxygen uptake. Pyruvic acid inhibited oxygen uptake. Studies with /sup 14/C-labeled glucose indicated that 27% of the glucose was metabolized by way of glycolysis. The hexose-monophosphate pathway was the major metabolic path for the utilization of glucose. Despite the fact that P. sulphureus is associated with brown rot, its carbon metabolism suggests that it utilizes substances associated with the degradation of lignin more readily than it does glucose.

  9. [Memory processes in endogenous depression].

    PubMed

    Radziwiłłowicz, W; Radziwiłłowicz, P

    1998-01-01

    The thesis aims to answer the questions about the profile of mental ability in endogenous depression and to decide whether self-estimation of depressive symptoms influences the results achieved by patients in memory tests. Fifty six patients suffering from endogenous depression have been examined. The following methods have been applied: Mini Mental State Examination, Benton Visual Retention Test, Beck Depression Inventory, hold tests: Vocabulary, Information, Comprehension and Digit Span of Wechsler Adult Intelligence Scale (WAIS), Rey-Osterrieth Complex Figure, Auditory Verbal Learning Test, DCS Weidlich. General status of cognitive functions correlates with the profile of specific kinds of memory results, particularly with delayed memory. Self-estimation of depressive symptoms intensity is mostly influenced by memory capacity, visuomotorial factor, functions of perception and lingual factor. High correlation between verbal and non verbal learning shows uniform influence of depression on the process of learning.

  10. Endogenous endophthalmitis caused by Citrobacter koseri.

    PubMed

    Chiu, Chun-Hsiang; Peng, Ming-Yieh; Wang, Ying-Chuan; Chang, Feng-Yee

    2009-12-01

    Endogenous endophthalmitis occurs when organisms are hematogenously disseminated in to the eye from a distant focus of infection. The most common isolated organisms that cause endogenous endophthalmitis are Klebsiella pneumoniae and Escherichia coli. Previous reports on endophthalmitis caused by Citrobacter species are limited. We present the first case of endogenous endophthalmitis caused by Citrobacter koseri bacteremia and renal abscesses.

  11. Glucosylceramides stimulate mitogenesis in aged murine epidermis.

    PubMed

    Marchell, N L; Uchida, Y; Brown, B E; Elias, P M; Holleran, W M

    1998-04-01

    Glucosylceramides (GlcCer) and ceramides (Cer) appear to have opposite effects on epidermal growth and differentiation. Whereas Cer inhibit mitosis and induce terminal differentiation and apoptosis in cultured keratinocytes, GlcCer is mitogenic in young murine epidermis. Using a recently described murine model of chronologic senescence we explored whether GlcCer is mitogenic in aged epidermis. Epidermal GlcCer content increases following topical applications of either conduritol-B epoxide (CBE), an inhibitor of GlcCer hydrolysis, or exogenous GlcCer in a penetration-enhancing vehicle. During chronologic aging in the hairless mouse, baseline epidermal DNA synthesis rates remain normal until 18 mo, but decline significantly at 24 mo. Topical CBE stimulates a 1.5- to 1.9-fold increase in epidermal DNA synthesis in all age groups (i.e., 1-2, 18, and 24 mo). Although the CBE induced increase in [3H]thymidine incorporation in 24 mo old animals is significant (p < 0.01), it is not sufficient to reach the absolute levels reached in similarly treated, younger mouse epidermis. Moreover, topical GlcCer induced mitogenesis is both dose dependent and hexose specific in young (1-2 mo old) animals, and remains effective in aged (< or = 24 mo old) animals. Furthermore, the CBE induced increase in DNA synthesis in aged epidermis is sufficient to produce epidermal hyperplasia. Finally, although an increased GlcCer:Cer ratio can alter stratum corneum barrier function and membrane structure, neither stratum corneum function nor extracellular membrane structure change under these experimental conditions, and therefore the mitogenic effects of increased epidermal GlcCer cannot be attributed to effects on the stratum corneum. These results show that: (i) elevations in endogenous GlcCer are mitogenic for aged as well as young murine epidermis; (ii) topical GlcCer is also mitogenic when delivered in an enhancing vehicle; and (iii) despite the putative importance of epidermal DNA synthesis

  12. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria.

    PubMed

    Wong, Yvette C; Holzbaur, Erika L F

    2015-01-01

    Damaged mitochondria are selectively degraded via autophagy in a regulated pathway known as mitophagy. Parkinson disease-linked proteins PINK1 (PTEN induced putative kinase 1) and PARK2 (parkin RBR E3 ubiquitin protein ligase) are recruited to the outer mitochondrial membrane upon mitochondrial damage, leading to the PARK2-mediated ubiquitination of mitochondrial proteins. Here, we discuss our recent work demonstrating that OPTN (optineurin) is recruited to damaged mitochondria, serving as an autophagy receptor for autophagosome formation around mitochondria. Using high-resolution live-cell imaging, we find that OPTN is recruited to ubiquitinated mitochondria downstream of PARK2, and induces autophagosome assembly around mitochondria via its LC3-interacting region. Mutations in OPTN are linked to both glaucoma and ALS (amyotrophic lateral sclerosis), and an ALS-associated E478G mutation in OPTN's ubiquitin binding domain leads to defective mitophagy and accumulation of damaged mitochondria. Importantly, our results highlight a role for mitophagy defects in ALS pathogenesis, and demonstrate that defects in the same pathway for mitochondrial homeostasis are causal for both familial Parkinson disease and ALS.

  13. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  14. Endogenous fertility, mortality and growth.

    PubMed

    Blackburn, K; Cipriani, G P

    1998-01-01

    This paper presents a model that illustrates the joint determination of population and development. "Economic and demographic outcomes are determined jointly in a choice-theoretic model of fertility, mortality and capital accumulation.... In addition to choosing savings and births, parents may reduce (infant) deaths by incurring expenditures on health-care which is also provided by the government. A generalised production technology accounts for long-run endogenous growth with short-run transitional dynamics. The analysis yields testable time series and cross-section implications which accord with the empirical evidence on the relationship between demography and development."

  15. Endogenous Inhibitors of Kidney Inflammation

    PubMed Central

    Trostel, Jessica; Garcia, Gabriela E.

    2015-01-01

    Although inflammation is the physiological response to pathogen invasion and tissue damage, it can also be responsible for significant tissue damage. Therefore, the inflammatory response must be carefully regulated to prevent critical inflammatory damage to vital organs. Typically, local endogenous regulatory mechanisms adjust the magnitude of the response such that the injurious condition is resolved and homeostasis is mantained. Humoral mechanisms that restrain or inhibit inflammation include glucocorticoid hormones, anti-inflammatory cytokines such as IL-10 and transforming growth factor-β (TGF-β), and soluble cytokine receptors; other mediators facilitate tissue healing, like lipoxins and resolvins. There is growing evidence that inflammation plays a critical role in the development and progression of heart disease, cancer, stroke, diabetes, kidney diseases, sepsis, and several fibroproliferative disorders. Consequently, understanding the mechanisms that regulate inflammation may offer therapeutic targets for inhibiting the progression of several diseases. In this article, we review the significance of several novel endogenous anti-inflammatory mediators in the protection from kidney injury and the potential of these regulatory molecules as therapeutic targets for treatment of kidney inflammatory diseases. PMID:26779569

  16. Human endogenous retroviruses and cancer

    PubMed Central

    Gonzalez-Cao, María; Iduma, Paola; Karachaliou, Niki; Santarpia, Mariacarmela; Blanco, Julià; Rosell, Rafael

    2016-01-01

    Human endogenous retroviruses (HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K (HML6) and HERV-K (HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K (HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are two-edged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors. PMID:28154780

  17. Endogeneity in prison risk classification.

    PubMed

    Shermer, Lauren O'Neill; Bierie, David M; Stock, Amber

    2013-10-01

    Security designation tools are a key feature of all prisons in the United States, intended as objective measures of risk that funnel inmates into security levels-to prison environments varying in degree of intrusiveness, restriction, dangerousness, and cost. These tools are mostly (if not all) validated by measuring inmates on a set of characteristics, using scores from summations of that information to assign inmates to prisons of varying security level, and then observing whether inmates assumed more risky did in fact offend more. That approach leaves open the possibility of endogeneity--that the harsher prisons are themselves bringing about higher misconduct and thus biasing coefficients assessing individual risk. The current study assesses this potential bias by following an entry cohort of inmates to more than 100 facilities in the Federal Bureau of Prisons (BOP) and exploiting the substantial variation in classification scores within a given prison that derive from systematic overrides of security-level designations for reasons not associated with risk of misconduct. By estimating pooled models of misconduct along with prison-fixed effects specifications, the data show that a portion of the predictive accuracy thought associated with the risk-designation tool used in BOP was a function of facility-level contamination (endogeneity).

  18. HMGB1: Endogenous Danger Signaling

    PubMed Central

    Klune, John R; Dhupar, Rajeev; Cardinal, Jon; Billiar, Timothy R; Tsung, Allan

    2008-01-01

    While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions. PMID:18431461

  19. Endogenous Opiates and Behavior: 2006

    PubMed Central

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  20. Endogenous retroviruses in domestic animals.

    PubMed

    Garcia-Etxebarria, Koldo; Sistiaga-Poveda, Maialen; Jugo, Begoña Marina

    2014-08-01

    Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates. Although the study of ERVs has been carried out mainly in humans and model organisms, recently, domestic animals have become important, and some species have begun to be analyzed to gain further insight into ERVs. Due to the availability of complete genomes and the development of new computer tools, ERVs can now be analyzed from a genome-wide viewpoint. In addition, more experimental work is being carried out to analyze the distribution, expression and interplay of ERVs within a host genome. Cats, cattle, chicken, dogs, horses, pigs and sheep have been scrutinized in this manner, all of which are interesting species in health and economic terms. Furthermore, several studies have noted differences in the number of endogenous retroviruses and in the variability of these elements among different breeds, as well as their expression in different tissues and the effects of their locations, which, in some cases, are near genes. These findings suggest a complex, intriguing relationship between ERVs and host genomes. In this review, we summarize the most important in silico and experimental findings, discuss their implications and attempt to predict future directions for the study of these genomic elements.

  1. Chronic overload of SEPT4, a parkin substrate that aggregates in Parkinson’s disease, causes behavioral alterations but not neurodegeneration in mice

    PubMed Central

    2013-01-01

    Background In autosomal recessive early-onset Parkinsonism (PARK2), the pathogenetic process from the loss of function of a ubiquitin ligase parkin to the death of dopamine neurons remains unclear. A dominant hypothesis attributes the neurotoxicity to accumulated substrates that are exempt from parkin-mediated degradation. Parkin substrates include two septins; SEPT4/CDCrel-2 which coaggregates with α-synuclein as Lewy bodies in Parkinson’s disease, and its closest homolog SEPT5/CDCrel-1/PNUTL1 whose overload with viral vector can rapidly eliminate dopamine neurons in rats. However, chronic effects of pan-neural overload of septins have never been examined in mammals. To address this, we established a line of transgenic mice that express the largest gene product SEPT454kDa via the prion promoter in the entire brain. Results Histological examination and biochemical quantification of SEPT4-associated proteins including α-synuclein and the dopamine transporter in the nigrostriatal dopamine neurons found no significant difference between Sept4Tg/+ and wild-type littermates. Thus, the hypothetical pathogenicity by the chronic overload of SEPT4 alone, if any, is insufficient to trigger neurodegenerative process in the mouse brain. Intriguingly, however, a systematic battery of behavioral tests revealed unexpected abnormalities in Sept4Tg/+ mice that include consistent attenuation of voluntary activities in distinct behavioral paradigms and altered social behaviors. Conclusions Together, these data indicate that septin dysregulations commonly found in postmortem human brains with Parkinson’s disease, schizophrenia and bipolar disorders may be responsible for a subset of behavioral abnormalities in the patients. PMID:23938054

  2. Murine typhus in travelers returning from Indonesia.

    PubMed Central

    Parola, P.; Vogelaers, D.; Roure, C.; Janbon, F.; Raoult, D.

    1998-01-01

    We report the first three documented cases of murine typhus imported into Europe from Indonesia, discuss clues for the diagnosis of the disease, and urge that murine fever be considered in the diagnosis of febrile disease in travelers. PMID:9866749

  3. Murine typhus in travelers returning from Indonesia.

    PubMed

    Parola, P; Vogelaers, D; Roure, C; Janbon, F; Raoult, D

    1998-01-01

    We report the first three documented cases of murine typhus imported into Europe from Indonesia, discuss clues for the diagnosis of the disease, and urge that murine fever be considered in the diagnosis of febrile disease in travelers.

  4. Role of endogenous insulin gene enhancer protein ISL-1 in angiogenesis

    PubMed Central

    Xiong, Si-qi; Jiang, Hai-bo; Li, Yan-xiu; Li, Hai-bo; Xu, Hui-zhuo; Wu, Zhen-kai; Zheng, Wei

    2016-01-01

    Objective To elucidate the role of insulin gene enhancer protein ISL-1 (Islet-1) in angiogenesis and regulation of vascular endothelial growth factor (VEGF) expression in vitro and in vivo. Methods siRNA targeting Islet-1 was transfected to human umbilical vein endothelial cell lines (HUVECs). The expression of Islet-1 and VEGF in the cultured cells was measured using real-time PCR and immunoblotting. 3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide; thiazolyl blue (MTT) assay was used to analyze the proliferation of HUVECs affected by Islet-1. Wound healing and Transwell assays were conducted to assess the motility of HUVECs. The formation of capillary-like structures was examined using growth factor–reduced Matrigel. siRNA targeting Islet-1 was intravitreally injected into the murine model of oxygen-induced retinopathy (OIR). Retinal neovascularization was evaluated with angiography using fluorescein-labeled dextran and then quantified histologically. Real-time PCR and immunoblotting were used to determine whether local Islet-1 silencing affected the expression of Islet-1 and VEGF in murine retinas. Results The expression of Islet-1 and VEGF in HUVECs was knocked down by siRNA. Reduced endogenous Islet-1 levels in cultured cells greatly inhibited the proliferation, migration, and tube formation in HUVECs in vitro. Retinal neovascularization following injection of Islet-1 siRNA was significantly reduced compared with that of the contralateral control eye. Histological analysis indicated that the neovascular nuclei protruding into the vitreous cavity were decreased. Furthermore, the Islet-1 and VEGF expression levels were downregulated in murine retinas treated with siRNA against Islet-1. Conclusions Reducing the expression of endogenous Islet-1 inhibits proliferation, migration, and tube formation in vascular endothelial cells in vitro and suppresses retinal angiogenesis in vivo. Endogenous Islet-1 regulates angiogenesis via VEGF. PMID:27994436

  5. Endogenous Fluorescence Signatures in Living Pluripotent Stem Cells Change with Loss of Potency

    PubMed Central

    Squirrell, Jayne M.; Fong, Jimmy J.; Ariza, Carlos A.; Mael, Amber; Meyer, Kassondra; Shevde, Nirupama K.; Roopra, Avtar; Lyons, Gary E.; Kamp, Timothy J.; Eliceiri, Kevin W.; Ogle, Brenda M.

    2012-01-01

    The therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation. We found that global and cellular-scale fluorescence lifetime of human embryonic stem cells (hESC) and murine embryonic stem cells (mESC) consistently decreased with differentiation. Less consistent were trends in endogenous fluorescence intensity with differentiation, suggesting intensity is more readily impacted by nuances of species and scale of analysis. What emerges is a practical and accessible approach to evaluate, and ultimately enrich, living stem cell populations based on changes in metabolism that could be exploited for both research and clinical applications. PMID:22952742

  6. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions

    PubMed Central

    Chang, Garry HK; Lay, Angelina J; Ting, Ka Ka; Zhao, Yang; Coleman, Paul R; Powter, Elizabeth E; Formaz-Preston, Ann; Jolly, Christopher J; Bower, Neil I; Hogan, Benjamin M; Rinkwitz, Silke; Becker, Thomas S; Vadas, Mathew A; Gamble, Jennifer R

    2014-01-01

    The formation of the vascular network requires a tightly controlled balance of pro-angiogenic and stabilizing signals. Perturbation of this balance can result in dysregulated blood vessel morphogenesis and drive pathologies including cancer. Here, we have identified a novel gene, ARHGAP18, as an endogenous negative regulator of angiogenesis, limiting pro-angiogenic signaling and promoting vascular stability. Loss of ARHGAP18 promotes EC hypersprouting during zebrafish and murine retinal vessel development and enhances tumor vascularization and growth. Endogenous ARHGAP18 acts specifically on RhoC and relocalizes to the angiogenic and destabilized EC junctions in a ROCK dependent manner, where it is important in reaffirming stable EC junctions and suppressing tip cell behavior, at least partially through regulation of tip cell genes, Dll4, Flk-1 and Flt-4. These findings highlight ARHGAP18 as a specific RhoGAP to fine tune vascular morphogenesis, limiting tip cell formation and promoting junctional integrity to stabilize the angiogenic architecture. PMID:25425145

  7. Antimicrobial proteins of murine macrophages.

    PubMed Central

    Hiemstra, P S; Eisenhauer, P B; Harwig, S S; van den Barselaar, M T; van Furth, R; Lehrer, R I

    1993-01-01

    Three murine microbicidal proteins (MUMPs) were purified from cells of the murine macrophage cell line RAW264.7 that had been activated by gamma interferon. Similar proteins were also present in nonactivated RAW264.7 cells, in cells of the murine macrophage cell line J774A.1, and in resident and activated murine peritoneal macrophages. MUMP-1, MUMP-2, and MUMP-3 killed Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Mycobacterium fortuitum, and Cryptococcus neoformans in vitro. MUMP-1 resembled an H1 histone but was unusual because its N-terminal residue (serine) was not N acetylated. Although MUMP-2 was N terminally blocked, its high lysine/arginine ratio and its reactivity with an antibody to H1 histones suggested that it also belonged to the H1 histone family. MUMP-3 was identical to histone H2B in 30 of 30 amino-terminal residues. Although the antimicrobial properties of histones have been recognized for decades, this is the first evidence that such proteins may endow the lysosomal apparatus of macrophages with nonoxidative antimicrobial potential. Other MUMPs, including some with a more restricted antimicrobial spectrum and one that appeared to be induced in RAW264.7 cells after gamma interferon stimulation, were noted but remain to be characterized. Images PMID:8514411

  8. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharmacologic genus.

    PubMed

    Serhan, C N; Chiang, N

    2008-03-01

    Complete resolution of an acute inflammatory response and its return to homeostasis are essential for healthy tissues. Here, we overview ongoing efforts to characterize cellular and molecular mechanisms that govern the resolution of self-limited inflammation. Systematic temporal analyses of evolving inflammatory exudates using mediator lipidomics-informatics, proteomics, and cellular trafficking with murine resolving exudates demonstrate novel endogenous pathways of local-acting mediators that share both anti-inflammatory and pro-resolving properties. In murine systems, resolving-exudate leukocytes switch their phenotype to actively generate new families of mediators from major omega-3 fatty acids EPA and DHA termed resolvins and protectins. Recent advances on their biosynthesis and actions are reviewed with a focus on the E-series resolvins (RvE1, RvE2), D series resolvins (RvD1, RvD2) and the protectins including neuroprotectin D1/protectin D1 (NPD1/PD1) as well as their aspirin-triggered epimeric forms. Members of each new family demonstrate potent stereo-specific actions, joining the lipoxins as endogenous local signals that govern resolution and endogenous anti-inflammation mechanisms. In addition to their origins and roles in resolution biology in the immune system, recent findings indicate that these new mediator families also display potent protective actions in lung, kidney, and eye as well as enhance microbial clearance. Thus, these endogenous agonists of resolution pathways constitute a novel genus of chemical mediators that possess pro-resolving, anti-inflammatory, and antifibrotic as well as host-directed antimicrobial actions. These may be useful in the design of new therapeutics and treatments for diseases with the underlying trait of uncontrolled inflammation and redox organ stress.

  9. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment.

    PubMed

    Khan, Mohammad Badruzzaman; Hoda, Md Nasrul; Vaibhav, Kumar; Giri, Shailendra; Wang, Philip; Waller, Jennifer L; Ergul, Adviye; Dhandapani, Krishnan M; Fagan, Susan C; Hess, David C

    2015-02-01

    We previously reported that remote limb ischemic conditioning (RLIC; PERconditioning) during acute stroke confers neuroprotection, possibly due to increased cerebral blood flow (CBF). Vascular cognitive impairment (VCI) is a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is regarded as the most valid model for VCI. We hypothesized that RLIC (postconditioning; RIPostC) will augment CBF during chronic cerebral hypoperfusion (CCH) and prevent cognitive impairment in the BCAS model. BCAS using customized microcoil was performed in C57/B6 male mice to establish CCH. A week after the BCAS surgery, mice were treated with RIPostC-therapy once daily for 2 weeks. CBF was measured with laser speckle contrast imager at different time points. Cognitive testing was performed at 4-week post-BCAS, and brain tissue was harvested for biochemistry. BCAS led to chronic hypoperfusion resulting into impaired cognitive function as tested by novel object recognition (NOR). Histological examinations revealed that BCAS triggered inflammatory responses and caused frequent vacuolization and cell death. BCAS also increased the generation and accumulation of amyloid beta protein (Aβ), resulting into the loss of white matter (WM) and myelin basic protein (MBP). RIPostC-therapy showed both acute increase as well as sustained improvement in CBF even after the cessation of therapy for a week. RIPostC improved cognitive function, inhibited inflammatory responses, prevented the cell death, reduced the generation and accumulation of Aβ, and protected WM integrity. RIPostC is effective in the BCAS model and could be an attractive low-cost conventional therapy for aged individuals with VCI. The mechanisms by which RIPostC improves CBF and attenuates tissue damage need to be investigated in the future.

  10. Endogenous Peer Effects: Fact or Fiction?

    ERIC Educational Resources Information Center

    Yeung, Ryan; Nguyen-Hoang, Phuong

    2016-01-01

    The authors examine endogenous peer effects, which occur when a student's behavior or outcome is a function of the behavior or outcome of his or her peer group. Endogenous peer effects have important implications for educational policies such as busing, school choice and tracking. In this study, the authors quantitatively review the literature on…

  11. Endogenous timing factors in bird migration

    NASA Technical Reports Server (NTRS)

    Gwinner, E. G.

    1972-01-01

    Several species of warbler birds were observed in an effort to determine what initiates and terminates migration. Environmental and endogenous timing mechanisms were analyzed. The results indicate that endogenous stimuli are dominant factors for bird migration especially for long distances. It was concluded that environmental factors act as an assist mechanism.

  12. Approaches towards endogenous pancreatic regeneration.

    PubMed

    Banerjee, Meenal; Kanitkar, Meghana; Bhonde, Ramesh R

    2005-01-01

    The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.

  13. Xenotransplantation and pig endogenous retroviruses.

    PubMed

    Magre, Saema; Takeuchi, Yasuhiro; Bartosch, Birke

    2003-01-01

    Xenotransplantation, in particular transplantation of pig cells, tissues and organs into human patients, may alleviate the current shortage of suitable allografts available for human transplantation. This overview addresses the physiological, immunological and virological factors considered with regard to xenotransplantation. Among the issues reviewed are the merits of using pigs as xenograft source species, the compatibility of pig and human organ physiology and the immunological hindrances with regard to the various types of rejection and attempts at abrogating rejection. Advances in the prevention of pig organ rejection by creating genetically modified pigs that are more suited to the human microenvironment are also discussed. Finally, with regard to virology, possible zoonotic infections emanating from pigs are reviewed, with special emphasis on the pig endogenous retrovirus (PERV). An in depth account of PERV studies, comprising their discovery as well as recent knowledge of the virus, is given. To date, all retrospective studies on patients with pig xenografts have shown no evidence of PERV transmission, however, many factors make us interpret these results with caution. Although the lack of PERV infection in xenograft recipients up to now is encouraging, more basic research and controlled animal studies that mimic the pig to human xenotransplantation setting more closely are required for safety assessment.

  14. Gravity effects on endogenous movements

    NASA Astrophysics Data System (ADS)

    Johnsson, Anders; Antonsen, Frank

    Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler

  15. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  16. Computational design and application of endogenous promoters for transcriptionally targeted gene therapy for rheumatoid arthritis.

    PubMed

    Geurts, Jeroen; Joosten, Leo A B; Takahashi, Nozomi; Arntz, Onno J; Glück, Anton; Bennink, Miranda B; van den Berg, Wim B; van de Loo, Fons A J

    2009-11-01

    The promoter regions of genes that are differentially regulated in the synovial membrane during the course of rheumatoid arthritis (RA) represent attractive candidates for application in transcriptionally targeted gene therapy. In this study, we applied an unbiased computational approach to define proximal-promoters from a gene expression profiling study of murine experimental arthritis. Synovium expression profiles from progressing stages of collagen-induced arthritis (CIA) were classified into six distinct groups using k-means clustering. Using an algorithm based on local over-representation and comparative genomics, we identified putatively functional transcription factor-binding sites (TFBS) in TATA-dependent proximal-promoters. Applying a filter based on spacing between TATA box and transcription start site (TSS) combined with the presence of over-represented nuclear factor kappaB (NFkappaB), AP-1, or CCAAT/enhancer-binding protein beta (C/EBPbeta) sites, 382 candidate murine and human promoters were reduced to 66, corresponding to 45 genes. In vitro, 9 out of 10 computationally defined promoter regions conferred cytokine-inducible expression in murine cells and human synovial fibroblasts. Under these conditions, the serum amyloid A3 (Saa3) promoter showed the strongest transcriptional induction and strength. We applied this promoter for driving therapeutically efficacious levels of the interleukin-1 receptor antagonist (Il1rn) in a disease-regulated fashion. These results demonstrate the value of bioinformatics for guiding the selection of endogenous promoters for transcriptionally targeted gene therapy.

  17. Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease.

    PubMed

    Venderova, Katerina; Kabbach, Ghassan; Abdel-Messih, Elizabeth; Zhang, Yi; Parks, Robin J; Imai, Yuzuru; Gehrke, Stephan; Ngsee, Johnny; Lavoie, Matthew J; Slack, Ruth S; Rao, Yong; Zhang, Zhuohua; Lu, Bingwei; Haque, M Emdadul; Park, David S

    2009-11-15

    Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's disease (PD). However, its physiological and pathological functions are unknown. Therefore, we generated several independent Drosophila lines carrying WT or mutant human LRRK2 (mutations in kinase, COR or LRR domains, resp.). Ectopic expression of WT or mutant LRRK2 in dopaminergic neurons caused their significant loss accompanied by complex age-dependent changes in locomotor activity. Overall, the ubiquitous expression of LRRK2 increased lifespan and fertility of the flies. However, these flies were more sensitive to rotenone. LRRK2 expression in the eye exacerbated retinal degeneration. Importantly, in double transgenic flies, various indices of the eye and dopaminergic survival were modified in a complex fashion by a concomitant expression of PINK1, DJ-1 or Parkin. This evidence suggests a genetic interaction between these PD-relevant genes.

  18. Limited Role of Murine ATM in Oncogene-Induced Senescence and p53-Dependent Tumor Suppression

    PubMed Central

    Martinez-Pastor, Barbara; Ortega-Molina, Ana; Soria, Rebeca; Collado, Manuel; Fernandez-Capetillo, Oscar; Serrano, Manuel

    2009-01-01

    Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability. PMID:19421407

  19. Effect of caffeine on induction of endogenous type C virus in mouse cells in vitro

    SciTech Connect

    Niwa, O.; Sugahara, T.

    1981-08-01

    The effect of caffeine on the expression of murine endogenous virus in mouse cells induced by radiation and chemicals was studied. Postirradiation treatment of K-BALB cells with caffeine enhanced cell killing as well as the induction of xenotropic virus after ultraviolet light irradiation. The degree of enhancement for the virus induction was comparable to that for cell killing. On the other hand, colony-forming ability and the expression of xenotropic virus of K-BALB cells after X-irradiation were unaffected by caffeine. These data suggest a linear relationship between the degree of endogenous virus expression and the amount of lethal damages after irradiation. For induction by halogenated pyrimidines, a 24-hr incubation of AKR2B cells with caffeine after 5-iodo-2'-deoxyuridine treatment resulted in marked suppression of the expression of ecotropic virus. On the contrary, in K-BALB cells, caffeine exerted only a small effect on 5-iodo-2'-deoxyuridine-induced expression of ecotropic and xenotropic viruses. These results indicate that, although using the same inducing agent, the pathway of endogenous virus induction may be different for AKR2B cells and for K-BALB cells.

  20. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  1. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide.

    PubMed Central

    Brieland, J K; Remick, D G; Freeman, P T; Hurley, M C; Fantone, J C; Engleberg, N C

    1995-01-01

    The in vivo role of endogenous tumor necrosis factor alpha (TNF-alpha) and reactive nitrogen intermediates (RNIs) in modulation of growth of Legionella pneumophila in the lung was assessed using a murine model of replicative L. pneumophila lung infection. Intratracheal inoculation of mice with L. pneumophila resulted in induction of endogenous TNF-alpha, which preceded clearance of L. pneumophila from the lung. Inhibition of endogenous TNF-alpha activity, via in vivo administration of TNF-alpha neutralizing antibody, or inhibition of endogenous RNIs, via administration of the nitric oxide (NO) synthetase inhibitor N-monomethyl-L-arginine (NMMA), resulted in enhanced growth of L. pneumophila in the lung at > or = 3 days postinfection (when compared with untreated L. pneumophila-infected mice). Because of the similar kinetics of enhanced pulmonary growth of L. pneumophila in mice treated in vivo with either anti-TNF-alpha antibody or NMMA, the immunomodulatory effect of NO on endogenous TNF-alpha activity in the lung was assessed. Administration of NMMA to L. pneumophila-infected mice resulted in a significant decrease in endogenous TNF-alpha activity in the lung during replicative L. pneumophila infections in vivo. However, administration of exogenous TNF-alpha to NMMA-treated mice failed to significantly enhance clearance of L. pneumophila from the lung. Results of these studies indicate that both endogenous NO and TNF-alpha facilitate resolution of replicative L. pneumophila lung infections and that regulation of L. pneumophila replication by TNF-alpha is mediated, at least in part, by NO. PMID:7642253

  2. Endogenous versus Exogenous Origins of Crises

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for Xevents in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear signature or too many signatures. Here, I review several efforts carried out with collaborators which suggest a general strategy for understanding the organizations of several complex systems under the dual effect of endogenous and exogenous fluctuations. The studied examples are: internet download shocks, book sale shocks, social shocks, financial volatility shocks, and financial crashes. Simple models are offered to quantitatively relate the endogenous organization to the exogenous response of the system. Suggestions for applications of these ideas to many other systems are offered.

  3. IL-10 regulates murine lupus.

    PubMed

    Yin, Zhinan; Bahtiyar, Gul; Zhang, Na; Liu, Lanzhen; Zhu, Ping; Robert, Marie E; McNiff, Jennifer; Madaio, Michael P; Craft, Joe

    2002-08-15

    MRL/MpJ-Tnfrsf6(lpr) (MRL/MpJ-Fas(lpr); MRL-Fas(lpr)) mice develop a spontaneous lupus syndrome closely resembling human systemic lupus erythematosus. To define the role of IL-10 in the regulation of murine lupus, IL-10 gene-deficient (IL-10(-/-)) MRL-Fas(lpr) (MRL-Fas(lpr) IL-10(-/-)) mice were generated and their disease phenotype was compared with littermates with one or two copies of an intact IL-10 locus (MRL-Fas(lpr) IL-10(+/-) and MRL-Fas(lpr) IL-10(+/+) mice, respectively). MRL-Fas(lpr) IL-10(-/-) mice developed severe lupus, with earlier appearance of skin lesions, increased lymphadenopathy, more severe glomerulonephritis, and higher mortality than their IL-10-intact littermate controls. The increased severity of lupus in MRL-Fas(lpr) IL-10(-/-) mice was closely associated with enhanced IFN-gamma production by both CD4(+) and CD8(+) cells and increased serum concentration of IgG2a anti-dsDNA autoantibodies. The protective effect of IL-10 in this lupus model was further supported by the observation that administration of rIL-10 reduced IgG2a anti-dsDNA autoantibody production in wild-type MRL-Fas(lpr) animals. In summary, our results provide evidence that IL-10 can down-modulate murine lupus through inhibition of pathogenic Th1 cytokine responses. Modulation of the level of IL-10 may be of potential therapeutic benefit for human lupus.

  4. An endogenous model of the credit network

    NASA Astrophysics Data System (ADS)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  5. Identification and classification of feline endogenous retroviruses in the cat genome using degenerate PCR and in silico data analysis.

    PubMed

    Song, Ning; Jo, Haiin; Choi, Minkyeung; Kim, Jin-Hoi; Seo, Han Geuk; Cha, Se-Yeoun; Seo, Kunho; Park, Chankyu

    2013-07-01

    The purpose of this study was to identify and classify endogenous retroviruses (ERVs) in the cat genome. Pooled DNA from five domestic cats was subjected to degenerate PCR with primers specific to the conserved retroviral pro/pol region. The 59 amplified retroviral sequences were used for in silico analysis of the cat genome (Felis_catus-6.2). We identified 219 ERV γ and β elements from cat genome contigs, which were classified into 42 ERV γ and 4 β families and further analysed. Among them, 99 γ and 5 β ERV elements contained the complete retroviral structure. Furthermore, we identified 757 spuma-like ERV elements based on the sequence homology to murine (Mu)ERV-L and human (H)ERV-L. To the best of our knowledge, this is the first detailed genome-scale analysis examining Felis catus endogenous retroviruses (FcERV) and providing advanced insights into their structural characteristics, localization in the genome, and diversity.

  6. Nicotine effects and the endogenous opioid system.

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro

    2014-01-01

    Nicotine (NIC) is an exogenous ligand of the nicotinic acetylcholine receptor (nAChR), and it influences various functions in the central nervous system. Systemic administration of NIC elicits the release of endogenous opioids (endorphins, enkephalins, and dynorphins) in the supraspinal cord. Additionally, systemic NIC administration induces the release of methionine-enkephalin in the spinal dorsal horn. NIC has acute neurophysiological actions, including antinociceptive effects, and the ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. The endogenous opioid system participates in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception is mediated by α4β2 and α7 nAChRs, while NIC-induced HPA axis activation is mediated by α4β2, not α7, suggesting that the effects of NIC on the endogenous opioid system are mediated by α7, not α4β2. NIC has substantial physical dependence liability. The opioid-receptor antagonist naloxone (NLX) elicits NIC withdrawal after repeated NIC administration, and NLX-induced NIC withdrawal is inhibited by concomitant administration of an opioid-receptor antagonist. NLX-induced NIC withdrawal is also inhibited by concomitant administration of an α7 antagonist, but not an α4β2 antagonist. Taken together, these findings suggest that NIC-induced antinociception and the development of physical dependence are mediated by the endogenous opioid system, via the α7 nAChR.

  7. Essays on Policy Evaluation with Endogenous Adoption

    ERIC Educational Resources Information Center

    Gentile, Elisabetta

    2011-01-01

    Over the last decade, experimental and quasi-experimental methods have been favored by researchers in empirical economics, as they provide unbiased causal estimates. However, when implementing a program, it is often not possible to randomly assign subjects to treatment, leading to a possible endogeneity bias. This dissertation consists of two…

  8. Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization.

    PubMed

    Bell, Gillian I; Broughton, Heather C; Levac, Krysta D; Allan, David A; Xenocostas, Anargyros; Hess, David A

    2012-01-01

    Transplanted murine bone marrow (BM) progenitor cells recruit to the injured pancreas and induce endogenous beta cell proliferation to improve islet function. To enrich for analogous human progenitor cell types that stimulate islet regeneration, we purified human BM based on high-aldehyde dehydrogenase activity (ALDH(hi)), an enzymatic function conserved in hematopoietic, endothelial, and mesenchymal progenitor lineages. We investigated the contributions of ALDH(hi) mixed progenitor cells or culture-expanded, ALDH-purified multipotent stromal cell (MSC) subsets to activate endogenous programs for islet regeneration after transplantation into streptozotocin-treated NOD/SCID mice. Intravenous injection of uncultured BM ALDH(hi) cells improved systemic hyperglycemia and augmented insulin secretion by increasing islet size and vascularization, without increasing total islet number. Augmented proliferation within regenerated endogenous islets and associated vascular endothelium indicated the induction of islet-specific proliferative and pro-angiogenic programs. Although cultured MSC from independent human BM samples showed variable capacity to improve islet function, and prolonged expansion diminished hyperglycemic recovery, transplantation of ALDH-purified regenerative MSC reduced hyperglycemia and augmented total beta cell mass by stimulating the formation of small beta cell clusters associated with the ductal epithelium, without evidence of increased islet vascularization or Ngn3(+) endocrine precursor activation. Thus, endogenous islet recovery after progenitor cell transplantation can occur via distinct regenerative mechanisms modulated by subtypes of progenitor cells administered. Further, understanding of how these islet regenerative and pro-angiogenic programs are activated by specific progenitor subsets may provide new approaches for combination cellular therapies to combat diabetes.

  9. ENDOGENOUS ANALGESIA, DEPENDENCE, AND LATENT PAIN SENSITIZATION

    PubMed Central

    Taylor, Bradley K; Corder, Gregory

    2015-01-01

    Endogenous activation of μ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains accelerator), and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization create a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either: a) facilitating endogenous opioid

  10. The Cannabinoid Acids, Analogs and Endogenous Counterparts

    PubMed Central

    Burstein, Sumner H.

    2015-01-01

    The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9–THC-11-oic acid, the principal metabolite of Δ9–THC. Both types of acids have in common several biological actions such as low affinity for CB1, anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid. PMID:24731541

  11. Endogenous gas gangrene after laparoscopic cholecystectomy.

    PubMed

    Zelić, M; Kunisek, L; Mendrila, D; Gudelj, M; Abram, M; Uravić, M

    2011-01-01

    Clostridial gas gangrene of the abdominal wall is rare, and it is usually associated with organ perforation, immunosuppression or gastrointestinal malignancies. In this paper we present a case of fulminant, endogenous gas gangrene in a 58-year old diabetic female with arterial hypertension and atherosclerosis, following uneventful laparoscopic cholecystectomy. She developed gas gangrene of the abdominal wall 12-hours after cholecystectomy and died 24-hours after the onset of the first symptoms, in spite of treatment.

  12. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    PubMed Central

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A.; Hernandez, Dena G.; Heutink, Peter; Gibbs, J. Raphael; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Viallet, François; Brice, Alexis; Lesage, Suzanne; Majounie, Elisa; Tison, François; Vidailhet, Marie; Corvol, Jean Christophe; Nalls, Michael A.; Hernandez, Dena G.; Gibbs, J. Raphael; Dürr, Alexandra; Arepalli, Sampath; Barker, Roger A.; Ben-Shlomo, Yoav; Berg, Daniela; Bettella, Francesco; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bastiaan R.; Bochdanovits, Zoltan; Bonin, Michael; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Dong, Jing; Durif, Frank; Edkins, Sarah; Escott-Price, Valentina; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michèle; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Kilarski, Laura L.; Jansen, Iris E.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Lubbe, Steven; Lungu, Codrin; Martinez, María; Mätzler, Walter; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morrison, Karen E.; Mudanohwo, Ese; O’Sullivan, Sean S.; Owen, Michael J.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Simón-Sánchez, Javier; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Schulte, Claudia; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Shulman, Joshua; Sidransky, Ellen; Spencer, Chris C.A.; Stefánsson, Hreinn; Stefánsson, Kári; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wurster, Isabel; Williams, Nigel; Morris, Huw R.; Heutink, Peter; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Singleton, Andrew B.; Brice, Alexis

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  13. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    PubMed

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression.

  14. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria.

    PubMed

    Jin, Seok Min; Youle, Richard J

    2013-11-01

    Defective mitochondria exert deleterious effects on host cells. To manage this risk, mitochondria display several lines of quality control mechanisms: mitochondria-specific chaperones and proteases protect against misfolded proteins at the molecular level, and fission/fusion and mitophagy segregate and eliminate damage at the organelle level. An increase in unfolded proteins in mitochondria activates a mitochondrial unfolded protein response (UPR(mt)) to increase chaperone production, while the mitochondrial kinase PINK1 and the E3 ubiquitin ligase PARK2/Parkin, whose mutations cause familial Parkinson disease, remove depolarized mitochondria through mitophagy. It is unclear, however, if there is a connection between those different levels of quality control (QC). Here, we show that the expression of unfolded proteins in the matrix causes the accumulation of PINK1 on energetically healthy mitochondria, resulting in mitochondrial translocation of PARK2, mitophagy and subsequent reduction of unfolded protein load. Also, PINK1 accumulation is greatly enhanced by the knockdown of the LONP1 protease. We suggest that the accumulation of unfolded proteins in mitochondria is a physiological trigger of mitophagy.

  15. Cannabinoid receptors and their endogenous agonist, anandamide.

    PubMed

    Axelrod, J; Felder, C C

    1998-05-01

    Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, delta9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for delta9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.

  16. Endogenous Viral Elements in Animal Genomes

    PubMed Central

    Katzourakis, Aris; Gifford, Robert J.

