Science.gov

Sample records for endogenous neurotransmitter inhibition

  1. Neurotransmitters

    NASA Video Gallery

    Our nerve cells (neurons) communicate with each other using little chemical messengers called neurotransmitters. These neurotransmitters are transferred from one neuron to the next within a space c...

  2. Common drugs inhibit human organic cation transporter 1 (OCT1)-mediated neurotransmitter uptake.

    PubMed

    Boxberger, Kelli H; Hagenbuch, Bruno; Lampe, Jed N

    2014-06-01

    The human organic cation transporter 1 (OCT1) is a polyspecific transporter involved in the uptake of positively charged and neutral small molecules in the liver. To date, few endogenous compounds have been identified as OCT1 substrates; more importantly, the effect of drugs on endogenous substrate transport has not been examined. In this study, we established monoamine neurotransmitters as substrates for OCT1, specifically characterizing serotonin transport in human embryonic kidney 293 cells. Kinetic analysis yielded a Km of 197 micomolar and a Vmax of 561 pmol/mg protein/minute for serotonin. Furthermore, we demonstrated that serotonin uptake was inhibited by diphenhydramine, fluoxetine, imatinib, and verapamil, with IC50 values in the low micromolar range. These results were recapitulated in primary human hepatocytes, suggesting that OCT1 plays a significant role in hepatic elimination of serotonin and that xenobiotics may alter the elimination of endogenous compounds as a result of interactions at the transporter level.

  3. Re-examining how complexin inhibits neurotransmitter release

    PubMed Central

    Trimbuch, Thorsten; Xu, Junjie; Flaherty, David; Tomchick, Diana R; Rizo, Josep; Rosenmund, Christian

    2014-01-01

    Complexins play activating and inhibitory functions in neurotransmitter release. The complexin accessory helix inhibits release and was proposed to insert into SNARE complexes to prevent their full assembly. This model was supported by ‘superclamp’ and ‘poor-clamp’ mutations that enhanced or decreased the complexin-I inhibitory activity in cell–cell fusion assays, and by the crystal structure of a superclamp mutant bound to a synaptobrevin-truncated SNARE complex. NMR studies now show that the complexin-I accessory helix does not insert into synaptobrevin-truncated SNARE complexes in solution, and electrophysiological data reveal that superclamp mutants have slightly stimulatory or no effects on neurotransmitter release, whereas a poor-clamp mutant inhibits release. Importantly, increasing or decreasing the negative charge of the complexin-I accessory helix inhibits or stimulates release, respectively. These results suggest a new model whereby the complexin accessory helix inhibits release through electrostatic (and perhaps steric) repulsion enabled by its location between the vesicle and plasma membranes. DOI: http://dx.doi.org/10.7554/eLife.02391.001 PMID:24842998

  4. Efficient measurement of endogenous neurotransmitters in small localized regions of central nervous systems in vitro with HPLC.

    PubMed

    Shao, Xuesi M; Feldman, Jack L

    2007-03-15

    High performance liquid chromatography (HPLC) is widely used to determine neurotransmitter concentrations in the central nervous system (CNS). Finding the optimal methods to sample from CNS tissue poses a challenge for neuroscientists. Here, we describe a method that allows assay of neurotransmitters (or other chemicals) in small regions (down to 180mum in diameter) in in vitro preparations concurrently with electrophysiological recordings. The efficiency for measuring small amounts of chemicals is enhanced by a sample collecting pipette with filter paper at the tip that makes close contact with the target region in CNS tissue. With a wire plunger in the calibrated pipette controlled by a microsyringe pump, there is virtually no dead volume. Samples in a volume of 10muL (taken, e.g., at 2muL/min over 5min) can be injected into a HPLC machine with microbore columns. We demonstrate the effectiveness of this method by measuring acetylcholine (ACh) in the ventral horn and its surrounding areas of the spinal cord in en bloc brainstem-spinal cord preparations. In control conditions, endogenous ACh levels in these regions were detectable. Application of neostigmine (an inhibitor of acetylcholinesterases (AChEs)) increased ACh concentrations, and at the same time, induced tonic/seizure-like activity in efferent motor output recorded from cervical ventral nerve roots. Higher ACh concentrations in the ventral horn were differentiated from nearby regions: the lateral and midline aspects of the ventral spinal cord. In addition, ACh in the preBötzinger Complex (preBötC) and the hypoglossal nucleus in medullary slice preparations can also be measured. Our results indicate that the method proposed in this study can be used to measure neurotransmitters in small and localized CNS regions. Correlation between changes in neurotransmitters in target regions and the neuronal activities can be revealed in vitro. Our data also suggest that there is endogenous ACh release in spinal

  5. Hyperforin represents the neurotransmitter reuptake inhibiting constituent of hypericum extract.

    PubMed

    Müller, W E; Singer, A; Wonnemann, M; Hafner, U; Rolli, M; Schäfer, C

    1998-06-01

    Hydroalcoholic hypericum extract inhibits the synaptosomal uptake of serotonin, norepinephrine, and dopamine with about similar affinities and leads to a significant down-regulation of cortical beta-adrenoceptors and 5-HT2-receptors after subchronic treatment of rats. While neither hypericine nor kaempferol did show any reuptake inhibiting properties, hyperforin was identified as the unspecific reuptake inhibitor of hypericum extracts with half-maximal inhibitory concentrations for the three synaptosomal uptake systems mentioned above between 80 and 200 nmol/l. Moreover, a hyperforin-enriched (38%) CO2 extract also leads to a significant beta-receptor down-regulation after subchronic treatment. The data suggest hyperforin as the active principle of hypericum extracts in biochemical models of antidepressant activity.

  6. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins.

    PubMed

    Dolly, Oliver

    2003-01-01

    Botulinum toxin type A, a protein long used in the successful treatment of various dystonias, has a complex mechanism of action that results in muscle relaxation. At the neuromuscular junction, the presynaptic nerve ending is packed with synaptic vesicles filled with acetylcholine, and clustered at the tip of the folds of the postsynaptic muscle membrane are the acetylcholine receptors. Synaptic vesicles fuse with the membrane in response to an elevation of intraneuronal calcium concentration and undergo release of their transmitter by exocytosis. Intracellular proteins that contribute to the fusion of the vesicles with the plasma membrane during exocytosis include synaptosomal protein with a molecular weight of 25 kDa (SNAP-25); vesicle-associated membrane protein (VAMP), also known as synaptobrevin; and syntaxin. Through their proteolytic action on these proteins, botulinum toxins prevent exocytosis, thereby inhibiting the release of acetylcholine. There are 7 serotypes of this toxin-A, B, C1, D, E, F, and G-and each cleaves a different intracellular protein or the same target at distinct bonds. The separate cleavage sites in SNAP-25 for botulinum toxin types A and E contribute to their dissimilar durations of muscle relaxation. This report describes the molecular basis for the inhibition by botulinum toxins of neuroexocytosis and subsequent functional recovery at the neuromuscular junction.

  7. Inhibition of cellular respiration by endogenously produced carbon monoxide.

    PubMed

    D'Amico, Gabriela; Lam, Francis; Hagen, Thilo; Moncada, Salvador

    2006-06-01

    Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.

  8. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations.

    PubMed

    Park, Hyun-Jung; Shim, Hyun-Soo; An, Kyungeh; Starkweather, Angela; Kim, Kyung Soo; Shim, Insop

    2015-01-01

    It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH) mRNA and activating serotonin transporter (SERT) in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH) mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study.

  9. IL-4 Inhibits IL-1β-Induced Depressive-Like Behavior and Central Neurotransmitter Alterations

    PubMed Central

    Park, Hyun-Jung; Shim, Hyun-Soo; An, Kyungeh; Starkweather, Angela; Kim, Kyung Soo; Shim, Insop

    2015-01-01

    It has been known that activation of the central innate immune system or exposure to stress can disrupt balance of anti-/proinflammatory cytokines. The aim of the present study was to investigate the role of pro- and anti-inflammatory cytokines in the modulation of depressive-like behaviors, the hormonal and neurotransmitter systems in rats. We investigated whether centrally administered IL-1β is associated with activation of CNS inflammatory pathways and behavioral changes and whether treatment with IL-4 could modulate IL-1β-induced depressive-like behaviors and central neurotransmitter systems. Infusion of IL-4 significantly decreased IL-1β-induced anhedonic responses and increased social exploration and total activity. Treatment with IL-4 markedly blocked IL-1β-induced increase in PGE2 and CORT levels. Also, IL-4 reduced IL-1β-induced 5-HT levels by inhibiting tryptophan hydroxylase (TPH) mRNA and activating serotonin transporter (SERT) in the hippocampus, and levels of NE were increased by activating tyrosine hydroxylase (TH) mRNA expression. These results demonstrate that IL-4 may locally contribute to the regulation of noradrenergic and serotonergic neurotransmission and may inhibit IL-1β-induced behavioral and immunological changes. The present results suggest that IL-4 modulates IL-1β-induced depressive behavior by inhibiting IL-1β-induced central glial activation and neurotransmitter alterations. IL-4 reduced central and systemic mediatory inflammatory activation, as well as reversing the IL-1β-induced alterations in neurotransmitter levels. The present findings contribute a biochemical pathway regulated by IL-4 that may have therapeutic utility for treatment of IL-1β-induced depressive behavior and neuroinflammation which warrants further study. PMID:26417153

  10. Independent effects of endogenous and exogenous spatial cueing: inhibition of return at endogenously attended target locations.

    PubMed

    Lupiáñez, Juan; Decaix, Caroline; Siéroff, Eric; Chokron, Sylvie; Milliken, Bruce; Bartolomeo, Paolo

    2004-12-01

    Inhibition of return (IOR) is thought to reflect a bias against returning attention to previously attended locations. According to this view, IOR should occur only if attention is withdrawn from the target location prior to target appearance. In the present study, endogenous attention and exogenous cueing were manipulated orthogonally. IOR was observed both when a target appeared at an unexpected location, and when a target appeared at the expected location. A similar pattern of results was obtained in a reanalysis of data from a study with Neglect patients. These results suggest that IOR is independent of endogenous orienting.

  11. Inhibition of endogenous dentin matrix metalloproteinases by ethylenediaminetetraacetic acid

    PubMed Central

    Thompson, J.M.; Agee, K.; Sidow, S.; McNally, K.; Lindsey, K.; Borke, J.; Elsalanty, M.; Tay, F.R.; Pashley, D.H.

    2011-01-01

    Introduction Endogenous dentin matrix metalloproteinases (MMPs) contribute to extracellular collagen matrix degradation in hybrid layers following adhesive dentin bonding procedures. Endodontic irrigants, including chlorhexidine (CHX) and ethylenediaminetetraacetic acid (EDTA) may help protect the hybrid layer from this process. The objective of the present study was to determine the exposure time necessary for EDTA to inactivate endogenous MMP activity in human dentin. Methods Dentin beams (2×1×3 mm) were prepared from mid-coronal dentin of extracted third molars. The beams were demineralized in 10 wt% phosphoric acid which also activated endogenous MMPs, and were divided into four experimental groups based on exposure time to 17% EDTA (0, 1, 2 or 5 min). A generic colorimetric MMP assay measured MMP activity via absorbance at 412 nm. Data were evaluated by Kruskal Wallis ANOVA, followed by Dunn’s pair-wise comparisons at α = 0.05. Results All exposure times resulted in significant inhibition (P<0.001) compared to unexposed controls. Specifically, percent inhibition for 1-, 2-, and 5-minute exposure times were 55.1±21.5%, 72.8±11.7%, and 74.7±19.7%, respectively. Conclusions 17% EDTA significantly inhibits endogenous MMP activity of human dentin within 1–2 min. This may minimize hybrid layer degradation following resin bonding procedures in the root canal space. PMID:22152622

  12. The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation

    PubMed Central

    De Petrocellis, Luciano; Melck, Dominique; Palmisano, Antonella; Bisogno, Tiziana; Laezza, Chiara; Bifulco, Maurizio; Di Marzo, Vincenzo

    1998-01-01

    Anandamide was the first brain metabolite shown to act as a ligand of “central” CB1 cannabinoid receptors. Here we report that the endogenous cannabinoid potently and selectively inhibits the proliferation of human breast cancer cells in vitro. Anandamide dose-dependently inhibited the proliferation of MCF-7 and EFM-19 cells with IC50 values between 0.5 and 1.5 μM and 83–92% maximal inhibition at 5–10 μM. The proliferation of several other nonmammary tumoral cell lines was not affected by 10 μM anandamide. The anti-proliferative effect of anandamide was not due to toxicity or to apoptosis of cells but was accompanied by a reduction of cells in the S phase of the cell cycle. A stable analogue of anandamide (R)-methanandamide, another endogenous cannabinoid, 2-arachidonoylglycerol, and the synthetic cannabinoid HU-210 also inhibited EFM-19 cell proliferation, whereas arachidonic acid was much less effective. These cannabimimetic substances displaced the binding of the selective cannabinoid agonist [3H]CP 55,940 to EFM-19 membranes with an order of potency identical to that observed for the inhibition of EFM-19 cell proliferation. Moreover, anandamide cytostatic effect was inhibited by the selective CB1 receptor antagonist SR 141716A. Cell proliferation was arrested by a prolactin mAb and enhanced by exogenous human prolactin, whose mitogenic action was reverted by very low (0.1–0.5 μM) doses of anandamide. Anandamide suppressed the levels of the long form of the prolactin receptor in both EFM-19 and MCF-7 cells, as well as a typical prolactin-induced response, i.e., the expression of the breast cancer cell susceptibility gene brca1. These data suggest that anandamide blocks human breast cancer cell proliferation through CB1-like receptor-mediated inhibition of endogenous prolactin action at the level of prolactin receptor. PMID:9653194

  13. Synthetic polyphosphate inhibits endogenous coagulation and platelet aggregation in vitro

    PubMed Central

    Yang, Xiaoyang; Wan, Mengjie; Liang, Ting; Peng, Minyuan; Chen, Fangping

    2017-01-01

    Platelet-derived polyphosphate has previously been indicated to induce coagulation. However, industrially synthesized polyphosphate has been found to have different effects from those of the platelet-derived form. The present study investigated whether synthetic sodium polyphosphate inhibits coagulation using routine coagulation tests and thromboelastography. Synthetic polyphosphate was found to inhibit adenosine diphosphate-, epinephrine-, arachidonic acid-, ristocetin-, thrombin-, oxytocin- and pituitrin-induced platelet aggregation. The effects of synthetic polyphosphate in clotting inhibition were revealed by the analysis of clotting factor activity and platelet aggregation tests. Synthetic polyphosphate may inhibit platelet aggregation by reducing platelet calcium levels, as indicated by the results of flow cytometric analysis and high-throughput fluorescent screening. Furthermore, analysis of thromboxane (TX)B2 by ELISA indicated that synthetic polyphosphate reduces platelet aggregation by inhibiting the TXA2 signaling pathway. In conclusion, synthetic polyphosphate inhibits clotting factor activity and endogenous coagulation by reducing the levels of calcium ions and TXA2 to curb platelet aggregation. PMID:28123708

  14. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    PubMed

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  15. Effects of the immunostimulant, levamisole, on opiate withdrawal and levels of endogenous opiate alkaloids and monoamine neurotransmitters in rat brain.

    PubMed

    Spector, S; Munjal, I; Schmidt, D E

    1998-11-01

    This report present evidence that the immunostimulant drug levamisole, (-)-(S)-2,3,5,6-tetrahydro-6-phenylimidazo[2,1-b] thiazole monohydrochloride, produced a significant elevation of endogeneous morphine and codeine levels in brain regions and peripheral organs and attenuated the effects of naltrexone-induced withdrawal in morphine-addicted rats. Levamisole also significantly altered the metabolism of norepinephrine, dopamine, and serotonin in specific brain regions. These results suggest that levamisole's attenuation of opiate withdrawal may be related to its ability to increase endogeneous opiate alkaloid levels and/or to alter central monoaminergic function. Levamisole does not have significant affinity for opiate receptors. These results raise the intriguing possibility that agents such as levamisole, which elevate the levels of the endogenous opiate alkaloids, might be useful for treating narcotic withdrawal. The mechanism for the immunostimulatory properties of agents such as levamisole and muramyl dipeptide (MDP) have not been established. We suggest that the ability of MDP and levamisole to increase endogenous opiate alkaloids may be related to their immunostimulatory properties.

  16. Inhibition of endogenous human dentin MMPs by Gluma

    PubMed Central

    Sabatini, Camila; Scheffel, Débora L.S.; Scheffel, Régis H.; Agee, Kelli A.; Rouch, Katelyn; Takahashi, Masahiro; Breschi, Lorenzo; Mazzoni, Annalisa; Tjäderhane, Leo; Tay, Franklin R.; Pashley, David H.

    2014-01-01

    Objective The objective of this study was to determine if Gluma dentin desensitizer (5.0% glutaraldehyde and 35% HEMA in water) can inhibit the endogenous MMPs of dentin matrices in 60 sec. and to evaluate its effect on dentin matrix stiffness and dry mass weight. Methods Dentin beams of 2×1×6 mm were obtained from extracted human third molars coronal dentin. To measure the influence of Gluma treatment time on total MMP activity of dentin, beams were dipped in 37% phosphoric acid (PA) for 15 sec. and rinsed in water. The acid-etched beams were then dipped in Gluma for 5, 15, 30 or 60 sec., rinsed in water and incubated into SensoLyte generic MMP substrate (AnaSpec, Inc.) for 60 min. Controls were dipped in water for 60 sec. Additional beams of 1×1×6 mm were completely demineralized in 37% PA for 18 h, rinsed and used to evaluate changes on the dry weight and modulus of elasticity (E) after 60 sec. of Gluma treatment followed by incubation in simulated body fluid buffer for zero, one or four weeks. E was measured by 3-pt flexure. Results Gluma treatment inhibited total MMP activity of acid-etched dentin by 44, 50, 84, 86 % after 5, 15, 30 or 60 sec. of exposure, respectively. All completely demineralized dentin beams lost stiffness after one and four weeks, with no significant differences between the control and Gluma-treated dentin. Gluma treatment for 60 sec. yielded significantly less dry mass loss than the control after four weeks. Significance The use of Gluma may contribute to the preservation of adhesive interfaces by its cross-linking and inhibitory properties of endogenous dentin MMPs. PMID:24846803

  17. Enkephalinase inhibition and hippocampal excitatory effects of exogenous and endogenous opioids.

    PubMed

    Sagratella, S

    1994-10-01

    1. The relationships between the in vivo and in vitro epileptogenic effects of opioids or enkephalins and the electrophysiological activity of inhibitors of endogenous enkephalinase were analyzed. 2. The functional effects of the inhibition of the endogenous enkephalinase has been compared with the role of the endogenous opioid peptidergic system in the control of neuronal excitability.

  18. Inhibition of RhoA-dependent pathway and contraction by endogenous hydrogen sulfide in rabbit gastric smooth muscle cells

    PubMed Central

    Nalli, Ancy D.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Grider, John R.

    2015-01-01

    Inhibitory neurotransmitters, chiefly nitric oxide and vasoactive intestinal peptide, increase cyclic nucleotide levels and inhibit muscle contraction via inhibition of myosin light chain (MLC) kinase and activation of MLC phosphatase (MLCP). H2S produced as an endogenous signaling molecule synthesized mainly from l-cysteine via cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) regulates muscle contraction. The aim of this study was to analyze the expression of CSE and H2S function in the regulation of MLCP activity, 20-kDa regulatory light chain of myosin II (MLC20) phosphorylation, and contraction in isolated gastric smooth muscle cells. Both mRNA expression and protein expression of CSE, but not CBS, were detected in smooth muscle cells of rabbit, human, and mouse stomach. l-cysteine, an activator of CSE, and NaHS, a donor of H2S, inhibited carbachol-induced Rho kinase and PKC activity, Rho kinase-sensitive phosphorylation of MYPT1, PKC-sensitive phosphorylation of CPI-17, and MLC20 phosphorylation and sustained muscle contraction. The inhibitory effects of l-cysteine, but not NaHS, were blocked upon suppression of CSE expression by siRNA or inhibition of its activity by dl-propargylglycine (PPG) suggesting that the effect of l-cysteine is mediated via activation of CSE. Glibenclamide, an inhibitor of KATP channels, had no effect on the inhibition of contraction by H2S. Both l-cysteine and NaHS had no effect on basal cAMP and cGMP levels but augmented forskolin-induced cAMP and SNP-induced cGMP formation. We conclude that both endogenous and exogenous H2S inhibit muscle contraction, and the mechanism involves inhibition of Rho kinase and PKC activities and stimulation of MLCP activity leading to MLC20 dephosphorylation and inhibition of muscle contraction. PMID:25567809

  19. Endogenous APP accumulates in synapses after BACE1 inhibition.

    PubMed

    Nigam, Saket Milind; Xu, Shaohua; Ackermann, Frauke; Gregory, Joshua A; Lundkvist, Johan; Lendahl, Urban; Brodin, Lennart

    2016-08-01

    BACE1-mediated cleavage of APP is a pivotal step in the production of the Alzheimer related Aβ peptide and inhibitors of BACE1 are currently in clinical development for the treatment of Alzheimer disease (AD). While processing and trafficking of APP has been extensively studied in non-neuronal cells, the fate of APP at neuronal synapses and in response to reduced BACE1 activity has not been fully elucidated. Here we examined the consequence of reduced BACE1 activity on endogenous synaptic APP by monitoring N- and C-terminal APP epitopes by immunocytochemistry. In control rodent primary hippocampal neuron cultures, labeling with antibodies directed to N-terminal APP epitopes showed a significant overlap with synaptic vesicle markers (SV2 or synaptotagmin). In contrast, labeling with antibodies directed to C-terminal epitopes of APP showed only a limited overlap with these proteins. In neurons derived from BACE1-deficient mice, and in control neurons treated with a BACE1 inhibitor, both the N-terminal and the C-terminal APP labeling overlapped significantly with synaptic vesicle markers. Moreover, BACE1 inhibition increased the proximity between the APP C-terminus and SV2 as shown by a proximity ligation assay. These results, together with biochemical observations, indicate that BACE1 can regulate the levels of full-length APP at neuronal synapses.

  20. Constitutively Active 5-HT Receptors: An Explanation of How 5-HT Antagonists Inhibit Gut Motility in Species Where 5-HT is Not an Enteric Neurotransmitter?

    PubMed Central

    Spencer, Nick J.

    2015-01-01

    Antagonists of 5-Hydroxytryptamine (5-HT) receptors are well known to inhibit gastrointestinal (GI)-motility and transit in a variety of mammals, including humans. Originally, these observations had been interpreted by many investigators (including us) as evidence that endogenous 5-HT plays a major role in GI motility. This seemed a logical assumption. However, the story changed dramatically after recent studies revealed that 5-HT antagonists still blocked major GI motility patterns (peristalsis and colonic migrating motor complexes) in segments of intestine depleted of all 5-HT. Then, these results were further supported by Dr. Gershons' laboratory, which showed that genetic deletion of all genes that synthesizes 5-HT had minor, or no inhibitory effects on GI transit in vivo. If 5-HT was essential for GI motility patterns and transit, then one would expect major disruptions in motility and transit when 5-HT synthesis was genetically ablated. This does not occur. The inhibitory effects of 5-HT antagonists on GI motility clearly occur independently of any 5-HT in the gut. Evidence now suggests that 5-HT antagonists act on 5-HT receptors in the gut which are constitutively active, and don't require 5-HT for their activation. This would explain a long-standing mystery of how 5-HT antagonists inhibit gut motility in species like mice, rats, and humans where 5-HT is not an enteric neurotransmitter. Studies are now increasingly demonstrating that the presence of a neurochemical in enteric neurons does not mean they function as neurotransmitters. Caution should be exercised when interpreting any inhibitory effects of 5-HT antagonists on GI motility. PMID:26732863

  1. Differences between endogenous and exogenous emotion inhibition in the human brain.

    PubMed

    Kühn, Simone; Haggard, Patrick; Brass, Marcel

    2014-05-01

    The regulation of emotions is an integral part of our mental health. It has only recently been investigated using brain imaging techniques. In most studies, participants are instructed by a cue to inhibit a specific emotional reaction. The aim of the present study was to investigate the alternative situation where a person decides to inhibit an emotion as an act of endogenous self-control. Healthy participants viewed highly arousing pictures with negative valence. In the endogenous condition, participants could freely choose on each trial to inhibit or feel the emotions elicited by the picture. In an exogenous condition, a visual cue instructed them to either feel or inhibit the emotion elicited by the picture. Participants' subjective ratings of intensity of experienced emotion showed an interaction effect between source of control (endogenous/exogenous) and feel/inhibit based on a stronger modulation between feel and inhibition for the endogenous compared to the exogenous condition. Endogenous inhibition of emotions was associated with dorso-medial prefrontal cortex activation, whereas exogenous inhibition was found associated with lateral prefrontal cortex activation. Thus, the brain regions for both endogenous and exogenous inhibition of emotion are highly similar to those for inhibition of motor actions in Brass and Haggard (J Neurosci 27:9141-9145, 2007), Kühn et al. (Hum Brain Mapp 30:2834-2843, 2009). Functional connectivity analyses showed that dorsofrontomedial cortex exerts greater control onto pre-supplementary motor area during endogenous inhibition compared to endogenous feel. This functional dissociation between an endogenous, fronto-medial and an exogenous, fronto-lateral inhibition centre has important implications for our understanding of emotion regulation in health and psychopathology.

  2. Evidence to suggest that gonadotropin-releasing hormone inhibits its own secretion by affecting hypothalamic amino acid neurotransmitter release.

    PubMed

    Feleder, C; Jarry, H; Leonhardt, S; Moguilevsky, J A; Wuttke, W

    1996-10-01

    The mediobasal hypothalamus of rats contains gonadotropin-releasing hormone (GnRH) receptors. These hypothalamic neurons also express the GnRH corresponding gene. Under these circumstances, the possibility exists that these GnRH receptors could be localized in other neurons, which are GnRH-receptive, unknowing the neurotransmitter quality. Therefore, we studied the in vitro effects of the GnRH agonist buserelin on GnRH, glutamate, gamma-amino-butyric acid (GABA) and taurine release from explanted superfused hypothalami of untreated and buserelin-pretreated (down-regulated) male rats. When buserelin was added to the superfusion medium it inhibited promptly the release of GnRH and the excitatory amino acid neurotransmitter glutamate, but stimulated the release of the inhibitory neurotransmitters, GABA and taurine. Hypothalamic release of GnRH from hypothalami collected from buserelin-treated (30 micrograms/100 g b.w. twice daily for 4 days) male rats released significantly less GnRH, glutamate and more GABA and taurine. The inhibitory effect of buserelin was maintained when the superfusion medium continuously contained the GnRH analog. When superfusion of hypothalami from buserelin-pretreated animals was performed in the absence of buserelin, GnRH and glutamate release increased significantly within 45-60 min, whereas GABA and taurine release decreased at this time point. When buserelin was added to the superfusion medium 2 h after buserelin-free superfusion, GnRH and glutamate release decreased whereas GABA and taurine release increased instantaneously. Buserelin-treated rats showed significantly low values of LH and testosterone than the untreated rats. These results suggest that GnRH receptors may not only be present in GnRH axon terminals in the median eminence, but also on glutamatergic, GABAergic and taurinergic neurons by which GnRH may exert an autoinhibitory ultrashort loop feedback on its own secretion. This effect appears to be connected with glutamatergic

  3. Hexabromocyclododecane inhibits depolarization-induced increase in intracellular calcium levels and neurotransmitter release in PC12 cells.

    PubMed

    Dingemans, Milou M L; Heusinkveld, Harm J; de Groot, Aart; Bergman, Ake; van den Berg, Martin; Westerink, Remco H S

    2009-02-01

    Environmental levels of the brominated flame retardant (BFR) hexabromocyclododecane (HBCD) have been increasing. HBCD has been shown to cause adverse effects on learning and behavior in mice, as well as on dopamine uptake in rat synaptosomes and synaptic vesicles. For other BFRs, alterations in the intracellular Ca(2+) homeostasis have been observed. Therefore, the aim of this study was to investigate whether the technical HBCD mixture and individual stereoisomers affect the intracellular Ca(2+) concentration ([Ca(2+)](i)) in a neuroendocrine in vitro model (PC12 cells). [Ca(2+)](i) and vesicular catecholamine release were measured using respectively single-cell Fura-2 imaging and amperometry. Exposure of PC12 cells to the technical HBCD mixture or individual stereoisomers did neither affect basal [Ca(2+)](i), nor the frequency of basal neurotransmitter release. However, exposure to HBCD (0-20 microM) did cause a dose-dependent reduction of a subsequent depolarization-evoked increase in [Ca(2+)](i). This effect was apparent only when HBCD was applied at least 5 min before depolarization (maximum effect after 20 min exposure). The effects of alpha- and beta-HBCD were comparable to that of the technical mixture, whereas the inhibitory effect of gamma-HBCD was larger. Using specific blockers of L-, N- or P/Q-type voltage-gated Ca(2+) channels (VGCCs) it was shown that the inhibitory effect of HBCD is not VGCC-specific. Additionally, the number of cells showing depolarization-evoked neurotransmitter release was markedly reduced following HBCD exposure. Summarizing, HBCD inhibits depolarization-evoked [Ca(2+)](i) and neurotransmitter release. As increasing HBCD levels should be anticipated, these findings justify additional efforts to establish an adequate exposure, hazard and risk assessment.

  4. Bacterial endotoxin inhibits LHRH secretion following the increased release of hypothalamic GABA levels. Different effects on amino acid neurotransmitter release.

    PubMed

    Feleder, C; Refojo, D; Jarry, H; Wuttke, W; Moguilevsky, J A

    1996-01-01

    Immune system disorders are often accompanied by alterations in the reproductive axis. The bacterial endotoxin (lipopolysaccharide, LPS) has inflammatory effects and activates cytokine release in the pituitary and hypothalamus. LPS inhibition of luteinizing-hormone-releasing hormone (LHRH) release at the hypothalamic level appears to be associated with modifications in the inhibitory GABAergic neurotransmitter system. Then, knowing that gamma-aminobutyric acid (GABA) mediates other neurotransmitter effects in the central nervous system, the possibility arises that this amino acid might mediate the effect of LPS on LHRH release by modifying amino acid neurotransmitter release at the hypothalamic level. Therefore, the present study was designed to investigate a possible mediatory function of the GABAergic system in the LPS-induced inhibition of LHRH secretion. To this end, the modifications in the excitatory (glutamate, Glu) and inhibitory (taurine, Tau, and GABA) amino acid neurotransmitter release after the application of GABA-A and GABA-B antagonists, respectively, were studied and the effects of LPS on their release determined. Male rats were decapitated at 9.00 h, and the preoptic/mediobasal hypothalamic area (POA/MBH) was dissected and superfused with Earle's balanced salt solution. Superfusate fractions were collected at 15-min intervals after a 60-min stabilization superfusion period. LPS (100 ng/ml) was then added to the superfusion medium over 1 h in three different experimental designs: (1) LPS only (2) LPS simultaneously with bicuculline (GABA-A antagonist) or with phaclofen (GABA-B antagonist), and (3) LPS and subsequently bicuculline or phaclofen, performed in different experiments. This was followed by a wash-out period. The POA/MBH fragments were then subjected to a 56-mM K+ stimulus. Control POA/MBH fragments were continuously superfused with Earle's solution. As expected, LHRH release was significantly reduced (p < 0.05) during and following

  5. Effects of endogenous and exogenous attention on visual processing: an Inhibition of Return study.

    PubMed

    Chica, Ana B; Lupiáñez, Juan

    2009-06-30

    We investigate early (P1) and late (P3) modulations of event-related potentials produced by endogenous (expected vs. unexpected location trials) and exogenous (cued vs. uncued location trials) orienting of spatial attention. A 75% informative peripheral cue was presented 1000 ms before the target in order to study Inhibition of Return (IOR), a mechanism that produces slower responses to peripherally cued versus uncued locations. Endogenous attention produced its effects more strongly at later stages of processing, while IOR (an index of exogenous orienting) was found to modulate both early and late stages of processing. The amplitude of P1 was reduced for cued versus uncued location trials, even when endogenous attention was maintained at the cued location. This result indicates that the perceptual effects of IOR are not eliminated by endogenous attention, suggesting that the IOR mechanism produces a perceptual decrement on the processing of stimuli at the cued location that cannot be counteracted by endogenous attention.

  6. Lateral Inhibition in the Vertebrate Retina: The Case of the Missing Neurotransmitter

    PubMed Central

    Kramer, Richard H.; Davenport, Christopher M.

    2015-01-01

    Lateral inhibition at the first synapse in the retina is important for visual perception, enhancing image contrast, color discrimination, and light adaptation. Despite decades of research, the feedback signal from horizontal cells to photoreceptors that generates lateral inhibition remains uncertain. GABA, protons, or an ephaptic mechanism have all been suggested as the primary mediator of feedback. However, the complexity of the reciprocal cone to horizontal cell synapse has left the identity of the feedback signal an unsolved mystery. PMID:26656622

  7. Endogenous inhibition of somatic pain is impaired in girls with irritable bowel syndrome compared with healthy girls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endogenous pain inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain inhibition are present in young children with IBS. The present study compared endogenous pain inhibition, somatic pain threshold, ...

  8. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  9. Neurotransmitter agonists inhibit inositol phosphate formation in the brain of bupropione-treated rats

    SciTech Connect

    Butler, P.D.; Hungund, B.; Suckow, R.; Barkai, A.I.

    1986-03-05

    Bupropione is a chemically unique antidepressant whose mechanism of action is not known. In this study they have evaluated the effect of chronic treatment with bupropione on the receptor-mediated release of inositol phosphates (IP) from brain slices in rats. Animals were implanted with Alzet osmotic pumps that delivered bupropione at a constant rate (40mg/kg/day) for 2 weeks. Cross-chopped slices of cerebral cortex from control and drug-treated rats were prelabelled with myo-/sup 3/H-inositol in HEPES buffer containing 11 mM LiCl. Accumulation of IP was measured in the presence and absence of the following agonists: Carbamylcholine (100..mu..m); norepinephrine (5..mu..M) and serotonin (10..mu..M). All agonists stimulated release of IP from slices of control animals but appeared to inhibit IP release in bupropione-treated rats. These results indicate that a phospholipase C inhibitor may appear following the activation of this enzyme by the agonist, and that the agonist-induced formation of the apparent inhibitor may be markedly enhanced after treatment with bupropione.

  10. Does genetic BDNF deficiency in rats interact with neurotransmitter control of prepulse inhibition? Implications for schizophrenia.

    PubMed

    van den Buuse, Maarten; Biel, Davina; Radscheit, Kathrin

    2017-04-03

    Several studies have suggested a role of BDNF in the development of schizophrenia. For example, post-mortem studies have shown significantly reduced levels of BDNF protein expression in the brain of schizophrenia patients. We investigated the relationship between reduced levels of BDNF in the brain and the regulation of prepulse inhibition (PPI), a behavioral endophenotype of schizophrenia. We used BDNF heterozygous mutant rats which display a 50% decrease of mature BDNF protein levels. Previously, we observed normal baseline PPI and responses to the dopamine D1/D2 receptor agonist, apomorphine, in these rats. Here, we focused on the effects of the NMDA receptor antagonist, MK-801, its interaction with mGluR2/3 and mGluR5 receptors, and the PPI response to serotonergic drugs. MK-801 administration caused a dose-dependent reduction of PPI and increase of startle amplitudes. Baseline PPI and the effect of 0.02-0.1mg/kg of MK-801 were not significantly altered in male or female BDNF heterozygous rats, although the MK-801-induced increase in startle levels was reduced. Co-treatment with the mGluR2/3 agonist, LY379,268, or the mGluR5 antagonist, MPEP, did not alter the effect of MK-801 on PPI in controls or BDNF mutant rats. Treatment with the serotonin-1A receptor agonist, 8-OH-DPAT, the serotonin-2A receptor agonist, DOI, or the serotonin releaser, fenfluramine, induced differential effects on PPI and startle but these effects were not different between the genotypes. These results show that a significant decrease of BDNF protein expression does not lead to reduced PPI at baseline or changes in the regulation of PPI via NMDA receptors or serotonergic mechanisms. These findings in a genetic rat model of BDNF deficiency do not support a role for similar reductions of BDNF levels in schizophrenia in the disruption of PPI, widely reported as an endophenotype of the illness. The potential implications of these results for our understanding of changes in PPI and BDNF

  11. Sex differences in experimental measures of pain sensitivity and endogenous pain inhibition

    PubMed Central

    Bulls, Hailey W; Freeman, Emily L; Anderson, Austen JB; Robbins, Meredith T; Ness, Timothy J; Goodin, Burel R

    2015-01-01

    It has been suggested that increased pain sensitivity and disruption of endogenous pain inhibitory processes may account, at least in part, for the greater prevalence and severity of chronic pain in women compared to men. However, previous studies addressing this topic have produced mixed findings. This study examined sex differences in pain sensitivity and inhibition using quantitative sensory testing (QST), while also considering the influence of other important factors such as depressive symptoms and sleep quality. Healthy men (n=24) and women (n=24) each completed a QST battery. This battery included an ischemic pain task (IPT) that used a submaximal effort tourniquet procedure as well as a conditioned pain modulation (CPM) procedure for the assessment of endogenous pain inhibition. Prior to QST, participants completed the Center for Epidemiologic Studies Depression Scale and the Pittsburgh Sleep Quality Index. Analyses revealed significant sex differences for the ischemic pain task and the conditioned pain modulation procedure, such that women tolerated the ischemic pain for a shorter amount of time and demonstrated less pain inhibition compared with men. This remained true even when accounting for sex differences in depressive symptoms and sleep quality. The results of this study suggest that women may be more pain sensitive and possess less-efficient endogenous pain inhibitory capacity compared with men. Whether interventions that decrease pain sensitivity and enhance pain inhibition in women ultimately improve their clinical pain outcomes is an area of research that deserves additional attention in the future. PMID:26170713

  12. Selenium Inhibits Root Elongation by Repressing the Generation of Endogenous Hydrogen Sulfide in Brassica rapa

    PubMed Central

    Zheng, Mei-Yu; Xian, Ming; Qi, Zhong-Qiang; Li, You-Qin; Hu, Liang-Bin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots. PMID:25333279

  13. Selenium inhibits root elongation by repressing the generation of endogenous hydrogen sulfide in Brassica rapa.

    PubMed

    Chen, Yi; Mo, Hai-Zhen; Zheng, Mei-Yu; Xian, Ming; Qi, Zhong-Qiang; Li, You-Qin; Hu, Liang-Bin; Chen, Jian; Yang, Li-Fei

    2014-01-01

    Selenium (Se) has been becoming an emerging pollutant causing severe phytotoxicity, which the biochemical mechanism is rarely known. Although hydrogen sulfide (H2S) has been suggested as an important exogenous regulator modulating plant physiological adaptions in response to heavy metal stress, whether and how the endogenous H2S regulates Se-induce phytotoxicity remains unclear. In this work, a self-developed specific fluorescent probe (WSP-1) was applied to track endogenous H2S in situ in the roots of Brassica rapa under Se(IV) stress. Se(IV)-induced root growth stunt was closely correlated with the inhibition of endogenous H2S generation in root tips. Se(IV) stress dampened the expression of most LCD and DCD homologues in the roots of B. rapa. By using various specific fluorescent probes for bio-imaging root tips in situ, we found that the increase in endogenous H2S by the application of H2S donor NaHS could significantly alleviate Se(IV)-induced reactive oxygen species (ROS) over-accumulation, oxidative impairment, and cell death in root tips, which further resulted in the recovery of root growth under Se(IV) stress. However, dampening the endogenous H2S could block the alleviated effect of NaHS on Se(IV)-induced phytotoxicity. Finally, the increase in endogenous H2S resulted in the enhancement of glutathione (GSH) in Se(IV)-treated roots, which may share the similar molecular mechanism for the dominant role of H2S in removing ROS by activating GSH biosynthesis in mammals. Altogether, these data provide the first direct evidences confirming the pivotal role of endogenous H2S in modulating Se(IV)-induced phytotoxicity in roots.

  14. Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

    PubMed Central

    Bogerd, Hal P.; Skalsky, Rebecca L.; Kennedy, Edward M.; Furuse, Yuki; Whisnant, Adam W.; Flores, Omar; Schultz, Kimberly L. W.; Putnam, Nicole; Barrows, Nicholas J.; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A.; Griffin, Diane E.

    2014-01-01

    ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of

  15. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs.

    PubMed

    Bogerd, Hal P; Skalsky, Rebecca L; Kennedy, Edward M; Furuse, Yuki; Whisnant, Adam W; Flores, Omar; Schultz, Kimberly L W; Putnam, Nicole; Barrows, Nicholas J; Sherry, Barbara; Scholle, Frank; Garcia-Blanco, Mariano A; Griffin, Diane E; Cullen, Bryan R

    2014-07-01

    The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. Importance: Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of

  16. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain.

    PubMed

    Roques, Bernard P; Fournié-Zaluski, Marie-Claude; Wurm, Michel

    2012-04-01

    Chronic pain remains unsatisfactorily treated, and few novel painkillers have reached the market in the past century. Increasing the levels of the main endogenous opioid peptides - enkephalins - by inhibiting their two inactivating ectopeptidases, neprilysin and aminopeptidase N, has analgesic effects in various models of inflammatory and neuropathic pain. Stemming from the same pharmacological concept, fatty acid amide hydrolase (FAAH) inhibitors have also been found to have analgesic effects in pain models by preventing the breakdown of endogenous cannabinoids. Dual enkephalinase inhibitors and FAAH inhibitors are now in early-stage clinical trials. In this Review, we compare the effects of these two potential classes of novel analgesics and describe the progress in their rational design. We also consider the challenges in their clinical development and opportunities for combination therapies.

  17. Anandamide, an endogenous cannabinoid, inhibits Shaker-related voltage-gated K+ channels.

    PubMed

    Poling, J S; Rogawski, M A; Salem, N; Vicini, S

    1996-01-01

    Anandamide has been identified in porcine brain as an endogenous cannabinoid receptor ligand and is believed to be a counterpart to the psychoactive component of marijuana, delta 9-tetrahydrocannabinol (delta 9-THC). Here we report that anandamide directly inhibits (IC50, 2.7 muM) Shaker-related Kv1.2 K+ channels that are found ubiquitously in the mammalian brain. Delta 9-THC also inhibited Kv1.2 channels with comparable potency (IC50, 2.4 muM), as did several N-acyl-ethanolamides with cannabinoid receptor binding activity. Potassium current inhibition occurred through a pertussis toxin-insensitive mechanism and was not prevented by the cannabinoid receptor antagonist SR141716A. Utilizing excised patches of Kv1.2 channel-rich membrane as a rapid and sensitive bioassay, we found that phospholipase D stimulated the release of an endogenous anandamide-like K+ channel blocker from rat brain slices. Structure-activity studies were consistent with the possibility that the released blocker was either anandamide or another N-acyl-ethanolamide.

  18. Inhibiting effects of rhynchophylline on zebrafish methamphetamine dependence are associated with amelioration of neurotransmitters content and down-regulation of TH and NR2B expression.

    PubMed

    Jiang, Mingjin; Chen, Yifei; Li, Chan; Peng, Qiuxian; Fang, Miao; Liu, Wei; Kang, Qunzhao; Lin, Yingbo; Yung, Ken Kin Lam; Mo, Zhixian

    2016-07-04

    Others and we have reported that rhynchophylline reverses amphetamine-induced conditioned place preference (CPP) effect which may be partly mediated by amelioration of central neurotransmitters and N-methyl-d-aspartate receptor 2B (NR2B) levels in the rat brains. The current study investigated the inhibiting effects of rhynchophylline on methamphetamine-induced (METH-induced) CPP in adult zebrafish and METH-induced locomotor activity in tyrosine hydroxylase-green fluorescent protein (TH-GFP) transgenic zebrafish larvae and attempted to confirm the hypothesis that these effects were mediated via regulation of neurotransmitters and dopaminergic and glutamatergic systems. After baseline preference test (on days 1-3), zebrafish were injected intraperitoneally METH (on days 4, 6 and 8) or the same volume of fish physiological saline (on days 5 and 7) and were immediately conditioned. Rhynchophylline was administered at 12h after injection of METH. On day 9, zebrafish were tested for METH-induced CPP. Results revealed that rhynchophylline (100mg/kg) significantly inhibited the acquisition of METH-induced CPP, reduced the content of dopamine and glutamate and down-regulated the expression of TH and NR2B in the CPP zebrafish brains. Furthermore, the influence of rhynchophylline on METH-induced locomotor activity was also observed in TH-GFP transgenic zebrafish larvae. Results showed that rhynchophylline (50mg/L) treatment led to a significant reduction on the locomotor activity and TH expression in TH-GFP transgenic zebrafish larvae. Taken together, these data indicate that the inhibition of the formation of METH dependence by rhynchophylline in zebrafish is associated with amelioration of the neurotransmitters dopamine and glutamate content and down-regulation of TH and NR2B expression.

  19. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    PubMed

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data.

  20. Endogenous Inhibition of Somatic Pain is Impaired in Girls with Irritable Bowel Syndrome Compared with Healthy Girls

    PubMed Central

    Williams, Amy E.; Heitkemper, Margaret; Self, Mariella M.; Czyzewski, Danita I.; Shulman, Robert J.

    2013-01-01

    Endogenous pain-inhibition is often deficient in adults with chronic pain conditions including irritable bowel syndrome (IBS). It is unclear whether deficiencies in pain-inhibition are present in young children with IBS. The present study compared endogenous pain-inhibition, somatic pain threshold, and psychosocial distress in young girls with IBS versus controls. Girls with IBS did not show significant endogenous pain-inhibition of heat pain-threshold during a cold-pressor task in contrast to controls who had significant pain-inhibition. Girls with IBS did not differ from peers on measures of somatic pain but had more symptoms of depression, somatization, and anxiety than controls. When psychological variables were included as covariates the difference in pain-inhibition was no longer significant, although poor achieved power limits interpretation of these results. Higher-order cognitive processes including psychological variables may be contributing to observed pain-inhibition. In girls with IBS, pain-inhibition was positively related to the number of days without a bowel movement. To our knowledge, this is the first study to demonstrate deficiencies of endogenous pain-inhibition in young children with IBS. Findings have implications for better understanding of onset and maintenance of IBS and other chronic pain conditions. PMID:23685184

  1. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  2. Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks.

    PubMed

    Chica, Ana B; Lupianez, Juan; Bartolomeo, Paolo

    2006-10-01

    In the present series of experiments, peripheral informative cues were used in order to dissociate endogenous and exogenous orienting of spatial attention using the same set of stimuli. For each block of trials, the cue predicted either the same or the opposite location of target appearance. Crucially, using this manipulation, both expected and unexpected locations could be either cued or uncued. If one accepts the hypothesis that inhibition of return (IOR) is an attentional effect that inhibits the returning of attention to a previously attended location (Posner & Cohen, 1984), one would not predict an IOR effect at the expected location, since attention should not disengage from the location predicted by the cue. Detection and discrimination tasks were used to examine any potential difference in the mechanism responsible for IOR as a function of the task at hand. Two major results emerged: First, IOR was consistently observed at the expected location, where, according to the traditional "reorienting" hypothesis, IOR is not supposed to occur. Second, a different time course of cueing effects was found in detection versus discrimination tasks, even after controlling for the orienting of attention. We conclude that IOR cannot be accounted for solely by the "reorienting of attention" hypothesis. Moreover, we argue that the observed time course differences in cueing effects between detection and discrimination tasks cannot be explained by attention disengaging from cues later in discrimination than in detection tasks, as proposed by Klein (2000). The described endogenous-exogenous dissociation is consistent with models postulating that endogenous and exogenous attentional processes rely on different neural mechanisms.

  3. Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles

    PubMed Central

    Picton, Laurence D.; Sillar, Keith T.

    2016-01-01

    Dopamine plays important roles in the development and modulation of motor control circuits. Here we show that dopamine exerts potent effects on the central pattern generator circuit controlling locomotory swimming in post-embryonic Xenopus tadpoles. Dopamine (0.5–100 μM) reduced fictive swim bout occurrence and caused both spontaneous and evoked episodes to become shorter, slower and weaker. The D2-like receptor agonist quinpirole mimicked this repertoire of inhibitory effects on swimming, whilst the D4 receptor antagonist, L745,870, had the opposite effects. The dopamine reuptake inhibitor bupropion potently inhibited fictive swimming, demonstrating that dopamine constitutes an endogenous modulatory system. Both dopamine and quinpirole also inhibited swimming in spinalised preparations, suggesting spinally located dopamine receptors. Dopamine and quinpirole hyperpolarised identified rhythmically active spinal neurons, increased rheobase and reduced spike probability both during swimming and in response to current injection. The hyperpolarisation was TTX-resistant and was accompanied by decreased input resistance, suggesting that dopamine opens a K+ channel. The K+ channel blocker barium chloride (but not TEA, glybenclamide or tertiapin-Q) significantly occluded the hyperpolarisation. Overall, we show that endogenously released dopamine acts upon spinally located D2-like receptors, leading to a rapid inhibitory modulation of swimming via the opening of a K+ channel. PMID:27760989

  4. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production.

    PubMed

    Ye, Xie-Feng; Xue, Yanfeng; Ling, Tianxiao; Wang, Yong; Yu, Xiao-Na; Cheng, Changxin; Feng, Guosheng; Hu, Liangbin; Shi, Zhiqi; Chen, Jian

    2016-12-24

    Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd(2+) accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.

  5. Endogenous inhibition of pain and spinal nociception in women with premenstrual dysphoric disorder

    PubMed Central

    Palit, Shreela; Bartley, Emily J; Kuhn, Bethany L; Kerr, Kara L; DelVentura, Jennifer L; Terry, Ellen L; Rhudy, Jamie L

    2016-01-01

    Purpose Premenstrual dysphoric disorder (PMDD) is characterized by severe affective and physical symptoms, such as increased pain, during the late-luteal phase of the menstrual cycle. The mechanisms underlying hyperalgesia in women with PMDD have yet to be identified, and supraspinal pain modulation has yet to be examined in this population. The present study assessed endogenous pain inhibitory processing by examining conditioned pain modulation (CPM, a painful conditioning stimulus inhibiting pain evoked by a test stimulus at a distal body site) of pain and the nociceptive flexion reflex (NFR, a spinally-mediated withdrawal reflex) during the mid-follicular, ovulatory, and late-luteal phases of the menstrual cycle. Methods Participants were regularly-cycling women (14 without PMDD; 14 with PMDD). CPM was assessed by delivering electrocutaneous test stimuli to the sural nerve before, during, and after a painful conditioning ischemia task. Participants rated their pain to electrocutaneous stimuli, and NFR magnitudes were measured. A linear mixed model analysis was used to assess the influence of group and menstrual phase on CPM. Results Compared with controls, women with PMDD experienced greater pain during the late-luteal phase and enhanced spinal nociception during the ovulation phase, both of which were independent of CPM. Both groups showed CPM inhibition of pain that did not differ by menstrual phase. Only women with PMDD evidenced CPM inhibition of NFR. Conclusion Endogenous modulation of pain and spinal nociception is not disrupted in women with PMDD. Additionally, greater NFR magnitudes during ovulation in PMDD may be due to tonically-engaged descending mechanisms that facilitate spinal nociception, leading to enhanced pain during the premenstrual phase. PMID:26929663

  6. Intranasal oxytocin administration is associated with enhanced endogenous pain inhibition and reduced negative mood states

    PubMed Central

    Goodin, Burel R.; Anderson, Austen J. B.; Freeman, Emily L.; Bulls, Hailey W.; Robbins, Meredith T.; Ness, Timothy J.

    2014-01-01

    Objectives This study examined whether the administration of intranasal oxytocin was associated with pain sensitivity, endogenous pain inhibitory capacity, and negative mood states. Methods A total of 30 pain-free, young adults each completed three laboratory sessions on consecutive days. The first session (baseline) assessed ischemic pain sensitivity, endogenous pain inhibition via conditioned pain modulation (CPM), and negative mood using the Profile of Mood States (POMS). CPM was tested on the dominant forearm and ipsilateral masseter muscle using algometry (test stimulus) and the cold pressor task (conditioning stimulus; non-dominant hand). For the second and third sessions, participants initially completed the State-Trait Anxiety Inventory (STAI) and then self-administered a single (40IU/1mL) dose of intranasal oxytocin or placebo in a randomized counter-balanced order. Thirty minutes post-administration, participants again completed the STAI and repeated assessments of ischemic pain sensitivity and CPM followed by the POMS. Results Findings demonstrated that ischemic pain sensitivity did not significantly differ across the three study sessions. CPM at the masseter, but not the forearm, was significantly greater following administration of oxytocin compared to placebo. Negative mood was also significantly lower following administration of oxytocin compared to placebo. Similarly, anxiety significantly decreased following administration of oxytocin but not placebo. Discussion This study incorporated a placebo-controlled, double-blind, within-subjects crossover design with randomized administration of intranasal oxytocin and placebo. The data suggest that the administration of intranasal oxytocin may augment endogenous pain inhibitory capacity and reduce negative mood states including anxiety. PMID:25370147

  7. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    SciTech Connect

    Achour, Ammar

    2009-03-30

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation.

  8. Endogenous Inhibition of the Trigeminally Evoked Neurotransmission to Cardiac Vagal Neurons by Muscarinic Acetylcholine Receptors

    PubMed Central

    Gorini, C.; Philbin, K.; Bateman, R.

    2010-01-01

    Stimulation of the nasal mucosa by airborne irritants or water evokes a pronounced bradycardia accompanied by peripheral vasoconstriction and apnea. The dive response, which includes the trigeminocardiac reflex, is among the most powerful autonomic responses. These responses slow the heart rate and reduce myocardial oxygen consumption. Although normally cardioprotective, exaggeration of this reflex can be detrimental and has been implicated in cardiorespiratory diseases, including sudden infant death syndrome (SIDS). An essential component of the diving response and trigeminocardiac reflex is activation of the parasympathetic cardiac vagal neurons (CVNs) in the nucleus ambiguus that control heart rate. This study examined the involvement of cholinergic receptors in trigeminally evoked excitatory postsynaptic currents in CVNs in an in vitro preparation from rats. CVNs were identified using a retrograde tracer injected into the fat pads at the base of the heart. Application of the acetylcholinesterase inhibitor neostigmine significantly decreased the amplitude of glutamatergic neurotransmission to CVNs on stimulation of trigeminal fibers. Whereas nicotine did not have any effect on the glutamatergic responses, the muscarinic acetylcholine receptor (mAChR) agonist bethanechol significantly decreased the excitatory neurotransmission. Atropine, an mAChR antagonist, facilitated these responses indicating this trigeminally evoked brain stem pathway in vitro is endogenously inhibited by mAChRs. Tropicamide, an m4 mAChR antagonist, prevented the inhibitory action of the muscarinic agonist bethanechol. These results indicate that the glutamatergic synaptic neurotransmission in the trigeminally evoked pathway to CVNs is endogenously inhibited in vitro by m4 mAChRs. PMID:20719927

  9. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition

    PubMed Central

    Xiong, Haitao; Guo, Bingxiu; Gan, Zhenshun; Song, Deguang; Lu, Zeqing; Yi, Hongbo; Wu, Yueming; Wang, Yizhen; Du, Huahua

    2016-01-01

    Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition. PMID:27230284

  10. Inhibition of endogenous NGF degradation induces mechanical allodynia and thermal hyperalgesia in rats

    PubMed Central

    2013-01-01

    Background We have previously shown a sprouting of sympathetic fibers into the upper dermis of the skin following subcutaneous injection of complete Freund’s adjuvant (CFA) into the hindpaw. This sprouting correlated with an increase in pain-related sensitivity. We hypothesized that this sprouting and pain-related behavior were caused by an increase in nerve growth factor (NGF) levels. In this study, we investigated whether the inhibition of mature NGF degradation, using a matrix metalloproteinase 2 and 9 (MMP-2/9) inhibitor, was sufficient to reproduce a similar phenotype. Results Behavioral tests performed on male Sprague–Dawley rats at 1, 3, 7 and 14 days after intra-plantar MMP-2/9 inhibitor administration demonstrated that acute and chronic injections of the MMP-2/9 inhibitor induced sensitization, in a dose dependent manner, to mechanical, hot and cold stimuli as measured by von Frey filaments, Hargreaves and acetone tests, respectively. Moreover, the protein levels of mature NGF (mNGF) were increased, whereas the levels and enzymatic activity of matrix metalloproteinase 9 were reduced in the glabrous skin of the hind paw. MMP-2/9 inhibition also led to a robust sprouting of sympathetic fibers into the upper dermis but there were no changes in the density of peptidergic nociceptive afferents. Conclusions These findings indicate that localized MMP-2/9 inhibition provokes a pattern of sensitization and fiber sprouting comparable to that previously obtained following CFA injection. Accordingly, the modulation of endogenous NGF levels should be considered as a potential therapeutic target for the management of inflammatory pain associated with arthritis. PMID:23889761

  11. Visible-light-activated photoelectrochemical biosensor for the study of acetylcholinesterase inhibition induced by endogenous neurotoxins.

    PubMed

    Huang, Qilin; Chen, Hua; Xu, Lili; Lu, Danqin; Tang, Linlin; Jin, Litong; Xu, Zhiai; Zhang, Wen

    2013-07-15

    In this report, a novel visible-light-activated photoelectrochemical biosensor was fabricated to study the inhibition of acetylcholinesterase (AChE) activity induced by two endogenous neurotoxins, 1(R)-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline [(R)-Sal] and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetra-hydroisoquinoline [(R)-NMSal], which have drawn much attention in the study of the pathogenesis of neurodegenerative diseases such as Parkinson's disease. The photoelectrode was prepared by three steps, as follows. At first, nitrogen and fluorine co-doped TiO2 nanotubes (TNs) were obtained by anodic oxidation of a Ti sheet. Secondly, silver nanoparticles (AgNPs) were deposited onto the TNs through a microwave-assisted heating polyol (MAHP) process. At last, AChE was immobilized on the obtained photoelectrode and the biosensor was marked as AChE/Ag/NFTNs. Due to the nitrogen and fluorine co-doping, the photoelectrochemical biosensors can produce high photocurrent under visible light irradiation. Moreover, the presence of AgNPs greatly increased the photocurrent response of the biosensor. AChE/Ag/NFTNs hybrid system was used to study AChE inhibition induced by (R)-Sal and (R)-NMSal. The result proved that both (R)-Sal and (R)-NMSal exhibited mixed and reversible inhibition against AChE. This strategy is of great significance for the development of novel photoelectrochemical biosensors in the future.

  12. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome.

    PubMed

    Fujino, Kan; Horie, Masayuki; Honda, Tomoyuki; Merriman, Dana K; Tomonaga, Keizo

    2014-09-09

    Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called "endogenous bornavirus-like elements" (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.

  13. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome

    PubMed Central

    Fujino, Kan; Horie, Masayuki; Honda, Tomoyuki; Merriman, Dana K.; Tomonaga, Keizo

    2014-01-01

    Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo. PMID:25157155

  14. Doubling Your Payoff: Winning Pain Relief Engages Endogenous Pain Inhibition1,2,3

    PubMed Central

    Gandhi, Wiebke; Kwan, Saskia; Ahmed, Alysha-Karima; Schweinhardt, Petra

    2015-01-01

    Abstract When in pain, pain relief is much sought after, particularly for individuals with chronic pain. In analogy to augmentation of the hedonic experience (“liking”) of a reward by the motivation to obtain a reward (“wanting”), the seeking of pain relief in a motivated state might increase the experience of pain relief when obtained. We tested this hypothesis in a psychophysical experiment in healthy human subjects, by assessing potential pain-inhibitory effects of pain relief “won” in a wheel of fortune game compared with pain relief without winning, exploiting the fact that the mere chance of winning induces a motivated state. The results show pain-inhibitory effects of pain relief obtained by winning in behaviorally assessed pain perception and ratings of pain intensity. Further, the higher participants scored on the personality trait novelty seeking, the more pain inhibition was induced. These results provide evidence that pain relief, when obtained in a motivated state, engages endogenous pain-inhibitory systems beyond the pain reduction that underlies the relief in the first place. Consequently, such pain relief might be used to improve behavioral pain therapy, inducing a positive, perhaps self-amplifying feedback loop of reduced pain and improved functionality. PMID:26464995

  15. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy

    PubMed Central

    Wang, Ying-Hua; Kalaitzidis, Demetrios; Ramachandran, Janani; Sykes, David B.; Raje, Noopur; Scadden, David T.

    2016-01-01

    Regulation of STAT3 activation is critical for normal and malignant hematopoietic cell proliferation. Here, we have reported that the endogenous transmembrane protein upstream-of-mTORC2 (UT2) negatively regulates activation of STAT3. Specifically, we determined that UT2 interacts directly with GP130 and inhibits phosphorylation of STAT3 on tyrosine 705 (STAT3Y705). This reduces cytokine signaling including IL6 that is implicated in multiple myeloma and other hematopoietic malignancies. Modulation of UT2 resulted in inverse effects on animal survival in myeloma models. Samples from multiple myeloma patients also revealed a decreased copy number of UT2 and decreased expression of UT2 in genomic and transcriptomic analyses, respectively. Together, these studies identify a transmembrane protein that functions to negatively regulate cytokine signaling through GP130 and pSTAT3Y705 and is molecularly and mechanistically distinct from the suppressors of cytokine signaling (SOCS) family of genes. Moreover, this work provides evidence that perturbations of this activation-dampening molecule participate in hematologic malignancies and may serve as a key determinant of multiple myeloma pathophysiology. UT2 is a negative regulator shared across STAT3 and mTORC2 signaling cascades, functioning as a tumor suppressor in hematologic malignancies driven by those pathways. PMID:26927669

  16. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts.

    PubMed

    Ozawa, Masayuki

    2015-10-09

    Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca(2+)-dependent cell-cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell-cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell-cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell-cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.

  17. Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells.

    PubMed

    Huang, Yaqian; Shen, Zhizhou; Chen, Qinghua; Huang, Pan; Zhang, Heng; Du, Shuxu; Geng, Bin; Zhang, Chunyu; Li, Kun; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-14

    The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.

  18. HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy.

    PubMed

    Lai, Yanjun; He, Shuai; Ma, Liming; Lin, Hong; Ren, Biyun; Ma, Jing; Zhu, Xinyu; Zhuang, Shifang

    2017-03-18

    Sustained cardiac hypertrophy (CH) is related to a variety of physiological as well as pathological stimuli and eventually increases the risk of heart failure. HOTAIR has been identified as a competing endogenous RNA in multiple human biological processes. Whether lncRNA-HOTAIR is involved in the progress of CH and how it works still remain unknown. Herein, we found that HOTAIR was down-regulated, while miR-19 was up-regulated in both heart tissues from TAC-operated mice in vivo and cultural cardiomyocytes treated with Ang-II in vitro by real-time PCR. Meanwhile, HOTAIR expression was negatively correlated with miR-19 in TAC-operated mice. HOTAIR overexpression reduced cell surface area and the expression of hypertrophic markers ANP, BNP, and β-MHC in response to Ang-II stimulation as well as knockdown of miR-19. The further molecular mechanisms of HOTAIR action in CH demonstrated that HOTAIR may act as a competing endogenous RNA (ceRNA) for miR-19, thereby modulating the dis-inhibition of its endogenous target PTEN and playing an important role in inhibiting CH progress. These findings reveal a novel function of LncRNAs, which conduce to an extensive understanding of CH and provide novel research directions and therapeutic options for treating this disease.

  19. Glutamate-evoked release of endogenous brain dopamine: inhibition by an excitatory amino acid antagonist and an enkephalin analogue.

    PubMed Central

    Jhamandas, K.; Marien, M.

    1987-01-01

    The present study examined the effect of a selective delta-opioid receptor agonist [D-Ala2-D-Leu5] enkephalin (DADL) on the spontaneous and the L-glutamic acid (L-Glu)-evoked release of endogenous dopamine from superfused slices of rat caudate-putamen. The amount of dopamine in slice superfusates was measured by a sensitive method employing high-performance liquid chromatography with electrochemical detection (h.p.l.c.-e.d.) after a two-step separation procedure. The spontaneous release of endogenous dopamine was partially dependent on Ca2+, enhanced in Mg2+-free superfusion medium, partially reduced by tetrodotoxin (TTX, 0.3 microM), partially reduced by the putative excitatory amino acid receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (DL-APH, 1 mM), and increased 10 fold by the dopamine uptake blocker, nomifensine (10 microM). DADL (5 and 50 nM) did not significantly affect spontaneous dopamine release. L-Glu (0.1-10 mM) produced a concentration-dependent release of endogenous dopamine from slices of caudate-putamen. This effect was Ca2+-dependent, strongly inhibited by 1.2 mM Mg2+, attenuated by DL-APH (1 mM), attenuated by TTX (0.3 microM), and enhanced by nomifensine (10 microM). In the presence of nomifensine DADL (50 nM) reduced significantly the L-Glu-evoked release of endogenous dopamine by 20%. The inhibitory effect of DADL was blocked by 10 microM naloxone. These results indicate that L-Glu stimulates the Ca2+-dependent release of endogenous dopamine in the caudate-putamen by activation of N-methy-D-aspartate-type of excitatory amino acid receptors. This release can be selectively modified by the delta-opioid agonist DADL in a naloxone-sensitive manner. PMID:2884003

  20. Fourth-Generation Progestins Inhibit 3β-Hydroxysteroid Dehydrogenase Type 2 and Modulate the Biosynthesis of Endogenous Steroids

    PubMed Central

    Louw-du Toit, Renate; Perkins, Meghan S.; Snoep, Jacky L.; Storbeck, Karl-Heinz; Africander, Donita

    2016-01-01

    Progestins used in contraception and hormone replacement therapy are synthetic compounds designed to mimic the actions of the natural hormone progesterone and are classed into four consecutive generations. The biological actions of progestins are primarily determined by their interactions with steroid receptors, and factors such as metabolism, pharmacokinetics, bioavailability and the regulation of endogenous steroid hormone biosynthesis are often overlooked. Although some studies have investigated the effects of select progestins on a few steroidogenic enzymes, studies comparing the effects of progestins from different generations are lacking. This study therefore explored the putative modulatory effects of progestins on de novo steroid synthesis in the adrenal by comparing the effects of select progestins from the respective generations, on endogenous steroid hormone production by the H295R human adrenocortical carcinoma cell line. Ultra-performance liquid chromatography/tandem mass spectrometry analysis showed that the fourth-generation progestins, nestorone (NES), nomegestrol acetate (NoMAC) and drospirenone (DRSP), unlike the progestins selected from the first three generations, modulate the biosynthesis of several endogenous steroids. Subsequent assays performed in COS-1 cells expressing human 3βHSD2, suggest that these progestins modulate the biosynthesis of steroid hormones by inhibiting the activity of 3βHSD2. The Ki values determined for the inhibition of human 3βHSD2 by NES (9.5 ± 0.96 nM), NoMAC (29 ± 7.1 nM) and DRSP (232 ± 38 nM) were within the reported concentration ranges for the contraceptive use of these progestins in vivo. Taken together, our results suggest that newer, fourth-generation progestins may exert both positive and negative physiological effects via the modulation of endogenous steroid hormone biosynthesis. PMID:27706226

  1. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-01-01

    We examined the effects of an adenosine receptor agonist on caffeine-induced changes in thermoregulation, neurotransmitter release in the preoptic area and anterior hypothalamus, and endurance exercise performance in rats. One hour before the start of exercise, rats were intraperitoneally injected with either saline alone (SAL), 10 mg kg(-1) caffeine and saline (CAF), a non-selective adenosine receptor agonist (5'-N-ethylcarboxamidoadenosine [NECA]: 0.5 mg kg(-1)) and saline (NECA), or the combination of caffeine and NECA (CAF+NECA). Rats ran until fatigue on the treadmill with a 5% grade at a speed of 18 m min(-1) at 23 °C. Compared to the SAL group, the run time to fatigue (RTTF) was significantly increased by 52% following caffeine administration and significantly decreased by 65% following NECA injection (SAL: 91 ± 14.1 min; CAF: 137 ± 25.8 min; NECA: 31 ± 13.7 min; CAF+NECA: 85 ± 11.8 min; p<0.05). NECA decreased the core body temperature (Tcore), oxygen consumption, which is an index of heat production, tail skin temperature, which is an index of heat loss, and extracellular dopamine (DA) release at rest and during exercise. Furthermore, caffeine injection inhibited the NECA-induced decreases in the RTTF, Tcore, heat production, heat loss, and extracellular DA release. Neither caffeine nor NECA affected extracellular noradrenaline or serotonin release. These results support the findings of previous studies showing improved endurance performance and overrides in body limitations after caffeine administration, and imply that the ergogenic effects of caffeine may be associated with the adenosine receptor blockade-induced increases in brain DA release.

  2. Increased synaptic inhibition in dentate gyrus of mice with reduced levels of endogenous brain-derived neurotrophic factor.

    PubMed

    Olofsdotter, K; Lindvall, O; Asztély, F

    2000-01-01

    The aim of this study was to explore the role of endogenous neurotrophins for inhibitory synaptic transmission in the dentate gyrus of adult mice. Heterozygous knockout (+/-) mice or neurotrophin scavenging proteins were used to reduce the levels of endogenous brain-derived neurotrophic factor and neurotrophin-3. Patch-clamp recordings from dentate granule cells in brain slices showed that the frequency, but not the kinetics or amplitude, of miniature inhibitory postsynaptic currents was modulated in brain-derived neurotrophic factor +/- compared to wild-type (+/+) mice. Furthermore, paired-pulse depression of evoked inhibitory synaptic responses was increased in brain-derived neurotrophic factor +/- mice. Similar results were obtained in brain slices from brain-derived neurotrophic factor +/+ mice incubated with tyrosine receptor kinase B-immunoglobulin G, which scavenges endogenous brain-derived neurotrophic factor. The increased inhibitory synaptic activity in brain-derived neurotrophic factor +/- mice was accompanied by decreased excitability of the granule cells. No differences in the frequency, amplitude or kinetics of miniature inhibitory postsynaptic currents were seen between neurotrophin-3 +/- and +/+ mice. From these results we suggest that endogenous brain-derived neurotrophic factor, but not neurotrophin-3, has acute modulatory effects on synaptic inhibition onto dentate granule cells. The site of action seems to be located presynaptically, i.e. brain-derived neurotrophic factor regulates the properties of inhibitory interneurons, leading to increased excitability of dentate granule cells. We propose that through this mechanism, brain-derived neurotrophic factor can change the gating/filtering properties of the dentate gyrus for incoming information from the entorhinal cortex to hippocampus. This will have consequences for the recruitment of hippocampal neural circuitries both under physiological and pathological conditions, such as epileptogenesis.

  3. Endogenous ethylene does not regulate opening of unstressed Iris flowers but strongly inhibits it in water-stressed flowers.

    PubMed

    Çelikel, Fisun G; van Doorn, Wouter G

    2012-09-15

    The floral buds of Iris flowers (Iris x hollandica) are enclosed by two sheath leaves. Flower opening depends on lifting the flower up to a position whereby the tepals can move laterally. This upward movement is carried out by elongation of the subtending pedicel and ovary. In the pedicels and ovaries of unstressed control flowers, the concentration of ACC (1-aminocyclopropane-1-carboxylic acid) and the rate of ethylene production increased during d 0-1 of flower opening, and then decreased. Exposure to ≥200 nL L(-1) ethylene for 24 h at 20°C inhibited elongation of the pedicel+ovary, and inhibited flower opening. However, pulsing of unstressed flowers with solutions containing inhibitors of ethylene synthesis (AOA, AVG), or an inhibitor of ethylene action (STS), did not affect pedicel+ovary elongation or flower opening. When the flowers were dehydrated for 2 d at 20°C and 60% RH, they did not open when subsequently placed in water, and showed inhibited elongation in the pedicel+ovary. This dehydration treatment resulted in elevated pedicel+ovary ACC levels and in increased ethylene production. Treatment with STS prevented the increase in ACC levels and ethylene production, overcame the effect of dehydration on elongation of the pedicel+ovary, and resulted in full flower opening. It is concluded that flower opening in unstressed Iris flowers is not regulated by endogenous ethylene. An increase in endogenous ethylene above normal levels during stress, by contrast, strongly inhibited flower opening, due to its inhibitory effect on elongation of the pedicel+ovary.

  4. Inhibition of endogenous MTF-1 signaling in zebrafish embryos identifies novel roles for MTF-1 in development

    PubMed Central

    O’Shields, Britton; McArthur, Andrew G.; Holowiecki, Andrew; Kamper, Martin; Tapley, Jeffrey; Jenny, Matthew J.

    2014-01-01

    The metal responsive element-binding transcription factor-1 (MTF-1) responds to changes in cellular zinc levels caused by zinc exposure or disruption of endogenous zinc homeostasis by heavy metals or oxygen-related stress. Here we report the functional characterization of a complete zebrafish MTF-1 in comparison with the previously identified isoform lacking the highly conserved cysteine-rich motif (Cys-X-Cys-Cys-X-Cys) found in all other vertebrate MTF-1 orthologues. In an effort to develop novel molecular tools, a constitutively nuclear dominant-negative MTF-1 (dnMTF-1) was generated as tool for inhibiting endogenous MTF-1 signaling. The in vivo efficacy of the dnMTF-1 was determined by microinjecting in vitro transcribed dnMTF-1 mRNA into zebrafish embryos (1–2 cell stage) followed by transcriptomic profiling using an Agilent 4 × 44K array on 28- and 36-hpf embryos. A total of 594 and 560 probes were identified as differentially expressed at 28 hpf and 36 hpf, respectively, with interesting overlaps between timepoints. The main categories of genes affected by the inhibition of MTF-1 signaling were: nuclear receptors and genes involved in stress signaling, neurogenesis, muscle development and contraction, eye development, and metal homeostasis, including novel observations in iron and heme homeostasis. Finally, we investigate both the transcriptional activator and transcriptional repressor role of MTF-1 in potential novel target genes identified by transcriptomic profiling during early zebrafish development. PMID:24751692

  5. Inhibiting roles of berberine in gut movement of rodents are related to activation of the endogenous opioid system.

    PubMed

    Feng, Yajing; Li, Yongyu; Chen, Chunqiu; Lin, Xuhong; Yang, Yuehua; Cai, Haidong; Lv, Zhongwei; Cao, Minghua; Li, Kun; Xu, Jing; Li, Sainan; Jia, Yijun

    2013-10-01

    Although Berberine (BER) is popular in treating gastrointestinal (GI) disorders, its mechanisms are not clear yet. In order to investigate the effects and possible mechanism of BER on GI motility in rodents, we first explored GI motility by recording the myoelectrical activity of jejunum and colon in rats, and upper GI transit with a charcoal marker in mice. Then, the plasma levels of gastrin, motilin, somatostatin and glucagon-like-peptide-1 (Glp-1) were measured by ELISA or radioimmunoassay (RIA). Furthermore, endogenous opioid-peptides (β-endorphin, dynorphin-A, met-enkephalin) were detected by RIA after treatment with BER. Our results showed that BER concentration-dependently inhibited myoelectrical activity and GI transit, which can be antagonized by opioid-receptor antagonists to different extents. The elevated somatostatin and Glp-1, and decreased gastrin and motilin in plasma, which were caused by BER application, also could be antagonized by the opioid-receptor antagonists. Additionally, plasma level of β-endorphin, but not dynorphin-A and met-enkephalin, was increased by applying BER. Taken together, these studies show that BER plays inhibiting roles on GI motility and up-regulating roles on somatostatin, Glp-1 and down-regulating roles on gastrin, motilin. The pharmacological mechanisms of BER on GI motility and plasma levels of GI hormones were discovered to be closely related to endogenous opioid system.

  6. Neurotransmitter properties of the newborn human retina

    SciTech Connect

    Hollyfield, J.G.; Frederick, J.M.; Rayborn, M.E.

    1983-07-01

    Human retinal tissue from a newborn was examined autoradiographically for the presence of high-affinity uptake and localization of the following putative neurotransmitters: dopamine, glycine, GABA, aspartate, and glutamate. In addition, the dopamine content of this newborn retina was measured by high pressure liquid chromatography. Our study reveals that specific uptake mechanisms for /sup 3/H-glycine, /sup 3/H-dopamine, and /sup 3/H-GABA are present at birth. However, the number and distribution of cells labeled with each of these /sup 3/H-transmitters are not identical to those observed in adult human retinas. Furthermore, the amount of endogenous dopamine in the newborn retina is approximately 1/20 the adult level. Photoreceptor-specific uptake of /sup 3/H-glutamate and /sup 3/H-aspartate are not observed. These findings indicate that, while some neurotransmitter-specific properties are present at birth, significant maturation of neurotransmitter systems occurs postnatally.

  7. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors

    PubMed Central

    Chang, Chun Yun; Esber, Guillem R; Marrero-Garcia, Yasmin; Yau, Hau-Jie; Bonci, Antonello; Schoenbaum, Geoffrey

    2015-01-01

    Correlative studies have strongly linked phasic changes in dopamine activity with reward prediction error signaling. But causal evidence that these brief changes in firing actually serve as error signals to drive associative learning is more tenuous. While there is direct evidence that brief increases can substitute for positive prediction errors, there is no comparable evidence that similarly brief pauses can substitute for negative prediction errors. Lacking such evidence, the effect of increases in firing could reflect novelty or salience, variables also correlated with dopamine activity. Here we provide such evidence, showing in a modified Pavlovian over-expectation task that brief pauses in the firing of dopamine neurons in rat ventral tegmental area at the time of reward are sufficient to mimic the effects of endogenous negative prediction errors. These results support the proposal that brief changes in the firing of dopamine neurons serve as full-fledged bidirectional prediction error signals. PMID:26642092

  8. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses

    PubMed Central

    Chiappinelli, Katherine B.; Strissel, Pamela L.; Desrichard, Alexis; Li, Huili; Henke, Christine; Akman, Benjamin; Hein, Alexander; Rote, Neal S.; Cope, Leslie M.; Snyder, Alexandra; Makarov, Vladimir; Buhu, Sadna; Slamon, Dennis J.; Wolchok, Jedd D.; Pardoll, Drew M.; Beckmann, Matthias W.; Zahnow, Cynthia A.; Mergoub, Taha; Chan, Timothy A.; Baylin, Stephen B.; Strick, Reiner

    2015-01-01

    Summary We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a Type I Interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response twofold, and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model. PMID:26317466

  9. Electrochemical Analysis of Neurotransmitters

    NASA Astrophysics Data System (ADS)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  10. Electrochemical Analysis of Neurotransmitters

    PubMed Central

    Bucher, Elizabeth S.; Wightman, R. Mark

    2016-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements. PMID:25939038

  11. Electrochemical Analysis of Neurotransmitters.

    PubMed

    Bucher, Elizabeth S; Wightman, R Mark

    2015-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  12. Fosetyl-Al photo-Fenton degradation and its endogenous catalyst inhibition.

    PubMed

    Micó, María M; Zapata, Ana; Maldonado, Manuel I; Bacardit, Jordi; Malfeito, Jorge; Sans, Carme

    2014-01-30

    Interferences from many sources can affect photo-Fenton reaction performance. Among them, catalyst inhibition can be caused by the complexation and/or precipitation of iron species by the organic matter and salts present in the reaction media. This is the case of the oxidation of effluents containing organophosphorous fosetyl-Al. The degradation of this fungicide generates phosphate anions that scavenge iron and hinder Fe(II) availability. Experimental design was applied to artificially enlighten photo-Fenton reaction, in order to evaluate fosetyl-Al degradation. The performed experiments suggested how iron inhibition takes place. The monitoring of photo-Fenton reaction over a mixture of fosetyl-Al with other two pesticides also showed the interferences caused by the presence of the fungicide on other species degradation. Solar empowered photo-Fenton was also essayed for comparison purposes. Artificial and solar light photo-Fenton reactions were revealed as effective treatments for the elimination of tested fungicide. However, the phosphate ions generated during fosetyl oxidation decreased iron availability, what hampered organic matter degradation.

  13. Endogenous xanthine oxidase-derived O sub 2 metabolites inhibit surfactant metabolism

    SciTech Connect

    Baker, R.R.; Panus, P.C.; Holm, B.A.; Engstrom, P.C.; Freeman, B.A.; Matalon, S. )

    1990-10-01

    The ability of xanthine oxidase (XO)-derived, partially reduced O2 species (PROS) to inhibit surfactant production was examined in freshly isolated alveolar type II (ATII) pneumocytes from New Zealand White rabbits. (Methyl-3H)choline chloride and (1-14C)palmitate incorporation into phosphatidylcholine (PC) decreased in a dose-dependent manner, whereas peak media hydrogen peroxide (H2O2) concentration increased, when 1, 5, or 10 mU/ml XO were added to cell suspensions containing 500 microM xanthine. Addition of 100 microM allopurinol inhibited H2O2 production and abolished the decrease in choline and palmitate incorporation into PC. ATII cells incubated with 500 microM xanthine alone incorporated choline and palmitate at 90 and 80% of control levels, respectively. However, 100 microM allopurinol restored precursor incorporation to control values. To identify a possible intracellular source of PROS, ATII cell xanthine dehydrogenase (XDH) and XO activities were measured. Both total activity (XDH + XO; 45 +/- 7 microU/mg protein) and the percentage activity in the oxidase form (%XO; 30 +/- 4%) remained unchanged in ATII cells incubated in media only (control) for 2 h. In contrast, incubation of ATII cells with 500 microM xanthine resulted in a 50% loss of XDH + XO activity and a 21% increase in %XO within 10 min. After 2 h there was no measurable XDH + XO activity in xanthine-treated cells. Total XDH + XO activity in cells incubated with 500 microM xanthine and 100 microM allopurinol was less than 6% of control values throughout the incubation.

  14. Dysfunction of endogenous pain inhibition during exercise with painful muscles in patients with shoulder myalgia and fibromyalgia.

    PubMed

    Lannersten, Lisa; Kosek, Eva

    2010-10-01

    The aim of this study was to investigate how exercise influenced endogenous pain modulation in healthy controls, shoulder myalgia patients and fibromyalgia (FM) patients. Twenty-one healthy subjects, 20 shoulder myalgia patients and 20 FM patients, all females, participated. They performed standardized static contractions, that is, outward shoulder rotation (m. infraspinatus) and knee extension (m. quadriceps). Pressure pain thresholds (PPTs) were determined bilaterally at m. infraspinatus and m. quadriceps. During contractions PPTs were assessed at the contracting muscle, the resting homologous contralateral muscle and contralaterally at a distant site (m. infraspinatus during contraction of m. quadriceps and vice versa). Myalgia patients had lower PPTs compared to healthy controls at m. infraspinatus bilaterally (p<0.01), but not at m. quadriceps. FM patients had lower PPTs at all sites compared to healthy controls (p<0.001) and myalgia patients (p<0.001). During contraction of m. infraspinatus PPTs increased compared to baseline at the end of contraction in healthy controls (all sites: p<0.003), but not in myalgia or FM patients. During contraction of m. quadriceps PPTs increased compared to baseline at the end of contraction in healthy controls (all sites: p<0.001) and myalgia patients (all sites: p<0.02), but not in FM patients. In conclusion, we found a normal activation of endogenous pain regulatory mechanisms in myalgia patients during contraction of the non-afflicted m. quadriceps, but a lack of pain inhibition during contraction of the painful m. infraspinatus. FM patients failed to activate their pain inhibitory mechanisms during all contractions.

  15. Mitochondrial impairment induced by 3-nitropropionic acid is enhanced by endogenous metalloprotease activity inhibition in cultured rat striatal neurons.

    PubMed

    de Oca Balderas, Pavel Montes; Ospina, Gabriel Gutiérrez; Del Ángel, Abel Santamaría

    2013-06-24

    Metalloproteases from the metzincin family mediate molecule processing at the cell membrane termed ectodomain shedding (ES). This mechanism enables the generation of intracellular and extracellular fragments from cell membrane molecules that exert additional functions involved in cell processes including cell death, beyond those of full length molecules. Micotoxin 3-nitropropionic acid (3-NP) induces striatal neuronal degeneration in vivo and in vitro through mitochondrial complex II inhibition. In this study, we hypothesized that metalloproteases regulate mitochondrial activity in cultured rat striatal neurons undergoing degeneration. To test this idea, striatal neuronal cultures characterized by NeuN and GAD-67 expression were treated with 3-NP together with the metalloprotease inhibitor GM6001 and their mitochondrial activity was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Our results showed that metalloprotease inhibition potentiated mitochondrial activity impairment induced by 3-NP whereas the inhibitor alone had no effect. These results indicate that metalloproteases regulate and promote mitochondrial functionality in striatal neurons undergoing degeneration induced by 3-NP. Since NMDA receptor is involved in the excitotoxic neuronal death triggered by 3-NP and is known to undergo ES, we analyzed NMDAR subunit NR1 phenotypic distribution by immunofluorescence. 3-NP and GM6001 induced abnormal perinuclear NR1 accumulation that was not observed with 3-NP or GM6001 alone. This observation suggests that metalloproteases are involved in NR1 cellular reorganization induced by 3-NP, and that their inhibition results in abnormal NR1 distribution. Together results indicate that endogenous metalloproteases are activated during striatal neurodegeneration induced by 3-NP eliciting an adaptative or compensatory response that protects mitochondrial functionality.

  16. The pro-angiogenic cytokine pleiotrophin potentiates cardiomyocyte apoptosis through inhibition of endogenous AKT/PKB activity.

    PubMed

    Li, Jinliang; Wei, Hong; Chesley, Alan; Moon, Chanil; Krawczyk, Melissa; Volkova, Maria; Ziman, Bruce; Margulies, Kenneth B; Talan, Mark; Crow, Michael T; Boheler, Kenneth R

    2007-11-30

    Pleiotrophin is a development-regulated cytokine and growth factor that can promote angiogenesis, cell proliferation, or differentiation, and it has been reported to have neovasculogenic effects in damaged heart. Developmentally, it is prominently expressed in fetal and neonatal hearts, but it is minimally expressed in normal adult heart. Conversely, we show in a rat model of myocardial infarction and in human dilated cardiomyopathy that pleiotrophin is markedly up-regulated. To elucidate the effects of pleiotrophin on cardiac contractile cells, we employed primary cultures of rat neonatal and adult cardiomyocytes. We show that pleiotrophin is released from cardiomyocytes in vitro in response to hypoxia and that the addition of recombinant pleiotrophin promotes caspase-mediated genomic DNA fragmentation in a dose- and time-dependent manner. Functionally, it potentiates the apoptotic response of neonatal cardiomyocytes to hypoxic stress and to ultraviolet irradiation and of adult cardiomyocytes to hypoxia-reoxygenation. Moreover, UV-induced apoptosis in neonatal cardiomyocytes can be partially inhibited by small interfering RNA-mediated knockdown of endogenous pleiotrophin. Mechanistically, pleiotrophin antagonizes IGF-1 associated Ser-473 phosphorylation of AKT/PKB, and it concomitantly decreases both BAD and GSK3beta phosphorylation. Adenoviral expression of constitutively active AKT and lithium chloride-mediated inhibition of GSK3beta reduce the potentiated programmed cell death elicited by pleiotrophin. These latter data indicate that pleiotrophin potentiates cardiomyocyte cell death, at least partially, through inhibition of AKT signaling. In conclusion, we have uncovered a novel function for pleiotrophin on heart cells following injury. It fosters cardiomyocyte programmed cell death in response to pro-apoptotic stress, which may be critical to myocardial injury repair.

  17. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia.

    PubMed

    Collin, Marika; Anuar, Farhana B M; Murch, Oliver; Bhatia, Madhav; Moore, Philip K; Thiemermann, Christoph

    2005-10-01

    Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg(-1) intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg(-1) i.v.) or DL-propargylglycine (PAG, 10-100 mg kg(-1) i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-gamma-lyase (CSE). PAG was administered either 30 min prior to or 60 min after the induction of endotoxemia. Endotoxemia resulted in circulatory failure (hypotension and tachycardia) and an increase in serum levels of alanine aminotransferase and aspartate aminotransferase (markers for hepatic injury), lipase (indicator of pancreatic injury) and creatine kinase (indicator of neuromuscular injury). In the liver, endotoxemia induced a significant increase in the myeloperoxidase (MPO) activity, and in the expression and activity of the H2S-synthesizing enzymes CSE and cystathionine-beta-synthase. Administration of PAG either prior to or after the injection of LPS dose-dependently reduced the hepatocellular, pancreatic and neuromuscular injury caused by endotoxemia, but not the circulatory failure. Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock.

  18. Ursolic acid sensitizes radioresistant NSCLC cells expressing HIF-1α through reducing endogenous GSH and inhibiting HIF-1α

    PubMed Central

    Song, Bing; Zhang, Qian; Yu, Maohu; Qi, Xinrong; Wang, Gang; Xiao, Linlin; Yi, Qiyi; Jin, Wensen

    2017-01-01

    In previous studies, the present authors demonstrated that effective sensitization of ionizing radiation-induced death of tumor cells, including non-small cell lung cancer (NSCLC) cells, could be produced by oleanolic acid (OA), a pentacyclic triterpenoid present in plants. In the present study, it was investigated whether ursolic acid (UA), an isomer of OA, had also the capacity of sensitizing radioresistant NSCLC cells. The radioresistant cell line H1299/M-hypoxia inducible factor-1α (HIF-1α) was established by transfection with a recombinant plasmid expressing mutant HIF-1α (M-HIF-1α). Compared with parental H1299 cells and H1299 cells transfected with empty plasmid, H1299/M-HIF-1α cells had lower radiosensitivity. Following the use of UA to treat NSCLC cells, elevation of the radiosensitivity of cells was observed by MTT assay. The irradiated H1299/M-HIF-1α cells were more sensitive to UA pretreatment than the irradiated cells with empty plasmid and control. The alteration of DNA damage in the irradiated cells was further measured using micronucleus (MN) assay. The combination of UA treatment with radiation could induce the increase of cellular MN frequencies, in agreement with the change in the tendency observed in the cell viability assay. It was further shown that the endogenous glutathione (GSH) contents were markedly attenuated in the differently irradiated NSCLC cells with UA (80 µmol/l) pretreatment through glutathione reductase/5,5′-dithiobis-(2-nitrob-enzoic acid) (DTNB) recycling assay. The results revealed that UA treatment alone could effectively decrease the GSH content in H1299/M-HIF-1α cells. In addition, the inhibition of HIF-1α expression in radioresistant cells was confirmed by western blotting. It was then concluded that UA could upregulate the radiosensitivity of NSCLC cells, and in particular reduce the refractory response of cells expressing HIF-1α to ionizing radiation. The primary mechanism is associated with reduction of

  19. Regulation of neurotransmitter release kinetics by NSF.

    PubMed

    Schweizer, F E; Dresbach, T; DeBello, W M; O'Connor, V; Augustine, G J; Betz, H

    1998-02-20

    NSF (N-ethylmaleimide-sensitive factor) is an adenosine triphosphatase (ATPase) that contributes to a protein complex essential for membrane fusion. The synaptic function of this protein was investigated by injecting, into the giant presynaptic terminal of squid, peptides that inhibit the ATPase activity of NSF stimulated by the soluble NSF attachment protein (SNAP). These peptides reduced the amount and slowed the kinetics of neurotransmitter release as a result of actions that required vesicle turnover and occurred at a step subsequent to vesicle docking. These results define NSF as an essential participant in synaptic vesicle exocytosis that regulates the kinetics of neurotransmitter release and, thereby, the integrative properties of synapses.

  20. Endogenous secretory receptor for advanced glycation end-products inhibits amyloid-β1-42 uptake into mouse brain.

    PubMed

    Sugihara, Takahiro; Munesue, Seiichi; Yamamoto, Yasuhiko; Sakurai, Shigeru; Akhter, Nasima; Kitamura, Yoji; Shiba, Kazuhiro; Watanabe, Takuo; Yonekura, Hideto; Hayashi, Yasuhiko; Hamada, Jun-Ichiro; Yamamoto, Hiroshi

    2012-01-01

    The cell-surface receptor for advanced glycation end-products (RAGE) has been implicated in the development of diabetic vascular complications and Alzheimer's disease. RAGE has been considered to be involved in amyloid-β1-42 (Aβ1-42) uptake into brain. In the present study, we demonstrate that endogenous secretory RAGE (esRAGE), a decoy form of RAGE generated by alternative RNA processing, is able to inhibit Aβ1-42 influx into mouse brain. Surface plasmon resonance and competitive binding assays revealed that human Aβ1-42 interacted with human esRAGE within the immunoglobulin V type region. We next examined the uptake and distribution of 125I-labeled human Aβ1-42 in various organs and body fluids of newly created mice overexpressing human esRAGE as well as RAGE-null and wild-type (WT) mice. The transition of the 125I-labeled Aβ1-42 from circulation to brain parenchyma peaked at 30 min after the injection into WT mice, but this was significantly blunted in esRAGE-overexpressing and RAGE-null mice. Significant reduction in 125I-labeled Aβ1-42-derived photo-stimulated luminescence were marked in ventricles, cerebral cortex, hippocampus, especially CA1 and CA3 regions, putamen, and thalamus. The results thus suggest the potential of esRAGE in protection against the development of Alzheimer's disease.

  1. Calcitonin gene related peptide as inhibitory neurotransmitter in the ureter.

    PubMed

    Maggi, C A; Giuliani, S; Meini, S; Santicioli, P

    1995-07-01

    A dense plexus of calcitonin gene related peptide (CGRP) containing nerve fibres is present in the mammalian ureter, from which CGRP is released by depolarizing stimuli, including chemical normally present in the urine. CGRP exerts a profound, receptor-mediated, inhibitory effect on the evoked motility of the ureter by suppressing latent pacemakers in the smooth muscle. This effect is largely glibenclamide sensitive, indicating the activation of potassium (K) channels in its genesis. Electrical stimulation of intramural nerves in the guinea-pig ureter produces a transient membrane hyperpolarization, which is blocked by glibenclamide or by capsaicin pretreatment, enhanced in a low-K medium, and inhibited by a CGRP receptor antagonist. Thus endogenous CGRP acts as a neurotransmitter K channel opener in the ureter. The refractory period of the guinea-pig ureter is markedly and similarly reduced by capsaicin pretreatment or administration of a CGRP receptor antagonist, indicating that endogenous CGRP can modulate the maximal frequency of ureteral peristalsis. Using a three-chamber organ bath that enabled the separate perfusion of the renal, middle, and bladder regions of the organ, evidence was obtained that CGRP blocks propagation of impulses along the ureter through a glibenclamide-sensitive mechanism. These findings indicate a role of CGRP in the local regulation of ureteral motility and peristalsis.

  2. Dendritic Release of Neurotransmitters.

    PubMed

    Ludwig, Mike; Apps, David; Menzies, John; Patel, Jyoti C; Rice, Margaret E

    2016-12-06

    Release of neuroactive substances by exocytosis from dendrites is surprisingly widespread and is not confined to a particular class of transmitters: it occurs in multiple brain regions, and includes a range of neuropeptides, classical neurotransmitters, and signaling molecules, such as nitric oxide, carbon monoxide, ATP, and arachidonic acid. This review is focused on hypothalamic neuroendocrine cells that release vasopressin and oxytocin and midbrain neurons that release dopamine. For these two model systems, the stimuli, mechanisms, and physiological functions of dendritic release have been explored in greater detail than is yet available for other neurons and neuroactive substances. © 2017 American Physiological Society. Compr Physiol 7:235-252, 2017.

  3. Inhibition of leukocyte function and interleukin-2 gene expression by 2-methylarachidonyl-(2'-fluoroethyl)amide, a stable congener of the endogenous cannabinoid receptor ligand anandamide

    SciTech Connect

    Kaplan, Barbara L.F.; Ouyang Yanli; Herring, Amy; Yea, Sung Su; Razdan, Raj; Kaminski, Norbert E. . E-mail: kamins11@msu.edu

    2005-06-01

    Arachidonylethanolamide (anandamide, AEA) has been identified as an endogenous ligand for cannabinoid receptors CB1 and CB2. Characterization of the direct cannabimimetic actions of anandamide has been hampered by its short duration of action and rapid degradation in in vivo and in vitro systems to arachidonic acid, a precursor in the biosynthesis of a broad range of biologically active molecules. In the present studies, we utilized 2-methylarachidonyl-(2'-fluoroethyl)amide (F-Me-AEA), an analog of anandamide resistant to enzymatic degradation, to determine whether F-Me-AEA modulated T cell function similar to that of plant-derived cannabinoids. Indeed, F-Me-AEA at low micromolar concentrations exhibited a marked inhibition of phorbol ester plus calcium ionophore (PMA/Io)-induced IL-2 protein secretion and steady state mRNA expression. Likewise, a modest suppression of the mixed lymphocyte response was observed in the presence of F-Me-AEA indicating an alteration in T cell responsiveness to allogeneic MHC class II antigens. F-Me-AEA was also found to modestly inhibit forskolin-stimulated adenylate cyclase activity in thymocytes and splenocytes, a hallmark of cannabinoid receptor agonists. Further characterization of the influence of F-Me-AEA on the cAMP signaling cascade revealed an inhibition of CREB-1/ATF-1 phosphorylation and subsequently, an inhibition of CRE DNA binding activity. Characterization of nuclear binding proteins further revealed that NF-AT and, to a lesser extent, NF-{kappa}B DNA binding activities were also suppressed. These studies demonstrate that F-Me-AEA modulates T cell function in a similar manner to plant-derived and endogenous cannabinoids and therefore can be utilized as an amidase- and hydrolysis-resistant endogenous cannabinoid.

  4. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    PubMed

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  5. Neurotransmitters of the suprachiasmatic nuclei

    PubMed Central

    Reghunandanan, Vallath; Reghunandanan, Rajalaxmy

    2006-01-01

    There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working. PMID:16480518

  6. Chemical inhibition of potato ABA-8'-hydroxylase activity alters in vitro and in vivo ABA metabolism and endogenous ABA levels but does not affect potato microtuber dormancy duration.

    PubMed

    Suttle, Jeffrey C; Abrams, Suzanne R; De Stefano-Beltrán, Luis; Huckle, Linda L

    2012-09-01

    The effects of azole-type P450 inhibitors and two metabolism-resistant abscisic acid (ABA) analogues on in vitro ABA-8'-hydroxylase activity, in planta ABA metabolism, endogenous ABA content, and tuber meristem dormancy duration were examined in potato (Solanum tuberosum L. cv. Russet Burbank). When functionally expressed in yeast, three potato CYP707A genes were demonstrated to encode enzymatically active ABA-8'-hydroxylases with micromolar affinities for (+)-ABA. The in vitro activity of the three enzymes was inhibited by the P450 azole-type inhibitors ancymidol, paclobutrazol, diniconazole, and tetcyclasis, and by the 8'-acetylene- and 8'-methylene-ABA analogues, with diniconazole and tetcyclasis being the most potent inhibitors. The in planta metabolism of [(3)H](±)-ABA to phaseic acid and dihydrophaseic acid in tuber meristems was inhibited by diniconazole, tetcyclasis, and to a lesser extent by 8'-acetylene- and 8'-methylene-ABA. Continuous exposure of in vitro generated microtubers to diniconazole resulted in a 2-fold increase in endogenous ABA content and a decline in dihydrophaseic acid content after 9 weeks of development. Similar treatment with 8'-acetylene-ABA had no effects on the endogenous contents of ABA or phaseic acid but reduced the content of dihydrophaseic acid. Tuber meristem dormancy progression was determined ex vitro in control, diniconazole-, and 8'-acetylene-ABA-treated microtubers following harvest. Continuous exposure to diniconazole during microtuber development had no effects on subsequent sprouting at any time point. Continuous exposure to 8'-acetylene-ABA significantly increased the rate of microtuber sprouting. The results indicate that, although a decrease in ABA content is a hallmark of tuber dormancy progression, the decline in ABA levels is not a prerequisite for dormancy exit and the onset of tuber sprouting.

  7. Selected hormonal and neurotransmitter mechanisms regulating feed intake in sheep.

    PubMed

    Sartin, J L; Daniel, J A; Whitlock, B K; Wilborn, R R

    2010-11-01

    Appetite control is a major issue in normal growth and in suboptimal growth performance settings. A number of hormones, in particular leptin, activate or inhibit orexigenic or anorexigenic neurotransmitters within the arcuate nucleus of the hypothalamus, where feed intake regulation is integrated. Examples of appetite regulatory neurotransmitters are the stimulatory neurotransmitters neuropeptide Y (NPY), agouti-related protein (AgRP), orexin and melanin-concentrating hormone and the inhibitory neurotransmitter, melanocyte-stimulating hormone (MSH). Examination of messenger RNA (using in situ hybridization and real-time PCR) and proteins (using immunohistochemistry) for these neurotransmitters in ruminants has indicated that physiological regulation occurs in response to fasting for several of these critical genes and proteins, especially AgRP and NPY. Moreover, intracerebroventricular injection of each of the four stimulatory neurotransmitters can increase feed intake in sheep and may also regulate either growth hormone, luteinizing hormone, cortisol or other hormones. In contrast, both leptin and MSH are inhibitory to feed intake in ruminants. Interestingly, the natural melanocortin-4 receptor (MC4R) antagonist, AgRP, as well as NPY can prevent the inhibition of feed intake after injection of endotoxin (to model disease suppression of appetite). Thus, knowledge of the mechanisms regulating feed intake in the hypothalamus may lead to mechanisms to increase feed intake in normal growing animals and prevent the wasting effects of severe disease in animals.

  8. Pharmacology of neurotransmitter release: measuring exocytosis.

    PubMed

    Khvotchev, Mikhail; Kavalali, Ege T

    2008-01-01

    Neurotransmission in the nervous system is initiated at presynaptic terminals by fusion of synaptic vesicles with the plasma membrane and subsequent exocytic release of chemical transmitters. Currently, there are multiple methods to detect neurotransmitter release from nerve terminals, each with their own particular advantages and disadvantages. For instance, most commonly employed methods monitor actions of released chemical substances on postsynaptic receptors or artificial substrates such as carbon fibers. These methods are closest to the physiological setting because they have a rapid time resolution and they measure the action of the endogenous neurotransmitters rather than the signals emitted by exogenous probes. However, postsynaptic receptors only indirectly report neurotransmitter release in a form modified by the properties of receptors themselves, which are often nonlinear detectors of released substances. Alternatively, released chemical substances can be detected biochemically, albeit on a time scale slower than electrophysiological methods. In addition, in certain preparations, where presynaptic terminals are accessible to whole cell recording electrodes, fusion of vesicles with the plasma membrane can be monitored using capacitance measurements. In the last decade, in addition to electrophysiological and biochemical methods, several fluorescence imaging modalities have been introduced which report synaptic vesicle fusion, endocytosis, and recycling. These methods either take advantage of styryl dyes that can be loaded into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive GFP variant at regions facing the vesicle lumen. In this chapter, we will provide an overview of these methods with particular emphasis on their relative strengths and weaknesses and discuss the types of information one can obtain from them.

  9. Multifunctional amaranth cystatin inhibits endogenous and digestive insect cysteine endopeptidases: A potential tool to prevent proteolysis and for the control of insect pests.

    PubMed

    Valdés-Rodríguez, Silvia; Galván-Ramírez, Juan Pablo; Guerrero-Rangel, Armando; Cedro-Tanda, Alberto

    2015-01-01

    In a previous study, the amaranth cystatin was characterized. This cystatin is believed to provide protection from abiotic stress because its transcription is induced in response to heat, drought, and salinity. It has also been shown that recombinant amaranth cystatin inhibits bromelain, ficin, and cysteine endopeptidases from fungal sources and also inhibits the growth of phytopathogenic fungi. In the present study, evidence is presented regarding the potential function of amaranth cystatin as a regulator of endogenous proteinases and insect digestive proteinases. During amaranth germination and seedling growth, different proteolytic profiles were observed at different pH levels in gelatin-containing SDS-PAGE. Most of the proteolytic enzymes detected at pH 4.5 were mainly inhibited by trans-epoxysuccinyl-leucyl amido(4-guanidino)butane (E-64) and the purified recombinant amaranth cystatin. Furthermore, the recombinant amaranth cystatin was active against insect proteinases. In particular, the E-64-sensitive proteolytic digestive enzymes from Callosobruchus maculatus, Zabrotes subfasciatus, and Acanthoscelides obtectus were inhibited by the amaranth cystatin. Taken together, these results suggest multiple roles for cystatin in amaranth, specifically during germination and seedling growth and in the protection of A. hypochondriacus against insect predation. Amaranth cystatin represents a promising tool for diverse applications in the control of insect pest and for preventing undesirable proteolytic activity.