    2010-01-01

    Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized. PMID:21124940

  17. [Endogenous persistent hypoglicemia of adult: case report].

    PubMed

    Costa, Raquel R; Maia, Frederico F R; Araújo, Levimar R

    2007-02-01

    Persistent Hyperinsulinemic Endogenous hypoglycemia in adults is, in most cases, due to Insulinoma. Nesidioblastosis, a peculiar functional hyperinsulinemia from hypertrophic beta cells, has been described mainly in newborns. This article describes a 34-year-old patient who presented hyperinsulinemic endogenous hypoglycemia clinical and laboratorial situation (Fasting glycemia: 54 mg/dl / Reference Interval (RI): 60-99 mg/dl; Serum insulin: 70.9 mcU/ml / RI: < 29.1 mcU/ml; e C peptide: 7.1 ng/ml / RI: 1.1-5.0 ng/ml). It was suspected Insulinoma. Because of the lack of typical images in radiologic exams (ultrasonography and computerized tomography) it had been decided to do laparotomy, but it was not found any macroscopic pancreatic tumor. Histological and histochemistry examination of a distal pancreatic segment showed alteration suitable to nesidioblastosis. The patient presented clinical stability during the next two months, however, after that, there was a recurrence of a hypoglycemia crisis, refractory to Octreotide administration. It was done "octreoscan", which showed expanded nesidioblastosis, being done extensive partial pancreatectomy. Octreotide was used again, with a good control of the hypoglycemia crisis. As it is an uncommon diagnosis in an adult, the objective of this article is to describe the diagnostic and therapeutic aspects in cases of hyperinsulinemic endogenous hypoglicemia.

  18. Biomarkers of exposure to endogenous oxidative and aldehyde stress.

    PubMed

    Bruce, W Robert; Lee, Owen; Liu, Zhen; Marcon, Norman; Minkin, Salomon; O'Brien, Peter J

    2011-08-01

    We observed an unexpectedly strong association of three different endogenous aldehydes and noted that the association could be explained by multiple reactions in which oxidative stress increased the formation of endogenous aldehydes and endogenous aldehydes increased oxidative stress. These interactions make it reasonable to assess multiple exposures to endogenous oxidative and aldehyde stress with less specific measures such as advanced glycation end-products or protein carbonyls.

  19. [Progress in endogenous plasmid curing of bacteria--a review].

    PubMed

    Feng, Jun; Zhang, Wei; Song, Cunjiang

    2013-11-04

    To investigate the functions of the bacteria endogenous plasmid, which include bacterial drug resistance, symbiosis, capsular formation and heavy metal resistance, the endogenous plasmid needs to be cured first. We reviewed physical, chemical and molecular biological methods of endogenous plasmid curing, clarified the curing principles. The prospective of research on plasmid curing was also discussed, based on our own studies.

  20. TALEN mediated somatic mutagenesis in murine models of cancer

    PubMed Central

    Zhang, Shuyuan; Li, Lin; Kendrick, Sara L.; Gerard, Robert D.; Zhu, Hao

    2014-01-01

    Cancer genome sequencing has identified numerous somatic mutations whose biological relevance is uncertain. In this study, we used genome-editing tools to create and analyze targeted somatic mutations in murine models of liver cancer. TALEN were designed against β-catenin (Ctnnb1) and Apc, two commonly mutated genes in hepatocellular carcinoma (HCC), to generate isogenic HCC cell lines. Both mutant cell lines exhibited evidence of Wnt pathway dysregulation. We asked if these TALENs could create targeted somatic mutations after hydrodynamic transfection (HDT) into mouse liver. TALENs targeting β-catenin promoted endogenous HCC carrying the intended gain-of-function mutations. However, TALENs targeting Apc were not as efficient in inducing in vivo homozygous loss-of-function mutations. We hypothesized that hepatocyte polyploidy might be protective against TALEN-induced loss of heterozygosity (LOH), and indeed Apc gene editing was less efficient in tetraploid than in diploid hepatocytes. To increase efficiency, we administered adenoviral Apc TALENs and found that we could achieve a higher mutagenesis rate in vivo. Our results demonstrate that genome-editing tools can enable the in vivo study of cancer genes and faithfully recapitulate the mosaic nature of mutagenesis in mouse cancer models. PMID:25070752

  1. RNA activation of haploinsufficient Foxg1 gene in murine neocortex

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Su, Qin; Gao, Guangping; Mallamaci, Antonello

    2016-01-01

    More than one hundred distinct gene hemizygosities are specifically linked to epilepsy, mental retardation, autism, schizophrenia and neuro-degeneration. Radical repair of these gene deficits via genome engineering is hardly feasible. The same applies to therapeutic stimulation of the spared allele by artificial transactivators. Small activating RNAs (saRNAs) offer an alternative, appealing approach. As a proof-of-principle, here we tested this approach on the Rett syndrome-linked, haploinsufficient, Foxg1 brain patterning gene. We selected a set of artificial small activating RNAs (saRNAs) upregulating it in neocortical precursors and their derivatives. Expression of these effectors achieved a robust biological outcome. saRNA-driven activation (RNAa) was limited to neural cells which normally express Foxg1 and did not hide endogenous gene tuning. saRNAs recognized target chromatin through a ncRNA stemming from it. Gene upregulation required Ago1 and was associated to RNApolII enrichment throughout the Foxg1 locus. Finally, saRNA delivery to murine neonatal brain replicated Foxg1-RNAa in vivo. PMID:27995975

  2. Role of nitric oxide in murine conventional outflow physiology

    PubMed Central

    Chang, Jason Y. H.; Stamer, W. Daniel; Bertrand, Jacques; Read, A. Thomas; Marando, Catherine M.; Ethier, C. Ross

    2015-01-01

    Elevated intraocular pressure (IOP) is the main risk factor for glaucoma. Exogenous nitric oxide (NO) decreases IOP by increasing outflow facility, but whether endogenous NO production contributes to the physiological regulation of outflow facility is unclear. Outflow facility was measured by pressure-controlled perfusion in ex vivo eyes from C57BL/6 wild-type (WT) or transgenic mice expressing human endothelial NO synthase (eNOS) fused to green fluorescent protein (GFP) superimposed on the endogenously expressed murine eNOS (eNOS-GFPtg). In WT mice, exogenous NO delivered by 100 μM S-nitroso-N-acetylpenicillamine (SNAP) increased outflow facility by 62 ± 28% (SD) relative to control eyes perfused with the inactive SNAP analog N-acetyl-d-penicillamine (NAP; n = 5, P = 0.016). In contrast, in eyes from eNOS-GFPtg mice, SNAP had no effect on outflow facility relative to NAP (−9 ± 4%, P = 0.40). In WT mice, the nonselective NOS inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 10 μM) decreased outflow facility by 36 ± 13% (n = 5 each, P = 0.012), but 100 μM l-NAME had no detectable effect on outflow facility (−16 ± 5%, P = 0.22). An eNOS-selective inhibitor (cavtratin, 50 μM) decreased outflow facility by 19 ± 12% in WT (P = 0.011) and 39 ± 25% in eNOS-GFPtg (P = 0.014) mice. In the conventional outflow pathway of eNOS-GFPtg mice, eNOS-GFP expression was localized to endothelial cells lining Schlemm's canal and the downstream vessels, with no apparent expression in the trabecular meshwork. These results suggest that endogenous NO production by eNOS within endothelial cells of Schlemm's canal or downstream vessels contributes to the physiological regulation of aqueous humor outflow facility in mice, representing a viable strategy to more successfully lower IOP in glaucoma. PMID:26040898

  3. Human Endogenous Retrovirus Protein Activates Innate Immunity and Promotes Experimental Allergic Encephalomyelitis in Mice

    PubMed Central

    Perron, Hervé; Dougier-Reynaud, Hei-Lanne; Lomparski, Christina; Popa, Iuliana; Firouzi, Reza; Bertrand, Jean-Baptiste; Marusic, Suzana; Portoukalian, Jacques; Jouvin-Marche, Evelyne; Villiers, Christian L.; Touraine, Jean-Louis; Marche, Patrice N.

    2013-01-01

    Multiple sclerosis (MS) is a complex multifactorial disease of the central nervous system (CNS) for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund's adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE), an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env) can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS. PMID:24324591

  4. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  5. Recovery of hypothalamic tuberoinfundibular dopamine neurons from acute toxicant exposure is dependent upon protein synthesis and associated with an increase in parkin and ubiquitin carboxy-terminal hydrolase-L1 expression.

    PubMed

    Benskey, Matthew; Behrouz, Bahareh; Sunryd, Johan; Pappas, Samuel S; Baek, Seung-Hoon; Huebner, Marianne; Lookingland, Keith J; Goudreau, John L

    2012-06-01

    Hypothalamic tuberoinfundibular dopamine (TIDA) neurons remain unaffected in Parkinson disease (PD) while there is significant degeneration of midbrain nigrostriatal dopamine (NSDA) neurons. A similar pattern of susceptibility is observed in acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse and rotenone rat models of degeneration. It is not known if the resistance of TIDA neurons is a constitutive or induced cell-autonomous phenotype for this unique subset of DA neurons. In the present study, treatment with a single injection of MPTP (20 mg/kg; s.c.) was employed to examine the response of TIDA versus NSDA neurons to acute injury. An acute single dose of MPTP caused an initial loss of DA from axon terminals of both TIDA and NSDA neurons, with recovery occurring solely in TIDA neurons by 16 h post-treatment. Initial loss of DA from axon terminals was dependent on a functional dopamine transporter (DAT) in NSDA neurons but DAT-independent in TIDA neurons. The active metabolite of MPTP, 1-methyl, 4-phenylpyradinium (MPP+), reached higher concentration and was eliminated slower in TIDA compared to NSDA neurons, which indicates that impaired toxicant bioactivation or distribution is an unlikely explanation for the observed resistance of TIDA neurons to MPTP exposure. Inhibition of protein synthesis prevented TIDA neuron recovery, suggesting that the ability to recover from injury was dependent on an induced, rather than a constitutive cellular mechanism. Further, there were no changes in total tyrosine hydroxylase (TH) expression following MPTP, indicating that up-regulation of the rate-limiting enzyme in DA synthesis does not account for TIDA neuronal recovery. Differential candidate gene expression analysis revealed a time-dependent increase in parkin and ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) expression (mRNA and protein) in TIDA neurons during recovery from injury. Parkin expression was also found to increase with incremental

  6. Increased immunoglobulin G, but not M, binding to endogenous retroviral antigens in HIV-1 infected persons.

    PubMed

    Lawoko, A; Johansson, B; Rabinayaran, D; Pipkorn, R; Blomberg, J

    2000-12-01

    The modes of interaction between products of human endogenous retroviral (HERV) sequences and the immune system are largely unknown. In HIV infected persons, an exogenous retrovirus adds further complexity to the situation. Therefore, 14 synthetic peptides with sequences derived from conserved regions of various endogenous retroviruses (ERVs) and from related exogenous retroviruses were used to search for IgG and IgM antibodies that bind to such antigens in 15 HIV-1 seropositive and 17 seronegative immunosuppressed patients. IgG binding to three peptides, namely, the C-terminal half of murine leukemia virus (MLV) capsid protein, the conserved portion of HERV-H transmembrane protein, and the Pol region of human mouse mammary tumor virus (MMTV)-like (HML3) sequence, was observed in both groups. Binding was, however, more frequent and more firm in HIV-1 positive samples (P<0.0001, Wilcoxon rank sum test). IgM binding to the same peptides showed no significant differentiation between the two groups of patients. Binding to both immunoglobulin isotypes was sometimes variable over time in both groups. No correlation of either IgG or IgM peptide binding with progression to AIDS in HIV-1 infected individuals was observed. Inhibition studies using analogous endogenous and exogenous retroviral peptides, including HIV-1, demonstrated specificity of the IgG antibodies for a narrow range of MLV- and MMTV-like retroviral antigens, and excluded cross-reactivity of antibodies to HIV-1 as a cause of these observations. Thus, unlike IgG, IgM binding to retroviral antigens was ubiquitous. It is suggested that anti-HERV IgM belong to a class of natural antibodies and might serve as primers in the mediation of humoral immune responses to more or less related exogenous retroviruses. Increased IgG binding in HIV-1 infected individuals could result from such priming, or reflect higher HERV antigen expression.

  7. Independent effects of endogenous and exogenous spatial cueing: inhibition of return at endogenously attended target locations.

    PubMed

    Lupiáñez, Juan; Decaix, Caroline; Siéroff, Eric; Chokron, Sylvie; Milliken, Bruce; Bartolomeo, Paolo

    2004-12-01

    Inhibition of return (IOR) is thought to reflect a bias against returning attention to previously attended locations. According to this view, IOR should occur only if attention is withdrawn from the target location prior to target appearance. In the present study, endogenous attention and exogenous cueing were manipulated orthogonally. IOR was observed both when a target appeared at an unexpected location, and when a target appeared at the expected location. A similar pattern of results was obtained in a reanalysis of data from a study with Neglect patients. These results suggest that IOR is independent of endogenous orienting.

  8. Copper and endogenous mediators of estradiol action.

    PubMed

    Fishman, J H; Fishman, J

    1988-04-29

    Divalent copper increases by severalfold specific estradiol binding in rat uterine cytosol at 37 degrees C. Two endogenous substances have now been isolated from the cytosol one of which sharply inhibits the copper effect while the other sharply promotes it. The inhibitor is thermostable, it is adsorbed by dextran coated charcoal and elutes from Sephadex columns with water. The promoter is thermolabile at 60 degrees C, it is not readily adsorbed by the charcoal and elutes from Sephadex columns with KCl. The two substances are thought to be mediators of estradiol action.

  9. Distribution of endogenous retroviruses in crocodilians.

    PubMed

    Jaratlerdsiri, Weerachai; Rodríguez-Zárate, Clara J; Isberg, Sally R; Damayanti, Chandramaya Siska; Miles, Lee G; Chansue, Nantarika; Moran, Chris; Melville, Lorna; Gongora, Jaime

    2009-10-01

    Knowledge of endogenous retroviruses (ERVs) in crocodilians (Crocodylia) is limited, and their distribution among extant species is unclear. Here we analyzed the phylogenetic relationships of these retroelements in 20 species of crocodilians by studying the pro-pol gene. The results showed that crocodilian ERVs (CERVs) cluster into two major clades (CERV 1 and CERV 2). CERV 1 clustered as a sister group of the genus Gammaretrovirus, while CERV 2 clustered distantly with respect to all known ERVs. Interestingly, CERV 1 was found only in crocodiles (Crocodylidae). The data generated here could assist future studies aimed at identifying orthologous and paralogous ERVs among crocodilians.

  10. Diverging patterns with endogenous labor migration.

    PubMed

    Reichlin, P; Rustichini, A

    1998-05-05

    "The standard neoclassical model cannot explain persistent migration flows and lack of cross-country convergence when capital and labor are mobile. Here we present a model where both phenomena may take place.... Our model is based on the Arrow-Romer approach to endogenous growth theory. We single out the importance of a (however weak) scale effect from the size of the workforce.... The main conclusion of this simple model is that lack of convergence, or even divergence, among countries is possible, even with perfect capital mobility and labor mobility."

  11. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  12. Revisiting tolerance from the endogenous morphine perspective.

    PubMed

    Stefano, George B; Kream, Richard M; Esch, Tobias

    2009-09-01

    Tolerance represents a dynamic mechanism that can be used to temper various regulatory processes regardless of whether they mediate excitation or inhibition. Tolerance operationally directs state-dependent attenuation of the action of endogenous and exogenous morphine. For example, tolerance ensures that immuno-inhibition induced by morphine does not compromise a requisite functional system over an extended period of time. In the nervous system, tolerance to inhibitory action insures that excitatory tone is resumed. Thus, desensitization sets in and allows various essential processes to be operational once again. Clearly, the temporal rebound of diverse immune and nervous processes involved with opiate actions provides a self-contained operational mechanism to ensure survival of the organism. Furthermore, love and/or pleasure, and satiety, are complex neurobiological phenomena linked to limbic brain reward circuitry. These processes are critically dependent on oxytocin, vasopressin, dopamine, endogenous morphine and serotoninergic signaling. Naturally rewarding and/or pleasurable activities are usually governed by beneficial biological behaviors like eating, sex, and reproduction. It is our contention that critically important tolerance mechanisms extend to behaviors mediated by CNS reward systems. In other words, we become satisfied with sex, food, pleasure for the moment and disinterest creeps in until the "urges" return.

  13. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  14. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity

    PubMed Central

    Thompson, Georgina L.; Canals, Meritxell; Poole, Daniel P.

    2014-01-01

    This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals. PMID:25506328

  15. Effects of endogenous D-alanine synthesis and autoinhibition of Bacillus anthracis germination on in vitro and in vivo infections.

    PubMed

    McKevitt, Matthew T; Bryant, Katie M; Shakir, Salika M; Larabee, Jason L; Blanke, Steven R; Lovchik, Julie; Lyons, C Rick; Ballard, Jimmy D

    2007-12-01

    Bacillus anthracis transitions from a dormant spore to a vegetative bacillus through a series of structural and biochemical changes collectively referred to as germination. The timing of germination is important during early steps in infection and may determine if B. anthracis survives or succumbs to responsive macrophages. In the current study experiments determined the contribution of endogenous D-alanine production to the efficiency and timing of B. anthracis spore germination under in vitro and in vivo conditions. Racemase-mediated production of endogenous D-alanine by B. anthracis altered the kinetics for initiation of germination over a range of spore densities and exhibited a threshold effect wherein small changes in spore number resulted in major changes in germination efficiency. This threshold effect correlated with D-alanine production, was prevented by an alanine racemase inhibitor, and required L-alanine. Interestingly, endogenous production of inhibitory levels of D-alanine was detected under experimental conditions that did not support germination and in a germination-deficient mutant of B. anthracis. Racemase-dependent production of D-alanine enhanced survival of B. anthracis during interaction with murine macrophages, suggesting a role for inhibition of germination during interaction with these cells. Finally, in vivo experiments revealed an approximately twofold decrease in the 50% lethal dose of B. anthracis spores administered in the presence of D-alanine, indicating that rates of germination may be directly influenced by the levels of this amino acid during early stages of disease.

  16. Handling stress may confound murine gut microbiota studies

    PubMed Central

    Allen-Blevins, Cary R.; You, Xiaomeng; Hinde, Katie

    2017-01-01

    Background Accumulating evidence indicates interactions between human milk composition, particularly sugars (human milk oligosaccharides or HMO), the gut microbiota of human infants, and behavioral effects. Some HMO secreted in human milk are unable to be endogenously digested by the human infant but are able to be metabolized by certain species of gut microbiota, including Bifidobacterium longum subsp. infantis (B. infantis), a species sensitive to host stress (Bailey & Coe, 2004). Exposure to gut bacteria like B. infantisduring critical neurodevelopment windows in early life appears to have behavioral consequences; however, environmental, physical, and social stress during this period can also have behavioral and microbial consequences. While rodent models are a useful method for determining causal relationships between HMO, gut microbiota, and behavior, murine studies of gut microbiota usually employ oral gavage, a technique stressful to the mouse. Our aim was to develop a less-invasive technique for HMO administration to remove the potential confound of gavage stress. Under the hypothesis that stress affects gut microbiota, particularly B. infantis, we predicted the pups receiving a prebiotic solution in a less-invasive manner would have the highest amount of Bifidobacteria in their gut. Methods This study was designed to test two methods, active and passive, of solution administration to mice and the effects on their gut microbiome. Neonatal C57BL/6J mice housed in a specific-pathogen free facility received increasing doses of fructooligosaccharide (FOS) solution or deionized, distilled water. Gastrointestinal (GI) tracts were collected from five dams, six sires, and 41 pups over four time points. Seven fecal pellets from unhandled pups and two pellets from unhandled dams were also collected. Qualitative real-time polymerase chain reaction (qRT-PCR) was used to quantify and compare the amount of Bifidobacterium, Bacteroides, Bacteroidetes, and Firmicutes

  17. Involvement of Endogenous Retroviruses in Prion Diseases

    PubMed Central

    Lee, Yun-Jung; Jeong, Byung-Hoon; Choi, Eun-Kyung; Kim, Yong-Sun

    2013-01-01

    For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases. PMID:25437206

  18. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  19. Endogenous Group Formation via Unproductive Costs

    PubMed Central

    Aimone, Jason A.; Iannaccone, Laurence R.; Makowsky, Michael D.; Rubin, Jared

    2013-01-01

    Sacrifice is widely believed to enhance cooperation in churches, communes, gangs, clans, military units, and many other groups. We find that sacrifice can also work in the lab, apart from special ideologies, identities, or interactions. Our subjects play a modified VCM game—one in which they can voluntarily join groups that provide reduced rates of return on private investment. This leads to both endogenous sorting (because free-riders tend to reject the reduced-rate option) and substitution (because reduced private productivity favours increased club involvement). Seemingly unproductive costs thus serve to screen out free-riders, attract conditional cooperators, boost club production, and increase member welfare. The sacrifice mechanism is simple and particularly useful where monitoring difficulties impede punishment, exclusion, fees, and other more standard solutions. PMID:24808623

  20. Chitin is endogenously produced in vertebrates.

    PubMed

    Tang, W Joyce; Fernandez, Javier G; Sohn, Joel J; Amemiya, Chris T

    2015-03-30

    Chitin, a biopolymer of N-acetylglucosamine, is abundant in invertebrates and fungi and is an important structural molecule [1, 2]. There has been a longstanding belief that vertebrates do not produce chitin; however, we have obtained compelling evidence to the contrary. Chitin synthase genes are present in numerous fishes and amphibians, and chitin is localized in situ to the lumen of the developing zebrafish gut, in epithelial cells of fish scales, and in at least three different cell types in larval salamander appendages. Chitin synthase gene knockdowns and various histochemical experiments in zebrafish further authenticated our results. Finally, a polysaccharide was extracted from scales of salmon that exhibited all the chemical hallmarks of chitin. Our data and analyses demonstrate the existence of endogenous chitin in vertebrates and suggest that it serves multiple roles in vertebrate biology.

  1. Chitin is endogenously produced in vertebrates

    PubMed Central

    Sohn, Joel J.; Amemiya, Chris T.

    2015-01-01

    Chitin, a biopolymer of N-acetylglucosamine, is abundant in invertebrates and fungi, and is an important structural molecule. There has been a longstanding belief that vertebrates do not produce chitin, however, we have obtained compelling evidence to the contrary. Chitin synthase genes are present in numerous fishes and amphibians, and chitin is localized in situ to the lumen of the developing zebrafish gut, in epithelial cells of fish scales, and in at least three different cell types in larval salamander appendages. Chitin synthase gene knockdowns and various histochemical experiments in zebrafish further authenticated our results. Finally, a polysaccharide was extracted from scales of salmon that exhibited all the chemical hallmarks of chitin. Our data and analyses demonstrate the existence of endogenous chitin in vertebrates and suggest that it serves multiple roles in vertebrate biology. PMID:25772447

  2. [Endogenous retroviruses are associated with autoimmune diseases].

    PubMed

    Nexø, Bjørn A; Jensen, Sara B; Hansen, Bettina; Laska, Magdalena J

    2016-06-13

    Retroviruses can be transmitted in two fundamentally different ways: 1) They can be horizontally transmitted as infectious virus, or 2) they can integrate in the germ line and be transmitted to offspring and the offsprings' offspring as DNA. The latter is called endogenous viruses. The mode of transmission is called vertical. Viral variants of importance for development of disease must be more frequent among diseased persons than among healthy individuals. Multiple sclerosis, diabetes and rheumatoid arthritis are all associated with sets of endogenouos retroviruses but not the same sets. If a virus grows and this contributes to disease, one should be able to alleviate disease with antiretroviral drugs. We call for clinical trials to elucidate this issue.

  3. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  4. Dynamic option pricing with endogenous stochastic arbitrage

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Montalva, Rodrigo; Pellicer, Rely; Villena, Marcelo

    2010-09-01

    Only few efforts have been made in order to relax one of the key assumptions of the Black-Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B-S model to that new trajectory even when the arbitrage already started.

  5. How Active Are Porcine Endogenous Retroviruses (PERVs)?

    PubMed Central

    Denner, Joachim

    2016-01-01

    Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology. PMID:27527207

  6. Functional characterization of syncytin-A, a newly murine endogenous virus envelope protein. Implication for its fusion mechanism.

    PubMed

    Peng, Xiaoxue; Pan, Ji'an; Gong, Rui; Liu, Yang; Kang, Shuli; Feng, Huixing; Qiu, Gang; Guo, Deyin; Tien, Po; Xiao, Gengfu

    2007-01-05

    Trophoblast fusion in placenta is an important event for preservation of a healthy pregnancy. This process takes place throughout the pregnancy and is crucial for the formation of syncytiotrophoblast layer. Syncytin-1 and syncytin-2 are strong candidate regulators of fusion from retroviral origin. Syncytin-A and syncytin-B are other candidates from retroviral origin in Muridae. The active role of syncytin in driving fusion of trophoblast has been identified, but its fusion mechanism is still unclear. As an intact retroviral envelope protein, syncytin-A shares similar structure profiling with other viral envelope fusion proteins, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR, respectively). In this paper, we showed that SynA 1 + 2 of syncytin-A (residues 445-536, including predicted NHR, CHR, and a natural linker) could form trimer and exhibited significant alpha-helix structure and high thermo-stability. Limited proteolysis result identified a stable protease-resistant core of SynA 1 + 2, which was in good agreement with computational modeling data. NHR and CHR could interact with each other in vitro, too. Different from the previous studies, the disulfide-bonded linker was apparently vital to the stability of fusion core structure. By biological assays, NHR was shown to be inhibitive to cell-cell fusion, with IC(50) value about 5.4 microm, but CHR seemed to have no inhibitory activity even at 50 microm. From both biochemical and functional data, we first gave an explanation how syncytin-A mediated cell fusion. The insight into the mechanism of syncytin-A-mediated cell-cell fusion may provide a crucial clue to placental cytotrophoblast morphogenesis.

  7. Removal of xenotropic murine leukemia virus by nanocellulose based filter paper.

    PubMed

    Asper, M; Hanrieder, T; Quellmalz, A; Mihranyan, A

    2015-11-01

    The removal of xenotrpic murine leukemia virus (xMuLV) by size-exclusion filter paper composed of 100% naturally derived cellulose was validated. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. algae. The filter paper was characterized using atomic force microscopy, scanning electron microscopy, helium pycnometry, and model tracer (100 nm latex beads and 50 nm gold nanoparticles) retention tests. Following the filtration of xMuLV spiked solutions, LRV ≥5.25 log10 TCID50 was observed, as limited by the virus titre in the feed solution and sensitivity of the tissue infectivity test. The results of the validation study suggest that the nanocellulose filter paper is useful for removal of endogenous rodent retroviruses and retrovirus-like particles during the production of recombinant proteins.

  8. Dietary glucarate-mediated reduction of sensitivity of murine strains to chemical carcinogenesis.

    PubMed

    Walaszek, Z; Hanausek-Walaszek, M; Webb, T E

    1986-10-01

    Serum beta-glucuronidase activity is shown to differ quantitatively in the following strains of mice, listed in order of increasing activity: C3H, C57BL/6 less than BALB/c, DBA/2, ICR less than SENCAR, A/He. The level of the enzyme in the murine strains is shown to correlate with the urinary excretion of 17-ketosteroids, which in turn reflects the endogenous level of androgens. Dietary calcium D-glucarate, an in vivo beta-glucuronidase inhibitor, reduced the steady state level of both beta-glucuronidase and 17-ketosteroid excretion in the highly susceptible A/He and SENCAR strains to that of strains known to be resistant to chemical carcinogenesis. Sensitivity of the A/He strain is significantly reduced by dietary calcium glucarate, which is shown to inhibit DNA binding and the induction of pulmonary adenomas by benzo[a]pyrene.

  9. Cell-Derived Nanoparticles are Endogenous Modulators of Sepsis with Therapeutic Potential.

    PubMed

    Kunz, Natalia; Xia, Brent T; Kalies, Kai-Uwe; Klinger, Matthias; Gemoll, Timo; Habermann, Jens K; Whitacre, Brynne E; Seitz, Aaron P; Kalies, Kathrin; Caldwell, Charles C

    2017-02-22

    Cell-derived nanoparticles (CDNPs) containing cytosolic proteins and RNAs/DNAs can be isolated from stressed eukaryotic cells. Previously, CDNPs isolated from cultured cells exerted immunomodulatory activities in different infections. Here, we sought to elucidate the role of CDNPs using a murine model of cecal ligation and puncture (CLP). We hypothesized that CDNPs influence the immune response at the site of infection, where severe cellular stress occurs. We observed early CDNP accumulation in the peritoneum after 4 h and continued CDNP presence 24 h after CLP. To determine whether CDNPs influence the host response to sepsis, we isolated CDNPs from a murine fibroblast cell line stressed by nutrient-deprivation, and injected them into septic mice. CDNP-treated mice demonstrated decreased peritoneal interleukin 6 levels and an approximately 2-log lower bacterial load compared with control mice 24 h after CLP. Additionally, a 20% CFU reduction was observed when incubating CDNPs with Pseudomona aeroginosa, indicating that CDNPs are bactericidal. To identify CDNP-responsive cells, CFSE-labeled CDNPs were injected into mice at the time of CLP. We observed that CDNPs were preferentially ingested by F4/80 macrophages, and to a lesser degree, associated with inflammatory monocytes and neutrophils. Strikingly, CDNP-ingesting cells demonstrated elevated CD11b and MHCII expression compared with control cells. Altogether, our data indicate that CDNPs enhance the immune response at the site of infection and promote bacterial clearance, by direct bacterial killing and increasing phagocyte activation. Thus, CDNPs represent a novel, unexplored endogenous sepsis modulator with therapeutic potential.

  10. Nrf2 regulates mass accrual and the antioxidant endogenous response in bone differently depending on the sex and age

    PubMed Central

    Pellegrini, Gretel Gisela; Cregor, Meloney; McAndrews, Kevin; Morales, Cynthya Carolina; McCabe, Linda Doyle; McCabe, George P.; Peacock, Munro; Burr, David; Weaver, Connie; Bellido, Teresita

    2017-01-01

    Accumulation of reactive oxygen species (ROS) is an important pathogenic mechanism underling the loss of bone mass and strength with aging and other conditions leading to osteoporosis. The transcription factor erythroid 2-related factor2 (Nrf2) plays a central role in activating the cellular response to ROS. Here, we examined the endogenous response of bone regulated by Nrf2, and its relationship with bone mass and architecture in the male and female murine skeleton. Young (3 month-old) and old (15 month-old) Nrf2 knockout (KO) mice of either sex exhibited the expected reduction in Nrf2 mRNA expression compared to wild type (WT) littermates. Nrf2 deletion did not lead to compensatory increase in Nrf1 or Nrf3, other members of this transcription factor family; and instead, Nrf1 expression was lower in KO mice. Compared to the respective WT littermate controls, female KO mice, young and old, exhibited lower expression of both detoxifying and antioxidant enzymes; young male KO mice, displayed lower expression of detoxifying enzymes but not antioxidant enzymes; and old male KO mice showed no differences in either detoxifying or antioxidant enzymes. Moreover, old male WT mice exhibited lower Nrf2 levels, and consequently lower expression of both detoxifying and antioxidant enzymes, compared to old female WT mice. These endogenous antioxidant responses lead to delayed rate of bone acquisition in female KO mice and higher bone acquisition in male KO mice as quantified by DXA and μCT, demonstrating that Nrf2 is required for full bone accrual in the female skeleton but unnecessary and even detrimental in the male skeleton. Therefore, Nrf2 regulates the antioxidant endogenous response and bone accrual differently depending on sex and age. These findings suggest that therapeutic interventions that target Nrf2 could be developed to enhance the endogenous antioxidant response in a sex- and age-selective manner. PMID:28152064

  11. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  12. A case of Erysipelothrix rhusiopathiae causing bilateral endogenous endophthalmitis.

    PubMed

    Elvy, J; Hanspal, I; Simcock, P

    2008-11-01

    This report describes a case of bilateral endogenous endophthalmitis caused by Erysipelothrix rhusiopathiae, an occupational zoonotic pathogen, which was successfully treated with intravenous penicillin G followed by oral linezolid. This is believed to be the first report of E rhusiopathiae causing endogenous endophthalmitis.

  13. Endogenous opioid peptides in regulation of innate immunity cell functions.

    PubMed

    Gein, S V; Baeva, T A

    2011-03-01

    Endogenous opioid peptides comprise a group of bioregulatory factors involved in regulation of functional activity of various physiological systems of an organism. One of most important functions of endogenous opioids is their involvement in the interaction between cells of the nervous and immune systems. Summary data on the effects of opioid peptides on regulation of functions of innate immunity cells are presented.

  14. Lunularic acid, a common endogenous growth inhibitor of liverworts.

    PubMed

    Pryce, R J

    1971-12-01

    By gas-liquid chromotography and thin layer chromatography, an endogenous growth inhibitor of Lunularia cruciata has been detected in seven other representatives of the class of liverworts. All liverworts so far examined have been found to contain lunularic acid. Evidence for the identity of the previously isolated, but unidentified, endogenous growth inhibitor of Marchantia polymorpha and lunularic acid is presented.

  15. Sensitivity of PCR Assays for Murine Gammaretroviruses and Mouse Contamination in Human Blood Samples

    PubMed Central

    Lee, Li Ling; Lin, Lin; Bell, David S.; Levine, Susan; Hanson, Maureen R.

    2012-01-01

    Gammaretroviruses related to murine leukemia virus (MLV) have variously been reported to be present or absent in blood from chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) patients and healthy controls. Using subjects from New York State, we have investigated by PCR methods whether MLV-related sequences can be identified in nucleic acids isolated from whole blood or from peripheral blood mononuclear cells (PBMCs) or following PBMC culture. We have also passaged the prostate cancer cell line LNCaP following incubation with plasma from patients and controls and assayed nucleic acids for viral sequences. We have used 15 sets of primers that can effectively amplify conserved regions of murine endogenous and exogenous retrovirus sequences. We demonstrate that our PCR assays for MLV-related gag sequences and for mouse DNA contamination are extremely sensitive. While we have identified MLV-like gag sequences following PCR on human DNA preparations, we are unable to conclude that these sequences originated in the blood samples. PMID:22629404

  16. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  17. Stem Cell Stimulation of Endogenous Myocyte Regeneration

    PubMed Central

    Weil, Brian R.; Canty, John M.

    2015-01-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodeling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted during the past decade have shown that a variety of autologous bone marrow- and peripheral blood-derived stem and progenitor cell populations can be safely administered to patients with ischemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the preclinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair, and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischemic heart disease patients. PMID:23577634

  18. Stem cell stimulation of endogenous myocyte regeneration.

    PubMed

    Weil, Brian R; Canty, John M

    2013-08-01

    Cell-based therapy has emerged as a promising approach to combat the myocyte loss and cardiac remodelling that characterize the progression of left ventricular dysfunction to heart failure. Several clinical trials conducted over the past decade have shown that a variety of autologous bone-marrow- and peripheral-blood-derived stem and progenitor cell populations can be safely administered to patients with ischaemic heart disease and yield modest improvements in cardiac function. Concurrently, rapid progress has been made at the pre-clinical level to identify novel therapeutic cell populations, delineate the mechanisms underlying cell-mediated cardiac repair and optimize cell-based approaches for clinical use. The following review summarizes the progress that has been made in this rapidly evolving field over the past decade and examines how our current understanding of the mechanisms involved in successful cardiac regeneration should direct future investigation in this area. Particular emphasis is placed on discussion of the general hypothesis that the benefits of cell therapy primarily result from stimulation of endogenous cardiac repair processes that have only recently been identified in the adult mammalian heart, rather than direct differentiation of exogenous cells. Continued scientific investigation in this area will guide the optimization of cell-based approaches for myocardial regeneration, with the ultimate goal of clinical implementation and substantial improvement in our ability to restore cardiac function in ischaemic heart disease patients.

  19. Endogenous polyamine function—the RNA perspective

    PubMed Central

    Lightfoot, Helen L.; Hall, Jonathan

    2014-01-01

    Recent progress with techniques for monitoring RNA structure in cells such as ‘DMS-Seq’ and ‘Structure-Seq’ suggests that a new era of RNA structure-function exploration is on the horizon. This will also include systematic investigation of the factors required for the structural integrity of RNA. In this context, much evidence accumulated over 50 years suggests that polyamines play important roles as modulators of RNA structure. Here, we summarize and discuss recent literature relating to the roles of these small endogenous molecules in RNA function. We have included studies directed at understanding the binding interactions of polyamines with polynucleotides, tRNA, rRNA, mRNA and ribozymes using chemical, biochemical and spectroscopic tools. In brief, polyamines bind RNA in a sequence-selective fashion and induce changes in RNA structure in context-dependent manners. In some cases the functional consequences of these interactions have been observed in cells. Most notably, polyamine-mediated effects on RNA are frequently distinct from those of divalent cations (i.e. Mg2+) confirming their roles as independent molecular entities which help drive RNA-mediated processes. PMID:25232095

  20. Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes

    PubMed Central

    Gilbert, C.; Meik, J. M.; Dashevsky, D.; Card, D. C.; Castoe, T. A.; Schaack, S.

    2014-01-01

    We report the discovery of endogenous viral elements (EVEs) from Hepadnaviridae, Bornaviridae and Circoviridae in the speckled rattlesnake, Crotalus mitchellii, the first viperid snake for which a draft whole genome sequence assembly is available. Analysis of the draft assembly reveals genome fragments from the three virus families were inserted into the genome of this snake over the past 50 Myr. Cross-species PCR screening of orthologous loci and computational scanning of the python and king cobra genomes reveals that circoviruses integrated most recently (within the last approx. 10 Myr), whereas bornaviruses and hepadnaviruses integrated at least approximately 13 and approximately 50 Ma, respectively. This is, to our knowledge, the first report of circo-, borna- and hepadnaviruses in snakes and the first characterization of non-retroviral EVEs in non-avian reptiles. Our study provides a window into the historical dynamics of viruses in these host lineages and shows that their evolution involved multiple host-switches between mammals and reptiles. PMID:25080342

  1. Role of endogenous thiols in protection

    NASA Astrophysics Data System (ADS)

    Vos, O.

    Aminothiols represent the most important group of radioprotective compounds. The most effective compounds administered at an optimal dose and time before irradiation are able to provide a protection in mice with a dose reduction factor (DRF) of about 2-2.5. The working mechanism can partly be explained as a scavenging process of radicals induced in water and partly as a chemical repair process of injured DNA. The endogenous aminothiol which has far-out the highest intracellular concentration is glutathione (GSH). The importance of intracellular GSH in determining cellular radiosensitivity has been shown by irradiating cells that had very low GSH levels. Such cells appear to have a high radiosensitivity, especially in hypoxic conditions. On the other hand, it has been demonstrated that induction of a high GSH level (100-200% above the normal level) provides only a small protection. In vitro experiments with DNA indicate that thiols with a high positive charge condense in the vicinity of DNA and are effective protectors, whereas thiols with a negative charge are kep away from it and are poor protectors. In comparison with the most effective exogenous aminothiols like cysteamine and WR1065, GSH is not an effective radioprotector. Putative explanations for this relatively poor protective ability of GSH are presented.

  2. Endogenic modification of impact craters on Mercury

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1977-01-01

    The presence of internally modified impact craters on Mercury's surface may be used to evaluate the possibility of Mercurian volcanism. Such craters are similar to the floor-fractured and mare-filled craters observed on the moon. Mariner-10 images show that most such craters occur, as on the moon, near plains-filled basins. Color-ratio images have indicated that some Mercurian craters manifest red plains materials on their floors. These features may be associated with lava analogous to mare basalts in some lunar craters, or with compositionally distinct subsurface material preserved within the impact crater. Several basins manifest photometric contrasts between basin exteriors and basin-filling plains. Dark haloes are observed around some impact craters superimposed on the interior plains. This suggests the excavation of compositionally distinct material. Some possible endogenic features are discerned, despite the poor surface resolution, such as irregular rimless depressions. It is felt that volcanism may have occurred on Mercury, and that in some areas it may be similar to that of the lunar Mare Australe region.

  3. Endogenous ethanol--its metabolic, behavioral and biomedical significance.

    PubMed

    Ostrovsky YuM

    1986-01-01

    Ethanol is constantly formed endogenously from acetaldehyde, and level of the former can be measured in both human beings and animals. Acetaldehyde can be generated in situ from the metabolism of pyruvate, threonine, deoxyribose-5-phosphate, phosphoethanolamine, alanine and presumably from other substrates. The levels of blood and tissue endogenous ethanol change as a function of various physiologic and experimental conditions such as starvation, aging, stress, cooling, adrenalectomy, etc. and are regulated by many exogenous compounds such as antimetabolites, derivatives of amino acids, lithium salts, disulfiram, cyanamide, etc. Under free choice alcohol selection situations, the levels of endogenous ethanol in rat blood and alcohol preference by the animals are negatively correlated. Similar negative correlations have been found between the levels of blood endogenous ethanol and the frequency of delirium in alcoholic patients undergoing alcohol withdrawal. Endogenous ethanol and acetaldehyde can therefore be regarded as compounds which fulfil substrate, regulatory and modulator functions.