  10. A novel endogenous antimalarial: Fe(II)-protoporphyrin IX alpha (heme) inhibits hematin polymerization to beta-hematin (malaria pigment) and kills malaria parasites.

    PubMed

    Monti, D; Vodopivec, B; Basilico, N; Olliaro, P; Taramelli, D

    1999-07-13

    The polymerization of hemoglobin-derived ferric-protoporphyrin IX [Fe(III)PPIX] to inert hemozoin (malaria pigment) is a crucial and unique process for intraerythrocytic plasmodia to prevent heme toxicity and thus a good target for new antimalarials. Quinoline drugs, i.e., chloroquine, and non-iron porphyrins have been shown to block polymerization by forming electronic pi-pi interactions with heme monomers. Here, we report the identification of ferrous-protoporphyrin IX [Fe(II)PPIX] as a novel endogenous anti-malarial. Fe(II)PPIX molecules, released from the proteolysis of hemoglobin, are first oxidized and then polymerized to hemozoin. We obtained Fe(II)PPIX on preparative scale by electrochemical reduction of Fe(III)PPIX, and the reaction was monitored by cyclic voltammetry. Polymerization assays at acidic pH were conducted with the resulting Fe(II)PPIX using a spectrophotometric microassay of heme polymerization adapted to anaerobic conditions and the products characterized by infrared spectroscopy. Fe(II)PPIX (a) did not polymerize and (b) produced a dose-dependent inhibition of Fe(III)PPIX polymerization (IC(50) = 0.4 molar equiv). Moreover, Fe(II)PPIX produced by chemical reduction with thiol-containing compounds gave similar results: a dose-dependent inhibition of heme polymerization was observed using either L-cysteine, N-acetylcysteine, or DL-homocysteine, but not with L-cystine. Cyclic voltammetry confirmed that the inhibition of heme polymerization was due to the Fe(II)PPIX molecules generated by the thiol-mediated reduction of Fe(III)PPIX. These results point to Fe(II)PPIX as a potential endogenous antimalarial and to Fe(III)PPIX reduction as a potential new pharmacological target.

  11. Evidence for histamine as a neurotransmitter in the cardiac sympathetic nervous system.

    PubMed

    Li, Mingkai; Hu, Jing; Chen, Zhong; Meng, Jia; Wang, Haifang; Ma, Xue; Luo, Xiaoxing

    2006-07-01

    The colocalization of histamine (HA) and norepinephrine (NE) immunoreactivities was identified within the superior cervical ganglia neurons of the guinea pig. HA and NE immunoreactivity levels were significantly attenuated after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). Coexistence of NE and HA was also visualized in the cardiac sympathetic axon and varicosities labeled with anterograde tracer biotinylated dextran amine. Depolarization of cardiac sympathetic nerve endings (synaptosomes) with 50 mM potassium stimulated endogenous HA release, which was significantly attenuated by 6-OHDA or a vesicular monoamine transporter 2 (VMAT2) inhibitor reserpine pretreatments. Compound 48/80, a mast cell releaser, did not affect cardiac synaptosome HA exocytosis. Furthermore, K+ -evoked HA release was abolished by the N-type Ca2+ -channel blocker omega-conotoxin but was not affected by the L-type Ca2+ -channel blocker lacidipine. Cardiac synaptosome HA exocytosis was augmented by the enhanced synthesis of HA or the inhibition of HA metabolism. HA H3-receptor activation by (R)-alpha-methylhistamine inhibited high K+ -evoked histamine release. The HA H3 receptor antagonist thioperamide enhanced K+ -evoked HA release and blocked the (R)-alpha-methylhistamine effect. The K+ -evoked endogenous NE release was attenuated by preloading the cardiac synaptosomes with L-histidine or quinacrine. These inhibitory effects were reversed by thioperamide or antagonized by alpha-fluoromethylhistidine. Our findings indicate that high K+ -evoked corelease of NE and HA may be inhibited by endogenous HA via activation of presynaptic HA H3-receptors. The H3-receptor may function as an autoreceptor, rather than a heteroreceptor, in the regulation of sympathetic neurotransmission and HA may be a novel sympathetic neurotransmitter.

  12. [Endogenous hypertriglyceridemia].

    PubMed

    Tsukamoto, Kazuhisa

    2013-09-01

    Endogenous hypertriglyceridemia, which includes familial hypertriglyceridemia and idiopathic hypertriglyceridemia, is characterized by the increased level of VLDL-triglycerides in the blood. Increased production of VLDL from the liver and the decreased catabolism of VLDL-TG in the vessel, which are also the main metabolic features of insulin resistance, have been proposed to be the causes of endogenous hypertriglyceridemia. Genetic factors responsible for endogenous hypertriglyceridemia have been elucidated in several studies, however, these factors have so far not been clearly identified yet; thus the causes of endogenous hypertriglyceridemia would be polygenic. Recent advances in the genetic analytical methods like genome-wide association study would hopefully unveil the whole pictures of endogenous hypertriglyceridemia.

  13. Endogenous Saccade Preparation Does Not Produce Inhibition of Return: Failure to Replicate Rafal, Calabresi, Brennan, & Sciolto (1989)

    ERIC Educational Resources Information Center

    Chica, Ana B.; Klein, Raymond M.; Rafal, Robert D.; Hopfinger, Joseph B.

    2010-01-01

    Inhibition of Return (IOR, slower reaction times to previously cued or inspected locations) is observed both when eye movements are prohibited, and when the eyes move to the peripheral location and back to the centre before the target appears. It has been postulated that both effects are generated by a common mechanism, the activation of the…

  14. Long Non-coding RNA Growth Arrest-specific Transcript 5 (GAS5) Inhibits Liver Fibrogenesis through a Mechanism of Competing Endogenous RNA*

    PubMed Central

    Yu, Fujun; Zheng, Jianjian; Mao, Yuqing; Dong, Peihong; Lu, Zhongqiu; Li, Guojun; Guo, Chuanyong; Liu, Zhanju; Fan, Xiaoming

    2015-01-01

    Effective control of hepatic stellate cell (HSC) activation and proliferation is critical to the treatment of liver fibrosis. Long non-coding RNAs have been shown to play a pivotal role in the regulation of cellular processes. It has been reported that growth arrest-specific transcript 5 (GAS5) acts as a crucial mediator in the control of cell proliferation and growth. However, little is known about the role and underlying mechanism of GAS5 in liver fibrosis. In this study, our results indicated that GAS5 expression was reduced in mouse, rat, and human fibrotic liver samples and in activated HSCs. Overexpression of GAS5 suppressed the activation of primary HSCs in vitro and alleviated the accumulation of collagen in fibrotic liver tissues in vivo. We identified GAS5 as a target of microRNA-222 (miR-222) and showed that miR-222 could inhibit the expression of GAS5. Interestingly, GAS5 could also repress miR-222 expression. A pulldown assay further validated that GAS5 could directly bind to miR-222. As a competing endogenous RNAs, GAS5 had no effect on primary miR-222 expression. In addition, GAS5 was mainly localized in the cytoplasm. Quantitative RT-PCR further demonstrated that the copy numbers of GAS5 per cell are higher than those of miR-222. GAS5 increased the level of p27 protein by functioning as a competing endogenous RNA for miR-222, thereby inhibiting the activation and proliferation of HSCs. Taken together, a new regulatory circuitry in liver fibrosis has been identified in which RNAs cross-talk by competing for shared microRNAs. Our findings may provide a new therapeutic strategy for liver fibrosis. PMID:26446789

  15. Reversal of cyanide inhibition of cytochrome c oxidase by the auxiliary substrate nitric oxide: an endogenous antidote to cyanide poisoning?

    PubMed

    Pearce, Linda L; Bominaar, Emile L; Hill, Bruce C; Peterson, Jim

    2003-12-26

    Nitric oxide (NO) is shown to overcome the cyanide inhibition of cytochrome c oxidase in the presence of excess ferrocytochrome c and oxygen. Addition of NO to the partially reduced cyanide-inhibited form of the bovine enzyme is shown by electron paramagnetic resonance spectroscopy to result in substitution of cyanide at ferriheme a3 by NO with reduction of the heme. The resulting nitrosylferroheme a3 is a 5-coordinate structure, the proximal bond to histidine having been broken. NO does not simply act as a reversibly bound competitive inhibitor but is an auxiliary substrate consumed in a catalytic cycle along with ferrocytochrome c and oxygen. The implications of this observation with regard to estimates of steady-state NO levels in vivo is discussed. Given the multiple sources of NO available to mitochondria, the present results appear to explain in part some of the curious biomedical observations reported by other laboratories; for example, the kidneys of cyanide poisoning victims surprisingly exhibit no significant irreversible damage, and lethal doses of potassium cyanide are able to inhibit cytochrome c oxidase activity by only approximately 50% in brain mitochondria.

  16. Inhibition of gastric mucosal prostaglandin synthetase activity by mercaptomethylimidazole, an inducer of gastric acid secretion--plausible involvement of endogenous H2O2.

    PubMed

    Bhattacharjee, M; Chakraborty, T; Ganguly, C; Banerjee, R K

    1998-10-01

    We have reported earlier that mercaptomethylimidazole (MMI), an antithyroid drug of thionamide group, induces gastric acid secretion at least partially through the liberation of histamine, sensitive to cimetidine. Now, we show that the drug has a significant inhibitory effect on the cyclooxygenase and peroxidase activity of the prostaglandin (PG) synthetase of the gastric mucosal microsomal preparation. The effect can also be mimicked by low concentrations of H2O2. While studying the possible intracellular effect of MMI on acid secretion, a cell fraction (F3) enriched in parietal cell was isolated by controlled digestion of the mucosa with protease. This cell fraction is activated by MMI as measured by increased O2 consumption. The activation is sensitive to omeprazole, a proton-pump inhibitor, indicating that the activation is due to increased acid secretion by MMI. MMI was also found to directly inhibit the peroxidase activity of the F3 cell fraction and may thus increase the intracellular level of H2O2. The cyclooxygenase activity of the PG synthetase of the F3 cell fraction is also inhibited by MMI and the effect can be reproduced by low concentrations of H2O2. Both MMI and H2O2 can also inhibit the peroxidase activity of the PG synthetase. We suggest that in addition to the activation of the parietal cell by MMI possibly through endogenous H2O2, MMI induces acid secretion in vivo by inactivating the PG synthetase thereby inhibiting the biosynthesis of PG and removing its inhibitory influence on acid secretion so that the histamine released by MMI can stimulate acid secretion with maximum efficiency.

  17. Physalin B inhibits Rhodnius prolixus hemocyte phagocytosis and microaggregation by the activation of endogenous PAF-acetyl hydrolase activities.

    PubMed

    Castro, D P; Figueiredo, M B; Genta, F A; Ribeiro, I M; Tomassini, T C B; Azambuja, P; Garcia, E S

    2009-06-01

    The effects of physalin B (a natural secosteroidal chemical from Physalis angulata, Solanaceae) on phagocytosis and microaggregation by hemocytes of 5th-instar larvae of Rhodnius prolixus were investigated. In this insect, hemocyte phagocytosis and microaggregation are known to be induced by the platelet-activating factor (PAF) or arachidonic acid (AA) and regulated by phospholipase A(2) (PLA(2)) and PAF-acetyl hydrolase (PAF-AH) activities. Phagocytic activity and formation of hemocyte microaggregates by Rhodnius hemocytes were strongly blocked by oral treatment of this insect with physalin B (1mug/mL of blood meal). The inhibition induced by physalin B was reversed for both phagocytosis and microaggregation by exogenous arachidonic acid (10microg/insect) or PAF (1microg/insect) applied by hemocelic injection. Following treatment with physalin B there were no significant alterations in PLA(2) activities, but a significant enhancement of PAF-AH was observed. These results show that physalin B inhibits hemocytic activity by depressing insect PAF analogous (iPAF) levels in hemolymph and confirm the role of PAF-AH in the cellular immune reactions in R. prolixus.

  18. Prejunctional histamine H3-receptors inhibit electrically evoked endogenous noradrenaline overflow in the portal vein of freely moving rats.

    PubMed

    Smit, J; Coppes, R P; van Tintelen, E J; Roffel, A F; Zaagsma, J

    1997-02-01

    The effects of intra-arterial injection of different doses of the selective histamine H3-receptor agonist R-alpha-methylhistamine and the selective histamine H3-receptor antagonist thioperamide on basal and electrically evoked noradrenaline overflow in the portal vein as well as on mean arterial pressure (MAP) and heart rate (HR) were investigated in permanently instrumented freely moving rats. R-alpha-Methylhistamine (0.01, 0.1 and 1 mumol/kg) inhibited the evoked noradrenaline overflow up to 43%, the ED50 value being 0.013 mumol/kg. Thioperamide (0.1, 0.5 and 1.0 mumol/kg) antagonized the effect of 1.0 mumol/kg R-alpha-methylhistamine dose-dependently, evoked overflow returning to control values at 1.0 mumol/kg of the antagonist; thioperamide alone had no effect on electrically evoked noradrenaline overflow. Basal noradrenaline levels, blood pressure and heart rate were not at all influenced by R-alpha-methylhistamine and thioperamide, alone or in combination. The results clearly show the presence of prejunctional histamine H3-receptors inhibiting the electrically evoked noradrenaline overflow from vascular sympathetic nerve terminals in the portal vein of freely moving rats.

  19. Cadherin Cytoplasmic Domains Inhibit the Cell Surface Localization of Endogenous E-Cadherin, Blocking Desmosome and Tight Junction Formation and Inducing Cell Dissociation

    PubMed Central

    Ozawa, Masayuki; Kobayashi, Wakako

    2014-01-01

    The downregulation of E-cadherin function has fundamental consequences with respect to cancer progression, and occurs as part of the epithelial–mesenchymal transition (EMT). In this study, we show that the expression of the Discosoma sp. red fluorescent protein (DsRed)-tagged cadherin cytoplasmic domain in cells inhibited the cell surface localization of endogenous E-cadherin, leading to morphological changes, the inhibition of junctional assembly and cell dissociation. These changes were associated with increased cell migration, but were not accompanied by the down-regulation of epithelial markers and up-regulation of mesenchymal markers. Thus, these changes cannot be classified as EMT. The cadherin cytoplasmic domain interacted with β-catenin or plakoglobin, reducing the levels of β-catenin or plakoglobin associated with E-cadherin, and raising the possibility that β-catenin and plakoglobin sequestration by these constructs induced E-cadherin intracellular localization. Accordingly, a cytoplasmic domain construct bearing mutations that weakened the interactions with β-catenin or plakoglobin did not impair junction formation and adhesion, indicating that the interaction with β-catenin or plakoglobin was essential to the potential of the constructs. E-cadherin–α-catenin chimeras that did not require β-catenin or plakoglobin for their cell surface transport restored cell–cell adhesion and junction formation. PMID:25121615

  20. Acetylcholinesterase inhibition reveals endogenous nicotinic modulation of glutamate inputs to CA1 stratum radiatum interneurons in hippocampal slices.

    PubMed

    Alkondon, Manickavasagom; Albuquerque, Edson X; Pereira, Edna F R

    2013-05-01

    The involvement of brain nicotinic acetylcholine receptors (nAChRs) in the neurotoxicological effects of soman, a potent acetylcholinesterase (AChE) inhibitor and a chemical warfare agent, is not clear. This is partly due to a poor understanding of the role of AChE in brain nAChR-mediated functions. To test the hypothesis that AChE inhibition builds sufficient acetylcholine (ACh) in the brain and facilitates nAChR-dependent glutamate transmission, we used whole-cell patch-clamp technique to record spontaneous glutamate excitatory postsynaptic currents (EPSCs) from CA1 stratum radiatum interneurons (SRI) in hippocampal slices. First, the frequency, amplitude and kinetics of EPSCs recorded from slices of control guinea pigs were compared to those recorded from slices of guinea pigs after a single injection of the irreversible AChE inhibitor soman (25.2μg/kg, s.c.). Second, EPSCs were recorded from rat hippocampal slices before and after their superfusion with the reversible AChE inhibitor donepezil (100nM). The frequency of EPSCs was significantly higher in slices taken from guinea pigs 24h but not 7 days after the soman injection than in slices from control animals. In 52% of the rat hippocampal slices tested, bath application of donepezil increased the frequency of EPSCs. Further, exposure to donepezil increased both burst-like and large-amplitude EPSCs, and increased the proportion of short (20-100ms) inter-event intervals. Donepezil's effects were suppressed significantly in presence of 10μM mecamylamine or 10nM methyllycaconitine. These results support the concept that AChE inhibition is able to recruit nAChR-dependent glutamate transmission in the hippocampus and such a mechanism can contribute to the acute neurotoxicological actions of soman.

  1. Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal.

    PubMed

    Li, Yuan; Jiang, Fei; Liu, Qinqiang; Shen, Jian; Wang, Xingxing; Li, Zhong; Zhang, Jianping; Lu, Xiang

    2015-01-01

    The elevation of cancer stem cells (CSCs)-like properties is involved in the initiation and progression of various human cancers. Current standard practices for treatment of cancers are less than satisfactory because of CSCs-mediated recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become the new approach for the cancer treatments. In addition to treating leukemia, arsenic trioxide (As₂O₃) also suppresses other solid tumors. However, the roles of As₂O₃ in the regulation of CSCs-like properties remain largely uninvestigated. Here by using sphere formation assay, luciferase reporter assay, and some other molecular biology approaches, we found that As₂O₃ attenuated the CSCs-like properties in human hepatocellular carcinoma (HCC). Briefly, in HCC cells and mice xenograft models, As₂O₃ improved the expression of miR-491 by DNA-demethylation. MiR-491, which targeted the SMAD3-3'-UTR, decreased the expressions of SMAD3, and inhibited the CSCs-like properties in HCC cells. Knockdown of either miR-491 or SMAD3 attenuated the As₂O₃-induced inhibition of endogenous transforming growth factor beta signal and the CSCs-like properties. Further, in HCC patients, miR-491 is inversely correlated with the expressions of SMAD3, CD133, and the metastasis/recurrence outcome. By understanding a novel mechanism whereby As₂O₃ inhibits the CSCs-like properties in HCC, our study would help in the design of future strategies of developing As₂O₃ as a potential HCC chemopreventive agent when used alone or in combination with other current drugs.

  2. Is Aspartate an Excitatory Neurotransmitter?

    PubMed Central

    Herring, Bruce E.; Silm, Katlin

    2015-01-01

    Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate. PMID:26180193

  3. Neurotransmitters in the vestibular system.

    PubMed

    Balaban, C D

    2016-01-01

    Neuronal networks that are linked to the peripheral vestibular system contribute to gravitoinertial sensation, balance control, eye movement control, and autonomic function. Ascending connections to the limbic system and cerebral cortex are also important for motion perception and threat recognition, and play a role in comorbid balance and anxiety disorders. The vestibular system also shows remarkable plasticity, termed vestibular compensation. Activity in these networks is regulated by an interaction between: (1) intrinsic neurotransmitters of the inner ear, vestibular nerve, and vestibular nuclei; (2) neurotransmitters associated with thalamocortical and limbic pathways that receive projections originating in the vestibular nuclei; and (3) locus coeruleus and raphe (serotonergic and nonserotonergic) projections that influence the latter components. Because the ascending vestibular interoceptive and thalamocortical pathways include networks that influence a broad range of stress responses (endocrine and autonomic), memory consolidation, and cognitive functions, common transmitter substrates provide a basis for understanding features of acute and chronic vestibular disorders.

  4. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols.

    PubMed

    Sever, Navdar; Mann, Randall K; Xu, Libin; Snell, William J; Hernandez-Lara, Carmen I; Porter, Ned A; Beachy, Philip A

    2016-05-24

    Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith-Lemli-Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith-Lemli-Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids.

  5. Endogenous B-ring oxysterols inhibit the Hedgehog component Smoothened in a manner distinct from cyclopamine or side-chain oxysterols

    PubMed Central

    Sever, Navdar; Mann, Randall K.; Xu, Libin; Snell, William J.; Hernandez-Lara, Carmen I.; Porter, Ned A.; Beachy, Philip A.

    2016-01-01

    Cellular lipids are speculated to act as key intermediates in Hedgehog signal transduction, but their precise identity and function remain enigmatic. In an effort to identify such lipids, we pursued a Hedgehog pathway inhibitory activity that is particularly abundant in flagellar lipids of Chlamydomonas reinhardtii, resulting in the purification and identification of ergosterol endoperoxide, a B-ring oxysterol. A mammalian analog of ergosterol, 7-dehydrocholesterol (7-DHC), accumulates in Smith–Lemli–Opitz syndrome, a human genetic disease that phenocopies deficient Hedgehog signaling and is caused by genetic loss of 7-DHC reductase. We found that depleting endogenous 7-DHC with methyl-β-cyclodextrin treatment enhances Hedgehog activation by a pathway agonist. Conversely, exogenous addition of 3β,5α-dihydroxycholest-7-en-6-one, a naturally occurring B-ring oxysterol derived from 7-DHC that also accumulates in Smith–Lemli–Opitz syndrome, blocked Hedgehog signaling by inhibiting activation of the essential transduction component Smoothened, through a mechanism distinct from Smoothened modulation by other lipids. PMID:27162362

  6. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    SciTech Connect

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  7. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor.

    PubMed

    Bunzow, J R; Sonders, M S; Arttamangkul, S; Harrison, L M; Zhang, G; Quigley, D I; Darland, T; Suchland, K L; Pasumamula, S; Kennedy, J L; Olson, S B; Magenis, R E; Amara, S G; Grandy, D K

    2001-12-01

    The trace amine para-tyramine is structurally and functionally related to the amphetamines and the biogenic amine neurotransmitters. It is currently thought that the biological activities elicited by trace amines such as p-tyramine and the psychostimulant amphetamines are manifestations of their ability to inhibit the clearance of extracellular transmitter and/or stimulate the efflux of transmitter from intracellular stores. Here we report the discovery and pharmacological characterization of a rat G protein-coupled receptor that stimulates the production of cAMP when exposed to the trace amines p-tyramine, beta-phenethylamine, tryptamine, and octopamine. An extensive pharmacological survey revealed that psychostimulant and hallucinogenic amphetamines, numerous ergoline derivatives, adrenergic ligands, and 3-methylated metabolites of the catecholamine neurotransmitters are also good agonists at the rat trace amine receptor 1 (rTAR1). These results suggest that the trace amines and catecholamine metabolites may serve as the endogenous ligands of a novel intercellular signaling system found widely throughout the vertebrate brain and periphery. Furthermore, the discovery that amphetamines, including 3,4-methylenedioxymethamphetamine (MDMA; "ecstasy"), are potent rTAR1 agonists suggests that the effects of these widely used drugs may be mediated in part by this receptor as well as their previously characterized targets, the neurotransmitter transporter proteins.

  8. Role of neurotransmitters in palate development and teratologic implications.

    PubMed

    Zimmerman, E F

    1985-01-01

    It is hypothesized that neuropharmacologic agents are more teratogenic to humans. Since many neuropharmacologic agents function through neurotransmitter mechanisms, then neurotransmitters should function to regulate embryonic development. Evidence has been obtained that neurotransmitters do indeed function as biological signals in palate development. It has been shown that palate reorientation is modulated by neurotransmitters with a wide range of diversity, similar to the CNS. Thus serotonin and acetylcholine stimulate and GABA inhibits the reorientation process. Spatial diversity is also observed: serotonin functions at the anterior and acetylcholine at the posterior end, and GABA functions more efficiently at either end in different inbred strains. Many criteria for functioning neurotransmitters have been obtained. Both serotonin and GABA have been measured in the palate and developmental changes observed. Physiologic responses to serotonin have been monitored. Serotonin has been shown to stimulate palate cell motility as well as protein carboxyl methylation and cyclic GMP. The serotonin effects on protein carboxyl methylation and cyclic GMP could function to stimulate palate reorientation by modulating cell contractility and protein secretion. Further support for the hypothesis that neuropharmacologic agents could be teratogenic by perturbation of neurotransmitter mechanisms comes from studying GABA and diazepam. Evidence has been obtained that diazepam induces cleft palate by mimicking GABA in a functional GABAergic system in palate development. A significant finding is that genetic differences in both diazepam teratogenesis and in a GABAergic system have been observed. Comparing the SWV and AJ strains, the SWV mouse showed (1) a greater sensitivity to diazepam-induced cleft palate, (2) a greater sensitivity to GABA and diazepam inhibition of palate reorientation in embryo culture, (3) a greater concentration of palatal GABA and (4) a more efficient GABA

  9. Borderline Personality Disorder: A Dysregulation of the Endogenous Opioid System?

    ERIC Educational Resources Information Center

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-01-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids…

  10. Waterborne lead affects circadian variations of brain neurotransmitters in fathead minnows

    SciTech Connect

    Spieler, R.E.; Russo, A.C.; Weber, D.N.

    1995-09-01

    Lead is a potent neurotoxin affecting brain levels of a number of vertebrate neurotransmitters. Reports on these effects are, however, not consistent either among or within species. For example, with lead-intoxicated rats there are reports of decreased acetylcholine (ACh) release and decreased ACh brain levels as well as reports of increased levels or no change in levels. Also, with rats there are reports of increased levels, decreased levels, or no change in brain catecholamines, with lead producing similar changes in both norephinephrine (NE) and dopamine (DA) in some cases and differences in response between the two in others. Although most early reports dealt with whole brain levels, reports on neurotransmitter levels in specific brain regions can be equally conflicting. Similar sorts of discrepancies exist among studies with fishes. Much of the variation among studies on lead effects on neurotransmitters is, no doubt, due to differences among the studies in variables such as: species, age, dosage and duration, route of administration. However, lead can apparently affect circadian locomotor rhythms of both rats and fishes. Therefore, another possible cause for the variation among studies is that there is an interaction among dosage, sampling time and endogenous rhythms. A lead-produced phase shift or disruption in endogenous neurotransmitter rhythms could in turn elicit a host of varying results and interpretations depending on the circadian time of sampling. We elected to examine this possibility in the fathead minnow, Pimephales promelas, a freshwater species widely used for toxicity studies. 15 refs., 3 figs.

  11. Orquestic regulation of neurotransmitters on reward-seeking behavior

    PubMed Central

    2014-01-01

    The ventral tegmental area is strongly associated with the reward system. Dopamine is released in areas such as the nucleus accumbens and prefrontal cortex as a result of rewarding experiences such as food, sex, and neutral stimuli that become associated with them. Electrical stimulation of the ventral tegmental area or its output pathways can itself serve as a potent reward. Different drugs that increase dopamine levels are intrinsically rewarding. Although the dopaminergic system represent the cornerstone of the reward system, other neurotransmitters such as endogenous opioids, glutamate, γ-Aminobutyric acid, acetylcholine, serotonin, adenosine, endocannabinoids, orexins, galanin and histamine all affect this mesolimbic dopaminergic system. Consequently, genetic variations of neurotransmission are thought influence reward processing that in turn may affect distinctive social behavior and susceptibility to addiction. Here, we discuss current evidence on the orquestic regulation of different neurotranmitters on reward-seeking behavior and its potential effect on drug addiction. PMID:25061480

  12. The endogenous cannabinoid anandamide produces delta-9-tetrahydrocannabinol-like discriminative and neurochemical effects that are enhanced by inhibition of fatty acid amide hydrolase but not by inhibition of anandamide transport.

    PubMed

    Solinas, Marcello; Tanda, Gianluigi; Justinova, Zuzana; Wertheim, Carrie E; Yasar, Sevil; Piomelli, Daniele; Vadivel, Subramanian K; Makriyannis, Alexandros; Goldberg, Steven R

    2007-04-01

    Anandamide is an endogenous ligand for brain cannabinoid CB(1) receptors, but its behavioral effects are difficult to measure due to rapid inactivation. Here we used a drug-discrimination procedure to test the hypothesis that anandamide, given i.v. or i.p., would produce discriminative effects like those of delta-9-tetrahydrocannabinol (THC) in rats when its metabolic inactivation was inhibited. We also used an in vivo microdialysis procedure to investigate the effects of anandamide, given i.v. or i.p., on dopamine levels in the nucleus accumbens shell in rats. When injected i.v., methanandamide (AM-356), a metabolically stable anandamide analog, produced clear dose-related THC-like discriminative effects, but anandamide produced THC-like discriminative effects only at a high 10-mg/kg dose that almost eliminated lever-press responding. Cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB-597), an inhibitor of fatty acid amide hydrolase (FAAH), the main enzyme responsible for metabolic inactivation of anandamide, produced no THC-like discriminative effects alone but dramatically potentiated discriminative effects of anandamide, with 3 mg/kg anandamide completely substituting for the THC training dose. URB-597 also potentiated the ability of anandamide to increase dopamine levels in the accumbens shell. The THC-like discriminative-stimulus effects of anandamide after URB-597 and methanandamide were blocked by the CB1 receptor antagonist rimonabant, but not the vanilloid VR1 receptor antagonist capsazepine. Surprisingly, the anandamide transport inhibitors N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide (AM-404) and N-(3-furylmethyl)eicosa-5,8,11,14-tetraenamide (UCM-707) did not potentiate THC-like discriminative effects of anandamide or its dopamine-elevating effects. Thus, anandamide has THC-like discriminative and neurochemical effects that are enhanced after treatment with a FAAH inhibitor but not after treatment with transport inhibitors, suggesting

  13. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    PubMed Central

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J; Knudsen, Gitte M

    2010-01-01

    Molecular in vivo neuroimaging techniques can be used to measure regional changes in endogenous neurotransmitters, evoked by challenges that alter synaptic neurotransmitter concentration. This technique has most successfully been applied to the study of endogenous dopamine release using positron emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT1A, 5-HT2A, and 5-HT4 receptors and the serotonin reuptake transporter have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made as to how the selection of targets, radiotracers, challenge paradigms, and experimental design might be optimised to improve our chances of successfully imaging endogenous neurotransmitters in the future. PMID:20664611

  14. Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis.

    PubMed

    Yang, Fan; Jove, Veronica; Buettner, Ralf; Xin, Hong; Wu, Jun; Wang, Yan; Nam, Sangkil; Xu, Yibing; Ara, Tasnim; DeClerck, Yves A; Seeger, Robert; Yu, Hua; Jove, Richard

    2012-05-01

    Neuroblastoma is the most common extracranial solid tumor in the pediatric population. Sorafenib (Nexavar), a multikinase inhibitor, blocks cell proliferation and induces apoptosis in certain types of cancers. Here, we tested antitumor effects of sorafenib (≤ 10 µM) on four human neuroblastoma cell lines, CHLA255, CHLA171, CHLA90 and SK-N-AS. Sorafenib inhibited cell proliferation and induced apoptosis of neuroblastoma tumor cells in a dose-dependent manner. Sorafenib inhibited phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) proteins at Tyr705 in these cells, associated with inhibition of phosphorylated JAK2, an upstream kinase that mediates STAT3 phosphorylation. Expression of a constitutively-activated STAT3 mutant (pSTAT3-C) partially blocked the antitumor effects of sorafenib on neuroblastoma cells. Sorafenib also inhibited the phosphorylation of STAT3 induced by IL-6 and sphingosine-1-phosphate (S1P), a recently identified regulator for STAT3, in these tumor cells. Moreover, sorafenib downregulated phosphorylation of MAPK (p44/42) in neuroblastoma cells, consistent with inhibition of their upstream regulators MEK1/2. Sorafenib inhibited expression of cyclin E, cyclin D1/D2/D3, key regulators for cell cycle, and the antiapoptotic proteins Mcl-1 and survivin. Finally, sorafenib suppressed the growth of human neuroblastoma cells in a mouse xenograft model. Taken together, these findings suggest the potential use of sorafenib for the treatment of pediatric neuroblastomas.

  15. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    PubMed

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  16. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    SciTech Connect

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  17. Modulation of monoamine neurotransmitters in fighting fish Betta splendens exposed to waterborne phytoestrogens.

    PubMed

    Clotfelter, Ethan D; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2010-12-01

    Endogenous estrogens are known to affect the activity of monoamine neurotransmitters in vertebrate animals, but the effects of exogenous estrogens on neurotransmitters are relatively poorly understood. We exposed sexually mature male fighting fish Betta splendens to environmentally relevant and pharmacological doses of three phytoestrogens that are potential endocrine disruptors in wild fish populations: genistein, equol, and β-sitosterol. We also exposed fish to two doses of the endogenous estrogen 17β-estradiol, which we selected as a positive control because phytoestrogens are putative estrogen mimics. Our results were variable, but the effects were generally modest. Genistein increased dopamine levels in the forebrains of B. splendens at both environmentally relevant and pharmacological doses. The environmentally relevant dose of equol increased dopamine levels in B. splendens forebrains, and the pharmacological dose decreased norepinephrine (forebrain), dopamine (hindbrain), and serotonin (forebrain) levels. The environmentally relevant dose of β-sitosterol decreased norepinephrine and dopamine in the forebrain and hindbrain, respectively. Our results suggest that sources of environmental phytoestrogens, such as runoff or effluent from agricultural fields, wood pulp mills, and sewage treatment plants, have the potential to modulate neurotransmitter activity in free-living fishes in a way that could interfere with normal behavioral processes.

  18. Classical neurotransmitters and neuropeptides involved in major depression in a multi-neurotransmitter system: a focus on antidepressant drugs.

    PubMed

    Werner, Felix-Martin; Coveñas, R

    2013-01-01

    We summarize the alterations of classical neurotransmitters and neuropeptides and the corresponding subreceptors involved in major depression. Neuronal circuits in the brainstem, hippocampus and hypothalamus are developed, since they can be used to derive a multimodal pharmacotherapy. In this sense, serotonin hypoactivity could occur through a strong presynaptic inhibition of glutaminergic neurons via the subtype 5 of metabotropic glutaminergic receptors, and noradrenaline hypoactivity could be due to an enhanced presynaptic inhibition of GABAergic neurons via GABAB receptors. In the hippocampus, dopamine hypoactivity leads to a decreased positive effect. In clinical trials, the antidepressant effect of drugs interfering with the mentioned subreceptors, for example the triple reuptake inhibitor amitifadine, is being investigated. Moreover, the alterations of neuropeptides, such as corticotropin-releasing hormone, neuropeptide Y and galanin are pointed out. The additional antidepressant effect of analogs, agonists and antagonists of the mentioned neuropeptides should be examined.

  19. Detection and Quantification of Neurotransmitters in Dialysates

    PubMed Central

    Zapata, Agustin; Chefer, Vladimir I.; Shippenberg, Toni S.; Denoroy, Luc

    2010-01-01

    Sensitive analytical methods are needed for the separation and quantification of neurotransmitters obtained in microdialysate studies. This unit describes methods that permit quantification of nanomolar concentrations of monoamines and their metabolites (high-pressure liquid chromatography electrochemical detection), acetylcholine (HPLC-coupled to an enzyme reactor), and amino acids (HPLC-fluorescence detection; capillary electrophoresis with laser-induced fluorescence detection). PMID:19575473

  20. Chemical delivery array with millisecond neurotransmitter release

    PubMed Central

    Jonsson, Amanda; Sjöström, Theresia Arbring; Tybrandt, Klas; Berggren, Magnus; Simon, Daniel T.

    2016-01-01

    Technologies that restore or augment dysfunctional neural signaling represent a promising route to deeper understanding and new therapies for neurological disorders. Because of the chemical specificity and subsecond signaling of the nervous system, these technologies should be able to release specific neurotransmitters at specific locations with millisecond resolution. We have previously demonstrated an organic electronic lateral electrophoresis technology capable of precise delivery of charged compounds, such as neurotransmitters. However, this technology, the organic electronic ion pump, has been limited to a single delivery point, or several simultaneously addressed outlets, with switch-on speeds of seconds. We report on a vertical neurotransmitter delivery device, configured as an array with individually controlled delivery points and a temporal resolution of 50 ms. This is achieved by supplementing lateral electrophoresis with a control electrode and an ion diode at each delivery point to allow addressing and limit leakage. By delivering local pulses of neurotransmitters with spatiotemporal dynamics approaching synaptic function, the high-speed delivery array promises unprecedented access to neural signaling and a path toward biochemically regulated neural prostheses. PMID:27847873

  1. Stimulation by surangin B of endogenous amino acid release from synaptosomes.

    PubMed

    Deng, Yanshen; Nicholson, Russell A

    2003-09-15

    The effect of surangin B, an insecticidal natural product coumarin, on presynaptic release of endogenous amino acids was investigated using a purified synaptosomal fraction isolated from mouse brain. Surangin B stimulated the release of glutamic acid (GLU), gamma-aminobutyric acid (GABA), serine, alanine and the aminosulfonic acid taurine from synaptosomes at micromolar concentrations. In all cases, these responses were reduced by removing calcium from the saline and surangin B-evoked release of GLU, GABA, aspartic acid (ASP) and alanine was significantly inhibited by the sodium channel blocker tetrodotoxin. Rotenone (a complex I inhibitor) and carbonyl cyanide chlorophenylhydrazone (CCCP; an uncoupler), were more potent releasers of amino acids from synaptosomes than surangin B, however, carboxin (a complex II-selective inhibitor), was extremely weak to ineffective in this regard. The stimulatory effect of surangin B and complex III-selective inhibitors on release of GLU, GABA, ASP and alanine by synaptosomes was significantly reduced by N,N,N',N'-tetramethyl-p-phenylenediamine, suggesting that blockade of complex III in intraterminal mitochondria is an important effect of this coumarin. Our results demonstrate that surangin B, in common with CCCP and inhibitors of complex I and III, cause release of both neurotransmitter and non-neurotransmitter amino acids from nerve endings in vitro. However, in contrast to most classical agents which interfere selectively with mitochondrial function, the release of endogenous amino acids from synaptosomes by surangin B also involves a moderate extracellular calcium ion-dependent component and relies partially on sodium ion entry into the nerve ending.

  2. Exogenous leukotriene B4 (LTB4) inhibits human neutrophil generation of LTB4 from endogenous arachidonic acid during opsonized zymosan phagocytosis.

    PubMed

    Fiedler, J; Wheelan, P; Henson, P M; Murphy, R C

    1998-10-01

    The effect of exogenous leukotriene B4 (LTB4) on opsonized zymosan-stimulated human neutrophil formation of 5-lipoxygenase products and arachidonic acid release was directly assessed using reverse-phase HPLC/tandem mass spectrometric methods for quantitation. Stable isotopically labeled LTB4, [1,2-13C2]LTB4, caused a dose-dependent inhibition of LTB4 production in isolated human neutrophils with significant inhibition (60 +/- 7% of control levels) when 0.12 nM [13C2]LTB4 was present. Production of 5-hydroxy-6,8,11,14-eicosatetraenoic acid and release of free arachidonic acid were also dose-dependently inhibited by exogenous LTB4. Metabolites of LTB4, 20-hydroxy-LTB4 and 3(S)-hydroxy-LTB4, also significantly reduced LTB4 production to levels as low as 10 +/- 6% and 10 +/- 7% of control levels, respectively, when present exogenously at 10 nM. Exogenous 5-hydroxy-6,8,11,14-eicosatetraenoic acid at concentrations as high as 10 nM produced no significant reduction in LTB4 biosynthesis during zymosan-stimulated human neutrophil production of LTB4. The inhibitory effect of LTB4 could be partially reversed by the LTB4 receptor antagonist U 75302. Furthermore, an alternative stimulus, N-formyl-methionyl-leucyl-phenylalanine (100 nM), did not inhibit the production of LTB4 in opsonized zymosan-stimulated human neutrophils. These results suggest that activation of the LTB4 receptor on the human neutrophil during phagocytosis limits the ultimate biosynthesis of LTB4. This autocrine effect is opposite to that observed when neutrophils have much of the signal transduction pathways bypassed when stimulated with calcium ionophore A23187 or treated with exogenous free arachidonic acid.

  3. Atypical Neurotransmitters and the Neurobiology of Depression.

    PubMed

    Joca, Samia Regiane; Moreira, Fabricio Araujo; Wegener, Gregers

    2015-01-01

    Since the first report that the mechanism of action of antidepressants involves the facilitation of monoaminergic neurotransmission in the brain in the 1960s, the leading hypothesis about the neurobiology of depression has been the so called "monoaminergic hypothesis". However, a growing body of evidence from the last two decades also supports important involvement of non-monoaminergic mechanisms in the neurobiology of depression and antidepressant action. The discovery of nitric oxide (NO) and endocannabinoid signaling in the brain during the 1990s challenged the wellestablished criteria of classical neurotransmission. These transmitters are synthesized and released on demand by the postsynaptic neurons, and may act as a retrograde messenger on the presynaptic terminal, modulating neurotransmitter release. These unconventional signaling mechanisms and the important role as neural messengers have classified NO and endocannabinoids as atypical neurotransmitters. They are able to modulate neural signaling mediated by the main conventional neurotransmitters systems in the brain, including the monoaminergic, glutamatergic and GABAergic signaling systems. This review aims at discussing the fundamental aspects of NO- and endocannabinoid-mediated signaling in the brain, and how they can be related to the neurobiology of depression. Both preclinical and clinical evidence supporting the involvement of these atypical neurotransmitters in the neurobiology of depression, and in the antidepressant effects are presented here. The evidence is discussed on basis of their ability to modulate different neurotransmitter systems in the brain, including monoaminergic and glutamatergic ones. A better comprehension of NO and endocannabinoid signaling mechanisms in the neurobiology depression could provide new avenues for the development of novel non-monoamine based antidepressants.

  4. The neurotransmitter dopamine modulates vascular permeability in the endothelium

    PubMed Central

    Bhattacharya, Resham; Sinha, Sutapa; Yang, Su-Ping; Patra, Chittaranjan; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2008-01-01

    Background Vascular permeability factor/Vascular endothelial growth factor (VPF/VEGF), a multifunctional cytokine, is a potent inducer of vascular permeability, an important early step in angiogenesis. It is known that the neurotransmitter dopamine can inhibit VPF/VEGF mediated angiogenesis, in particular microvascular permeability, but the effectors of this action remain unclear. Results Here, we define the signaling pathway modulated by dopamine that inhibits VPF/VEGF induced vascular permeability in endothelial cells. Signals from VPF/VEGF lead to changes in the phosphorylation of tight junction protein zonula occludens (ZO-1) and adherens junction proteins like VE-cadherin and associated catenins, thus weakening endothelial cell-cell adhesion and increasing vascular permeability. We found VEGF receptor-2 (VEGFR-2) to be part of a multi-protein complex involving ZO-1, VE-cadherin and β-catenin. VPF/VEGF induced phosphorylations of VE-cadherin, β-catenin and ZO-1 were inhibited by dopamine treatment. Association of occludin with ZO-1 and ZO-1 with VE-cadherin were significantly inhibited by dopamine in VEGF treated cells. Furthermore, we identified Src as an important target for dopamine-mediated inhibition of VPF/VEGF induced permeability. Conclusion Taken together, our results provide molecular insights of dopamine function in the vascular endothelium and suggest a central role of Src in regulating key molecules that control vascular permeability. PMID:18662404

  5. Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes

    NASA Astrophysics Data System (ADS)

    Yoneda, Yukio; Kuriyama, Kinya

    1980-06-01

    The specific binding of 3H-muscimol to synaptic membrane preparations obtained from the rat brain has been thought to reflect the association of γ-aminobutyric acid (GABA), a potential candidate as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), with its synaptic receptors1,2. Treatment of synaptic membranes with Triton X-100 significantly increases the specific binding of 3H-muscimol2. Several reports also indicate the presence of endogenous substances, such as GABA3, acidic protein4 and phosphatidylethanolamine5, which inhibit Na-independent binding of 3H-GABA in the synaptic membranous fractions from the rat brain. We report here that in the supernatant obtained from Triton-treated synaptic membranes there exists a new type of endogenous inhibitor of 3H-muscimol binding which is apparently different from the inhibitory substances described previously3-5. The new inhibitor has a low molecular weight (MW) and probably originated from neurones rather than glial cells. We have termed this endogenous inhibitor the GABA receptor binding inhibitory factor (GRIF).

  6. LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake

    SciTech Connect

    Zhou,Z.; Zhen, J.; Karpowich, N.; Goetz, R.; Law, C.; Reith, M.; Wang, D.

    2007-01-01

    Tricyclic antidepressants exert their pharmacological effect -- inhibiting the reuptake of serotonin, norepinephrine, and dopamine -- by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.

  7. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake.

    PubMed

    Zhou, Zheng; Zhen, Juan; Karpowich, Nathan K; Goetz, Regina M; Law, Christopher J; Reith, Maarten E A; Wang, Da-Neng

    2007-09-07

    Tricyclic antidepressants exert their pharmacological effect-inhibiting the reuptake of serotonin, norepinephrine, and dopamine-by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.

  8. [Neurotransmitters, calcium signalling and neuronal communication].

    PubMed

    Eguiagaray, J G; Egea, J; Bravo-Cordero, J J; García, A G

    2004-04-01

    In this article we show some recent findings that constitute a great progress in the molecular knowledge of synaptic dynamics. To communicate, neurons use a code that includes electrical (action potentials) and chemical signals (neurotransmitters, neuromodulators). At the moment a great variety of molecules are known, whose neurotransmitter function in brain and the peripheral nervous system are out of question. Monoamines like acetylcholine, dopamine, noradrenaline, adrenaline, histamine, serotonin, glutamate, aspartate, glycine, ATP and GABA are good examples. Opioid neuropeptides, vasoactive intestinal peptide (VIP), neurokinines (substance P), somatostatin, neurotensin, neuropeptide Y, cholecystokinine, vasopressin or oxitocin have been related to the control of the stress response, sexual behaviour, food intake, pain, learning and memory, qualities that are also related to nitric oxide (NO). A great part of the molecular structure of the secretory machinery is known to be responsible for fast neurotransmitter release at the synapse, in response to action potentials. Proteins like sinaptobrevin (located in the membrane of the synaptic vesicle), sintaxin and SNAP-25 (both located at the presynaptic plasma membrane) constitute a trimeric complex which is responsible of the vesicular docking at the active sites for exocytosis. From this strategic location, vesicles release their neurotransmitter within few milliseconds, when the action potential invades the nerve terminal and activates the opening of the different subtypes of voltage-dependent Ca2+ channels. The asymmetric geographical distribution of each type of channel, in different neurons, rose the hypothesis that Ca2+ that enters through each subtype of channel is compartmentalised, thus favouring the generation of Ca2+ microdomains, in the cytosol and the nucleus, involved in different cellular functions. This great biochemical synaptic heterogeneity is facilitating the selection of many biological targets

  9. Endogenous respiration of Polyporus sulphureus

    SciTech Connect

    Li, S.M.W.; Siehr, D.J.

    1980-01-01

    Thirty percent of the dry weight of the basidiomycete Polyporus sulphureus is triterpenoid acid. The endogenous respiratory quotient of this organism is 0.8 indicating that the triterpenoid is being used as an endogenous storage material. Monosaccharides did not seem to be utilized as exogenous substrates but Krebs-cycle intermediates stimulated oxygen uptake. Pyruvic acid inhibited oxygen uptake. Studies with /sup 14/C-labeled glucose indicated that 27% of the glucose was metabolized by way of glycolysis. The hexose-monophosphate pathway was the major metabolic path for the utilization of glucose. Despite the fact that P. sulphureus is associated with brown rot, its carbon metabolism suggests that it utilizes substances associated with the degradation of lignin more readily than it does glucose.

  10. Dynamic neurotransmitter interactions measured with PET

    SciTech Connect

    Schiffer, W.K.; Dewey, S.L.

    2001-04-02

    Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding

  11. Cannabinoid receptors and their endogenous agonist, anandamide.

    PubMed

    Axelrod, J; Felder, C C

    1998-05-01

    Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, delta9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for delta9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.

  12. Characterizing Enzymatic Deposition for Microelectrode Neurotransmitter Detection

    SciTech Connect

    Hosein, W. K.; Yorita, A. M.; Tolosa, V. M.

    2016-08-12

    The enzyme immobilization process, one step in creating an enzymatic biosensor, was characterized and analyzed as a function of its physical properties. The neural glutamic biosensor is a flexible device, effectively minimizing trauma to the area of implantation. The Multielectrode Array (MEA) is composed primarily of a proprietary polymer which has been successfully implanted into human subjects in recent years. This polymer allows the device the pliability that other devices normally lack, though this poses some challenges to implantation. The electrodes are made of Platinum (Pt), and can range in number from eight to thirty two electrodes per device. These electrodes are electroplated with a semipermeable polymer layer to improve selectivity of the electrode to the neurotransmitter of interest, in this case glutamate. A signal is created from the interaction of glutamate in the brain with the glutamate oxidase (GluOx) which is immobilized on the surface of the electrode by using crosslinking chemistry in conjunction with glutaraldehyde and Bovine Serum Albumin (BSA). The glutamate is oxidized by glutamate oxidase, producing α-ketoglutarate and hydrogen peroxide (H2O2) as a by-product. The production of H2O2 is crucial for detection of the presence of the glutamate within the enzymatic coating, as it diffuses through the enzyme layer and oxidizes at the surface of the electrode. This oxidation is detectable by measurable change in the current using amperometry. Hence, the MEA allows for in vivo monitoring of neurotransmitter activity in real time. The sensitivity of the sensor to these neurotransmitters is dependent on the thickness of the layer, which is investigated in these experiments in order to optimize the efficacy of the device to detecting the substrate, once implanted.

  13. Simultaneous analysis of multiple neurotransmitters by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry.

    PubMed

    Tufi, Sara; Lamoree, Marja; de Boer, Jacob; Leonards, Pim

    2015-05-22

    Neurotransmitters are endogenous metabolites that allow the signal transmission across neuronal synapses. Their biological role is crucial for many physiological functions and their levels can be changed by several diseases. Because of their high polarity, hydrophilic interaction liquid chromatography (HILIC) is a promising tool for neurotransmitter analysis. Due to the large number of HILIC stationary phases available, an evaluation of the column performances and retention behaviors has been performed on five different commercial HILIC packing materials (silica, amino, amide and two zwitterionic stationary phases). Several parameters like the linear correlation between retention and the distribution coefficient (logD), the separation factor k and the column resolution Rs have been investigated and the column performances have been visualized with a heat map and hierarchical clustering analysis. An optimized and validated HILIC-MS/MS method based on the ZIC-cHILIC column is proposed for the simultaneous detection and quantification of twenty compounds consisting of neurotransmitters, precursors and metabolites: 3-methoxytyramine (3-MT), 5-hydroxyindoleacetic acid (5-HIAA), 5-hydroxy-L-tripthophan, acetylcholine, choline, L-3,4-dihydroxyphenylalanine (L-DOPA), dopamine, epinephrine, γ-aminobutyric acid (GABA), glutamate, glutamine, histamine, histidine, L-tryptophan, L-tyrosine, norepinephrine, normetanephrine, phenylalanine, serotonin and tyramine. The method was applied to neuronal metabolite profiling of the central nervous system of the freshwater snail Lymnaea stagnalis. This method is suitable to explore neuronal metabolism and its alteration in different biological matrices.

  14. Chloride binding site of neurotransmitter sodium symporters

    PubMed Central

    Kantcheva, Adriana K.; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A.; Nissen, Poul

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding. PMID:23641004

  15. The Role of Neurotrophins in Neurotransmitter Release

    PubMed Central

    Tyler, William J.; Perrett, Stephen P.; Pozzo-Miller, Lucas D.

    2009-01-01

    The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by “fine-tuning” synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as “kiss-and-run.” By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system. PMID:12467374

  16. Neurotransmitter signaling in the pathophysiology of microglia

    PubMed Central

    Domercq, María; Vázquez-Villoldo, Nuria; Matute, Carlos

    2013-01-01

    Microglial cells are the resident immune cells of the central nervous system. In the resting state, microglia are highly dynamic and control the environment by rapidly extending and retracting motile processes. Microglia are closely associated with astrocytes and neurons, particularly at the synapses, and more recent data indicate that neurotransmission plays a role in regulating the morphology and function of surveying/resting microglia, as they are endowed with receptors for most known neurotransmitters. In particular, microglia express receptors for ATP and glutamate, which regulate microglial motility. After local damage, the release of ATP induces microgliosis and activated microglial cells migrate to the site of injury, proliferate, and phagocytose cells, and cellular compartments. However, excessive activation of microglia could contribute to the progression of chronic neurodegenerative diseases, though the underlying mechanisms are still unclear. Microglia have the capacity to release a large number of substances that can be detrimental to the surrounding neurons, including glutamate, ATP, and reactive oxygen species. However, how altered neurotransmission following acute insults or chronic neurodegenerative conditions modulates microglial functions is still poorly understood. This review summarizes the relevant data regarding the role of neurotransmitter receptors in microglial physiology and pathology. PMID:23626522

  17. Chloride binding site of neurotransmitter sodium symporters.

    PubMed

    Kantcheva, Adriana K; Quick, Matthias; Shi, Lei; Winther, Anne-Marie Lund; Stolzenberg, Sebastian; Weinstein, Harel; Javitch, Jonathan A; Nissen, Poul

    2013-05-21

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs have a serine. The LeuT-E290S mutant displays chloride-dependent activity. We show that, in LeuT-E290S cocrystallized with bromide or chloride, the anion is coordinated by side chain hydroxyls from Tyr47, Ser290, and Thr254 and the side chain amide of Gln250. The bound anion and the nearby sodium ion in the Na1 site organize a connection between their coordinating residues and the extracellular gate of LeuT through a continuous H-bond network. The specific insights from the structures, combined with results from substrate binding studies and molecular dynamics simulations, reveal an anion-dependent occlusion mechanism for NSS and shed light on the functional role of chloride binding.

  18. Ectopic vesicular neurotransmitter release along sensory axons mediates neurovascular coupling via glial calcium signaling.

    PubMed

    Thyssen, Anne; Hirnet, Daniela; Wolburg, Hartwig; Schmalzing, Günther; Deitmer, Joachim W; Lohr, Christian

    2010-08-24

    Neurotransmitter release generally is considered to occur at active zones of synapses, and ectopic release of neurotransmitters has been demonstrated in a few instances. However, the mechanism of ectopic neurotransmitter release is poorly understood. We took advantage of the intimate morphological and functional proximity of olfactory receptor axons and specialized glial cells, olfactory ensheathing cells (OECs), to study ectopic neurotransmitter release. Axonal stimulation evoked purinergic and glutamatergic Ca(2+) responses in OECs, indicating ATP and glutamate release. In axons expressing synapto-pHluorin, stimulation evoked an increase in synapto-pHluorin fluorescence, indicative of vesicle fusion. Transmitter release was dependent on Ca(2+) and could be inhibited by bafilomycin A1 and botulinum toxin A. Ca(2+) transients in OECs evoked by ATP, axonal stimulation, and laser photolysis of NP-EGTA resulted in constriction of adjacent blood vessels. Our results indicate that ATP and glutamate are released ectopically by vesicles along axons and mediate neurovascular coupling via glial Ca(2+) signaling.

  19. Endogenous Inhibitors of Kidney Inflammation

    PubMed Central

    Trostel, Jessica; Garcia, Gabriela E.

    2015-01-01

    Although inflammation is the physiological response to pathogen invasion and tissue damage, it can also be responsible for significant tissue damage. Therefore, the inflammatory response must be carefully regulated to prevent critical inflammatory damage to vital organs. Typically, local endogenous regulatory mechanisms adjust the magnitude of the response such that the injurious condition is resolved and homeostasis is mantained. Humoral mechanisms that restrain or inhibit inflammation include glucocorticoid hormones, anti-inflammatory cytokines such as IL-10 and transforming growth factor-β (TGF-β), and soluble cytokine receptors; other mediators facilitate tissue healing, like lipoxins and resolvins. There is growing evidence that inflammation plays a critical role in the development and progression of heart disease, cancer, stroke, diabetes, kidney diseases, sepsis, and several fibroproliferative disorders. Consequently, understanding the mechanisms that regulate inflammation may offer therapeutic targets for inhibiting the progression of several diseases. In this article, we review the significance of several novel endogenous anti-inflammatory mediators in the protection from kidney injury and the potential of these regulatory molecules as therapeutic targets for treatment of kidney inflammatory diseases. PMID:26779569

  20. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  1. Neurotransmitter Receptor Binding in Bovine Cerebral Microvessels

    NASA Astrophysics Data System (ADS)

    Peroutka, Stephen J.; Moskowitz, Michael A.; Reinhard, John F.; Synder, Solomon H.

    1980-05-01

    Purified preparations of microvessels from bovine cerebral cortex contain substantial levels of alpha-adrenergic, beta-adrenergic, and histamine 1 receptor binding sites but only negligible serotonin, muscarinic cholinergic, opiate, and benzodiazepine receptor binding. Norepinephrine and histamine may be endogenous regulators of the cerebral microcirculation at the observed receptors.

  2. Imaging neurotransmitter release kinetics in living cells

    SciTech Connect

    Tan, Weihong; Yeung, E.S.; Haydon, P.G.

    1996-12-31

    A new UV-laser based optical microscope and CCD detection system has been developed to image neurotransmitter in living biological cells. We demonstrate the detection of serotonin that has been taken up into and released from individual living glial cells (astrocytes) based on its native fluorescence. The detection methodology has high sensitivity, low limit of detection and does not require coupling to fluorescence dyes. We have studied serotonin uptake kinetics and its release dynamics in single glial cells. Different regions of a glial cell have taken up different amounts of serotonin with a variety of kinetics. Similarly, different serotonin release mechanisms have been observed in different astrocyte cell regions. The temporal resolution of this detection system is as fast as 50 ms, and the spatial resolution is diffraction limited. We will also report on single enzyme molecule reaction studies and single metal ion detection based on CCD imaging of pL reaction vials formed by micromachining on fused silica.

  3. The Endogenous Exposome

    PubMed Central

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  4. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders

    ERIC Educational Resources Information Center

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.

    2007-01-01

    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  5. Resolvin E1 Inhibits Substance P-Induced Potentiation of TRPV1 in Primary Sensory Neurons

    PubMed Central

    Jo, Youn Yi; Lee, Ji Yeon

    2016-01-01

    The neuropeptide substance P (SP) is expressed in primary sensory neurons and is commonly regarded as a “pain” neurotransmitter. Upon peripheral inflammation, SP activates the neurokinin-1 (NK-1) receptor and potentiates activity of transient receptor potential vanilloid subtype 1 (TRPV1), which is coexpressed by nociceptive neurons. Therefore, SP functions as an important neurotransmitter involved in the hypersensitization of inflammatory pain. Resolvin E1 (RvE1), derived from omega-3 polyunsaturated fatty acids, inhibits TRPV1 activity via activation of the chemerin 23 receptor (ChemR23)—an RvE1 receptor located in dorsal root ganglion neurons—and therefore exerts an inhibitory effect on inflammatory pain. We demonstrate here that RvE1 regulates the SP-induced potentiation of TRPV1 via G-protein coupled receptor (GPCR) on peripheral nociceptive neurons. SP-induced potentiation of TRPV1 inhibited by RvE1 was blocked by the Gαi-coupled GPCR inhibitor pertussis toxin and the G-protein inhibitor GDPβ-S. These results indicate that a low concentration of RvE1 strongly inhibits the potentiation of TRPV1, induced by the SP-mediated activation of NK-1, via a GPCR signaling pathway activated by ChemR23 in nociceptive neurons. RvE1 might represent a new therapeutic target for the treatment of inflammatory pain as a prospective endogenous inhibitor that strongly inhibits TRPV1 activity associated with peripheral inflammation. PMID:27738388

  6. Neuron-glia signaling in developing retina mediated by neurotransmitter spillover.

    PubMed

    Rosa, Juliana M; Bos, Rémi; Sack, Georgeann S; Fortuny, Cécile; Agarwal, Amit; Bergles, Dwight E; Flannery, John G; Feller, Marla B

    2015-08-14

    Neuron-glia interactions play a critical role in the maturation of neural circuits; however, little is known about the pathways that mediate their communication in the developing CNS. We investigated neuron-glia signaling in the developing retina, where we demonstrate that retinal waves reliably induce calcium transients in Müller glial cells (MCs). During cholinergic waves, MC calcium transients were blocked by muscarinic acetylcholine receptor antagonists, whereas during glutamatergic waves, MC calcium transients were inhibited by ionotropic glutamate receptor antagonists, indicating that the responsiveness of MCs changes to match the neurotransmitter used to support retinal waves. Using an optical glutamate sensor we show that the decline in MC calcium transients is caused by a reduction in the amount of glutamate reaching MCs. Together, these studies indicate that neurons and MCs exhibit correlated activity during a critical period of retinal maturation that is enabled by neurotransmitter spillover from retinal synapses.

  7. [Changes in the activity of the ciliary apparatus of the cerebral aqueduct ependymal cells induced by some cerebrospinal fluid neurotransmitters].

    PubMed

    2010-01-01

    In vitro investigation of the effect of the neurotransmitter amino acids on motile activity of the ciliary apparatus of cerebral (Sylvian) aqueduct ependymal cells in the newborn rats has shown that the addition of glutamate, GABA, glycine, and taurine to the nutrient medium induced deceleration and, finally, complete disappearance of motile activity of the ciliary apparatus. Inhibition and blocking of the ciliary activity induced by the neurotransmitters, especially by high concentrations of glutamate, indicate the existence of respective receptors on the membrane of the cerebral aqueduct ependymal cells. This involvement of the receptors was confirmed in the experiments with the preliminary introduction of ion channel blockers (ketamine, strychnine, and bicuculine) into the culture medium that resulted in the attenuation of neurotransmitter destructive effect and the prolongation of motile activity of the ciliary apparatus.

  8. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    PubMed

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients.

  9. Demonstration of endogenous imipramine like material in rat brain

    SciTech Connect

    Rehavi, M.; Ventura, I.; Sarne, Y.

    1985-02-18

    The extraction and partial purification of an endogenous imipramine-like material from rat brain is described. The endogenous factor obtained after gel filtration and silica chromatography inhibits (/sup 3/H) imipramine specific binding and mimics the inhibitory effect of imipramine on (/sup 3/H) serotonin uptake in both brain and platelet preparations. The effects of the endogenous material are dose-dependent and it inhibits (/sup 3/H) imipramine binding in a competitive fashion. The factor is unevenly distributed in the brain with high concentration in the hypothalamus and low concentration in the cerebellum.

  10. Fast neurotransmitter release regulated by the endocytic scaffold intersectin

    PubMed Central

    Sakaba, Takeshi; Kononenko, Natalia L.; Bacetic, Jelena; Pechstein, Arndt; Schmoranzer, Jan; Yao, Lijun; Barth, Holger; Shupliakov, Oleg; Kobler, Oliver; Aktories, Klaus; Haucke, Volker

    2013-01-01

    Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain. PMID:23633571

  11. Conjugated Polymer Nanoparticles for Fluorescence Imaging and Sensing of Neurotransmitter Dopamine in Living Cells and the Brains of Zebrafish Larvae.

    PubMed

    Qian, Cheng-Gen; Zhu, Sha; Feng, Pei-Jian; Chen, Yu-Lei; Yu, Ji-Cheng; Tang, Xin; Liu, Yun; Shen, Qun-Dong

    2015-08-26

    Nanoscale materials are now attracting a great deal of attention for biomedical applications. Conjugated polymer nanoparticles have remarkable photophysical properties that make them highly advantageous for biological fluorescence imaging. We report on conjugated polymer nanoparticles with phenylboronic acid tags on the surface for fluorescence detection of neurotransmitter dopamine in both living PC12 cells and brain of zebrafish larvae. The selective enrichment of dopamine and fluorescence signal amplification characteristics of the nanoparticles show rapid and high-sensitive probing such neurotransmitter with the detection limit of 38.8 nM, and minimum interference from other endogenous molecules. It demonstrates the potential of nanomaterials as a multifunctional nanoplatform for targeting, diagnosis, and therapy of dopamine-relative disease.

  12. Dirty electricity, chronic stress, neurotransmitters and disease.

    PubMed

    Milham, Samuel; Stetzer, David

    2013-12-01

    Dirty electricity, also called electrical pollution, is high-frequency voltage transients riding along the 50 or 60 Hz electricity provided by the electric utilities. It is generated by arcing, by sparking and by any device that interrupts current flow, especially switching power supplies. It has been associated with cancer, diabetes and attention deficit hyperactivity disorder in humans. Epidemiological evidence also links dirty electricity to most of the diseases of civilization including cancer, cardiovascular disease, diabetes and suicide, beginning at the turn of the twentieth century. The dirty electricity level in a public library was reduced from over 10 000 Graham/Stetzer (G/S) units to below 50 G/S units by installing plug-in capacitive filters. Before cleanup, the urinary dopamine level of only one of seven volunteers was within normal levels, while four of seven phenylethylamine levels were normal. After an initial decline, over the next 18 weeks the dopamine levels gradually increased to an average of over 215 μg/g creatinine, which is well above 170 μg/g creatinine, the high normal level for the lab. Average phenylethylamine levels also rose gradually to slightly above 70 μg/g creatinine, the high normal level for the lab. Neurotransmitters may be biomarkers for dirty electricity and other electromagnetic field exposures. We believe that dirty electricity is a chronic stressor of electrified populations and is responsible for many of their disease patterns.

  13. Cytoplasmic permeation pathway of neurotransmitter transporters.

    PubMed

    Rudnick, Gary

    2011-09-06

    Ion-coupled solute transporters are responsible for transporting nutrients, ions, and signaling molecules across a variety of biological membranes. Recent high-resolution crystal structures of several transporters from protein families that were previously thought to be unrelated show common structural features indicating a large structural family representing transporters from all kingdoms of life. This review describes studies that led to an understanding of the conformational changes required for solute transport in this family. The first structure in this family showed the bacterial amino acid transporter LeuT, which is homologous to neurotransmitter transporters, in an extracellularly oriented conformation with a molecule of leucine occluded at the substrate site. Studies with the mammalian serotonin transporter identified positions, buried in the LeuT structure, that defined a potential pathway leading from the cytoplasm to the substrate binding site. Modeling studies utilized an inverted structural repeat within the LeuT crystal structure to predict the conformation of LeuT in which the cytoplasmic permeation pathway, consisting of positions identified in SERT, was open for diffusion of the substrate to the cytoplasm. From the difference between the model and the crystal structures, a simple "rocking bundle" mechanism was proposed, in which a four-helix bundle changed its orientation with respect to the rest of the protein to close the extracellular pathway and open the cytoplasmic one. Subsequent crystal structures from structurally related proteins provide evidence supporting this model for transport.

  14. Nicotine effects and the endogenous opioid system.

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro

    2014-01-01

    Nicotine (NIC) is an exogenous ligand of the nicotinic acetylcholine receptor (nAChR), and it influences various functions in the central nervous system. Systemic administration of NIC elicits the release of endogenous opioids (endorphins, enkephalins, and dynorphins) in the supraspinal cord. Additionally, systemic NIC administration induces the release of methionine-enkephalin in the spinal dorsal horn. NIC has acute neurophysiological actions, including antinociceptive effects, and the ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. The endogenous opioid system participates in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception is mediated by α4β2 and α7 nAChRs, while NIC-induced HPA axis activation is mediated by α4β2, not α7, suggesting that the effects of NIC on the endogenous opioid system are mediated by α7, not α4β2. NIC has substantial physical dependence liability. The opioid-receptor antagonist naloxone (NLX) elicits NIC withdrawal after repeated NIC administration, and NLX-induced NIC withdrawal is inhibited by concomitant administration of an opioid-receptor antagonist. NLX-induced NIC withdrawal is also inhibited by concomitant administration of an α7 antagonist, but not an α4β2 antagonist. Taken together, these findings suggest that NIC-induced antinociception and the development of physical dependence are mediated by the endogenous opioid system, via the α7 nAChR.

  15. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  16. How did the neurotransmitter cross the bilayer? A closer view.

    PubMed

    Sonders, Mark S; Quick, Matthias; Javitch, Jonathan A

    2005-06-01

    Plasma membrane neurotransmitter transporters for monoamines, GABA, glycine and excitatory amino acids are homologous to two sizable families of bacterial amino acid transporters. Recently, a high resolution structure was determined for a thermophilic glutamate transporter. Also, a bacterial tryptophan transporter related to the family of biogenic amine neurotransmitter transporters was functionally expressed. Structural insights from these and other bacterial transporters will help to rationalize the mechanisms for the increasingly complex functions that have been described for mammalian transporters, in addition to their modes of regulation. We touch on recent insights into the functions of neurotransmitter transporters in their physiological contexts.

  17. Endogenous methyl palmitate modulates nicotinic receptor-mediated transmission in the superior cervical ganglion.

    PubMed

    Lin, Hung Wen; Liu, Chao-Zong; Cao, Deshou; Chen, Po-Yi; Chen, Mei-Fang; Lin, Shinn-Zong; Mozayan, Mansoor; Chen, Alex F; Premkumar, Louis S; Torry, Donald S; Lee, Tony J-F

    2008-12-09

    Nitric oxide (NO) is identified as the endothelium-derived relaxing factor and a neurotransmitter with a superfusion bioassay cascade technique. By using a similar technique with rat superior cervical ganglion (SCG) as donor tissue and rabbit endothelium-denuded aortic ring as detector tissue, we report here that a vasodilator, which is more potent than NO, is released in the SCG upon field electrical stimulation (FES) or addition of nicotine. Release of this vasodilator was enhanced by arginine analogs, including N(omega)-nitro-l-arginine (a NO synthase inhibitor), suggesting that it is not NO. Analysis by gas chromatography/mass spectrometry identified 2 saturated fatty acids, palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME), being released from the SCG upon FES in the presence of arginine analogs. Exogenous PAME but not SAME induced significant aortic dilation (EC(50) = 0.19 nM), indicating that PAME is the potent vasodilator. Release of PAME and SAME was significantly diminished in chronically decentralized SCG but not denervated SCG, suggesting the preganglionic origin. Furthermore, release of both fatty acids was calcium- and myosin light chain kinase-dependent, suggesting that both were released from axoplasmic vesicular stores. Electrophysiological studies further demonstrated that PAME but not SAME inhibited nicotine-induced inward currents in cultured SCG and the alpha7-nicotinic acetylcholine receptor-expressing Xenopus oocytes. Endogenous PAME appears to play a role in modulation of the autonomic ganglionic transmission and to complement the vasodilator effect of NO.

  18. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  19. Neurotransmitter receptors as targets for pesticides.

    PubMed

    Eldefrawi, M E; Eldefrawi, A T

    1983-01-01

    Nicotinic and muscarinic acetylcholine (ACh) receptors have been identified biochemically by means of their specific binding of [3H] alpha-bungarotoxin ([3H]alpha-BGT) and [3H]quinuclidinyl benzilate, respectively. There are some differences in the drug specificities, and sensitivities to active group reagents, of these receptors in insects when compared to those in vertebrates. Also, insect brain contains more nicotinic than muscarinic receptors, while the reverse is found in mammalian brain. Insect brain contains a third kind of putative ACh-receptor that is relatively soluble and is both nicotinic and muscarinic in its pharmacology but does not bind alpha-BGT. Toxic nicotine and analogs bind to it with high affinities. Several organophosphorus and carbamate insecticides and nereistoxin bind with high affinities to the nicotinic ACh-receptor of the electric organ of Torpedo. A few chlorinated hydrocarbon insecticides and derivatives interact with Torpedo nicotinic ACh-receptors, not at their 'receptor' sites but at their allosteric or 'channel' sites (which are identified by their specific binding of [3H]perhydrohistrionicotoxin). A few also bind to mammalian brain muscarinic receptors. The most potent on both receptors is the acaricide chlorobenzilate. Pyrethrins and synthetic pyrethroids also bind with high affinities to the channel sites of the Torpedo nicotinic ACh-receptor, though not to its receptor sites. Another group that binds to ACh-receptors is the organic and inorganic mercury compounds, which interact with both the Torpedo nicotinic and rat brain muscarinic receptors. Thus, neurotransmitter receptors act as molecular targets, primary or secondary for different pesticides.

  20. Mechanism for alternating access in neurotransmitter transporters.

    PubMed

    Forrest, Lucy R; Zhang, Yuan-Wei; Jacobs, Miriam T; Gesmonde, Joan; Xie, Li; Honig, Barry H; Rudnick, Gary

    2008-07-29

    Crystal structures of LeuT, a bacterial homologue of mammalian neurotransmitter transporters, show a molecule of bound substrate that is essentially exposed to the extracellular space but occluded from the cytoplasm. Thus, there must exist an alternate conformation for LeuT in which the substrate is accessible to the cytoplasm and a corresponding mechanism that switches accessibility from one side of the membrane to the other. Here, we identify the cytoplasmic accessibility pathway of the alternate conformation in a mammalian serotonin transporter (SERT) (a member of the same transporter family as LeuT). We also propose a model for the cytoplasmic-facing state that exploits the internal pseudosymmetry observed in the crystal structure. LeuT contains two structurally similar repeats (TMs1-5 and TMs 6-10) that are inverted with respect to the plane of the membrane. The conformational differences between them result in the formation of the extracellular pathway. Our model for the cytoplasm-facing state exchanges the conformations of the two repeats and thus exposes the substrate and ion-binding sites to the cytoplasm. The conformational change that connects the two states primarily involves the tilting of a 4-helix bundle composed of transmembrane helices 1, 2, 6, and 7. Switching the tilt angle of this bundle is essentially equivalent to switching the conformation of the two repeats. Extensive mutagenesis of SERT and accessibility measurements, using cysteine reagents, are accommodated by our model. These observations may be of relevance to other transporter families, many of which contain internal inverted repeats.

  1. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis

    NASA Astrophysics Data System (ADS)

    Inayat, Samsoon; Rountree, Corey M.; Troy, John B.; Saggere, Laxman

    2015-02-01

    Objective. No cure currently exists for photoreceptor degenerative diseases, which cause partial or total blindness in millions of people worldwide. Electrical retinal prostheses have been developed by several groups with the goal of restoring vision lost to these diseases, but electrical stimulation has limitations. It excites both somas and axons, activating retinal pathways nonphysiologically, and limits spatial resolution because of current spread. Chemical stimulation of retinal ganglion cells (RGCs) using the neurotransmitter glutamate has been suggested as an alternative to electrical stimulation with some significant advantages. However, sufficient scientific data to support developing a chemical-based retinal prosthesis is lacking. The goal of this study was to investigate the feasibility of a neurotransmitter-based retinal prosthesis and determine therapeutic stimulation parameters. Approach. We injected controlled amounts of glutamate into rat retinas from the epiretinal side ex vivo via micropipettes using a pressure injection system and recorded RGC responses with a multielectrode array. Responsive units were identified using a spike rate threshold of 3 Hz. Main results. We recorded both somal and axonal units and demonstrated successful glutamatergic stimulation across different RGC subtypes. Analyses show that exogenous glutamate acts on RGC synapses similar to endogenous glutamate and, unlike electrical prostheses, stimulates only RGC somata. The spatial spread of glutamate stimulation was ˜ 290 μm from the injection site, comparable to current electrical prostheses. Further, the glutamate injections produced spatially differential responses in OFF, ON, and ON-OFF RGC subtypes, suggesting that differential stimulation of the OFF and ON systems may be possible. A temporal resolution of 3.2 Hz was obtained, which is a rate suitable for spatial vision. Significance. We provide strong support for the feasibility of an epiretinal neurotransmitter

  2. Sympathetic Neurotransmitters Modulate Osteoclastogenesis and Osteoclast Activity in the Context of Collagen-Induced Arthritis

    PubMed Central

    Muschter, Dominique; Schäfer, Nicole; Stangl, Hubert; Straub, Rainer H.; Grässel, Susanne

    2015-01-01

    Excessive synovial osteoclastogenesis is a hallmark of rheumatoid arthritis (RA). Concomitantly, local synovial changes comprise neuronal components of the peripheral sympathetic nervous system. Here, we wanted to analyze if collagen-induced arthritis (CIA) alters bone marrow-derived macrophage (BMM) osteoclastogenesis and osteoclast activity, and how sympathetic neurotransmitters participate in this process. Therefore, BMMs from Dark Agouti rats at different CIA stages were differentiated into osteoclasts in vitro and osteoclast number, cathepsin K activity, matrix resorption and apoptosis were analyzed in the presence of acetylcholine (ACh), noradrenaline (NA) vasoactive intestinal peptide (VIP) and assay-dependent, adenylyl cyclase activator NKH477. We observed modulation of neurotransmitter receptor mRNA expression in CIA osteoclasts without affecting protein level. CIA stage-dependently altered marker gene expression associated with osteoclast differentiation and activity without affecting osteoclast number or activity. Neurotransmitter stimulation modulated osteoclast differentiation, apoptosis and activity. VIP, NA and adenylyl cyclase activator NKH477 inhibited cathepsin K activity and osteoclastogenesis (NKH477, 10-6M NA) whereas ACh mostly acted pro-osteoclastogenic. We conclude that CIA alone does not affect metabolism of in vitro generated osteoclasts whereas stimulation with NA, VIP plus specific activation of adenylyl cyclase induced anti-resorptive effects probably mediated via cAMP signaling. Contrary, we suggest pro-osteoclastogenic and pro-resorptive properties of ACh mediated via muscarinic receptors. PMID:26431344

  3. Biochemical and Neurotransmitters Changes Associated with Tramadol in Streptozotocin-Induced Diabetes in Rats

    PubMed Central

    Ezzeldin, Essam; Souror, Wafaa A. H.; El-Nahhas, Toqa; Soudi, Abdel Nasser M. M.; Shahat, Abdelaaty A.

    2014-01-01

    The incidence of diabetes is increasing worldwide. Chronic neuropathic pain occurs in approximately 25% of diabetic patients. Tramadol, an atypical analgesic with a unique dual mechanism of action, is used in the management of painful diabetic neuropathy. It acts on monoamine transporters to inhibit the reuptake of norepinephrine (NE), serotonin (5-HT), and dopamine (DA). The purpose of this study was to evaluate the effects of diabetes on the brain neurotransmitter alterations induced by tramadol in rats, and to study the hepatic and renal toxicities of the drug. Eighty Sprague-Dawley rats were divided randomly into two sets: the normal set and the diabetic set. Diabetes was induced in rats. Tramadol was administered orally once daily for 28 days. The levels of DA, NE, and 5-HT in cerebral cortex, thalamus/hypothalamus, midbrain, and brainstem were evaluated in rats. In addition, the renal toxicity and histopathological effects of the drug were assessed. The induction of diabetes altered neurotransmitter levels. Oral administration of tramadol significantly decreased the neurotransmitter levels. Diabetes significantly altered the effects of tramadol in all brain regions. Tramadol affected function and histology of the liver and kidney. The clinical effects of tramadol in diabetic patients should be stressed. PMID:24971322

  4. Stimulating endogenous cardiac repair

    PubMed Central

    Finan, Amanda; Richard, Sylvain

    2015-01-01

    The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may strike a balance in myocardial healing. To maximize endogenous cardiac regeneration, a combination of these approaches could ameliorate the overall repair process to incorporate the participation of multiple cellular players. PMID:26484341

  5. Endogenous Pyrogen Physiology

    DTIC Science & Technology

    1980-01-01

    Intracerebroventricular injection of rats: a sensitive directed to the photoreceptor system for phototaxis of the proto- assay method for endogenous...spinal heating and cooling and photobiologists. The remainder of the book is devoted to the eye. intracerebroventricular injections of monoamines and...photobehavior and vision discussed, such as histamine /antihistamines, cough remedies, of invertebrates. h i e nd slep-aids and laxatives. The few citations

  6. Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones

    PubMed Central

    Sirois, Jay E; Lynch, Carl; Bayliss, Douglas A

    2002-01-01

    Neurotransmitters and volatile anaesthetics have opposing effects on motoneuronal excitability which appear to reflect contrasting modulation of two types of subthreshold currents. Neurotransmitters increase motoneuronal excitability by inhibiting TWIK-related acid-sensitive K+ channels (TASK) and shifting activation of a hyperpolarization-activated cationic current (Ih) to more depolarized potentials; on the other hand, anaesthetics decrease excitability by activating a TASK-like current and inducing a hyperpolarizing shift in Ih activation. Here, we used whole-cell recording from motoneurones in brainstem slices to test if neurotransmitters (serotonin (5-HT) and noradrenaline (NA)) and an anaesthetic (halothane) indeed compete for modulation of the same ion channels - and we determined which prevails. When applied together under current clamp conditions, 5-HT reversed anaesthetic-induced membrane hyperpolarization and increased motoneuronal excitability. Under voltage clamp conditions, 5-HT and NA overcame most, but not all, of the halothane-induced current. When Ih was blocked with ZD 7288, the neurotransmitters completely inhibited the K+ current activated by halothane; the halothane-sensitive neurotransmitter current reversed at the equilibrium potential for potassium (EK) and displayed properties expected of acid-sensitive, open-rectifier TASK channels. To characterize modulation of Ih in relative isolation, effects of 5-HT and halothane were examined in acidified bath solutions that blocked TASK channels. Under these conditions, 5-HT and halothane each caused their characteristic shift in voltage-dependent gating of Ih. When tested concurrently, however, halothane decreased the neurotransmitter-induced depolarizing shift in Ih activation. Thus, halothane and neurotransmitters converge on TASK and Ih channels with opposite effects; transmitter action prevailed over anaesthetic effects on TASK channels, but not over effects on Ih. These data suggest that

  7. Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear.

    PubMed

    Kim, Jee Hyun; Perry, Christina J; Ganella, Despina E; Madsen, Heather B

    2017-02-01

    Remembering and forgetting are fundamental features of an organism. Extinction is a type of forgetting where there is a decrease in the significance and/or the meaning of an associative memory when elements of that memory no longer predict one another. The neural mechanisms underlying extinction of fear memories have been extensively studied in the laboratory because extinction processes are clinically relevant to exposure therapies that treat anxiety disorders. However, only in the last decade have we begun to unveil the similarities and differences in plasticity underlying extinction across development. So far it is clear that extinction is a developmentally dissociated process in behavior and in pharmacology, however there are many large gaps in the literature in understanding how the developmental trajectory of different neurotransmitters contribute to changes in the nature of extinction across development. We attempt to address these gaps in the present review. Major neurotransmitter systems including the glutamatergic and GABAergic systems, the monoamines, the endogenous opioid and cannabinoid systems, acetylcholines, and neuropeptides such as oxytocin have all been identified to play some role in extinction of fear memories and have been covered in this review. We hope to facilitate more research into mechanisms of extinction at different stages of life, especially noting that mental disorders are increasingly classified as neurodevelopmental disorders.

  8. Electrochemical nanoprobes for the chemical detection of neurotransmitters

    PubMed Central

    Colombo, Michelle L.

    2015-01-01

    Neurotransmitters, acting as chemical messengers, play an important role in neurotransmission, which governs many functional aspects of nervous system activity. Electrochemical probes have proven a very useful technique to study neurotransmission, especially to quantify and qualify neurotransmitters. With the emerging interests in probing neurotransmission at the level of single cells, single vesicles, as well as single synapses, probes that enable detection of neurotransmitters at the nanometer scale become vitally important. Electrochemical nanoprobes have been successfully employed in nanometer spatial resolution imaging of single nanopores of Si membrane and single Au nanoparticles, providing both topographical and chemical information, thus holding great promise for nanometer spatial study of neurotransmission. Here we present the current state of electrochemical nanoprobes for chemical detection of neurotransmitters, focusing on two types of nanoelectrodes, i.e. carbon nanoelectrode and nano-ITIES pipet electrode. PMID:26327927

  9. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Hong, Zhiwen; Tian, Yujing; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Liu, Wentao; Chen, Ling

    2016-01-01

    The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation. PMID:27616980

  10. Neurotransmitters: The Critical Modulators Regulating Gut-Brain Axis.

    PubMed

    Mittal, Rahul; Debs, Luca H; Patel, Amit P; Nguyen, Desiree; Patel, Kunal; O'Connor, Gregory; Grati, M'hamed; Mittal, Jeenu; Yan, Denise; Eshraghi, Adrien A; Deo, Sapna K; Daunert, Sylvia; Liu, Xue Zhong

    2016-08-11

    Neurotransmitters including catecholamines and serotonin play a crucial role in maintaining homeostasis in the human body. Studies on these neurotransmitters mainly revolved around their role in the "fight or flight" response, transmitting signals across a chemical synapse and modulating blood flow throughout the body. However, recent research has demonstrated that neurotransmitters can play a significant role in the gastrointestinal (GI) physiology. Norepinephrine (NE), epinephrine (E), dopamine (DA), and serotonin have recently been a topic of interest because of their roles in the gut physiology and their potential roles in gastrointestinal and central nervous system pathophysiology. These neurotransmitters are able to regulate and control not only blood flow, but also affect gut motility, nutrient absorption, gastrointestinal innate immune system, and the microbiome. Furthermore, in pathological states such as inflammatory bowel disease (IBD) and Parkinson's disease, the levels of these neurotransmitters are dysregulated, therefore causing a variety of gastrointestinal symptoms. Research in this field has shown that exogenous manipulation of catecholamine serum concentrations can help in decreasing symptomology and/or disease progression. In this review article, we discuss the current state-of-the-art research and literature regarding the role of neurotransmitters in regulation of normal gastrointestinal physiology, their impact on several disease processes, and novel work focused on the use of exogenous hormones and/or psychotropic medications to improve disease symptomology. This article is protected by copyright. All rights reserved.

  11. Radiotracers for PET and SPECT studies of neurotransmitter systems

    SciTech Connect

    Fowler, J.S.

    1991-01-01

    The study of neurotransmitter systems is one of the major thrusts in emission tomography today. The current generation of Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) radiotracers examines neurotransmitter properties from a number of different perspectives including their pre and post synaptic sites and the activity of the enzymes which regulate their concentration. Although the dopamine system has been the most extensively investigated, other neurotransmitter systems including the acetylcholine muscarine, serotonin, benzodiazepine, opiate, NMDA and others are also under intensive development. Enzymes involved in the synthesis and regulation of neurotransmitter concentration, for example monoamine oxidase and amino acid decarboxylase has also been probed in vivo. Medical applications range from the study of normal function and the characterization of neurotransmitter activity in neurological and psychiatric diseases and in heart disease and cancer to the study of the binding of therapeutic drugs and substances of abuse. This chapter will provide an overview of the current generation of radiotracers for PET and SPECT studies of neurotransmitter systems including radiotracer design, synthesis localization mechanisms and applications in emission tomography. 60 refs., 1 tab.

  12. P2Y Purinergic Regulation of the Glycine Neurotransmitter Transporters*

    PubMed Central

    Jiménez, Esperanza; Zafra, Francisco; Pérez-Sen, Raquel; Delicado, Esmerilda G.; Miras-Portugal, Maria Teresa; Aragón, Carmen; López-Corcuera, Beatriz

    2011-01-01

    The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5′-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y1 and P2Y13 because the effects are partially reversed by the specific antagonists N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate and pyridoxal-5′-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y12 receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca2+ mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y1 receptor. Sensitivity to 2-methylthioadenosine 5′-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization. PMID:21245148

  13. The role of serotonin and neurotransmitters during craniofacial development.

    PubMed

    Moiseiwitsch, J R

    2000-01-01

    Several neurotransmitters, in particular serotonin (5-HT), have demonstrated multiple functions during early development and mid-gestational craniofacial morphogenesis. Early studies indicated that 5-HT is present in the oocyte, where it appears to function as a regulator of cell cleavage. Later, it has a significant role during gastrulation, during which there are significant areas of 5-HT uptake in the primitive streak. Subsequently, in association with neurulation, 5-HT uptake is seen in the floor plate of the developing neural tube. During neural crest formation and branchial arch formation, 5-HT has been demonstrated to facilitate cell migration and stimulate cell differentiation. During morphogenesis of the craniofacial structures, 5-HT stimulates dental development and may aid in cusp formation. All of the most commonly prescribed antidepressant drugs inhibit serotonin uptake, yet they do not appear to cause major craniofacial malformations in vivo. Given the wide spectrum of effects that 5-HT has during development, it is difficult to understand why these anti-depressants are not major teratogens. Redundancy within the system may allow receptor and uptake pathways to function normally even with lower than normal levels of circulating serotonin. Serotonin-binding proteins, that are expressed in most craniofacial regions at critical times during craniofacial development, may have a buffering capacity that maintains adequate 5-HT tissue concentrations over a wide range of 5-HT serum concentrations. Dental development appears to be particularly sensitive to even small fluctuations in concentrations of 5-HT. Therefore, it may be that children of patients who have received selective serotonergic re-uptake inhibitors (such as Prozac and Zoloft) or the less selective tricyclic anti-depressant drugs (such as Elavil) would be at a higher risk for developmental dental defects such as anodontia and hypodontia. In this review, the evidence supporting a role for 5-HT

  14. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS.

  15. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture

    DTIC Science & Technology

    1989-06-30

    cerebellum; diencephalon; peptides; cAMP; GABA ; glutamate; histamine; I I Ipresynaptic inhibition 19. ABSTRACT (Continue on reverse if necessary and identify...neurotransmitters glutamate and GABA in Purkinje and granule neurons of the rat cerebellum. (ref. 12) 4) First measurements of changes in free calcium...lasting changes in intracellular calcium are induced by these agonists that could be one possible basis for changing neuronal responsiveness. (ref. 7) 5

  16. The lipid habitats of neurotransmitter receptors in brain.

    PubMed

    Borroni, María Virginia; Vallés, Ana Sofía; Barrantes, Francisco J

    2016-11-01

    Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.

  17. ENDOGENOUS ANALGESIA, DEPENDENCE, AND LATENT PAIN SENSITIZATION

    PubMed Central

    Taylor, Bradley K; Corder, Gregory

    2015-01-01

    Endogenous activation of μ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains accelerator), and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization create a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either: a) facilitating endogenous opioid

  18. Time-coded neurotransmitter release at excitatory and inhibitory synapses

    PubMed Central

    Rodrigues, Serafim; Desroches, Mathieu; Krupa, Martin; Cortes, Jesus M.; Sejnowski, Terrence J.; Ali, Afia B.

    2016-01-01

    Communication between neurons at chemical synapses is regulated by hundreds of different proteins that control the release of neurotransmitter that is packaged in vesicles, transported to an active zone, and released when an input spike occurs. Neurotransmitter can also be released asynchronously, that is, after a delay following the spike, or spontaneously in the absence of a stimulus. The mechanisms underlying asynchronous and spontaneous neurotransmitter release remain elusive. Here, we describe a model of the exocytotic cycle of vesicles at excitatory and inhibitory synapses that accounts for all modes of vesicle release as well as short-term synaptic plasticity (STSP). For asynchronous release, the model predicts a delayed inertial protein unbinding associated with the SNARE complex assembly immediately after vesicle priming. Experiments are proposed to test the model’s molecular predictions for differential exocytosis. The simplicity of the model will also facilitate large-scale simulations of neural circuits. PMID:26858411

  19. Ion fluxes and neurotransmitters signaling in neural development.

    PubMed

    Andäng, Michael; Lendahl, Urban

    2008-06-01

    The brain develops and functions in a complex ionic milieu, which is a prerequisite for neurotransmitter function and neuronal signaling. Neurotransmitters and ion fluxes are, however, important not only in neuronal signaling, but also in the control of neural differentiation, and in this review, we highlight the recent advances in our understanding of how the gamma-amino butyric acid (GABA) neurotransmitter and ion fluxes are relevant for cell cycle control and neural differentiation. Conversely, proteins previously associated with ion transport across membranes have been endowed with novel ion-independent functions, and we discuss this in the context of gap junctions in cell adhesion and of the neuron-specific K(+)-Cl(-) cotransporter KCC2 in dendritic spine development. Collectively, these findings provide a richer and more complex picture of when ion fluxes are needed in neural development and when they are not.

  20. Infrared photodissociation spectroscopy of protonated neurotransmitters in the gas phase

    NASA Astrophysics Data System (ADS)

    MacLeod, N. A.; Simons, J. P.

    2007-03-01

    Protonated neurotransmitters have been produced in the gas phase via a novel photochemical scheme: complexes of the species of interest, 1-phenylethylamine, 2-amino-1-phenylethanol and the diastereo-isomers, ephedrine and pseudoephedrine, with a suitable proton donor, phenol (or indole), are produced in a supersonic expansion and ionized by resonant two photon ionization of the donor. Efficient proton transfer generates the protonated neurotransmitters, complexed to a phenoxy radical. Absorption of infrared radiation, and subsequent evaporation of the phenoxy tag, coupled with time of flight mass spectrometry, provides vibrational spectra of the protonated (and also hydrated) complexes for comparison with the results of quantum chemical computation. Comparison with the conformational structures of the neutral neurotransmitters (established previously) reveals the effect of protonation on their structure. The photochemical proton transfer strategy allows spectra to be recorded from individual laser shots and their quality compares favourably with that obtained using electro-spray or matrix assisted laser desorption ion sources.

  1. THE PURINERGIC NEUROTRANSMITTER REVISITED: A SINGLE SUBSTANCE OR MULTIPLE PLAYERS?

    PubMed Central

    Mutafova-Yambolieva, Violeta N.; Durnin, Leonie

    2014-01-01

    The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5′-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD+, ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout. PMID:24887688

  2. Benzodiazepine receptor and neurotransmitter studies in the brain of suicides

    SciTech Connect

    Manchon, M.; Kopp, N.; Rouzioux, J.J.; Lecestre, D.; Deluermoz, S.; Miachon, S.

    1987-12-14

    The characteristics of benzodiazepine binding sites were studied on frozen sections of hippocampus of 7 suicides and 5 controls subjects, using biochemical and autoradiographic techniques. /sup 3/H flunitrazepam was used as ligand, clonazepam and CL 218,872 as displacing agents. Some neurotransmitters or their derivatives were evaluated quantitatively in parallel in the hippocampal tissue by liquid chromatography. The authors observed mainly an increase in the Ki of CL 218,872 subtype I binding sites in suicides, and an increase in % of type I binding sites. Among neurotransmitters, only norepinephrine differed significantly between controls and suicides. 36 references, 3 figures, 1 table.

  3. Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling.

    PubMed

    Al-Wadei, Mohammed H; Banerjee, Jheelam; Al-Wadei, Hussein A N; Schuller, Hildegard M

    2016-01-01

    A small subpopulation of pancreatic cancer cells with characteristics of stem cells drive tumour initiation, progression and metastasis. A better understanding of the regulation of cancer stem cells may lead to more effective cancer prevention and therapy. We have shown that the proliferation and migration of pancreatic cancer cell lines is activated by the nicotinic receptor-mediated release of stress neurotransmitters, responses reversed by γ-aminobutyric acid (GABA). However, the observed cancer inhibiting effects of GABA will only succeed clinically if GABA inhibits pancreatic cancer stem cells (PCSCs) in addition to the more differentiated cancer cells that comprise the majority of cancer tissues and cell lines. Using PCSCs isolated from two pancreatic cancer patients by cell sorting and by spheroid formation assay from pancreatic cancer cell line Panc-1, we tested the hypothesis that nicotine induces the self-renewal of PCSCs. Nicotinic acetylcholine receptors (nAChRs) α3, α4, α5 and α7 were expressed and chronic exposure to nicotine increased the protein expression of these receptors. Immunoassays showed that PCSCs produced the stress neurotransmitters epinephrine and norepinephrine and the inhibitory neurotransmitter GABA. Chronic nicotine significantly increased the production of stress neurotransmitters and sonic hedgehog (SHH) while inducing Gli1 protein and decreasing GABA. GABA treatment inhibited the induction of SHH and Gli1. Spheroid formation and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assays showed significant nicotine-induced increases in self renewal and cell proliferation, responses blocked by GABA. Our data suggest that nicotine increases the SHH-mediated malignant potential of PCSCs and that GABA prevents these effects.

  4. Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone

    PubMed Central

    Poisbeau, Pierrick; Keller, Anne Florence; Aouad, Maya; Kamoun, Nisrine; Groyer, Ghislaine; Schumacher, Michael

    2014-01-01

    A growing number of studies indicate that 3-alpha reduced neurosteroids are remarkable analgesics in various pain states. This is the case for allopregnanolone (AP), one of the most potent endogenous positive allosteric modulators of GABAA receptor function. From the pioneering work of Hans Selye, who described the sedative properties of steroids, synthetic compounds resembling the progesterone metabolite AP have been developed. If some of them have been used as anesthetics, it seems difficult to propose them as a therapeutic option for pain since they display several adverse side effects such as sedation, amnesia and functional tolerance. An alternative strategy, chosen by few laboratories around the world, is aimed at stimulating the local production of 3-alpha reduced neurosteroids in order to limit these well-known side effects. This pharmacological approach has the advantage of targeting specific structures, fully equipped with the necessary biosynthetic enzymatic machinery, where neurosteroids already act as endogenous pain modulators. The various pharmacological trials which attempted to treat pain symptoms by stimulating the production of 3-alpha reduced neurosteroids are reviewed here, as well as novel neurotransmitter systems possibly regulating their endogenous production. PMID:24987335

  5. Pushing the endogenous envelope

    PubMed Central

    Henzy, Jamie E.; Johnson, Welkin E.

    2013-01-01

    The majority of retroviral envelope glycoproteins characterized to date are typical of type I viral fusion proteins, having a receptor binding subunit associated with a fusion subunit. The fusion subunits of lentiviruses and alpha-, beta-, delta- and gammaretroviruses have a very conserved domain organization and conserved features of secondary structure, making them suitable for phylogenetic analyses. Such analyses, along with sequence comparisons, reveal evidence of numerous recombination events in which retroviruses have acquired envelope glycoproteins from heterologous sequences. Thus, the envelope gene (env) can have a history separate from that of the polymerase gene (pol), which is the most commonly used gene in phylogenetic analyses of retroviruses. Focusing on the fusion subunits of the genera listed above, we describe three distinct types of retroviral envelope glycoproteins, which we refer to as gamma-type, avian gamma-type and beta-type. By tracing these types within the ‘fossil record’ provided by endogenous retroviruses, we show that they have surprisingly distinct evolutionary histories and dynamics, with important implications for cross-species transmissions and the generation of novel lineages. These findings validate the utility of env sequences in contributing phylogenetic signal that enlarges our understanding of retrovirus evolution. PMID:23938755

  6. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network 'purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  7. Endogenous Cooperation Network Formation

    NASA Astrophysics Data System (ADS)

    Angus, S.

    This paper employs insights from Complex Systems literature to develop a computational model of endogenous strategic network formation. Artificial Adaptive Agents (AAAs), implemented as finite state automata, play a modified two-player Iterated Prisoner's Dilemma game with an option to further develop the interaction space as part of their strategy. Several insights result from this relatively minor modification: first, I find that network formation is a necessary condition for cooperation to be sustainable but that both the frequency of interaction and the degree to which edge formation impacts agent mixing are both necessary conditions for cooperative networks. Second, within the FSA-modified IPD frame-work, a rich ecology of agents and network topologies is observed, with consequent payoff symmetry and network `purity' seen to be further contributors to robust cooperative networks. Third, the dynamics of the strategic system under network formation show that initially simple dynamics with small interaction length between agents gives way to complex, a-periodic dynamics when interaction lengths are increased by a single step.

  8. Copper and endogenous mediators of estradiol action.

    PubMed

    Fishman, J H; Fishman, J

    1988-04-29

    Divalent copper increases by severalfold specific estradiol binding in rat uterine cytosol at 37 degrees C. Two endogenous substances have now been isolated from the cytosol one of which sharply inhibits the copper effect while the other sharply promotes it. The inhibitor is thermostable, it is adsorbed by dextran coated charcoal and elutes from Sephadex columns with water. The promoter is thermolabile at 60 degrees C, it is not readily adsorbed by the charcoal and elutes from Sephadex columns with KCl. The two substances are thought to be mediators of estradiol action.

  9. Neurotransmitters, psychotropic drugs and microglia: clinical implications for psychiatry.

    PubMed

    Kato, T A; Yamauchi, Y; Horikawa, H; Monji, A; Mizoguchi, Y; Seki, Y; Hayakawa, K; Utsumi, H; Kanba, S

    2013-01-01

    Psychiatric disorders have long and dominantly been regarded to be induced by disturbances of neuronal networks including synapses and neurotransmitters. Thus, the effects of psychotropic drugs such as antipsychotics and antidepressants have been understood to modulate synaptic regulation via receptors and transporters of neurotransmitters such as dopamine and serotonin. Recently, microglia, immunological/inflammatory cells in the brain, have been indicated to have positive links to psychiatric disorders. Positron emission tomography (PET) imaging and postmortem studies have revealed microglial activation in the brain of neuropsychiatric disorders such as schizophrenia, depression and autism. Animal models of neuropsychiatric disorders have revealed the underlying microglial pathologies. In addition, various psychotropic drugs have been suggested to have direct effects on microglia. Until now, the relationship between microglia, neurotransmitters and psychiatric disorders has not been well understood. Therefore, in this review, at first, we summarize recent findings of interaction between microglia and neurotransmitters such as dopamine, serotonin, norepinephrine, acetylcholine and glutamate. Next, we introduce up-to-date knowledge of the effects of psychotropic drugs such as antipsychotics, antidepressants and antiepileptics on microglial modulation. Finally, we propose the possibility that modulating microglia may be a key target in the treatment of various psychiatric disorders. Further investigations and clinical trials should be conducted to clarify this perspective, using animal in vivo studies and imaging studies with human subjects.

  10. A neurotransmitter transporter encoded by the Drosophila inebriated gene

    PubMed Central

    Soehnge, Holly; Huang, Xi; Becker, Marie; Whitley, Penn; Conover, Diana; Stern, Michael

    1996-01-01

    Behavioral and electrophysiological studies on mutants defective in the Drosophila inebriated (ine) gene demonstrated increased excitability of the motor neuron. In this paper, we describe the cloning and sequence analysis of ine. Mutations in ine were localized on cloned DNA by restriction mapping and restriction fragment length polymorphism (RFLP) mapping of ine mutants. DNA from the ine region was then used to isolate an ine cDNA. In situ hybridization of ine transcripts to developing embryos revealed expression of this gene in several cell types, including the posterior hindgut, Malpighian tubules, anal plate, garland cells, and a subset of cells in the central nervous system. The ine cDNA contains an open reading frame of 658 amino acids with a high degree of sequence similarity to members of the Na+/Cl−-dependent neurotransmitter transporter family. Members of this family catalyze the rapid reuptake of neurotransmitters released into the synapse and thereby play key roles in controlling neuronal function. We conclude that ine mutations cause increased excitability of the Drosophila motor neuron by causing the defective reuptake of the substrate neurotransmitter of the ine transporter and thus overstimulation of the motor neuron by this neurotransmitter. From this observation comes a unique opportunity to perform a genetic dissection of the regulation of excitability of the Drosophila motor neuron. PMID:8917579

  11. Ricardo Miledi and the calcium hypothesis of neurotransmitter release.

    PubMed

    Jeng, Jade-Ming

    2002-01-01

    Ricardo Miledi has made significant contributions to our basic understanding of how synapses work. Here I discuss aspects of Miledi's research that helped to establish the requirement of presynaptic calcium for neurotransmitter release, from his earliest scientific studies to his classic experiments in the squid giant synapse.

  12. Bound to be different: neurotransmitter transporters meet their bacterial cousins.

    PubMed

    Henry, L Keith; Meiler, Jens; Blakely, Randy D

    2007-12-01

    The neurotransmitter transporters belonging to the solute carrier 6 (SLC6) family, including the gamma-aminobutyric acid (GAT), norepinephrine (NET), serotonin (SERT) and dopamine (DAT) transporters are extremely important drug targets of great clinical relevance. These Na+, Cl(-)-dependent transporters primarily function following neurotransmission to reset neuronal signaling by transporting neurotransmitter out of the synapse and back into the pre-synaptic neuron. Recent studies have tracked down an elusive binding site for Cl(-) that facilitates neurotransmitter transport using structural differences evident with bacterial family members (e.g., the Aquifex aeolicus leucine transporter LeuT Aa) that lack Cl(-) dependence. Additionally, the crystal structures of antidepressant-bound LeuT Aa reveals a surprising mode of drug interaction that may have relevance for medication development. The study of sequence and structural divergence between LeuT Aa and human SLC6 family transporters can thus inform us as to how and why neurotransmitter transporters evolved a reliance on extracellular Cl(-) to propel the transport cycle; what residue changes and helical rearrangements give rise to recognition of different substrates; and how drugs such as antidepressants, cocaine, and amphetamines halt (or reverse) the transport process.

  13. High dose sapropterin dihydrochloride therapy improves monoamine neurotransmitter turnover in murine phenylketonuria (PKU).

    PubMed

    Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O

    2016-01-01

    Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism.

  14. Peptides and neurotransmitters that affect renin secretion

    NASA Technical Reports Server (NTRS)

    Ganong, W. F.; Porter, J. P.; Bahnson, T. D.; Said, S. I.