  4. Endogenous Electric Fields May Guide Neocortical Network Activity

    PubMed Central

    Fröhlich, Flavio; McCormick, David A.

    2011-01-01

    Local field potentials and the underlying endogenous electric fields (EFs) are traditionally considered to be epiphenomena of structured neuronal network activity. Recently, however, externally applied EFs have been shown to modulate pharmacologically evoked network activity in rodent hippocampus. In contrast, very little is known about the role of endogenous EFs during physiological activity states in neocortex. Here we used the neocortical slow oscillation in vitro as a model system to show that weak sinusoidal and naturalistic EFs enhance and entrain physiological neocortical network activity with an amplitude threshold within the range of in vivo endogenous field strengths. Modulation of network activity by positive and negative feedback fields based on the network activity in real-time provide direct evidence for a feedback loop between neuronal activity and endogenous EF. This significant susceptibility of active networks to EFs that only cause small changes in membrane potential in individual neurons suggests that endogenous EFs could guide neocortical network activity. PMID:20624597

  5. Murine typhus: an unrecognized suburban vectorborne disease.

    PubMed

    Civen, Rachel; Ngo, Van

    2008-03-15

    Murine typhus, an acute febrile illness caused by Rickettsia typhi, is distributed worldwide. Mainly transmitted by the fleas of rodents, it is associated with cities and ports where urban rats (Rattus rattus and Rattus norvegicus) are abundant. In the United States, cases are concentrated in suburban areas of Texas and California. Contrary to the classic rat-flea-rat cycle, the most important reservoirs of infection in these areas are opossums and cats. The cat flea, Ctenocephalides felis, has been identified as the principal vector. In Texas, murine typhus cases occur in spring and summer, whereas, in California, cases have been documented in summer and fall. Most patients present with fever, and many have rash and headache. Serologic testing with the indirect immunofluorescence assay is the preferred diagnostic method. Doxycycline is the antibiotic of choice and has been shown to shorten the course of illness.

  6. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  7. Endogenous neurotrophins and plasticity following spinal deafferentation.

    PubMed

    Ramer, Matt S

    2012-05-01

    Neurons intrinsic to the spinal cord dorsal horn receive input from various classes of long-distance projection systems. Two of the best known of these are primary afferent and descending monoaminergic axons. Together with intrinsic interneurons, activity in these axonal populations shapes the early part of the sensory experience before it is transmitted to supraspinal structures via ascending projection axons. Injury to dorsal roots, which contain the centrally projecting branches of primary afferent axons, results in their permanent disconnection from the spinal cord, as well as sensory dysfunction such as pain. In animals, experimental dorsal root injuries affecting a small number of roots produce dynamic behavioural changes, providing evidence for the now familiar concept that sensory processing at the level of the spinal cord is not hard-wired. Changes in behaviour following rhizotomy suggest changes in spinal sensory circuitry, and we and others have shown that the density of spinal serotonergic axons as well as processes of inhibitory interneurons increases following rhizotomy. Intact primary afferent axons are less apt to sprout into denervated territory. Recent work from our group has asked (1) what is the stimulus that induces sprouting of serotonergic (and other) axons and (2) what prevents spared primary afferent axons from occupying the territory of those lost to injury. This article will review the evidence that a single factor upregulated by dorsal root injury, brain-derived neurotrophic factor (BDNF), underpins both serotonergic sprouting and a lack of primary afferent plasticity. BDNF also differentially modulates some of the behavioural consequences of dorsal root injury: antagonizing endogenous BDNF improves spontaneous mechanosensory recovery but prevents recovery from rhizotomy-induced hypersensitivity to cold. These findings reinforce the notion that in disease states as complex and variable as spinal cord injury, single pharmacological

  8. Recombination between feline leukemia virus subgroup B or C and endogenous env elements alters the in vitro biological activities of the viruses.

    PubMed Central

    Pandey, R; Ghosh, A K; Kumar, D V; Bachman, B A; Shibata, D; Roy-Burman, P

    1991-01-01

    An important question in feline leukemia virus (FeLV) pathogenesis is whether, as in murine leukemia virus infection, homologous recombination between the infecting FeLV and the noninfectious endogenous FeLV-like proviruses serves as a significant base for the generation of proximal pathogens. To begin an analysis of this issue, several recombinant FeLVs were produced by using two different approaches: (i) the regions of the viral envelope (env) gene of a cloned FeLV (subgroup B virus [FeLV-B], Gardner-Arnstein strain) and those of two different endogenous proviral loci were exchanged to create specific FeLV chimeras, and (ii) vectors containing endogenous env and molecularly cloned infectious FeLV-C (Sarma strain) DNA sequences were coexpressed by transfection in nonfeline cells to facilitate recombination. The results of these combined approaches showed that up to three-fourths of the envelope glycoprotein (gp70), beginning from the N-terminal end, could be replaced by endogenous FeLV sequences to produce biologically active chimeric FeLVs. The in vitro replication efficiency or cell tropism of the recombinants appeared to be influenced by the amount of gp70 sequences replaced by the endogenous partner as well as by the locus of origin of the endogenous sequences. Additionally, a characteristic biological effect, aggregation of feline T-lymphoma cells (3201B cell line), was found to be specifically induced by replicating FeLV-C or FeLV-C-based recombinants. Multiple crossover sites in the gp70 protein selected under the conditions used for coexpression were identified. The results of induced coexpression were also supported by rapid generation of FeLV recombinants when FeLV-C was used to infect the feline 3201B cell line that constitutively expresses high levels of endogenous FeLV-specific mRNAs. Furthermore, a large, highly conserved open reading frame in the pol gene of an endogenous FeLV provirus was identified. This observation, particularly in reference to

  9. RNA-dependent DNA polymerase of an endogenous type C virus of mice: purification and partial characterization.

    PubMed Central

    Hizi, A; Yaniv, A

    1980-01-01

    An RNA-dependent DNA polymerase was isolated from purified virions of endogenous oncornaviruses released by the MOPC-315 murine myeloma cell line. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified enzyme was found to consist of two major polypeptides with molecular weights of about 28,000 and 26,500. The active enzyme had a molecular weight of approximately 56,000, as calculated from its sedimentation on glycerol density gradients, indicating that it is probably a dimer of the two subunit polypeptides. The isolated MOPC-315 virus polymerase exhibited all three activities known to be found in the DNA polymerase from oncornaviruses, namely, an RNA-dependent DNA polymerase, a DNA-dependent DNA polymerase, and an RNase H. The RNA-dependent polymerase activity showed a prounced preference for Mn2+ over Mg2+, whereas the DNA-dependent and RNase H reactions were catalyzed by these two cations to an almost equal extent. The purified polymerase was found to be immunologically related to the polymerase of Rauscher murine leukemia virus. Images PMID:6155478

  10. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae

    PubMed Central

    Dupressoir, Anne; Marceau, Geoffroy; Vernochet, Cécile; Bénit, Laurence; Kanellopoulos, Colette; Sapin, Vincent; Heidmann, Thierry

    2005-01-01

    Recently, we and others have identified two human endogenous retroviruses that entered the primate lineage 25–40 million years ago and that encode highly fusogenic retroviral envelope proteins (syncytin-1 and -2), possibly involved in the formation of the placenta syncytiotrophoblast layer generated by trophoblast cell fusion at the materno–fetal interface. A systematic in silico search throughout mouse genome databases presently identifies two fully coding envelope genes, present as unique copies and unrelated to any known murine endogenous retrovirus, that we named syncytin-A and -B. Quantitative RT-PCR demonstrates placenta-specific expression for both genes, with increasing transcript levels in this organ from 9.5 to 14.5 days postcoitum. In situ hybridization of placenta cryosections further localizes these transcripts in the syncytiotrophoblast-containing labyrinthine zona. Consistently, we show that both genes can trigger cell–cell fusion in ex vivo transfection assays, with distinct cell type specificities suggesting different receptor usage. Genes orthologous to syncytin-A and -B and disclosing a striking conservation of their coding status are found in all Muridae tested (mouse, rat, gerbil, vole, and hamster), dating their entry into the rodent lineage ≈20 million years ago. Together, these data strongly argue for a critical role of syncytin-A and -B in murine syncytiotrophoblast formation, thus unraveling a rather unique situation where two pairs of endogenous retroviruses, independently acquired by the primate and rodent lineages, would have been positively selected for a convergent physiological role. PMID:15644441

  11. Interactions between endogenous and exogenous attention on cortical visual processing.

    PubMed

    Hopfinger, Joseph B; West, Vicki M

    2006-06-01

    Sensory processing is affected by both endogenous and exogenous mechanisms of attention, although how these mechanisms interact in the brain has remained unclear. In the present study, we recorded event-related potentials (ERPs) to investigate how multiple stages of information processing in the brain are affected when endogenous and exogenous mechanisms are concurrently engaged. We found that the earliest stage of cortical visual processing, the striate-cortex-generated C1, was immune to attentional modulation, even when endogenous and exogenous attention converged on a common location. The earliest stage of processing to be affected in this experiment was the late phase of the extrastriate-cortex-generated P1 component, which was dominated by exogenous attention. Processing at this stage was enhanced by exogenous attention, regardless of where endogenous attention had been oriented. Endogenous attention, however, dominated a later, higher-order stage of processing indexed by an enhancement of the P300 that was unaffected by exogenous attention. Critically, between these early and late stages, an interaction was found wherein endogenous and exogenous attention produced distinct, and overlapping, effects on information processing. At the same time that exogenous attention was producing an extended enhancement of the late-P1, endogenous attention was enhancing the occipital-parietal N1 component. These results provide neurophysiological support for theories suggesting that endogenous and exogenous mechanisms represent two attention systems that can affect information processing in the brain in distinct ways. Furthermore, these data provide new evidence regarding the precise stages of neural processing that are, and are not, affected when endogenous and exogenous attentions interact.

  12. CRISPR RNA-guided activation of endogenous human genes.

    PubMed

    Maeder, Morgan L; Linder, Samantha J; Cascio, Vincent M; Fu, Yanfang; Ho, Quan H; Joung, J Keith

    2013-10-01

    Short guide RNAs (gRNAs) can direct catalytically inactive CRISPR-associated 9 nuclease (dCas9) to repress endogenous genes in bacteria and human cells. Here we show that single or multiple gRNAs can direct dCas9 fused to a VP64 transcriptional activation domain to increase expression of endogenous human genes. This proof-of-principle work shows that clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems can target heterologous effector domains to endogenous sites in human cells.

  13. Strategies for the photo-control of endogenous protein activity.

    PubMed

    Brechun, Katherine E; Arndt, Katja M; Woolley, G Andrew

    2016-11-28

    Photo-controlled or 'optogenetic' effectors interfacing with endogenous protein machinery allow the roles of endogenous proteins to be probed. There are two main approaches being used to develop optogenetic effectors: (i) caging strategies using photo-controlled conformational changes, and (ii) protein relocalization strategies using photo-controlled protein-protein interactions. Numerous specific examples of these approaches have been reported and efforts to develop general methods for photo-control of endogenous proteins are a current focus. The development of improved screening and selection methods for photo-switchable proteins would advance the field.

  14. tirant, a Newly Discovered Active Endogenous Retrovirus in Drosophila simulans

    PubMed Central

    Akkouche, Abdou; Rebollo, Rita; Burlet, Nelly; Esnault, Caroline; Martinez, Sonia; Viginier, Barbara; Terzian, Christophe; Vieira, Cristina

    2012-01-01

    Endogenous retroviruses have the ability to become permanently integrated into the genomes of their host, and they are generally transmitted vertically from parent to progeny. With the exception of gypsy, few endogenous retroviruses have been identified in insects. In this study, we describe the tirant endogenous retrovirus in a subset of Drosophila simulans natural populations. By focusing on the envelope gene, we show that the entire retroviral cycle (transcription, translation, and retrotransposition) can be completed for tirant within one population of this species. PMID:22278247

  15. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  16. Cas9-dependent endogenous gene regulation is required for bacterial virulence.

    PubMed

    Sampson, Timothy R; Weiss, David S

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems are known to mediate bacterial defence against foreign nucleic acids. We recently demonstrated a non-canonical role for a CRISPR-Cas system in controlling endogenous gene expression, which had not previously been appreciated. In the present article, we describe the studies that led to this discovery, beginning with an unbiased genome-wide screen to identify virulence genes in the intracellular pathogen Francisella novicida. A gene annotated as encoding a hypothetical protein, but which we now know encodes the Cas protein Cas9, was identified as one of the most critical to the ability of F. novicida to replicate and survive during murine infection. Subsequent studies revealed a role for this protein in evasion of the host innate immune response. Specifically, Cas9 represses the expression of a BLP (bacterial lipoprotein) that could otherwise be recognized by TLR2 (Toll-like receptor 2), a host protein involved in initiating an antibacterial pro-inflammatory response. By repressing BLP levels, Cas9 mediates evasion of TLR2, promoting bacterial virulence. Finally, we described the molecular mechanism by which Cas9 functions in complex with two small RNAs to target the mRNA encoding the BLP for degradation. This work greatly broadened the paradigm for CRISPR-Cas function, highlighting a role in gene regulation that could be conserved in numerous bacteria, and elucidating its integral contribution to bacterial pathogenesis.

  17. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging.

    PubMed

    Keshari, Kayvan R; Kurhanewicz, John; Bok, Robert; Larson, Peder E Z; Vigneron, Daniel B; Wilson, David M

    2011-11-15

    Reduction and oxidation (redox) chemistry is involved in both normal and abnormal cellular function, in processes as diverse as circadian rhythms and neurotransmission. Intracellular redox is maintained by coupled reactions involving NADPH, glutathione (GSH), and vitamin C, as well as their corresponding oxidized counterparts. In addition to functioning as enzyme cofactors, these reducing agents have a critical role in dealing with reactive oxygen species (ROS), the toxic products of oxidative metabolism seen as culprits in aging, neurodegenerative disease, and ischemia/ reperfusion injury. Despite this strong relationship between redox and human disease, methods to interrogate a redox pair in vivo are limited. Here we report the development of [1-(13)C] dehydroascorbate [DHA], the oxidized form of Vitamin C, as an endogenous redox sensor for in vivo imaging using hyperpolarized (13)C spectroscopy. In murine models, hyperpolarized [1-(13)C] DHA was rapidly converted to [1-(13)C] vitamin C within the liver, kidneys, and brain, as well as within tumor in a transgenic prostate cancer mouse. This result is consistent with what has been previously described for the DHA/Vitamin C redox pair, and points to a role for hyperpolarized [1-(13)C] DHA in characterizing the concentrations of key intracellular reducing agents, including GSH. More broadly, these findings suggest a prognostic role for this new redox sensor in determining vulnerability of both normal and abnormal tissues to ROS.

  18. ATR suppresses endogenous DNA damage and allows completion of homologous recombination repair.

    PubMed

    Brown, Adam D; Sager, Brian W; Gorthi, Aparna; Tonapi, Sonal S; Brown, Eric J; Bishop, Alexander J R

    2014-01-01

    DNA replication fork stalling or collapse that arises from endogenous damage poses a serious threat to genome stability, but cells invoke an intricate signaling cascade referred to as the DNA damage response (DDR) to prevent such damage. The gene product ataxia telangiectasia and Rad3-related (ATR) responds primarily to replication stress by regulating cell cycle checkpoint control, yet it's role in DNA repair, particularly homologous recombination (HR), remains unclear. This is of particular interest since HR is one way in which replication restart can occur in the presence of a stalled or collapsed fork. Hypomorphic mutations in human ATR cause the rare autosomal-recessive disease Seckel syndrome, and complete loss of Atr in mice leads to embryonic lethality. We recently adapted the in vivo murine pink-eyed unstable (pun) assay for measuring HR frequency to be able to investigate the role of essential genes on HR using a conditional Cre/loxP system. Our system allows for the unique opportunity to test the effect of ATR loss on HR in somatic cells under physiological conditions. Using this system, we provide evidence that retinal pigment epithelium (RPE) cells lacking ATR have decreased density with abnormal morphology, a decreased frequency of HR and an increased level of chromosomal damage.

  19. Transmission of Porcine Endogenous Retrovirus Produced from Different Recipient Cells In Vivo

    PubMed Central

    Kim, Sehyun; Gwon, Yong-Dae; Cho, Yeondong; Yang, Jae Myung; Oh, Yu-Kyoung; Kim, Young bong

    2016-01-01

    Humanized pigs have been developed to reduce the incidence of immune rejection in xenotransplantation, but significant concerns remain, such as transmission of viral zoonosis. Porcine endogenous retroviruses (PERV), which exist in the genome of pigs, are produced as infectious virions from all porcine cells and cause zoonosis. Here, we examined the possibility of zoonosis of hosts under conditions of immune suppression or xenotransplantation of cells producing host-adapted viruses. Upon transplantation of PERV-producing porcine cells into mice, no transmission of PERV was detected, whereas, transmission of PERV from mice transplanted with mouse-adapted PERV-producing cells was detected. In addition, the frequency of PERV transmission was increased in CsA treated mice transplanted with PERV-producing murine cells, compared with PERV-producing porcine cells. Transmission of PERV to host animals did not affect weight but immune responses, in particular, the number of T cells from PERV-transmitted mice, were notably reduced. The observed risk of PERV zoonosis highlights the requirement for thorough evaluation of viral zoonosis under particular host conditions, such as immunosuppressive treatment and transplantation with host-adapted virus-producing cells. PMID:27832080

  20. Endogenous galectin-3 expression levels modulate immune responses in galectin-3 transgenic mice.

    PubMed

    Chaudhari, Aparna D; Gude, Rajiv P; Kalraiya, Rajiv D; Chiplunkar, Shubhada V

    2015-12-01

    Galectin-3 (Gal-3), a β-galactoside-binding mammalian lectin, is involved in cancer progression and metastasis. However, there is an unmet need to identify the underlying mechanisms of cancer metastasis mediated by endogenous host galectin-3. Galectin-3 is also known to be an important regulator of immune responses. The present study was aimed at analysing how expression of endogenous galectin-3 regulates host immunity and lung metastasis in B16F10 murine melanoma model. Transgenic Gal-3(+/-) (hemizygous) and Gal-3(-/-) (null) mice exhibited decreased levels of Natural Killer (NK) cells and lower NK mediated cytotoxicity against YAC-1 tumor targets, compared to Gal-3(+/+) (wild-type) mice. On stimulation, Gal-3(+/-) and Gal-3(-/-) mice splenocytes showed increased T cell proliferation than Gal-3(+/+) mice. Intracellular calcium flux was found to be lower in activated T cells of Gal-3(-/-) mice as compared to T cells from Gal-3(+/+) and Gal-3(+/-) mice. In Gal-3(-/-) mice, serum Th1, Th2 and Th17 cytokine levels were found to be lowest, exhibiting dysregulation of pro-inflammatory and anti-inflammatory cytokines balance. Marked decrease in serum IFN-γ levels and splenic IFN-γR1 (IFN-γ Receptor 1) expressing T and NK cell percentages were observed in Gal-3(-/-) mice. On recombinant IFN-γ treatment of splenocytes in vitro, Suppressor of Cytokine Signaling (SOCS) 1 and SOCS3 protein expression was higher in Gal-3(-/-) mice compared to that in Gal-3(+/+) and Gal-3(+/-) mice; suggesting possible attenuation of Signal Transducer and Activator of Transcription (STAT) 1 mediated IFN-γ signaling in Gal-3(-/-) mice. The ability of B16F10 melanoma cells to form metastatic colonies in the lungs of Gal-3(+/+) and Gal-3(-/-) mice remained comparable, whereas it was found to be reduced in Gal-3(+/-) mice. Our data indicates that complete absence of endogenous host galectin-3 facilitates lung metastasis of B16F10 cells in mice, which may be contributed by dysregulated immune

  1. Endogenous pacemaker activity of rat tumour somatotrophs

    PubMed Central

    Kwiecien, Renata; Robert, Christophe; Cannon, Robert; Vigues, Stephan; Arnoux, Annie; Kordon, Claude; Hammond, Constance

    1998-01-01

    Cells derived from a rat pituitary tumour (GC cell line) that continuously release growth hormone behave as endogenous pacemakers. In simultaneous patch clamp recordings and cytosolic Ca2+ concentration ([Ca2+]i) imaging, they displayed rhythmic action potentials (44.7 ± 2.7 mV, 178 ± 40 ms, 0.30 ± 0.04 Hz) and concomitant [Ca2+]i transients (374 ± 57 nM, 1.0 ± 0.2 s, 0.27 ± 0.03 Hz). Action potentials and [Ca2+]i transients were reversibly blocked by removal of external Ca2+, addition of nifedipine (1 μM) or Ni2+ (40 μM), but were insensitive to TTX (1 μM). An L-type Ca2+ current activated at -33.6 ± 0.4 mV (holding potential (Vh), −40 mV), peaked at -1.8 ± 1.3 mV, was reduced by nifedipine and enhanced by S-(+)-SDZ 202 791. A T/R-type Ca2+ current activated at -41.7 ± 2.7 mV (Vh, -80 or -60 mV), peaked at -9.2 ± 3.0 mV, was reduced by low concentrations of Ni2+ (40 μM) or Cd2+ (10 μM) and was toxin resistant. Parallel experiments revealed the expression of the class E calcium channel α1-subunit mRNA. The K+ channel blockers TEA (25 mM) and charybdotoxin (10–100 nM) enhanced spike amplitude and/or duration. Apamin (100 nM) also strongly reduced the after-spike hyperpolarization. The outward K+ tail current evoked by a depolarizing step that mimicked an action potential reversed at −69.8 ± 0.3 mV, presented two components, lasted 2–3 s and was totally blocked by Cd2+ (400 μM). The slow pacemaker depolarization (3.5 ± 0.4 s) that separated consecutive spikes corresponded to a 2- to 3-fold increase in membrane resistance, was strongly Na+ sensitive but TTX insensitive. Computer simulations showed that pacemaker activity can be reproduced by a minimum of six currents: an L-type Ca2+ current underlies the rising phase of action potentials that are repolarized by a delayed rectifier and Ca2+-activated K+ currents. In between spikes, the decay of Ca2+-activated K+ currents and a persistent inward cationic current depolarize the membrane

  2. Spatiotemporal expression of endogenous TLR4 ligands leads to inflammation and bone erosion in mouse collagen-induced arthritis.

    PubMed

    Kiyeko, Gaëlle Wambiekele; Hatterer, Eric; Herren, Suzanne; Di Ceglie, Irene; van Lent, Peter L; Reith, Walter; Kosco-Vilbois, Marie; Ferlin, Walter; Shang, Limin

    2016-11-01

    Increased expression of endogenous Toll-like receptor 4 (TLR4) ligands (e.g., Tenascin-C, S100A8/A9, citrullinated fibrinogen (cFb) immune complexes) has been observed in patients with rheumatoid arthritis (RA). However, their roles in RA pathogenesis are not well understood. Here, we investigated the expression kinetics and role of endogenous TLR4 ligands in the murine model of collagen-induced arthritis (CIA). Tenascin-C was upregulated in blood early in CIA, and correlated positively with the clinical score at day 56. Levels of S100A8/A9 increased starting from day 28, peaking at day 42, and correlated positively with joint inflammation. Levels of anti-cFb antibodies increased during the late phase of CIA and correlated positively with both joint inflammation and cartilage damage. Blockade of TLR4 activation at the time of the first TLR4 ligand upregulation prevented clinical and histological signs of arthritis. A TLR4-dependent role was also observed for Tenascin-C and cFb immune complexes in osteoclast differentiation in vitro. Taken together, our data suggests that the pathogenic contribution of TLR4 in promoting joint inflammation and bone erosion during CIA occurs via various TLR4 ligands arising at different stages of disease. The data also suggests that Blockade of TLR4 with monoclonal antibodies is a promising strategy in RA treatment.

  3. Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis.

    PubMed

    Zagon, Ian S; Rahn, Kristen A; Turel, Anthony P; McLaughlin, Patricia J

    2009-11-01

    Preclinical investigations utilizing murine experimental auto-immune encephalomyelitis (EAE), as well as clinical observations in patients with multiple sclerosis (MS), may suggest alteration of endogenous opioid systems in MS. In this study we used the opioid antagonist naltrexone (NTX) to invoke a continuous (High Dose NTX, HDN) or intermittent (Low Dose NTX, LDN) opioid receptor blockade in order to elucidate the role of native opioid peptides in EAE. A mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced EAE was employed in conjunction with daily treatment of LDN (0.1 mg/kg, NTX), HDN (10 mg/kg NTX), or vehicle (saline). No differences in neurological status (incidence, severity, disease index), or neuropathological assessment (activated astrocytes, demyelination, neuronal injury), were noted between MOG-induced mice receiving HDN or vehicle. Over 33% of the MOG-treated animals receiving LDN did not exhibit behavioral signs of disease, and the severity and disease index of the LDN-treated mice were markedly reduced from cohorts injected with vehicle. Although all LDN animals demonstrated neuropathological signs of EAE, LDN-treated mice without behavioral signs of disease had markedly lower levels of activated astrocytes and demyelination than LDN- or vehicle-treated animals with disease. These results imply that endogenous opioids, evoked by treatment with LDN and acting in the rebound period from drug exposure, are inhibitory to the onset and progression of EAE, and suggest that clinical studies of LDN are merited in MS and possibly in other autoimmune disorders.

  4. Endogenous spar tin, mutated in hereditary spastic paraplegia, has a complex subcellular localization suggesting diverse roles in neurons

    SciTech Connect

    Robay, Dimitri; Patel, Heema; Simpson, Michael A.; Brown, Nigel A.; Crosby, Andrew H. . E-mail: acrosby@sgul.ac.uk

    2006-09-10

    Mutation of spartin (SPG20) underlies a complicated form of hereditary spastic paraplegia, a disorder principally defined by the degeneration of upper motor neurons. Using a polyclonal antibody against spartin to gain insight into the function of the endogenous molecule, we show that the endogenous molecule is present in two main isoforms of 85 kDa and 100 kDa, and 75 kDa and 85 kDa in human and murine, respectively, with restricted subcellular localization. Immunohistochemical studies on human and mouse embryo sections and in vitro cell studies indicate that spartin is likely to possess both nuclear and cytoplasmic functions. The nuclear expression of spartin closely mirrors that of the snRNP (small nuclear ribonucleoprotein) marker {alpha}-Sm, a component of the spliceosome. Spartin is also enriched at the centrosome within mitotic structures. Notably we show that spartin protein undergoes dynamic positional changes in differentiating human SH-SY5Y cells. In undifferentiated non-neuronal cells, spartin displays a nuclear and diffuse cytosolic profile, whereas spartin transiently accumulates in the trans-Golgi network and subsequently decorates discrete puncta along neurites in terminally differentiated neuroblastic cells. Investigation of these spartin-positive vesicles reveals that a large proportion colocalizes with the synaptic vesicle marker synaptotagmin. Spartin is also enriched in synaptic-like structures and in synaptic vesicle-enriched fraction.

  5. Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase.

    PubMed

    Bronte, Vincenzo; Cingarlini, Sara; Apolloni, Elisa; Serafini, Paolo; Marigo, Ilaria; De Santo, Carmela; Macino, Beatrice; Marin, Oriano; Zanovello, Paola

    2003-12-15

    Endogenous retrovirus (ERV) products are recognized by T lymphocytes in mice and humans. As these Ags are preferentially expressed by neoplastic tissues, they might represent an ideal target for active immunization by genetic vaccination. However, i.m. inoculation of plasmid DNA encoding mouse gp70 or p15E, two products of the env gene of an endogenous murine leukemia virus, elicited a weak Ag-specific T lymphocyte response and resulted in partial protection from challenge with mouse tumors possessing these Ags. Depletion experiments showed that CD8(+), but not CD4(+), T lymphocytes were crucial for the antitumor activity of the vaccines. Systemic administration of agonistic anti-CD40 mAb increased the therapeutic potential of genetic vaccination, but only when given during the tumor rejection phase and not at the time of immunization. This effect correlated with a dramatic increase in the number of ERV-specific CD8(+) T lymphocytes. Adjuvant activity of CD40 agonists thus seems to be relevant to enhance the CD8(+) T cell-dependent response in tumor-bearing hosts, suggesting that sustaining tumor-specific T lymphocyte survival in subjects undergoing vaccination might be a key event in the successful vaccination with weak tumor Ags.

  6. Isolating Exogenous and Endogenous Modes of Temporal Attention

    ERIC Educational Resources Information Center

    Lawrence, Michael A.; Klein, Raymond M.

    2013-01-01

    The differential allocation of information processing resources over time, here termed "temporal attention," may be achieved by relatively automatic "exogenous" or controlled "endogenous" mechanisms. Over 100 years of research has confounded these theoretically distinct dimensions of temporal attention. The current…

  7. Association of endogenous substrate with solubilized bovine brain sialidase.

    PubMed

    Schengrund, C L; Repman, M A

    1986-01-01

    Nonidet P40 solubilized up to 90% of the sialidase, active towards added ganglioside substrate, that was associated with the total membrane fraction prepared from gray matter of bovine brains. Solubilized sialidase acted upon endogenous substrate (sialic acid containing compounds solubilized with the enzyme), hydrolyzing approximately 50% of the readily available sialosyl residues within 20 min. During a 2-hr reaction time 80% of the polysialylated gangliosides solubilized with the enzyme were acted upon. A 20-min lag was observed before sialidase acted upon added ganglioside substrate. The lag could be reduced to less than 2 min when the enzyme was allowed to act on endogenous substrate prior to exposure to exogenous substrate, suggesting that the solubilized enzyme acted preferentially on endogenous substrate. A protease inhibitor prevented much of the 86% loss of activity towards added substrate that was seen when the enzyme was stored at 4 degrees C for 6 days; activity towards endogenous substrate decreased only 34%.

  8. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins.

    PubMed

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-02-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.

  9. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment.

    PubMed

    Vanden Berg-Foels, Wendy S

    2014-02-01

    Tissue engineering uses cells, signaling molecules, and/or biomaterials to regenerate injured or diseased tissues. Ex vivo expanded mesenchymal stem cells (MSC) have long been a cornerstone of regeneration therapies; however, drawbacks that include altered signaling responses and reduced homing capacity have prompted investigation of regeneration based on endogenous MSC recruitment. Recent successful proof-of-concept studies have further motivated endogenous MSC recruitment-based approaches. Stem cell migration is required for morphogenesis and organogenesis during development and for tissue maintenance and injury repair in adults. A biomimetic approach to in situ tissue regeneration by endogenous MSC requires the orchestration of three main stages: MSC recruitment, MSC differentiation, and neotissue maturation. The first stage must result in recruitment of a sufficient number of MSC, capable of effecting regeneration, to the injured or diseased tissue. One of the challenges for engineering endogenous MSC recruitment is the selection of effective chemoattractant(s). The objective of this review is to synthesize and evaluate evidence of recruitment efficacy by reported chemoattractants, including growth factors, chemokines, and other more recently appreciated MSC chemoattractants. The influence of MSC tissue sources, cell culture methods, and the in vitro and in vivo environments is discussed. This growing body of knowledge will serve as a basis for the rational design of regenerative therapies based on endogenous MSC recruitment. Successful endogenous MSC recruitment is the first step of successful tissue regeneration.

  10. Remarkable diversity of endogenous viruses in a crustacean genome.

    PubMed

    Thézé, Julien; Leclercq, Sébastien; Moumen, Bouziane; Cordaux, Richard; Gilbert, Clément

    2014-08-01

    Recent studies in paleovirology have uncovered myriads of endogenous viral elements (EVEs) integrated in the genome of their eukaryotic hosts. These fragments result from endogenization, that is, integration of the viral genome into the host germline genome followed by vertical inheritance. So far, most studies have used a virus-centered approach, whereby endogenous copies of a particular group of viruses were searched in all available sequenced genomes. Here, we follow a host-centered approach whereby the genome of a given species is comprehensively screened for the presence of EVEs using all available complete viral genomes as queries. Our analyses revealed that 54 EVEs corresponding to 10 different viral lineages belonging to 5 viral families (Bunyaviridae, Circoviridae, Parvoviridae, and Totiviridae) and one viral order (Mononegavirales) became endogenized in the genome of the isopod crustacean Armadillidium vulgare. We show that viral endogenization occurred recurrently during the evolution of isopods and that A. vulgare viral lineages were involved in multiple host switches that took place between widely divergent taxa. Furthermore, 30 A. vulgare EVEs have uninterrupted open reading frames, suggesting they result from recent endogenization of viruses likely to be currently infecting isopod populations. Overall, our work shows that isopods have been and are still infected by a large variety of viruses. It also extends the host range of several families of viruses and brings new insights into their evolution. More generally, our results underline the power of paleovirology in characterizing the viral diversity currently infecting eukaryotic taxa.

  11. Remarkable Diversity of Endogenous Viruses in a Crustacean Genome

    PubMed Central

    Thézé, Julien; Leclercq, Sébastien; Moumen, Bouziane; Cordaux, Richard; Gilbert, Clément

    2014-01-01

    Recent studies in paleovirology have uncovered myriads of endogenous viral elements (EVEs) integrated in the genome of their eukaryotic hosts. These fragments result from endogenization, that is, integration of the viral genome into the host germline genome followed by vertical inheritance. So far, most studies have used a virus-centered approach, whereby endogenous copies of a particular group of viruses were searched in all available sequenced genomes. Here, we follow a host-centered approach whereby the genome of a given species is comprehensively screened for the presence of EVEs using all available complete viral genomes as queries. Our analyses revealed that 54 EVEs corresponding to 10 different viral lineages belonging to 5 viral families (Bunyaviridae, Circoviridae, Parvoviridae, and Totiviridae) and one viral order (Mononegavirales) became endogenized in the genome of the isopod crustacean Armadillidium vulgare. We show that viral endogenization occurred recurrently during the evolution of isopods and that A. vulgare viral lineages were involved in multiple host switches that took place between widely divergent taxa. Furthermore, 30 A. vulgare EVEs have uninterrupted open reading frames, suggesting they result from recent endogenization of viruses likely to be currently infecting isopod populations. Overall, our work shows that isopods have been and are still infected by a large variety of viruses. It also extends the host range of several families of viruses and brings new insights into their evolution. More generally, our results underline the power of paleovirology in characterizing the viral diversity currently infecting eukaryotic taxa. PMID:25084787

  12. Efficacy of posaconazole in murine experimental sporotrichosis.

    PubMed

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio; Guarro, Josep

    2012-05-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology.

  13. Efficacy of Posaconazole in Murine Experimental Sporotrichosis

    PubMed Central

    Fernández-Silva, Fabiola; Capilla, Javier; Mayayo, Emilio

    2012-01-01

    We developed a murine model of systemic sporotrichosis by using three strains of each of the two commonest species causing sporotrichosis, i.e., Sporothrix schenckii sensu stricto and Sporothrix brasiliensis, in order to evaluate the efficacy of posaconazole (PSC). The drug was administered at a dose of 2.5 or 5 mg/kg of body weight twice a day by gavage, and one group was treated with amphotericin B (AMB) as a control treatment. Posaconazole, especially at 5 mg/kg, showed good efficacy against all the strains tested, regardless of their MICs, as measured by prolonged survival, tissue burden reduction, and histopathology. PMID:22330929

  14. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  15. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  16. Characterization of Murine Gammaherpesvirus 68 Glycoprotein B

    PubMed Central

    Lopes, Filipa B.; Colaco, Susanna; May, Janet S.; Stevenson, Philip G.

    2004-01-01

    Murine gammaherpesvirus 68 (MHV-68) glycoprotein B (gB) was identified in purified virions by immunoblotting, immunoprecipitation, and immunoelectron microscopy. It was synthesized as a 120-kDa precursor in infected cells and cleaved into 65-kDa and 55-kDa disulfide-linked subunits close to the time of virion release. The N-linked glycans on the cleaved, virion gB remained partially endoglycosidase H sensitive. The processing of MHV-68 gB therefore appears similar to that of Kaposi's sarcoma-associated herpesvirus gB and human cytomegalovirus gB. PMID:15542690

  17. Reemergence of murine typhus in Galveston, Texas, USA, 2013.

    PubMed

    Blanton, Lucas S; Vohra, Rahat F; Bouyer, Donald H; Walker, David H

    2015-03-01

    Twelve patients with murine typhus were identified in Galveston, Texas, USA, in 2013. An isolate from 1 patient was confirmed to be Rickettsia typhi. Reemergence of murine typhus in Galveston emphasizes the importance of vector control and awareness of this disease by physicians and public health officials.

  18. An Unusual Cutaneous Manifestation in a Patient with Murine Typhus

    PubMed Central

    Blanton, Lucas S.; Lea, Alfred S.; Kelly, Brent C.; Walker, David H.

    2015-01-01

    Murine typhus is a flea-borne febrile illness caused by Rickettsia typhi. Although often accompanied by rash, an inoculation lesion has not been observed as it is with many tick- and mite-transmitted rickettsioses. We describe a patient with murine typhus and an unusual cutaneous manifestation at the site of rickettsial inoculation. PMID:26416115

  19. The future of murine sepsis and trauma research models

    PubMed Central

    Efron, Philip A.; Mohr, Alicia M.; Moore, Frederick A.; Moldawer, Lyle L.

    2015-01-01

    Recent comparisons of the murine and human transcriptome in health and disease have called into question the appropriateness of the use of murine models for human sepsis and trauma research. More specifically, researchers have debated the suitability of mouse models of severe inflammation that is intended for eventual translation to human patients. This mini-review outlines this recent research, as well as specifically defines the arguments for and against murine models of sepsis and trauma research based on these transcriptional studies. In addition, we review newer advancements in murine models of infection and injury and define what we envision as an evolving but viable future for murine studies of sepsis and trauma. PMID:26034205

  20. Tectonic conditionality endogenic geoecological processes on a shelf

    NASA Astrophysics Data System (ADS)

    Kholmiansky, Mikhail; Anokhin, Vladimir; Kholmianskaia, Galina

    2014-05-01

    Influence on a sea ecosystem of deep tectonic structures and processes is considered. From the point of view of studying endogenic geoecological processes and the phenomena ensuring origin of «endogenic» ecological dangers, us the following interests, first of all: a structurally-tectonic structure, a lithologic-stratigraphic section, hydro- and lithodynamic, a hydrology, seismic activity, endogenic ingress of heavy metals, a structure cryolithozone The map of endogenic dangers to water area Barents and Karasky seas is made. In the list of the endogenic dangers which have been taken out on the map, have entered: - Areas of heavy metals endogenic origins; - Zones of hyperactivity of corrosion processes; - Zones of the raised seismological activity; - Areas active roiling at seismological influences; - Zones of negative influence on biogene communities, - Characteristics of influence of natural electric field on lithodynamic processes. The most part flooded at the bottom of technogenic objects is located within the tectonic zones characterised by raised intensity of corrosion processes. The tectonic reasons, in the big degree, cause dynamics of the deep hydro-geological processes providing receipt in hydrosphere of the sea highly mineralized waters, negatively influencing on a biogenic component of an ecosystem. The most vulnerable are the biogenic forms living in deeper sites of the sea. On the map are allocated and ranked some zones endogenic hydro-geological dangers to biogenic communities. At displays of seismological activity endogenic tectonic nature process roiling the ground deposits, menacing to normal dwelling biota, leading to death ground invertebral organisms, to sharp pauperisation of a forage reserve benthos feeder will have fishes, to sharp reduction of population nectobentofages and predators. At last, infringement of a hydrochemical mode in aggregate with endogenic receipts can strengthen aforementioned negative processes. The geoecological map of

  1. Pathogenesis and immunity in murine salmonellosis.

    PubMed Central

    Hsu, H S

    1989-01-01

    Salmonella is traditionally described as a facultative intracellular parasite, and host macrophages are regarded as the primary effector cells in both native and acquired immunity in mouse typhoid. This concept has not been unanimously accepted in the literature. Based on cell culture experiments and electron microscopic examinations of infected tissues, we observed that virulent Salmonella typhimurium is killed within polymorphs and macrophages of guinea pigs and mice. In a systemic disease, the organism propagates primarily in the extracellular locations of sinusoids and tissue lesions and within hepatocytes. Hence, it is more likely to be an extracellular pathogen and its virulence is directly related to its antiphagocytic property. The conspicuous absence of macrophages in the primary lesions of murine salmonellosis disputes the likelihood of their significant role in native resistance to the disease. Acquired cellular immunity is expressed as an enhanced antibacterial activity of macrophages facilitated by cytophilic antibodies rather than as an altered antibacterial action of immune macrophages. It is proposed that acquired immunity in murine salmonellosis is a synergistic manifestation of the innate capacity of polymorphs and macrophages to destroy ingested salmonellae, the activated antibacterial functions of macrophages mediated by cytophilic antibodies, the opsonic and agglutinating actions of antiserum, and the accelerated inflammation associated with delayed hypersensitivity to bacterial antigens. Unlike live attenuated vaccines, nonviable vaccines offer a significant, though not a solid, protection against subsequent challenges. Images PMID:2687679

  2. Effect of zidovudine on preimplantation murine embryos.

    PubMed Central

    Toltzis, P; Mourton, T; Magnuson, T

    1993-01-01

    It previously has been demonstrated that zidovudine (AZT) is lethal to early murine embryos. The effect of the drug on pre- and postimplantation embryos was examined to delineate the timing of this toxicity and to investigate its possible mechanisms. Embryos exposed in the whole mouse during preblastocyst development were unable to proceed beyond the blastocyst stage. Similarly, when two-cell embryos harvested from unexposed females were exposed to low-concentration (1 microM) AZT in vitro over 24 h, development beyond the blastocyst stage was inhibited. In contrast, drug exposure during in vitro blastocyst and postblastocyst development resulted in little or no morphologic toxicity. Further investigation revealed that preblastocyst AZT exposure resulted in the development of blastocysts with significantly lower cell numbers than control embryos. While embryonic exposure to AZT at the blastocyst and postblastocyst stages also resulted in retarded cell division, the effects were milder than those recorded after preblastocyst exposure. These data demonstrate that the critical period of AZT toxicity toward murine embryos is between ovulation and implantation and indicate that AZT directly suppresses cell division in the preimplantation embryo. PMID:8215271

  3. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    PubMed Central

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  4. Staphylococcal endogenous endophthalmitis in association with pyogenic vertebral osteomyelitis.