    1984-01-01

    Substance P inhibits renin secretion. This polypeptide is a transmitter in primary afferent neurons and is released from the peripheral as well as the central portions of these neurons. It is present in afferent nerves from the kidneys. Neuropeptide Y, which is a cotransmitter with norepinephrine and epinephrine, is found in sympathetic neurons that are closely associated with and presumably innervate the juxtagolmerular cells. Its effect on renin secretion is unknown, but it produces renal vasoconstriction and natriuresis. Vasoactive intestinal polypeptide (VIP) is a cotransmitter with acetylocholine in cholinergic neurons, and this polypeptide stimulates renin secretion. We cannot find any evidence for its occurence in neurons in the kidneys, but various stimuli increase plasma VIP to levels comparable to those produced by doses of exogenous VIP which stimulated renin secretion. Neostigmine increases plasma VIP and plasma renin activity, and the VIP appears to be responsible for the increase in renin secretion, since the increase is not blocked by renal denervation or propranolol. Stimulation of various areas in the brain produces sympathetically mediated increases in plasma renin activity associated with increases in blood pressure. However, there is pharmacological evidence that the renin response can be separated from the blood pressure response. In anaesthetized dogs, drugs that increase central serotonergic discharge increase renin secretion without increasing blood pressure. In rats, activation of sertonergic neurons in the dorsal raphe nucleus increases renin secretion by a pathway that projects from this nucleus to the ventral hypothalamus, and from there to the kidneys via the sympathetic nervous system. The serotonin releasing drug parachloramphetamine also increases plasma VIP, but VIP does not appear to be the primary mediator of the renin response. There is preliminary evidence that the serotonergic neurons in the dorsal raphe nucleus are part of the

  15. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.

    PubMed

    Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet

    2016-01-15

    Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia.

  16. Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer.

    PubMed

    Adhikary, Suraj; Deredge, Daniel J; Nagarajan, Anu; Forrest, Lucy R; Wintrode, Patrick L; Singh, Satinder K

    2017-03-07

    Neurotransmitter:sodium symporters (NSSs) are integral membrane proteins responsible for the sodium-dependent reuptake of small-molecule neurotransmitters from the synaptic cleft. The symporters for the biogenic amines serotonin (SERT), dopamine (DAT), and norepinephrine (NET) are targets of multiple psychoactive agents, and their dysfunction has been implicated in numerous neuropsychiatric ailments. LeuT, a thermostable eubacterial NSS homolog, has been exploited as a model protein for NSS members to canvass the conformational mechanism of transport with a combination of X-ray crystallography, cysteine accessibility, and solution spectroscopy. Despite yielding remarkable insights, these studies have primarily been conducted with protein in the detergent-solubilized state rather than embedded in a membrane mimic. In addition, solution spectroscopy has required site-specific labeling of nonnative cysteines, a labor-intensive process occasionally resulting in diminished transport and/or binding activity. Here, we overcome these limitations by reconstituting unlabeled LeuT in phospholipid bilayer nanodiscs, subjecting them to hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS), and facilitating interpretation of the data with molecular dynamics simulations. The data point to changes of accessibility and dynamics of structural elements previously implicated in the transport mechanism, in particular transmembrane helices (TMs) 1a and 7 as well as extracellular loops (ELs) 2 and 4. The results therefore illuminate the value of this strategy for interrogating the conformational mechanism of the more clinically significant mammalian membrane proteins including SERT and DAT, neither of which tolerates complete removal of endogenous cysteines, and whose activity is heavily influenced by neighboring lipids.

  17. Selective transport of monoamine neurotransmitters by human plasma membrane monoamine transporter and organic cation transporter 3.

    PubMed

    Duan, Haichuan; Wang, Joanne

    2010-12-01

    The plasma membrane monoamine transporter (PMAT) and organic cation transporter 3 (OCT3) are the two most prominent low-affinity, high-capacity (i.e., uptake(2)) transporters for endogenous biogenic amines. Using the Flp-in system, we expressed human PMAT (hPMAT) and human OCT3 (hOCT3) at similar levels in human embryonic kidney 293 cells. Parallel and detailed kinetics analysis revealed distinct and seemingly complementary patterns for the two transporters in transporting monoamine neurotransmitters. hPMAT is highly selective toward serotonin (5-HT) and dopamine, with the rank order of transport efficiency (V(max)/K(m)) being: dopamine, 5-HT ≫ histamine, norepinephrine, epinephrine. The substrate preference of hPMAT toward these amines is substantially driven by large (up to 15-fold) distinctions in its apparent binding affinities (K(m)). In contrast, hOCT3 is less selective than hPMAT toward the monoamines, and the V(max)/K(m) rank order for hOCT3 is: histamine > norepinephrine, epinephrine > dopamine >5-HT. It is noteworthy that hOCT3 demonstrated comparable (≤2-fold difference) K(m) toward all amines, and distinctions in V(max) played an important role in determining its differential transport efficiency toward the monoamines. Real-time reverse transcription-polymerase chain reaction revealed that hPMAT is expressed at much higher levels than hOCT3 in most human brain areas, whereas hOCT3 is selectively and highly expressed in adrenal gland and skeletal muscle. Our results suggest that hOCT3 represents a major uptake(2) transporter for histamine, epinephrine, and norepinephrine. hPMAT, on the other hand, is a major uptake(2) transporter for 5-HT and dopamine and may play a more important role in transporting these two neurotransmitters in the central nervous system.

  18. Mechanism of chloride interaction with neurotransmitter:sodium symporters.

    PubMed

    Zomot, Elia; Bendahan, Annie; Quick, Matthias; Zhao, Yongfang; Javitch, Jonathan A; Kanner, Baruch I

    2007-10-11

    Neurotransmitter:sodium symporters (NSS) have a critical role in regulating neurotransmission and are targets for psychostimulants, anti-depressants and other drugs. Whereas the non-homologous glutamate transporters mediate chloride conductance, in the eukaryotic NSS chloride is transported together with the neurotransmitter. In contrast, transport by the bacterial NSS family members LeuT, Tyt1 and TnaT is chloride independent. The crystal structure of LeuT reveals an occluded binding pocket containing leucine and two sodium ions, and is highly relevant for the neurotransmitter transporters. However, the precise role of chloride in neurotransmitter transport and the location of its binding site remain elusive. Here we show that introduction of a negatively charged amino acid at or near one of the two putative sodium-binding sites of the GABA (gamma-aminobutyric acid) transporter GAT-1 from rat brain (also called SLC6A1) renders both net flux and exchange of GABA largely chloride independent. In contrast to wild-type GAT-1, a marked stimulation of the rate of net flux, but not of exchange, was observed when the internal pH was lowered. Equivalent mutations introduced in the mouse GABA transporter GAT4 (SLC6A11) and the human dopamine transporter DAT (SLC6A3) also result in chloride-independent transport, whereas the reciprocal mutations in LeuT and Tyt1 render substrate binding and/or uptake by these bacterial NSS chloride dependent. Our data indicate that the negative charge, provided either by chloride or by the transporter itself, is required during binding and translocation of the neurotransmitter, probably to counterbalance the charge of the co-transported sodium ions.

  19. Ethanol's effects on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-01-01

    The effect of ethanol on muscarine-stimulated release of (/sup 3/H)NE was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any effect of ethanol on (/sup 3/H)NE uptake, metabolism or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca2+ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced both a stimulation of the release of (/sup 3/H)NE as well as an increase in intracellular free Ca2+. The increase in basal transmitter release and intracellular free Ca2+ occurred independent of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca2+ or transmitter section. These results demonstrate the relationship of the effects of ethanol on cellular free Ca2+ and neurotransmitter release.

  20. Effects of ethanol on neurotransmitter release and intracellular free calcium in PC12 cells

    SciTech Connect

    Rabe, C.S.; Weight, F.F.

    1988-02-01

    The effect of ethanol on muscarine-stimulated release of l-(/sup 3/H)norepinephrine ((/sup 3/H)NE) was studied using the rat pheochromocytoma cell line, PC12. At concentrations of 25 mM and above, ethanol produced a dose-dependent inhibition of muscarine-stimulated release of (/sup 3/H)NE. The inhibition of muscarine-stimulated transmitter release occurred in the absence of any detectable effect of ethanol on (/sup 3/H)NE uptake or on muscarinic binding to the cells. However, ethanol produced an inhibition of muscarine-stimulated elevation of intracellular free Ca++ which corresponded with the inhibition of transmitter release. At concentrations greater than 100 mM, ethanol produced an increase in the basal release of (/sup 3/H)NE. Intracellular free Ca++ also was increased by ethanol concentrations greater than 100 mM. The elevation of basal transmitter release and intracellular free Ca++ by concentrations of ethanol greater than 100 mM occurred independently of the inhibition by ethanol of muscarine-stimulated elevation of intracellular free Ca++ and transmitter secretion. These results suggest that the effects of ethanol on neurotransmitter release are associated with the effects of ethanol on intracellular free Ca++.

  1. Construction of cell-based neurotransmitter fluorescently engineered reporters (CNiFERs) for optical detection of neurotransmitters in vivo

    PubMed Central

    Lacin, Emre; Muller, Arnaud; Fernando, Marian; Kleinfeld, David; Slesinger, Paul A

    2016-01-01

    Cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) provide a new tool for neuroscientists to optically detect the release of neurotransmitters in the brain in vivo. A specific CNiFER is created from a human embryonic kidney cell that stably expresses a specific G protein-coupled receptor, which couples to Gq/11 G proteins, and a FRET-based Ca2+-detector, TN-XXL – activation of the receptor leads to an increase in the FRET signal. Because a CNiFER clone utilizes the native receptor for a particular neurotransmitter (e.g. D2R for dopamine), it has nanomolar sensitivity and a temporal response of seconds. CNiFERs are directly implanted into the brain, enabling them to sense neurotransmitter release with a spatial resolution of less than one hundred micrometers, making them ideal to measure volume transmission in vivo. CNiFERs can also be used to screen other drugs for potential cross-reactivity in vivo. We recently expanded the family of CNiFERs to include GPCRs that couple to Gi/o G proteins. CNiFERs are available for detecting acetylcholine (ACh), dopamine (DA) and norepinephrine (NE). Given that any GPCR can be used to create a novel CNiFER and that there are approximately 800 GPCRs in the human genome, we describe here the general procedure to design, realize, and test any type of CNiFER. PMID:27214050

  2. Effects of delayed treatment with nebracetam on neurotransmitters in brain regions after microsphere embolism in rats

    PubMed Central

    Takeo, Satoshi; Hayashi, Hideki; Miyake, Keiko; Takagi, Kaori; Tadokoro, Mina; Takagi, Norio; Oshikawa, Sayuri

    1997-01-01

    The effects of delayed treatment with nebracetam, a novel nootropic drug, on neurotransmitters of brain regions were examined in rats with microsphere embolism-induced cerebral ischaemia. Cerebral ischaemia was induced by administration of 900 microspheres (48 μm) into the internal carotid artery. The rats with stroke-like symptoms were treated p.o. with 30 mg kg−1 nebracetam twice daily. The levels of acetylcholine, dopamine, noradrenaline, 5-hydroxytryptamine (5-HT) and their metabolites in the cerebral cortex, striatum and hippocampus of animals with microsphere embolism were determined by high performance liquid chromatography (h.p.l.c.) on the 3rd and 7th days after the operation. Although the microsphere embolism induced significant changes in most of the neurotransmitters and some of their metabolites in the brain regions, the delayed treatment with nebracetam partially restored only the hippocampal 5-HT and the striatal dopamine metabolite contents on the 3rd day. The hippocampal in vivo 5-HT synthesis, but not the striatal dopamine synthesis, was attenuated in rats with microsphere embolism on the 3rd day, but was restored by treatment with nebracetam. In vivo striatal dopamine turnover rate of the rats with microsphere embolism was inhibited on the 3rd day irrespective of treatment with nebracetam. The present study provides evidence for a possible action of nebracetam on 5-HT metabolism in the ischaemic brain. PMID:9179389

  3. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters.

    PubMed

    Singh, Satinder K; Pal, Aritra

    2015-01-01

    Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na(+)/Cl(-)-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition.

  4. Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters

    PubMed Central

    Singh, Satinder K.; Pal, Aritra

    2016-01-01

    Ion-coupled secondary transport is utilized by multiple integral membrane proteins as a means of achieving the thermodynamically unfavorable translocation of solute molecules across the lipid bilayer. The chemical nature of these molecules is diverse and includes sugars, amino acids, neurotransmitters, and other ions. LeuT is a sodium-coupled, nonpolar amino acid symporter and eubacterial member of the solute carrier 6 (SLC6) family of Na+/Cl−-dependent neurotransmitter transporters. Eukaryotic counterparts encompass the clinically and pharmacologically significant transporters for γ-aminobutyric acid (GABA), glycine, serotonin (5-hydroxytryptamine, 5-HT), dopamine (DA), and norepinephrine (NE). Since the crystal structure of LeuT was first solved in 2005, subsequent crystallographic, binding, flux, and spectroscopic studies, complemented with homology modeling and molecular dynamic simulations, have allowed this protein to emerge as a remarkable mechanistic paradigm for both the SLC6 class as well as several other sequence-unrelated SLCs whose members possess astonishingly similar architectures. Despite yielding groundbreaking conceptual advances, this vast treasure trove of data has also been the source of contentious hypotheses. This chapter will present a historical scientific overview of SLC6s; recount how the initial and subsequent LeuT structures were solved, describing the insights they each provided; detail the accompanying functional techniques, emphasizing how they either supported or refuted the static crystallographic data; and assemble these individual findings into a mechanism of transport and inhibition. PMID:25950965

  5. Transition metal ion FRET uncovers K+ regulation of a neurotransmitter/sodium symporter

    PubMed Central

    Billesbølle, Christian B.; Mortensen, Jonas S.; Sohail, Azmat; Schmidt, Solveig G.; Shi, Lei; Sitte, Harald H.; Gether, Ulrik; Loland, Claus J.

    2016-01-01

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na+-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K+ inhibits Na+-dependent binding of substrate to LeuT, promotes an outward-closed/inward-facing conformation of the transporter and increases uptake. To assess K+-induced conformational dynamics we measured fluorescence resonance energy transfer (FRET) between fluorescein site-specifically attached to inserted cysteines and Ni2+ bound to engineered di-histidine motifs (transition metal ion FRET). The measurements supported K+-induced closure of the transporter to the outside, which was counteracted by Na+ and substrate. Promoting an outward-open conformation of LeuT by mutation abolished the K+-effect. The K+-effect depended on an intact Na1 site and mutating the Na2 site potentiated K+ binding by facilitating transition to the inward-facing state. The data reveal an unrecognized ability of K+ to regulate the LeuT transport cycle. PMID:27678200

  6. Transition metal ion FRET uncovers K(+) regulation of a neurotransmitter/sodium symporter.

    PubMed

    Billesbølle, Christian B; Mortensen, Jonas S; Sohail, Azmat; Schmidt, Solveig G; Shi, Lei; Sitte, Harald H; Gether, Ulrik; Loland, Claus J

    2016-09-28

    Neurotransmitter/sodium symporters (NSSs) are responsible for Na(+)-dependent reuptake of neurotransmitters and represent key targets for antidepressants and psychostimulants. LeuT, a prokaryotic NSS protein, constitutes a primary structural model for these transporters. Here we show that K(+) inhibits Na(+)-dependent binding of substrate to LeuT, promotes an outward-closed/inward-facing conformation of the transporter and increases uptake. To assess K(+)-induced conformational dynamics we measured fluorescence resonance energy transfer (FRET) between fluorescein site-specifically attached to inserted cysteines and Ni(2+) bound to engineered di-histidine motifs (transition metal ion FRET). The measurements supported K(+)-induced closure of the transporter to the outside, which was counteracted by Na(+) and substrate. Promoting an outward-open conformation of LeuT by mutation abolished the K(+)-effect. The K(+)-effect depended on an intact Na1 site and mutating the Na2 site potentiated K(+) binding by facilitating transition to the inward-facing state. The data reveal an unrecognized ability of K(+) to regulate the LeuT transport cycle.

  7. Revisiting tolerance from the endogenous morphine perspective.

    PubMed

    Stefano, George B; Kream, Richard M; Esch, Tobias

    2009-09-01

    Tolerance represents a dynamic mechanism that can be used to temper various regulatory processes regardless of whether they mediate excitation or inhibition. Tolerance operationally directs state-dependent attenuation of the action of endogenous and exogenous morphine. For example, tolerance ensures that immuno-inhibition induced by morphine does not compromise a requisite functional system over an extended period of time. In the nervous system, tolerance to inhibitory action insures that excitatory tone is resumed. Thus, desensitization sets in and allows various essential processes to be operational once again. Clearly, the temporal rebound of diverse immune and nervous processes involved with opiate actions provides a self-contained operational mechanism to ensure survival of the organism. Furthermore, love and/or pleasure, and satiety, are complex neurobiological phenomena linked to limbic brain reward circuitry. These processes are critically dependent on oxytocin, vasopressin, dopamine, endogenous morphine and serotoninergic signaling. Naturally rewarding and/or pleasurable activities are usually governed by beneficial biological behaviors like eating, sex, and reproduction. It is our contention that critically important tolerance mechanisms extend to behaviors mediated by CNS reward systems. In other words, we become satisfied with sex, food, pleasure for the moment and disinterest creeps in until the "urges" return.

  8. Inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release by the putative dopamine autoreceptor agonist, B-HT 920.

    PubMed

    Schmidt, C J; Lobur, A; Lovenberg, W

    1986-12-01

    The inhibition of K+-stimulated [3H]dopamine and [14C]acetylcholine release from preloaded rat striatal slices was used to examine the presynaptic selectivity of the putative dopamine autoreceptor agonist, B-HT 920. In the micromolar range, B-HT 920 caused a concentration-dependent inhibition of the release of both labeled neurotransmitters as evoked by 20 mM K+. The effect of B-HT 920 on both [3H]dopamine and [14C]acetylcholine release was completely blocked by (+) butaclamol but not by (-) butaclamol. Sulpiride, a selective D2 antagonist, similarly blocked the inhibitory effect of B-HT 920 on the release of both labeled neurotransmitters indicating both responses were mediated by D2 receptors. (+) Butaclamol alone elevated stimulated [3H]dopamine release suggesting a significant amount of autoreceptor occupancy by endogenously released dopamine. Experiments with tolazoline and the alpha 2 agonist, B-HT 933, did not suggest any involvement of alpha-adrenoceptor activity in the inhibitory effects of B-HT 920 on the release of either transmitter. Inhibition of release was a selective effect of B-HT 920 as the drug was without effect on the K+-stimulated release of [3H]serotonin. The results indicate that in vitro B-HT 920 is active of both pre- and postsynaptic dopamine receptors in contrast to the pattern of effects observed after its in vivo administration.

  9. Endogenous Antibodies for Tumor Detection

    PubMed Central

    Rich, Barrie S.; Honeyman, Joshua N.; Darcy, David G.; Smith, Peter T.; Williams, Andrew R.; Lim, Irene Isabel P.; Johnson, Linda K.; Gönen, Mithat; Simon, Joel S.; LaQuaglia, Michael P.; Simon, Sanford M.

    2014-01-01

    The study of cancer immunology has provided diagnostic and therapeutic instruments through serum autoantibody biomarkers and exogenous monoclonal antibodies. While some endogenous antibodies are found within or surrounding transformed tissue, the extent to which this exists has not been entirely characterized. We find that in transgenic and xenograft mouse models of cancer, endogenous gamma immunoglobulin (IgG) is present at higher concentration in malignantly transformed organs compared to non-transformed organs in the same mouse or organs of cognate wild-type mice. The enrichment of endogenous antibodies within the malignant tissue provides a potential means of identifying and tracking malignant cells in vivo as they mutate and diversify. Exploiting these antibodies for diagnostic and therapeutic purposes is possible through the use of agents that bind endogenous antibodies. PMID:24875800

  10. Dynamic Control of Neurotransmitter Release by Presynaptic Potential

    PubMed Central

    Zbili, Mickael; Rama, Sylvain; Debanne, Dominique

    2016-01-01

    Action potentials (APs) in the mammalian brain are thought to represent the smallest unit of information transmitted by neurons to their postsynaptic targets. According to this view, neuronal signaling is all-or-none or digital. Increasing evidence suggests, however, that subthreshold changes in presynaptic membrane potential before triggering the spike also determines spike-evoked release of neurotransmitter. We discuss here how analog changes in presynaptic voltage may regulate spike-evoked release of neurotransmitter through the modulation of biophysical state of voltage-gated potassium, calcium and sodium channels in the presynaptic compartment. The contribution of this regulation has been greatly underestimated and we discuss the impact for information processing in neuronal circuits. PMID:27994539

  11. Imaging Mass Spectrometric Analysis of Neurotransmitters: A Review

    PubMed Central

    Romero-Perez, Gustavo A.; Takei, Shiro; Yao, Ikuko

    2014-01-01

    Imaging mass spectrometry (IMS) is a toolbox of versatile techniques that enable us to investigate analytes in samples at molecular level. In recent years, IMS, and especially matrix-assisted laser desorption/ionisation (MALDI), has been used to visualise a wide range of metabolites in biological samples. Simultaneous visualisation of the spatial distribution of metabolites in a single sample with little tissue disruption can be considered as one important advantage of MALDI over other techniques. However, several technical hurdles including low concentrations and rapid degradation rates of small molecule metabolites, matrix interference of signals and poor ionisation, need to be addressed before MALDI can be considered as a reliable tool for the analysis of metabolites such as neurotransmitters in brain tissues from different sources including humans. In the present review we will briefly describe current MALDI IMS techniques used to study neurotransmitters and discuss their current status, challenges, as well as future prospects. PMID:26819893

  12. Modulation of neurotransmitter release via histamine H3 heteroreceptors.

    PubMed

    Schlicker, E; Malinowska, B; Kathmann, M; Göthert, M

    1994-01-01

    Presynaptic H3 receptors occur on histaminergic neurones of the CNS (autoreceptors) and on non-histaminergic neurones of the central and autonomic nervous system (heteroreceptors). H3 heteroreceptors, most probably located on the postganglionic sympathetic nerve fibres innervating the resistance vessels and the heart, have been identified in the model of the pithed rat. Furthermore, we could show in superfusion experiments that H3 heteroreceptors also occur on the sympathetic neurones supplying the human saphenous vein and the vasculature of the pig retina and on the serotoninergic, dopaminergic and noradrenergic neurones in the brain of various mammalian species, including man. The effects of three recently described H3 receptor ligands were studied in superfused mouse brain cortex slices. The potency of the novel H3 receptor agonist imetit exceeded that of R-(-)-alpha-methylhistamine (the reference H3 receptor agonist) by one log unit and that of histamine by almost two log units. Clobenpropit was shown to be a competitive H3 receptor antagonist, exhibiting a pA2 as high as 9.6 (exceeding the pA2 of the reference H3 receptor antagonist thioperamide by one log unit). The irreversible antagonism of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was also studied. Interactions of the H3 heteroreceptor with the dopamine autoreceptor in mouse striatal slices and the alpha 2-autoreceptor in mouse brain cortex slices could be demonstrated. Activation of alpha 2-autoreceptors decreases the H3 receptor-mediated effect. Blockade of alpha 2-autoreceptors increases the H3 receptor-mediated effect only if the alpha 2-autoreceptors are simultaneously activated by endogenous noradrenaline. The H3 receptor-mediated inhibition of noradrenaline release in mouse brain cortex slices was attenuated by the K+ channel blocker tetraethylammonium but this attenuation was abolished by reduction of the Ca2+ concentration in the medium (to compensate for the facilitatory effect of

  13. Alterations in Brain Monoamine Neurotransmitter Release at High Pressure

    DTIC Science & Technology

    1989-01-01

    exposure results from a general imbalance of encephalopathies. Parkinson’s Syndrome, MPTP the three monoamine neurotransmitter systems toxicity . or...the [3 H]monoamines by Dopamine release, on the other hand, was reduced synaptosomes isolated from the CNS. 5-A n 4 A Pn5 p<.05 0.05 LI * 4- U) 4...Lffect of’ pressure of 3.4-miethylenledioxy-miethamiiphetamnine ( MDMA ) and re- on the release of radioaetive glycine and (IABA from spinal lated

  14. Profiling neurotransmitter receptor expression in the Ambystoma mexicanum brain.

    PubMed

    Reyes-Ruiz, Jorge Mauricio; Limon, Agenor; Korn, Matthew J; Nakamura, Paul A; Shirkey, Nicole J; Wong, Jamie K; Miledi, Ricardo

    2013-03-22

    Ability to regenerate limbs and central nervous system (CNS) is unique to few vertebrates, most notably the axolotl (Ambystoma sp.). However, despite the fact the neurotransmitter receptors are involved in axonal regeneration, little is known regarding its expression profile. In this project, RT-PCR and qPCR were performed to gain insight into the neurotransmitter receptors present in Ambystoma. Its functional ability was studied by expressing axolotl receptors in Xenopus laevis oocytes by either injection of mRNA or by direct microtransplantation of brain membranes. Oocytes injected with axolotl mRNA expressed ionotropic receptors activated by GABA, aspartate+glycine and kainate, as well as metabotropic receptors activated by acetylcholine and glutamate. Interestingly, we did not see responses following the application of serotonin. Membranes from the axolotl brain were efficiently microtransplanted into Xenopus oocytes and two types of native GABA receptors that differed in the temporal course of their responses and affinities to GABA were observed. Results of this study are necessary for further characterization of axolotl neurotransmitter receptors and may be useful for guiding experiments aimed at understanding activity-dependant limb and CNS regeneration.

  15. Electrochemical techniques for subsecond neurotransmitter detection in live rodents.

    PubMed

    Hascup, Kevin N; Hascup, Erin R

    2014-08-01

    Alterations in neurotransmission have been implicated in numerous neurodegenerative and neuropsychiatric disorders, including Alzheimer disease, Parkinson disease, epilepsy, and schizophrenia. Unfortunately, few techniques support the measurement of real-time changes in neurotransmitter levels over multiple days, as is essential for ethologic and pharmacodynamic testing. Microdialysis is commonly used for these research paradigms, but its poor temporal and spatial resolution make this technique inadequate for measuring the rapid dynamics (milliseconds to seconds) of fast signaling neurotransmitters, such as glutamate and acetylcholine. Enzymatic microelectrode arrays (biosensors) coupled with electrochemical recording techniques have demonstrated fast temporal resolution (less than 1 s), excellent spatial resolution (micron-scale), low detection limits (≤200 nM), and minimal damage (50 to 100 μm) to surrounding brain tissue. Here we discuss the benefits, methods, and animal welfare considerations of using platinum microelectrodes on a ceramic substrate for enzyme-based electrochemical recording techniques for real-time in vivo neurotransmitter recordings in both anesthetized and awake, freely moving rodents.

  16. Amino acid neurotransmitters in the retina: a functional overview.

    PubMed

    Wu, S M; Maple, B R

    1998-05-01

    Physiological and pharmacological mechanisms of glutamatergic, GABAergic and glycinergic synapses in the tiger salamander retina were studied. We used immunocytochemical and autoradiographic methods to study localizations of these neurotransmitters and their uptake transporters; and electrophysiological methods (intracellular, extracellular and whole cell patch electrode recordings) to study the light responses, miniature postsynaptic currents and neurotransmitter-induced postsynaptic currents in various retinal neurons. Our results are consistent with the following scheme: Glutamate is used by the photoreceptor and bipolar cell output synapses and the release of glutamate is largely mediated by calcium-dependent vesicular processes. The postsynaptic glutamate receptors in DBCs are L-AP4 receptors, in HBCs, HCs and ganglion cells are the kainate/AMPA and NMDA receptors. Subpopulations of HCs make GABAergic synapses on cones and gate chloride condunctance through GABAA receptors. GABAergic HCs do not make feedforward synapses on bipolar cell dendrites and the neurotransmitter identity of the HCs making feedforward synapses is unknown. Subpopulations of amacrine cells make GABAergic synapses on bipolar cell synaptic terminals, other amacrine cells and ganglion cells and GABA gates chloride conductances in theses cells. Glycinergic amacrine cells make synapses on bipolar cell synaptic terminals, other amacrine cells and ganglion cells and glycine opens postsynaptic chloride channels. Glycinergic interplexiform cells make synapses on bipolar cells in the outer retina and glycine released from these cells open chloride channels in bipolar cell dendrites.

  17. Neurotransmitters act as paracrine signals to regulate insulin secretion from the human pancreatic islet.

    PubMed

    Rodriguez-Diaz, Rayner; Menegaz, Danusa; Caicedo, Alejandro

    2014-08-15

    In this symposium review we discuss the role of neurotransmitters as paracrine signals that regulate pancreatic islet function. A large number of neurotransmitters and their receptors has been identified in the islet, but relatively little is known about their involvement in islet biology. Interestingly, neurotransmitters initially thought to be present in autonomic axons innervating the islet are also present in endocrine cells of the human islet. These neurotransmitters can thus be released as paracrine signals to help control hormone release. Here we propose that the role of neurotransmitters may extend beyond controlling endocrine cell function to work as signals modulating vascular flow and immune responses within the islet.

  18. Expression of Caenorhabditis elegans neurotransmitter receptors and ion channels in Xenopus oocytes

    PubMed Central

    Martínez-Torres, Ataúlfo; Miledi, Ricardo

    2006-01-01

    Injection of Caenorhabditis elegans polyA RNA into Xenopus laevis oocytes led to the expression of neurotransmitter receptors that generated some unique responses, including ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors as well as receptors that coupled to G proteins, such as those to octopamine, norepinephrine, and angiotensin, which activated the oocyte’s own phosphatidylinositol system and calcium-gated chloride channels. The oocytes also expressed chloride-conducting glutamate receptors, muscarinic acetylcholine receptors, and voltage-operated calcium channels. Unexpectedly, serotonin (5-hydroxytryptamine), dopamine, GABA, and kainate did not generate ionic currents, suggesting that the corresponding receptors were not expressed or were not functional in the oocytes. The use of X. laevis oocytes for expressing worm RNA demonstrates that there are many molecular components whose role remains to be clarified in the nematode. Among them are the nature of the endogenous agonists for the octopamine and angiotensin receptors and the subunits that compose the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and the norepinephrine receptors that couple to the phosphoinositide cascade. PMID:16549772

  19. Endogenous rhythms influence interpersonal synchrony.

    PubMed

    Zamm, Anna; Wellman, Chelsea; Palmer, Caroline

    2016-05-01

    Interpersonal synchrony, the temporal coordination of actions between individuals, is fundamental to social behaviors from conversational speech to dance and music-making. Animal models indicate constraints on synchrony that arise from endogenous rhythms: Intrinsic periodic behaviors or processes that continue in the absence of change in external stimulus conditions. We report evidence for a direct causal link between endogenous rhythms and interpersonal synchrony in a music performance task, which places high demands on temporal coordination. We first establish that endogenous rhythms, measured by spontaneous rates of individual performance, are stable within individuals across stimulus materials, limb movements, and time points. We then test a causal link between endogenous rhythms and interpersonal synchrony by pairing each musician with a partner who is either matched or mismatched in spontaneous rate and by measuring their joint behavior up to 1 year later. Partners performed melodies together, using either the same or different hands. Partners who were matched for spontaneous rate showed greater interpersonal synchrony in joint performance than mismatched partners, regardless of hand used. Endogenous rhythms offer potential to predict optimal group membership in joint behaviors that require temporal coordination.

  20. Alterations in endogenous opioid functional measures in chronic back pain.

    PubMed

    Martikainen, Ilkka K; Peciña, Marta; Love, Tiffany M; Nuechterlein, Emily B; Cummiford, Chelsea M; Green, Carmen R; Harris, Richard E; Stohler, Christian S; Zubieta, Jon-Kar

    2013-09-11

    The absence of consistent end organ abnormalities in many chronic pain syndromes has led to a search for maladaptive CNS mechanisms that may explain their clinical presentations and course. Here, we addressed the role of brain regional μ-opioid receptor-mediated neurotransmission, one of the best recognized mechanisms of pain regulation, in chronic back pain in human subjects. We compared μ-opioid receptor availability in vivo at baseline, during pain expectation, and with moderate levels of sustained pain in 16 patients with chronic nonspecific back pain (CNBP) and in 16 age- and gender-matched healthy control subjects, using the μ-opioid receptor-selective radioligand [(11)C]carfentanil and positron emission tomography. We found that CNBP patients showed baseline increases in thalamic μ-opioid receptor availability, contrary to a previously studied sample of patients diagnosed with fibromyalgia. During both pain expectation and sustained pain challenges, CNBP patients showed regional reductions in the capacity to activate this neurotransmitter system compared with their control sample, further associated with clinical pain and affective state ratings. Our results demonstrate heterogeneity in endogenous opioid system functional measures across pain conditions, and alterations in both receptor availability and endogenous opioid function in CNBP that are relevant to the clinical presentation of these patients and the effects of opioid analgesics on μ-opioid receptors.

  1. Borderline personality disorder: a dysregulation of the endogenous opioid system?

    PubMed

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-04-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids constitute part of the underlying pathophysiology of BPD. The alarming symptoms and self-destructive behaviors of the affected patients may be explained by uncontrollable and unconscious attempts to stimulate their endogenous opioid system (EOS) and the dopaminergic reward system, regardless of the possible harmful consequences. Neurobiological findings that support this hypothesis are reviewed: Frantic efforts to avoid abandonment, frequent and risky sexual contacts, and attention-seeking behavior may be explained by attempts to make use of the rewarding effects of human attachment mediated by the EOS. Anhedonia and feelings of emptiness may be an expression of reduced activity of the EOS. Patients with BPD tend to abuse substances that target mu-opioid receptors. Self-injury, food restriction, aggressive behavior, and sensation seeking may be interpreted as desperate attempts to artificially set the body to survival mode in order to mobilize the last reserves of the EOS. BPD-associated symptoms, such as substance abuse, anorexia, self-injury, depersonalization, and sexual overstimulation, can be treated successfully with opioid receptor antagonists. An understanding of the neurobiology of BPD may help in developing new treatments for patients with this severe disorder.

  2. Endogenous prostaglandin endoperoxides and prostacyclin modulate the thrombolytic activity of tissue plasminogen activator. Effects of simultaneous inhibition of thromboxane A2 synthase and blockade of thromboxane A2/prostaglandin H2 receptors in a canine model of coronary thrombosis.

    PubMed Central

    Golino, P; Rosolowsky, M; Yao, S K; McNatt, J; De Clerck, F; Buja, L M; Willerson, J T

    1990-01-01

    We tested the hypothesis that simultaneous inhibition of TxA2 synthase and blockade of TxA2/PHG2 receptors is more effective in enhancing thrombolysis and preventing reocclusion after discontinuation of tissue plasminogen activator (t-PA) than either intervention alone. Coronary thrombosis was induced in 35 dogs by placing a copper coil into the left anterior descending coronary artery. Coronary flow was measured with a Doppler flow probe. 30 min after thrombus formation, the animals received saline (controls, n = 10); SQ 29548 (0.4 mg/kg bolus + 0.4 mg/kg per h infusion), a TxA2/PGH2 receptor antagonist (n = 8); dazoxiben (5 mg/kg bolus + 5 mg/kg per h infusion), a TxA2 synthase inhibitor (n = 9); or R 68070 (5 mg/kg bolus + 5 mg/kg per h infusion), a drug that blocks TxA2/PGH2 receptors and inhibits TxA2 synthase (n = 8). Then, all dogs received heparin (200 U/kg) and a bolus of t-PA (80 micrograms/kg) followed by a continuous infusion (8 micrograms/kg per min) for up to 90 min or until reperfusion was achieved. The time to thrombolysis did not change significantly in SQ 29548-treated dogs as compared with controls (42 +/- 5 vs. 56 +/- 7 min, respectively, P = NS), but it was significantly shortened by R 68070 and dazoxiben (11 +/- 2 and 25 +/- 6 min, respectively, P less than 0.001 vs. controls and SQ 29548-treated dogs). R 68070 administration resulted in a lysis time significantly shorter than that observed in the dazoxiben-treated group (P less than 0.01). Reocclusion was observed in eight of eight control dogs, five of seven SQ 29548-treated dogs, seven of nine dazoxiben-treated dogs, and zero of eight R 68070-treated animals (P less than 0.001). TxB2 and 6-keto-PGF1 alpha, measured in blood samples obtained from the coronary artery distal to the thrombus, were significantly increased at reperfusion and at reocclusion in control animals and in dogs receiving SQ 29548. R 68070 and dazoxiben prevented the increase in plasma TxB2 levels, whereas 6-keto-PGF1

  3. Nematode endogenous small RNA pathways

    PubMed Central

    Hoogstrate, Suzanne W; Volkers, Rita JM; Sterken, Mark G; Kammenga, Jan E; Snoek, L Basten

    2014-01-01

    The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs. PMID:25340013

  4. Real-time monitoring of inhibitory effects on glutamate-induced neurotransmitter release using a potassium ion image sensor

    NASA Astrophysics Data System (ADS)

    Kono, Akiteru; Sakurai, Takashi; Hattori, Toshiaki; Okumura, Koichi; Ishida, Makoto; Sawada, Kazuaki

    2015-02-01

    To directly image the release of neurotransmitters from neurons, we combined a substance-selective layer with a 128 × 128-pixel ion image sensor based on CMOS technology. Using the substance-specific image sensors, we studied the dynamics of potassium ion ( K+) release from neurons and examined the effect of ouabain on K+ release. K+ transients were significantly inhibited by ouabain. The K+ image sensor used in this study demonstrated the dynamic analysis of ligand-operated signal release and the pharmacological assessment of secretagogues without requiring cell labeling.

  5. Quantitative analysis of endogenous compounds.

    PubMed

    Thakare, Rhishikesh; Chhonker, Yashpal S; Gautam, Nagsen; Alamoudi, Jawaher Abdullah; Alnouti, Yazen

    2016-09-05

    Accurate quantitative analysis of endogenous analytes is essential for several clinical and non-clinical applications. LC-MS/MS is the technique of choice for quantitative analyses. Absolute quantification by LC/MS requires preparing standard curves in the same matrix as the study samples so that the matrix effect and the extraction efficiency for analytes are the same in both the standard and study samples. However, by definition, analyte-free biological matrices do not exist for endogenous compounds. To address the lack of blank matrices for the quantification of endogenous compounds by LC-MS/MS, four approaches are used including the standard addition, the background subtraction, the surrogate matrix, and the surrogate analyte methods. This review article presents an overview these approaches, cite and summarize their applications, and compare their advantages and disadvantages. In addition, we discuss in details, validation requirements and compatibility with FDA guidelines to ensure method reliability in quantifying endogenous compounds. The standard addition, background subtraction, and the surrogate analyte approaches allow the use of the same matrix for the calibration curve as the one to be analyzed in the test samples. However, in the surrogate matrix approach, various matrices such as artificial, stripped, and neat matrices are used as surrogate matrices for the actual matrix of study samples. For the surrogate analyte approach, it is required to demonstrate similarity in matrix effect and recovery between surrogate and authentic endogenous analytes. Similarly, for the surrogate matrix approach, it is required to demonstrate similar matrix effect and extraction recovery in both the surrogate and original matrices. All these methods represent indirect approaches to quantify endogenous compounds and regardless of what approach is followed, it has to be shown that none of the validation criteria have been compromised due to the indirect analyses.

  6. Endogenous conversion of ω-6 to ω-3 polyunsaturated fatty acids in fat-1 mice attenuated intestinal polyposis by either inhibiting COX-2/β-catenin signaling or activating 15-PGDH/IL-18.

    PubMed

    Han, Young-Min; Park, Jong-Min; Cha, Ji-Young; Jeong, Migyeong; Go, Eun-Jin; Hahm, Ki Baik

    2016-05-01

    Omega-3 polyunsaturated fatty acids (ω-3PUFAs) have inhibitory effects in various preclinical cancer models, but their effects in intestinal polyposis have never been examined. As attempts have been made to use nutritional intervention to counteract colon cancer development, in this study we evaluated the effects of ω-3 PUFAs on intestinal polyposis in the Apc(Min/+) mouse model. The experimental groups included wild-type C56BL/6 mice, Apc(Min/+) mice, fat-1 transgenic mice expressing an n-3 desaturase to enable ω-3 PUFA synthesis, and Apc(Min/+) × fat-1 double-transgenic mice; all mice were 20 weeks of age. Small intestines were collected for gross and pathologic evaluation, including assessment of polyp number and size, followed by immunohistochemical staining and Western blotting. After administration of various concentrations of ω-3 PUFAs, PUFA levels were measured in small intestine tissue by GC/MS/MS analysis to compare with PUFA synthesis of between C57BL6 and fat-1mice. As a result, ω-3 PUFAs significantly attenuated Apc mutation-induced intestinal polyposis accompanied with significant inhibition of Wnt/β-catenin signaling, COX-2 and PGE2, but induced significant levels of 15-PGDH. In addition, significant induction of the inflammasome-related substrates as IL-1β and IL-18 and activation of caspase-1 was observed in Apc(Min/+) × fat-1 mice. Administration of at least 3 g/60 kg ω-3 PUFAs was equivalent to ω-3 PUFAs produced in fat-1 mice and resulted in significant increase in the expression of IL-1β, caspase-3 and IL-18, as seen in Apc(Min/+) × fat-1 mice. We conclude that ω-3PUFAs can prevent intestinal polyp formation by inhibition of Wnt/β-catenin signaling, but increased levels of 15-PGDH and IL-18.

  7. Stress, neurotransmitters, corticosterone and body-brain integration.

    PubMed

    Mora, Francisco; Segovia, Gregorio; Del Arco, Alberto; de Blas, Marta; Garrido, Pedro

    2012-10-02

    Stress can be defined as a brain-body reaction towards stimuli arising from the environment or from internal cues that are interpreted as a disruption of homeostasis. The organization of the response to a stressful situation involves not only the activity of different types of neurotransmitter systems in several areas of the limbic system, but also the response of neurons in these areas to several other chemicals and hormones, chiefly glucocorticoids, released from peripheral organs and glands. Thus, stress is probably the process through which body-brain integration plays a major role. Here we review first the responses to an acute stress in terms of neurotransmitters such as dopamine, acetylcholine, glutamate and GABA in areas of the brain involved in the regulation of stress responses. These areas include the prefrontal cortex, amygdala, hippocampus and nucleus accumbens and the interaction among those areas. Then, we consider the role of glucocorticoids and review some recent data about the interaction of these steroids with several neurotransmitters in those same areas of the brain. Also the actions of other substances (neuromodulators) released from peripheral organs such as the pancreas, liver or gonads (insulin, IGF-1, estrogens) are reviewed. The role of an environmental enrichment on these same responses is also discussed. Finally a section is devoted to put into perspective all these environmental-brain-body-brain interactions during stress and their consequences on aging. It is concluded that the integrative perspective framed in this review is relevant for better understanding of how the organism responds to stressful challenges and how this can be modified through different environmental conditions during the process of aging. This article is part of a Special Issue entitled: Brain Integration.

  8. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    PubMed Central

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  9. Neurotransmitters in the Gas Phase: La-Mb Studies

    NASA Astrophysics Data System (ADS)

    Cabezas, C.; Mata, S.; López, J. C.; Alonso, J. L.

    2011-06-01

    LA-MB-FTMW spectroscopy combines laser ablation with Fourier transform microwave spectroscopy in supersonic jets overcoming the problems of thermal decomposition associated with conventional heating methods. We present here the results on LA-MB-FTMW studies of some neurotransmitters. Six conformers of dopamine, four of adrenaline, five of noradrenaline and three conformers of serotonin have been characterized in the gas phase. The rotational and nuclear quadrupole coupling constants extracted from the analysis of the rotational spectrum are directly compared with those predicted by ab initio methods to achieve the conclusive identification of different conformers and the experimental characterization of the intramolecular forces at play which control conformational preferences.

  10. Name that neurotransmitter: using music to teach psychopharmacology concepts.

    PubMed

    Hermanns, Melinda; Lilly, Mary LuAnne; Wilson, Kathy; Russell, Nathan Andrew

    2012-09-01

    The purpose of this article is to discuss the use of music (i.e., two original songs, "Neurotransmitter Twitter" and "Parkinson's Shuffle") to teach aspects of psychopharmacology to students in the course Psychiatric/Mental Health Nursing. Songs were incorporated in both the clinical and classroom settings. This innovative teaching method allowed students the opportunity to revisit the information through multiple exposures of the content for reinforcement and enhancement of student learning in a fun, creative approach. Brain-based research will be discussed, along with the process of development.

  11. Carbon Nanotube-based microelectrodes for enhanced detection of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Jacobs, Christopher B.

    Fast-scan cyclic voltammetry (FSCV) is one of the common techniques used for rapid measurement of neurotransmitters in vivo. Carbon-fiber microelectrodes (CFMEs) are typically used for neurotransmitter detection because of sub-second measurement capabilities, ability to measure changes in neurotransmitter concentration during neurotransmission, and the small size electrode diameter, which limits the amount of damage caused to tissue. Cylinder CFMEs, typically 50 -- 100 microm long, are commonly used for in vivo experiments because the electrode sensitivity is directly related to the electrode surface area. However the length of the electrode can limit the spatial resolution of neurotransmitter detection, which can restrict experiments in Drosophila and other small model systems. In addition, the electrode sensitivity toward dopamine and serotonin detection drops significantly for measurements at rates faster than 10 Hz, limiting the temporal resolution of CFMEs. While the use of FSCV at carbon-fiber microelectrodes has led to substantial strides in our understanding of neurotransmission, techniques that expand the capabilities of CFMEs are crucial to fully maximize the potential uses of FSCV. This dissertation introduces new methods to integrate carbon nanotubes (CNT) into microelectrodes and discusses the electrochemical enhancements of these CNT-microelectrodes. The electrodes are specifically designed with simple fabrication procedures so that highly specialized equipment is not necessary, and they utilize commercially available materials so that the electrodes could be easily integrated into existing systems. The electrochemical properties of CNT modified CFMEs are characterized using FSCV and the effect of CNT functionalization on these properties is explored in Chapter 2. For example, CFME modification using carboxylic acid functionalized CNTs yield about a 6-fold increase in dopamine oxidation current, but modification with octadecylamine CNTs results in a

  12. Beta-amyloid peptides undergo regulated co-secretion with neuropeptide and catecholamine neurotransmitters.

    PubMed

    Toneff, Thomas; Funkelstein, Lydiane; Mosier, Charles; Abagyan, Armen; Ziegler, Michael; Hook, Vivian

    2013-08-01

    Beta-amyloid (Aβ) peptides are secreted from neurons, resulting in extracellular accumulation of Aβ and neurodegeneration of Alzheimer's disease. Because neuronal secretion is fundamental for the release of neurotransmitters, this study assessed the hypothesis that Aβ undergoes co-release with neurotransmitters. Model neuronal-like chromaffin cells were investigated, and results illustrate regulated, co-secretion of Aβ(1-40) and Aβ(1-42) with peptide neurotransmitters (galanin, enkephalin, and NPY) and catecholamine neurotransmitters (dopamine, norepinephrine, and epinephrine). Regulated secretion from chromaffin cells was stimulated by KCl depolarization and nicotine. Forskolin, stimulating cAMP, also induced co-secretion of Aβ peptides with peptide and catecholamine neurotransmitters. These data suggested the co-localization of Aβ with neurotransmitters in dense core secretory vesicles (DCSV) that store and secrete such chemical messengers. Indeed, Aβ was demonstrated to be present in DCSV with neuropeptide and catecholamine transmitters. Furthermore, the DCSV organelle contains APP and its processing proteases, β- and γ-secretases, that are necessary for production of Aβ. Thus, Aβ can be generated in neurotransmitter-containing DCSV. Human IMR32 neuroblastoma cells also displayed regulated secretion of Aβ(1-40) and Aβ(1-42) with the galanin neurotransmitter. These findings illustrate that Aβ peptides are present in neurotransmitter-containing DCSV, and undergo co-secretion with neuropeptide and catecholamine neurotransmitters that regulate brain functions.

  13. Metabolism of acetyl-L-carnitine for energy and neurotransmitter synthesis in the immature rat brain.

    PubMed

    Scafidi, Susanna; Fiskum, Gary; Lindauer, Steven L; Bamford, Penelope; Shi, Da; Hopkins, Irene; McKenna, Mary C

    2010-08-01

    Acetyl-L-carnitine (ALCAR) is an endogenous metabolic intermediate that facilitates the influx and efflux of acetyl groups across the mitochondrial inner membrane. Exogenously administered ALCAR has been used as a nutritional supplement and also as an experimental drug with reported neuroprotective properties and effects on brain metabolism. The aim of this study was to determine oxidative metabolism of ALCAR in the immature rat forebrain. Metabolism was studied in 21-22 day-old rat brain at 15, 60 and 120 min after an intraperitoneal injection of [2-(13)C]acetyl-L-carnitine. The amount, pattern, and fractional enrichment of (13)C-labeled metabolites were determined by ex vivo(13)C-NMR spectroscopy. Metabolism of the acetyl moiety from [2-(13)C]ALCAR via the tricarboxylic acid cycle led to incorporation of label into the C4, C3 and C2 positions of glutamate (GLU), glutamine (GLN) and GABA. Labeling patterns indicated that [2-(13)C]ALCAR was metabolized by both neurons and glia; however, the percent enrichment was higher in GLN and GABA than in GLU, demonstrating high metabolism in astrocytes and GABAergic neurons. Incorporation of label into the C3 position of alanine, both C3 and C2 positions of lactate, and the C1 and C5 positions of glutamate and glutamine demonstrated that [2-(13)C]ALCAR was actively metabolized via the pyruvate recycling pathway. The enrichment of metabolites with (13)C from metabolism of ALCAR was highest in alanine C3 (11%) and lactate C3 (10%), with considerable enrichment in GABA C4 (8%), GLN C3 (approximately 4%) and GLN C5 (5%). Overall, our (13)C-NMR studies reveal that the acetyl moiety of ALCAR is metabolized for energy in both astrocytes and neurons and the label incorporated into the neurotransmitters glutamate and GABA. Cycling ratios showed prolonged cycling of carbon from the acetyl moiety of ALCAR in the tricarboxylic acid cycle. Labeling of compounds formed from metabolism of [2-(13)C]ALCAR via the pyruvate recycling pathway

  14. Effect of long-term vigabatrin therapy on selected neurotransmitter concentrations in cerebrospinal fluid.

    PubMed

    Ben-Menachem, E; Persson, L I; Mumford, J; Haegele, K D; Huebert, N

    1991-01-01

    Ten patients, suffering from drug-resistant complex partial seizures were treated for a period of up to 3 years with vigabatrin (Sabril). Vigabatrin is a novel antiepileptic agent, whose action is based on the inhibition of gamma-aminobutyric acid (GABA) aminotransferase, the enzyme responsible for the catabolism of the neurotransmitter GABA. Samples of lumbar cerebrospinal fluid were obtained from the patients prior to commencing vigabatrin therapy, and thereafter at 6 months, 1 year, 2 years, and up to 3 years following the initiation of vigabatrin treatment. The influence of vigabatrin on the cerebrospinal fluid concentrations of free and total GABA, homocarnosine, homovanillic acid, 5-hydroxyindoleacetic acid, and 3-methoxy-4-hydroxyphenylethylene glycol, as well as of the drug itself, was assessed. All patients demonstrated a clinical response to vigabatrin, and the drug was well tolerated over the entire observation period. Mean (+/- SD) reduction of seizure frequency was 65% +/- 23% (range, 26% to 100%) when comparing the end of the treatment period to the previgabatrin baseline. The cerebrospinal fluid concentrations of both free and total GABA and of the dipeptide homocarnosine showed approximately 2- to 5-fold increases over baseline values, with free GABA and homocarnosine being the more sensitive variables. Cerebrospinal fluid concentrations of homovanillic acid, 5-hydroxyindoleacetic acid, and 3-methoxy-4-hydroxyphenylethylene glycol were not altered in a significant manner over the observation period. These findings support the concept that the effects of vigabatrin are restricted to an effect on GABA catabolism and do not extend to the neurotransmitters dopamine and norepinephrine. Clinical efficacy and elevation of GABA and homocarnosine concentration were sustained over the period of observation.