    PubMed

    Steeples, L R; Jones, N P

    2016-01-01

    PURPOSE To describe pyogenic vertebral osteomyelitis as a rare infection associated with endogenous endophthalmitis.METHODS A retrospective review of three patients with endogenous endophthalmitis and sepsis due to underlying Staphylococcal vertebral osteomyelitis presenting during a 21-month time period. The ophthalmic and systemic features and management and outcomes are presented.RESULTS One patient developed unilateral endophthalmitis with cervical spine osteomyelitis, Staphylococcus aureus being isolated from blood cultures. The second presented with bilateral endophthalmitis with disseminated Methicillin-resistant S. aureus (MRSA) infection, with thoracic and lumbar discitis and para-spinal abscesses. MRSA was cultured from vitreous, blood, and synovial fluid. Both patients received prolonged courses of intravenous antibiotics. Intravitreal antibiotic therapy was used in the second patient. Excellent visual and systemic outcomes were achieved in both cases with no ocular complications. The third patient developed lumbar osteomyelitis following spinal surgery and presented with disseminated S. aureus sepsis including unilateral endogenous endophthalmitis. Despite systemic antibiotics and intensive care the patient died.CONCLUSIONS Endogenous endophthalmitis should be suspected in septic patients developing eye symptoms. Endogenous endophthalmitis with staphylococcal bone infection is a rare but serious condition. Osteomyelitis should be considered as an infective source in any such patient reporting bone pain or reduced spinal mobility. Prompt investigation and treatment can achieve favourable visual and systemic outcomes.

  5. Endogenous molecules stimulating N-acylethanolamine-hydrolyzing acid amidase (NAAA).

    PubMed

    Tai, Tatsuya; Tsuboi, Kazuhito; Uyama, Toru; Masuda, Kim; Cravatt, Benjamin F; Houchi, Hitoshi; Ueda, Natsuo

    2012-05-16

    Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol. However, endogenous molecules that might substitute for these synthetic compounds remain poorly understood. Here, we examined stimulatory effects of endogenous phospholipids and thiol compounds on recombinant NAAA. Among different phospholipids tested, choline- or ethanolamine-containing phospholipids showed potent effects, and 1 mM phosphatidylcholine increased NAAA activity by 6.6-fold. Concerning endogenous thiol compounds, dihydrolipoic acid at 0.1-1 mM was the most active, causing 8.5-9.0-fold stimulation. These results suggest that endogenous phospholipids and dihydrolipoic acid may contribute in keeping NAAA active in lysosomes. Even in the presence of phosphatidylcholine and dihydrolipoic acid, however, the preferential hydrolysis of palmitoylethanolamide was unaltered. We also investigated a possible compensatory induction of NAAA mRNA in brain and other tissues of FAAH-deficient mice. However, NAAA expression levels in all the tissues examined were not significantly altered from those in wild-type mice.

  6. The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor

    PubMed Central

    Nguyen, Linh P.; Bradfield, Christopher A.

    2008-01-01

    In its simplest aspect, this review is an attempt to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or “endogenous ligand” of the AHR. We begin by presenting evidence that supports a developmental function for the AHR. This is followed by proposing mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. With this background, we then present a survey of the known xenobiotic, endogenous, dietary and “un-conventional” activators of the AHR. When possible, this includes information about their induction potency, receptor binding affinity and potential for exposure. Because of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators. PMID:18076143

  7. Residential water demand with endogenous pricing: The Canadian Case

    NASA Astrophysics Data System (ADS)

    Reynaud, Arnaud; Renzetti, Steven; Villeneuve, Michel

    2005-11-01

    In this paper, we show that the rate structure endogeneity may result in a misspecification of the residential water demand function. We propose to solve this endogeneity problem by estimating a probabilistic model describing how water rates are chosen by local communities. This model is estimated on a sample of Canadian local communities. We first show that the pricing structure choice reflects efficiency considerations, equity concerns, and, in some cases, a strategy of price discrimination across consumers by Canadian communities. Hence estimating the residential water demand without taking into account the pricing structures' endogeneity leads to a biased estimation of price and income elasticities. We also demonstrate that the pricing structure per se plays a significant role in influencing price responsiveness of Canadian residential consumers.

  8. Endogenous lentiviral elements in the weasel family (Mustelidae).

    PubMed

    Han, Guan-Zhu; Worobey, Michael

    2012-10-01

    Endogenous retroviruses provide molecular fossils for studying the ancient evolutionary history of retroviruses. Here, we report our independent discovery and analysis of endogenous lentiviral insertions (Mustelidae endogenous lentivirus [MELV]) within the genomes of weasel family (Mustelidae). Genome-scale screening identified MELV elements in the domestic ferret (Mustela putorius furo) genome (MELVmpf). MELVmpf exhibits a typical lentiviral genomic organization. Phylogenetic analyses position MELVmpf basal to either primate lentiviruses or feline immunodeficiency virus. Moreover, we verified the presence of MELV insertions in the genomes of several species of the Lutrinae and Mustelinae subfamilies but not the Martinae subfamily, suggesting that the invasion of MELV into the Mustelidae genomes likely took place between 8.8 and 11.8 Ma. The discovery of MELV in weasel genomes extends the host range of lentiviruses to the Caniformia (order Carnivora) and provides important insights into the prehistoric diversity of lentiviruses.

  9. Glucocorticoid receptors in murine erythroleukaemic cells

    SciTech Connect

    Hammond, K.D.; Torrance, J.M.; DiDomenico, M.

    1987-01-01

    Glucocorticoid receptors in murine erythroleukaemic cells were studied in relation to hexamethylene bisacetamide (HMBA) induced differentiation. Specific binding of dexamethasone was measured. A single class of saturable, high affinity binding sites was demonstrated in intact cells; with cell homogenates or fractions binding was low and could not be reliably quantified. Receptor binding in whole cell suspensions was lower in cells which had been treated with HMBA (36.5 +/- 8.2 pmol/g protein) than in untreated controls (87.9 +/- 23.6 pmol/g protein); dissociation constants were similar in treated (2.7 nM) and untreated cells (2.5 nM). Dexamethasone, hydrocortisone, corticosterone and progesterone competed with tritium-labelled dexamethasone for receptor binding sites; cortisone, deoxycorticosterone and oestradiol had little effect.

  10. Monoclonal antibodies reacting with murine teratocarcinoma cells.

    PubMed Central

    Goodfellow, P N; Levinson, J R; Williams, V E; McDevitt, H O

    1979-01-01

    Monoclonal antibodies were produced in vitro by fusing mouse myeloma cells with spleen cells from a rat immunized with the C3H mouse teratocarcinoma C86-S1. After the fusion two clones were chosen for further analysis. The first clone, 3C4-10, produced an antibody recognizing an antigen with a distribution restricted to teratocarcinoma cell lines, an endoderm cell line, and a neuroblastoma. The second clone, 4A1-9, produced an antibody that reacted with all cultured murine cells tested and adult brain. Neither antibody reacted with preimplantation embryos. The 3C4-10 antibody recognized an antigen associated with proteins. The apparent molecular weight of the 3C4-10 antigen was greater than 100,000. PMID:284353

  11. Assessing the bioequivalence of analogues of endogenous substances (‘endogenous drugs’): considerations to optimize study design

    PubMed Central

    Dissanayake, Sanjeeva

    2010-01-01

    BACKGROUND Assessment of the bioequivalence of generic versions of certain reference drugs is complicated by the presence of endogenous levels of said compounds which cannot be distinguished from externally derived compound levels following drug administration. If unaccounted for, the presence of endogenous compound biases towards equivalence in bioequivalence studies of these drugs. Bioequivalence assessments may be complicated further as disposition of the exogenous analogue can be subject to various endogenous processes resulting in nonlinear pharmacokinetics. To overcome these inherent biases a number of different strategies have been employed. AIMS To critically review methods used to overcome confounding biases in bioequivalence studies of ‘endogenous’ drugs. METHODS A literature search of the EMBASE and PubMed databases was performed. RESULTS The following strategies were identified: ablation/modulation of baseline endogenous substance levels; recruitment of ‘substance-deficient’ populations; restriction of dietary intake of the relevant substance; standardization of conditions with the potential to affect relevant homeostatic mechanisms; correction for baseline substance levels; and administration of supra-therapeutic drug doses. CONCLUSIONS On the basis of this review key study design concepts, intended to optimize the design of future bioequivalence studies of these so-called ‘endogenous drugs’, are described. The dual stable isotope method, which could be used in a specific context, is also discussed. PMID:20233194

  12. Phosphoproteome Profiling Reveals Circadian Clock Regulation of Posttranslational Modifications in the Murine Hippocampus.

    PubMed

    Chiang, Cheng-Kang; Xu, Bo; Mehta, Neel; Mayne, Janice; Sun, Warren Y L; Cheng, Kai; Ning, Zhibin; Dong, Jing; Zou, Hanfa; Cheng, Hai-Ying Mary; Figeys, Daniel

    2017-01-01

    The circadian clock is an endogenous oscillator that drives daily rhythms in physiology, behavior, and gene expression. The underlying mechanisms of circadian timekeeping are cell-autonomous and involve oscillatory expression of core clock genes that is driven by interconnecting transcription-translation feedback loops (TTFLs). Circadian clock TTFLs are further regulated by posttranslational modifications, in particular, phosphorylation. The hippocampus plays an important role in spatial memory and the conversion of short- to long-term memory. Several studies have reported the presence of a peripheral oscillator in the hippocampus and have highlighted the importance of circadian regulation in memory formation. Given the general importance of phosphorylation in circadian clock regulation, we performed global quantitative proteome and phosphoproteome analyses of the murine hippocampus across the circadian cycle, applying spiked-in labeled reference and high accuracy mass spectrometry (MS). Of the 3,052 proteins and 2,868 phosphosites on 1,368 proteins that were accurately quantified, 1.7% of proteins and 5.2% of phosphorylation events exhibited time-of-day-dependent expression profiles. The majority of circadian phosphopeptides displayed abrupt fluctuations at mid-to-late day without underlying rhythms of protein abundance. Bioinformatic analysis of cyclic phosphorylation events revealed their diverse distribution in different biological pathways, most notably, cytoskeletal organization and neuronal morphogenesis. This study provides the first large-scale, quantitative MS analysis of the circadian phosphoproteome and proteome of the murine hippocampus and highlights the significance of rhythmic regulation at the posttranslational level in this peripheral oscillator. In addition to providing molecular insights into the hippocampal circadian clock, our results will assist in the understanding of genetic factors that underlie rhythms-associated pathological states of

  13. TGF-β-dependent dendritic cell chemokinesis in murine models of airway disease

    PubMed Central

    Hashimoto, Mitsuo; Yanagisawa, Haruhiko; Minagawa, Shunsuke; Sen, Debasish; Ma, Royce; Murray, Lynne A.; Tsui, Ping; Lou, Jianlong; Marks, James D.; Baron, Jody L.; Krummel, Matthew F.; Nishimura, Stephen L.

    2015-01-01

    Small airway chronic inflammation is a major pathologic feature of chronic obstructive pulmonary disease (COPD) and is refractory to current treatments. Dendritic cells (DCs) accumulate around small airways in COPD. DCs are critical mediators of antigen surveillance and antigen presentation and amplify adaptive immune responses. How DCs accumulate around airways remains largely unknown. We use 2-photon DC imaging of living murine lung sections to directly visualize the dynamic movement of living DCs around airways in response to either soluble mediators (IL-1β) or environmental stimuli (cigarette smoke or TLR3 ligands) implicated in COPD pathogenesis. We find that DCs accumulate around murine airways primarily by increasing velocity (chemokinesis) rather than directional migration (chemotaxis) in response to all three stimuli. DC accumulation maximally occurs in a specific zone located 26-50 μm from small airways, which overlaps with zones of maximal DC velocity. Our data suggest that increased accumulation of DCs around airways results from increased numbers of highly chemokinetic DCs entering the lung from the circulation with balanced rates of immigration and emigration. Increases in DC accumulation and chemokinesis are partially dependent on ccr6, a crucial DC chemokine receptor, and fibroblast expression of the integrin αvβ8, a critical activator of TGF-β αvβ8-mediated TGF-β activation is known to enhance IL-1β-dependent fibroblast expression of the only known endogenous ccr6 chemokine ligand, ccl20. Taken together, these data suggest a mechanism by which αvβ8, ccl20 and ccr6 interact to lead to DC accumulation around airways in response to COPD-relevant stimuli. PMID:26109638

  14. Phosphoproteome Profiling Reveals Circadian Clock Regulation of Posttranslational Modifications in the Murine Hippocampus

    PubMed Central

    Chiang, Cheng-Kang; Xu, Bo; Mehta, Neel; Mayne, Janice; Sun, Warren Y. L.; Cheng, Kai; Ning, Zhibin; Dong, Jing; Zou, Hanfa; Cheng, Hai-Ying Mary; Figeys, Daniel

    2017-01-01

    The circadian clock is an endogenous oscillator that drives daily rhythms in physiology, behavior, and gene expression. The underlying mechanisms of circadian timekeeping are cell-autonomous and involve oscillatory expression of core clock genes that is driven by interconnecting transcription–translation feedback loops (TTFLs). Circadian clock TTFLs are further regulated by posttranslational modifications, in particular, phosphorylation. The hippocampus plays an important role in spatial memory and the conversion of short- to long-term memory. Several studies have reported the presence of a peripheral oscillator in the hippocampus and have highlighted the importance of circadian regulation in memory formation. Given the general importance of phosphorylation in circadian clock regulation, we performed global quantitative proteome and phosphoproteome analyses of the murine hippocampus across the circadian cycle, applying spiked-in labeled reference and high accuracy mass spectrometry (MS). Of the 3,052 proteins and 2,868 phosphosites on 1,368 proteins that were accurately quantified, 1.7% of proteins and 5.2% of phosphorylation events exhibited time-of-day-dependent expression profiles. The majority of circadian phosphopeptides displayed abrupt fluctuations at mid-to-late day without underlying rhythms of protein abundance. Bioinformatic analysis of cyclic phosphorylation events revealed their diverse distribution in different biological pathways, most notably, cytoskeletal organization and neuronal morphogenesis. This study provides the first large-scale, quantitative MS analysis of the circadian phosphoproteome and proteome of the murine hippocampus and highlights the significance of rhythmic regulation at the posttranslational level in this peripheral oscillator. In addition to providing molecular insights into the hippocampal circadian clock, our results will assist in the understanding of genetic factors that underlie rhythms-associated pathological states of

  15. Endogenous endophthalmitis as a septic complication postureteroscope candiduria

    PubMed Central

    Inn, Fam Xeng; Md. Noh, Umi Kalthum; Jasman, Mohd. Hafidzul

    2017-01-01

    Ureteroscopy (URS) is commonly used by urologists to treat ureteral stones. It is a relatively low-risk procedure. Both urinary tract obstruction and contamination of instrument can cause candiduria post-URS, and this infection can be treated with an antifungal medication. Candidemia is known as hematogenous dissemination, and ocular tissue is a common invasion. However, endogenous endophthalmitis, due to postureteroscope candiduria, has not been reported up to date. This is a devastating complication that may lead to visual loss. Here, we describe a case of endogenous endophthalmitis as a consequence of candiduria after URS. PMID:28216938

  16. SNIPER peptide-mediated degradation of endogenous proteins.

    PubMed

    Fan, Xuelai; Wang, Yu Tian

    2015-03-02

    Rapid and reversible methods for altering the function of endogenous proteins are not only indispensable tools for probing complex biological systems, but may potentially drive the development of new therapeutics for the treatment of human diseases. Genetic approaches have provided insights into protein function, but are limited in speed, reversibility and spatiotemporal control. To overcome these limitations, we have developed a peptide-based method (SNIPER: Selective Native Protein Eradication) to degrade any given endogenous protein at the post-translational level by harnessing chaperone-mediated autophagy, a major intracellular protein degradation pathway. This unit presents a typical strategy in the design and validation of a protein-knockdown peptide.

  17. Protection from experimental asthma by an endogenous bronchodilator.

    PubMed

    Que, Loretta G; Liu, Limin; Yan, Yun; Whitehead, Gregory S; Gavett, Stephen H; Schwartz, David A; Stamler, Jonathan S

    2005-06-10

    Mechanisms that protect against asthma remain poorly understood. S-nitrosoglutathione (GSNO), an endogenous bronchodilator, is depleted from asthmatic airways, suggesting a protective role. We report that, following allergen challenge, wild-type mice exhibiting airway hyperresponsivity have increased airway levels of the enzyme GSNO reductase (GSNOR) and are depleted of lung S-nitrosothiols (SNOs). In contrast, mice with genetic deletion of GSNOR exhibit increases in lung SNOs and are protected from airway hyperresponsivity. Our results indicate that endogenous SNOs, governed by GSNOR, are critical regulators of airway responsivity and may provide new therapeutic approaches to asthma.

  18. Endogenous Retrovirus Insertion in the KIT Oncogene Determines White and White spotting in Domestic Cats

    PubMed Central

    David, Victor A.; Menotti-Raymond, Marilyn; Wallace, Andrea Coots; Roelke, Melody; Kehler, James; Leighty, Robert; Eizirik, Eduardo; Hannah, Steven S.; Nelson, George; Schäffer, Alejandro A.; Connelly, Catherine J.; O’Brien, Stephen J.; Ryugo, David K.

    2014-01-01

    The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively. PMID:25085922

  19. Endogenous retrovirus insertion in the KIT oncogene determines white and white spotting in domestic cats.

    PubMed

    David, Victor A; Menotti-Raymond, Marilyn; Wallace, Andrea Coots; Roelke, Melody; Kehler, James; Leighty, Robert; Eizirik, Eduardo; Hannah, Steven S; Nelson, George; Schäffer, Alejandro A; Connelly, Catherine J; O'Brien, Stephen J; Ryugo, David K

    2014-08-01

    The Dominant White locus (W) in the domestic cat demonstrates pleiotropic effects exhibiting complete penetrance for absence of coat pigmentation and incomplete penetrance for deafness and iris hypopigmentation. We performed linkage analysis using a pedigree segregating White to identify KIT (Chr. B1) as the feline W locus. Segregation and sequence analysis of the KIT gene in two pedigrees (P1 and P2) revealed the remarkable retrotransposition and evolution of a feline endogenous retrovirus (FERV1) as responsible for two distinct phenotypes of the W locus, Dominant White, and white spotting. A full-length (7125 bp) FERV1 element is associated with white spotting, whereas a FERV1 long terminal repeat (LTR) is associated with all Dominant White individuals. For purposes of statistical analysis, the alternatives of wild-type sequence, FERV1 element, and LTR-only define a triallelic marker. Taking into account pedigree relationships, deafness is genetically linked and associated with this marker; estimated P values for association are in the range of 0.007 to 0.10. The retrotransposition interrupts a DNAase I hypersensitive site in KIT intron 1 that is highly conserved across mammals and was previously demonstrated to regulate temporal and tissue-specific expression of KIT in murine hematopoietic and melanocytic cells. A large-population genetic survey of cats (n = 270), representing 30 cat breeds, supports our findings and demonstrates statistical significance of the FERV1 LTR and full-length element with Dominant White/blue iris (P < 0.0001) and white spotting (P < 0.0001), respectively.

  20. Restriction of Porcine Endogenous Retrovirus by Porcine APOBEC3 Cytidine Deaminases ▿

    PubMed Central

    Dörrschuck, Eva; Fischer, Nicole; Bravo, Ignacio G.; Hanschmann, Kay-Martin; Kuiper, Heidi; Spötter, Andreas; Möller, Ronny; Cichutek, Klaus; Münk, Carsten; Tönjes, Ralf R.

    2011-01-01

    Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5′ TGC for A3Z2 and A3Z2-Z3 and 5′ CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. PMID:21307203

  1. Cultivation and characterization of three strains of murine rotavirus.

    PubMed Central

    Greenberg, H B; Vo, P T; Jones, R

    1986-01-01

    Three distinct strains of murine rotavirus were adapted to growth in cell culture. These strains are genetically related but not identical; they are serotypically heterogeneous. The cultivatable strains were substantially more infectious (approximately 10(6)-fold) for suckling mice than heterologous simian rotaviruses were. Homologous murine rotavirus strains spread from inoculated to uninoculated litter mates and caused diarrhea, while heterologous rotaviruses did not spread and cause illness. Images PMID:3003390

  2. Origin of pathogenic determinants of recombinant murine leukemia viruses: analysis of Bxv-1-related xenotropic viruses from CWD mice.

    PubMed Central

    Massey, A C; Coppola, M A; Thomas, C Y

    1990-01-01

    The acquisition of U3 region sequences derived from the endogenous xenotropic provirus Bxv-1 appears to be an important step in the generation of leukemogenic recombinant viruses in AKR, HRS, C58, and some CWD mice. We report here that each of three CWD lymphomas produced infectious xenotropic murine leukemia virus related to Bxv-1. In Southern blot experiments, these proviruses hybridized to probes that were specific for the xenotropic envelope and Bxv-1 U3 region sequences. Nucleotide sequence analysis of a cloned CWD xenotropic provirus, CWM-S-5X, revealed that the envelope gene was closely related to but distinct from those of other known xenotropic viruses. In addition, the U3 region of CWM-S-5X contained a viral enhancer sequence that was identical to that found in MCF 247, a recombinant AKR virus that is thought to contain the Bxv-1 enhancer. Finally, restriction enzyme sites in the CWM-S-5X provirus were analogous to those reported within Bxv-1. These results establish that the virus progeny of Bxv-1 have the potential to donate pathogenic enhancer sequences to recombinant polytropic murine leukemia viruses. Interestingly, the three CWD polytropic viruses that were isolated from the same tumor cells that produced the Bxv-1-like viruses had not incorporated Bxv-1 sequences into the U3 region. Images PMID:2170683

  3. A population of endogenous pararetrovirus genomes in carrizo citrange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The complete genomes of three related endogenous pararetroviruses (EPRVs) were obtained by 454 sequencing of nucleic acid extracts from ‘Carrizo’citrange, used as a citrus rootstock. Numerous homologous sequences have been found in the sweet orange genome. The new EPRVs are most closely related to...

  4. Improving access to endogenous DNA in ancient bones and teeth

    PubMed Central

    Damgaard, Peter B.; Margaryan, Ashot; Schroeder, Hannes; Orlando, Ludovic; Willerslev, Eske; Allentoft, Morten E.

    2015-01-01

    Poor DNA preservation is the most limiting factor in ancient genomic research. In the majority of ancient bones and teeth, endogenous DNA molecules represent a minor fraction of the whole DNA extract, rendering shot-gun sequencing inefficient for obtaining genomic data. Based on ancient human bone samples from temperate and tropical environments, we show that an EDTA-based enzymatic ‘pre-digestion’ of powdered bone increases the proportion of endogenous DNA several fold. By performing the pre-digestion step between 30 min and 6 hours on five bones, we observe an asymptotic increase in endogenous DNA content, with a 2.7-fold average increase reached at 1 hour. We repeat the experiment using a brief pre-digestion (15 or 30 mins) on 21 ancient bones and teeth from a variety of archaeological contexts and observe an improvement in 16 of these. We here advocate the implementation of a brief pre-digestion step as a standard procedure in ancient DNA extractions. Finally, we demonstrate on 14 ancient teeth that by targeting the outer layer of the roots we obtain up to 14 times more endogenous DNA than when using the inner dentine. Our presented methods are likely to increase the proportion of ancient samples that are suitable for genome-scale characterization. PMID:26081994

  5. Borderline Personality Disorder: A Dysregulation of the Endogenous Opioid System?

    ERIC Educational Resources Information Center

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-01-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids…

  6. Endogenous attention and illusory line motion depend on task set.

    PubMed

    Chica, Ana B; Charras, Pom; Lupiáñez, Juan

    2008-09-01

    Task set has been shown to determine some important cognitive operations like conscious perception [Rafal, R. D., Ward, R., & Danziger, S. (2006). Selection for action and selection for awareness: Evidence from hemispatial neglect. Brain Research, 1080(1), 2-8], and the exogenous orienting of spatial attention [Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 1030-1044; Lupiáñez, J., Ruz, M., Funes, M. J., & Milliken, B. (2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71(1), 77-91]. In the present study we investigate whether endogenous attention would also be task-dependent. We use an illusion of movement, the illusory line motion [Hikosaka, O., Miyauchi, S., & Shimojo, S. (1993). Focal visual attention produces illusory temporal order and motion sensation. Vision Research, 33(9), 1219-1240] to explore this question. Our results revealed that endogenously attending to detect the appearance of a target produce different consequences in modulating the illusion of movement than endogenously attending to discriminate one of its features. We suggest that endogenous attention is implemented differently depending on the task at hand, producing different effects on perceptual integration.

  7. [Effectiveness of ultrasmall doses of endogenous bioregulators and immunoactive compounds].

    PubMed

    Ashmarin, I P; Karazeeva, E P; Lelekova, T V

    2005-01-01

    The data and hypotheses on the mechanisms of action of ultrasmall doses (USD) and ultralow concentrations (ULC) of endogenous bioregulators and immunoactive compounds (regulatory peptides, cytokines, etc.) are presented. The reliability of the published data on the effectiveness of USD and ULC within the concentration limits 10(-13) - 10(-24) M and lower is considered.

  8. Evolutionary Systems Theory, Universities, and Endogenous Regional Economic Development

    ERIC Educational Resources Information Center

    Bowen, William M.

    2007-01-01

    Universities today are increasingly being viewed in terms of serving the purpose of economic development. This paper postulates that their chief purpose is to advance knowledge and that in doing so they effectuate regional economic growth and development through processes specified in the endogenous economic growth model. To achieve this purpose…

  9. Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play

    ERIC Educational Resources Information Center

    Denham, Andre

    2012-01-01

    This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…

  10. Apparent posttranscriptional block to anaerobic induction of endogenous leukemia virus.

    PubMed Central

    Whitaker-Dowling, P A; Marotti, K R; Anderson, G R

    1979-01-01

    Uninfected Fischer rat cells were induced by anaerobic stress to transcribe high levels of endogenous type C leukemia virus RNA. Complete 35S virus RNA with attached polyadenylic acid sequences was found associated with polysomes, indicating functional mRNA. Since no mature virus was released under these conditions, the presence of a posttranscriptional block to complete virus synthesis is strongly indicated. PMID:232174

  11. New horizons for newborn brain protection: enhancing endogenous neuroprotection

    PubMed Central

    Hassell, K Jane; Ezzati, Mojgan; Alonso-Alconada, Daniel; Hausenloy, Derek J; Robertson, Nicola J

    2015-01-01

    Intrapartum-related events are the third leading cause of childhood mortality worldwide and result in one million neurodisabled survivors each year. Infants exposed to a perinatal insult typically present with neonatal encephalopathy (NE). The contribution of pure hypoxia-ischaemia (HI) to NE has been debated; over the last decade, the sensitising effect of inflammation in the aetiology of NE and neurodisability is recognised. Therapeutic hypothermia is standard care for NE in high-income countries; however, its benefit in encephalopathic babies with sepsis or in those born following chorioamnionitis is unclear. It is now recognised that the phases of brain injury extend into a tertiary phase, which lasts for weeks to years after the initial insult and opens up new possibilities for therapy. There has been a recent focus on understanding endogenous neuroprotection and how to boost it or to supplement its effectors therapeutically once damage to the brain has occurred as in NE. In this review, we focus on strategies that can augment the body's own endogenous neuroprotection. We discuss in particular remote ischaemic postconditioning whereby endogenous brain tolerance can be activated through hypoxia/reperfusion stimuli started immediately after the index hypoxic-ischaemic insult. Therapeutic hypothermia, melatonin, erythropoietin and cannabinoids are examples of ways we can supplement the endogenous response to HI to obtain its full neuroprotective potential. Achieving the correct balance of interventions at the correct time in relation to the nature and stage of injury will be a significant challenge in the next decade. PMID:26063194

  12. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis

    SciTech Connect

    Fares, Abasse; Rossignol, Michel; Peltier, Jean-Benoit

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Identification and quantification of nitrosothiols. Black-Right-Pointing-Pointer A first dataset of endogenously nitrosylated cysteines in Arabidopsis cells. Black-Right-Pointing-Pointer Nitrosothiols display apolar motifs not located in close vicinity of cysteines. Black-Right-Pointing-Pointer Salt stress alters the endogenous nitrosylation of specific cysteines in Arabidopsis. -- Abstract: S-Nitrosylation emerges as an important protein modification in many processes. However, most data were obtained at the protein level after addition of a NO donor, particularly in plants where information about the cysteines nitrosylated in these proteins is scarce. An adapted work-flow, combining the classical biotin switch method and labeling with isotope-coded affinity tags (ICAT), is proposed. Without addition of NO donor, a total of 53 endogenous nitrosocysteines was identified in Arabidopsis cells, in proteins belonging to all cell territories, including membranes, and covering a large panel of functions. This first repertoire of nitrosothiols in plants enabled also preliminary structural description. Three apolar motifs, not located in close vicinity of cysteines and accounting for half the dataset, were detected and are proposed to complement nitrosylation prediction algorithms, poorly trained with plant data to date. Analysis of changes induced by a brief salt stress showed that NaCl modified the nitrosylation level of a small proportion of endogenously nitrosylated proteins and did not concern all nitrosothiols in these proteins. The possible role of some NO targets in the response to salt stress was discussed.

  13. School system evaluation by value added analysis under endogeneity.

    PubMed

    Manzi, Jorge; San Martín, Ernesto; Van Bellegem, Sébastien

    2014-01-01

    Value added is a common tool in educational research on effectiveness. It is often modeled as a (prediction of a) random effect in a specific hierarchical linear model. This paper shows that this modeling strategy is not valid when endogeneity is present. Endogeneity stems, for instance, from a correlation between the random effect in the hierarchical model and some of its covariates. This paper shows that this phenomenon is far from exceptional and can even be a generic problem when the covariates contain the prior score attainments, a typical situation in value added modeling. Starting from a general, model-free definition of value added, the paper derives an explicit expression of the value added in an endogeneous hierarchical linear Gaussian model. Inference on value added is proposed using an instrumental variable approach. The impact of endogeneity on the value added and the estimated value added is calculated accurately. This is also illustrated on a large data set of individual scores of about 200,000 students in Chile.

  14. Health and Wages: Panel Data Estimates Considering Selection and Endogeneity

    ERIC Educational Resources Information Center

    Jackle, Robert; Himmler, Oliver

    2010-01-01

    This paper complements previous studies on the effects of health on wages by addressing the problems of unobserved heterogeneity, sample selection, and endogeneity in one comprehensive framework. Using data from the German Socio-Economic Panel (GSOEP), we find the health variable to suffer from measurement error and a number of tests provide…

  15. RXR function requires binding to an endogenous terpenoid ligand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The issue of whether the nuclear receptor RXR must bind to an endogenous, nanomolar affinity ligand in order to perform its natural function is still unsettled (1). On the basis of our previous studies establishing that the Drosophilamelanogaster ortholog of the retinoid X receptor ("ultraspiracle,"...

  16. RELIABLE ASSAYS FOR DETERMINING ENDOGENOUS COMPONENTS OF HUMAN MILK

    EPA Science Inventory

    Healthy women from 18-38 years old (N=25) fasted for several hours and twice donated blood and milk (postpartum 2-7 weeks and 3-4 months) for the EPA's Methods Advancement for Milk Analysis study, a pilot for the National Children's Study (NCS). Endogenous components were chosen...

  17. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  18. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine.

    PubMed

    Jacob, Michael S; Presti, David E

    2005-01-01

    The presence of the potent hallucinogenic psychoactive chemical N,N-dimethyltryptamine (DMT) in the human body has puzzled scientists for decades. Endogenous DMT was investigated in the 1960s and 1970s and it was proposed that DMT was involved in psychosis and schizophrenia. This hypothesis developed from comparisons of the blood and urine of schizophrenic and control subjects. However, much of this research proved inconclusive and conventional thinking has since held that trace levels of DMT, and other endogenous psychoactive tryptamines, are insignificant metabolic byproducts. The recent discovery of a G-protein-coupled, human trace amine receptor has triggered a reappraisal of the role of compounds present in limited concentrations in biological systems. Interestingly enough, DMT and other psychoactive tryptamine hallucinogens elicit a robust response at the trace amine receptor. While it is currently accepted that serotonin 5-HT(2A) receptors play a pivotal role in the activity of hallucinogenic/psychedelic compounds, we propose that the effects induced by exogenous DMT administration, especially at low doses, are due in part to activity at the trace amine receptor. Furthermore, we suggest that endogenous DMT interacts with the TA receptor to produce a calm and relaxed mental state, which may suppress, rather than promote, symptoms of psychosis. This hypothesis may help explain the inconsistency in the early analysis of endogenous DMT in humans. Finally, we propose that amphetamine action at the TA receptor may contribute to the calming effects of amphetamine and related drugs, especially at low doses.

  19. PROTECTION FROM EXPERIMENTAL ASTHMA BY AN ENDOGENOUS BRONCHODILATOR

    EPA Science Inventory

    Mechanisms that serve to protect against asthma remain poorly understood. S-nitrosoglutathione (GSNO), an endogenous bronchodilator, is depleted from the airways of asthmatic patients. We show here that mice with targeted deletion of the enzyme GSNO reductase (GSNOR-/-) sustain i...

  20. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  1. Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon.

    PubMed

    Lies, Barbara; Beck, Katharina; Keppler, Jonas; Saur, Dieter; Groneberg, Dieter; Friebe, Andreas

    2015-10-15

    In the enteric nervous systems, NO is released from nitrergic neurons as a major inhibitory neurotransmitter. NO acts via NO-sensitive guanylyl cyclase (NO-GC), which is found in different gastrointestinal (GI) cell types including smooth muscle cells (SMCs) and interstitial cells of Cajal (ICC). The precise mechanism of nitrergic signalling through these two cell types to regulate colonic spontaneous contractions is not fully understood yet. In the present study we investigated the impact of endogenous and exogenous NO on colonic contractile motor activity using mice lacking nitric oxide-sensitive guanylyl cyclase (NO-GC) globally and specifically in SMCs and ICC. Longitudinal smooth muscle of proximal colon from wild-type (WT) and knockout (KO) mouse strains exhibited spontaneous contractile activity ex vivo. WT and smooth muscle-specific guanylyl cyclase knockout (SMC-GCKO) colon showed an arrhythmic contractile activity with varying amplitudes and frequencies. In contrast, colon from global and ICC-specific guanylyl cyclase knockout (ICC-GCKO) animals showed a regular contractile rhythm with constant duration and amplitude of the rhythmic contractions. Nerve blockade (tetrodotoxin) or specific blockade of NO signalling (L-NAME, ODQ) did not significantly affect contractions of GCKO and ICC-GCKO colon whereas the arrhythmic contractile patterns of WT and SMC-GCKO colon were transformed into uniform motor patterns. In contrast, the response to electric field-stimulated neuronal NO release was similar in SMC-GCKO and global GCKO. In conclusion, our results indicate that basal enteric NO release acts via myenteric ICC to influence the generation of spontaneous contractions whereas the effects of elevated endogenous NO are mediated by SMCs in the murine proximal colon.

  2. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    PubMed

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  3. Endogenous Molecules Stimulating N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA)

    PubMed Central

    2012-01-01

    Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol. However, endogenous molecules that might substitute for these synthetic compounds remain poorly understood. Here, we examined stimulatory effects of endogenous phospholipids and thiol compounds on recombinant NAAA. Among different phospholipids tested, choline- or ethanolamine-containing phospholipids showed potent effects, and 1 mM phosphatidylcholine increased NAAA activity by 6.6-fold. Concerning endogenous thiol compounds, dihydrolipoic acid at 0.1–1 mM was the most active, causing 8.5–9.0-fold stimulation. These results suggest that endogenous phospholipids and dihydrolipoic acid may contribute in keeping NAAA active in lysosomes. Even in the presence of phosphatidylcholine and dihydrolipoic acid, however, the preferential hydrolysis of palmitoylethanolamide was unaltered. We also investigated a possible compensatory induction of NAAA mRNA in brain and other tissues of FAAH-deficient mice. However, NAAA expression levels in all the tissues examined were not significantly altered from those in wild-type mice. PMID:22860206

  4. Caprine PrP variants harboring Asp-146, His-154 and Gln-211 alleles display reduced convertibility upon interaction with pathogenic murine prion protein in scrapie infected cells.

    PubMed

    Kanata, Eirini; Arsenakis, Minas; Sklaviadis, Theodoros

    2016-09-02

    Scrapie, the prion disease of sheep and goats, is a devastating malady of small ruminants. Due to its infectious nature, epidemic outbreaks may occur in flocks/herds consisting of highly susceptible animals. Field studies identified scrapie-protective caprine PrP variants, harboring specific single amino acid changes (Met-142, Arg-143, Asp-146, Ser-146, His-154, Gln-211 and Lys-222). Their effects are under further evaluation, and aim to determine the most protective allele. We assessed some of these variants (Asp-146, His-154, Gln-211 and Lys-222), after their exogenous expression as murine-caprine chimeras in a scrapie- infected murine cell line. We report that exogenously expressed PrPs undergo conformational conversion upon interaction with the endogenous pathological murine prion protein (PrP(SC)), which results in the detection of goat-specific and partially PK-resistant moieties. These moieties display a PK-resistance pattern distinct from the one detected in natural goat scrapie cases. Within this cellular model, distinct conformational conversion potentials were assigned to the tested variants. Molecules carrying the Asp-146, His-154 and Gln-211 alleles showed significantly lower conversion levels compared to wild type, confirming their protective effects against scrapie. Although we utilized a heterologous conversion system, this is to our knowledge, the first study of caprine PrP variants in a cellular context of scrapie, that confirms the protective effects of some of the studied alleles.

  5. The effect of dietary methionine levels on endogenous nitrogen and endogenous amino acids flows in growing goats.

    PubMed

    Zhou, C S; Tan, Z L; Tang, S X; Sun, Z H; Han, X F; Wang, M; Tayo, G O

    2010-10-01

    The effect of dietary methionine (Met) levels on endogenous N and amino acids (AA) flows at different part of the digestive tract of growing goats was determined using a (15)N isotope dilution technique. Three goats (25 ± 2.5 kg) were fitted with the ruminal, duodenal and ileal cannulae and allocated to three dietary treatments in a 3 × 3 Latin square design. The dietary treatments consisted of a total mixed ration containing three levels of Met (0.15%, 0.25% and 0.35%) respectively. It was found that at 0.15% Met level, the lowest flow in endogenous N and total AA at the duodenum and ileum occurred. The endogenous N secretion contributed to 26% and 23% of the duodenal and ileal total N flows, respectively, and the proportions were not affected by the dietary Met levels. The duodenal and ileal flows of endogenous total AA were 11.1, 11.8, 11.3 g/d and 2.9, 3.9, 4.1 g/d respectively. The average real digestibility of N was 65%, 87% and 95% in the forestomach, intestine and whole digestive tract respectively.

  6. Endogenous oncornaviral gene expression in adult and fetal mice: quantitative, histologic, and physiologic studies of the major viral glycorprotein, gp70

    PubMed Central

    1976-01-01

    Endogenous expression of the murine leukemia virus (MuLV) genome has been studied in a number of strains of mice. Expression of the major envelope glycoprotein, gp70, is restricted to certain anatomical sites and cell types, prominent among which are lymphoid and epithelial cells. On a quantitative basis, the major site of gp70 expression is the male genital tract. During development, gp70 first appears in the hematopoietic liver of 14-day-old embryos and by day 18, it is already expressed at anatomical sites similar to those of the adult. In toto, these results show that control of expression of the MuLV genome in adult and developing mice is linked to differentiation. PMID:172586

  7. Endogenous glucocorticoids protect against TNF-alpha-induced increases in anxiety-like behavior in virally infected mice

    PubMed Central

    Silverman, MN; Macdougall, MG; Hu, F; Pace, TWW; Raison, CL; Miller, AH

    2012-01-01

    Endogenous glucocorticoids restrain proinflammatory cytokine responses to immune challenges such as viral infection. In addition, proinflammatory cytokines induce behavioral alterations including changes in locomotor/exploratory activity. Accordingly, we examined proinflammatory cytokines and open-field behavior in virally infected mice rendered glucocorticoid deficient by adrenalectomy (ADX). Mice were infected with murine cytomegalovirus (MCMV), and open-field behavior (36 h post-infection) and plasma concentrations of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 (42 h post-infection) were assessed. Compared to sham-ADX-MCMV-infected animals, ADX-MCMV-infected mice exhibited significant reductions in total distance moved, number of center entries, and time spent in center. These behavioral alterations were accompanied by significantly higher plasma concentrations of TNF-alpha and IL-6, both of which were correlated with degree of behavioral change. To examine the role of TNF-alpha in these behavioral alterations, open-field behavior was compared in wild-type (WT) and TNF-R1-knockout (KO), ADX-MCMV-infected mice. TNF-R1-KO mice exhibited significantly attenuated decreases in number of rearings, number of center entries and time spent in center, but not distance moved, which correlated with plasma IL-6. Given the potential role of brain cytokines in these findings, mRNA expression of TNF-alpha, IL-1 and IL-6 was assessed in various brain regions. Although MCMV induced increases in proinflammatory cytokine mRNA throughout the brain (especially in ADX animals), no remarkable differences were found between WT and TNF-R1-KO mice. These results demonstrate that endogenous glucocorticoids restrain proinflammatory cytokine responses to viral infection and their impact on locomotor/exploratory activity. Moreover, TNF-alpha appears to mediate cytokine-induced changes in open-field behaviors, especially those believed to reflect anxiety. PMID:17389906

  8. Implantable micropump technologies for murine intracochlear infusions.

    PubMed

    Johnson, D G; Waldron, M J; Frisina, R D; Borkholder, D A

    2010-01-01

    Due to the very small size of the mouse inner ear, 600 nL volume, developing effective, controlled infusion systems is quite challenging. Key technologies have been created to minimize both size and power for an implantable pump for murine intracochlear infusions. A method for coupling fine capillary tubing to microfluidic channels is presented which provides low volume, biocompatible interconnects withstanding pressures as high as 827 kPa (120 psi) and consuming less than 20 nL of volume exiting in-plane with the pump. Surface micromachined resistive bridges integrated into the flow channel for anemometry based flow rate measurement have been optimized for low power operation in the ultra-low flow rate regime. A process for creation of deformable diaphragms over pump chambers with simultaneous coating of the microfluidic channels has been developed allowing integration of a biocompatible fluid flow path. These advances represent enabling capabilities for a drug delivery system suitable for space constrained applications such as subcutaneous implantation in mice.

  9. Implantable Micropump Technologies for Murine Intracochlear Infusions

    PubMed Central

    Johnson, D. G.; Waldron, M. J.; Frisina, R. D.; Borkholder, D. A.

    2011-01-01

    Due to the very small size of the mouse inner ear, 600 nL volume, developing effective, controlled infusion systems is quite challenging. Key technologies have been created to minimize both size and power for an implantable pump for murine intracochlear infusions. A method for coupling fine capillary tubing to microfluidic channels is presented which provides low volume, biocompatible interconnects withstanding pressures as high as 827 kPa (120 psi) and consuming less than 20 nL of volume exiting in-plane with the pump. Surface micromachined resistive bridges integrated into the flow channel for anemometry based flow rate measurement have been optimized for low power operation in the ultra-low flow rate regime. A process for creation of deformable diaphragms over pump chambers with simultaneous coating of the microfluidic channels has been developed allowing integration of a biocompatible fluid flow path. These advances represent enabling capabilities for a drug delivery system suitable for space constrained applications such as subcutaneous implantation in mice. PMID:21096713

  10. Murine Ileocolic Bowel Resection with Primary Anastomosis

    PubMed Central

    Perry, Troy; Borowiec, Anna; Dicken, Bryan; Fedorak, Richard; Madsen, Karen

    2014-01-01

    Intestinal resections are frequently required for treatment of diseases involving the gastrointestinal tract, with Crohn’s disease and colon cancer being two common examples. Despite the frequency of these procedures, a significant knowledge gap remains in describing the inherent effects of intestinal resection on host physiology and disease pathophysiology. This article provides detailed instructions for an ileocolic resection with primary end-to-end anastomosis in mice, as well as essential aspects of peri-operative care to maximize post-operative success. When followed closely, this procedure yields a 95% long-term survival rate, no failure to thrive, and minimizes post-operative complications of bowel obstruction and anastomotic leak. The technical challenges of performing the procedure in mice are a barrier to its wide spread use in research. The skills described in this article can be acquired without previous surgical experience. Once mastered, the murine ileocolic resection procedure will provide a reproducible tool for studying the effects of intestinal resection in models of human disease. PMID:25406841

  11. ESCRT Requirements for Murine Leukemia Virus Release.

    PubMed

    Bartusch, Christina; Prange, Reinhild

    2016-04-18

    The Murine Leukemia Virus (MLV) is a gammaretrovirus that hijack host components of the endosomal sorting complex required for transport (ESCRT) for budding. To determine the minimal requirements for ESCRT factors in MLV viral and viral-like particles (VLP) release, an siRNA knockdown screen of ESCRT(-associated) proteins was performed in MLV-producing human cells. We found that MLV VLPs and virions primarily engage the ESCRT-I factor Tsg101 and marginally the ESCRT-associated adaptors Nedd4-1 and Alix to enter the ESCRT pathway. Conversely, the inactivation of ESCRT-II had no impact on VLP and virion egress. By analyzing the effects of individual ESCRT-III knockdowns, VLP and virion release was profoundly inhibited in CHMP2A- and CHMP4B-knockdown cells. In contrast, neither the CHMP2B and CHMP4A isoforms nor CHMP3, CHMP5, and CHMP6 were found to be essential. In case of CHMP1, we unexpectedly observed that the CHMP1A isoform was specifically required for virus budding, but dispensable for VLP release. Hence, MLV utilizes only a subset of ESCRT factors, and viral and viral-like particles differ in ESCRT-III factor requirements.

  12. Nuclear Nonhistone Proteins in Murine Melanoma Cells

    PubMed Central

    Wikswo, Muriel A.; Mcguire, Joseph S.; Shansky, Janet E.; Boshes, Roger A.

    1976-01-01

    Nuclear nonhistone proteins (NHP's) have been implicated as regulatory agents involved in controlling genetic expression. Utilizing murine melanoma cells, we describe a method for isolating and fractionating NHP's which greatly increases the yield of these proteins as well as the level of resolution required for detecting small differences in particular NHP's. Mouse melanoma cells were grown in medium labeled with [3H]leucine. Following 48 hr of incubation, the cells were harvested and nuclei isolated. The NHP's were extracted from the nuclei in a series of steps which yielded four major fractions: NHP1, NHP2, NHP3, NHP4. This method solubilized 80-90% of the protein from the nuclear homogenate. The NHP fractions were then separated on DEAE-cellulose columns in a series of salt steps increasing in concentration from 0.05 to 0.50 M NaCl, followed by steps of 2 M NaCl and 4 and 7 M guanidine-hydrochloride. The 40 NHP fractions eluted from these columns were further separated on polyacrylamide-SDS gels and ranged in molecular weight from 9000 to 110,000 daltons. Differences were observed in the electrophoretic pattern of each of these 40 fractions. The high resolution of these fractionation procedures greatly enhances the possibility of observing small changes in proteins which may play a role in gene regulation. ImagesFIG. 2FIG. 5 PMID:997593

  13. Regulation of Murine Natural Killer Cell Development

    PubMed Central

    Goh, Wilford; Huntington, Nicholas D.

    2017-01-01

    Natural killer (NK) cells are effector lymphocytes of the innate immune system that are known for their ability to kill transformed and virus-infected cells. NK cells originate from hematopoietic stem cells in the bone marrow, and studies on mouse models have revealed that NK cell development is a complex, yet tightly regulated process, which is dependent on both intrinsic and extrinsic factors. The development of NK cells can be broadly categorized into two phases: lineage commitment and maturation. Efforts to better define the developmental framework of NK cells have led to the identification of several murine NK progenitor populations and mature NK cell subsets, each defined by a varied set of cell surface markers. Nevertheless, the relationship between some of these NK cell subsets remains to be determined. The classical approach to studying both NK cell development and function is to identify the transcription factors involved and elucidate the mechanistic action of each transcription factor. In this regard, recent studies have provided further insight into the mechanisms by which transcription factors, such as ID2, FOXO1, Kruppel-like factor 2, and GATA-binding protein 3 regulate various aspects of NK cell biology. It is also becoming evident that the biology of NK cells is not only transcriptionally regulated but also determined by epigenetic alterations and posttranscriptional regulation of gene expression by microRNAs. This review summarizes recent progress made in NK development, focusing primarily on transcriptional regulators and their mechanistic actions. PMID:28261203

  14. Murine cytomegalovirus infection of cultured mouse embryos.

    PubMed Central

    Tsutsui, Y.; Naruse, I.

    1987-01-01

    Isolated mouse whole embryos of 7.5 days' gestation were infected with murine cytomegalovirus (MCMV) and cultured in pure rat serum. Although the MCMV infection had little effect on the survival and development of the embryos during 3 days of cultivation, immunohistochemical analysis of their serial sections using monoclonal antibody showed MCMV-infected cells in various portions of the embryos. This monoclonal antibody, when tested with the use of infected cultured mouse fibroblasts, reacted with nuclear antigen within 2 hours after infection and also reacted with nuclear inclusions in the late phase of infection. The viral antigen-positive cells detected by the monoclonal antibody were present in almost all of the ectoplacental cone and the yolk sac and in about 82% of the embryos. In the embryos, antigen-positive cells were frequently observed in the epithelium of the digestive tracts, endothelial cells of the blood vessels, and the mesodermal cells. In some of the embryos, viral antigen-positive cells were clearly observed in a small percentage of the blood cells. These findings indicate that blood cells, in addition to cell migration during embryogenesis, may play an important role in transmission of infectious virus into the embryos. Mouse whole embryo culture infected with MCMV can provide a model for the study of cellular tropism related to congenital infection by cytomegalovirus. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3034066

  15. Characterization of ozone disinfection of murine norovirus.

    PubMed

    Lim, Mi Young; Kim, Ju-Mi; Lee, Jung Eun; Ko, GwangPyo

    2010-02-01

    Despite the importance of human noroviruses (NoVs) in public health, little information concerning the effectiveness of ozone against NoVs is available. We determined the efficacy of ozone disinfection using murine norovirus (MNV) as a surrogate of human NoV. MNV in ozone demand-free buffer was exposed to a predetermined dose of ozone at two different pHs and temperatures. The virus remaining in the solution was analyzed by plaque assay, real-time TaqMan reverse transcriptase PCR (RT-PCR) (short template), and long-template conventional RT-PCR. Under all conditions, more than 99% of the MNV was inactivated by ozone at 1 mg/liter within 2 min. Both RT-PCR assays significantly underestimated the inactivation of MNV, compared with that measured by plaque assay. Our results indicate that NoV may be more resistant to ozone than has been previously reported. Nevertheless, proper ozone disinfection practices can be used to easily control its transmission in water.

  16. Quantitative Trait Loci for Murine Growth

    PubMed Central

    Cheverud, J. M.; Routman, E. J.; Duarte, FAM.; van-Swinderen, B.; Cothran, K.; Perel, C.

    1996-01-01

    Body size is an archetypal quantitative trait with variation due to the segregation of many gene loci, each of relatively minor effect, and the environment. We examine the effects of quantitative trait loci (QTLs) on age-specific body weights and growth in the F(2) intercross of the LG/J and SM/J strains of inbred mice. Weekly weights (1-10 wk) and 75 microsatellite genotypes were obtained for 535 mice. Interval mapping was used to locate and measure the genotypic effects of QTLs on body weight and growth. QTL effects were detected on 16 of the 19 autosomes with several chromosomes carrying more than one QTL. The number of QTLs for age-specific weights varied from seven at 1 week to 17 at 10 wk. The QTLs were each of relatively minor, subequal effect. QTLs affecting early and late growth were generally distinct, mapping to different chromosomal locations indicating separate genetic and physiological systems for early and later murine growth. PMID:8846907

  17. Tumor necrosis factor mediates lung antibacterial host defense in murine Klebsiella pneumonia.

    PubMed Central

    Laichalk, L L; Kunkel, S L; Strieter, R M; Danforth, J M; Bailie, M B; Standiford, T J

    1996-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine which has recently been shown to have beneficial effects in the setting of acquired host immunity. However, the role of TNF in innate immune responses, as in the setting of bacterial pneumonia, has been incompletely characterized. To determine the role of TNF in gram-negative bacterial pneumonia, CBA/J mice were challenged with 10(2) CFU of Klebsiella pneumoniae intratracheally, resulting in the time-dependent expression of TNF MRNA and protein within the lung. Passive immunization of animals with a soluble TNF receptor-immunoglobulin (Ig) construct (sTNFR:Fc) intraperitoneally 2 h prior to K. pneumoniae inoculation resulted in a significant reduction in bronchoalveolar lavage neutrophils, but not macrophages, at 48 h, as compared with animals receiving control IgG1. Furthermore, treatment with sTNFR:Fc resulted in 19.6- and 13.5-fold increases in K. pneumoniae CFU in lung homogenates and plasma, respectively, as compared with animals receiving control IgG1. Finally, treatment of Klebsiella-infected mice with sTNFR:Fc markedly decreased both short- and long-term survival of these animals. In conclusion, our studies indicate that endogenous TNF is a critical component of antibacterial host defense in murine Klebsiella pneumonia. PMID:8945568

  18. In vivo analysis of the murine beta-myosin heavy chain gene promoter.

    PubMed

    Rindt, H; Gulick, J; Knotts, S; Neumann, J; Robbins, J

    1993-03-05

    The 5' upstream region of the murine beta-myosin heavy chain (MHC) gene has been isolated and tested for its ability to drive gene expression in transgenic mice. Three classes of transgenic mice were generated. The constructs contained approximately 5000, 2500, and 600 base pairs of beta-MHC upstream sequence fused to the chloramphenicol acetyltransferase gene and were termed beta 5, beta 2.5, and beta .6, respectively. Muscle-specific expression was observed with all three constructs. However, only the beta 5 lines directed high levels of muscle-specific transgene expression in both pre- and postbirth mice. Expression driven by the two shorter constructs was two to three orders of magnitude lower when the chloramphenicol acetyltransferase specific activities were compared. These data suggest that a distal-positive element directs high levels of gene expression in the ventricle and in slow skeletal muscles. Analyses of transgene expression during heart maturation revealed that some of the beta 5 lines were not able to respond in an appropriate manner to developmental transcriptional cues. Unlike the endogenous beta-MHC gene, which is down regulated in the ventricles around the time of birth, reporter gene expression in the majority of the lines generated was not shut off in the ventricles of the adult animals. These data indicate that high levels of muscle-specific beta-MHC gene expression are dependent upon the combinatorial interactions of a number of sequence elements that are distributed over a large region of the gene's upstream sequence.

  19. CrxOS maintains the self-renewal capacity of murine embryonic stem cells

    SciTech Connect

    Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko; Wu, Jinzhan; Kajiho, Hiroaki; Yokoi, Tadashi; Noda, Eiichiro; Nishina, Sachiko; Niwa, Hitoshi; Azuma, Noriyuki; Katada, Toshiaki; Nishina, Hiroshi

    2009-12-25

    Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiated morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.

  20. TUMOR INDUCTION BY MURINE SARCOMA VIRUS IN AKR AND C58 MICE

    PubMed Central

    Chieco-Bianchi, Luigi; Colombatti, Alfonso; Collavo, Dino; Sendo, Fujiro; Aoki, Tadao; Fischinger, Peter J.

    1974-01-01

    Adult AKR and C58 mice injected intramuscularly with murine sarcoma virus, Moloney isolate (M-MSV), developed high incidence of nonregressing local tumors. Histologically, these tumors revealed the typical pleomorphism of M-MSV sarcomas; in some cases, however, neoplastic tissue showed a nodular or diffuse growth of monomorphic myoblastlike cells, reminiscent of clonal aggregates. No depression of immune reactivity was found in M-MSV-injected mice as evaluated by direct hemolytic plaque-forming cells against SRBC and by virus-neutralizing antibody production. The MSV recovered from the induced tumors proved to be, by neutralization assay, a Gross (G)-MSV pseudotype. Moreover, tumor cell suspensions absorbed out cytotoxic antibody directed against G-cell surface antigens. Therefore, the conclusion was drawn that MSV with envelope characteristics of endogenous G leukemia virus had formed in vivo through a phenotypic mixing phenomenon. The failure of tumors to regress has been interpreted as mainly due to the partial unresponsiveness of host immune reactivity towards G-MuLV specified antigens. Since MSV-tumors arose in AKR mice after a very long latent period, the possibility was considered that this relative resistance might depend on immunologic mechanisms. In fact, M-MSV-injected AKR mice immunodepressed by goat antimouse lymphocyte serum or rendered partially tolerant by neonatal M-MuLV inoculation developed sarcomas with higher incidence and with a shorter latency. Furthermore, the MSV recovered from these early tumors proved to be the original Moloney pseudotype. PMID:4608945

  1. Cubilin, a binding partner for galectin-3 in the murine utero-placental complex.

    PubMed

    Crider-Pirkle, Sunday; Billingsley, Peggy; Faust, Charles; Hardy, Daniel M; Lee, Vaughan; Weitlauf, Harry

    2002-05-03

    Galectin-3 is a lectin important in animal development and regulatory processes and is found selectively localized at the implantation site of the mouse embryo. To better understand the role of galectin-3 at the maternal-fetal interface, a binding partner was isolated and characterized. Homogenates of uteroplacental tissue were incubated with immobilized recombinant galectin-3, and specifically bound proteins were eluted using lactose. The principal protein, p400, had an M(r) of 400,000 in SDS-PAGE. Physical properties of p400 and amino acid sequences of seven tryptic peptides were similar to cubilin from rats, humans, and dogs, identifying p400 as the murine ortholog of cubilin. This was further supported by the tissue distribution observed only in yolk sac, kidney, and ileum with monospecific antiserum for p400. Cubilin occurred in yolk sac epithelium throughout pregnancy, but galectin-3 was there only during the last week. Unexpectedly, cubilin was found only in perforin-containing granules of uterine natural killer (uNK) cells, although galectin-3 occurred throughout the cell cytoplasm. In situ hybridization revealed cubilin mRNA in yolk sac epithelium but not uNK cells, implying that yolk sac-derived cubilin is endocytosed by uNK cells via galectin-3. This is consistent with cubilin being an endogenous partner of galectin-3 at the maternal-fetal interface and suggests an important role for cubilin in uNK cell function.

  2. Perturbation of murine liver cyp-superfamily of isoforms by different combinations of pesticide mixtures.

    PubMed

    Canistro, D; Pozzetti, L; Sapone, A; Broccoli, M; Affatato, A A; Stradiotti, A; Longo, V; Menichini, P; Barale, R; Paolini, M

    2008-01-01

    It was previously found that fenarimol, vinclozolin or acephate, three of the most used pesticides worldwide, provoked a marked perturbation of murine cytochrome P450 (CYP)-linked monooxygenases. Here, to more closely mimic human exposure, it was investigated whether different pesticide combinations administered i.p. in male Swiss Albino CD1 mice in single or repeated fashion (daily, for three consecutive days), affect CYP-dependent oxidations. The four simulated mixtures showed a complex pattern of CYP induction and suppression, especially after repeated injection. For example, while fenarimol alone was the most inducing agent--reaching a 79-fold increase over control in testosterone 2alpha-hydroxylase--followed by vinclozolin and acephate, coadministration with the former markedly reduced induction. Coadministration with vinclozolin, determined various positive and negative modulations. An increase of CYP2B1/2 and CYP3A1/2-associated oxidases and a decrease of ethoxycoumarin metabolism was observed in the acephate and vinclozolin mixture. An equivalent or reduced CYP expression, if compared to double combinations, was seen using the complete mixture. Taken as a whole, the unpredictability of the recorded effects with simple mixtures, shrinks the misleading extrapolation performed on a single pesticide. If reproduced in human, such changes, altering either endogenous metabolism or biotransformation of ubiquitous toxins, might have public health implications.

  3. Endogenous neurogenesis in adult mammals after spinal cord injury.

    PubMed

    Duan, Hongmei; Song, Wei; Zhao, Wen; Gao, Yudan; Yang, Zhaoyang; Li, Xiaoguang

    2016-12-01

    During the whole life cycle of mammals, new neurons are constantly regenerated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles. Thanks to emerging methodologies, great progress has been made in the characterization of spinal cord endogenous neural stem cells (ependymal cells) and identification of their role in adult spinal cord development. As recently evidenced, both the intrinsic and extrinsic molecular mechanisms of ependymal cells control the sequential steps of the adult spinal cord neurogenesis. This review introduces the concept of adult endogenous neurogenesis, the reaction of ependymal cells after adult spinal cord injury (SCI), the heterogeneity and markers of ependymal cells, the factors that regulate ependymal cells, and the niches that impact the activation or differentiation of ependymal cells.

  4. Endogenous RNAi and adaptation to environment in C. elegans

    PubMed Central

    Grishok, Alla

    2012-01-01

    The contributions of short RNAs to the control of repetitive elements are well documented in animals and plants. Here, the role of endogenous RNAi and AF10 homolog ZFP-1 in the adaptation of C. elegans to the environment is discussed. First, modulation of insulin signaling through regulation of transcription of the PDK-1 kinase (Mansisidor et al., PLoS Genetics, 2011) is reviewed. Second, an siRNA-based natural selection model is proposed in which variation in endogenous siRNA pools between individuals is subject to natural selection similarly to DNA-based genetic variation. The value of C. elegans for the research of siRNA-based epigenetic variation and adaptation is highlighted. PMID:24058837

  5. Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1

    PubMed Central

    Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.

    1983-01-01

    The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227

  6. MALDI imaging mass spectrometry and analysis of endogenous peptides.

    PubMed

    Chatterji, Bijon; Pich, Andreas

    2013-08-01

    In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given. Many reviews have covered imaging of lipids, small metabolites, whole proteins and enzymatically digested proteins in the past. However, little is known about imaging of endogenous peptides, for example, in the rat brain, and this will therefore be highlighted in this review. Furthermore, sample preparation of frozen or formalin-fixed, paraffin-embedded (FFPE) tissue is crucial for imaging experiments. Therefore, some aspects of sample preparation will be addressed, including washing and desalting, the choice of MALDI matrix and its deposition. Apart from mapping endogenous peptides, their reliable identification in situ still remains challenging and will be discussed as well.

  7. Salusin-β as a powerful endogenous antidipsogenic neuropeptide

    PubMed Central

    Suzuki-Kemuriyama, Noriko; Nakano-Tateno, Tae; Tani, Yuji; Hirata, Yukio; Shichiri, Masayoshi

    2016-01-01

    Salusin-β is an endogenous parasympathomimetic peptide, predominantly localized to the hypothalamus and posterior pituitary. Subcutaneously administered salusin-β (50 nmol/mouse) significantly increased water intake but did not affect locomotor activity or food intake. The salusin-β-induced increase in water intake was completely abrogated by pretreatment with muscarinic antagonist, atropine sulphate. In contrast, intracerebroventricular injection of salusin-β, at lower doses (10–100 fmol/mouse) caused a long-lasting decrease in water intake and locomotor activity throughout the entire dark phase of the diurnal cycle. Pre-injection of intracerebroventricular anti-salusin-β IgG completely abrogated the central salusin-β mediated suppression of water intake and locomotor activity. These results demonstrate contrasting actions of salusin-β in the control of water intake via the central and peripheral systems and highlight it as a potent endogenous antidipsogenic neuropeptide. PMID:26869388

  8. Proteomics analysis of the endogenous, constitutive, leaf SUMOylome.

    PubMed

    Colignon, Bertrand; Delaive, Edouard; Dieu, Marc; Demazy, Catherine; Muhovski, Yordan; Wallon, Cindy; Raes, Martine; Mauro, Sergio

    2017-01-06

    SUMOylation is a post-translational modification which regulates a number of critical biological processes in, for example mammals, yeast and plants. In order to fully understand the functional effects of SUMOylation an essential first step is the identification of endogenous targets for SUMOylation. Here we report the results of using a recently developed proteomic approach based on the use of 3D gels to identify the endogenous SUMO targets in leaves of Solanum tuberosum. By using 3D gels we avoid the problem of co-migration of proteins, which is a major limitation of 2D gels, and we enable the use of the highly sensitive CyDye DIGE fluor saturation dyes. Using this new method we have identified 39 individual proteins as probable SUMO targets in leaves of Solanum tuberosum. The advantages of this method compared with other approaches are discussed, and possible future developments are outlined.

  9. Biology and evolution of the endogenous koala retrovirus.

    PubMed

    Tarlinton, R; Meers, J; Young, P

    2008-11-01

    Although endogenous retroviruses are ubiquitous features of all mammalian genomes, the process of initial germ line invasion and subsequent inactivation from a pathogenic element has not yet been observed in a wild species. Koala retrovirus (KoRV) provides a unique opportunity to study this process of endogenisation in action as it still appears to be spreading through the koala population. Ongoing expression of the endogenous sequence and consequent high levels of viraemia have been linked to neoplasia and immunosuppression in koalas. This apparently recent invader of the koala genome shares a remarkably close sequence relationship with the pathogenic exogenous Gibbon ape leukaemia virus (GALV), and comparative analyses of KoRV and GALVare helping to shed light on how retroviruses in general adapt to a relatively benign or at least less pathogenic existence within a new host genome. (Part of a multi-author review).

  10. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  11. Endogenous epinephrine protects against obesity induced insulin resistance.

    PubMed

    Ziegler, Michael G; Milic, Milos; Sun, Ping; Tang, Chih-Min; Elayan, Hamzeh; Bao, Xuping; Cheung, Wai Wilson; O'Connor, Daniel T

    2011-07-05

    Epinephrine (E) is a hormone released from the adrenal medulla in response to low blood sugar and other stresses. E and related β2-adrenergic agonists are used to treat asthma, but a side effect is high blood sugar. C57BL/6 mice prone to overfeeding induced type II diabetes had the PNMT gene knocked out to prevent E synthesis. These E deficient mice were very similar to control animals on a 14% fat diet. On a 40.6% fat diet they gained 20 to 33% more weight than control animals and increased their blood glucose response to a glucose tolerance test because they became resistant to insulin. Although the short term effect of β2-agonists such as E is to raise blood glucose, some long acting β2-agonists improve muscle glucose uptake. Endogenous E protects against overfeeding induced diabetes. Since adrenal E release can be impaired with aging and diabetes, endogenous E may help prevent adult onset diabetes.

  12. Role of endogenous cat retrovirus in cell differentiation.

    PubMed Central

    Rasheed, S

    1982-01-01

    Several long-term cultures were established from a spontaneous melanoma of a cat. Cells were rounded or spindle shaped and exhibited black/brown pigmentation in the cytoplasm. No virus was released from these cells spontaneously or after treatment with chemicals. However, exogenous infection of the cat melanoma cells with the endogenous cat virus RD114 resulted in remarkable morphological and functional changes. Most of the RD114 virus-infected cells exhibited multiple neuritic extensions and about 1-2% of the population showed characteristics of neuronal cells. Because human, mouse, and hamster melanoma cultures infected with various mammalian retroviruses, including the RD114 virus, did not display any morphological alteration, it is concluded that the neuronal cell differentiation in the cat melanoma cells is a consequence of its specific interaction with the endogenous cat retrovirus. Images PMID:6961415

  13. Exogenic and endogenic albedo and color patterns on Europa

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1986-01-01

    New global and high-resolution multispectral mosaics of Europa have been produced from the Voyager imaging data. Photometric normalizations are based on multiple-image techniques that explicitly account for intrinsic albedo variations through pixel-by-pixel solutions. The exogenic color and albedo pattern on Europa is described by a second-order function of the cosine of the angular distance from the apex of orbital motion. On the basis of this second-order function and of color trends that are different on the leading and trailing hemispheres, the exogenic pattern is interpreted as being due to equilibrium between two dominant processes: (1) impact gardening and (2) magnetospheric interactions, including sulfur-ion implantation and sputtering redistribution. Removal of the model exogenic pattern in the mosaics reveals the endogenic variations, consisting of only two major units: darker (redder) and bright materials. Therefore Europa's visual spectral reflectivity is simple, having one continuous exogenic pattern and two discrete endogenic units.

  14. Achievement of high nitrite accumulation via endogenous partial denitrification (EPD).

    PubMed

    Ji, Jiantao; Peng, Yongzhen; Wang, Bo; Wang, Shuying

    2017-01-01

    This study proposed a novel strategy for achievement of partial denitrification driven by endogenous carbon sources in an anaerobic/anoxic/aerobic activated sludge system. Results showed that in the steady-stage, the nitrate-to-nitrite transformation ratio (NTR) was kept at around 87% without nitrate in the effluent. During the anaerobic period, exogenous carbon sources was completely taken up, accompanied by the consumption of glycogen and production of polyhydroxyalkanoates (PHAs). During the anoxic period, nitrate was reduced to nitrite by using PHAs as carbon sources, followed by the replenishment of glycogen. Thus, the phenotype of denitrifying GAOs was clearly observed and endogenous partial denitrification (EPD) occurred. Furthermore, results showed the nitrate reduction was prior to the nitrite reduction in the presence of nitrate, which led to the high nitrite accumulation.

  15. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  16. Endogenous K-ras signaling in erythroid differentiation.

    PubMed

    Zhang, Jing; Lodish, Harvey F

    2007-08-15

    K-ras is one of the most frequently mutated genes in virtually all types of human cancers. Using mouse fetal liver erythroid progenitors as a model system, we studied the role of endogenous K-ras signaling in erythroid differentiation. When oncogenic K-ras is expressed from its endogenous promoter, it hyperactivates cytokine-dependent signaling pathways and results in a partial block in erythroid differentiation. In erythroid progenitors deficient in K-ras, cytokine-dependent Akt activation is greatly reduced, leading to delays in erythroid differentiation. Thus, both loss- and gain-of-Kras functions affect erythroid differentiation through modulation of cytokine signaling. These results support the notion that in human cancer patients oncogenic Ras signaling might be controlled by antagonizing essential cytokines.

  17. Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation.

    PubMed

    Laugerette, Fabienne; Vors, Cécile; Peretti, Noël; Michalski, Marie-Caroline

    2011-01-01

    Metabolic diseases such as obesity are characterized by a subclinical inflammatory state that contributes to the development of insulin resistance and atherosclerosis. Recent reports also indicate that (i) there are alterations of the intestinal microbiota in metabolic diseases and (ii) absorption of endogenous endotoxins (namely lipopolysaccharides, LPS) can occur, particularly during the digestion of lipids. The aim of the present review is to highlight recently gained knowledge regarding the links between high fat diets, lipid digestion, intestinal microbiota and metabolic endotoxemia & inflammation.

  18. Endogenous Opioid Peptides and Epilepsy: Quieting the Seizing Brain?

    DTIC Science & Technology

    1988-08-01

    neurons ments using low doses of highly ebral metabolism targeted the are mixed, exhibiting predominant selective 1-opioid ligands have limbic forebrain...1981 demonstrating with low doses of antagonists in be critically important to the initia- that enkephalin or P-enclorphin various models of...turned tance for endogenous K systems in jections of low (pharmacological) our attention towards determining seizure mechanisms. Indeed, the doses of

  19. Stochastic resonance in neuron models: Endogenous stimulation revisited

    NASA Astrophysics Data System (ADS)

    Plesser, Hans E.; Geisel, Theo

    2001-03-01

    The paradigm of stochastic resonance (SR)-the idea that signal detection and transmission may benefit from noise-has met with great interest in both physics and the neurosciences. We investigate here the consequences of reducing the dynamics of a periodically driven neuron to a renewal process (stimulation with reset or endogenous stimulation). This greatly simplifies the mathematical analysis, but we show that stochastic resonance as reported earlier occurs in this model only as a consequence of the reduced dynamics.

  20. Carlactone is an endogenous biosynthetic precursor for strigolactones.

    PubMed

    Seto, Yoshiya; Sado, Aika; Asami, Kei; Hanada, Atsushi; Umehara, Mikihisa; Akiyama, Kohki; Yamaguchi, Shinjiro

    2014-01-28

    Strigolactones (SLs) are a class of terpenoid plant hormones that regulate shoot branching as well as being known as root-derived signals for symbiosis and parasitism. SL has tricyclic-lactone (ABC-ring) and methyl butenolide (D-ring), and they are connected through an enol ether bridge. Recently, a putative biosynthetic intermediate called carlactone (CL), of which carbon skeleton is in part similar to those of SLs, was identified by biochemical analysis of three biosynthetic enzymes, DWARF27, CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7), and CCD8 in vitro. However, CL has never been identified from plant tissues, and the conversion of CL to SLs has not been proven in vivo. To address these questions, we chemically synthesized (13)C-labeled CL. We show that (13)C-labeled CL is converted to (-)-[(13)C]-2'-epi-5-deoxystrigol ((-)-2'-epi-5DS) and [(13)C]-orobanchol, endogenous SLs in rice, in the dwarf10 mutant, which is defective in CCD8. In addition, we successfully identified endogenous CL by using liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry in rice and Arabidopsis. Furthermore, we determined the absolute stereochemistry of endogenous CL to be (11R)-configuration, which is the same as that of (-)-2'-epi-5DS at the corresponding position. Feeding experiments showed that only the (11R)-isomer of CL, but not the (11S)-isomer, was converted to (-)-2'-epi-5DS in vivo. Taken together, our data provide conclusive evidence that CL is an endogenous SL precursor that is stereospecifically recognized in the biosynthesis pathway.

  1. Peptic ulcer disease in endogenous hypercortisolism: myth or reality?

    PubMed

    Hatipoglu, Esra; Caglar, Asli Sezgin; Caglar, Erkan; Ugurlu, Serdal; Tuncer, Murat; Kadioglu, Pinar

    2015-11-01

    Many clinicians believe hypercortisolism is ulcerogenic. However, data from clinical studies show that prophylaxis for peptic ulcer disease is no longer recommended in patients receiving corticosteroid treatment. This has not yet been verified in endogenous hypercortisolism by controlled clinical studies. The purpose of the current study was to evaluate the relationship between endogenous Cushing's syndrome (CS) and peptic ulcer disease and Helicobacter pylori infection. The study group contained 20 cases with CS resulting from ACTH-dependent endogenous hypercortisolism. The control groups consisted of 14 age- and gender-matched cases receiving exogenous corticosteroid therapy and 100 cases of dyspepsia with non-cushingoid features. Upper gastrointestinal endoscopy was performed on all cases. Biopsies were taken from five different points: two samples from the antrum, two samples from the corpus, and one sample from the fundus. A histological diagnosis of Helicobacter pylori infection was also obtained from evaluation of biopsy specimens. The frequency of stomach and duodenal ulcers did not vary between the groups (p = 0.5 and p = 0.7). Antral gastritis was less frequent and pangastritis was more common in cases with CS compared to the healthy controls (p = 0.001 and p < 0.001). The incidence of Candida esophagitis was more frequent in cases with CS compared to cases with corticosteroid treatment and healthy controls (p = 0.03). Histopathological findings and frequency of Helicobacter pylori based on pathology results did not vary between the three groups. It is possible that neither exogenous nor endogenous corticosteroid excess directly causes peptic ulcer or Helicobacter pylori infection. Prophylactic use of proton pump inhibitors is not compulsory for hypercortisolism of any type.

  2. [Endorphines--the endogenous ligands of opiate receptors (author's transl)].

    PubMed

    Teschemacher, H

    1978-01-01

    The demonstration of opiate receptors in the nervous tissue of vertebrates in 1973 was the starting point of an intensive search for the endogenous ligands of these receptors. During the following years, several of such "edogenous opiates", called "endorphines", were isolated from various tissues of the mammalian organism. These are peptides which are able to elicit the same effects as do opiates. Possibly, they play a role in the reaction of the organism to stress.

  3. Endogenous non-retroviral RNA virus elements in mammalian genomes.

    PubMed

    Horie, Masayuki; Honda, Tomoyuki; Suzuki, Yoshiyuki; Kobayashi, Yuki; Daito, Takuji; Oshida, Tatsuo; Ikuta, Kazuyoshi; Jern, Patric; Gojobori, Takashi; Coffin, John M; Tomonaga, Keizo

    2010-01-07

    Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.

  4. Aberrant seasonal variations of platelet serotonin uptake in endogenous depression.

    PubMed

    Malmgren, R; Aberg-Wistedt, A; Mårtensson, B

    1989-02-15

    The serotonin uptake in platelets of 120 healthy volunteers and 64 endogenously depressed patients was investigated over a 2-year period. In healthy individuals, Km exhibited a significant seasonal rhythm during the bright half of the year. The seasonal rhythm of Vmax assumes the form of a sine curve, with nadir values at the vernal and autumn equinoxes and peak values at the winter and summer solstices. Km in patients was higher than in controls in February and October, and the seasonal variation of Km differed between patients and controls. The monthly mean values of Vmax in patients were, as a rule, lower than corresponding values in controls, but significantly so only in December. Patients had higher Vmax than controls in October and November, and the seasonal variation of Vmax in patients differed from that of controls. The results suggest that Km, a measure of the affinity of the serotonin uptake site, may be subject to photoperiodic regulation in healthy individuals. The annual variation in uptake site densities, as judged by the changes in Vmax, are probably generated by an endogenous superior oscillator. The aberrant uptake kinetics found in the endogenously depressed patients may reflect seasonal susceptibility to the disorder and/or altered serotonergic rhythmicity.

  5. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone

    PubMed Central

    Poisbeau, Pierrick; Keller, Anne Florence; Aouad, Maya; Kamoun, Nisrine; Groyer, Ghislaine; Schumacher, Michael

    2014-01-01

    A growing number of studies indicate that 3-alpha reduced neurosteroids are remarkable analgesics in various pain states. This is the case for allopregnanolone (AP), one of the most potent endogenous positive allosteric modulators of GABAA receptor function. From the pioneering work of Hans Selye, who described the sedative properties of steroids, synthetic compounds resembling the progesterone metabolite AP have been developed. If some of them have been used as anesthetics, it seems difficult to propose them as a therapeutic option for pain since they display several adverse side effects such as sedation, amnesia and functional tolerance. An alternative strategy, chosen by few laboratories around the world, is aimed at stimulating the local production of 3-alpha reduced neurosteroids in order to limit these well-known side effects. This pharmacological approach has the advantage of targeting specific structures, fully equipped with the necessary biosynthetic enzymatic machinery, where neurosteroids already act as endogenous pain modulators. The various pharmacological trials which attempted to treat pain symptoms by stimulating the production of 3-alpha reduced neurosteroids are reviewed here, as well as novel neurotransmitter systems possibly regulating their endogenous production. PMID:24987335

  6. The interactions of multisensory integration with endogenous and exogenous attention.

    PubMed

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner.

  7. Circulating Hepcidin-25 Is Reduced by Endogenous Estrogen in Humans

    PubMed Central

    Lehtihet, Mikael; Bonde, Ylva; Beckman, Lena; Berinder, Katarina; Hoybye, Charlotte; Rudling, Mats; Sloan, John H.; Konrad, Robert J.; Angelin, Bo

    2016-01-01

    Objective Hepcidin reduces iron absorption by binding to the intestinal iron transporter ferroportin, thereby causing its degradation. Although short-term administration of testosterone or growth hormone (GH) has been reported to decrease circulating hepcidin levels, little is known about how hepcidin is influenced in human endocrine conditions associated with anemia. Research design and methods We used a sensitive and specific dual–monoclonal antibody sandwich immunoassay to measure hepcidin-25 in patients (a) during initiation of in vitro fertilization when endogenous estrogens were elevated vs. suppressed, (b) with GH deficiency before and after 12 months substitution treatment, (c) with hyperthyroidism before and after normalization, and (d) with hyperprolactinemia before and after six months of treatment with a dopamine agonist. Results In response to a marked stimulation of endogenous estrogen production, median hepcidin levels decreased from 4.85 to 1.43 ng/mL (p < 0.01). Hyperthyroidism, hyperprolactinemia, or GH substitution to GH-deficient patients did not influence serum hepcidin-25 levels. Conclusions In humans, gonadotropin-stimulated endogenous estrogen markedly decreases circulating hepcidin-25 levels. No clear and stable correlation between iron biomarkers and hepcidin-25 was seen before or after treatment of hyperthyroidism, hyperprolactinemia or growth hormone deficiency. PMID:26866603

  8. Determination of endogenous faecal phosphorus loss in goats.

    PubMed

    Tayo, Grace Oluwatoyin; Tang, Shao Xun; Tan, Zhi Liang; Sun, Zhi Hong; Wang, Min; Zhou, Chuan She; Han, Xue Feng

    2009-04-01

    Four black Liuyang wether goats were fed with corn stover and concentrate formulated to contain four levels of dietary phosphorus (P), including 0.129, 0.140, 0.162 and 0.180% of P. In a 4 x 4 Latin square experiment the endogenous faecal P loss was determined by the regression technique and the substitution method. Treatment effects on faecal and urinary P output, apparent P digestibility and P retention, and saliva P secretion were not significant. A linear relationship was observed between apparent faecal digestible P (Y, g/kg DMI) and P intake (X, g/kg DMI), which was described by the equation: Y = 0.4799 X -0.9209, r2 = 0.9869, (p < 0.05). The true P digestibility determined by the regression technique and the substitution method amounted to 48.0 and 48.9%, respectively; the recorded endogenous faecal P losses were 0.92 and 0.93 g/kg DMI, respectively. The study demonstrated the potential of the regression method as well as the substitution method for estimation of true P digestibility and endogenous faecal P losses in goats.