  15. Molecular mechanisms driving homeostatic plasticity of neurotransmitter release

    PubMed Central

    Lazarevic, Vesna; Pothula, Santosh; Andres-Alonso, Maria; Fejtova, Anna

    2013-01-01

    Homeostatic plasticity is a process by which neurons adapt to the overall network activity to keep their firing rates in a reasonable range. At the cellular level this kind of plasticity comprises modulation of cellular excitability and tuning of synaptic strength. In this review we concentrate on presynaptic homeostatic plasticity controlling the efficacy of neurotransmitter release from presynaptic boutons. While morphological and electrophysiological approaches were successful to describe homeostatic plasticity-induced changes in the presynaptic architecture and function, cellular and molecular mechanisms underlying those modifications remained largely unknown for a long time. We summarize the latest progress made in the understanding of homeostasis-induced regulation of different steps of the synaptic vesicle cycle and the molecular machineries involved in this process. We particularly focus on the role of presynaptic scaffolding proteins, which functionally and spatially organize synaptic vesicle clusters, neurotransmitter release sites and the associated endocytic machinery. These proteins turned out to be major presynaptic substrates for remodeling during homeostatic plasticity. Finally, we discuss cellular processes and signaling pathways acting during homeostatic molecular remodeling and their potential involvement in the maladaptive plasticity occurring in multiple neuropathologic conditions such as neurodegeneration, epilepsy and neuropsychiatric disorders. PMID:24348337

  16. Detection and Monitoring of Neurotransmitters - a Spectroscopic Analysis

    NASA Astrophysics Data System (ADS)

    Manciu, Felicia; Lee, Kendall; Durrer, William; Bennet, Kevin

    2012-10-01

    In this work we demonstrate the capability of confocal Raman mapping spectroscopy for simultaneously and locally detecting important compounds in neuroscience such as dopamine, serotonin, and adenosine. The Raman results show shifting of the characteristic vibrations of the compounds, observations consistent with previous spectroscopic studies. Although some vibrations are common in these neurotransmitters, Raman mapping was achieved by detecting non-overlapping characteristic spectral signatures of the compounds, as follows: for dopamine the vibration attributed to C-O stretching, for serotonin the indole ring stretching vibration, and for adenosine the adenine ring vibrations. Without damage, dyeing, or preferential sample preparation, confocal Raman mapping provided positive detection of each neurotransmitter, allowing association of the high-resolution spectra with specific micro-scale image regions. Such information is particularly important for complex, heterogeneous samples, where modification of the chemical or physical composition can influence the neurotransmission processes. We also report an estimated dopamine diffusion coefficient two orders of magnitude smaller than that calculated by the flow-injection method.

  17. [Mechanisms of neurotransmitter release facilitation in strontium solutions].

    PubMed

    Mukhamed'iarov, M A; Kochunova, Iu O; Telina, E N; Zefirov, A L

    2008-02-01

    Mechanisms of neurotransmitter release facilitation were studied using electrophysiological recording of end-plate currents (EPC) and nerve ending (NE) responses after substitution of extracellular Ca ions with Sr ions at the frog neuromuscular junction. The solutions with 0.5 mM concentration of Ca ions (calcium solution) or 1 mM concentration of Sr ions (strontium solution) were used where baseline neurotransmitter release (at low-frequency stimulation) is equal. Decay of paired-pulse facilitation of EPC at calcium solutions with increase of interpulse interval from 5 to 500 ms was well described by three-exponential function consisting of early, first and second components. Facilitation at strontium solutions was significantly diminished due mainly to decrease of early and first components. At the same time, EPC facilitation with rhythmic stimulation (10 or 50 imp/s) at strontium solutions was significantly increased. Also more pronounced decrease of NE response 3rd phase, reflecting potassium currents was detected under rhythmic stimulation of 50 imp/s at strontium solutions comparing to calcium solutions. It was concluded that facilitation sites underlying first and early components had lower affinity to Sr ions than to Ca ions. The enhancement of frequency facilitation at strontium solutions is mediated by two mechanisms: more pronounced broadening of NE action potential and increase of bivalent cation influx due to feebly marked activation of Ca(2+)-dependent potassium current by Sr ions, and slower dynamics of Sr(2+) removal from NE axoplasm comparing to Ca(2+).

  18. Endogenous opiates and behavior: 2014.

    PubMed

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  19. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters

    PubMed Central

    Martin, Ciara A.; Krantz, David E.

    2014-01-01

    The model genetic organism Drosophila melanogaster, commonly known as the fruit fly, uses many of the same neurotransmitters as mammals and very similar mechanisms of neurotransmitter storage, release and recycling. This system offers a variety of powerful molecular-genetic methods for the study of transporters, many of which would be difficult in mammalian models. We review here progress made using Drosophila to understand the function and regulation of neurotransmitter transporters and discuss future directions for its use. PMID:24704795

  20. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    PubMed

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  1. Comparative neurotransmitter reuptake and anticholinergic potencies of the 8-hydroxy metabolites of clomipramine.

    PubMed

    Núñez, R; Perel, J M

    1995-01-01

    We hypothesize that 8-hydroxy-clomipramine (8-OH-CMI), the major hydroxy metabolite of clomipramine (CMI), may have antidepressant properties with less anticholinergic potency than CMI. We compared the potencies of 8-OH-CMI and CMI for inhibition of serotonin and norepinephrine reuptake and the potencies of these compounds for blockade of muscarinic receptors. We also compared the antimuscarinic potencies of desmethylclomipramine (DCMI) and 8-hydroxy-desmethylclomipramine (8-OH-DCMI). We found that 8-OH-CMI inhibits the uptake of serotonin and norepinephrine to the same extent as CMI and that 8-OH-CMI has far less antimuscarinic potency than CMI. We also found that 8-OH-DCMI has about one-tenth the antimuscarinic potency of DCMI. Since the therapeutic efficacy of CMI may be related to its effect on the reuptake of neurotransmitters, and since the extent of clinical anticholinergic effects of tricyclic antidepressants has been shown to be related to their in vitro antimuscarinic potencies, these results raise the possibility that 8-OH-CMI may be an analogue of CMI with fewer anticholinergic side effects than the parent compound.

  2. [Glutamatergic neurotransmitter system in regulation of the gastrointestinal tract motor activity].

    PubMed

    Alekseeva, E V; Popova, T S; Sal'nikov, P S

    2015-01-01

    The review include actual facts, demonstrating high probability of glutamatergic neurotransmitter system role in the regulation of the gastrointestinal tract motor activity. These facts suggest significant role of the glutamatergic neurotransmitter system dysfunction in forming motor activity disorders of the digestive tract, including in patients in critical condition. The analysis is based on results of multiple experimental and clinical researches of glutamic acid and other components of the glutamatergic neurotransmitter system in central nervous system and autonomic nervous system (with the accent on the enteral nervous system) in normal conditions and with functioning changes of the glutamatergic neurotransmitter system in case of inflammation, hupoxia, stress and in critical condition.

  3. [Memory processes in endogenous depression].

    PubMed

    Radziwiłłowicz, W; Radziwiłłowicz, P

    1998-01-01

    The thesis aims to answer the questions about the profile of mental ability in endogenous depression and to decide whether self-estimation of depressive symptoms influences the results achieved by patients in memory tests. Fifty six patients suffering from endogenous depression have been examined. The following methods have been applied: Mini Mental State Examination, Benton Visual Retention Test, Beck Depression Inventory, hold tests: Vocabulary, Information, Comprehension and Digit Span of Wechsler Adult Intelligence Scale (WAIS), Rey-Osterrieth Complex Figure, Auditory Verbal Learning Test, DCS Weidlich. General status of cognitive functions correlates with the profile of specific kinds of memory results, particularly with delayed memory. Self-estimation of depressive symptoms intensity is mostly influenced by memory capacity, visuomotorial factor, functions of perception and lingual factor. High correlation between verbal and non verbal learning shows uniform influence of depression on the process of learning.

  4. In vitro continuous amperometry with a diamond microelectrode coupled with video microscopy for simultaneously monitoring endogenous norepinephrine and its effect on the contractile response of a rat mesenteric artery.

    PubMed

    Park, Jinwoo; Galligan, James J; Fink, Gregory D; Swain, Greg M

    2006-10-01

    Continuous amperometry with a diamond microelectrode and video microscopy were used to record (in vitro) endogenous norepinephrine release simultaneously with the evoked contractile response of a mesenteric artery from a healthy Sprague Dawley rat. Norepinephrine (NE) is a vasoconstricting neurotransmitter released from sympathetic nerves that innervate the smooth muscle cell layers surrounding arteries and veins. Using these two techniques along with several drugs, the NE released at sympathetic neuroeffector junctions nearby the microelectrode was measured as an oxidation current. Key to the amperometric measurement was the use of a diamond microelectrode because of the response sensitivity, reproducibility, and stability it provided. NE release was elicited by electrical stimulation at frequencies between 1 and 60 Hz, with a maximum response seen at 20 Hz. Confirmation that the oxidation current was, in fact, associated with endogenous NE came from the results of several drugs. Tetrodotoxin (TTX, 0.3 microM), a voltage-dependent sodium channel antagonist that blocks nerve conduction, abolished both the oxidation current and the arterial constriction. The alpha(2)-adrenergic autoreceptor antagonist, yohimbine (1.0 microM), caused an increase in the oxidation current and the corresponding constriction. The addition of cocaine (10 microM), an antagonist that inhibits neuronal NE reuptake, caused both the oxidation current and the contractile response to increase. These results, combined with the fact that the hydrodynamic voltammetric E(1/2) for endogenous NE was identical to that for a standard solution, confirmed that the oxidation current was due to NE and that this compound caused, at least in part, the contractile response. The results demonstrate that continuous amperometric monitoring of NE with a diamond microelectrode and video imaging of vascular tone allow real time local measurement of the temporal relationship between nerve-stimulated NE release and

  5. Neurotransmitter regulation of circadian structural changes in the fly's visual system.

    PubMed

    Meinertzhagen, I A; Pyza, E

    1999-04-15

    The visual system of the fly's compound eye undergoes a number of cyclical day/night changes that have a circadian basis. Such responses are seen in the synaptic terminals of the photoreceptors and in their large monopolar-cell interneurons in the first optic neuropile, or lamina. These changes include, in the photoreceptor terminals, rhythms in the numbers of synapses and the vertical migration of screening pigment; and, in the monopolar cells L1 and L2, a rhythm in the transients of the electroretinogram and in the cyclical swelling of L1 and L2 lamina axons, as well as of the epithelial glia that surround these. Some of these changes are seen in both the housefly and the fruit fly, but the time-course of such changes differs between the two species. Many of the changes are influenced by the injection of various transmitter candidates, in a direction that can be reconciled with the possibility of normal endogenous release of two substances, 5HT from the neurites of 5HT-immunoreactive neurons, and pigment dispersing factor peptide from the neurites of PDH cells. Consistent with this interpretation, the immunoreactive varicosities of PDH cells exhibit size changes attributable to their cyclical release of peptide, or to its cyclical synthesis and/or transport from the PDH cell somata. Thus, neurotransmitter substances not only have rapid electrophysiological actions in the optic lobe, but also longer-lasting, presumably indirect, neuromodulatory actions, which are manifest as structural changes among the lamina's neurons and synapses. These actions involve an interplay between aminergic and peptidergic systems, but the exact role and especially the site of action of each has still to be elucidated.

  6. The action of orexin B on passive avoidance learning. Involvement of neurotransmitters.

    PubMed

    Palotai, Miklós; Telegdy, Gyula; Ekwerike, Alphonsus; Jászberényi, Miklós

    2014-10-01

    The extensive projection of orexigenic neurons and the diffuse expression of orexin receptors suggest that endogenous orexins are involved in several physiological functions of the central nervous system, including learning and memory. Our previous study demonstrated that orexin A improves learning, consolidation and retrieval processes, which involves α- and β-adrenergic, cholinergic, dopaminergic, GABA-A-ergic, opiate and nitrergic neurotransmissions. However, we have little evidence about the action of orexin B on memory processes and the underlying neuromodulation. Therefore, the aim of the present study was to investigate the action of orexin B on passive avoidance learning and the involvement of neurotransmitters in this action in rats. Accordingly, rats were pretreated with the selective orexin 2 receptor (OX2R) antagonist, EMPA; the γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, the bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; the nonselective opioid receptor antagonist, naloxone; the non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; the nonselective α-adrenergic receptor antagonist, phenoxybenzamine and the β-adrenergic receptor antagonist, propranolol. Our results demonstrate that orexin B can improve learning, consolidation of memory and retrieval. EMPA reversed completely the action of orexin B on memory consolidation. Bicuculline blocked fully; naloxone, nitro-l-arginine, phenoxybenzamine and propranolol attenuated the orexin B-induced memory consolidation, whereas haloperidol was ineffective. These data suggest that orexin B improves memory functions through OX2R and GABA-ergic, opiate, nitrergic, α- and β-adrenergic neurotransmissions are also involved in this action.

  7. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors

    PubMed Central

    Nguyen, Cuong M.; Kota, Pavan Kumar; Nguyen, Minh Q.; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J.-C.

    2015-01-01

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations. PMID:26404311

  8. Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems

    NASA Astrophysics Data System (ADS)

    Nakano, Takashi; Chin, Catherine; Myint, David Mo Aung; Tan, Eng Wui; Hale, Peter John; Krishna M., Bala Murali; Reynolds, John N. J.; Wickens, Jeff; Dani, Keshav M.

    2014-06-01

    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine - a key neurotransmitter of the central nervous system - thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits, and to the larger range of biological functions that operate on this short timescale.

  9. Attenuation of forgetting by pharmacological stimulation of aminergic neurotransmitter systems.

    PubMed

    Quartermain, D; Judge, M E; Leo, P

    1988-05-01

    Mice were trained in one-way active avoidance to a criterion of 3/4 avoidances and tested under extinction conditions one week later when substantial forgetting had occurred. Thirty min prior to testing animals were injected with either saline or different doses of drugs which activate the noradrenergic (phenylephrine, salbutamol, clonidine) dopaminergic (L-dopa(Sinemet) transdihydrolisuride, apomorphine) and serotonergic (fluoxetine, 5-methoxy DMT) neurotransmitter systems. Results showed that all agents alleviated forgetting in a dose dependent fashion. Untrained mice treated with the most effective dose of representative drugs from each class did not exhibit avoidance behavior at testing indicating that the improved performance of trained animals was probably not the result of increased activity or other non-memorial effects of the drugs. It was concluded that pharmacological agents which stimulate monoamine systems may improve memory retrieval by activating a non-specific neural system which controls arousal, attention and motor readiness.

  10. Terahertz identification and quantification of neurotransmitter and neurotrophy mixture

    PubMed Central

    Peng, Yan; Yuan, Xiaorong; Zou, Xiang; Chen, Wanqing; Huang, Hui; Zhao, Hongwei; Song, Bo; Chen, Liang; Zhu, Yiming

    2016-01-01

    Terahertz spectroscopy has been widely used for investigating the fingerprint spectrum of different substances. For cancerous tissues, the greatest difficulty is the absorption peaks of various substances contained in tissues overlap with each other, which are hard to identify and quantitative analyze. As a result, it is very hard to measure the presence of cancer cell and then to diagnose accurately. In this paper, we select three typical neurotransmitters (γ-aminobutyric acid, L-glutamic acid, dopamine hydrochloride) and two typical metabolites (inositol and creatine) in neurons to measure their terahertz spectra with different mixture ratios. By choosing characteristic absorption peaks, removing baseline and using the least square method, we can identify the components and proportions of each mixture, where the goodness of fit to practical situation is up to 94%. These results provide important evidences for identifying nerve substances and obtaining exact quantitative analysis. PMID:27895988

  11. Teaching medical students basic neurotransmitter pharmacology using primary research resources.

    PubMed

    Halliday, Amy C; Devonshire, Ian M; Greenfield, Susan A; Dommett, Eleanor J

    2010-12-01

    Teaching pharmacology to medical students has long been seen as a challenge, and one to which a number of innovative approaches have been taken. In this article, we describe and evaluate the use of primary research articles in teaching second-year medical students both in terms of the information learned and the use of the papers themselves. We designed a seminar where small groups of students worked on different neurotransmitters before contributing information to a plenary session. Student feedback suggested that when the information was largely novel, students learned considerably more. Crucially, this improvement in knowledge was seen even when they had not directly studied a particular transmitter in their work groups, suggesting a shared learning experience. Moreover, the majority of students reported that using primary research papers was easy and useful, with over half stating that they would use them in future study.

  12. Wireless Power Transfer for Autonomous Wearable Neurotransmitter Sensors.

    PubMed

    Nguyen, Cuong M; Kota, Pavan Kumar; Nguyen, Minh Q; Dubey, Souvik; Rao, Smitha; Mays, Jeffrey; Chiao, J-C

    2015-09-23

    In this paper, we report a power management system for autonomous and real-time monitoring of the neurotransmitter L-glutamate (L-Glu). A low-power, low-noise, and high-gain recording module was designed to acquire signal from an implantable flexible L-Glu sensor fabricated by micro-electro-mechanical system (MEMS)-based processes. The wearable recording module was wirelessly powered through inductive coupling transmitter antennas. Lateral and angular misalignments of the receiver antennas were resolved by using a multi-transmitter antenna configuration. The effective coverage, over which the recording module functioned properly, was improved with the use of in-phase transmitter antennas. Experimental results showed that the recording system was capable of operating continuously at distances of 4 cm, 7 cm and 10 cm. The wireless power management system reduced the weight of the recording module, eliminated human intervention and enabled animal experimentation for extended durations.

  13. Endogenous endophthalmitis caused by Citrobacter koseri.

    PubMed

    Chiu, Chun-Hsiang; Peng, Ming-Yieh; Wang, Ying-Chuan; Chang, Feng-Yee

    2009-12-01

    Endogenous endophthalmitis occurs when organisms are hematogenously disseminated in to the eye from a distant focus of infection. The most common isolated organisms that cause endogenous endophthalmitis are Klebsiella pneumoniae and Escherichia coli. Previous reports on endophthalmitis caused by Citrobacter species are limited. We present the first case of endogenous endophthalmitis caused by Citrobacter koseri bacteremia and renal abscesses.

  14. Dynamic equilibrium of endogenous selenium nanoparticles in selenite-exposed cancer cells: a deep insight into the interaction between endogenous SeNPs and proteins.

    PubMed

    Bao, Peng; Chen, Song-Can; Xiao, Ke-Qing

    2015-12-01

    Elemental selenium (Se) was recently found to exist as endogenous nanoparticles (i.e., SeNPs) in selenite-exposed cancer cells. By sequestrating critical intracellular proteins, SeNPs appear capable of giving rise to multiple cytotoxicity mechanisms including inhibition of glycolysis, glycolysis-dependent mitochondrial dysfunction, microtubule depolymerization and inhibition of autophagy. In this work, we reveal a dynamic equilibrium of endogenous SeNP assembly and disassembly in selenite-exposed H157 cells. Endogenous SeNPs are observed both in the cytoplasm and in organelles. There is an increase in endogenous SeNPs between 24 h and 36 h, and a decrease between 36 h and 72 h according to transmission electron microscopy results and UV-Vis measurements. These observations imply that elemental Se in SeNPs could be oxidized back into selenite by scavenging superoxide radicals and ultimately re-reduced into selenide; then the assembly and disassembly of SeNPs proceed simultaneously with the sequestration and release of SeNP high-affinity proteins. There is also a possibility that the reduction of elemental Se to selenide pathway may lie in selenite-exposed cancer cells, which results in the assembly and disassembly of endogenous SeNPs. Genome-wide expression analysis results show that endogenous SeNPs significantly altered the expression of 504 genes, compared to the control. The endogenous SeNPs induced mitochondrial impairment and decreasing of the annexin A2 level can lead to inhibition of cancer cell invasion and migration. This dynamic flux of endogenous SeNPs amplifies their cytotoxic potential in cancer cells, thus provide a starting point to design more efficient intracellular self-assembling systems for overcoming multidrug resistance.

  15. Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling

    PubMed Central

    Delvendahl, Igor; Jablonski, Lukasz; Baade, Carolin; Matveev, Victor; Neher, Erwin; Hallermann, Stefan

    2015-01-01

    Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca2+ signals, which are confined in their spatiotemporal extent by endogenous Ca2+ buffers. However, it remains elusive how rapid and reliable Ca2+ signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca2+ imaging in cerebellar mossy fiber boutons, which fire at exceptionally high rates. We show that endogenous fixed buffers have a surprisingly low Ca2+-binding ratio (∼15) and low affinity, whereas mobile buffers have high affinity. Experimentally constrained modeling revealed that the low endogenous buffering promotes fast clearance of Ca2+ from the active zone during repetitive firing. Measuring Ca2+ signals at different distances from active zones with ultra-high-resolution confirmed our model predictions. Our results lead to the concept that reduced Ca2+ buffering enables fast active zone Ca2+ signaling, suggesting that the strength of endogenous Ca2+ buffering limits the rate of synchronous synaptic transmission. PMID:26015575

  16. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  17. Macrocyclic Gd(3+) complexes with pendant crown ethers designed for binding zwitterionic neurotransmitters.

    PubMed

    Oukhatar, Fatima; Meudal, Hervé; Landon, Céline; Logothetis, Nikos K; Platas-Iglesias, Carlos; Angelovski, Goran; Tóth, Éva

    2015-07-27

    A series of Gd(3+) complexes exhibiting a relaxometric response to zwitterionic amino acid neurotransmitters was synthesized. The design concept involves ditopic interactions 1) between a positively charged and coordinatively unsaturated Gd(3+) chelate and the carboxylate group of the neurotransmitters and 2) between an azacrown ether appended to the chelate and the amino group of the neurotransmitters. The chelates differ in the nature and length of the linker connecting the cyclen-type macrocycle that binds the Ln(3+) ion and the crown ether. The complexes are monohydrated, but they exhibit high proton relaxivities (up to 7.7 mM(-1)  s(-1) at 60 MHz, 310 K) due to slow molecular tumbling. The formation of ternary complexes with neurotransmitters was monitored by (1) H relaxometric titrations of the Gd(3+) complexes and by luminescence measurements on the Eu(3+) and Tb(3+) analogues at pH 7.4. The remarkable relaxivity decrease (≈80 %) observed on neurotransmitter binding is related to the decrease in the hydration number, as evidenced by luminescence lifetime measurements on the Eu(3+) complexes. These complexes show affinity for amino acid neurotransmitters in the millimolar range, which can be suited to imaging concentrations of synaptically released neurotransmitters. They display good selectivity over non-amino acid neurotransmitters (acetylcholine, serotonin, and noradrenaline) and hydrogenphosphate, but selectivity over hydrogencarbonate was not achieved.

  18. Endogenous Zinc in Neurological Diseases

    PubMed Central

    2005-01-01

    The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459

  19. Endogenous fertility, mortality and growth.

    PubMed

    Blackburn, K; Cipriani, G P

    1998-01-01

    This paper presents a model that illustrates the joint determination of population and development. "Economic and demographic outcomes are determined jointly in a choice-theoretic model of fertility, mortality and capital accumulation.... In addition to choosing savings and births, parents may reduce (infant) deaths by incurring expenditures on health-care which is also provided by the government. A generalised production technology accounts for long-run endogenous growth with short-run transitional dynamics. The analysis yields testable time series and cross-section implications which accord with the empirical evidence on the relationship between demography and development."

  20. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE.

    PubMed

    Özel, Rıfat Emrah; Hayat, Akhtar; Andreescu, Silvana

    2015-05-03

    Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed.

  1. RECENT DEVELOPMENTS IN ELECTROCHEMICAL SENSORS FOR THE DETECTION OF NEUROTRANSMITTERS FOR APPLICATIONS IN BIOMEDICINE

    PubMed Central

    Özel, Rıfat Emrah; Hayat, Akhtar; Andreescu, Silvana

    2015-01-01

    Neurotransmitters are important biological molecules that are essential to many neurophysiological processes including memory, cognition, and behavioral states. The development of analytical methodologies to accurately detect neurotransmitters is of great importance in neurological and biological research. Specifically designed microelectrodes or microbiosensors have demonstrated potential for rapid, real-time measurements with high spatial resolution. Such devices can facilitate study of the role and mechanism of action of neurotransmitters and can find potential uses in biomedicine. This paper reviews the current status and recent advances in the development and application of electrochemical sensors for the detection of small-molecule neurotransmitters. Measurement challenges and opportunities of electroanalytical methods to advance study and understanding of neurotransmitters in various biological models and disease conditions are discussed. PMID:26973348

  2. Endogenous nitric oxide attenuates neutrally mediated cutaneous vasoconstriction.

    PubMed

    Shibasaki, Manabu; Durand, Sylvain; Davis, Scott L; Cui, Jian; Low, David A; Keller, David M; Crandall, Craig G

    2007-12-01

    Cutaneous vasoconstrictor responsiveness may be impaired by substance(s) directly or indirectly responsible for cutaneous active vasodilatation. In this study, we tested the hypothesis that endogenous nitric oxide (NO) attenuates the reduction in cutaneous vascular conductance (CVC) during an orthostatic challenge combined with whole-body heating, as well as during whole-body cooling. In protocol 1, healthy subjects were pretreated with an intradermal injection of botulinum toxin A (BTX) to block the release of neurotransmitters from nerves responsible for cutaneous active vasodilatation. On the experimental day, a microdialysis probe was placed at the BTX-treated site as well as at two adjacent untreated sites. NG-nitro-l-arginine methyl ester (L-NAME, 10 mm) was perfused through the probe placed at the BTX-treated site and at one untreated site. After confirmation of the absence of cutaneous vasodilatation at the BTX site during whole-body heating, adenosine was infused through the microdialysis probe at this site to increase skin blood flow to a level similar to that at the untreated site. Subsequently, 30 and 40 mmHg lower-body negative pressures (LBNPs) were applied. The reduction in CVC to LBNP was greatest at the BTX-treated site (15.0 +/- 2.4% of the maximum level (% max)), followed by the L-NAME-treated site (11.3 +/- 2.6% max), and then the untreated site (3.8 +/- 3.0% max; P < 0.05 for all comparisons). In protocol 2, two microdialysis membranes were inserted in the dermal space of one forearm. Adenosine alone was infused at one site while the other site received adenosine and L-NAME. The reduction in CVC in response to whole-body cooling was significantly greater at the L-NAME-treated site than at the adjacent adenosine alone site. These results suggest that endogenous NO is capable of attenuating cutaneous vasoconstrictor responsiveness.

  3. Human endogenous retroviruses and cancer

    PubMed Central

    Gonzalez-Cao, María; Iduma, Paola; Karachaliou, Niki; Santarpia, Mariacarmela; Blanco, Julià; Rosell, Rafael

    2016-01-01

    Human endogenous retroviruses (HERVs) are retroviruses that infected human genome millions of years ago and have persisted throughout human evolution. About 8% of our genome is composed of HERVs, most of which are nonfunctional because of epigenetic control or deactivating mutations. However, a correlation between HERVs and human cancer has been described and many tumors, such as melanoma, breast cancer, germ cell tumors, renal cancer or ovarian cancer, express HERV proteins, mainly HERV-K (HML6) and HERV-K (HML2). Although the causative role of HERVs in cancer is controversial, data from animal models demonstrated that endogenous retroviruses are potentially oncogenic. HERV protein expression in human cells generates an immune response by activating innate and adaptive immunities. Some HERV-derived peptides have antigenic properties. For example, HERV-K (HML-6) encodes the HER-K MEL peptide recognized by CD8+ lymphocytes. In addition, HERVs are two-edged immunomodulators. HERVs show immunosuppressive activity. The presence of genomic retroviral elements in host-cell cytosol may activate an interferon type I response. Therefore, targeting HERVs through cellular vaccines or immunomodulatory drugs combined with checkpoint inhibitors is attracting interest because they could be active in human tumors. PMID:28154780

  4. Endogeneity in prison risk classification.

    PubMed

    Shermer, Lauren O'Neill; Bierie, David M; Stock, Amber

    2013-10-01

    Security designation tools are a key feature of all prisons in the United States, intended as objective measures of risk that funnel inmates into security levels-to prison environments varying in degree of intrusiveness, restriction, dangerousness, and cost. These tools are mostly (if not all) validated by measuring inmates on a set of characteristics, using scores from summations of that information to assign inmates to prisons of varying security level, and then observing whether inmates assumed more risky did in fact offend more. That approach leaves open the possibility of endogeneity--that the harsher prisons are themselves bringing about higher misconduct and thus biasing coefficients assessing individual risk. The current study assesses this potential bias by following an entry cohort of inmates to more than 100 facilities in the Federal Bureau of Prisons (BOP) and exploiting the substantial variation in classification scores within a given prison that derive from systematic overrides of security-level designations for reasons not associated with risk of misconduct. By estimating pooled models of misconduct along with prison-fixed effects specifications, the data show that a portion of the predictive accuracy thought associated with the risk-designation tool used in BOP was a function of facility-level contamination (endogeneity).

  5. HMGB1: Endogenous Danger Signaling

    PubMed Central

    Klune, John R; Dhupar, Rajeev; Cardinal, Jon; Billiar, Timothy R; Tsung, Allan

    2008-01-01

    While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions. PMID:18431461

  6. Endogenous Opiates and Behavior: 2006

    PubMed Central

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  7. Endogenous retroviruses in domestic animals.

    PubMed

    Garcia-Etxebarria, Koldo; Sistiaga-Poveda, Maialen; Jugo, Begoña Marina

    2014-08-01

    Endogenous retroviruses (ERVs) are genomic elements that are present in a wide range of vertebrates. Although the study of ERVs has been carried out mainly in humans and model organisms, recently, domestic animals have become important, and some species have begun to be analyzed to gain further insight into ERVs. Due to the availability of complete genomes and the development of new computer tools, ERVs can now be analyzed from a genome-wide viewpoint. In addition, more experimental work is being carried out to analyze the distribution, expression and interplay of ERVs within a host genome. Cats, cattle, chicken, dogs, horses, pigs and sheep have been scrutinized in this manner, all of which are interesting species in health and economic terms. Furthermore, several studies have noted differences in the number of endogenous retroviruses and in the variability of these elements among different breeds, as well as their expression in different tissues and the effects of their locations, which, in some cases, are near genes. These findings suggest a complex, intriguing relationship between ERVs and host genomes. In this review, we summarize the most important in silico and experimental findings, discuss their implications and attempt to predict future directions for the study of these genomic elements.

  8. [Preliminary research on multi-neurotransmitters' change regulation in 120 depression patients' brains].

    PubMed

    Chi, Ming; Qing, Xue-Mei; Pan, Yan-Shu; Xu, Feng-Quan; Liu, Chao; Zhang, Cheng; Xu, Zhen-Hua

    2014-04-01

    In view of the effective traditional Chinese medicine (TCM) in the treatment of clinical depression, the mechanism is not clear, this study attempts to research the cause of depression in a complex situation to lay the foundation for the next step of TCM curative effect evaluation. Based on the brain wave of 120 depression patients and 40 ordinary person, the change regulation of acetylcholine, dopamine, norepinephrine, depression neurotransmitters and excited neurotransmitters in the whole and various encephalic regions' multi-neurotransmitters of depression patients-serotonin are analysed by search of encephalo-telex (SET) system, which lays the foundation for the diagnosis of depression. The result showed that: contrased with the normal person group, the mean value of the six neurotransmitters in depression patients group are: (1) in the whole encephalic region of depression patients group the dopamine fall (P < 0.05), and in the double centralregions, right temporal region and right parietal region distinct fall (P < 0.01); (2) in the right temporal region of depression patients group the serotonin rise (P < 0.05); (3) in the right central region, left parietal region of depression patients group the acetylcholine fall (P < 0.05), left rear temporal region fall obviously (P < 0.01). The correlation research between antagonizing pairs of neurotransmitters and neurotransmitters: (1) the three antagonizing pairs of neurotransmitters-serotonin and dopamine, acetylcholine and norepinephrine, depression neurotransmitters and excited neurotransmitters, in ordinary person group and depression patients group are characterizeed by middle or strong negative correlation. Serotonin and dopamine, which are characterized by weak negative correlation in the right rear temporal region of ordinary person group, are characterized by strong negative correlation in the other encephalic regions and the whole encephalic (ordinary person group except the right rear temporal region

  9. Endogenous nociceptin system involvement in stress responses and anxiety behavior.

    PubMed

    Fulford, Allison Jane

    2015-01-01

    The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.

  10. Role of putative neurotransmitters in the central gastric antisecretory effect of prostaglandin E2 in rats.

    PubMed Central

    Puurunen, J.

    1985-01-01

    The role of putative neurotransmitters of the central nervous system in the central gastric antisecretory effect of prostaglandin E2 (PGE2) was investigated in pylorus-ligated rats. Pretreatment of the rats with an intracerebroventricular (i.c.v.) injection of 6-hydroxydopamine (6-OHDA) prevented the antisecretory effect of the i.c.v. administration of PGE2, whereas pretreatment with 5,6-dihydroxytryptamine (5,6-DHT) plus p-chlorophenylalanine (PCPA) had no effect. I.c.v.-administered phentolamine and idazoxan antagonized the inhibition of gastric secretion induced by i.c.v. PGE2, whereas prazosin, propranolol and sulpiride injected via the same route were ineffective. Diphenhydramine, cimetidine, naloxone and theophylline, all administered i.c.v., did not modify the antisecretory effect of i.c.v. PGE2. The results suggest that an activation of alpha 2-adrenoceptors in the brain is involved in the central gastric antisecretory effect of PGE2, whereas neither central 5-hydroxytryptamine receptors, alpha 1- or beta-adrenoceptors, D2-dopamine receptors, histamine or opioid receptors nor adenosine seem to play any role here. PMID:2862940

  11. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor

    PubMed Central

    Canal, Clinton E.; Chang, Qing; Gold, Paul E.

    2007-01-01

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by ≈1,000–17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a β-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation. PMID:17640910

  12. Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor.

    PubMed

    Canal, Clinton E; Chang, Qing; Gold, Paul E

    2007-07-24

    Amnesia produced by protein synthesis inhibitors such as anisomycin provides major support for the prevalent view that the formation of long-lasting memories requires de novo protein synthesis. However, inhibition of protein synthesis might disrupt other neural functions to interfere with memory formation. Intraamygdala injections of anisomycin before inhibitory avoidance training impaired memory in rats tested 48 h later. Release of norepinephrine (NE), dopamine (DA), and serotonin, measured at the site of anisomycin infusions, increased quickly by approximately 1,000-17,000%, far above the levels seen under normal conditions. NE and DA release later decreased far below baseline for several hours before recovering at 48 h. Intraamygdala injections of a beta-adrenergic receptor antagonist or agonist, each timed to blunt effects of increases and decreases in NE release after anisomycin, attenuated anisomycin-induced amnesia. In addition, similar to the effects on memory seen with anisomycin, intraamygdala injections of a high dose of NE before training impaired memory tested at 48 h after training. These findings suggest that altered release of neurotransmitters may mediate amnesia produced by anisomycin and, further, raise important questions about the empirical bases for many molecular theories of memory formation.

  13. Effects of soluble β-amyloid on the release of neurotransmitters from rat brain synaptosomes

    PubMed Central

    Olivero, Guendalina; Grilli, Massimo; Chen, Jiayang; Preda, Stefania; Mura, Elisa; Govoni, Stefano; Marchi, Mario

    2014-01-01

    Contradictory results have been reported on the interaction of beta-amyloid (Aβ) with cholinergic receptors. The present paper investigates the modulatory effect of Aβ1-40 on the neurotransmitter release evoked by nicotinic (nAChRs) and muscarinic (mAChRs) receptors. Aβ1-40 inhibits both nicotinic and muscarinic-evoked [3H]DA overflow from rat nerve endings. Added to perfusion medium, Aβ1-40 is able to enter into synaptosomes; it exerts its inhibitory effect at extracellular sites when release is stimulated by nAChRs and intracellularly when release is evoked by mAChRs. Moreover, our data show that Aβ1-40 acts as non competitive antagonist of heteromeric α4β2* but not of α3β4* nAChRs which modulate [3H]NA overflow. Positive allosteric modulators of nAChRs counteract its inhibitory effect. It might be that compounds of this type could be useful to prevent, slow down the appearance or reverse the cognitive decline typical of the normal processes of brain aging. PMID:25076904

  14. LeuT: a prokaryotic stepping stone on the way to a eukaryotic neurotransmitter transporter structure.

    PubMed

    Singh, Satinder K

    2008-01-01

    Ion-coupled secondary transport is utilized by a broad range of integral membrane proteins to catalyze the energetically unfavorable movement of solute molecules across a lipid bilayer. Members of the solute carrier 6 (SLC6) family, present in both prokaryotes and eukaryotes, are sodium-coupled symporters that play crucial roles in processes as diverse as nutrient uptake and neurotransmitter clearance. The crystal structure of LeuT, a bacterial member of this family, provided the first atomic-level glimpse into overall architecture, pinpointed the substrate and sodium binding sites and implicated candidate helices and residues in the "gating" conformational changes that accompany ion binding and release. The structure is consistent with a wealth of elegant biochemical data on the eukaryotic counterparts and has for the first time permitted the construction of accurate homology models that can be directly tested experimentally. Sequence identity is especially high near the substrate and sodium binding sites and, thus, molecular insights within these regions have been substantial. However, there are several topics relevant to transport mechanism, inhibition and regulation that structure/function studies of LeuT cannot adequately address, suggesting the need for a eukaryotic transporter crystal structure.

  15. BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses

    PubMed Central

    Tyler, William J.; Pozzo-Miller, Lucas D.

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) is emerging as a key mediator of activity-dependent modifications of synaptic strength in the CNS. We investigated the hypothesis that BDNF enhances quantal neurotransmitter release by modulating the distribution of synaptic vesicles within presynaptic terminals using organotypic slice cultures of postnatal rat hippocampus. BDNF specifically increased the number of docked vesicles at the active zone of excitatory synapses on CA1 dendritic spines, with only a small increase in active zone size. In agreement with the hypothesis that an increased docked vesicle density enhances quantal neurotransmitter release, BDNF increased the frequency, but not the amplitude, of AMPA receptor-mediated miniature EPSCs (mEPSCs) recorded from CA1 pyramidal neurons in hippocampal slices. Synapse number, independently estimated from dendritic spine density and electron microscopy measurements, was also increased after BDNF treatment, indicating that the actions of BNDF on mEPSC frequency can be partially attributed to an increased synaptic density. Our results further suggest that all these actions were mediated via tyrosine kinase B (TrkB) receptor activation, established by inhibition of plasma membrane tyrosine kinases with K-252a. These results provide additional evidence of a fundamental role of the BDNF–TrkB signaling cascade in synaptic transmission, as well as in cellular models of hippocampus-dependent learning and memory. PMID:11404410

  16. REM Sleep at its Core – Circuits, Neurotransmitters, and Pathophysiology

    PubMed Central

    Fraigne, Jimmy J.; Torontali, Zoltan A.; Snow, Matthew B.; Peever, John H.

    2015-01-01

    Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD. PMID:26074874

  17. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA.

    PubMed

    Johnston, Graham A R

    2015-10-01

    Flavonoids that are found in nutraceuticals have many and varied effects on the activation of ionotropic receptors for GABA, the major inhibitory neurotransmitter in our brains. They can act as positive or negative modulators enhancing or reducing the effect of GABA. They can act as allosteric agonists. They can act to modulate the action of other modulators. There is considerable evidence that these flavonoids are able to enter the brain to influence brain function. They may have a range of effects including relief of anxiety, improvement in cognition, acting as neuroprotectants and as sedatives. All of these effects are sought after in nutraceuticals. A number of studies have likened flavonoids to the widely prescribed benzodiazepines as 'a new family of benzodiazepine receptor ligands'. They are much more than that with many flavonoid actions on ionotropic GABA receptors being insensitive to the classic benzodiazepine antagonist flumazenil and thus independent of the classic benzodiazepine actions. It is time to consider flavonoids in their own right as important modulators of these vital receptors in brain function. Flavonoids are rarely consumed as a single flavonoid except as dietary supplements. The effects of mixtures of flavonoids and other modulators on GABAA receptors need to be more thoroughly investigated.

  18. Neurotransmitter-precursor-supplement intervention for detoxified heroin addicts.

    PubMed

    Chen, Dingyan; Liu, Yan; He, Wulong; Wang, Hongxing; Wang, Zengzhen

    2012-06-01

    This study examined the effects of combined administration of tyrosine, lecithin, L-glutamine and L-5-hydroxytryptophan (5-HTP) on heroin withdrawal syndromes and mental symptoms in detoxified heroin addicts. In the cluster-randomized placebo-controlled trial, 83 detoxified heroin addicts were recruited from a detoxification treatment center in Wuhan, China. Patients in the intervention group (n=41) were given the combined treatment with tyrosine, lecithin, L-glutamine and 5-HTP and those in the control group (n=42) were administered the placebo. The sleep status and the withdrawal symptoms were observed daily throughout the study, and the mood states were monitored pre- and post-intervention. The results showed that the insomnia and withdrawal scores were significantly improved over time in participants in the intervention group as compared with those in the control group. A greater reduction in tension-anxiety, depression-dejection, anger-hostility, fatigue-inertia and total mood disturbance, and a greater increase in their vigor-activity symptoms were found at day 6 in the intervention group than in the control group (all P<0.05). It was concluded that the neurotransmitter-precursor-supplement intervention is effective in alleviating the withdrawal and mood symptoms and it may become a supplementary method for patients' recovery from heroin addiction.

  19. Glucagon-related peptide 1 (GLP-1): hormone and neurotransmitter.

    PubMed

    Larsen, Philip J; Holst, Jens Juul

    2005-06-15

    The interest in glucagon-like petide-1 (GLP-1) and other pre-proglucagon derived peptides has risen almost exponentially since seminal papers in the early 1990s proposed to use GLP-1 agonists as therapeutic agents for treatment of type 2 diabetes. A wealth of interesting studies covering both normal and pathophysiological role of GLP-1 have been published over the last two decades and our understanding of GLP-1 action has widened considerably. In the present review, we have tried to cover our current understanding of GLP-1 actions both as a peripheral hormone and as a central neurotransmitter. From an initial focus on glycaemic control, GLP-1 research has been diverted to study its role in energy homeostasis, neurodegeneration, cognitive functions, anxiety and many more functions. With the upcoming introduction of GLP-1 agonists on the pharmaceutical venue, we have witnessed an outstanding example of how initial ideas from basic science laboratories have paved their way to become a novel therapeutic strategy to fight diabetes.

  20. Polyethylenimine Carbon Nanotube Fiber Electrodes for Enhanced Detection of Neurotransmitters

    PubMed Central

    2015-01-01

    Carbon nanotube (CNT)-based microelectrodes have been investigated as alternatives to carbon-fiber microelectrodes for the detection of neurotransmitters because they are sensitive, exhibit fast electron transfer kinetics, and are more resistant to surface fouling. Wet spinning CNTs into fibers using a coagulating polymer produces a thin, uniform fiber that can be fabricated into an electrode. CNT fibers formed in poly(vinyl alcohol) (PVA) have been used as microelectrodes to detect dopamine, serotonin, and hydrogen peroxide. In this study, we characterize microelectrodes with CNT fibers made in polyethylenimine (PEI), which have much higher conductivity than PVA-CNT fibers. PEI-CNT fibers have lower overpotentials and higher sensitivities than PVA-CNT fiber microelectrodes, with a limit of detection of 5 nM for dopamine. The currents for dopamine were adsorption controlled at PEI-CNT fiber microelectrodes, independent of scan repetition frequency, and stable for over 10 h. PEI-CNT fiber microelectrodes were resistant to surface fouling by serotonin and the metabolite interferant 5-hydroxyindoleacetic acid (5-HIAA). No change in sensitivity was observed for detection of serotonin after 30 flow injection experiments or after 2 h in 5-HIAA for PEI-CNT electrodes. The antifouling properties were maintained in brain slices when serotonin was exogenously applied multiple times or after bathing the slice in 5-HIAA. Thus, PEI-CNT fiber electrodes could be useful for the in vivo monitoring of neurochemicals. PMID:25117550

  1. Delayed release of neurotransmitter from cerebellar granule cells.

    PubMed

    Atluri, P P; Regehr, W G

    1998-10-15

    At fast chemical synapses the rapid release of neurotransmitter that occurs within a few milliseconds of an action potential is followed by a more sustained elevation of release probability, known as delayed release. Here we characterize the role of calcium in delayed release and test the hypothesis that facilitation and delayed release share a common mechanism. Synapses between cerebellar granule cells and their postsynaptic targets, stellate cells and Purkinje cells, were studied in rat brain slices. Presynaptic calcium transients were measured with calcium-sensitive fluorophores, and delayed release was detected with whole-cell recordings. Calcium influx, presynaptic calcium dynamics, and the number of stimulus pulses were altered to assess their effect on delayed release and facilitation. Following single stimuli, delayed release can be separated into two components: one lasting for tens of milliseconds that is steeply calcium-dependent, the other lasting for hundreds of milliseconds that is driven by low levels of calcium with a nearly linear calcium dependence. The amplitude, calcium dependence, and magnitude of delayed release do not correspond to those of facilitation, indicating that these processes are not simple reflections of a shared mechanism. The steep calcium dependence of delayed release, combined with the large calcium transients observed in these presynaptic terminals, suggests that for physiological conditions delayed release provides a way for cells to influence their postsynaptic targets long after their own action potential activity has subsided.

  2. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease

    SciTech Connect

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-03-05

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of (/sup 3/H)-ketanserin to serotonin receptors in frontal cortex and of (/sup 3/H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of (/sup 3/H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens.

  3. Endogenous Auxin and Ethylene in Pellia (Bryophyta) 1

    PubMed Central

    Thomas, Robert J.; Harrison, Marcia A.; Taylor, Jane; Kaufman, Peter B.

    1983-01-01

    The occurrence of endogenous indole-3-acetic acid and ethylene in bryophyte tissue was tentatively demonstrated using gas chromatography, high performance liquid chromatography, and double-standard isotope dilution techniques. Rapidly elongating stalks (or setae) of Pellia epiphylla (L.) Corda sporophytes contain approximately 2.5 to 2.9 micrograms per gram fresh weight of putative free IAA. Ethylene released by setae increases during growth from 0.027 to 0.035 nanoliter per seta per hour. Application of 5 microliters per liter ethylene inhibits auxin-stimulated elongation growth of this tissue, a result which suggests that both endogenously produced compounds act in tandem as natural growth modulators. Images Fig. 1 PMID:16663227

  4. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research.

    PubMed

    Otsuka, Masanori

    2007-03-01

    PART I DESCRIBES IMPORTANT CONTRIBUTIONS MADE BY SOME JAPANESE PIONEERS IN THE FIELD OF NEUROTRANSMITTERS: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in striatum, its reduction in a patient with Parkinson's disease and the treatment with DOPA). In Part II, I present some of my reflections on my research on neurotransmitters. The work of my colleagues and myself has made some significant contributions to the establishment of neurotransmitter roles played by GABA and substance P, the first amino acid and the first peptide neurotransmitters, respectively. By the early 1960s, 3 substances, i.e., acetylcholine, noradrenaline, and adrenaline, had been established as neurotransmitters. Now the number of neurotransmitters is believed to be as many as 50 or even more mainly due to the inclusion of several amino acids and a large number of peptide transmitters.

  5. Contributions to the field of neurotransmitters by Japanese scientists, and reflections on my own research

    PubMed Central

    Otsuka, Masanori

    2007-01-01

    Part I describes important contributions made by some Japanese pioneers in the field of neurotransmitters: (their achievements in parentheses) J. Takamine (isolation and crystallization of adrenaline); K. Shimidzu (early hint for acetylcholine as a neurotransmitter); F. Kanematsu (donation of the Kanematsu Memorial Institute in Sydney); T. Hayashi (discovery of the excitatory action of glutamate and the inhibitory action of GABA); and I. Sano (discovery of a high concentration of dopamine in striatum, its reduction in a patient with Parkinson’s disease and the treatment with DOPA). In Part II, I present some of my reflections on my research on neurotransmitters. The work of my colleagues and myself has made some significant contributions to the establishment of neurotransmitter roles played by GABA and substance P, the first amino acid and the first peptide neurotransmitters, respectively. By the early 1960s, 3 substances, i.e., acetylcholine, noradrenaline, and adrenaline, had been established as neurotransmitters. Now the number of neurotransmitters is believed to be as many as 50 or even more mainly due to the inclusion of several amino acids and a large number of peptide transmitters. PMID:24019584

  6. Are vesicular neurotransmitter transporters potential treatment targets for temporal lobe epilepsy?

    PubMed Central

    Van Liefferinge, Joeri; Massie, Ann; Portelli, Jeanelle; Di Giovanni, Giuseppe; Smolders, Ilse

    2013-01-01

    The vesicular neurotransmitter transporters (VNTs) are small proteins responsible for packing synaptic vesicles with neurotransmitters thereby determining the amount of neurotransmitter released per vesicle through fusion in both neurons and glial cells. Each transporter subtype was classically seen as a specific neuronal marker of the respective nerve cells containing that particular neurotransmitter or structurally related neurotransmitters. More recently, however, it has become apparent that common neurotransmitters can also act as co-transmitters, adding complexity to neurotransmitter release and suggesting intriguing roles for VNTs therein. We will first describe the current knowledge on vesicular glutamate transporters (VGLUT1/2/3), the vesicular excitatory amino acid transporter (VEAT), the vesicular nucleotide transporter (VNUT), vesicular monoamine transporters (VMAT1/2), the vesicular acetylcholine transporter (VAChT) and the vesicular γ-aminobutyric acid (GABA) transporter (VGAT) in the brain. We will focus on evidence regarding transgenic mice with disruptions in VNTs in different models of seizures and epilepsy. We will also describe the known alterations and reorganizations in the expression levels of these VNTs in rodent models for temporal lobe epilepsy (TLE) and in human tissue resected for epilepsy surgery. Finally, we will discuss perspectives on opportunities and challenges for VNTs as targets for possible future epilepsy therapies. PMID:24009559

  7. Phorbol Ester Effects on Neurotransmission: Interaction with Neurotransmitters and Calcium in Smooth Muscle

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Gould, Robert J.; Peroutka, Stephen J.; Snyder, Solomon H.

    1985-01-01

    Stimulation of the phosphatidylinositol cycle by neurotransmitters generates diacylglycerol, an activator of protein kinase C, which may regulate some forms of neurotransmission. Phorbol esters, potent inflammatory and tumorpromoting compounds, also activate protein kinase C. We demonstrate potent and selective effects of phorbol esters on smooth muscle, indicating a role for protein kinase C in neurotransmission. In rat vas deferens and dog basilar artery, phorbol esters synergize with calcium to mimic the contractile effects of neurotransmitters that act through the phosphatidylinositol cycle. In guinea pig ileum and rat uterus, phorbol esters block contractions produced by these neurotransmitters.

  8. Neurotransmitters and neuromodulators controlling the anterior byssus retractor muscle of Mytilus edulis.

    PubMed

    Muneoka, Y; Fujisawa, Y; Matsuura, M; Ikeda, T

    1991-01-01

    1. The anterior byssus retractor muscle (ABRM) of Mytilus edulis is innervated by at least two kinds of nerves, excitatory and relaxing nerves. The principal neurotransmitters released from these nerves have been shown to be acetylcholine and serotonin, respectively. 2. Some other monoamines, such as dopamine and octopamine, and various peptides, such as FMRFamide-related peptides, Mytilus inhibitory peptides, SCP-related peptides and a catch-relaxing peptide, may also be involved in the regulation of the muscle as neurotransmitters or neuromodulators. 3. The ABRM seems to be typical of invertebrate muscles controlled by multiple neurotransmitters and neuromodulators.

  9. Synaptic Assembly of the Brain in the Absence of Neurotransmitter Secretion

    NASA Astrophysics Data System (ADS)

    Verhage, Matthijs; Maia, Ascanio S.; Plomp, Jaap J.; Brussaard, Arjen B.; Heeroma, Joost H.; Vermeer, Hendrika; Toonen, Ruud F.; Hammer, Robert E.; van den Berg, Timo K.; Missler, Markus; Geuze, Hans J.; Südhof, Thomas C.

    2000-02-01

    Brain function requires precisely orchestrated connectivity between neurons. Establishment of these connections is believed to require signals secreted from outgrowing axons, followed by synapse formation between selected neurons. Deletion of a single protein, Munc18-1, in mice leads to a complete loss of neurotransmitter secretion from synaptic vesicles throughout development. However, this does not prevent normal brain assembly, including formation of layered structures, fiber pathways, and morphologically defined synapses. After assembly is completed, neurons undergo apoptosis, leading to widespread neurodegeneration. Thus, synaptic connectivity does not depend on neurotransmitter secretion, but its maintenance does. Neurotransmitter secretion probably functions to validate already established synaptic connections.

  10. [An endogenous inhibitor of monoamine oxidase A (tribulin A) from brain: purification and structure identification].