  9. Endogenous galactose formation in galactose-1-phosphate uridyltransferase deficiency.

    PubMed

    Schadewaldt, Peter; Kamalanathan, Loganathan; Hammen, Hans-Werner; Kotzka, Jorg; Wendel, Udo

    2014-12-01

    Patients with classical galactosaemia (galactose-1-phosphate uridyltransferase (GALT) deficiency) manifest clinical complications despite strict dietary galactose restriction. Therefore the significance of endogenous galactose production has been assessed. Previous in vivo studies primarily focused on patients homozygous for the most common genetic variant Q188R but little is known about other genetic variants. In the present study the endogenous galactose release in a group of non-Q188R homozygous galactosaemic patients (n = 17; 4-34 years) exhibiting comparably low residual GALT activity in red blood cells was investigated. Primed continuous infusion studies with D-[1-(13)C]galactose as substrate were conducted under post-absorptive conditions and in good metabolic control. The results demonstrate that all patients exhibiting residual GALT activity of <1.5% of control showed a comparable pathological pattern of increased endogenous galactose release irrespective of the underlying genetic variations. Possible implications of the findings towards a more differentiated dietary regimen in galactosaemia are discussed.

  10. [Endogenous heparin-like syndrome: analysis of clinical observations].

    PubMed

    Bulanov, A Iu; Iatskov, K V; Shulutko, E M; Glukhova, T E; Andreĭchenko, S A

    2012-01-01

    One of the reasons for non-surgical bleeding is heparin-like syndrome (HLS), under which is understanded presence of heparin effect in the absence of it's exogenous application. The role of endogenous heparins perform glycosaminoglycans -- biologically active substances. HLS is accompanied by endothelium damage and discussed in the network of the systemic inflammatory response syndrome (SIRS). HLS is described in liver future, sepsis, pregnancy and a number of hemoblastosis. Hypocoagulation effect of endogenous heparin localizates in X coagulation factor. The main method of diagnosis - thromboelastography. The use of a specific heparin antidote - Protamine sulfate has not confirmed clinical efficacy. Priority direction in the therapy of - methods of "shunt hemostasis". In this paper, we present the analysis of observations of 4 patients with developed endogenous HLS. In 2 cases (combination of sepsis with hepatic failure in one patient and initial thrombophilia in other) HLS has been accompanied by massive bleeding (massive hemothoraxc with haemorrhagic shock, a massive intraoperative blood loss). For HLS relief in these cases was used prothrombine complex concentrate (PCC) (in the 1st case), recombinant VIIa factor (in the 2nd case). In other cases, HLS (in a patient with multiple myeloma and childbirth in the postpartum period), haemorrhagic syndrome was not so expressed, the treatment was carried out with FFP transfusion.

  11. Drawing a fine line on endogenous retroelement activity

    PubMed Central

    Castro-Diaz, Nathaly; Friedli, Marc; Trono, Didier

    2015-01-01

    Endogenous retroelements (EREs) are essential motors of evolution yet require careful control to prevent genomic catastrophes, notably during the vulnerable phases of epigenetic reprogramming that occur immediately after fertilization and in germ cells. Accordingly, a variety of mechanisms restrict these mobile genetic units. Previous studies have revealed the importance of KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor, KAP1, in the early embryonic silencing of endogenous retroviruses and so-called SVAs, but the implication of this transcriptional repression system in the control of LINE-1, the only known active autonomous retrotransposon in the human genome, was thought to be marginal. Two recent studies straighten the record by revealing that the KRAB/KAP system is key to the control of L1 in embryonic stem (ES) cells, and go further in demonstrating that DNA methylation and KRAB/KAP1-induced repression contribute to this process in an evolutionally dynamic fashion. These results shed light on the delicate equilibrium between higher vertebrates and endogenous retroelements, which are not just genetic invaders calling for strict control but rather a constantly renewed and nicely exploitable source of evolutionary potential. PMID:26442176

  12. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  13. The interactions of multisensory integration with endogenous and exogenous attention

    PubMed Central

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  14. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs

    PubMed Central

    Okamura, Katsutomo; Chung, Wei-Jen; Ruby, J. Graham; Guo, Huili; Bartel, David P.; Lai, Eric C.

    2009-01-01

    In contrast to microRNAs and Piwi-associated RNAs, short interfering RNAs (siRNAs) are seemingly dispensable for host-directed gene regulation in Drosophila. This notion is based on the fact that mutants lacking the core siRNA-generating enzyme Dicer-2 or the predominant siRNA effector Argonaute 2 are viable, fertile and of relatively normal morphology1,2. Moreover, endogenous Drosophila siRNAs have not yet been identified. Here we report that siRNAs derived from long hairpin RNA genes (hpRNAs) programme Slicer complexes that can repress endogenous target transcripts. The Drosophila hpRNA pathway is a hybrid mechanism that combines canonical RNA interference factors (Dicer-2, Hen1 (known as CG12367) and Argonaute 2) with a canonical microRNA factor (Loquacious) to generate ~21-nucleotide siRNAs. These novel regulatory RNAs reveal unexpected complexity in the sorting of small RNAs, and open a window onto the biological usage of endogenous RNA interference in Drosophila. PMID:18463630

  15. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    EPA Science Inventory

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  16. The murine Sry gene encodes a nuclear transcriptional activator

    SciTech Connect

    Dubin, R.A.; Ostrer, H.

    1994-09-01

    The Sry gene functions as a genetic switch in gonadal ridge initiating testis determination. The murine Sry and human SRY open reading frames (ORF) share a conserved 79 amino acid motif, the HMG-box, that binds DNA. Outside this region the two genes share no additional homology. These studies were undertaken to determine whether the Sry/SRY genes encode nuclear transcriptional regulators. As judged by the accumulation of lacZ-SRY hybrid proteins in the nucleus, both the human and murine SRY ORFs contain a nuclear localization signal. The murine Sry HMG-box selectively binds the sequence NACAAT in vitro when presented with a random pool of oligonucleotides and binds AACAAT with the highest affinity. The murine Sry ORF, when expressed in HeLa cells, activates transcription of a reporter gene containing multiple copies of the AACAAT binding site. Activation was observed for a GAL4-responsive gene when the murine Sry ORF was linked to the DNA-binding domain of GAL4. Using this system, the activation function was mapped to a C-terminal glutamine/histidine-rich domain. In addition, LexA-Sry fusion genes activated a LexA-responsive gene in yeast. In contrast, a GAL4-human SRY fusion gene did not cause transcriptional activation. These studies suggest that both the human and mouse SRY ORFs encode nuclear, DNA-binding proteins, and that the mouse Sry ORF can function as a transcriptional activator with separable DNA-binding and activator domains.

  17. Analysis of cardiomyocyte movement in the developing murine heart

    SciTech Connect

    Hashimoto, Hisayuki; Yuasa, Shinsuke; Tabata, Hidenori; Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto; Nakajima, Kazunori; Sakaue-Sawano, Asako; Miyawaki, Atsushi; Fukuda, Keiichi

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  18. Murine bladder wall biomechanics following partial bladder obstruction.

    PubMed

    Chen, Joseph; Drzewiecki, Beth A; Merryman, W David; Pope, John C

    2013-10-18

    Evaluation of bladder wall mechanical behavior is important in understanding the functional changes that occur in response to pathologic processes such as partial bladder outlet obstruction (pBOO). In the murine model, the traditional approach of cystometry to describe bladder compliance can prove difficult secondary to small bladder capacity and surgical exposure of the bladder. Here, we explore an alternative technique to characterize murine mechanical properties by applying biaxial mechanical stretch to murine bladders that had undergone pBOO. 5-6 week old female C57/Bl6 mice were ovariectomized and subjected to pBOO via an open surgical urethral ligation and sacrificed after 4 weeks (n=12). Age matched controls (n=6) were also analyzed. Bladders were separated based on phenotype of fibrotic (n=6) or distended (n=6) at the time of harvest. Biaxial testing was performed in modified Kreb's solution at 37°C. Tissue was preconditioned to 10 cycles and mechanical response was evaluated by comparing axial strain at 50kPa. The normal murine bladders exhibited anisotropy and were stiffer in the longitudinal direction. All mice showed a loss of anisotropy after 4 weeks of pBOO. The two phenotypes observed after pBOO, fibrotic and distended, exhibited less and more extensibility, respectively. These proof-of-principle data demonstrate that pBOO creates quantifiable changes in the mechanics of the murine bladder that can be effectively quantified with biaxial testing.

  19. Optimized flow cytometry isolation of murine spermatocytes

    PubMed Central

    Gaysinskaya, Valeriya; Soh, Ina Y.; van der Heijden, Godfried W.; Bortvin, Alex

    2014-01-01

    Meiotic prophase I (MPI), is an initial stage of meiosis characterized by intricate homologous chromosome interactions, synapsis and DNA recombination. These processes depend on the complex, but poorly understood early MPI events of homologous chromosome search, alignment and pairing. Detailed molecular investigation of these early events requires isolation of individual MPI substages. Enrichment for Pachytene (P) and Diplotene (D) substages of late MPI was previously accomplished using flow cytometry. However, separation of early MPI spermatocytes, specifically, of Leptotene (L) and Zygotene (Z) substages, has been a challenge due to these cells’ similar characteristics. In this report, we describe an optimized Hoechst-33342 (Hoechst)-based flow cytometry approach for isolating individual MPI populations from adult murine testis. We get significant enrichment for individual L and Z spermatocytes, previously inseparable from each other, and optimize the isolation of other MPI substages. Our flow cytometry approach is a combination of three optimized strategies. The first is optimization of testis dissociation protocol that yields more consistent and reproducible testicular single cell suspension. The second involves optimization of flow cytometric gating protocol where a critical addition to the standard protocol for cell discrimination based on Hoechst fluorescence, involves a back-gating technique based on light scattering parameters. This step specifies selection of individual MPI substages. The third, is an addition of DNA content restriction to the gating protocol to minimize contamination from non-meiotic cells. Finally, we confirm significant enrichment of high-purity Preleptotene (PreL), L, Z, P and D MPI spermatocytes using stage-specific marker distribution. The technique will facilitate understanding of the molecular events underlying meiotic prophase I. PMID:24664803

  20. Neuropharmacological properties of farnesol in Murine model

    PubMed Central

    Shahnouri, M.; Abouhosseini Tabari, M.; Araghi, A.

    2016-01-01

    Research on new compounds of therapeutic value for behavioral disorders has progressed recently. Several studies have reported neuropharmacological activities of plant derived terpenes. Farnesol is a sesquiterpene whose most popular source is fruits but the anxiolytic activity for farnesol is still unknown. The present study was conducted on 32 male Swiss Albino mice (8 in each group) to evaluate the neuropharmacological properties of farnesol and its effects on plasma cortisol levels. Farnesol was administered intraperitoneally at single doses of 50 and 100 mg/kg, while diazepam 2 mg/kg was used as standard anxiolytic. Thirty minutes after injections, open field test (OFT), elevated plus maze (EPM), a forced swimming test (FST), and a hot plate test (HPT) were performed for evaluation of anxiety-like behavior, depression and nociception. In OFT, farnesol at the dose of 100 mg/kg led to significant decrease in locomotor activity (P<0.01). In EPM, only farnesol 100 mg/kg led to significant increase in the number of entries to the open arms and the time spent in open arms (P<0.01). Increase in immobility time in FST was seen in farnesol 50 and 100 mg/kg (P<0.001). Farnesol 100 mg/kg exerts significant prolongation in the latency of responses to noxious heat stimuli in HPT. Like diazepam, farnesol decreased plasma levels of cortisol. Results revealed that farnesol had anxiolytic, anti-nociceptive and depressant effects in murine models. The present study provides pharmacological evidence supporting the use of farnesol as a sedative for anxiety disorders. PMID:28224010

  1. Remodeling of alveolar septa after murine pneumonectomy

    PubMed Central

    Ysasi, Alexandra B.; Wagner, Willi L.; Bennett, Robert D.; Ackermann, Maximilian; Valenzuela, Cristian D.; Belle, Janeil; Tsuda, Akira; Konerding, Moritz A.

    2015-01-01

    In most mammals, removing one lung (pneumonectomy) results in the compensatory growth of the remaining lung. In mice, stereological observations have demonstrated an increase in the number of mature alveoli; however, anatomic evidence of the early phases of alveolar growth has remained elusive. To identify changes in the lung microstructure associated with neoalveolarization, we used tissue histology, electron microscopy, and synchrotron imaging to examine the configuration of the alveolar duct after murine pneumonectomy. Systematic histological examination of the cardiac lobe demonstrated no change in the relative frequency of dihedral angle components (Ends, Bends, and Junctions) (P > 0.05), but a significant decrease in the length of a subset of septal ends (“E”). Septal retraction, observed in 20–30% of the alveolar ducts, was maximal on day 3 after pneumonectomy (P < 0.01) and returned to baseline levels within 3 wk. Consistent with septal retraction, the postpneumonectomy alveolar duct diameter ratio (Dout:Din) was significantly lower 3 days after pneumonectomy compared to all controls except for the detergent-treated lung (P < 0.001). To identify clumped capillaries predicted by septal retraction, vascular casting, analyzed by both scanning electron microscopy and synchrotron imaging, demonstrated matted capillaries that were most prominent 3 days after pneumonectomy. Numerical simulations suggested that septal retraction could reflect increased surface tension within the alveolar duct, resulting in a new equilibrium at a higher total energy and lower surface area. The spatial and temporal association of these microstructural changes with postpneumonectomy lung growth suggests that these changes represent an early phase of alveolar duct remodeling. PMID:26078396

  2. Endogenous Hepadnaviruses in the Genome of the Budgerigar (Melopsittacus undulatus) and the Evolution of Avian Hepadnaviruses

    PubMed Central

    Cui, Jie

    2012-01-01

    Endogenous hepadnaviruses (hepatitis B viruses [HBVs]) were recently discovered in the genomes of passerine birds. We mined six additional avian genomes and discovered multiple copies of endogenous HBVs in the budgerigar (order Psittaciformes), designated eBHBV. A phylogenetic analysis reveals that the endogenous hepadnaviruses are more diverse than their exogenous counterparts and that the endogenous and exogenous hepadnaviruses form distinct lineages even when sampled from the same avian order, indicative of multiple genomic integration events. PMID:22553337

  3. Endogenous Nodal promotes melanoma undergoing epithelial-mesenchymal transition via Snail and Slug in vitro and in vivo

    PubMed Central

    Guo, Qiang; Ning, Fen; Fang, Rui; Wang, Hong-Sheng; Zhang, Ge; Quan, Mei-Yu; Cai, Shao-Hui; Du, Jun

    2015-01-01

    Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. Epithelial-mesenchymal transition (EMT) plays an important role in cancer metastasis. We have previously reported that recombinant Nodal treatment can promote melanoma undergoing EMT, but the effects of endogenous Nodal on EMT are still unknown. Here we generated both Nodal-overexpression and -knockdown stable cell lines to investigate the in vitro and in vivo characteristics of Nodal-induced EMT in murine melanoma cells. Nodal-overexpression cells displayed increased migration ability, accompanied by typical phenotype changes of EMT. In contrast, Nodal-knockdown stable cells repressed the EMT phenotype as well as reduced cell motility. Results of animal experiments confirmed that overexpression of Nodal can promote the metastasis of melanoma tumor in vivo. Mechanistically, we found that Nodal-induced expression of Snail and Slug involves its activation of ALK/Smads and PI3k/AKT pathways, which is an important process in the Nodal-induced EMT. However, we also found that the EMT phenotype was not completely inhibited by blocking the paracrine activity of Nodal in Nodal overexpression cell line suggesting the presence of additional mechanism(s) in the Nodal-induced EMT. This study provides a better understanding of Nodal function in melanoma, and suggests targeting Nodal as a potential strategy for melanoma therapey. PMID:26269769

  4. Endogenous Mouse Mammary Tumor Viruses (Mtv): New Roles for an Old Virus in Cancer, Infection, and Immunity

    PubMed Central

    Holt, Michael P.; Shevach, Ethan M.; Punkosdy, George A.

    2013-01-01

    Mouse Mammary Tumor Viruses are beta-retroviruses that exist in both exogenous (MMTV) and endogenous (Mtv) forms. Exogenous MMTV is transmitted via the milk of lactating animals and is capable of inducing mammary gland tumors later in life. MMTV has provided a number of critical models for studying both viral infection as well as human breast cancer. In addition to the horizontally transmitted MMTV, most inbred mouse strains contain permanently integrated Mtv proviruses within their genome that are remnants of MMTV infection and vertically transmitted. Historically, Mtv have been appreciated for their role in shaping the T cell repertoire during thymic development via negative selection. In addition, more recent work has demonstrated a larger role for Mtv in modulating host immune responses due to its peripheral expression. The influence of Mtv on host response has been observed during experimental murine models of Polyomavirus- and ESb-induced lymphoma as well as Leishmania major and Plasmodium berghei ANKA infection. Decreased susceptibility to bacterial pathogens and virus-induced tumors has been observed among mice lacking all Mtv. We have also demonstrated a role for Mtv Sag in the expansion of regulatory T cells following chronic viral infection. The aim of this review is to summarize the latest research in the field regarding peripheral expression of Mtv with a particular focus on their role and influence on the immune system, infectious disease outcome, and potential involvement in tumor formation. PMID:24324930

  5. Endogenous production of hydrogen sulfide in isolated bovine eye.

    PubMed

    Kulkarni, Madhura; Njie-Mbye, Ya Fatou; Okpobiri, Ikechukwu; Zhao, Min; Opere, Catherine A; Ohia, Sunny E

    2011-08-01

    Hydrogen sulfide (H(2)S) is a novel gasotransmitter with physiological and pathological functions in vascular homeostasis, cardiovascular system and central nervous system. In the present study, we determined the endogenous levels of H(2)S in various tissues of the bovine eye. We also examined the basal levels of H(2)S in response to donors (sodium hydrosulfide, NaHS and sodium sulfide, Na(2)S), substrate (L: -cysteine), inhibitors (propargylglycine, PAG and aminooxyacetic acid, AOA) and activator (S-adenosyl-L: -methionine, SAM) of this gas in the bovine retina. H(2)S was measured using a well established spectrophotometric method. The highest concentration of endogenous H(2)S was detected in cornea (19 ± 2.85 nmoles/mg protein, n = 6) and retina (17 ± 2.1 nmoles/mg protein, n = 6). Interestingly, H(2)S was not present in vitreous humor. The inhibitors of CSE and CBS; PAG (1 mM) and AOA (1 mM), significantly attenuated the production of H(2)S in the bovine retina by 56.8 and 42%, respectively. On the other hand the activator of CBS; SAM (100 μM), H(2)S donors; NaHS (1 μM) and Na(2)S (100 μM), significantly increased endogenous levels of H(2)S in bovine retina. L: -cysteine (10-300 μM) produced a significant (P < 0.05) concentration-dependent increase in H(2)S levels reaching a maximal at 300 μM. We conclude that H(2)S is endogenously produced in various tissues of the isolated bovine eye. Moreover, endogenous levels of H(2)S are enhanced in the presence of substrate (L: -cysteine), an activator of CBS (SAM) and H(2)S donors but are blocked by inhibitors of enzymes that synthesize this gas in neural retina.

  6. Enkephalinase inhibition and hippocampal excitatory effects of exogenous and endogenous opioids.

    PubMed

    Sagratella, S

    1994-10-01

    1. The relationships between the in vivo and in vitro epileptogenic effects of opioids or enkephalins and the electrophysiological activity of inhibitors of endogenous enkephalinase were analyzed. 2. The functional effects of the inhibition of the endogenous enkephalinase has been compared with the role of the endogenous opioid peptidergic system in the control of neuronal excitability.

  7. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  8. Endogenous technological and demographic change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  9. The Genetic Architecture of Murine Glutathione Transferases

    PubMed Central

    Lu, Lu; Pandey, Ashutosh K.; Houseal, M. Trevor; Mulligan, Megan K.

    2016-01-01

    Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes. PMID:26829228

  10. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system.

    PubMed

    Akki, Ashwin; Gupta, Ashish; Weiss, Robert G

    2013-03-01

    Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.

  11. Redefining Myeloid Cell Subsets in Murine Spleen.

    PubMed

    Hey, Ying-Ying; Tan, Jonathan K H; O'Neill, Helen C

    2015-01-01

    Spleen is known to contain multiple dendritic and myeloid cell subsets, distinguishable on the basis of phenotype, function and anatomical location. As a result of recent intensive flow cytometric analyses, splenic dendritic cell (DC) subsets are now better characterized than other myeloid subsets. In order to identify and fully characterize a novel splenic subset termed "L-DC" in relation to other myeloid cells, it was necessary to investigate myeloid subsets in more detail. In terms of cell surface phenotype, L-DC were initially characterized as a CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) subset in murine spleen. Their expression of CD43, lack of MHCII, and a low level of CD11c was shown to best differentiate L-DC by phenotype from conventional DC subsets. A complete analysis of all subsets in spleen led to the classification of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(lo)Ly6G(-) cells as monocytes expressing CX3CR1, CD43 and CD115. Siglec-F expression was used to identify a specific eosinophil population, distinguishable from both Ly6C(lo) and Ly6C(hi) monocytes, and other DC subsets. L-DC were characterized as a clear subset of CD11b(hi)CD11c(lo)MHCII(-)Ly6C(-)Ly6G(-) cells, which are CD43(+), Siglec-F(-) and CD115(-). Changes in the prevalence of L-DC compared to other subsets in spleens of mutant mice confirmed the phenotypic distinction between L-DC, cDC and monocyte subsets. L-DC development in vivo was shown to occur independently of the BATF3 transcription factor that regulates cDC development, and also independently of the FLT3L and GM-CSF growth factors which drive cDC and monocyte development, so distinguishing L-DC from these commonly defined cell types.

  12. Organization of the murine Cd22 locus

    SciTech Connect

    Law, Che-Leung; Torres, R.M.; Sundeberg, H.A.; Clark, E.A ); Parkhouse, R.M.E. ); Brannan, C.I.; Copeland, N.G.; Jenkins, N.A. )

    1993-07-01

    Murine CD22 (mCD22) is a B cell-associated adhesion protein with seven extracellular Ig-like domains that has 62% amino acid identify to its human homologue. Southern analysis on genomic DNA isolated from tissues and cell lines from several mouse strains using mCD22 cDNA demonstrated that the Cd22 locus encoding mCD22 is a single copy gene of [le]30 kb. Digestion of genomic DNA preparations with four restriction endonucleases revealed the presence of restriction fragment length polymorphisms (RFLP) in BALB/c, C57BL/6, and C3H strains vs DBA/2j, NZB, and NZC strains, suggesting the presence of two or more Cd22 alleles. Using a mCD22 cDNA clone derived from the BALB/c strain, the authors isolated genomic clones from a DBA/2 genomic library that contained all the exons necessary to encode the full length mCD22 cDNA. Fifteen exons, including exon 3 that encodes the translation start codon, were identified. Each extracellular Ig-like domain of mCD22 is encoded by a single exon. A comparison between the nucleotide sequences of the BALB/c CD22 cDNA and the exons of the DBA/2j CD22 genomic clones revealed an 18-nucleotide deletion in exon 4 (encoding the most distal Ig-like domain 1 of mCD22) of the DBA/2j genomic sequence in addition to a number of substitutions, insertions, and deletions in other exons. These nucleotide differences were also present in a cDNA clone isolated from total RNA of LPS-activated DBA/2j splenocytes mosome 7, a region sytenic to human chromosome 19q, close to the previously reported loci, Lyb-8 and Mag (a homologue of Cd22). An antibody (CY34) against the Lyb-8.2 B cell marker reacted with a BHK transfectant expressing the full length mCd22 cDNA, thus demonstrating that Lyb-8 and Cd22 loci are identical. Furthermore, a rat anti-mCD22 mAb, NIM-R6, bound to slgM[sup +] DBA/2j B cells, confirming the expression of a CD22 protein by the Cd22[sup a]/lyb-8[sup a] allele. 63 refs., 7 figs., 1 tab.

  13. Nanoelectroablation therapy for murine basal cell carcinoma

    SciTech Connect

    Nuccitelli, Richard; Tran, Kevin; Athos, Brian; Kreis, Mark; Nuccitelli, Pamela; Chang, Kris S.; Epstein, Ervin H.; Tang, Jean Y.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Nanoelectroablation is a new, non-thermal therapy that triggers apoptosis in tumors. Black-Right-Pointing-Pointer Low energy, ultrashort, high voltage pulses ablate the tumor with little or no scar. Black-Right-Pointing-Pointer Nanoelectroablation eliminates 99.8% of the BCC but may leave a few remnants behind. Black-Right-Pointing-Pointer Pilot clinical trials on human BCCs are ongoing and leave no remnants in most cases. -- Abstract: When skin tumors are exposed to non-thermal, low energy, nanosecond pulsed electric fields (nsPEF), apoptosis is initiated both in vitro and in vivo. This nanoelectroablation therapy has already been proven effective in treating subdermal murine allograft tumors. We wanted to determine if this therapy would be equally effective in the treatment of autochthonous BCC tumors in Ptch1{sup +/-}K14-Cre-ER p53 fl/fl mice. These tumors are similar to human BCCs in histology and in response to drug therapy . We have treated 27 BCCs across 8 mice with either 300 pulses of 300 ns duration or 2700 pulses of 100 ns duration, all at 30 kV/cm and 5-7 pulses per second. Every nsPEF-treated BCC began to shrink within a day after treatment and their initial mean volume of 36 {+-} 5 (SEM) mm{sup 3} shrunk by 76 {+-} 3% over the ensuing two weeks. After four weeks, they were 99.8% ablated if the size of the treatment electrode matched the tumor size. If the tumor was larger than the 4 mm wide electrode, multiple treatments were needed for complete ablation. Treated tumors were harvested for histological analysis at various times after treatment and exhibited apoptosis markers. Specifically, pyknosis of nuclei was evident as soon as 2 days after nsPEF treatment, and DNA fragmentation as detected via TUNEL staining was also evident post treatment. Nanoelectroablation is effective in triggering apoptosis and remission of radiation-induced BCCs with a single 6 min-long treatment of 2700 pulses.

  14. Endogenous technological and demographic change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-12-01

    Many ancient civilizations such as the Indus Valley civilization dispersed under extreme dry conditions. Even contemporary societies such as the one in Murrumbidgee river basin, Australia, have started to witness a decline in overall population under increasing water scarcity. Skeptics of hydroclimatic determinism have often cautioned against the use of hydroclimatic change as the sole predictor of the fate of contemporary societies in water scarce regions by suggesting that technological change may ameliorate the effects of increasing water scarcity. We here develop a simple overlapping generations model of endogenous technological and demographic change. It models technological change not as an exogenous random sequence of events but as an endogenous process (as is widely accepted in contemporary literature) that depends on factors such as the investments that are (endogenously) made in a society, the endogenous diversification of a society into skilled and unskilled workers, individuals' patience in terms of its present consumption versus future consumption, the production technology and the (endogenous) interaction of these factors. The population growth rate is modeled to decline once consumption per capita crosses a ';survival' threshold. The model demonstrates that technological change may ameliorate the effects of increasing water scarcity but only to a certain extent in many cases. It is possible that technological change may allow a society to escape the effect of increasing water society, leading to an exponential rise in technology and population. However, such cases require that the rate of success of investment in technological advancement is high. In other more realistic cases of technological success, we find that endogenous technology change has an effect delaying the peak of population before it starts to decline. While the model is a rather simple model of societal growth, it is capable of replicating (not to scale) patterns of technological

  15. Pediatric endogenous Haemophilus influenzae endophthalmitis with presumed hyposplenism

    PubMed Central

    Haruta, Masatoshi; Yoshida, Yumiko; Yamakawa, Ryoji

    2017-01-01

    Background Endogenous bacterial endophthalmitis is a rare but potentially devastating intraocular infection that can have severe sight-threatening complications. Most patients with endogenous bacterial endophthalmitis have underlying infectious conditions, such as diabetes or malignancy, which predispose them to infection. Case report A 1-year-old girl presented with cloudiness of the right eye. Ocular examination showed a cloudy cornea in the right eye with conjunctival injection and hypopyon. The intraocular pressure was 43 mmHg, and the fundus could not be visualized. She had an 8-day history of fever, and cerebrospinal fluid analysis showed typical findings of bacterial meningitis. She was clinically diagnosed with bacterial meningitis and endophthalmitis in the right eye and was treated with intravenous, topical, and intravitreal antibiotics and vitrectomy. Haemophilus influenzae was isolated from the blood and cerebrospinal fluid cultures, but not from the aqueous and vitreous cultures. Four months later, her pediatrician diagnosed Streptococcus pneumoniae meningitis, but she had no clinical signs of endophthalmitis. Seven years after the initial presentation, the best-corrected visual acuity was 20/40 in the right eye. Discussion Endophthalmitis caused by H. influenzae is generally associated with poor visual outcomes; however, the patient in the current case responded well to the treatment. The patient had recurrent bacterial meningitis caused by H. influenzae and S. pneumoniae within a 4-month period. Magnetic resonance imaging was performed to search for underlying infectious causes and revealed that the patient had an extremely small spleen for her age. Because the spleen is critical for clearing encapsulated bacteria such as H. influenzae or S. pneumoniae, we speculated that hyposplenism led to the bloodstream infection of H. influenza and then endogenous endophthalmitis in the right eye. PMID:28115875

  16. Visualization of an endogenous retinoic acid gradient across embryonic development.

    PubMed

    Shimozono, Satoshi; Iimura, Tadahiro; Kitaguchi, Tetsuya; Higashijima, Shin-Ichi; Miyawaki, Atsushi

    2013-04-18

    In vertebrate development, the body plan is determined by primordial morphogen gradients that suffuse the embryo. Retinoic acid (RA) is an important morphogen involved in patterning the anterior-posterior axis of structures, including the hindbrain and paraxial mesoderm. RA diffuses over long distances, and its activity is spatially restricted by synthesizing and degrading enzymes. However, gradients of endogenous morphogens in live embryos have not been directly observed; indeed, their existence, distribution and requirement for correct patterning remain controversial. Here we report a family of genetically encoded indicators for RA that we have termed GEPRAs (genetically encoded probes for RA). Using the principle of fluorescence resonance energy transfer we engineered the ligand-binding domains of RA receptors to incorporate cyan-emitting and yellow-emitting fluorescent proteins as fluorescence resonance energy transfer donor and acceptor, respectively, for the reliable detection of ambient free RA. We created three GEPRAs with different affinities for RA, enabling the quantitative measurement of physiological RA concentrations. Live imaging of zebrafish embryos at the gastrula and somitogenesis stages revealed a linear concentration gradient of endogenous RA in a two-tailed source-sink arrangement across the embryo. Modelling of the observed linear RA gradient suggests that the rate of RA diffusion exceeds the spatiotemporal dynamics of embryogenesis, resulting in stability to perturbation. Furthermore, we used GEPRAs in combination with genetic and pharmacological perturbations to resolve competing hypotheses on the structure of the RA gradient during hindbrain formation and somitogenesis. Live imaging of endogenous concentration gradients across embryonic development will allow the precise assignment of molecular mechanisms to developmental dynamics and will accelerate the application of approaches based on morphogen gradients to tissue engineering and

  17. Trafficking of an endogenous potassium channel in adult ventricular myocytes

    PubMed Central

    Wang, Tiantian; Cheng, Yvonne; Dou, Ying; Goonesekara, Charitha; David, Jens-Peter; Steele, David F.; Huang, Chen

    2012-01-01

    The roles of several small GTPases in the expression of an endogenous potassium current, Ito,f, in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies Ito,f in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced Ito,f current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved Ito,f current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on Ito,f over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of Ito,f density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous Ito,f by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on Ito,f. Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased Ito,f density. PMID:22914645

  18. A comparative assessment of endogenous water institutional change

    NASA Astrophysics Data System (ADS)

    Pande, Saket; Ersten, Maurits

    2013-04-01

    This paper builds the theory of endogenous institutional change, first proposed by Greif and Laitin (2004), for water scarce regions in context of water institutions. The current emphasis on environmental change, including hydrological change, largely ignores the adaptation of human societies to change. Humans have mostly been considered as boundary conditions or parameters of the dynamics of hydrological change and are not considered as conduits of feedbacks. Nonetheless, the dynamical representation of hydrological change with feedbacks between various components of a system is assuring since it is reminiscent of processual ecological anthropology(Orlove, 1980), except that individual decision making is absent. This paper proposes to consider selected dryland basins of the world, to conceptualize proxies of water relevant socio-economic organisation, such as spatial scales of upstream-downstream cooperation in water use, synthesized over time and then proposes a comparative assessment to test regularities predicted by an extension of river game theory (Ambec and Ehlers, 2008; van der Brink et al, 2012) to endogenous institutional change. References: Orlove, B. S. (1980). Ecological Anthropology. Annual Review of Anthropology, Vol. 9 (1980), pp. 235-273. Greif. A. and D. D. Laitin (2004). A Theory of Endogenous Institutional Change. American Political Science Review, Vol. 98, No. 4 November 2004. Ambec, S. and L. Ehlers (2008). Sharing a river amongst satiable agents. Games and Economic Behavior, 64, 35-50. Van der Brink, G. van der Laan and N. Moes (2012). Fair agreements for sharing international rivers with multiple springs and externalities. Journal of Environmental Economics and Management, 63, 388-403.

  19. Role for endogenous estrogen in prepubertal Sertoli cell maturation.

    PubMed

    Kao, Eddy; Villalon, Rosalina; Ribeiro, Salustiano; Berger, Trish

    2012-11-01

    Reducing prepubertal endogenous estrogens led to increased numbers of Sertoli cells and the associated increased testicular size and testicular sperm production capacity in boars. The increased number of Sertoli cells might be due to a longer time for proliferation; delayed differentiation of Sertoli cells during suppressed endogenous estrogens would be consistent with this hypothesized, prolonged proliferation interval. This study used immunohistochemical detection of anti-Müllerian hormone (AMH), a marker of immature Sertoli cells, and of CDKN1B, a cell cycle inhibitor associated with more mature Sertoli cells, to determine if suppressing endogenous estrogens detectably delayed "differentiation" of porcine Sertoli cells. Testes were from littermate pairs of boars previously treated with Letrozole, an aromatase inhibitor, or vehicle, from the first week of age until tissue collection at 2, 3, 4, 5 or 6 months of age. Four animals were examined at each age following Letrozole treatment and their corresponding littermates evaluated following treatment with vehicle. Amount of AMH protein in Sertoli cells decreased with age of boar and could not be detected at 6 months of age. The AMH labeling was greater in the Letrozole-treated boars compared with littermate vehicle controls at 4 months of age (P=0.03). The percentage of CDKN1B-labeled Sertoli cells apparently increased with age through 5 months of age. At 4 and 5 months of age, the mean percentage of CDKN1B-labeled Sertoli cells was less in the Letrozole-treated animals than in the vehicle control animals (P = 0.03 and 0.04, respectively). These results are consistent with the hypothesis that continual inhibition of aromatase (and concomitatant reduced estrogen synthesis) causes a delay in Sertoli cell maturation in boars.

  20. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    PubMed Central

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 μM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55,940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1–0.5 μM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  1. Blood–Retinal Barrier Compromise and Endogenous Staphylococcus aureus Endophthalmitis

    PubMed Central

    Coburn, Phillip S.; Wiskur, Brandt J.; Astley, Roger A.; Callegan, Michelle C.

    2015-01-01

    Purpose To test the hypothesis that blood–retinal barrier compromise is associated with the development of endogenous Staphylococcus aureus endophthalmitis. Methods To compromise the blood–retinal barrier in vivo, streptozotocin-induced diabetes was induced in C57BL/6J mice for 1, 3, or 5 months. Diabetic and age-matched nondiabetic mice were intravenously injected with 108 colony-forming units (cfu) of S. aureus, a common cause of endogenous endophthalmitis in diabetics. After 4 days post infection, electroretinography, histology, and bacterial counts were performed. Staphylococcus aureus–induced alterations in in vitro retinal pigment epithelial (RPE) cell barrier structure and function were assessed by anti–ZO-1 immunohistochemistry, FITC-dextran conjugate diffusion, and bacterial transmigration assays. Results We observed one bilateral infection in a control, nondiabetic animal (mean = 1.54 × 103 ± 1.78 × 102 cfu/eye, 7% incidence). Among the 1-month diabetic mice, we observed culture-confirmed unilateral infections in two animals (mean = 5.54 × 102 ± 7.09 × 102 cfu/eye, 12% incidence). Among the 3-month diabetic mice, infections were observed in 11 animals, three with bilateral infections (mean = 2.67 × 102 ± 2.49 × 102 cfu/eye, 58% incidence). Among the 5-month diabetic mice, we observed infections in five animals (mean = 7.88 × 102 ± 1.08 × 103 cfu/eye, 33% incidence). In vitro, S. aureus infection reduced ZO-1 immunostaining and disrupted the barrier function of cultured RPE cells, resulting in diffusion of fluorophore-conjugated dextrans and transmigration of live bacteria across a permeabilized RPE barrier. Conclusions Taken together, these results indicated that S. aureus is capable of inducing blood–retinal barrier permeability and causing endogenous bacterial endophthalmitis in normal and diabetic animals. PMID:26559476

  2. Endogenous Epoxygenases Are Modulators of Monocyte/Macrophage Activity

    PubMed Central

    Sugden, Mary C.; Holness, Mark J.; Swales, Karen E.; Warner, Timothy D.; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Bishop-Bailey, David

    2011-01-01

    Background Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. Methodology/Principal Findings When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX)-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET) or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated) monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. Conclusions/Significance In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state. PMID:22028915

  3. Endogenous IL-10 regulates IFN-gamma and IL-5 cytokine production and the granulomatous response in Schistosomiasis mansoni-infected mice.

    PubMed Central

    Boros, D L; Whitfield, J R

    1998-01-01

    In murine Schistosomiasis mansoni circumovum, granuloma formation is regulated by pro- and anti-inflammatory cytokines. Among the latter, interleukin-10 (IL-10) has been shown to regulate the inflammatory response. In this study we examined the role of endogenously produced IL-10 in T-helper 1 (Th1)- and Th2-type cytokine production and granuloma formation. The dynamics of IL-10 production through the course of the infection were different in granuloma versus splenic cells. In the former, production peaked during the early developmental stage (6 weeks of infection) of the granuloma and then declined. In splenocytes production peaked at 12 weeks, before down-modulation of the granuloma response. In the developing granuloma both macrophages and T cells secreted IL-10. In anti-IL-10 monoclonal antibody (mAb)-supplemented granuloma cell cultures endogenous IL-10-mediated regulation of interferon-gamma (IFN-gamma) was manifest only at 6 weeks; that of IL-2 continued throughout the infection (6-20 weeks). IL-4 production was unaffected, but IL-5 production was regulated at the 6 and 8 weeks time point. Splenocytes showed regulation of IFN-gamma and IL-2 production at the peak of the granulomatous response (8 weeks). IL-4 production was not regulated, whereas IL-5 production was regulated only at 6 weeks. Repeated injections of anti-IL-10 mAb given to mice at 6, 12 or 20 weeks of the infection significantly enhanced liver and lung granuloma growth, tissue eosinophilia, and IFN-gamma, IL-5 production at the early developmental phase (6 weeks) of the lesions. Thus, in schistosome-infected mice endogenous IL-10 is shown to regulate Th1- and Th2-type cytokine production and granuloma formation during the early Th0/Th1 phase of the immune response. PMID:9767435

  4. Endogenous RNA viruses of plants in insect genomes.

    PubMed

    Cui, Jie; Holmes, Edward C

    2012-06-05

    Endogenous viral elements (EVEs) derived from RNA viruses with no DNA stage are rare, especially those where the parental viruses possess single-strand positive-sense (ssRNA+) genomes. Here we provide evidence that EVEs that share a sequence similarity to ssRNA+viruses of plants are integrated into the genomes of a number of insects, including mosquito, fruit flies, bees, ant, silkworm, pea aphid, Monarch butterfly, and wasps. A preliminary phylogenetic analysis places these EVEs as divergent relatives of the Virgaviridae and three currently unclassified plant viral species.

  5. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Pena, A.-M.; Strupler, M.; Boulesteix, T.; Schanne-Klein, M.-C.

    2005-08-01

    We recorded one-photon excited fluorescence (1PEF) and two-photon excited fluorescence (2PEF) spectra of purified keratin from human epidermis, and determined the action cross section of this endogenous chromophore. We used this spectroscopic analysis to analyse multiphoton images of skin biopsies and assign the intrinsic fluorescence signals in the epidermis. We observed a good agreement between in situ and in vitro 2PEF spectra of keratin. This study provides a comprehensive characterization of the 2PEF signal of the keratins from the epidermis, and will be of practical interest for multiphoton imaging of the skin.

  6. Actinomyces endogenous endophthalmitis in a cat following multiple dental extractions.

    PubMed

    Westermeyer, Hans D; Ward, Daniel A; Whittemore, Jacqueline C; Lyons, Jeremiah A

    2013-11-01

    An 8-year-old, brachycephalic, mixed breed cat underwent full mouth tooth extractions for the treatment of tooth root abscessation. Subsequently, the cat developed anterior uveitis refractory to topical therapy that eventually necessitated enucleation. Actinomyces species were isolated from both the tooth root abscesses and the anterior chamber after enucleation. Histopathology of the enucleated eye revealed panophthalmitis with abundant intralesional bacteria morphologically consistent with Actinomyces. Between the time of tooth root extraction and enucleation (20 weeks), the cat was diagnosed with hyperthyroidism and treated with oral steroids for inflammatory bowel syndrome. We believe this report represents a rare case of endogenous endophthalmitis secondary to dental disease, possibly precipitated by concurrent immunosuppression.

  7. Evaluation of the endogenous glucocorticoid hypothesis of denervation atrophy

    NASA Technical Reports Server (NTRS)

    Konagaya, Masaaki; Konagaya, Yoko; Max, Stephen R.

    1988-01-01

    The effects are studied of the oral administration of RU38486, a potent selective glucocorticoid antagonist, on muscle weight, non-collagen protein content, and selected enzyme activities (choline acetyltransferase, glucose 6-phosphate dehydrogenase, and glutamine synthetase) following denervation of rat skeletal muscle. Neither decreases in muscle weight, protein content, and choline acetyltransferase activity, nor increases in the activities of glucose 6-phosphate dehydrogernase and glutamine synthetase were affected by RU38486. These data do not support the hypothesis that denervation atrophy results from enhanced sensitivity of muscle to endogenous glucocorticoids.

  8. Food cravings, endogenous opioid peptides, and food intake: a review.

    PubMed

    Mercer, M E; Holder, M D

    1997-12-01

    Extensive research indicates a strong relationship between endogenous opioid peptides (EOPs) and food intake. In the present paper, we propose that food cravings act as an intervening variable in this opioid-ingestion link. Specifically, we argue that altered EOP activity may elicit food cravings which in turn may influence food consumption. Correlational support for this opioidergic theory of food cravings is provided by examining various clinical conditions (e.g. pregnancy, menstruation, bulimia, stress, depression) which are associated with altered EOP levels, intensified food cravings, and increased food intake.

  9. Capital accumulation, endogenous population growth, and Easterlin cycles.

    PubMed

    Feichtinger, G; Dockner, E J

    1990-01-01

    "In this paper we attempt to explain the occurrence of population cycles in industrialised economies where the birth rate depends on the difference between the actual and the expected consumption rate. This model of an endogenously growing population brings together Easterlin's idea of an adapting aspiration level with the neoclassical optimal growth paradigm. It is shown that in this highly aggregated demo-economic system (i.e., without inclusion of the age structure of a population) swings both in the economic and demographic variables may exist. The reason behind this 'strange' optimal behaviour is identified to be an intertemporal substitution effect between current and future levels of consumption."

  10. Regulation of endothelial VCAM-1 expression in murine cardiac grafts. Roles for TNF and IL4.

    PubMed Central

    Bergese, S.; Pelletier, R.; Vallera, D.; Widmer, M.; Orosz, C.

    1995-01-01

    The in vivo mechanisms of vascular endothelial activation and VCAM-1 expression were studied in murine heterotopic cardiac grafts. Preliminary studies demonstrated that cardiac allograft endothelia develop reactivity with MECA-32 monoclonal antibody (MAb) and M/K-2 (anti-VCAM-1) MAb within 3 days of transplantation, whereas cardiac isografts develop MECA-32 reactivity but no M/K-2 reactivity. Additional studies demonstrated that a single treatment of cardiac isograft recipients with the anti-CD3 MAb 145-2C11 induces VCAM-1 expression on isograft microvascular endothelia within 24 hours. We have used this experimental system to identify the cytokines responsible for expression of VCAM-1 and MECA-32 MAb reactivity on graft vascular endothelia. We report that the expression of VCAM-1 on isograft endothelia that was induced with anti-CD3 MAb was blocked by simultaneous treatment with either pentoxifylline, soluble tumor necrosis factor (TNF) receptor (TNFR-Fc), anti-IL4 MAb, or soluble IL4R, but not by anti-IFN-gamma MAb. Alternatively, a similar pattern of isograft endothelial VCAM-1 expression was stimulated in the absence of anti-CD3 MAbs with a single injection of human recombinant TNF-alpha, or with recombinant murine IL4 provided as IL4/anti-IL4 MAb complexes. In addition, the IL4-induced VCAM-1 expression was completely blocked by a single intravenous treatment of the isograft recipients with TNFR:Fc. This suggests that high concentrations of TNF-alpha can stimulate endothelial VCAM-1 expression, but these concentrations are apparently not achieved in cardiac isografts. In the absence of an inducing agent such as anti-CD3 MAb, the stimulation of VCAM-1 expression with exogenous IL4 may reflect functional interaction between endogenous TNF and exogenous IL4, as suggested by the blocking experiments with TNFR:Fc. Although cardiac isograft endothelia normally develop reactivity with MECA-32 MAb within 3 days of transplantation, treatment of cardiac isograft

  11. Fixed Volume or Fixed Pressure: A Murine Model of Hemorrhagic Shock

    PubMed Central

    Kohut, Lauryn K.; Darwiche, Sophie S.; Brumfield, John M.; Frank, Alicia M.; Billiar, Timothy R.

    2011-01-01

    It is common knowledge that severe blood loss and traumatic injury can lead to a cascade of detrimental signaling events often resulting in mortality. 1, 2, 3, 4, 5 These signaling events can also lead to sepsis and/or multiple organ dysfunction (MOD). 6, 7, 8, 9 It is critical then to investigate the causes of suppressed immune function and detrimental signaling cascades in order to develop more effective ways to help patients who suffer from traumatic injuries. 10 This fixed pressure Hemorrhagic Shock (HS) procedure, although technically challenging, is an excellent resource for investigation of these pathophysiologic conditions. 11, 12, 13 Advances in the assessment of biological systems, i.e. Systems Biology have enabled the scientific community to further understand complex physiologic networks and cellular communication patterns. 14 Hemorrhagic Shock has proven to be a vital tool for unveiling these cellular communication patterns as they relate to immune function. 15, 16, 17, 18 This procedure can be mastered! This procedure can also be used as either a fixed volume or fixed pressure approach. We adapted this technique in the murine model to enhance research in innate and adaptive immune function. 19, 20, 21 Due to their small size HS in mice presents unique challenges. However due to the many available mouse strains, this species represents an unparalleled resource for the study of the biologic responses. The HS model is an important model for studying cellular communication patterns and the responses of systems such as hormonal and inflammatory mediator systems, and danger signals, i.e. DAMP and PAMP upregulation as it elicits distinct responses that differ from other forms of shock. 22, 23, 24, 25 The development of transgenic murine strains and the induction of biologic agents to inhibit specific signaling have presented valuable opportunities to further elucidate our understanding of the up and down regulation of signal transduction after severe blood

  12. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells.

    PubMed

    Romio, Michael; Reinbeck, Benjamin; Bongardt, Sabine; Hüls, Sandra; Burghoff, Sandra; Schrader, Jürgen

    2011-08-01

    CD73-derived adenosine acts as potent inhibitor of inflammation, and regulatory T cells (Treg) have been shown to express CD73 as a novel marker. This study explored the role of endogenously formed adenosine in modulating NF-κB activity and cytokine/chemokine release from murine Treg and effector T cells (Teff) including key enzymes/purinergic receptors of extracellular ATP catabolism. Stimulating murine splenocytes and CD4(+) T cells with anti-CD3/anti-CD28 significantly upregulated activated NF-κB in CD73(-/-) T cells (wild type: 4.36 ± 0.21; CD73(-/-): 6.58 ± 0.75; n = 4; P = 0.029). This was associated with an augmented release of proinflammatory cytokines IL-2, TNF-α, and IFN-γ. Similar changes were observed with the CD73 inhibitor APCP (50 μM) on NF-κB and IFN-γ in wild-type CD4(+) T-cells. Treatment of stimulated CD4(+) T-cells with adenosine (25 μM) potently reduced IFN-γ release which is mediated by adenosine A2a receptors (A2aR). AMP (50 μM) also reduced cytokine release which was not inhibited by APCP. In Teff, A2aR activation (CGS21680) potently inhibited the release of IL-1, IL-2, IL-3, IL-4, IL-12, IL-13, IFN-γ, TNF-α, granulocyte-macrophage colony-stimulating factor (GM-CSF), CCL3, and CCL4. However, in Treg, CGS21680 did not alter cytokine/chemokine release. In summary, CD73-derived adenosine tonically inhibits active NF-κB in CD4(+) T-cells, thereby modulating the release of a broad spectrum of proinflammatory cytokines and chemokines. Downregulation of P2X7 and upregulation of CD73 in Treg after antigenic stimulation may be an important mechanism to maintain the ability of Treg to generate immunosuppressive adenosine.

  13. Murine Sirt3 protein isoforms have variable half-lives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sirt3 is a NAD+-dependent protein deacetylase mainly localized in mitochondria. Recent studies indicate that the murine Sirt3 gene expresses different transcript variants resulting in three possible Sirt3 protein isoforms with variable lengths at the N-terminus: M1 (aa 1-334), M2 (aa 15-334), and M3...

  14. Expression of biologically active murine interleukin-18 in Lactococcus lactis.

    PubMed

    Feizollahzadeh, Sadegh; Khanahmad, Hossein; Rahimmanesh, Ilnaz; Ganjalikhani-Hakemi, Mazdak; Andalib, Alireza; Sanei, Mohammad Hossein; Rezaei, Abbas

    2016-11-01

    The food-grade bacterium Lactococcus lactis is increasingly used for heterologous protein expression in therapeutic and industrial applications. The ability of L. lactis to secrete biologically active cytokines may be used for the generation of therapeutic cytokines. Interleukin (IL)-18 enhances the immune response, especially on mucosal surfaces, emphasizing its therapeutic potential. However, it is produced as an inactive precursor and has to be enzymatically cleaved for maturation. We genetically manipulated L. lactis to secrete murine IL-18. The mature murine IL-18 gene was inserted downstream of a nisin promoter in pNZ8149 plasmid and the construct was used to transform L. lactis NZ3900. The transformants were selected on Elliker agar and confirmed by restriction enzyme digestion and sequencing. The expression and secretion of IL-18 protein was verified by SDS-PAGE, western blotting and ELISA. The biological activity of recombinant IL-18 was determined by its ability to induce interferon (IFN)-γ production in L. lactis co-cultured with murine splenic T cells. The amounts of IL-18 in bacterial lysates and supernatants were 3-4 μg mL(-1) and 0.6-0.7 ng mL(-1), respectively. The successfully generated L. lactis strain that expressed biologically active murine IL-18 can be used to evaluate the possible therapeutic effects of IL-18 on mucosal surfaces.

  15. Biochemical characterization of murine glycosylation-inhibiting factor

    SciTech Connect

    Tagaya, Yutaka; Mori, Akio; Ishizaka, Kimishige )

    1991-10-15

    The glycosylation-inhibiting factor (GIF) was isolated from serum-free culture supernatants of the murine T-cell hybridoma, 231F1 cells, by using an immunosorbent coupled with the monoclonal anti-lipomodulin antibody. The isolated lymphokine is a 14-kDa protein with a pI of 5.5, as determined by SDS/PAGE and two-dimensional gel electrophoresis. Fractionation of a mixture of radiolabeled GIF with culture supernatant of the 231F1 cells on ion-exchange and revere-phase columns and by gel filtration demonstrated homogeneity of the 14-kDa GIF and confirmed that the bioactivity of GIF and the antigenic determinant recognized by the monoclonal anti-GIF antibody are associated with the 14-kDa protein. The {sup 125}II-labeled 14-kDa protein binds to the murine T-cell hybridoma 12H5 cells, which have been used for bioassay of GIF, and the murine B-cell line A20.3 cells, but the binding of the protein to resting murine splenic lymphocytes was barely detectable. Under the same experimental conditions, binding of the {sup 125}I-labeled recombinant human lipocortin I to the 12H5 cells was not detectable. In contrast, the {sup 125}I labeled lipocortin, but not the 14-kDa GIF, bound to phosphatidylserine vesicles. The results indicate that GIF does not belong to the anexin family.

  16. Interactions between endogenous and exogenous attention during vigilance.

    PubMed

    MacLean, Katherine A; Aichele, Stephen R; Bridwell, David A; Mangun, George R; Wojciulik, Ewa; Saron, Clifford D

    2009-07-01

    The ability to remain vigilant over long periods of time is critical for many everyday tasks, but controlled studies of visual sustained attention show that performance declines over time when observers are required to respond to rare stimulus events (targets) occurring in a sequence of standard stimulus events (nontargets). When target discrimination is perceptually difficult, this vigilance decrement manifests as a decline in perceptual sensitivity. We examined whether sudden-onset stimuli could act as exogenous attentional cues to improve sensitivity during a traditional sustained attention task. Sudden-onset cues presented immediately before each stimulus attenuated the sensitivity decrement, but only when stimulus timing (the interstimulus interval [ISI]) was constant. When stimulus timing was variable, exogenous cues increased overall sensitivity but did not prevent performance decline. Finally, independent of the effects of sudden onsets, a constant ISI improved vigilance performance. Our results demonstrate that exogenous attention enhances perceptual sensitivity during vigilance performance, but that this effect is dependent on observers' being able to predict the timing of stimulus events. Such a result indicates a strong interaction between endogenous and exogenous attention during vigilance. We relate our findings to a resource model of vigilance, as well as to theories of endogenous and exogenous attention over short time periods.

  17. Pyrintegrin Induces Soft Tissue Formation by Transplanted or Endogenous Cells

    PubMed Central

    Shah, Bhranti S.; Chen, Mo; Suzuki, Takahiro; Embree, Mildred; Kong, Kimi; Lee, Chang H.; He, Ling; Xiang, Lusai; Ahn, Jeffrey A.; Ding, Sheng; Mao, Jeremy J.

    2017-01-01

    Focal adipose deficiency, such as lipoatrophy, lumpectomy or facial trauma, is a formidable challenge in reconstructive medicine, and yet scarcely investigated in experimental studies. Here, we report that Pyrintegrin (Ptn), a 2,4-disubstituted pyrimidine known to promote embryonic stem cells survival, is robustly adipogenic and induces postnatal adipose tissue formation in vivo of transplanted adipose stem/progenitor cells (ASCs) and recruited endogenous cells. In vitro, Ptn stimulated human adipose tissue derived ASCs to differentiate into lipid-laden adipocytes by upregulating peroxisome proliferator-activated receptor (PPARγ) and CCAAT/enhancer-binding protein-α (C/EBPα), with differentiated cells increasingly secreting adiponectin, leptin, glycerol and total triglycerides. Ptn-primed human ASCs seeded in 3D-bioprinted biomaterial scaffolds yielded newly formed adipose tissue that expressed human PPARγ, when transplanted into the dorsum of athymic mice. Remarkably, Ptn-adsorbed 3D scaffolds implanted in the inguinal fat pad had enhanced adipose tissue formation, suggesting Ptn’s ability to induce in situ adipogenesis of endogenous cells. Ptn promoted adipogenesis by upregulating PPARγ and C/EBPα not only in adipogenesis induction medium, but also in chemically defined medium specifically for osteogenesis, and concurrently attenuated Runx2 and Osx via BMP-mediated SMAD1/5 phosphorylation. These findings suggest Ptn’s novel role as an adipogenesis inducer with a therapeutic potential in soft tissue reconstruction and augmentation. PMID:28128224

  18. Silent no more: Endogenous small RNA pathways promote gene expression.

    PubMed

    Wedeles, Christopher J; Wu, Monica Z; Claycomb, Julie M

    2014-01-01

    Endogenous small RNA pathways related to RNA interference (RNAi) play a well-documented role in protecting host genomes from the invasion of foreign nucleic acids. In C. elegans, the PIWI type Argonaute, PRG-1, through an association with 21U-RNAs, mediates a genome surveillance process by constantly scanning the genome for potentially deleterious invading elements. Upon recognition of foreign nucleic acids, PRG-1 initiates a cascade of cytoplasmic and nuclear events that results in heritable epigenetic silencing of these transcripts and their coding genomic loci. If the PRG-1/21U-RNA genome surveillance pathway has the capacity to target most of the C. elegans transcriptome, what mechanisms exist to protect endogenous transcripts from being silenced by this pathway? In this commentary, we discuss three recent publications that implicate the CSR-1 small RNA pathway in the heritable activation of germline transcripts, propose a model as to why not all epialleles behave similarly, and touch on the practical implications of these findings.

  19. A hormonal role for endogenous opiate alkaloids: vascular tissues.

    PubMed

    Stefano, George B; Zhu, Wei; Cadet, Patrick; Mantione, Kirk; Bilfinger, Thomas V; Bianchi, Enrica; Guarna, Massimo

    2002-02-01

    The distribution of morphine-containing cells in the central nervous system, adrenal gland, and its presence in blood may serve to demonstrate that this signal molecule can act as a hormone besides its role in cell-to-cell signaling within the brain. This speculative review is the result of a literature evaluation with an emphasis on studies from our laboratory. Opioid peptides and opiate alkaloids have been found to influence cardiac and vascular function. They have also been reported to promote ischemic preconditioning protection in the heart. Given the presence of morphine and the novel mu(3) opiate receptor on vascular endothelial cells, including cardiac and vascular endothelial cells in the median eminence, it would appear that endogenous opiate alkaloids are involved in modulating cardiac function, possible at the hormonal level. This peripheral target tissue, via nitric oxide coupling to mu opiate receptors, may serve to down regulate the excitability of this tissue given the heart's high performance state as compared to that of the saphenous vein, a passive resistance conduit. With this in mind, morphine and other endogenous opiate alkaloids may function as a hormone.

  20. Endogenous retroviruses regulate periimplantation placental growth and differentiation

    PubMed Central

    Dunlap, Kathrin A.; Palmarini, Massimo; Varela, Mariana; Burghardt, Robert C.; Hayashi, Kanako; Farmer, Jennifer L.; Spencer, Thomas E.

    2006-01-01

    Endogenous retroviruses (ERVs) are fixed and abundant in the genomes of vertebrates. Circumstantial evidence suggests that ERVs play a role in mammalian reproduction, particularly placental morphogenesis, because intact ERV envelope genes were found to be expressed in the syncytiotrophoblasts of human and mouse placenta and to elicit fusion of cells in vitro. We report here in vivo and in vitro experiments finding that the envelope of a particular class of ERVs of sheep, endogenous Jaagsiekte sheep retroviruses (enJSRVs), regulates trophectoderm growth and differentiation in the periimplantation conceptus (embryo/fetus and associated extraembryonic membranes). The enJSRV envelope gene is expressed in the trophectoderm of the elongating ovine conceptus after day 12 of pregnancy. Loss-of-function experiments were conducted in utero by injecting morpholino antisense oligonucleotides on day 8 of pregnancy that blocked enJSRV envelope protein production in the conceptus trophectoderm. This approach retarded trophectoderm outgrowth during conceptus elongation and inhibited trophoblast giant binucleate cell differentiation as observed on day 16. Pregnancy loss was observed by day 20 in sheep receiving morpholino antisense oligonucleotides. In vitro inhibition of the enJSRV envelope reduced the proliferation of mononuclear trophectoderm cells isolated from day 15 conceptuses. Consequently, these results demonstrate that the enJSRV envelope regulates trophectoderm growth and differentiation in the periimplantation ovine conceptus. This work supports the hypothesis that ERVs play fundamental roles in placental morphogenesis and mammalian reproduction. PMID:16980413

  1. Alterations in endogenous opioid functional measures in chronic back pain.

    PubMed

    Martikainen, Ilkka K; Peciña, Marta; Love, Tiffany M; Nuechterlein, Emily B; Cummiford, Chelsea M; Green, Carmen R; Harris, Richard E; Stohler, Christian S; Zubieta, Jon-Kar

    2013-09-11

    The absence of consistent end organ abnormalities in many chronic pain syndromes has led to a search for maladaptive CNS mechanisms that may explain their clinical presentations and course. Here, we addressed the role of brain regional μ-opioid receptor-mediated neurotransmission, one of the best recognized mechanisms of pain regulation, in chronic back pain in human subjects. We compared μ-opioid receptor availability in vivo at baseline, during pain expectation, and with moderate levels of sustained pain in 16 patients with chronic nonspecific back pain (CNBP) and in 16 age- and gender-matched healthy control subjects, using the μ-opioid receptor-selective radioligand [(11)C]carfentanil and positron emission tomography. We found that CNBP patients showed baseline increases in thalamic μ-opioid receptor availability, contrary to a previously studied sample of patients diagnosed with fibromyalgia. During both pain expectation and sustained pain challenges, CNBP patients showed regional reductions in the capacity to activate this neurotransmitter system compared with their control sample, further associated with clinical pain and affective state ratings. Our results demonstrate heterogeneity in endogenous opioid system functional measures across pain conditions, and alterations in both receptor availability and endogenous opioid function in CNBP that are relevant to the clinical presentation of these patients and the effects of opioid analgesics on μ-opioid receptors.

  2. Effects of endogenous antidiuretic hormone (ADH) on macrophage phagocytosis

    SciTech Connect

    Fernandez-Repollet, E.; Opava-Stitzer, S.; Tiffany, S.; Schwartz, A.

    1983-07-01

    Although several studies have indicated that antidiuretic hormone (ADH) enhances the phagocytic function of the reticuloendothelial system (RES) in shock syndromes, it remains unknown what influence ADH exerts upon the individual phagocytic components of this system. The present investigation was designed to evaluate the effects of endogenous ADH on the phagocytic activity of peritoneal macrophage cells. As a phagocytic stimuli, fluorescent methacrylate microbeads were injected intraperitoneally into Brattleboro (ADH deficient) and normal Long Evans rats in the presence and absence of exogenous ADH. Peritoneal cells were harvested 19-22 hr after the administration of the microbeads and the percent phagocytosis was determined in macrophage cells using a fluorescence-activated cell sorter (FACS II). Our results indicate that the percentage of peritoneal macrophages ingesting the fluorescent methacrylate microbeads was significantly reduced in the absence of ADH (Brattleboro rats: 5.4 +/- 0.6% versus Long Evans rats: 16.8 +/- 2.3%; p less than 0.001). In addition, our data demonstrate that exogenous administration of ADH significantly enhanced macrophage phagocytosis in Brattleboro (14.7 +/- 2.2%) and normal Long Evans (49.6 +/- 4.5%) rats. These data suggest, for the first time, that endogenous ADH might play a modulatory role in the phagocytic activity of a specific component of the RES, namely, the macrophage cell.

  3. Borderline personality disorder: a dysregulation of the endogenous opioid system?

    PubMed

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-04-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids constitute part of the underlying pathophysiology of BPD. The alarming symptoms and self-destructive behaviors of the affected patients may be explained by uncontrollable and unconscious attempts to stimulate their endogenous opioid system (EOS) and the dopaminergic reward system, regardless of the possible harmful consequences. Neurobiological findings that support this hypothesis are reviewed: Frantic efforts to avoid abandonment, frequent and risky sexual contacts, and attention-seeking behavior may be explained by attempts to make use of the rewarding effects of human attachment mediated by the EOS. Anhedonia and feelings of emptiness may be an expression of reduced activity of the EOS. Patients with BPD tend to abuse substances that target mu-opioid receptors. Self-injury, food restriction, aggressive behavior, and sensation seeking may be interpreted as desperate attempts to artificially set the body to survival mode in order to mobilize the last reserves of the EOS. BPD-associated symptoms, such as substance abuse, anorexia, self-injury, depersonalization, and sexual overstimulation, can be treated successfully with opioid receptor antagonists. An understanding of the neurobiology of BPD may help in developing new treatments for patients with this severe disorder.

  4. Endogenous change: on cooperation and water in ancient history

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.

    2013-04-01

    We propose and test the theory of endogenous change based on historical reconstructions of two ancient civilizations, Indus and Hohokam, in two water scarce basins, the Indus basin in the Indian subcontinent and the Lower Colorado basin in Southwestern United States. The endogenous institutional change sees changes in institutions as a sequence of equilibria brought about by changes in "quasi-parameters" such as rainfall, population density, soil and land use induced water resource availability. In the historical reconstructions of ancient civilizations, institutions are proximated by the scale of cooperation be it in the form of the extent of trade, sophisticated irrigation network, a centrally planned state or a loosely held state with a common cultural identity. The "quasi-parameters" either change naturally or are changed by humans and the changes affect the stability of cooperative structures over time. However, human influenced changes in the quasi-parameters itself are conditioned on the scale of existing cooperative structures. We thus provide insights into the quantitative dimensions of water access by ancient populations and its co-evolution with the socioeconomic and sociopolitical organization of the human past. We however do not suggest that water manipulation was the single most significant factor in stimulating social development and complexity - clearly this has been shown as highly reductionist, even misleading. The paper cautiously contributes to proximate prediction of hydrological change by attempting to understand the complexity of coupled human-hydrological systems.

  5. Endogenous digitalis-like factors: an overview of the history.

    PubMed

    Buckalew, Vardaman M

    2015-01-01

    The sodium pump is a ubiquitous cell surface enzyme, a Na, K ATPase, which maintains ion gradients between cells and the extracellular fluid (ECF). The extracellular domain of this enzyme contains a highly conserved binding site, a receptor for a plant derived family of compounds, the digitalis glycosides. These compounds inhibit the enzyme and are used in the treatment of congestive heart failure and certain cardiac arrhythmias. The highly conserved nature of this enzyme and its digitalis receptor led to early suggestions that endogenous regulators might exist. Recent examination of this hypothesis emerged from research in two separate areas: the regulation of ECF volume by a natriuretic hormone (NH), and the regulation of peripheral vascular resistance by a circulating inhibitor of vascular Na, K ATPase. These two areas merged with the hypothesis that NH and the vascular Na, K ATPase inhibitor were in fact the same entity, and that it played a causative role in the pathophysiology of certain types of hypertension. The possibility that multiple endogenous digitalis-like factors (EDLFs) exist emerged from efforts to characterize the circulating enzyme inhibitory activity. In this review, the development of this field from its beginnings is traced, the current status of the structure of EDLFs is briefly discussed, and areas for future development are suggested.

  6. Presynaptic Control of Corticostriatal Synapses by Endogenous GABA

    PubMed Central

    Logie, Christopher; Bagetta, Vincenza

    2013-01-01

    Corticostriatal terminals have presynaptic GABAB receptors that limit glutamate release, but how these receptors are activated by endogenous GABA released by different types of striatal neurons is still unknown. To address this issue, we used single and paired whole-cell recordings combined with stimulation of corticostriatal fibers in rats and mice. In the presence of opioid, GABAA, and NK1 receptor antagonists, antidromic stimulation of a population of striatal projection neurons caused suppression of subsequently evoked EPSPs in projection neurons. These effects were larger at intervals of 500 ms than 1 or 2 s, and were fully blocked by the selective GABAB receptor antagonist CGP 52432. Bursts of spikes in individual projection neurons were not able to inhibit evoked EPSPs. Similarly, spikes in fast spiking interneurons and low-threshold spike interneurons failed to elicit detectable effects mediated by GABAB receptors. Conversely, spikes in individual neurogliaform interneurons suppressed evoked EPSPs, and these effects were blocked by CGP 52432. These results provide the first demonstration of how GABAB receptors are activated by endogenous GABA released by striatal neuronal types. PMID:24068811

  7. Molecular evidence for an active endogenous microbiome beneath glacial ice.

    PubMed

    Hamilton, Trinity L; Peters, John W; Skidmore, Mark L; Boyd, Eric S

    2013-07-01

    Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth's land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth's past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0-1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time.

  8. Molecular evidence for an active endogenous microbiome beneath glacial ice

    PubMed Central

    Hamilton, Trinity L; Peters, John W; Skidmore, Mark L; Boyd, Eric S

    2013-01-01

    Geologic, chemical and isotopic evidence indicate that Earth has experienced numerous intervals of widespread glaciation throughout its history, with roughly 11% of present day Earth's land surface covered in ice. Despite the pervasive nature of glacial ice both today and in Earth's past and the potential contribution of these systems to global biogeochemical cycles, the composition and phylogenetic structure of an active microbial community in subglacial systems has yet to be described. Here, using RNA-based approaches, we demonstrate the presence of active and endogenous archaeal, bacterial and eukaryal assemblages in cold (0–1 °C) subglacial sediments sampled from Robertson Glacier, Alberta, Canada. Patterns in the phylogenetic structure and composition of subglacial sediment small subunit (SSU) ribosomal RNA (rRNA) assemblages indicate greater diversity and evenness than in glacial surface environments, possibly due to facilitative or competitive interactions among populations in the subglacial environment. The combination of phylogenetically more even and more diverse assemblages in the subglacial environment suggests minimal niche overlap and optimization to capture a wider spectrum of the limited nutrients and chemical energy made available from weathering of bedrock minerals. The prevalence of SSU rRNA affiliated with lithoautotrophic bacteria, autotrophic methane producing archaea and heterotrophic eukarya in the subglacial environment is consistent with this hypothesis and suggests an active contribution to the global carbon cycle. Collectively, our findings demonstrate that subglacial environments harbor endogenous active ecosystems that have the potential to impact global biogeochemical cycles over extended periods of time. PMID:23486249

  9. GPR56 Plays Varying Roles in Endogenous Cancer Progression

    PubMed Central

    Xu, Lei; Begum, Shahinoor; Barry, Marc; Crowley, Denise; Yang, Liquan; Bronson, Roderick T.; Hynes, Richard O.

    2011-01-01

    GPR56, a non-classical adhesion receptor, was previously reported to suppress tumor growth and metastasis in xenograft models using human melanoma cell lines. To understand whether GPR56 plays similar roles in the development of endogenous tumors, we analyzed cancer progression in Gpr56−/− mice using a variety of transgenic cancer models. Our results showed that GPR56 suppressed prostate cancer progression in the TRAMP model on a mixed genetic background, similar to its roles in progression of melanoma xenografts. However, its roles in other cancer types appeared to be complex. It had marginal effects on tumor onset of mammary tumors in the MMTV-PyMT model, but had no effects on subsequent tumor progression in either the MMTV-PyMT mice or the melanoma model, Ink4a/Arf−/− tyr-Hras. These results indicate diverse roles of GPR56 in cancer progression and provide the first genetic evidence for the involvement of an adhesion GPCR in endogenous cancer development. PMID:20333450

  10. Cellular responses to endogenous electrochemical gradients in morphological development

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.

    1996-01-01

    Endogenous electric fields give vectorial direction to morphological development in Zea mays (sweet corn) in response to gravity. Endogenous electrical fields are important because of their ability to influence: (1) intercellular organization and development through their effects on the membrane potential, (2) direct effects such as electrophoresis of membrane components, and (3) both intracellular and extracellular transport of charged compounds. Their primary influence is in providing a vectorial dimension to the progression of one physiological state to another. Gravity perception and transduction in the mesocotyl of vascular plants is a complex interplay of electrical and chemical gradients which ultimately provide the driving force for the resulting growth curvature called gravitropism. Among the earliest events in gravitropism are changes in impedance, voltage, and conductance between the vascular stele and the growth tissues, the cortex, in the mesocotyl of corn shoots. In response to gravistimulation: (1) a potential develops which is vectorial and of sufficient magnitude to be a driving force for transport between the vascular stele and cortex, (2) the ionic conductance changes within seconds showing altered transport between the tissues, and (3) the impedance shows a transient biphasic response which indicates that the mobility of charges is altered following gravistimulation and is possibly the triggering event for the cascade of actions which leads to growth curvature.

  11. Why do cannabinoid receptors have more than one endogenous ligand?

    PubMed Central

    Di Marzo, Vincenzo; De Petrocellis, Luciano

    2012-01-01

    The endocannabinoid system was revealed following the understanding of the mechanism of action of marijuana's major psychotropic principle, Δ9-tetrahydrocannabinol, and includes two G-protein-coupled receptors (GPCRs; the cannabinoid CB1 and CB2 receptors), their endogenous ligands (the endocannabinoids, the best studied of which are anandamide and 2-arachidonoylglycerol (2-AG)), and the proteins that regulate the levels and activity of these receptors and ligands. However, other minor lipid metabolites different from, but chemically similar to, anandamide and 2-AG have also been suggested to act as endocannabinoids. Thus, unlike most other GPCRs, cannabinoid receptors appear to have more than one endogenous agonist, and it has been often wondered what could be the physiological meaning of this peculiarity. In 1999, it was proposed that anandamide might also activate other targets, and in particular the transient receptor potential of vanilloid type-1 (TRPV1) channels. Over the last decade, this interaction has been shown to occur both in peripheral tissues and brain, during both physiological and pathological conditions. TRPV1 channels can be activated also by another less abundant endocannabinoid, N-arachidonoyldopamine, but not by 2-AG, and have been proposed by some authors to act as ionotropic endocannabinoid receptors. This article will discuss the latest discoveries on this subject, and discuss, among others, how anandamide and 2-AG differential actions at TRPV1 and cannabinoid receptors contribute to making this signalling system a versatile tool available to organisms to fine-tune homeostasis. PMID:23108541

  12. HIV infection en route to endogenization: two cases

    PubMed Central

    Colson, P; Ravaux, I; Tamalet, C; Glazunova, O; Baptiste, E; Chabriere, E; Wiedemann, A; Lacabaratz, C; Chefrour, M; Picard, C; Stein, A; Levy, Y; Raoult, D

    2014-01-01

    The long-term spontaneous evolution of humans and the human immunodeficiency virus (HIV) is not well characterized; many vertebrate species, including humans, exhibit remnants of other retroviruses in their genomes that question such possible endogenization of HIV. We investigated two HIV-infected patients with no HIV-related disease and no detection with routine tests of plasma HIV RNA or cell-associated HIV DNA. We used Sanger and deep sequencing to retrieve HIV DNA sequences integrated in the human genome and tested the host humoral and cellular immune responses. We noticed that viruses from both patients were inactivated by the high prevalence of the transformation of tryptophan codons into stop codons (25% overall (3–100% per gene) and 24% overall (0–50% per gene)). In contrast, the humoral and/or cellular responses were strong for one patient and moderate for the other, indicating that a productive infection occurred at one stage of the infection. We speculate that the stimulation of APOBEC, the enzyme group that exchanges G for A in viral nucleic acids and is usually inhibited by the HIV protein Vif, has been amplified and made effective from the initial stage of the infection. Furthermore, we propose that a cure for HIV may occur through HIV endogenization in humans, as observed for many other retroviruses in mammals, rather than clearance of all traces of HIV from human cells, which defines viral eradication. PMID:25366539

  13. Cellular localization and tissue distribution of endogenous DFCP1 protein.

    PubMed

    Nanao, Tomohisa; Koike, Masato; Yamaguchi, Junji; Sasaki, Mitsuho; Uchiyama, Yasuo

    2015-01-01

    Autophagy is essential for the maintenance of cellular metabolism. Once autophagy is induced in cells, the isolation membrane forms a so-called phagophore. The endoplasmic reticulum (ER) is one of several candidates for the membrane source for phagophores. Recently, LC3-positive isolation membranes were found to emerge from a DFCP1 (double FYVE domain-containing protein)-positive, ER-associated compartment called the omegasome. Although the GFP-tagged DFCP1 protein has been examined in cultured cells, little is known about the precise cellular and tissue distribution of this endogenous protein. To determine the expression of the endogenous DFCP1 protein, we produced antibodies specific to mouse DFCP1 protein. The antibody recognized both human and mouse DFCP1 proteins, both of which have molecular masses of approximately 87 kDa. In HeLa cells under normal conditions, immunoreactivity for DFCP1 was found dotted or tubular along Tom20-positive filamentous mitochondria and was only partially co-localized in the ER or Golgi apparatus. Moreover, under starved conditions, distinct DFCP1-positive structures became more dotted and scattered in the cytoplasm, while one part of the LC3-positive autophagosomes were immunopositive for DFCP1. These results indicate that an antibody raised against DFCP1 could be a useful tool in explaining the mechanism of phagophore formation from omegasome compartments.

  14. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    PubMed

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  15. Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein

    PubMed Central

    Much, Christian; Pavlinic, Dinko; Buness, Andreas; Rappsilber, Juri; Benes, Vladimir; Allshire, Robin; O’Carroll, Dónal

    2016-01-01

    Dicer is a large multi-domain protein responsible for the ultimate step of microRNA and short-interfering RNA biogenesis. In human and mouse cell lines, Dicer has been shown to be important in the nuclear clearance of dsRNA as well as the establishment of chromatin modifications. Here we set out to unambiguously define the cellular localization of Dicer in mice to understand if this is a conserved feature of mammalian Dicer in vivo. To this end, we utilized an endogenously epitope tagged Dicer knock-in mouse allele. From primary mouse cell lines and adult tissues, we determined with certainty by biochemical fractionation and confocal immunofluorescence microscopy that endogenous Dicer is exclusively cytoplasmic. We ruled out the possibility that a fraction of Dicer shuttles to and from the nucleus as well as that FGF or DNA damage signaling induce Dicer nuclear translocation. We also explored Dicer localization during the dynamic and developmental context of embryogenesis, where Dicer is ubiquitously expressed and strictly cytoplasmic in all three germ layers as well as extraembryonic tissues. Our data exclude a direct role for Dicer in the nuclear RNA processing in the mouse. PMID:27254021

  16. Hypoxia-Mimicking Nanofibrous Scaffolds Promote Endogenous Bone Regeneration.

    PubMed

    Yao, Qingqing; Liu, Yangxi; Tao, Jianning; Baumgarten, Keith M; Sun, Hongli

    2016-11-30

    Utilizing biomimetic materials to potentiate endogenous cell growth or signaling is superior to relying on exogenous cells or signals for bone formation. Desferoxamine (DFO), which is a hypoxia-mimetic agent that chelates iron (Fe(3+)), mimics hypoxia to encourage bone healing. However, high cytotoxicity, off-target effects, and the short half-life of DFO have significantly impeded its further applications. We mitigated these side effects by locally immobilizing DFO onto a gelatin nanofibrous (GF) scaffold that retained DFO's ability to chelate Fe(3+). Moreover, DFO-functionalized GF (GF-DFO) scaffolds, which have similar micro/macrostructures to GF scaffolds, not only demonstrated decreased cytotoxicity on both human umbilical vein endothelial cells and human mesenchymal stem cells but also significantly increased vascular endothelial growth factor (VEGF) expression in vitro. Most importantly, in our in vivo experiments on a critical-sized cranial bone defect mouse model, a significant amount of bone was formed in most of the GF-DFO scaffolds after six weeks, while very little new bone was observed in the GF scaffolds. These data suggest that use of a hypoxia-mimicking nanofibrous scaffold is a promising strategy for promoting endogenous bone formation.

  17. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells

    PubMed Central

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  18. Endogenous cortisol levels influence exposure therapy in spider phobia.

    PubMed

    Lass-Hennemann, Johanna; Michael, Tanja

    2014-09-01

    Previous research in patients with phobia showed that the administration of glucocorticoids reduces fear in phobic situations and enhances exposure therapy. Glucocorticoids underlie a daily cycle with a peak in the morning and low levels during the evening and night. The aim of the present study was to investigate whether exposure is more effective when conducted in the morning when endogenous cortisol levels are high. Sixty patients meeting DSM IV criteria for specific phobia (animal type) were randomly assigned to one-session exposure treatment either at 08.00 a.m. (high cortisol group) or at 06.00 p.m. (low cortisol group). Participants returned for a posttreatment assessment one week after therapy and a follow-up assessment three months after therapy. Both groups showed good outcome, but patients treated in the morning exhibited significantly less fear of spiders in the behavioral approach test (BAT) and a trend for lower scores on the Fear of Spiders Questionnaire (FSQ) than patients treated in the evening. This effect was present at posttreatment and follow-up. Our findings indicate that exposure therapy is more effective in the morning than in the evening. We suggest that this may be due to higher endogenous cortisol levels in the morning group that enhance extinction memory.

  19. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  20. Physical activity behavior predicts endogenous pain modulation in older adults.

    PubMed

    Naugle, Kelly M; Ohlman, Thomas; Naugle, Keith E; Riley, Zachary A; Keith, NiCole R

    2017-03-01

    Older adults compared with younger adults are characterized by greater endogenous pain facilitation and a reduced capacity to endogenously inhibit pain, potentially placing them at a greater risk for chronic pain. Previous research suggests that higher levels of self-reported physical activity are associated with more effective pain inhibition and less pain facilitation on quantitative sensory tests in healthy adults. However, no studies have directly tested the relationship between physical activity behavior and pain modulatory function in older adults. This study examined whether objective measures of physical activity behavior cross-sectionally predicted pain inhibitory function on the conditioned pain modulation (CPM) test and pain facilitation on the temporal summation (TS) test in healthy older adults. Fifty-one older adults wore an accelerometer on the hip for 7 days and completed the CPM and TS tests. Measures of sedentary time, light physical activity (LPA), and moderate to vigorous physical activity (MVPA) were obtained from the accelerometer. Hierarchical linear regressions were conducted to determine the relationship of TS and CPM with levels of physical activity, while controlling for demographic, psychological, and test variables. The results indicated that sedentary time and LPA significantly predicted pain inhibitory function on the CPM test, with less sedentary time and greater LPA per day associated with greater pain inhibitory capacity. Additionally, MVPA predicted pain facilitation on the TS test, with greater MVPA associated with less TS of pain. These results suggest that different types of physical activity behavior may differentially impact pain inhibitory and facilitatory processes in older adults.