    PubMed

    Medvedev, A E; Kamyshanskaia, N S; Halket, J; Glover, V; Sandler, A

    1995-05-01

    The endogenous monoamine oxidase inhibitor, tribulin, contains several components which selectively (or nonselectively) inhibit monoamine oxidases A and B. The pig brain tribulin component selectively inhibiting monoamine oxidase A was purified and identified as 4-hydroxyphenylethanol using gas chromatography-mass spectrometry. This compound was also found in the rabbit brain tribulin fraction which selectively inhibits monoamine oxidase A but has no influence on monoamine oxidase B. 4-Hydroxyphenylethanol inhibits monoamine oxidase A in an incompetitive manner with respect to the substrate, serotonin (Ki = 1.4 mM). Possible pathways of 4-hydroxyphenylethanol synthesis and its biological importance as the monoamine oxidase A inhibiting component of tribulin are discussed.

  11. Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals.

    PubMed

    Grilli, Massimo; Neri, Elisa; Zappettini, Stefania; Massa, Francesca; Bisio, Angela; Romussi, Giovanni; Marchi, Mario; Pittaluga, Anna

    2009-01-01

    We investigated the effects of salvinorin A on the basal and the 12 mM K(+)-evoked release of preloaded [(3)H]noradenaline ([(3)H]NA) and [(3)H]serotonin ([(3)H]5-HT) from mouse hippocampal nerve terminals (synaptosomes), as well as on the basal and 12mM K(+)-evoked release of preloaded [(3)H]dopamine ([(3)H]DA) from mouse striatal and prefrontal cortex (PFc) synaptosomes. Salvinorin A (0.1-1000 nM) failed to affect the basal release of amines, but inhibited the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]5-HT and [(3)H]DA. At the same concentration, salvinorin A facilitated the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]NA. These effects could not be observed in pertussis toxin (PTx) entrapped synaptosomes. The broad spectrum kappa-opioid receptor (KOR) antagonist norbinaltorphimine (norBNI, 1-100 nM) antagonized the inhibition of [(3)H]5-HT and [(3)H]DA exocytosis as well as the facilitation of [(3)H]NA overflow induced by 100 nM salvinorin A. The KOR agonist U69593 (1-100 nM) mimicked salvinorin A in inhibiting [(3)H]5-HT and of [(3)H]DA exocytosis, its effect being prevented by norBNI, but leaving unchanged the K(+)-evoked release of [(3)H]NA. The effects of Salvinorin A on neurotransmitter exocytosis were not prevented by the selective mu opioid (MOR) receptor antagonist CTAP (10-100 nM), whereas facilitation of [(3)H]NA exocytosis, but not inhibition of [(3)H]5-HT and [(3)H]DA K(+)-evoked release, was counteracted by the delta opioid receptor (DOR) antagonist naltrindole (1-100 nM). We conclude that salvinorin A presynaptically modulates central NA, 5-HT, and DA exocytosis evoked by a mild depolarizing stimulus by acting at presynaptic opioid receptors having different pharmacological profiles.

  12. Neurotransmitter-blocking agents influence antinociceptive effects of carbamazepine, baclofen, pentazocine and morphine on bradykinin-induced trigeminal pain.

    PubMed

    Foong, F W; Satoh, M

    1984-06-01

    The influence of naloxone (a narcotic antagonist), bicuculline (a GABA antagonist), phentolamine (an alpha-blocking agent), propranolol (a beta-adrenergic blocking agent), haloperidol (a dopaminergic blocking agent), methysergide (a serotonergic blocking agent) and atropine (a muscarinic blocking agent), on the antinociceptive effects induced by carbamazepine, baclofen, pentazocine and morphine, were investigated with a new antinociception test, using the trigeminal pain induced by application of bradykinin onto the tooth pulp of the rat. The antinociceptive effect of carbamazepine was significantly inhibited by bicuculline, phentolamine, propranolol and haloperidol but not by naloxone, methysergide and atropine. The effect of baclofen was significantly reduced by naloxone, bicuculline, propranolol and atropine but not by phentolamine, haloperidol and methysergide. The antinociceptive actions of pentazocine and morphine on trigeminal pain were significantly reduced by naloxone and phentolamine, and by naloxone alone, respectively. These results suggest the involvement of different neurotransmitters in the antinociceptive effects of the four analgesic drugs on trigeminal pain induced by bradykinin.

  13. Bioluminescence-Based High-Throughput Screen Identifies Pharmacological Agents That Target Neurotransmitter Signaling in Small Cell Lung Carcinoma

    PubMed Central

    Improgo, Ma. Reina D.; Johnson, Christopher W.; Tapper, Andrew R.; Gardner, Paul D.

    2011-01-01

    Background Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative. Methods and Findings We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC1280 compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability. Conclusions The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development. PMID:21931655

  14. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    SciTech Connect

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  15. Acute effects of tianeptine on circulating neurotransmitters and cardiovascular parameters.

    PubMed

    Lechin, Fuad; van der Dijs, Bertha; Hernández, Gerardo; Orozco, Beatriz; Rodríguez, Simon; Baez, Scarlet

    2006-03-01

    Tianeptine is a serotonin-uptake enhancer drug whose antidepressant effectiveness is based on its ability to reduce rather than increase serotonin availability at the synaptic cleft. This paradoxical neuropharmacological mechanism has raised doubt among neuropharmacologists and psychiatrists as to the role of tianeptine as a trusty-reliable antidepressant drug. This controversial issue led us to investigate the acute effects of a single, oral dose (12.5 mg) of this drug on circulating neurotransmitters and cardiovascular parameters in 50 healthy subjects. The drug provoked a striking and significant reduction of plasma noradrenaline (NA) and plasma serotonin (f-5-HT) while it increased plasma dopamine (DA) and platelet serotonin (p-5-HT) concentrations within the 4-h study period. No adrenaline (Ad) changes were registered. The NA/Ad ratio and the f-5-HT/p-5-HT ratio showed significant reduction throughout the test. Finally, although diastolic blood pressure (DBP) showed significant decrease, neither systolic blood pressure (SBP) nor heart rate (HR) showed significant change. These findings are consistent with the postulation that tianeptine reduces both neural sympathetic activity and parasympathetic activity without affecting adrenal sympathetic activity, enabling us to discuss the possible mechanisms involved in the antidepressant effects of tianeptine. The well-known fact that major depressed patients always show raised NA plus lower than normal p-5-HT levels, both disorders which are normalized by tianeptine, gives neurochemical support to the clinical improvement triggered by the drug in these patients. Summarizing, the results presented in this study demonstrate that tianeptine triggers significant reduction of circulating noradrenaline and plasma serotonin while increasing circulating dopamine and platelet serotonin. Other possible neuropharmacological effects are also discussed.

  16. Endogenous Epoxygenases Are Modulators of Monocyte/Macrophage Activity

    PubMed Central

    Sugden, Mary C.; Holness, Mark J.; Swales, Karen E.; Warner, Timothy D.; Edin, Matthew L.; Zeldin, Darryl C.; Gilroy, Derek W.; Bishop-Bailey, David

    2011-01-01

    Background Arachidonic acid is metabolized through three major metabolic pathways, the cyclooxygenase, lipoxygenase and CYP450 enzyme systems. Unlike cyclooxygenase and lipoxygenases, the role of CYP450 epoxygenases in monocyte/macrophage-mediated responses is not known. Methodology/Principal Findings When transfected in vitro, CYP2J2 is an efficient activator of anti-inflammatory pathways through the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. Human monocytes and macrophages contain PPARα and here we show they express the epoxygenases CYP2J2 and CYP2C8. Inhibition of constitutive monocyte epoxygenases using the epoxygenase inhibitor SKF525A induces cyclooxygenase (COX)-2 expression and activity, and the release of TNFα, and can be reversed by either add back of the endogenous epoxygenase products and PPARα ligand 11,12- epoxyeicosatrienoic acid (EET) or the addition of the selective synthetic PPARα ligand GW7647. In alternatively activated (IL-4-treated) monocytes, in contrast to classically activated cells, epoxygenase inhibition decreased TNFα release. Epoxygenases can be pro-inflammatory via superoxide anion production. The suppression of TNFα by SKF525A in the presence of IL-4 was associated with a reduction in superoxide anion generation and reproduced by the superoxide dismutase MnCl2. Similar to these acute activation studies, in monocyte derived macrophages, epoxygenase inhibition elevates M1 macrophage TNFα mRNA and further decreases M2 macrophage TNFα. Conclusions/Significance In conclusion, epoxygenase activity represents an important endogenous pathway which limits monocyte activation. Moreover endogenous epoxygenases are immuno-modulators regulating monocyte/macrophage activation depending on the underlying activation state. PMID:22028915

  17. Mimicking Neurotransmitter Release in Chemical Synapses via Hysteresis Engineering in MoS2 Transistors.

    PubMed

    Arnold, Andrew J; Razavieh, Ali; Nasr, Joseph R; Schulman, Daniel S; Eichfeld, Chad M; Das, Saptarshi

    2017-03-28

    Neurotransmitter release in chemical synapses is fundamental to diverse brain functions such as motor action, learning, cognition, emotion, perception, and consciousness. Moreover, improper functioning or abnormal release of neurotransmitter is associated with numerous neurological disorders such as epilepsy, sclerosis, schizophrenia, Alzheimer's disease, and Parkinson's disease. We have utilized hysteresis engineering in a back-gated MoS2 field effect transistor (FET) in order to mimic such neurotransmitter release dynamics in chemical synapses. All three essential features, i.e., quantal, stochastic, and excitatory or inhibitory nature of neurotransmitter release, were accurately captured in our experimental demonstration. We also mimicked an important phenomenon called long-term potentiation (LTP), which forms the basis of human memory. Finally, we demonstrated how to engineer the LTP time by operating the MoS2 FET in different regimes. Our findings could provide a critical component toward the design of next-generation smart and intelligent human-like machines and human-machine interfaces.

  18. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen

    PubMed Central

    Sullivan, Kelly G.; Levin, Michael

    2016-01-01

    Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, we report results from a loss- and gain-of-function survey, using pharmacologic modulators of several neurotransmitter pathways to examine possible roles in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic, and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations including craniofacial defects, hyperpigmentation, muscle mispatterning, and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy. PMID:27060969

  19. Endogenous Peer Effects: Fact or Fiction?

    ERIC Educational Resources Information Center

    Yeung, Ryan; Nguyen-Hoang, Phuong

    2016-01-01

    The authors examine endogenous peer effects, which occur when a student's behavior or outcome is a function of the behavior or outcome of his or her peer group. Endogenous peer effects have important implications for educational policies such as busing, school choice and tracking. In this study, the authors quantitatively review the literature on…

  20. Endogenous timing factors in bird migration

    NASA Technical Reports Server (NTRS)

    Gwinner, E. G.

    1972-01-01

    Several species of warbler birds were observed in an effort to determine what initiates and terminates migration. Environmental and endogenous timing mechanisms were analyzed. The results indicate that endogenous stimuli are dominant factors for bird migration especially for long distances. It was concluded that environmental factors act as an assist mechanism.

  1. Approaches towards endogenous pancreatic regeneration.

    PubMed

    Banerjee, Meenal; Kanitkar, Meghana; Bhonde, Ramesh R

    2005-01-01

    The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.

  2. Xenotransplantation and pig endogenous retroviruses.

    PubMed

    Magre, Saema; Takeuchi, Yasuhiro; Bartosch, Birke

    2003-01-01

    Xenotransplantation, in particular transplantation of pig cells, tissues and organs into human patients, may alleviate the current shortage of suitable allografts available for human transplantation. This overview addresses the physiological, immunological and virological factors considered with regard to xenotransplantation. Among the issues reviewed are the merits of using pigs as xenograft source species, the compatibility of pig and human organ physiology and the immunological hindrances with regard to the various types of rejection and attempts at abrogating rejection. Advances in the prevention of pig organ rejection by creating genetically modified pigs that are more suited to the human microenvironment are also discussed. Finally, with regard to virology, possible zoonotic infections emanating from pigs are reviewed, with special emphasis on the pig endogenous retrovirus (PERV). An in depth account of PERV studies, comprising their discovery as well as recent knowledge of the virus, is given. To date, all retrospective studies on patients with pig xenografts have shown no evidence of PERV transmission, however, many factors make us interpret these results with caution. Although the lack of PERV infection in xenograft recipients up to now is encouraging, more basic research and controlled animal studies that mimic the pig to human xenotransplantation setting more closely are required for safety assessment.

  3. Endogenous small RNAs and antibacterial immunity in plants.

    PubMed

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  4. LRRK2 kinase activity regulates synaptic vesicle trafficking and neurotransmitter release through modulation of LRRK2 macro-molecular complex

    PubMed Central

    Cirnaru, Maria D.; Marte, Antonella; Belluzzi, Elisa; Russo, Isabella; Gabrielli, Martina; Longo, Francesco; Arcuri, Ludovico; Murru, Luca; Bubacco, Luigi; Matteoli, Michela; Fedele, Ernesto; Sala, Carlo; Passafaro, Maria; Morari, Michele; Greggio, Elisa; Onofri, Franco; Piccoli, Giovanni

    2014-01-01

    Mutations in Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains executing several functions, including GTP hydrolysis, kinase activity, and protein binding. Robust evidence suggests that LRRK2 acts at the synaptic site as a molecular hub connecting synaptic vesicles to cytoskeletal elements via a complex panel of protein-protein interactions. Here we investigated the impact of pharmacological inhibition of LRRK2 kinase activity on synaptic function. Acute treatment with LRRK2 inhibitors reduced the frequency of spontaneous currents, the rate of synaptic vesicle trafficking and the release of neurotransmitter from isolated synaptosomes. The investigation of complementary models lacking LRRK2 expression allowed us to exclude potential off-side effects of kinase inhibitors on synaptic functions. Next we studied whether kinase inhibition affects LRRK2 heterologous interactions. We found that the binding among LRRK2, presynaptic proteins and synaptic vesicles is affected by kinase inhibition. Our results suggest that LRRK2 kinase activity influences synaptic vesicle release via modulation of LRRK2 macro-molecular complex. PMID:24904275

  5. The kunitz protease inhibitor form of the amyloid precursor protein (KPI/APP) inhibits the proneuropeptide processing enzyme prohormone thiol protease (PTP). Colocalization of KPI/APP and PTP in secretory vesicles.

    PubMed

    Hook, V Y; Sei, C; Yasothornsrikul, S; Toneff, T; Kang, Y H; Efthimiopoulos, S; Robakis, N K; Van Nostrand, W

    1999-01-29

    Proteolytic processing of proenkephalin and proneuropeptides is required for the production of active neurotransmitters and peptide hormones. Variations in the extent of proenkephalin processing in vivo suggest involvement of endogenous protease inhibitors. This study demonstrates that "protease nexin 2 (PN2)," the secreted form of the kunitz protease inhibitor (KPI) of the amyloid precursor protein (APP), potently inhibited the proenkephalin processing enzyme known as prohormone thiol protease (PTP), with a Ki,app of 400 nM. Moreover, PTP and PN2 formed SDS-stable complexes that are typical of kunitz protease inhibitor interactions with target proteases. In vivo, KPI/APP (120 kDa), as well as a truncated form of KPI/APP that resembles PN2 in apparent molecular mass (110 kDa), were colocalized with PTP and (Met)enkephalin in secretory vesicles of adrenal medulla (chromaffin granules). KPI/APP (110-120 kDa) was also detected in pituitary secretory vesicles that contain PTP. In chromaffin cells, calcium-dependent secretion of KPI/APP with PTP and (Met)enkephalin demonstrated the colocalization of these components in functional secretory vesicles. These results suggest a role for KPI/APP inhibition of PTP in regulated secretory vesicles. In addition, these results are the first to identify an endogenous protease target of KPI/APP, which is developmentally regulated in aging and Alzheimer's disease.

  6. Gravity effects on endogenous movements

    NASA Astrophysics Data System (ADS)

    Johnsson, Anders; Antonsen, Frank

    Gravity effects on endogenous movements A. Johnsson * and F. Antonsen *+ * Department of Physics, Norwegian University of Science and Technology,NO-7491, Trond-heim, Norway, E-mail: anders.johnsson@ntnu.no + Present address: Statoil Research Center Trondheim, NO-7005, Trondheim, Norway Circumnutations in stems/shoots exist in many plants and often consists of more or less regular helical movements around the plumb line under Earth conditions. Recent results on circumnu-tations of Arabidopsis in space (Johnsson et al. 2009) showed that minute amplitude oscilla-tions exist in weightlessness, but that centripetal acceleration (mimicking the gravity) amplified and/or created large amplitude oscillations. Fundamental mechanisms underlying these results will be discussed by modeling the plant tissue as a cylinder of cells coupled together. As a starting point we have modeled (Antonsen 1998) standing waves on a ring of biological cells, as first discussed in a classical paper (Turing 1952). If the coupled cells can change their water content, an `extension' wave could move around the ring. We have studied several, stacked rings of cells coupled into a cylinder that together represent a cylindrical plant tissue. Waves of extensions travelling around the cylinder could then represent the observable circumnutations. The coupling between cells can be due to cell-to-cell diffusion, or to transport via channels, and the coupling can be modeled to vary in both longitudinal and transversal direction of the cylinder. The results from ISS experiments indicate that this cylindrical model of coupled cells should be able to 1) show self-sustained oscillations without the impact of gravity (being en-dogenous) and 2) show how an environmental factor like gravity can amplify or generate the oscillatory movements. Gravity has been introduced in the model by a negative, time-delayed feed-back transport across the cylinder. This represents the physiological reactions to acceler

  7. Raised tone reveals ATP as a sympathetic neurotransmitter in the porcine mesenteric arterial bed.

    PubMed

    Shatarat, Amjad; Dunn, William R; Ralevic, Vera

    2014-12-01

    The relative importance of ATP as a functional sympathetic neurotransmitter in blood vessels has been shown to be increased when the level of preexisting vascular tone or pressure is increased, in studies carried out in rat mesenteric arteries. The aim of the present study was to determine whether tone influences the involvement of ATP as a sympathetic cotransmitter with noradrenaline in another species. We used the porcine perfused mesenteric arterial bed and porcine mesenteric large, medium and small arteries mounted for isometric tension recording, because purinergic cotransmission can vary depending on the size of the blood vessel. In the perfused mesenteric bed at basal tone, sympathetic neurogenic vasocontractile responses were abolished by prazosin, an α1-adrenoceptor antagonist, but there was no significant effect of α,β-methylene ATP, a P2X receptor-desensitizing agent. Submaximal precontraction of the mesenteric arterial bed with U46619, a thromboxane A2 mimetic, augmented the sympathetic neurogenic vasocontractile responses; under these conditions, both α,β-methylene ATP and prazosin attenuated the neurogenic responses. In the mesenteric large, medium and small arteries, prazosin attenuated the sympathetic neurogenic contractile responses under conditions of both basal and U46619-raised tone. α,β-Methylene ATP was effective in all of these arteries only under conditions of U46619-induced tone, causing a similar inhibition in all arteries, but had no significant effect on sympathetic neurogenic contractions at basal tone. These data show that ATP is a cotransmitter with noradrenaline in porcine mesenteric arteries; the purinergic component was revealed under conditions of partial precontraction, which is more relevant to physiological conditions.

  8. Melanocortin 4 receptor constitutive activity inhibits L-type voltage-gated calcium channels in neurons.

    PubMed

    Agosti, F; Cordisco Gonzalez, S; Martinez Damonte, V; Tolosa, M J; Di Siervi, N; Schioth, H B; Davio, C; Perello, M; Raingo, J

    2017-03-27

    The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain nuclei playing a crucial role in the regulation of energy balance controlling the homeostasis of the organism. It displays both agonist-evoked and constitutive activity, and moreover, it can couple to different G proteins. Most of the research on MC4R has been focused on agonist-induced activity, while the molecular and cellular basis of MC4R constitutive activity remains scarcely studied. We have previously shown that neuronal N-type voltage-gated calcium channels (CaV2.2) are inhibited by MC4R agonist-dependent activation, while the CaV subtypes that carry L- and P/Q-type current are not. Here, we tested the hypothesis that MC4R constitutive activity can affect CaV, with focus on the channel subtypes that can control transcriptional activity coupled to depolarization (L-type, CaV1.2/1.3) and neurotransmitter release (N- and P/Q-type, CaV2.2 and CaV2.1). We found that MC4R constitutive activity inhibits specifically CaV1.2/1.3 and CaV2.1 subtypes of CaV. We also explored the signaling pathways mediating this inhibition, and thus propose that agonist-dependent and basal MC4R activation modes signal differentially through Gs and Gi/o pathways to impact on different CaV subtypes. In addition, we found that chronic incubation with MC4R endogenous inverse agonist, agouti and agouti-related peptide (AgRP), occludes CaV inhibition in a cell line and in amygdaloid complex cultured neurons as well. Thus, we define new mechanisms of control of the main mediators of depolarization-induced calcium entry into neurons by a GPCR that displays constitutive activity.

  9. Mapping neurotransmitter networks with PET: an example on serotonin and opioid systems.

    PubMed

    Tuominen, Lauri; Nummenmaa, Lauri; Keltikangas-Järvinen, Liisa; Raitakari, Olli; Hietala, Jarmo

    2014-05-01

    All functions of the human brain are consequences of altered activity of specific neural pathways and neurotransmitter systems. Although the knowledge of "system level" connectivity in the brain is increasing rapidly, we lack "molecular level" information on brain networks and connectivity patterns. We introduce novel voxel-based positron emission tomography (PET) methods for studying internal neurotransmitter network structure and intercorrelations of different neurotransmitter systems in the human brain. We chose serotonin transporter and μ-opioid receptor for this analysis because of their functional interaction at the cellular level and similar regional distribution in the brain. Twenty-one healthy subjects underwent two consecutive PET scans using [(11)C]MADAM, a serotonin transporter tracer, and [(11)C]carfentanil, a μ-opioid receptor tracer. First, voxel-by-voxel "intracorrelations" (hub and seed analyses) were used to study the internal structure of opioid and serotonin systems. Second, voxel-level opioid-serotonin intercorrelations (between neurotransmitters) were computed. Regional μ-opioid receptor binding potentials were uniformly correlated throughout the brain. However, our analyses revealed nonuniformity in the serotonin transporter intracorrelations and identified a highly connected local network (midbrain-striatum-thalamus-amygdala). Regionally specific intercorrelations between the opioid and serotonin tracers were found in anteromedial thalamus, amygdala, anterior cingulate cortex, dorsolateral prefrontal cortex, and left parietal cortex, i.e., in areas relevant for several neuropsychiatric disorders, especially affective disorders. This methodology enables in vivo mapping of connectivity patterns within and between neurotransmitter systems. Quantification of functional neurotransmitter balances may be a useful approach in etiological studies of neuropsychiatric disorders and also in drug development as a biomarker-based rationale for targeted

  10. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord.

    PubMed

    Pyakurel, Poojan; Privman Champaloux, Eve; Venton, B Jill

    2016-08-17

    Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.

  11. Endogenous retroviruses regulate periimplantation placental growth and differentiation

    PubMed Central

    Dunlap, Kathrin A.; Palmarini, Massimo; Varela, Mariana; Burghardt, Robert C.; Hayashi, Kanako; Farmer, Jennifer L.; Spencer, Thomas E.

    2006-01-01

    Endogenous retroviruses (ERVs) are fixed and abundant in the genomes of vertebrates. Circumstantial evidence suggests that ERVs play a role in mammalian reproduction, particularly placental morphogenesis, because intact ERV envelope genes were found to be expressed in the syncytiotrophoblasts of human and mouse placenta and to elicit fusion of cells in vitro. We report here in vivo and in vitro experiments finding that the envelope of a particular class of ERVs of sheep, endogenous Jaagsiekte sheep retroviruses (enJSRVs), regulates trophectoderm growth and differentiation in the periimplantation conceptus (embryo/fetus and associated extraembryonic membranes). The enJSRV envelope gene is expressed in the trophectoderm of the elongating ovine conceptus after day 12 of pregnancy. Loss-of-function experiments were conducted in utero by injecting morpholino antisense oligonucleotides on day 8 of pregnancy that blocked enJSRV envelope protein production in the conceptus trophectoderm. This approach retarded trophectoderm outgrowth during conceptus elongation and inhibited trophoblast giant binucleate cell differentiation as observed on day 16. Pregnancy loss was observed by day 20 in sheep receiving morpholino antisense oligonucleotides. In vitro inhibition of the enJSRV envelope reduced the proliferation of mononuclear trophectoderm cells isolated from day 15 conceptuses. Consequently, these results demonstrate that the enJSRV envelope regulates trophectoderm growth and differentiation in the periimplantation ovine conceptus. This work supports the hypothesis that ERVs play fundamental roles in placental morphogenesis and mammalian reproduction. PMID:16980413

  12. Physical activity behavior predicts endogenous pain modulation in older adults.

    PubMed

    Naugle, Kelly M; Ohlman, Thomas; Naugle, Keith E; Riley, Zachary A; Keith, NiCole R

    2017-03-01

    Older adults compared with younger adults are characterized by greater endogenous pain facilitation and a reduced capacity to endogenously inhibit pain, potentially placing them at a greater risk for chronic pain. Previous research suggests that higher levels of self-reported physical activity are associated with more effective pain inhibition and less pain facilitation on quantitative sensory tests in healthy adults. However, no studies have directly tested the relationship between physical activity behavior and pain modulatory function in older adults. This study examined whether objective measures of physical activity behavior cross-sectionally predicted pain inhibitory function on the conditioned pain modulation (CPM) test and pain facilitation on the temporal summation (TS) test in healthy older adults. Fifty-one older adults wore an accelerometer on the hip for 7 days and completed the CPM and TS tests. Measures of sedentary time, light physical activity (LPA), and moderate to vigorous physical activity (MVPA) were obtained from the accelerometer. Hierarchical linear regressions were conducted to determine the relationship of TS and CPM with levels of physical activity, while controlling for demographic, psychological, and test variables. The results indicated that sedentary time and LPA significantly predicted pain inhibitory function on the CPM test, with less sedentary time and greater LPA per day associated with greater pain inhibitory capacity. Additionally, MVPA predicted pain facilitation on the TS test, with greater MVPA associated with less TS of pain. These results suggest that different types of physical activity behavior may differentially impact pain inhibitory and facilitatory processes in older adults.

  13. Regulation of Neurotransmitter Responses in the Central Nervous System

    DTIC Science & Technology

    1990-02-05

    function as neuromodulatory sites. Baclofen (BAC), a GABAB agonist has been shown to have multiple effects on stimulus -e-7oked increases in second...incubation of rat cortical slices in the presence of baclofen (BAC) increased the potency of isoproterenol to inhibit [1251]idopindolol binding to high...Comparison of baclofen and phorbol esters as augmenters of isoproterenol- stimulated cAMP production in rat brain slices. Soc. Neurosci. Abstracts, 13:1653

  14. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine.

    PubMed

    Busch, A E; Karbach, U; Miska, D; Gorboulev, V; Akhoundova, A; Volk, C; Arndt, P; Ulzheimer, J C; Sonders, M S; Baumann, C; Waldegger, S; Lang, F; Koepsell, H

    1998-08-01

    Recently, we cloned the human cation transporter hOCT2, a member of a new family of polyspecific transporters from kidney, and demonstrated electrogenic uptake of tetraethylammonium, choline, N1-methylnicotinamide, and 1-methyl-4-phenylpyridinium. Using polymerase chain reaction amplification, cDNA sequencing, in situ hybridization, and immunohistochemistry, we now show that hOCT2 message and protein are expressed in neurons of the cerebral cortex and in various subcortical nuclei. In Xenopus laevis oocytes expressing hOCT2, electrogenic transport of norepinephrine, histamine, dopamine, serotonin, and the antiparkinsonian drugs memantine and amantadine was demonstrated by tracer influx, tracer efflux, electrical measurements, or a combination. Apparent Km values of 1.9 +/- 0.6 mM (norepinephrine), 1.3 +/- 0.3 mM (histamine), 0.39 +/- 0.16 mM (dopamine), 80 +/- 20 microM (serotonin), 34 +/- 5 microM (memantine), and 27 +/- 3 microM (amantadine) were estimated. Measurement of trans-effects in depolarized oocytes and human embryonic kidney cells expressing hOCT2 suggests that there were different rates and specificities for cation influx and efflux. The hypothesis is raised that hOCT2 plays a physiological role in the central nervous system by regulating interstitial concentrations of monoamine neurotransmitters that have evaded high affinity uptake mechanisms. We show that amantadine does not interact with the expressed human Na+/Cl- dopamine cotransporter. However, concentrations of amantadine that are effective for the treatment of Parkinson's disease may increase the interstitial concentrations of dopamine and other aminergic neurotransmitters by competitive inhibition of hOCT2.

  15. ECL-cell histamine mobilization in conscious rats: effects of locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators.

    PubMed

    Norlén, P; Bernsand, M; Konagaya, T; Håkanson, R

    2001-12-01

    1. The ECL cells control gastric acid secretion by mobilizing histamine in response to circulating gastrin. In addition, the ECL cells are thought to operate under nervous control and to be influenced by local inflammatory processes. 2. The purpose of the present study was to monitor histamine mobilization from ECL cells in conscious rats in response to locally applied regulatory peptides, candidate neurotransmitters and inflammatory mediators. 3. Microdialysis probes were implanted in the submucosa of the acid-producing part of the rat stomach. Three days later, the agents to be tested were administered via the microdialysis probe and their effects on basal (48 h fast) and stimulated (intravenous infusion of gastrin-17, 3 nmol kg(-1) h(-1)) mobilization of ECL-cell histamine was monitored by continuous measurement of histamine in the perfusate (radioimmunoassay). 4. Locally administered gastrin-17 and sulfated cholecystokinin-8 mobilized histamine as did pituitary adenylate cyclase-activating peptide-27, vasoactive intestinal peptide, peptide YY, met-enkephalin, endothelin and noradrenaline, adrenaline and isoprenaline. 5. While gastrin, sulfated-cholecystokinin-8, met-enkephalin and isoprenaline induced a sustained elevation of the submucosal histamine concentration, endothelin, peptide YY, pituitary adenylate cyclase activating peptide, vasoactive intestinal peptide, noradrenaline and adrenaline induced a transient elevation. 6. Calcitonin gene-related peptide, galanin, somatostatin and the prostanoid misoprostol inhibited gastrin-stimulated histamine mobilization. 7. The gut hormones neurotensin and secretin and the neuropeptides gastrin-releasing peptide, neuropeptide Y and substance P failed to affect ECL-cell histamine mobilization, while motilin and neuromedin U-25 had weak stimulatory effects. Also acetylcholine, carbachol, serotonin and the amino acid neurotransmitters aspartate, gamma-aminobutyric acid, glutamate and glycine were inactive or weakly

  16. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension.

    PubMed

    Zhang, Meng; Qin, Da-Nian; Suo, Yu-Ping; Su, Qing; Li, Hong-Bao; Miao, Yu-Wang; Guo, Jing; Feng, Zhi-Peng; Qi, Jie; Gao, Hong-Li; Mu, Jian-Jun; Zhu, Guo-Qing; Kang, Yu-Ming

    2015-06-15

    Reactive oxygen species (ROS) in the brain plays an important role in the progression of hypertension and hydrogen peroxide (H2O2) is a major component of ROS. The aim of this study is to explore whether endogenous H2O2 changed by polyethylene glycol-catalase (PEG-CAT) and aminotriazole (ATZ) in the hypothalamic paraventricular nucleus (PVN) regulates neurotransmitters, renin-angiotensin system (RAS), and cytokines, and whether subsequently affects the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in high salt-induced hypertension. Male Sprague-Dawley rats received a high-salt diet (HS, 8% NaCl) or a normal-salt diet (NS, 0.3% NaCl) for 10 weeks. Then rats were treated with bilateral PVN microinjection of PEG-CAT (0.2 i.u./50nl), an analog of endogenous catalase, the catalase inhibitor ATZ (10nmol/50nl) or vehicle. High salt-fed rats had significantly increased MAP, RSNA, plasma norepinephrine (NE) and pro-inflammatory cytokines (PICs). In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 (subunits of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), interleukin-1beta (IL-1β), glutamate and NE, and lower levels of gamma-aminobutyric acid (GABA) and interleukin-10 (IL-10) in the PVN than normal diet rats. Bilateral PVN microinjection of PEG-CAT attenuated the levels of RAS and restored the balance of neurotransmitters and cytokines, while microinjection of ATZ into the PVN augmented those changes occurring in hypertensive rats. Our findings demonstrate that ROS component H2O2 in the PVN regulating MAP and RSNA are partly due to modulate neurotransmitters, renin-angiotensin system, and cytokines within the PVN in salt-induced hypertension.

  17. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades.

    PubMed

    Sancho, Veronica; Berna, Marc J; Thill, Michelle; Jensen, R T

    2011-12-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).

  18. PKCθ activation in pancreatic acinar cells by gastrointestinal hormones/neurotransmitters and growth factors is needed for stimulation of numerous important cellular signaling cascades

    PubMed Central

    Sancho, Veronica; Berna, Marc J.; Thill, Michelle; Jensen, R. T.

    2011-01-01

    The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal(GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin(CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA were present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCKA-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125FAK and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ’s direct association with AKT, RafA, RafC and Lyn. These results show for the first time PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth). PMID:21810446

  19. Endomorphins inhibit high-threshold Ca2+ channel currents in rodent NG108-15 cells overexpressing mu-opioid receptors.

    PubMed

    Higashida, H; Hoshi, N; Knijnik, R; Zadina, J E; Kastin, A J

    1998-02-15

    1. Extracellular application of the novel brain peptides endomorphin 1 (EM1) and endomorphin 2 (EM2) inhibited high-threshold Ca2+ channel currents in NGMO-251 cells, a daughter clone of NG108-15 mouse neuroblastoma x rat glioma hybrid cells, in which mu-opioid receptors are overexpressed. 2. In contrast, EM1 and EM2 did not induce this inhibition in the parental NG108-15 cells that predominantly express endogenous delta-receptors. 3. The IC50 for EM1 and EM2 was 7.7 and 23.1 nM, respectively. 4. EM-induced Ca2+ channel current inhibition was blocked by treatment or pretreatment of the cells with 100 microM N-methylmaleimide or 100 ng ml-1 pertussis toxin. 5. These results show that a decrease in conductance of Ca2+ channels results following interaction of EMs with cloned mu-receptors, which couple via Gi/Go-type G proteins, and that EMs fulfill one of the necessary synaptic conditions for them to be identified as neurotransmitters.

  20. Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains.

    PubMed

    Nakayama, Minoru; Hama, Chihiro

    2011-02-01

    Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.

  1. Temperature dependence of electrical properties of mixture of exogenous neurotransmitters dopamine and epinephrine

    NASA Astrophysics Data System (ADS)

    Patki, Mugdha; Patil, Vidya

    2016-05-01

    Neurotransmitters are chemical messengers that support the communication between the neurons. In vitro study of exogenous neurotransmitters Dopamine and Epinephrine and their mixture, carried out to learn about their electrical properties being dielectric constant and conductivity amongst others. Dielectric constant and conductivity of the selected neurotransmitters are found to increase with temperature. As a result, the time constant of the system increases with temperature. This change leads to increase in the time taken by the synapse to transport the action potential. The correlation between physical properties of exogenous neurotransmitters and psychological and physiological behaviour of human being may be understood with the help of current study. The response time of Epinephrine is in microseconds whereas response time of Dopamine is in milliseconds. The response time for both the neurotransmitters and their mixture is found to be increasing with temperature indicating the symptoms such as depression, apathy, chronic fatigue and low physical energy with no desire to exercise the body, which are observed during the fever.

  2. Recent progress and challenges in nanotechnology for biomedical applications: an insight into the analysis of neurotransmitters.

    PubMed

    Shankaran, Dhesingh Ravi; Miura, Norio

    2007-01-01

    Nanotechnology offers exciting opportunities and unprecedented compatibilities in manipulating chemical and biological materials at the atomic or molecular scale for the development of novel functional materials with enhanced capabilities. It plays a central role in the recent technological advances in biomedical technology, especially in the areas of disease diagnosis, drug design and drug delivery. In this review, we present the recent trend and challenges in the development of nanomaterials for biomedical applications with a special emphasis on the analysis of neurotransmitters. Neurotransmitters are the chemical messengers which transform information and signals all over the body. They play prime role in functioning of the central nervous system (CNS) and governs most of the metabolic functions including movement, pleasure, pain, mood, emotion, thinking, digestion, sleep, addiction, fear, anxiety and depression. Thus, development of high-performance and user-friendly analytical methods for ultra-sensitive detection of neurotransmitters remain a major challenge in modern biomedical analysis. Nanostructured materials are emerging as a powerful mean for diagnosis of CNS disorders because of their unique optical, size and surface characteristics. This review provides a brief outline on the basic concepts and recent advancements of nanotechnology for biomedical applications, especially in the analysis of neurotransmitters. A brief introduction to the nanomaterials, bionanotechnology and neurotransmitters is also included along with discussions on most of the patents published in these areas.

  3. mGluR1 enhances efferent inhibition of inner hair cells in the developing rat cochlea.

    PubMed

    Ye, Zhanlei; Goutman, Juan D; Pyott, Sonja J; Glowatzki, Elisabeth

    2017-02-17

    Just before the onset of hearing, the inner hair cells (IHCs) receive inhibitory efferent input from cholinergic medial olivocochlear (MOC) neurons originating in the brainstem. This input may serve a role in the maturation of the ascending (afferent) auditory system by inhibiting spontaneous activity of the IHCs. To investigate the molecular mechanisms regulating these IHC efferent synapses, we combined electrical stimulation of the efferent fibres with patch clamp recordings from the IHCs to measure efferent synaptic strength. By examining evoked responses, we show that activation of mGluRs by general and group I specific mGluR agonists enhances IHC efferent inhibition. This enhancement is blocked by application of a group I mGluR1-specific antagonist, indicating that enhancement of IHC efferent inhibition is mediated by group I mGluRs and specifically by mGluR1s. By comparing spontaneous and evoked responses, we show that group I mGluR agonists act presynaptically to increase neurotransmitter release without affecting postsynaptic responsiveness. Moreover, endogenous glutamate released from the IHCs also enhances IHC efferent inhibition via the activation of group I mGluRs. Finally, immunofluorescent analysis indicates that the efferent terminals are sufficiently close to IHC glutamate release sites to allow activation of mGluRs on the efferent terminals by glutamate spillover. Together, these results suggest that glutamate released from the IHCs activates group I mGluRs (mGluR1s), likely present on the efferent terminals, which, in turn, enhances release of acetylcholine and inhibition of the IHCs. Thus, mGluRs establish a local negative feedback loop positioned to regulate IHC activity and maturation of the ascending auditory system in the developing cochlea. This article is protected by copyright. All rights reserved.

  4. The N-methyl-D-aspartate neurotransmitter receptor is a mammalian brain target for the dinoflagellate Pfiesteria piscicida toxin.

    PubMed

    El-Nabawi, A; Quesenberry, M; Saito, K; Silbergeld, E; Vasta, G; Eldefrawi, A

    2000-11-15

    Blooms of Pfiesteria piscicida, a dinoflagellate in eastern U.S. coastal rivers, are believed to secrete toxins that kill fish and produce short-term memory loss in humans. Only one or two of Pfiesteria's multiple stages secrete the toxin, and only under certain environmental conditions. Thus, neither the presence of Pfiesteria nor fish kill alone can be indicative of toxin presence. The objective of this study was to identify the mammalian molecular brain target for the toxin that is associated with decrements in memory. Seven rat brain neurotransmitter receptors were selected to study because of their reported roles in cognitive function: receptors for nicotine, muscarine, AMPA/kainate, N-methyl-D-aspartate (NMDA), gamma-aminobutyric acid, and dopamine 1 and 2. The effects of 17 environmental and laboratory samples on radioactive ligand binding to these receptors were studied. Of the seven receptors, binding only to the NMDA receptor was inhibited by only the two Pfiesteria-containing waters (identified by PCR) that also killed fish, and not by any of the other 15 samples tested. It is suggested that inhibition of NMDA-receptor binding is the cause of memory loss in exposed humans. Thus, it could be a useful biomarker for the toxin's presence in rivers for decisions on closures and for identification of the fractions containing the toxin during its purification. Knowledge of the toxin's molecular target, and how it affects its function, also leads to suggestions for therapeutics to use in animal models.

  5. Serine protease inhibitors suppress pancreatic endogenous proteases and modulate bacterial neutral proteases.

    PubMed

    Nduaguibe, Chikodili C; Bentsi-Barnes, Kwamina; Mullen, Yoko; Kandeel, Fouad; Al-Abdullah, Ismail

    2010-01-01

    Pefabloc, Trasylol and Urinary Trypsin Inhibitor (UTI) have been reported to be effective serine protease inhibitors that impair pancreatic endogenous proteases resulting in improved islet yield. Here we evaluated the effect of these inhibitors on endogenous proteases (trypsin, chymotrypsin and elastase), bacterial neutral proteases (thermolysin and neutral protease) and islet isolation digestion samples. Protease activity was measured using a fluorimetric assay and islet function was assessed by dynamic perifusion. Trypsin, chymotrypsin and elastase were significantly inhibited by Pefabloc and UTI. Trasylol showed strong inhibitory effects on trypsin and chymotrypsin but also decreased thermolysin activity. UTI was found to inhibit the activity of endogenous proteases and increase the activity of bacterial neutral proteases. Human islets exposed to Pefabloc had reduced insulin response, unlike Trasylol or UTI, which had no detrimental effect on insulin secretion. Although Trasylol was an effective inhibitor of endogenous proteases, FDA regulatory issues preclude its use in clinical application and thus in the isolation process. UTI has the greatest potential because it impairs endogenous pancreatic proteases and enhances digestion enzymes.

  6. Auditory multistability and neurotransmitter concentrations in the human brain.

    PubMed

    Kondo, Hirohito M; Farkas, Dávid; Denham, Susan L; Asai, Tomohisa; Winkler, István

    2017-02-19

    Multistability in perception is a powerful tool for investigating sensory-perceptual transformations, because it produces dissociations between sensory inputs and subjective experience. Spontaneous switching between different perceptual objects occurs during prolonged listening to a sound sequence of tone triplets or repeated words (termed auditory streaming and verbal transformations, respectively). We used these examples of auditory multistability to examine to what extent neurochemical and cognitive factors influence the observed idiosyncratic patterns of switching between perceptual objects. The concentrations of glutamate-glutamine (Glx) and γ-aminobutyric acid (GABA) in brain regions were measured by magnetic resonance spectroscopy, while personality traits and executive functions were assessed using questionnaires and response inhibition tasks. Idiosyncratic patterns of perceptual switching in the two multistable stimulus configurations were identified using a multidimensional scaling (MDS) analysis. Intriguingly, although switching patterns within each individual differed between auditory streaming and verbal transformations, similar MDS dimensions were extracted separately from the two datasets. Individual switching patterns were significantly correlated with Glx and GABA concentrations in auditory cortex and inferior frontal cortex but not with the personality traits and executive functions. Our results suggest that auditory perceptual organization depends on the balance between neural excitation and inhibition in different brain regions.This article is part of the themed issue 'Auditory and visual scene analysis'.

  7. Schistosoma mansoni: neurotransmitters and the mobility of cercariae and schistosomules.

    PubMed

    Ercoli, N; Payares, G; Nuñez, D

    1985-04-01

    The concentration-dependent action of alkyl-isothiouroniums on Schistosoma mansoni cercariae, ranging from partial to total abolition of locomotor and flame cell movements, and/or suppression of virulence, is due to H1-histamine receptor inhibition. Correspondingly, H1-receptor inhibitors of widely different chemical structure, such as clemizol, diphenhydramine, brompheniramine, and promethazine, in 0.03-0.06 nM concentrations, induced an analogous cercarial immobilization reversed by addition of excess histamine. In contrast, the H2-receptor inhibitors cimetidine and metiamide did not immobilize cercariae. Histamine, acetylcholine, and serotonin, added to cercarial suspensions, showed no direct activity. Their participation in the mechanism of cercarial mobility was shown by the dose-dependent effects of antagonists, such as the serotonin antagonist methysergide and the acetylcholinesterase inhibitor physostigmine. These effects were not reversible by addition of serotonin and acetylcholine, respectively. A histamine-irreversible cercarial immobilization induced by the H-liberator 48/80 suggested that, besides H1-receptor inhibition, H-liberation and/or depletion also participated in mobility and survival. The detection of histamine in the cercaria corroborated the participation of histaminergic mechanisms. S. mansoni schistosomules collected from the mouse lung reacted to H1 antihistamines like cercariae, with a dose-dependent reduction of mobility and somatic deformation, such as vacuolization, granulation, and caecal enlargement.

  8. Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala.

    PubMed

    Du, Jianyang; Reznikov, Leah R; Price, Margaret P; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O; Wemmie, John A; Welsh, Michael J

    2014-06-17

    Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.

  9. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    NASA Astrophysics Data System (ADS)

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-12-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses.

  10. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  11. Convergent Pathways for Steroid Hormone-and Neurotransmitter-Induced Rat Sexual Behavior

    NASA Astrophysics Data System (ADS)

    Mani, S. K.; Allen, J. M. C.; Clark, J. H.; Blaustein, J. D.; O'Malley, B. W.

    1994-08-01

    Estrogen and progesterone modulate gene expression in rodents by activation of intracellular receptors in the hypothalamus, which regulate neuronal networks that control female sexual behavior. However, the neurotransmitter dopamine has been shown to activate certain steroid receptors in a ligand-independent manner. A dopamine receptor stimulant and a D_1 receptor agonist, but not a D_2 receptor agonist, mimicked the effects of progesterone in facilitating sexual behavior in female rats. The facilitatory effect of the neurotransmitter was blocked by progesterone receptor antagonists, a D_1 receptor antagonist, or antisense oligonucleotides to the progesterone receptor. The results suggest that in rodents neurotransmitters may regulate in vivo gene expression and behavior by means of cross-talk with steroid receptors in the brain.

  12. Neuronal GABA release and GABA inhibition of ACh release in guinea pig urinary bladder.

    PubMed

    Kusunoki, M; Taniyama, K; Tanaka, C

    1984-04-01

    gamma-Aminobutyric acid (GABA) and glutamate decarboxylase (GAD) are present in the urinary bladder of guinea pigs, and the possible correlation in regional distribution between GABA, GAD, and the number of vesical ganglion cells was studied. Electrical stimulation of the bladder strips produced an increase in the calcium-dependent and tetrodotoxin-sensitive [3H]GABA release and contractions in the strips preloaded with [3H]GABA. Nicotine, acetylcholine chloride (ACh), and hexamethonium did not significantly alter the release of [3H]GABA. Bicuculline significantly enhanced [3H]ACh release and cholinergic components of contractions evoked by electrical stimulation of the bladder strips preloaded with [3H]choline, thereby suggesting that this compound antagonizes the effect of endogenous GABA released during stimulation. GABA and muscimol but not baclofen reduced both the [3H]ACh release and contractions evoked by nicotine. These effects of GABA were antagonized by bicuculline and furosemide but not by alpha- and beta-adrenergic blockers. These findings suggest that GABA may be a noncholinergic nonadrenergic inhibitory neurotransmitter in the urinary bladder. The motility of the urinary bladder is thus inhibited by reducing the release of ACh from the postganglionic cholinergic neurons through bicuculline-sensitive GABA receptors probably associated with the chloride ion channel.

  13. A practical guide to the synthesis of dinitroindolinyl-caged neurotransmitters

    PubMed Central

    Ellis-Davies, Graham C R

    2014-01-01

    This protocol describes a method for efficient chemical synthesis of dinitroindolinyl derivatives of glutamate and gamma-aminobutyric acid. these caged neurotransmitters are currently the most chemically and photochemically efficient probes for two-photon photolysis in living brain slices. the protocol only requires basic organic synthesis equipment, and no silica gel column chromatography or NMR spectroscopy is needed at any stage. Hplc is used to purify the caged transmitters at the end of the syntheses. thus, the synthesis of dinitroindolinyl-caged neurotransmitters is within the scope of a modestly equipped chemistry laboratory. PMID:21372812

  14. Microfluidic platform for neurotransmitter sensing based on cyclic voltammetry and dielectrophoresis for in vitro experiments.

    PubMed

    Mathault, Jessy; Zamprogno, Pauline; Greener, Jesse; Miled, Amine

    2015-08-01

    This paper presents a new microfluidic platform that can simultaneously measure and locally modulate neurotransmitter concentration in a neuron network. This work focuses on the development of a first prototype including a potentiostat and electrode functionalization to detect several neurotransmitter's simultaneously. We tested dopamine as proof of concept to validate functionality. The system is based on 320 bidirectional electrode array for dielectrophoretic manipulation and cyclic voltammetry. Each electrode is connected to a mechanical multiplexer in order to reduce noise interference and fully isolate the electrode. The multiplexing rate is 476 kHz and each electrode can drive a signal with an amplitude of 60 V pp for dielectrophoretic manipulation.

  15. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system.

  16. Event-related potentials in performance monitoring are influenced by the endogenous opioid system.

    PubMed

    Pfabigan, Daniela M; Pripfl, Jürgen; Kroll, Sara L; Sailer, Uta; Lamm, Claus

    2015-10-01

    Recent research suggests that not only the dopamine neurotransmitter system but also the endogenous opioid system is involved in performance monitoring and the generation of prediction error signals. Heightened performance monitoring is also associated with psychopathology such as internalizing disorders. Therefore, the current study investigated the potential link between the functional opioid peptide prodynorphin (PDYN) 68 bp VNTR genetic polymorphism and neuronal correlates of performance monitoring. To this end, 47 healthy participants genotyped for this polymorphism, related to high-, intermediate-, and low-expression levels of PDYN, performed a choice-reaction task while their electroencephalogram (EEG) was recorded. On the behavioural level, no differences between the three PDYN groups could be observed. EEG data, however, showed significant differences. High PDYN expression individuals showed heightened neural error processing indicated by higher ERN amplitudes, compared to intermediate and low expression individuals. Later stages of error processing, indexed by late Pe amplitudes, and stimulus-driven conflict processing, indexed by N2 amplitudes, were not affected by PDYN genotype. The current results corroborate the notion of an indirect effect of endogenous opioids on performance monitoring, probably mediated by the mesencephalic dopamine system. Overall, enhanced ERN amplitudes suggest a hyper-active performance monitoring system in high PDYN expression individuals, and this might also be an indicator of a higher risk for internalizing disorders.

  17. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  18. Endogenous versus Exogenous Origins of Crises

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Are large biological extinctions such as the Cretaceous/Tertiary KT boundary due to a meteorite, extreme volcanic activity or self-organized critical extinction cascades? Are commercial successes due to a progressive reputation cascade or the result of a well orchestrated advertisement? Determining the chain of causality for Xevents in complex systems requires disentangling interwoven exogenous and endogenous contributions with either no clear signature or too many signatures. Here, I review several efforts carried out with collaborators which suggest a general strategy for understanding the organizations of several complex systems under the dual effect of endogenous and exogenous fluctuations. The studied examples are: internet download shocks, book sale shocks, social shocks, financial volatility shocks, and financial crashes. Simple models are offered to quantitatively relate the endogenous organization to the exogenous response of the system. Suggestions for applications of these ideas to many other systems are offered.