  1. Endogenous allergens in the regulatory assessment of genetically engineered crops.

    PubMed

    Graf, Lynda; Hayder, Hikmat; Mueller, Utz

    2014-11-01

    A scientific approach to the assessment of foods derived from genetically engineered (GE) crops is critical to maintaining objectivity and public confidence in regulatory decisions. Principles developed at the international level support regulators and enable robust and transparent safety assessments. A comparison of key constituents in the GE crop with a suitable comparator is an important element of an assessment. In Europe, endogenous allergens would be included in the comparative analysis, however this approach has been hindered by technical limitations on the ability to accurately measure identified allergenic proteins. Over recent years, improved proteomic methods have enabled researchers to focus on major allergenic proteins in conventional food crops, as information on natural variability is largely lacking. Emerging data for soybean indicate that variability in levels of major allergens already in the food supply is broad. This raises questions about the biological interpretation of differences between a GE plant and its conventional counterpart, in particular, whether any conclusions about altered allergenicity could be inferred. This paper discusses the scientific justification for requiring proteomic analysis of endogenous allergens as part of the evaluation. Ongoing scientific review and corresponding international discussion are integral to ensuring that data requirements address legitimate risk assessment questions.

  2. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  3. Characterization of the murine plasminogen/urokinase-type plasminogen-activator system.

    PubMed

    Lijnen, H R; Van Hoef, B; Collen, D

    1996-11-01

    The murine plasminogen/urokinase-type plasminogen-activator (u-PA) system was studied using purified proteins, plasma and endothelioma cells. Recombinant murine u-PA was obtained as a single-chain molecule of 45 kDa which was converted to two-chain u-PA with plasmin by cleavage of the Lys159-Ile160 peptide bond. Murine plasminogen, purified from plasma as a single-chain protein of 95 kDa, was resistant to quantitative activation with murine recombinant two-chain u-PA: only 15% activation within 1 h at 37 degrees C was obtained in mixtures of 1 microM plasminogen and 5 nM recombinant two-chain u-PA, whereas quantitative activation was observed in the autologous human system. Addition of 6-aminohexanoic acid to native murine plasminogen resulted in quantitative activation within 1 h. In murine plasma in vitro, plasminogen was also resistant to quantitative activation with u-PA (50% activation within 1 h at 37 degrees C with 50 nM recombinant two-chain u-PA, whereas in the human system nearly quantitative activation was obtained). Murine plasma clots submerged in murine plasma were resistant to lysis with u-PA; < or = 2% clot lysis in 2 h was obtained with 80 nM recombinant two-chain u-PA in the autologous murine system whereas 50% clot lysis in 2 h required only 15 nM recombinant two-chain u-PA in the autologous human system. Saturable binding of murine recombinant two-chain u-PA was observed to murine endothelioma cells that are genetically deficient in u-PA (u-PA-/- End cells). Binding was characterized by a Kd of 5.5 nM and 800000 binding sites/cell. However, u-PA-/- End cells did not significantly stimulate the activation rate of murine plasminogen by murine recombinant two-chain u-PA and did not enhance the plasmin-mediated conversion rate of murine recombinant single-chain u-PA to its two-chain derivative. Murine recombinant two-chain u-PA bound to murine endothelioma cells was quantitatively inhibited by murine plasminogen-activator inhibitor-1 (PAI-1). Thus

  4. Endogenous IL-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer.

    PubMed

    Miller, J S; Tessmer-Tuck, J; Blake, N; Lund, J; Scott, A; Blazar, B R; Orchard, P J

    1997-10-01

    Interleukin (IL)-2 therapy given at tolerable doses is insufficient to induce maximum activation of natural killer (NK) cells. We recently demonstrated that NK cells expanded in vivo can be maximally activated by short-term ex vivo incubation with 1000 U/mL IL-2. However, IL-2 withdrawal, which would occur with reinfusion, may lead to a rapid loss of cell viability and function. We hypothesized that retroviral transduction could provide an endogenous source of IL-2 to maintain NK function as measured by proliferation and cytotoxicity. Enriched NK cells were transduced with supernatants containing an MFG-based retrovirus designed to express murine IL-2 cDNA. Several supernatant transduction strategies were evaluated. NK cells were initially cultured in 1000 U/mL of huIL2 for 7-8 days, harvested, and replated prior to transduction (4 hours at 37degrees C); this proved insufficient to sustain NK proliferation or maintain cytotoxicity after exogenous human IL-2 (huIL-2) withdrawal. An alternative transduction procedure using phosphate-depleted medium, centrifugation, and transduction for 16 hours at 32degrees C was then evaluated. NK cells transduced under these conditions maintained significant NK proliferation in the absence of exogenous IL-2 compared with sham-transduced controls. Two consecutive daily transductions resulted in less proliferation, suggesting that several exposures to retroviral supernatant may inhibit subsequent NK proliferation. Cytotoxicity of the transduced NK cells against K562 and Raji was maintained under these conditions without exogenous IL-2. Sham-transduced NK cells produced 8.3+/-2.6 U/mL of murine IL-2 (muIL-2) by ELISA (background) after 7 days without exogenous IL-2. In contrast, 109+/-23 U/mL muIL-2 was produced by NK cells transduced with supernatant from the MFG/muIL-2 producer line. These experiments demonstrate that NK cells can be successfully transduced with retroviruses and induced to express sufficient IL-2 to maintain their

  5. Dimethylarginine Dimethylaminohydrolase1 Is an Organ-Specific Mediator of End Organ Damage in a Murine Model of Hypertension

    PubMed Central

    Sydow, Karsten; Schmitz, Christine; von Leitner, Eike-Christin; von Leitner, Robin; Klinke, Anna; Atzler, Dorothee; Krebs, Christian; Wieboldt, Hartwig; Ehmke, Heimo; Schwedhelm, Edzard; Meinertz, Thomas; Blankenberg, Stefan; Böger, Rainer H.; Magnus, Tim

    2012-01-01

    Background The endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA) is an independent predictor of cardiovascular and overall mortality. Moreover, elevated ADMA plasma concentrations are associated with the extent of hypertension. However, data from small-sized clinical trials and experimental approaches using murine transgenic models have revealed conflicting results regarding the impact of ADMA and its metabolizing enzyme dimethylarginine dimethylaminohydrolase (DDAH) in the pathogenesis of hypertension. Methodology/Principal Findings Therefore, we investigated the role of ADMA and DDAH1 in hypertension-induced end organ damage using the uninephrectomized, deoxycorticosterone actetate salt, and angiotensin II-induced hypertension model in human DDAH1 (hDDAH1) overexpressing and wild-type (WT) mice. ADMA plasma concentrations differed significantly between hDDAH1 and WT mice at baseline, but did not significantly change during the induction of hypertension. hDDAH1 overexpression did not protect against hypertension-induced cardiac fibrosis and hypertrophy. In addition, the hypertension-induced impairment of the endothelium-dependent vasorelaxation of aortic segments ex vivo was not significantly attenuated by hDDAH1 overexpression. However, hDDAH1 mice displayed an attenuated hypertensive inflammatory response in renal tissue, resulting in less hypertensive renal injury. Conclusion/Significance Our data reveal that hDDAH1 organ-specifically modulates the inflammatory response in this murine model of hypertension. The lack of protection in cardiac and aortic tissues may be due to DDAH1 tissue selectivity and/or the extent of hypertension by the used combined model. However, our study underlines the potency of hDDAH1 overexpression in modulating inflammatory processes as a crucial step in the pathogenesis of hypertension, which needs further experimental and clinical investigation. PMID:23110194

  6. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immune therapeutic responses

    PubMed Central

    Kong, Ling-Yuan; Wu, Adam S.; Doucette, Tiffany; Wei, Jun; Priebe, Waldemar; Fuller, Gregory N.; Qiao, Wei; Sawaya, Raymond; Rao, Ganesh; Heimberger, Amy B.

    2010-01-01

    Purpose Pre-clinical murine model systems used for the assessment of therapeutics have not been predictive of human clinical responses, primarily because their clonotypic nature does not recapitulate the heterogeneous biology and immunosuppressive mechanisms of humans. Relevant model systems with mice that are immunologically competent are needed to evaluate the efficacy of therapeutic agents, especially immunotherapeutics. Experimental Design Using the RCAS/Ntv-a system, mice were engineered to co-express platelet-derived growth factor receptor (PDGF)-B + B-cell lymphoma (Bcl)-2 under the control of the glioneuronal-specific Nestin promoter. The degree and type of tumor-mediated immunosuppression was determined in these endogenously arising gliomas based upon the presence of macrophages and regulatory T cells (Tregs). The immunotherapeutic agent, WP1066, was tested in vivo to assess therapeutic efficacy and immune modulation. Results N-tva mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas. Consistent with observations in human high-grade gliomas, mice with high-grade gliomas also developed a marked intratumoral influx of macrophages that was influenced by tumor signal transducer and activator of transduction (STAT) 3 expression. The presence of intratumoral F4/80 macrophages was a negative prognosticator for long-term survival. In mice expressing both PDGF-B + Bcl-2 that were treated with WP1066, there was 55.5% increase in median survival time (P< 0.01), with an associated inhibition of intratumoral STAT3 and macrophages. Conclusions Although randomization is necessary for including mice in a therapeutic trial, these murine model systems are more suitable for testing therapeutics, and especially immune therapeutics, in the context of translational studies. PMID:20921210

  7. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system

    PubMed Central

    Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram

    2017-01-01

    In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor. PMID:28301575

  8. Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation

    PubMed Central

    Esnault, Stephane; Torr, Elizabeth E.; Bernau, Ksenija; Johansson, Mats W.; Kelly, Elizabeth A.; Sandbo, Nathan; Jarjour, Nizar N.

    2017-01-01

    Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore

  9. The Effect of Mir-451 Upregulation on Erythroid Lineage Differentiation of Murine Embryonic Stem Cells

    PubMed Central

    Obeidi, Narges; Pourfathollah, Ali Akbar; Soleimani, Masoud; Nikougoftar Zarif, Mahin; Kouhkan, Fatemeh

    2016-01-01

    Objective MicroRNAs (miRNAs) are small endogenous non-coding regulatory RNAs that control mRNAs post-transcriptionally. Several mouse stem cells miRNAs are cloned differentially regulated in different hematopoietic lineages, suggesting their possible role in hematopoietic lineage differentiation. Recent studies have shown that specific miRNAs such as Mir-451 have key roles in erythropoiesis. Materials and Methods In this experimental study, murine embryonic stem cells (mESCs) were infected with lentiviruses containing pCDH-Mir-451. Erythroid differentiation was assessed based on the expression level of transcriptional factors (Gata-1, Klf-1, Epor) and hemoglobin chains (α, β, γ , ε and ζ) genes using quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and presence of erythroid surface antigens (TER-119 and CD235a) using flow cytometery. Colony-forming unit (CFU) assay was also on days 14thand 21thafter transduction. Results Mature Mir-451 expression level increased by 3.434-fold relative to the untreated mESCs on day 4 after transduction (P<0.001). Mir-451 up-regulation correlated with the induction of transcriptional factor (Gata-1, Klf-1, Epor) and hemoglobin chain (α, β, γ, ε and ζ) genes in mESCs (P<0.001) and also showed a strong correlation with presence of CD235a and Ter- 119 markers in these cells (13.084and 13.327-fold increse, respectively) (P<0.05). Moreover, mESCs treated with pCDH-Mir-451 showed a significant raise in CFU-erythroid (CFU-E) colonies (5.2-fold) compared with untreated control group (P<0.05). Conclusion Our results showed that Mir-451 up-regulation strongly induces erythroid differentiation and maturation of mESCs. Overexpression of Mir-451 may have the potential to produce artificial red blood cells (RBCs) without the presence of any stimulatory cytokines. PMID:27540521

  10. Thermal stability, pH dependence and inhibition of four murine kynurenine aminotransferases

    PubMed Central

    2010-01-01

    Background Kynurenine aminotransferase (KAT) catalyzes the transamination of kynunrenine to kynurenic acid (KYNA). KYNA is a neuroactive compound and functions as an antagonist of alpha7-nicotinic acetylcholine receptors and is the only known endogenous antagonist of N-methyl-D-aspartate receptors. Four KAT enzymes, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase, have been reported in mammalian brains. Because of the substrate overlap of the four KAT enzymes, it is difficult to assay the specific activity of each KAT in animal brains. Results This study concerns the functional expression and comparative characterization of KAT I, II, III, and IV from mice. At the applied test conditions, equimolar tryptophan with kynurenine significantly inhibited only mouse KAT I and IV, equimolar methionine inhibited only mouse KAT III and equimolar aspartate inhibited only mouse KAT IV. The activity of mouse KAT II was not significantly inhibited by any proteinogenic amino acids at equimolar concentrations. pH optima, temperature preferences of four KATs were also tested in this study. Midpoint temperatures of the protein melting, half life values at 65°C, and pKa values of mouse KAT I, II, III, and IV were 69.8, 65.9, 64.8 and 66.5°C; 69.7, 27.4, 3.9 and 6.5 min; pH 7.6, 5.7, 8.7 and 6.9, respectively. Conclusion The characteristics reported here could be used to develop specific assay methods for each of the four murine KATs. These specific assays could be used to identify which KAT is affected in mouse models for research and to develop small molecule drugs for prevention and treatment of KAT-involved human diseases. PMID:20482848

  11. Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus.

    PubMed

    Baker, Salah A; Hennig, Grant W; Salter, Anna K; Kurahashi, Masaki; Ward, Sean M; Sanders, Kenton M

    2013-12-15

    Platelet-derived growth factor receptor α positive (PDGFRα(+)) cells are suggested to mediate purinergic inputs in GI muscles, but the responsiveness of these cells to purines in situ has not been evaluated. We developed techniques to label and visualize PDGFRα(+) cells in murine gastric fundus, load cells with Ca(2+) indicators, and follow their activity via digital imaging. Immunolabelling demonstrated a high density of PDGFRα(+) cells in the fundus. Cells were isolated and purified by fluorescence-activated cell sorting (FACS) using endogenous expression of enhanced green fluorescent protein (eGFP) driven off the Pdgfra promoter. Quantitative PCR showed high levels of expression of purinergic P2Y1 receptors and SK3 K(+) channels in PDGFRα(+) cells. Ca(2+) imaging was used to characterize spontaneous Ca(2+) transients and responses to purines in PDGFRα(+) cells in situ. ATP, ADP, UTP and β-NAD elicited robust Ca(2+) transients in PDGFRα(+) cells. Ca(2+) transients were also elicited by the P2Y1-specific agonist (N)-methanocarba-2MeSADP (MRS-2365), and inhibited by MRS-2500, a P2Y1-specific antagonist. Responses to ADP, MRS-2365 and β-NAD were absent in PDGFRα(+) cells from P2ry1((-/-)) mice, but responses to ATP were retained. Purine-evoked Ca(2+) transients were mediated through Ca(2+) release mechanisms. Inhibitors of phospholipase C (U-73122), IP3 (2-APB), ryanodine receptors (Ryanodine) and SERCA pump (cyclopiazonic acid and thapsigargin) abolished Ca(2+) transients elicited by purines. This study provides a link between purine binding to P2Y1 receptors and activation of SK3 channels in PDGFRα(+) cells. Activation of Ca(2+) release is likely to be the signalling mechanism in PDGFRα(+) cells responsible for the transduction of purinergic enteric inhibitory input in gastric fundus muscles.

  12. A Histomorphometric Analysis of Radiation Damage in an Isogenic Murine Model of Distraction Osteogenesis

    PubMed Central

    Zheutlin, Alexander R.; Deshpande, Sagar S.; Nelson, Noah S.; Polyatskaya, Yekaterina; Rodriguez, Jose J.; Donneys, Alexis; Buchman, Steven R.

    2015-01-01

    Purpose The devastation radiation therapy (XRT) causes to endogenous tissue in head and neck cancer (HNC) patients can be a prohibitive obstacle in reconstruction of the mandible, demanding a better understanding of XRT-induced damage and options for reconstruction. Our study investigates the cellular damage caused by radiation in an isogenic murine model of mandibular distraction osteogenesis (DO). We posit that radiation will result in reduced osteocytes, with elevated empty lacunae and immature osteoid. Methods Twenty Lewis rats were randomly assigned to two groups: DO (n=10) and XRT/DO (n=10). Both groups underwent an osteotomy and mandibular DO across a 5.1 mm gap. XRT was administered to the XRT/DO group at a fractionated, human equivalent dose of 35 Gy prior to surgery. Animals were sacrificed on postoperative day 40 and mandibles were harvested and sectioned for histological analysis. Results Bone that underwent radiation revealed a significantly decreased osteocyte count and complementary increase in empty lacunae when compared to non-XRT bone (p=0.019, p=0.000). Additionally, XRT bone demonstrated increased immature osteoid and decreased mature woven bone when compared to non-radiated bone (p=0.001 and p=0.003, respectively). Furthermore, analysis of the ratio of immature osteoid to woven bone volume exhibited a significant increase in the XRT bone, further revealing the devastating damage brought by XRT (p=0.001). Conclusion These results clearly demonstrate the cellular diminution that occurs as a result of radiation. This foundational study provides the groundwork upon which to investigate cellular therapies in an immunoprivileged model of mandibular DO. PMID:26341682

  13. Somatostatin modulates mast cell-induced responses in murine spinal neurons and satellite cells.

    PubMed

    Van Op den bosch, Joeri; Van Nassauw, Luc; Van Marck, Eric; Timmermans, Jean-Pierre

    2009-08-01

    The course of intestinal inflammatory responses is tightly coordinated by the extensive communication between the immune system and the enteric nervous system, among which the bidirectional mast cell-neuron interaction within the intestinal wall plays a prominent role. Recent research suggests that somatostatin (SOM) is able to inhibit this self-reinforcing network by simultaneously suppressing the inflammatory activities of both neurons and mast cells. Therefore, we assessed the modulatory effects of SOM on both the short-term and long-term effects induced by the main mast cell mediators histamine (HIS) and 5-HT on spinal sensory neurons. Short-term incubation of dorsal root ganglion cultures with HIS and 5-HT induced neuronal CGRP-release and calcium-mediated activation of both neurons and nonneuronal cells, both of which effects were significantly reduced by SOM. In addition, SOM was also able to suppress the increased neuronal expression of pro- and anti-inflammatory peptides induced by long-term exposure to HIS and 5-HT. Immunocytochemical and molecular-biological experiments revealed the possible involvement of somatostatin receptor 1 (SSTR1) and SSTR2A in these profound SOM-dependent effects. These data, combined with the increased expression of pro- and anti-inflammatory peptides and several SSTRs in murine dorsal root ganglia following intestinal inflammation, reveal that intestinal inflammation not only induces the onset of proinflammatory cascades but simultaneously triggers endogenous systems destined to prevent excessive tissue damage. Moreover, these data provide for the first time functional evidence that SOM is able to directly modulate intestinal inflammatory responses by interference with the coordinating mast cell-neuron communication.

  14. Murine cardiosphere-derived cells are impaired by age but not by cardiac dystrophic dysfunction.

    PubMed

    Hsiao, Lien-Cheng; Perbellini, Filippo; Gomes, Renata S M; Tan, Jun Jie; Vieira, Silvia; Faggian, Giuseppe; Clarke, Kieran; Carr, Carolyn A

    2014-05-01

    To be clinically relevant as a therapy for heart failure, endogenous progenitor cells must be isolated and expanded from aged and/or diseased tissue. Here, we investigated the effect of age and cardiac impairment resulting from lack of dystrophin on murine cardiosphere-derived cells (CDCs). CDCs were isolated and expanded from atrial biopsies from wild-type mice aged 1.5, 6, 18, and 24 months and from mdx mice aged 6 and 18 months. Cardiac function was measured in mdx mice and age-matched wild-type mice using high-resolution cine magnetic resonance imaging. CDCs could be isolated and expanded from all mice, however, the number of cells obtained, and their regenerative potential, decreased with age, as demonstrated by decreased expression of stem cell markers, c-kit and Sca-1, and decreased cell proliferation, migration, clonogenicity, and differentiation. Six-month-old mdx mice showed right ventricular (RV) dilation and reduced RV ejection fraction (EF) in comparison to wild-type mice. Older mdx mice displayed significant RV and left ventricular dilation and decreased EF in both ventricles, compared with age-matched wild-type mice. Mdx mouse hearts contained significantly more fibrotic tissue than age-matched wild-type mouse hearts. However, CDCs isolated from mice aged 6 and 18 months had the same number and regenerative potential from mdx mice and age-matched wild-type mice. Thus, the cardiac progenitor cell population is impaired by age but is not substantially altered by the progressive deterioration in function of the dystrophic heart.

  15. Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels.

    PubMed

    Liu, Q; Lee, E; Davis, R L

    2014-01-17

    The spiral ganglion conveys afferent auditory information predominantly through a single class of type I neurons that receive signals from inner hair cell sensory receptors. These auditory primary afferents, like in other systems (Puopolo and Belluzzi, 1998; Gascon and Moqrich, 2010; Leao et al., 2012) possess a marked diversity in their electrophysiological features (Taberner and Liberman, 2005). Consistent with these observations, when the auditory primary afferents were assessed in neuronal explants separated from their peripheral and central targets it was found that individual neurons were markedly heterogeneous in their endogenous electrophysiological features. One aspect of this heterogeneity, obvious throughout the ganglion, was their wide range of excitability as assessed by voltage threshold measurements (Liu and Davis, 2007). Thus, while neurons in the base differed significantly from apical and middle neurons in their voltage thresholds, each region showed distinctly wide ranges of values. To determine whether the resting membrane potentials (RMPs) of these neurons correlate with the threshold distribution and to identify the ion channel regulatory elements underlying heterogeneous neuronal excitability in the ganglion, patch-clamp recordings were made from postnatal day (P5-8) murine spiral ganglion neurons in vitro. We found that RMP mirrored the tonotopic threshold distribution, and contributed an additional level of heterogeneity in each cochlear location. Pharmacological experiments further indicated that threshold and RMP was coupled through the Kv1 current, which had a dual impact on both electrophysiological parameters. Whereas, hyperpolarization-activated cationic channels decoupled these two processes by primarily affecting RMP without altering threshold level. Thus, beyond mechanical and synaptic specializations, ion channel regulation of intrinsic membrane properties imbues spiral ganglion neurons with different excitability levels, a

  16. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    PubMed Central

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  17. New insight into transcription of human endogenous retroviral elements.

    PubMed

    Pačes, Jan; Huang, Yao-Ting; Pačes, Václav; Rídl, Jakub; Chang, Chung-Ming

    2013-03-25

    It is generally assumed that human endogenous retroviral elements (HERVs) belong to the class of genomic repetitive nucleotide sequences often called 'junk DNA'. These elements were categorized to families, and members of some of these families (e.g. HERV-H, HERV-W and HERV-K) were shown to be transcribed. These transcriptions were associated with several severe diseases such as mental disorders, AIDS, autoimmune diseases and cancer. In this review we discuss several bioinformatics strategies for genome-wide scan of HERVs transcription using high-throughput RNA sequencing on several platforms. We show that many more HERVs than previously described are transcribed to various levels and we discuss possible implications of these transcriptions.

  18. Measurement of endogenous carbon monoxide formation in biological systems.

    PubMed

    Marks, Gerald S; Vreman, Hendrik J; McLaughlin, Brian E; Brien, James F; Nakatsu, Kanji

    2002-04-01

    Endogenous carbon monoxide (CO) formation has been measured in different biological systems using a variety of analytical procedures. The methods include gas chromatography-reduction gas detection, gas chromatography-mass spectroscopic detection, laser sensor-infrared absorption, UV-visible spectrophotometric measurement of CO-hemoglobin or CO-myoglobin complex, and formation of (14)CO from (14)C-heme formed following [2-(14)C]glycine administration. CO formation ranged from a low of 0.029 nmol/mg of protein/h in chorionic villi of term human placenta to a high of 0.28 nmol/mg of protein/h in rat olfactory receptor neurons in culture and rat liver perfusate.

  19. Generation of neutralising antibodies against porcine endogenous retroviruses (PERVs)

    SciTech Connect

    Kaulitz, Danny; Fiebig, Uwe; Eschricht, Magdalena; Wurzbacher, Christian; Kurth, Reinhard; Denner, Joachim

    2011-03-01

    Antibodies neutralising porcine endogenous retroviruses (PERVs) were induced in different animal species by immunisation with the transmembrane envelope protein p15E. These antibodies recognised epitopes, designated E1, in the fusion peptide proximal region (FPPR) of p15E, and E2 in the membrane proximal external region (MPER). E2 is localised in a position similar to that of an epitope in the transmembrane envelope protein gp41 of the human immunodeficiency virus-1 (HIV-1), recognised by the monoclonal antibody 4E10 that is broadly neutralising. To detect neutralising antibodies specific for PERV, a novel assay was developed, which is based on quantification of provirus integration by real-time PCR. In addition, for the first time, highly effective neutralising antibodies were obtained by immunisation with the surface envelope protein of PERV. These data indicate that neutralising antibodies can be induced by immunisation with both envelope proteins.

  20. Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?

    PubMed

    Izsvák, Zsuzsanna; Wang, Jichang; Singh, Manvendra; Mager, Dixie L; Hurst, Laurence D

    2016-01-01

    Remnants of ancient retroviral infections during evolution litter all mammalian genomes. In modern humans, such endogenous retroviral (ERV) sequences comprise at least 8% of the genome. While ERVs and other types of transposable elements undoubtedly contribute to the genomic "junk yard", functions for some ERV sequences have been demonstrated, with growing evidence that ERVs can be important players in gene regulatory processes. Here we focus on one particular large family of human ERVs, termed HERVH, which several recent studies suggest has a key regulatory role in human pluripotent stem cells. Remarkably, this is not the first instance of an ERV controlling pluripotency. We speculate as to why this convergent evolution might have come about, suggesting that it may reflect selection on the virus to extend the time available for transposition. Alternatively it may reflect serendipity alone.

  1. Endogenous, Spontaneous Formation of Beta-Lactamase in Staphylococcus aureus

    PubMed Central

    Sachithanandam, S.; Lowery, D. L.; Saz, A. K.

    1974-01-01

    In a β-lactamase-inducible strain of Staphylococcus aureus, the enzyme appears spontaneously in the absence of added inducer during lag and early log phases of growth and then declines rapidly to low levels. The endogenous inducer responsible for appearance of the enzyme has been isolated and purified and characterized as a peptidoglycan, containing muramic acid, glucosamine, glutamic acid, alanine, lysine, and glycine. The inducing compound could be isolated from the cells only during the lag and early log phases and from no other later periods. The data obtained are consistent with the thesis advanced earlier from this laboratory that β-lactamase serves a cellular function in the producing cell more important and beyond its capability of hydrolyzing certain penicillins to the antibiotically inactive penicilloic acids. PMID:4451348

  2. What is the real relevance of endogenous ghrelin?

    PubMed

    Al Massadi, Omar; López, Miguel; Fernø, Johan; Diéguez, Carlos; Nogueiras, Rubén

    2015-08-01

    Ghrelin is a pleiotropic and ubiquitous gastric hormone implicated in body physiology. Ghrelin exhibits potent orexigenic actions and increases body weight and adiposity. Ghrelin is also involved in other metabolic functions among which we can highlight the GH releasing activity and the regulation of glucose homeostasis. Ghrelin needs the enzyme GOAT to be acylated, a step essential for binding to the GHSR1a receptor to exert its functions. Genetic animal models emerge as important tools to delineate the physiological relevance of ghrelin on energy balance. Despite the numerous reports using different genetically engineered mouse models targeting the ghrelin system, its endogenous relevance in metabolism seems to be less important than its pharmaceutical options.

  3. Partial characterization of endogenous digoxinlike substance in human urine

    SciTech Connect

    Vinge, E.; Ekman, R.

    1988-01-01

    Urinary samples were collected from individuals not taking cardiac glycosides. Aliquots of 30 ml were passed through preparative octadecylsilane-bonded phase columns and eluted in fractions by stepwise increasing concentrations of acetonitrile. Eluted fractions were analysed for their contents of endogenous digoxinlike substance (EDLS) by radioimmunoassay of digoxin and by a bioassay of cardiac glycosides, which measures the uptake of rubidium (/sup 86/Rb) by erythrocytes as an index of Na+, K+-ATPase activity. In both assays, digoxinlike activity was found in several fractions, but the highest values were consistently measured in the fractions eluted with 40% acetonitrile. Greater amounts of EDLS were recovered from the urine of pregnant women than from the urine of men and nonpregnant women.

  4. Excretion of artifactual endogenous digitalis-like factors

    SciTech Connect

    Kelly, R.A.

    1986-07-01

    Radioimmunoassays have been used to detect digoxin-like immunoreactive factors (DLF) in the plasma and urine of hypertensive patients and rats with deoxycorticosterone acetate (DOCA)-salt hypertension. DLF, partially purified from DOCA-HS urine by antidigoxin antibody immunoaffinity chromatography, was found to have a molecular weight <2000. When DOCA-HS rats were switched to the low-sodium chow, DLF excretion dropped precipitously. No measurable DLF was detected in the plasma of rats eating either chow. However, >95% of the urinary DLF could be attributed to a contaminant in the standard laboratory chow. These data document the importance of excluding nonspecific compounds and exogenous sources of DLF when sensitive radioligand and biologic assays are used to detect endogenous inhibitors of the sodium pump.

  5. Endogenous temporal orienting of attention in detection and discrimination tasks.

    PubMed

    Correa, Angel; Lupiáñez, Juan; Milliken, Bruce; Tudela, Pío

    2004-02-01

    Endogenous temporal-orienting effects were studied using a cuing paradigm in which the cue indicated the time interval during which the target was most likely to appear. Temporal-orienting effects were defined by lower reaction times (RTs) when there was a match between the temporal expectancy for a target (early or late) and the time interval during which the target actually appeared than when they mismatched. Temporal-orienting effects were found for both early and late expectancies with a detection task in Experiment 1. However, catch trials were decisive in whether temporal-orienting effects were observed in the early-expectancy condition. No temporal-orienting effects were found in the discrimination task. In Experiments 2A and 2B, temporal-orienting effects were observed in the discrimination task; however, they were larger when temporal expectancy was manipulated between blocks, rather than within blocks.

  6. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets.

    PubMed

    McKenna, Joseph P; Dhumpa, Raghuram; Mukhitov, Nikita; Roper, Michael G; Bertram, Richard

    2016-10-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal's ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion.

  7. Endogenous synthesis of taurine and GABA in rat ocular tissues.

    PubMed

    Heinämäki, A A

    1988-01-01

    The endogenous production of taurine and gamma-aminobutyric acid (GABA) in rat ocular tissues was investigated. The activities of taurine-producing enzyme, cysteine sulfinic acid decarboxylase (CSAD), and GABA-synthesizing enzyme, glutamic acid decarboxylase (GAD), were observed in the retina, lens, iris-ciliary body and cornea. The highest specific activity of CSAD was in the cornea and that of GAD in the retina. The discrepancy between CSAD activity and taurine content within the ocular tissues indicates that intra- or extraocular transport processes may regulate the concentration of taurine in the rat eye. The GAD activity and the content of GABA were distributed in parallel within the rat ocular tissues. The quantitative results suggest that the GAD/GABA system has functional significance only in the retina of the rat eye.

  8. Subdividing tinnitus into bruits and endogenous, exogenous, and other forms.

    PubMed

    Claussen, Claus F

    2005-01-01

    Tinnitus is an important complaint or disease or a combination, especially within our aging population. Neurootologists clinically deal with many different disorders of the human cranial senses, of which tinnitus is a very frequent type. With respect to neurootological clinical work, we delineate at least three groups of tinnitus. In bruits, patients complain of noise within the head (e.g., bubbling, hissing, pulsating); the bruit can be recorded as a physically existing sound in the human skull and is heard by patients. Endogenous tinnitus can be treated by external masking to suppress noise within the ears, whereas in exogenous tinnitus, patients seek to avoid any outside noise or sounds; they report that tinnitus decreases as soon as they go, for instance, into the cellar of a house or other soundproof place.

  9. Light-induced suppression of endogenous circadian amplitude in humans

    NASA Technical Reports Server (NTRS)

    Jewett, Megan; Czeisler, Charles A.; Kronauer, Richard E.

    1991-01-01

    A recent demonstration that the phase of the human circadian pacemaker could be inverted using an unconventional three-cycle stimulus has led to an investigation of whether critically timed exposure to a more moderate stimulus could drive that oscillator toward its singularity, a phaseless position at which the amplitude of circadian oscillation is zero. It is reported here that exposure of humans to fewer cycles of bright light, centered around the time at which the human circadian pacemaker is most sensitive to light-induced phase shifts, can markedly attenuate endogenous cicadian amplitude. In some cases this results in an apparent loss of rhythmicity, as expected to occur in the region of singularity.

  10. CYTOCHEMICAL LOCALIZATION OF ENDOGENOUS PEROXIDASE IN THYROID FOLLICULAR CELLS

    PubMed Central

    Strum, Judy M.; Karnovsky, Morris J.

    1970-01-01

    Endogenous peroxidase activity in rat thyroid follicular cells is demonstrated cytochemically. Following perfusion fixation of the thyroid gland, small blocks of tissue are incubated in a medium containing substrate for peroxidase, before being postfixed in osmium tetroxide, and processed for electron microscopy. Peroxidase activity is found in thyroid follicular cells in the following sites: (a) the perinuclear cisternae, (b) the cisternae of the endoplasmic reticulum, (c) the inner few lamellae of the Golgi complex, (d) within vesicles, particularly those found apically, and (e) associated with the external surfaces of the microvilli that project apically from the cell into the colloid. In keeping with the radioautographic evidence of others and the postulated role of thyroid peroxidase in iodination, it is suggested that the microvillous apical cell border is the major site where iodination occurs. However, that apical vesicles also play a role in iodination cannot be excluded. The in vitro effect of cyanide, aminotriazole, and thiourea is also discussed. PMID:4190069

  11. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    PubMed

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  12. Endogenous S-nitrosothiols protect against myocardial injury.

    PubMed

    Lima, Brian; Lam, Gregory K W; Xie, Liang; Diesen, Diana L; Villamizar, Nestor; Nienaber, Jeffrey; Messina, Emily; Bowles, Dawn; Kontos, Christopher D; Hare, Joshua M; Stamler, Jonathan S; Rockman, Howard A

    2009-04-14

    Despite substantial evidence that nitric oxide (NO) and/or endogenous S-nitrosothiols (SNOs) exert protective effects in a variety of cardiovascular diseases, the molecular details are largely unknown. Here we show that following left coronary artery ligation, mice with a targeted deletion of the S-nitrosoglutathione reductase gene (GSNOR(-/-)) have reduced myocardial infarct size, preserved ventricular systolic and diastolic function, and maintained tissue oxygenation. These profound physiological effects are associated with increases in myocardial capillary density and S-nitrosylation of the transcription factor hypoxia inducible factor-1alpha (HIF-1alpha) under normoxic conditions. We further show that S-nitrosylated HIF-1alpha binds to the vascular endothelial growth factor (VEGF) gene, thus identifying a role for GSNO in angiogenesis and myocardial protection. These results suggest innovative approaches to modulate angiogenesis and preserve cardiac function.

  13. Odd couple: The unexpected partnership of glucocorticoid hormones and cysteinyl-leukotrienes in the extrinsic regulation of murine bone-marrow eosinopoiesis

    PubMed Central

    Xavier-Elsas, Pedro; Masid-de-Brito, Daniela; Vieira, Bruno Marques; Gaspar-Elsas, Maria Ignez C

    2017-01-01

    Granulopoiesis in murine bone-marrow is regulated by both intrinsic and extrinsic factors (including hormones, drugs, inflammatory mediators and cytokines). Eosinophils, a minor subpopulation of circulating leukocytes, which remains better understood in its contributions to tissue injury in allergic disease than in its presumably beneficial actions in host defense, provide a striking example of joint regulation of granulopoiesis within murine bone-marrow by all of these classes of extrinsic factors. We first described the upregulation of eosinopoiesis in bone-marrow of allergen-sensitized mice following airway allergen challenge. Over the last decade, we were able to show a critical role for endogenous glucocorticoid hormones and cytokines in mediating this phenomenon through modification of cytokine effects, thereby supporting a positive association between stress hormones and allergic reactions. We have further shown that cysteinyl-leukotrienes (CysLT), a major proinflammatory class of lipid mediators, generated through the 5-lipoxygenase pathway, upregulate bone-marrow eosinopoiesis in vivo and in vitro. CysLT mediate the positive effects of drugs (indomethacin and aspirin) and of proallergic cytokines (eotaxin/CCL11 and interleukin-13) on in vitro eosinopoiesis. While these actions of endogenous GC and CysLT might seem unrelated and even antagonistic, we demonstrated a critical partnership of these mediators in vivo, shedding light on mechanisms linking stress to allergy: GC are required for CysLT-mediated upregulation of bone-marrow eosinopoiesis in vivo, but also attenuate subsequent ex vivo responses to CysLT. GC and CysLT therefore work together to induce eosinophilia, but through subtle regulatory mechanisms also limit the magnitude of subsequent bone-marrow responses to allergen. PMID:28261551

  14. A review on endogenous regenerative technology in periodontal regenerative medicine.

    PubMed

    Chen, Fa-Ming; Zhang, Jing; Zhang, Min; An, Ying; Chen, Fang; Wu, Zhi-Fen

    2010-11-01

    Periodontitis is a globally prevalent inflammatory disease that causes the destruction of the tooth-supporting apparatus and potentially leads to tooth loss. Currently, the methods to reconstitute lost periodontal structures (i.e. alveolar bone, periodontal ligament, and root cementum) have relied on conventional mechanical, anti-infective modalities followed by a range of regenerative procedures such as guided tissue regeneration, the use of bone replacement grafts and exogenous growth factors (GFs), and recently developed tissue engineering technologies. However, all current or emerging paradigms have either been shown to have limited and variable outcomes or have yet to be developed for clinical use. To accelerate clinical translation, there is an ongoing need to develop therapeutics based on endogenous regenerative technology (ERT), which can stimulate latent self-repair mechanisms in patients and harness the host's innate capacity for regeneration. ERT in periodontics applies the patient's own regenerative 'tools', i.e. patient-derived GFs and fibrin scaffolds, sometimes in association with commercialized products (e.g. Emdogain and Bio-Oss), to create a material niche in an injured site where the progenitor/stem cells from neighboring tissues can be recruited for in situ periodontal regeneration. The choice of materials and the design of implantable devices influence therapeutic potential and the number and invasiveness of the associated clinical procedures. The interplay and optimization of each niche component involved in ERT are particularly important to comprehend how to make the desired cell response safe and effective for therapeutics. In this review, the emerging opportunities and challenges of ERT that avoid the ex vivo culture of autologous cells are addressed in the context of new approaches for engineering or regeneration of functional periodontal tissues by exploiting the use of platelet-rich products and its associated formulations as key

  15. Early Neurobehavioral Development of Mice Lacking Endogenous PACAP.

    PubMed

    Farkas, Jozsef; Sandor, Balazs; Tamas, Andrea; Kiss, Peter; Hashimoto, Hitoshi; Nagy, Andras D; Fulop, Balazs D; Juhasz, Tamas; Manavalan, Sridharan; Reglodi, Dora

    2017-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a multifunctional neuropeptide. In addition to its diverse physiological roles, PACAP has important functions in the embryonic development of various tissues, and it is also considered as a trophic factor during development and in the case of neuronal injuries. Data suggest that the development of the nervous system is severely affected by the lack of endogenous PACAP. Short-term neurofunctional outcome correlates with long-term functional deficits; however, the early neurobehavioral development of PACAP-deficient mice has not yet been evaluated. Therefore, the aim of the present study was to describe the postnatal development of physical signs and neurological reflexes in mice partially or completely lacking PACAP. We examined developmental hallmarks during the first 3 weeks of the postnatal period, during which period most neurological reflexes and motor coordination show most intensive development, and we describe the neurobehavioral development using a complex battery of tests. In the present study, we found that PACAP-deficient mice had slower weight gain throughout the observation period. Interestingly, mice partially lacking PACAP weighed significantly less than homozygous mice. There was no difference between male and female mice during the first 3 weeks. Some other signs were also more severely affected in the heterozygous mice than in the homozygous mice, such as air righting, grasp, and gait initiation reflexes. Interestingly, incisor teeth erupted earlier in mice lacking PACAP. Motor coordination, shown by the number of foot-faults on an elevated grid, was also less developed in PACAP-deficient mice. In summary, our results show that mice lacking endogenous PACAP have slower weight gain during the first weeks of development and slower neurobehavioral development regarding a few developmental hallmarks.

  16. Endogenous technological and population change under increasing water scarcity

    NASA Astrophysics Data System (ADS)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2014-