  19. Trafficking of an endogenous potassium channel in adult ventricular myocytes

    PubMed Central

    Wang, Tiantian; Cheng, Yvonne; Dou, Ying; Goonesekara, Charitha; David, Jens-Peter; Steele, David F.; Huang, Chen

    2012-01-01

    The roles of several small GTPases in the expression of an endogenous potassium current, Ito,f, in adult rat ventricular myocytes have been investigated. The results indicate that forward trafficking of newly synthesized Kv4.2, which underlies Ito,f in these cells, requires both Rab1 and Sar1 function. Expression of a Rab1 dominant negative (DN) reduced Ito,f current density by roughly one-half relative to control, mCherry-transfected myocytes. Similarly, expression of a Sar1DN nearly halved Ito,f current density. Rab11 is not essential to trafficking of Kv4.2, as expression of a Rab11DN had no effect on Ito,f over the time frames investigated here. In a process dependent on intact endoplasmic reticulum (ER)-to-Golgi transport, however, overexpression of wild-type Rab11 resulted in a doubling of Ito,f density; block of ER-to-Golgi traffic by Brefeldin A completely abrogated the effect. Also implicated in the trafficking of Kv4.2 are Rab5 and Rab4. Rab5DN expression increased endogenous Ito,f by two- to threefold, nonadditively with inhibition of dynamin-dependent endocytosis. And, in a phenomenon similar to that previously reported for myoblast-expressed Kv1.5, Rab4DN expression roughly doubled endogenous peak transient currents. Colocalization experiments confirmed the involvement of Rab4 in postinternalization trafficking of Kv4.2. There was little role evident for the lysosome in the degradation of internalized Kv4.2, as overexpression of neither wild-type nor DN isoforms of Rab7 had any effect on Ito,f. Instead, degradation may depend largely on the proteasome; the proteasome inhibitor MG132 significantly increased Ito,f density. PMID:22914645

  20. Role for endogenous estrogen in prepubertal Sertoli cell maturation.

    PubMed

    Kao, Eddy; Villalon, Rosalina; Ribeiro, Salustiano; Berger, Trish

    2012-11-01

    Reducing prepubertal endogenous estrogens led to increased numbers of Sertoli cells and the associated increased testicular size and testicular sperm production capacity in boars. The increased number of Sertoli cells might be due to a longer time for proliferation; delayed differentiation of Sertoli cells during suppressed endogenous estrogens would be consistent with this hypothesized, prolonged proliferation interval. This study used immunohistochemical detection of anti-Müllerian hormone (AMH), a marker of immature Sertoli cells, and of CDKN1B, a cell cycle inhibitor associated with more mature Sertoli cells, to determine if suppressing endogenous estrogens detectably delayed "differentiation" of porcine Sertoli cells. Testes were from littermate pairs of boars previously treated with Letrozole, an aromatase inhibitor, or vehicle, from the first week of age until tissue collection at 2, 3, 4, 5 or 6 months of age. Four animals were examined at each age following Letrozole treatment and their corresponding littermates evaluated following treatment with vehicle. Amount of AMH protein in Sertoli cells decreased with age of boar and could not be detected at 6 months of age. The AMH labeling was greater in the Letrozole-treated boars compared with littermate vehicle controls at 4 months of age (P=0.03). The percentage of CDKN1B-labeled Sertoli cells apparently increased with age through 5 months of age. At 4 and 5 months of age, the mean percentage of CDKN1B-labeled Sertoli cells was less in the Letrozole-treated animals than in the vehicle control animals (P = 0.03 and 0.04, respectively). These results are consistent with the hypothesis that continual inhibition of aromatase (and concomitatant reduced estrogen synthesis) causes a delay in Sertoli cell maturation in boars.

  1. Autonomic Neurotransmitters Modulate Immunoglobulin A Secretion in Porcine Colonic Mucosa

    PubMed Central

    Schmidt, Lisa D.; Xie, Yonghong; Lyte, Mark; Vulchanova, Lucy; Brown, David R.

    2007-01-01

    Secretory immunoglobulin A (sIgA) plays a crucial role in mucosal surface defense. We tested the hypothesis that colonic sIgA secretion is under enteric neural control. Immunohistochemistry of the porcine distal colonic mucosa revealed presumptive cholinergic and adrenergic nerve fibers apposed to secretory component (SC)-positive crypt epithelial cells and neighboring IgA+ plasmacytes. The cholinomimetic drug carbamylcholine elicited rapid, atropine-sensitive IgA secretion into the luminal fluid bathing mucosal explants mounted in Ussing chambers. The adrenergic receptor agonist norepinephrine also increased IgA secretion, an action inhibited by phentolamine. These effects were independent of agonist-induced anion secretion. In Western blots of luminal fluid, both agonists increased the density of protein bands co-immunoreactive for IgA and SC. Mucosal exposure to enterohemorrhagic Escherichia coli did not affect IgA secretion, and carbamylcholine treatment did not affect mucosal adherence of this enteropathogen. Acetylcholine and norepinephrine, acting respectively through muscarinic cholinergic and alpha-adrenergic receptors in the colonic mucosa, stimulate sIgA secretion and may enhance mucosal defense in vivo. PMID:17320195

  2. An endogenous model of the credit network

    NASA Astrophysics Data System (ADS)

    He, Jianmin; Sui, Xin; Li, Shouwei

    2016-01-01

    In this paper, an endogenous credit network model of firm-bank agents is constructed. The model describes the endogenous formation of firm-firm, firm-bank and bank-bank credit relationships. By means of simulations, the model is capable of showing some obvious similarities with empirical evidence found by other scholars: the upper-tail of firm size distribution can be well fitted with a power-law; the bank size distribution can be lognormally distributed with a power-law tail; the bank in-degrees of the interbank credit network as well as the firm-bank credit network fall into two-power-law distributions.

  3. Rett syndrome - Stimulation of endogenous biogenic amines

    NASA Technical Reports Server (NTRS)

    Pelligra, R.; Norton, R. D.; Wilkinson, R.; Leon, H. A.; Matson, W. R.

    1992-01-01

    Transient hypercapnic hyperoxemia was induced in two Rett syndrome children by the administration of a gaseous mixture of 80 percent O2 and 20 percent CO2. Time course studies of neurotransmitters and their metabolites showed an immediate and marked increase in central biogenic amine turnover following inhalation of the gas mixture. The increased turnover of biogenic amines was associated with improved clinical changes. This suggests a coupled relationship and provides further support for an etiological role of neurotransmitter dysfunction in Rett syndrome. In a complementary study, elevation of pulmonary CO2 by application of a simple rebreathing device resulted in improvement of abnormal blood gases and elimination of the Cheyne-Stokes-like respiratory pattern of the Rett syndrome. Near normalization of the EEG occurred when a normal respiratory pattern was imposed by means of a respirator. Taken together, these results lead to the preliminary conclusion that cerebral hypoxemia secondary to abnormal respiratory function may contribute to diminished production of biogenic amines in Rett syndrome.

  4. Treatment with Tyrosine a Neurotransmitter Precursor Reduces Environmental Stress in Humans

    DTIC Science & Technology

    1989-01-01

    brain norepinephrine and dopamine. catecholaminergic neurotransmitters. In animals, administration of tyrosine, a food constituent and precursor of the...Profile of Mood States. Stanford Sleepiness Scale) ENVIRONMENTAL STRESSORS that have been employed to evaluate a variety of psychoactive drugs foods ... tyramine . However. Plasma tyrosine levels were significantly elevated during behav- this amine is not detectable in the plasma of animals after they

  5. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders.

    PubMed

    Anisman, Hymie; Merali, Zul; Hayley, Shawn

    2008-05-01

    Given the array of biological changes induced by stressors, it is not surprising that these experiences may provoke a variety of illnesses. Among others things, stressors promote functional changes of neuropeptide and classical neurotransmitter systems. The peptidergic changes, for instance, include alterations of corticotropin releasing hormone, arginine vasopressin, and bombesin-like peptides at specific brain sites. Similarly some of the neurotransmitter systems influenced by stressors include GABAergic and monoamine functioning. Variations of these processes may limit neurogenesis (and dysregulation of growth factors such as BDNF) and influence cellular viability (through NFkappaB and MAP kinase pathways). As well, stressors activate the inflammatory immune system, notably the release of signaling molecules (cytokines), which may provoke many of the same neuropeptide (and other neurotransmitter) changes. By virtue of their actions on neuronal functioning, inflammatory processes may influence stress-related illness, such as depression, and may be a common denominator for the comorbidity that exists between depression and neurological conditions, including Parkinson's and Alzheimer's diseases, as well as cardiovascular-related pathology. The present report provides an overview of biological endophenotypes associated with stressors that are thought to be related to major depressive disorder and related comorbid conditions. The view is taken that synergy between stressors and inflammatory factors may promote pathological outcomes through their actions on neuropeptides and several neurotransmitters. As well, stressful events may result in the sensitization of neurochemical and cytokine processes, so that later re-exposure to these stimuli may promote rapid and exaggerated responses that favor illness recurrence.

  6. Snapshot of antidepressants at work: the structure of neurotransmitter transporter proteins.

    PubMed

    Cuboni, Serena; Hausch, Felix

    2014-05-12

    In the sweet spot: Cocrystal structures of engineered neurotransmitter transporters reveal the binding mode of commonly prescribed antidepressants, providing a basis for a rational drug design for this class of proteins. The picture shows the structure of the dopamine transporter of Drosophila melanogaster in complex with the antidepressant nortriptyline.

  7. Rapid structural alterations of the active zone lead to sustained changes in neurotransmitter release.

    PubMed

    Matz, Jacob; Gilyan, Andrew; Kolar, Annette; McCarvill, Terrence; Krueger, Stefan R

    2010-05-11

    The likelihood with which an action potential elicits neurotransmitter release, the release probability (p(r)), is an important component of synaptic strength. Regulatory mechanisms controlling several steps of synaptic vesicle (SV) exocytosis may affect p(r), yet their relative importance in determining p(r) and eliciting temporal changes in neurotransmitter release at individual synapses is largely unknown. We have investigated whether the size of the active zone cytomatrix is a major determinant of p(r) and whether changes in its size lead to corresponding alterations in neurotransmitter release. We have used a fluorescent sensor of SV exocytosis, synaptophysin-pHluorin, to measure p(r) at individual synapses with high accuracy and employed a fluorescently labeled cytomatrix protein, Bassoon, to quantify the amount of active zone cytomatrix present at these synapses. We find that, for synapses made by a visually identified presynaptic neuron, p(r) is indeed strongly correlated with the amount of active zone cytomatrix present at the presynaptic specialization. Intriguingly, active zone cytomatrices are frequently subject to synapse-specific changes in size on a time scale of minutes. These spontaneous alterations in active zone size are associated with corresponding changes in neurotransmitter release. Our results suggest that the size of the active zone cytomatrix has a large influence on the reliability of synaptic transmission. Furthermore, they implicate mechanisms leading to rapid structural alterations at active zones in synapse-specific forms of plasticity.

  8. Neuronal release and successful astrocyte uptake of aminoacidergic neurotransmitters after spinal cord injury in lampreys.

    PubMed

    Fernández-López, Blanca; Valle-Maroto, Silvia María; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2014-08-01

    In contrast to mammals, the spinal cord of lampreys spontaneously recovers from a complete spinal cord injury (SCI). Understanding the differences between lampreys and mammals in their response to SCI could provide valuable information to propose new therapies. Unique properties of the astrocytes of lampreys probably contribute to the success of spinal cord regeneration. The main aim of our study was to investigate, in the sea lamprey, the release of aminoacidergic neurotransmitters and the subsequent astrocyte uptake of these neurotransmitters during the first week following a complete SCI by detecting glutamate, GABA, glycine, Hu and cytokeratin immunoreactivities. This is the first time that aminoacidergic neurotransmitter release from neurons and the subsequent astrocytic response after SCI are analysed by immunocytochemistry in any vertebrate. Spinal injury caused the immediate loss of glutamate, GABA and glycine immunoreactivities in neurons close to the lesion site (except for the cerebrospinal fluid-contacting GABA cells). Only after SCI, astrocytes showed glutamate, GABA and glycine immunoreactivity. Treatment with an inhibitor of glutamate transporters (DL-TBOA) showed that neuronal glutamate was actively transported into astrocytes after SCI. Moreover, after SCI, a massive accumulation of inhibitory neurotransmitters around some reticulospinal axons was observed. Presence of GABA accumulation significantly correlated with a higher survival ability of these neurons. Our data show that, in contrast to mammals, astrocytes of lampreys have a high capacity to actively uptake glutamate after SCI. GABA may play a protective role that could explain the higher regenerative and survival ability of specific descending neurons of lampreys.

  9. 13C MRS studies of neuroenergetics and neurotransmitter cycling in humans.

    PubMed

    Rothman, Douglas L; De Feyter, Henk M; de Graaf, Robin A; Mason, Graeme F; Behar, Kevin L

    2011-10-01

    In the last 25 years, (13)C MRS has been established as the only noninvasive method for the measurement of glutamate neurotransmission and cell-specific neuroenergetics. Although technically and experimentally challenging, (13)C MRS has already provided important new information on the relationship between neuroenergetics and neuronal function, the energy cost of brain function, the high neuronal activity in the resting brain state and how neuroenergetics and neurotransmitter cycling are altered in neurological and psychiatric disease. In this article, the current state of (13)C MRS as it is applied to the study of neuroenergetics and neurotransmitter cycling in humans is reviewed. The focus is predominantly on recent findings in humans regarding metabolic pathways, applications to clinical research and the technical status of the method. Results from in vivo (13)C MRS studies in animals are discussed from the standpoint of the validation of MRS measurements of neuroenergetics and neurotransmitter cycling, and where they have helped to identify key questions to address in human research. Controversies concerning the relationship between neuroenergetics and neurotransmitter cycling and factors having an impact on the accurate determination of fluxes through mathematical modeling are addressed. We further touch upon different (13)C-labeled substrates used to study brain metabolism, before reviewing a number of human brain diseases investigated using (13)C MRS. Future technological developments are discussed that will help to overcome the limitations of (13)C MRS, with special attention given to recent developments in hyperpolarized (13)C MRS.

  10. Effect of Curare on Responses to Different Putative Neurotransmitters in Aplysia.

    DTIC Science & Technology

    1976-06-01

    The effects of curare on responses resulting from ionophoretic application of several putative neurotransmitters onto Aplysia neurons were studied...In Aplysia nervous tissue, curare appears to be a specfic blocking agent for a class of receptor-activated Na and Cl responses.

  11. Endogenous digitalis-like factors: an overview of the history.

    PubMed

    Buckalew, Vardaman M

    2015-01-01

    The sodium pump is a ubiquitous cell surface enzyme, a Na, K ATPase, which maintains ion gradients between cells and the extracellular fluid (ECF). The extracellular domain of this enzyme contains a highly conserved binding site, a receptor for a plant derived family of compounds, the digitalis glycosides. These compounds inhibit the enzyme and are used in the treatment of congestive heart failure and certain cardiac arrhythmias. The highly conserved nature of this enzyme and its digitalis receptor led to early suggestions that endogenous regulators might exist. Recent examination of this hypothesis emerged from research in two separate areas: the regulation of ECF volume by a natriuretic hormone (NH), and the regulation of peripheral vascular resistance by a circulating inhibitor of vascular Na, K ATPase. These two areas merged with the hypothesis that NH and the vascular Na, K ATPase inhibitor were in fact the same entity, and that it played a causative role in the pathophysiology of certain types of hypertension. The possibility that multiple endogenous digitalis-like factors (EDLFs) exist emerged from efforts to characterize the circulating enzyme inhibitory activity. In this review, the development of this field from its beginnings is traced, the current status of the structure of EDLFs is briefly discussed, and areas for future development are suggested.

  12. Presynaptic Control of Corticostriatal Synapses by Endogenous GABA

    PubMed Central

    Logie, Christopher; Bagetta, Vincenza

    2013-01-01

    Corticostriatal terminals have presynaptic GABAB receptors that limit glutamate release, but how these receptors are activated by endogenous GABA released by different types of striatal neurons is still unknown. To address this issue, we used single and paired whole-cell recordings combined with stimulation of corticostriatal fibers in rats and mice. In the presence of opioid, GABAA, and NK1 receptor antagonists, antidromic stimulation of a population of striatal projection neurons caused suppression of subsequently evoked EPSPs in projection neurons. These effects were larger at intervals of 500 ms than 1 or 2 s, and were fully blocked by the selective GABAB receptor antagonist CGP 52432. Bursts of spikes in individual projection neurons were not able to inhibit evoked EPSPs. Similarly, spikes in fast spiking interneurons and low-threshold spike interneurons failed to elicit detectable effects mediated by GABAB receptors. Conversely, spikes in individual neurogliaform interneurons suppressed evoked EPSPs, and these effects were blocked by CGP 52432. These results provide the first demonstration of how GABAB receptors are activated by endogenous GABA released by striatal neuronal types. PMID:24068811

  13. HIV infection en route to endogenization: two cases

    PubMed Central

    Colson, P; Ravaux, I; Tamalet, C; Glazunova, O; Baptiste, E; Chabriere, E; Wiedemann, A; Lacabaratz, C; Chefrour, M; Picard, C; Stein, A; Levy, Y; Raoult, D

    2014-01-01

    The long-term spontaneous evolution of humans and the human immunodeficiency virus (HIV) is not well characterized; many vertebrate species, including humans, exhibit remnants of other retroviruses in their genomes that question such possible endogenization of HIV. We investigated two HIV-infected patients with no HIV-related disease and no detection with routine tests of plasma HIV RNA or cell-associated HIV DNA. We used Sanger and deep sequencing to retrieve HIV DNA sequences integrated in the human genome and tested the host humoral and cellular immune responses. We noticed that viruses from both patients were inactivated by the high prevalence of the transformation of tryptophan codons into stop codons (25% overall (3–100% per gene) and 24% overall (0–50% per gene)). In contrast, the humoral and/or cellular responses were strong for one patient and moderate for the other, indicating that a productive infection occurred at one stage of the infection. We speculate that the stimulation of APOBEC, the enzyme group that exchanges G for A in viral nucleic acids and is usually inhibited by the HIV protein Vif, has been amplified and made effective from the initial stage of the infection. Furthermore, we propose that a cure for HIV may occur through HIV endogenization in humans, as observed for many other retroviruses in mammals, rather than clearance of all traces of HIV from human cells, which defines viral eradication. PMID:25366539

  14. Chronic infusion of epigallocatechin-3-O-gallate into the hypothalamic paraventricular nucleus attenuates hypertension and sympathoexcitation by restoring neurotransmitters and cytokines.

    PubMed

    Yi, Qiu-Yue; Li, Hong-Bao; Qi, Jie; Yu, Xiao-Jing; Huo, Chan-Juan; Li, Xiang; Bai, Juan; Gao, Hong-Li; Kou, Bo; Liu, Kai-Li; Zhang, Dong-Dong; Chen, Wen-Sheng; Cui, Wei; Zhu, Guo-Qing; Shi, Xiao-Lian; Kang, Yu-Ming

    2016-11-16

    Reactive oxygen species (ROS) in the brain are involved in the pathogenesis of hypertension. Epigallocatechin-3-O-gallate (EGCG), one of the active compounds in green tea, has anti-oxidant, anti-inflammatory and vascular protective properties. This study was designed to determine whether chronic infusion of EGCG into the hypothalamic paraventricular nucleus (PVN) attenuates ROS and sympathetic activity and delays the progression of hypertension by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs) and decreasing nuclear factor-kappa B (NF-κB) activity, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar-Kyoto (WKY) rats and SHR received bilateral PVN infusion of EGCG (20μg/h) or vehicle via osmotic minipumps for 4 weeks. SHR showed higher mean arterial pressure, plasma proinflammatory cytokines and circulating norepinephrine (NE) levels compared with WKY rats. SHR also had higher PVN levels of the subunit of NAD(P)H oxidase (gp91(phox)), ROS, tyrosine hydroxylase, and PICs; increased NF-κB activity; and lower PVN levels of interleukin-10 (IL-10) and 67kDa isoform of glutamate decarboxylase (GAD67) than WKY rats. PVN infusion of EGCG attenuated all these changes in SHR. These findings suggest that SHR have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN. Chronic inhibition of ROS in the PVN restores the balance of neurotransmitters and cytokines in the PVN, thereby attenuating hypertensive response and sympathetic activity.

  15. Mechanisms of metabonomic for a gateway drug: nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level.

    PubMed

    Li, Hongyu; Bu, Qian; Chen, Bo; Shao, Xue; Hu, Zhengtao; Deng, Pengchi; Lv, Lei; Deng, Yi; Zhu, Ruiming; Li, Yan; Zhang, Baolai; Hou, Jing; Du, Changman; Zhao, Qian; Fu, Dengqi; Zhao, Yinglan; Cen, Xiaobo

    2014-01-01

    Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1)H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.

  16. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a neurotransmitter system.

    PubMed

    Brooks, Elizabeth S; Greer, Christina L; Romero-Calderón, Rafael; Serway, Christine N; Grygoruk, Anna; Haimovitz, Jasmine M; Nguyen, Bac T; Najibi, Rod; Tabone, Christopher J; de Belle, J Steven; Krantz, David E

    2011-10-20

    Vesicular transporters are required for the storage of all classical and amino acid neurotransmitters in synaptic vesicles. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male's position during copulation that is rescued by expression in KCs. Because prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning.

  17. A putative vesicular transporter expressed in Drosophila mushroom bodies that mediates sexual behavior may define a novel neurotransmitter system

    PubMed Central

    Brooks, Elizabeth S.; Greer, Christina L.; Romero-Calderón, Rafael; Serway, Christine N.; Grygoruk, Anna; Haimovitz, Jasmine M.; Nguyen, Bac T.; Najibi, Rod; Tabone, Christopher J.; de Belle, J. Steven; Krantz, David E.

    2011-01-01

    Summary Storage and release of classical and amino acid neurotransmitters requires vesicular transporters. Some neurons lack known vesicular transporters, suggesting additional neurotransmitter systems remain unidentified. Insect mushroom bodies (MBs) are critical for several behaviors, including learning, but the neurotransmitters released by the intrinsic Kenyon cells (KCs) remain unknown. Likewise, KCs do not express a known vesicular transporter. We report the identification of a novel Drosophila gene portabella (prt) that is structurally similar to known vesicular transporters. Both larval and adult brains express PRT in the KCs of the MBs. Additional PRT cells project to the central complex and optic ganglia. prt mutation causes an olfactory learning deficit and an unusual defect in the male’s position during copulation that is rescued by expression in KCs. Since prt is expressed in neurons that lack other known vesicular transporters or neurotransmitters, it may define a previously unknown neurotransmitter system responsible for sexual behavior and a component of olfactory learning. PMID:22017990

  18. Upregulating endogenous genes by an RNA-programmable artificial transactivator

    PubMed Central

    Fimiani, Cristina; Goina, Elisa; Mallamaci, Antonello

    2015-01-01

    To promote expression of endogenous genes ad libitum, we developed a novel, programmable transcription factor prototype. Kept together via an MS2 coat protein/RNA interface, it includes a fixed, polypeptidic transactivating domain and a variable RNA domain that recognizes the desired gene. Thanks to this device, we specifically upregulated five genes, in cell lines and primary cultures of murine pallial precursors. Gene upregulation was small, however sufficient to robustly inhibit neuronal differentiation. The transactivator interacted with target gene chromatin via its RNA cofactor. Its activity was restricted to cells in which the target gene is normally transcribed. Our device might be useful for specific applications. However for this purpose, it will require an improvement of its transactivation power as well as a better characterization of its target specificity and mechanism of action. PMID:26152305

  19. Chronic paroxetine treatment: effects on other non-serotonergic neurotransmitter systems.

    PubMed

    Ballesteros-Zebadua, Paola; Manjarrez-Marmolejo, Joaquin; Franco-Perez, Javier

    2013-12-01

    Due to its efficacy and acceptability, paroxetine is situated in the top ten of drugs prescribed for the treatment of major depression and essentially all anxiety disorders. Adults under paroxetine treatment report relief after 4-6 weeks of administration; furthermore, this drug can be prescribed for periods lasting longer than one year. Therefore, paroxetine treatment has a pattern of ingestion that is mainly chronic rather than acute. There is a considerable number of reviews in the literature concerning the effects of paroxetine on the serotonergic system; however, the alterations caused by chronic ingestion of this drug in other neurotransmitter systems have received little attention. For this reason, we consider very important to review the experimental studies concerning the effects of chronic paroxetine intake on neurotransmitter levels, neuronal firing rate and the expression of receptors and transporters in different neurotransmitter systems in the brain. According to the experimental data analyzed in this work, we can establish that long-term paroxetine intake has the ability to increase GABA, glutamate, dopamine and noradrenaline levels in the brain. Furthermore, high levels of AMPA, orexine-1,2 and histamine-1 receptors have been reported in different brain regions after treatment with paroxetine over several weeks. In addition, paroxetine has differential effects on neuropeptide systems, such as galanine, opioid receptors and substance P. Available data lead us to establish that chronic ingestion of paroxetine induces changes in several neurotransmitters and neuropeptides, thus illuminating how each one may contribute to the antidepressant and anxiolytic response elicited by this drug. We consider that all reported changes in the neurotransmitter systems should be further considered to individualize clinical treatment and, in the case of patients taking a drug "cocktail", to gain better control over drug interactions and adverse effects.

  20. Essays on Policy Evaluation with Endogenous Adoption

    ERIC Educational Resources Information Center

    Gentile, Elisabetta

    2011-01-01

    Over the last decade, experimental and quasi-experimental methods have been favored by researchers in empirical economics, as they provide unbiased causal estimates. However, when implementing a program, it is often not possible to randomly assign subjects to treatment, leading to a possible endogeneity bias. This dissertation consists of two…

  1. The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers.

    PubMed

    Gutiérrez, Rafael

    2016-04-01

    The granule cells (GCs) and their axons, the mossy fibers (MFs), make synapses with interneurons in the hilus and CA3 area of the hippocampus and with pyramidal cells of CA3, each with distinct anatomical and functional characteristics. Many features of synaptic communication observed at the MF synapses are not usually observed in most cortical synapses, and thus have drawn the attention of many groups studying different aspects of the transmission of information. One particular aspect of the GCs, that makes their study unique, is that they express a dual glutamatergic-GABAergic phenotype and several groups have contributed to the understanding of how two neurotransmitters of opposing actions can act on a single target when simultaneously released. Indeed, the GCs somata and their mossy fibers express in a regulated manner glutamate and GABA, GAD, VGlut and VGAT, all markers of both phenotypes. Finally, their activation provokes both glutamate-R-mediated and GABA-R-mediated synaptic responses in the postsynaptic cell targets and even in the MFs themselves. The developmental and activity-dependent expression of these phenotypes seems to follow a "logical" way to maintain an excitation-inhibition balance of the dentate gyrus-to-CA3 communication.

  2. Intracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3

    PubMed Central

    He, Xiang-ping; Yang, Feng; Xie, Zuo-ping; Lu, Bai

    2000-01-01

    Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve–muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), which requires Ca2+ influx for its acute effect, NT3 rapidly enhances spontaneous transmitter release at the developing NMJ even when Ca2+ influx is completely blocked, suggesting that the NT3 effect is independent of extracellular Ca2+. Depletion of intracellular Ca2+ stores, or blockade of inositol 1, 4, 5-trisphosphate (IP3) or ryanodine receptors, prevents the NT3-induced synaptic potentiation. Blockade of IP3 receptors can not prevent BDNF-induced potentiation, suggesting that BDNF and NT3 use different mechanisms to potentiate transmitter release. Inhibition of Ca2+/calmodulin-dependent kinase II (CaMKII) completely blocks the acute effect of NT3. Furthermore, the NT3-induced potentiation requires a continuous activation of CaMKII, because application of the CaMKII inhibitor KN62 reverses the previously established NT3 effect. Thus, NT3 potentiates neurotransmitter secretion by stimulating Ca2+ release from intracellular stores through IP3 and/or ryanodine receptors, leading to an activation of CaMKII. PMID:10811820

  3. Cyanide-induced changes in the levels of neurotransmitters in discrete brain regions of rats and their response to oral treatment with alpha-ketoglutarate.

    PubMed

    Hariharakrishnan, Janardhanan; Satpute, Ravindra M; Bhattacharya, Rahul

    2010-07-01

    Cyanide is a potential suicidal, homicidal and chemical warfare agent. It produces histotoxic hypoxia following inhibition of cytochrome c oxidase, a terminal respiratory chain enzyme. The profound metabolic changes lead to neurotoxicity including alterations in the levels of neurotransmitters. The present study addressed the effect of acute exposure of lethal and sub-lethal doses of potassium cyanide (KCN; 0.75 or 2.0 LD50; po) on the levels of neurotransmitters in discrete brain regions of rats and its response to treatment with alpha-ketoglutarate (alpha-KG; 0.5 g/kg; po; -10 min) alone or with sodium thiosulphate (STS; 1.0 g/kg; ip; -15 min). KCN significantly decreased norepinephrine, dopamine and 5-hydroxytryptamine levels in different brain regions which were resolved by alpha-KG and/or STS. Corpus striatum and hippocampus were more sensitive as compared to cerebral cortex and hypothalamus. alpha-KG, a potential cyanide antidote alone or with STS showed neuroprotective effects against cyanide.

  4. Investigating Endogenous Peptides and Peptidases using Peptidomics

    PubMed Central

    Tinoco, Arthur D.; Saghatelian, Alan

    2012-01-01

    Rather than simply being protein degradation products, peptides have proven to be important bioactive molecules. Bioactive peptides act as hormones, neurotransmitters and antimicrobial agents in vivo. The dysregulation of bioactive peptide signaling is also known to be involved in disease, and targeting peptide hormone pathways has been successful strategy in the development of novel therapeutics. The importance of bioactive peptides in biology has spurred research to elucidate the function and regulation of these molecules. Classical methods for peptide analysis have relied on targeted immunoassays, but certain scientific questions necessitated a broader and more detailed view of the peptidome–all the peptides in a cell, tissue or organism. In this review we discuss how peptidomics has emerged to fill this need through the application of advanced liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods that provide unique insights into peptide activity and regulation. PMID:21786763

  5. Erk1/2 inhibit synaptic vesicle exocytosis through L type calcium channels

    PubMed Central

    Subramanian, Jaichandar; Morozov, Alexei

    2011-01-01

    L type calcium channels play only a minor role in basal neurotransmitter release in brain neurons, but contribute significantly after induction of plasticity. Very little is known about mechanisms that enable L type calcium channel participation in neurotransmitter release. Here, using mouse primary cortical neurons, we found that inhibition of Erk1/2 enhanced synaptic vesicle exocytosis by increasing calcium influx through L type calcium channels. Furthermore, inhibition of Erk1/2 increased the surface fraction of these channels. These findings indicate a novel inhibitory effect of Erk1/2 on synaptic transmission through L type calcium channels. PMID:21430174

  6. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  7. The Cannabinoid Acids, Analogs and Endogenous Counterparts

    PubMed Central

    Burstein, Sumner H.

    2015-01-01

    The cannabinoid acids are a structurally heterogeneous group of compounds some of which are endogenous molecules and others that are metabolites of phytocannabinoids. The prototypic endogenous substance is N-arachidonoyl glycine (NAgly) that is closely related in structure to the cannabinoid agonist anandamide. The most studied phytocannabinoid is Δ9–THC-11-oic acid, the principal metabolite of Δ9–THC. Both types of acids have in common several biological actions such as low affinity for CB1, anti-inflammatory activity and analgesic properties. This suggests that there may be similarities in their mechanism of action, a point that is discussed in this review. Also presented are reports on analogs of the acids that provide opportunities for the development of novel therapeutic agents, such as ajulemic acid. PMID:24731541

  8. [Tribulin--a novel endogenous monoaminoxidase inhibitor (dedicated to the memory of Merton Sandler)].

    PubMed

    Medvedev, A R

    1996-01-01

    Tribulin is endogenous monoamine oxidase and benzidiazepine binding inhibitory activity extractable from biological tissues and body fluids into ethyl acetate. Tribulin output is increased in conditions of stress and anxiety. Several chemical components of tribulin have recently been identified. Isatin is a selective inhibitor of monoamine oxidase B. Esters of indoleacetic and 4-hydroxyphenylacetic acids and 4-hydroxyphenyletanol selectively inhibit monoamine oxidase A. Biomedical importance of tribulin and its components is discussed.

  9. Short- and long-term effects of MDMA ("ecstasy") on synaptosomal and vesicular uptake of neurotransmitters in vitro and ex vivo.

    PubMed

    Bogen, Inger Lise; Haug, Kristin Huse; Myhre, Oddvar; Fonnum, Frode

    2003-01-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") is a commonly abused drug which has been shown to be neurotoxic to serotonergic neurons in many species. The exact mechanism responsible for the neurotoxicity of MDMA is, however, poorly understood. In this study, the effects of MDMA on the synaptosomal and vesicular uptake of neurotransmitters were investigated. Our results show that MDMA (0.5-20 microM) reduces both synaptosomal and vesicular uptake of serotonin and dopamine in a dose dependent manner in vitro, while the uptake of glutamate and gamma-aminobutyric acid (GABA) remains unaffected. Ex vivo experiments support the importance of the monoamines, with predominant dopaminergic inhibition at short-term exposure (3 x 15 mg/kg; 2-h intervals), and exclusively serotonergic inhibition at long-term exposure (2 x 10 mg/kg per day; 4 days). This study also compares MDMA and the structurally related antidepressant paroxetine, in an attempt to reveal possible cellular mechanisms for the serotonergic toxicity of MDMA. One important difference between paroxetine and MDMA is that only MDMA has the capability of inhibiting vesicular uptake of monoamines at doses used. We suggest that inhibition of the vesicular monoamine transporter-2, and a following increase in cytoplasmatic monoamine concentrations, might be crucial for the neurotoxic effect of MDMA.

  10. Duck cerebellum participates in regulation of food intake via the neurotransmitters serotonin and neuropeptide Y.

    PubMed

    Liu, Hua Z; Li, Xin Y; Tong, Jing J; Qiu, Zheng Y; Zhan, Han C; Sha, Jun N; Peng, Ke M

    2008-10-01

    Two important neurotransmitters, serotonin (5-hydroxytryptamine, 5-HT) and neuropeptide Y (NPY), have been confirmed to be involved in food intake regulation. To clarify whether the cerebellum participates in modulation of food intake through these two neurotransmitters, we investigated the distribution and expression levels of 5-HT and NPY in cerebellum of the duck. Our results showed that 5-HT and NPY were distributed only at the Purkinje cell layer of the duck cerebellum. Moreover, the expression level of 5-HT in fasted (4 h) and tryptophan (100-200 mg/kg)-treated ducks was significantly higher than that in control animals (P<0.01), whereas the expression of NPY was significantly decreased (P<0.01). Therefore, our results indicated that inhibitory regulation of food intake respectively increased and decreased cerebellar 5-HT and NPY in the duck.

  11. Miniaturized and Wireless Optical Neurotransmitter Sensor for Real-Time Monitoring of Dopamine in the Brain

    PubMed Central

    Kim, Min H.; Yoon, Hargsoon; Choi, Sang H.; Zhao, Fei; Kim, Jongsung; Song, Kyo D.; Lee, Uhn

    2016-01-01

    Real-time monitoring of extracellular neurotransmitter concentration offers great benefits for diagnosis and treatment of neurological disorders and diseases. This paper presents the study design and results of a miniaturized and wireless optical neurotransmitter sensor (MWONS) for real-time monitoring of brain dopamine concentration. MWONS is based on fluorescent sensing principles and comprises a microspectrometer unit, a microcontroller for data acquisition, and a Bluetooth wireless network for real-time monitoring. MWONS has a custom-designed application software that controls the operation parameters for excitation light sources, data acquisition, and signal processing. MWONS successfully demonstrated a measurement capability with a limit of detection down to a 100 nanomole dopamine concentration, and high selectivity to ascorbic acid (90:1) and uric acid (36:1). PMID:27834927

  12. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    NASA Astrophysics Data System (ADS)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  13. [Detection of neurotransmitter interactions with PET and SPECT by pharmacological challenge paradigms].

    PubMed

    Schlösser, R

    2000-01-01

    Functional brain imaging with positron emission tomography (PET) and single photon emission computerized tomography (SPECT) enables the in vivo study of specific neurochemical processes in the context of normal regulatory mechanisms and pathophysiological alterations of the brain. By combining these methods with pharmacological challenge-paradigms, the study of functional interactions of different neurotransmitter systems is possible. This review will present data from animal and healthy volunteer studies as well as first data from investigations in different patient populations with regard to this research direction. Especially, interactions of different neurotransmitter systems with the dopaminergic and the cholinergic system will be discussed. The database acquired so far confirms existing models of neuronal feedback-circuits, and the first clinical results are consistent with the hypothesis of an increased dopaminergic responsivity in schizophrenic patients. These results open up new perspectives for a further evaluation of treatment response predictors from drug-challenge studies and for the development of new drug treatments for neuropsychiatric disorders.

  14. Analysis of neurotransmitter tissue content of Drosophila melanogaster in different life stages.

    PubMed

    Denno, Madelaine E; Privman, Eve; Venton, B Jill

    2015-01-21

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development.

  15. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells.

    PubMed

    Roshchina, Victoria V

    2016-01-01

    The evolutionary perspective on the universal roles of compounds known as neurotransmitters may help in the analysis of relations between all organisms in biocenosis-from microorganisms to plant and animals. This phenomenon, significant for chemosignaling and cellular endocrinology, has been important in human health and the ability to cause disease or immunity, because the "living environment" influences every organism in a biocenosis relationship (microorganism-microorganism, microorganism-plant, microorganism-animal, plant-animal, plant-plant and animal-animal). Non-nervous functions of neurotransmitters (rather "biomediators" on a cellular level) are considered in this review and ample consideration is given to similarities and differences that unite, as well as distinguish, taxonomical kingdoms.

  16. Quantification of Amino Acid Neurotransmitters in Cerebrospinal Fluid of Patients with Neurocysticercosis

    PubMed Central

    Camargo, José Augusto; Bertolucci, Paulo Henrique Ferreira

    2015-01-01

    Background : Neurocysticercosis is a parasitic disease that affects the central nervous system. Its main clinical manifestations are epileptic seizures. The objective of this study was to investigate the correlation between neurotransmitter concentrations in cerebrospinal fluid (CSF) and the different evolutive forms of neurocysticercosis with or without seizures. Methods : Neurotransmitter concentrations (Aspartate, Glutamate, GABA, Glutamine, Glycine, Taurine) were determined in CSF samples from 42 patients with neurocysticercosis divided into patients with the active cystic form (n = 24, 12 with and 12 without seizures) and patients with calcified form (n = 18, 12 with and 6 without seizures), and a control group consisting of 59 healthy subjects. Results : Alterations in amino acid concentration were observed in all patients with neurocysticercosis. Conclusion : We conclude that disturbances in amino acid metabolism accompany the presentation of neurocysticercosis. Replacement of the terms inactive cyst by reactive inactive cyst and calcification by reactive calcification is suggested. PMID:26157521

  17. Probe-pin device for optical neurotransmitter sensing in the brain

    NASA Astrophysics Data System (ADS)

    Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Park, Yeonjoon; Choi, Sang H.; Lee, Dae-Sung; Shin, Kyu-Sik; Hwang, Hak-In; Lee, Uhn

    2015-04-01

    Development of an optical neurotransmitter sensing device using nano-plasmonic probes and a micro-spectrometer for real time monitoring of neural signals in the brain is underway. Clinical application of this device technology is to provide autonomous closed-loop feedback control to a deep brain stimulation (DBS) system and enhance the accuracy and efficacy of DBS treatment. By far, we have developed an implantable probe-pin device based on localized field enhancement of surface plasmonic resonance on a nanostructured sensing domain which can amplify neurochemical signals from evoked neural activity in the brain. In this paper, we will introduce the details of design and sensing performance of a proto-typed microspectrometer and nanostructured probing devices for real time measurement of neurotransmitter concentrations.

  18. FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels.

    PubMed

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S; Klyachko, Vitaly A

    2013-02-20

    Loss of FMRP causes fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx, and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation independent and are mediated selectively by BK channels via interaction of FMRP with BK channel's regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology.

  19. Carbon nanotube yarn electrodes for enhanced detection of neurotransmitter dynamics in live brain tissue.

    PubMed

    Schmidt, Andreas C; Wang, Xin; Zhu, Yuntian; Sombers, Leslie A

    2013-09-24

    This work demonstrates the potential of nanoscale carbon electrode materials for improved detection of electroactive neurotransmitter dynamics in the brain. Individual multiwalled carbon nanotubes were synthesized via chemical vapor deposition, spun into yarns, and used in the fabrication of disk microelectrodes that were subsequently characterized using scanning electron and atomic force microscopies. The carbon nanotube yarn electrodes were coupled with fast-scan cyclic voltammetry and used to discriminately detect rapid neurotransmitter fluctuations in acute brain slices. The results demonstrate that the distinct structural and electronic properties of the nanotubes result in improved selectivity, sensitivity, and spatial resolution, as well as faster apparent electron transfer kinetics when compared to the conventional carbon-fiber microelectrodes typically used in vivo.

  20. Phosphorylation of Complexin by PKA Regulates Activity-dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity

    PubMed Central

    Cho, Richard W.; Buhl, Lauren K.; Volfson, Dina; Tran, Adrienne; Li, Feng; Akbergenova, Yulia; Littleton, J. Troy

    2016-01-01

    Summary Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca++ entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C-terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity. PMID:26590346

  1. Endogenous gas gangrene after laparoscopic cholecystectomy.

    PubMed

    Zelić, M; Kunisek, L; Mendrila, D; Gudelj, M; Abram, M; Uravić, M

    2011-01-01

    Clostridial gas gangrene of the abdominal wall is rare, and it is usually associated with organ perforation, immunosuppression or gastrointestinal malignancies. In this paper we present a case of fulminant, endogenous gas gangrene in a 58-year old diabetic female with arterial hypertension and atherosclerosis, following uneventful laparoscopic cholecystectomy. She developed gas gangrene of the abdominal wall 12-hours after cholecystectomy and died 24-hours after the onset of the first symptoms, in spite of treatment.

  2. Endogenous Viral Elements in Animal Genomes

    PubMed Central

    Katzourakis, Aris; Gifford, Robert J.

    2010-01-01

    Integration into the nuclear genome of germ line cells can lead to vertical inheritance of retroviral genes as host alleles. For other viruses, germ line integration has only rarely been documented. Nonetheless, we identified endogenous viral elements (EVEs) derived from ten non-retroviral families by systematic in silico screening of animal genomes, including the first endogenous representatives of double-stranded RNA, reverse-transcribing DNA, and segmented RNA viruses, and the first endogenous DNA viruses in mammalian genomes. Phylogenetic and genomic analysis of EVEs across multiple host species revealed novel information about the origin and evolution of diverse virus groups. Furthermore, several of the elements identified here encode intact open reading frames or are expressed as mRNA. For one element in the primate lineage, we provide statistically robust evidence for exaptation. Our findings establish that genetic material derived from all known viral genome types and replication strategies can enter the animal germ line, greatly broadening the scope of paleovirological studies and indicating a more significant evolutionary role for gene flow from virus to animal genomes than has previously been recognized. PMID:21124940

  3. [Endogenous persistent hypoglicemia of adult: case report].

    PubMed

    Costa, Raquel R; Maia, Frederico F R; Araújo, Levimar R

    2007-02-01

    Persistent Hyperinsulinemic Endogenous hypoglycemia in adults is, in most cases, due to Insulinoma. Nesidioblastosis, a peculiar functional hyperinsulinemia from hypertrophic beta cells, has been described mainly in newborns. This article describes a 34-year-old patient who presented hyperinsulinemic endogenous hypoglycemia clinical and laboratorial situation (Fasting glycemia: 54 mg/dl / Reference Interval (RI): 60-99 mg/dl; Serum insulin: 70.9 mcU/ml / RI: < 29.1 mcU/ml; e C peptide: 7.1 ng/ml / RI: 1.1-5.0 ng/ml). It was suspected Insulinoma. Because of the lack of typical images in radiologic exams (ultrasonography and computerized tomography) it had been decided to do laparotomy, but it was not found any macroscopic pancreatic tumor. Histological and histochemistry examination of a distal pancreatic segment showed alteration suitable to nesidioblastosis. The patient presented clinical stability during the next two months, however, after that, there was a recurrence of a hypoglycemia crisis, refractory to Octreotide administration. It was done "octreoscan", which showed expanded nesidioblastosis, being done extensive partial pancreatectomy. Octreotide was used again, with a good control of the hypoglycemia crisis. As it is an uncommon diagnosis in an adult, the objective of this article is to describe the diagnostic and therapeutic aspects in cases of hyperinsulinemic endogenous hypoglicemia.

  4. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation.

    PubMed

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-04-27

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  5. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology.

    PubMed

    Grässel, Susanne G

    2014-01-01

    The peripheral nervous system is critically involved in bone metabolism, osteogenesis, and bone remodeling. Nerve fibers of sympathetic and sensory origin innervate synovial tissue and subchondral bone of diathrodial joints. They modulate vascularization and matrix differentiation during endochondral ossification in embryonic limb development, indicating a distinct role in skeletal growth and limb regeneration processes. In pathophysiological situations, the innervation pattern of sympathetic and sensory nerve fibers is altered in adult joint tissues and bone. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters. Osteoblasts, osteoclasts, mesenchymal stem cells, synovial fibroblasts, and different types of chondrocytes produce distinct subtypes of adrenoceptors, receptors for vasointestinal peptide, for substance P and calcitonin gene-related peptide. Many of these cells even synthesize neuropeptides such as substance P and calcitonin gene-related peptide and are positive for tyrosine-hydroxylase, the rate-limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters modulate osteo-chondrogenic differentiation of mesenchymal progenitor cells during endochondral ossification in limb development. In adults, sensory and sympathetic neurotransmitters are critical for bone regeneration after fracture and are involved in the pathology of inflammatory diseases as rheumatoid arthritis which manifests mainly in joints. Possibly, they might also play a role in pathogenesis of degenerative joint disorders, such as osteoarthritis. All together, accumulating data imply that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for proper limb formation during embryonic skeletal growth. In adults, they modulate bone regeneration, bone remodeling, and articular cartilage homeostasis in addition to their classic neurological actions.

  6. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    PubMed Central

    Kreft, Marko; Bak, Lasse K; Waagepetersen, Helle S; Schousboe, Arne

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation. PMID:22435484

  7. The molecular basis of memory. Part 3: tagging with “emotive” neurotransmitters

    PubMed Central

    Marx, Gerard; Gilon, Chaim

    2014-01-01

    Many neurons of all animals that exhibit memory (snails, worms, flies, vertebrae) present arborized shapes with many varicosities and boutons. These neurons, release neurotransmitters and contain ionotropic receptors that produce and sense electrical signals (ephaptic transmission). The extended shapes maximize neural contact with the surrounding neutrix [defined as: neural extracellular matrix (nECM) + diffusible (neurometals and neurotransmitters)] as well as with other neurons. We propose a tripartite mechanism of animal memory based on the dynamic interactions of splayed neurons with the “neutrix.” Their interactions form cognitive units of information (cuinfo), metal-centered complexes within the nECM around the neuron. Emotive content is provided by NTs, which embody molecular links between physiologic (body) responses and psychic feelings. We propose that neurotransmitters form mixed complexes with cuinfo used for tagging emotive memory. Thus, NTs provide encoding option not available to a Turing, binary-based, device. The neurons employ combinatorially diverse options, with >10 NMs and >90 NTs for encoding (“flavoring”) cuinfo with emotive tags. The neural network efficiently encodes, decodes and consolidates related (entangled) sets of cuinfo into a coherent pattern, the basis for emotionally imbued memory, critical for determining a behavioral choice aimed at survival. The tripartite mechanism with tagging of NTs permits of a causal connection between physiology and psychology. PMID:24778616

  8. Altered levels of brain neurotransmitter from new born rabbits with intrauterine restriction.

    PubMed

    Hernández-Andrade, E; Cortés-Camberos, A J; Díaz, N F; Flores-Herrera, H; García-López, G; González-Jiménez, M; Santamaría, A; Molina-Hernández, A

    2015-01-01

    Fetal intrauterine growth restriction generates chronic hypoxia due to placental insufficiency. Despite the hemodynamic process of blood flow, redistributions are taking place in key organs such as the fetal brain during intrauterine growth restriction, in order to maintain oxygen and nutrients supply. The risk of short- and long-term neurological effects are still present in hypoxic offspring. Most studies previously reported the effect of hypoxia on the levels of a single neurotransmitter, making it difficult to have a better understanding of the relationship among neurotransmitter levels and the defects reported in products that suffer intrauterine growth restriction, such as motor development, coordination and execution of movement, and the learning-memory process. The aim of this study was to evaluate the levels of gamma-aminobutyric acid, glutamate, dopamine and serotonin in three structures of the brain related to the above-mentioned function such as the cerebral cortex, the striatum, and the hippocampus in the chronic hypoxic newborn rabbit model. Our results showed a significant increase in glutamate and dopamine levels in all studied brain structures and a significant decrease in gamma-aminobutyric acid levels but only in the striatum, suggesting that the imbalance on the levels of several neurotransmitters could be involved in new born brain damage due to perinatal hypoxia.

  9. Sex and intrauterine growth restriction modify brain neurotransmitters profile of newborn piglets.

    PubMed

    Vázquez-Gómez, M; Valent, D; García-Contreras, C; Arroyo, L; Óvilo, C; Isabel, B; Bassols, A; González-Bulnes, A

    2016-12-01

    The current study aimed to determine, using a swine model of intrauterine growth restriction (IUGR), whether short- and long-term neurological deficiencies and interactive dysfunctions of Low Birth-Weight (LBW) offspring might be related to altered pattern of neurotransmitters. Hence, we compared the quantities of different neurotransmitters (catecholamines and indoleamines), which were determined by HPLC, at brain structures related to the limbic system (hippocampus and amygdala) in 14 LBW and 10 Normal Body-Weight (NBW) newborn piglets. The results showed, firstly, significant effects of sex on the NBW newborns, with females having higher dopamine (DA) concentrations than males. The IUGR processes affected DA metabolism, with LBW piglets having lower concentrations of noradrenaline at the hippocampus and higher concentrations of the DA metabolites, homovanillic acid (HVA), at both the hippocampus and the amygdala than NBW neonates. The effects of IUGR were modulated by sex; there were no significant differences between LBW and NBW females, but LBW males had higher HVA concentration at the amygdala and higher concentration of 5-hydroxyindoleacetic acid, the serotonin metabolite, at the hippocampus than NBW males. In conclusion, the present study shows that IUGR is mainly related to changes, modulated by sex, in the concentrations of catecholamine neurotransmitters, which are related to adaptation to physical activity and to essential cognitive functions such as learning, memory, reward-motivated behavior and stress.

  10. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex

    PubMed Central

    Kunz, Portia A; Burette, Alain C; Weinberg, Richard J; Philpot, Benjamin D

    2012-01-01

    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl− gradient maintained by the Na+–K+–2Cl− cotransporter and requires Ca2+ entry through voltage-gated Ca2+ channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex. PMID:22988142

  11. Differential stimulation of the retina with subretinally injected exogenous neurotransmitter: A biomimetic alternative to electrical stimulation

    PubMed Central

    Rountree, Corey M.; Inayat, Samsoon; Troy, John B.; Saggere, Laxman

    2016-01-01

    Subretinal stimulation of the retina with neurotransmitters, the normal means of conveying visual information, is a potentially better alternative to electrical stimulation widely used in current retinal prostheses for treating blindness from photoreceptor degenerative diseases. Yet, no subretinal electrical or chemical stimulation study has stimulated the OFF and ON pathways differentially through inner retinal activation. Here, we demonstrate the feasibility of differentially stimulating retinal ganglion cells (RGCs) through the inner nuclear layer of the retina with glutamate, a primary neurotransmitter chemical, in a biomimetic way. We show that controlled pulsatile delivery of glutamate into the subsurface of explanted wild-type rat retinas elicits highly localized simultaneous inhibitory and excitatory spike rate responses in OFF and ON RGCs. We also present the spatiotemporal characteristics of RGC responses to subretinally injected glutamate and the therapeutic stimulation parameters. Our findings could pave the way for future development of a neurotransmitter-based subretinal prosthesis offering more naturalistic vision and better visual acuity than electrical prostheses. PMID:27929043

  12. Individual differences in visual motion perception and neurotransmitter concentrations in the human brain.

    PubMed

    Takeuchi, Tatsuto; Yoshimoto, Sanae; Shimada, Yasuhiro; Kochiyama, Takanori; Kondo, Hirohito M

    2017-02-19

    Recent studies have shown that interindividual variability can be a rich source of information regarding the mechanism of human visual perception. In this study, we examined the mechanisms underlying interindividual variability in the perception of visual motion, one of the fundamental components of visual scene analysis, by measuring neurotransmitter concentrations using magnetic resonance spectroscopy. First, by psychophysically examining two types of motion phenomena-motion assimilation and contrast-we found that, following the presentation of the same stimulus, some participants perceived motion assimilation, while others perceived motion contrast. Furthermore, we found that the concentration of the excitatory neurotransmitter glutamate-glutamine (Glx) in the dorsolateral prefrontal cortex (Brodmann area 46) was positively correlated with the participant's tendency to motion assimilation over motion contrast; however, this effect was not observed in the visual areas. The concentration of the inhibitory neurotransmitter γ-aminobutyric acid had only a weak effect compared with that of Glx. We conclude that excitatory process in the suprasensory area is important for an individual's tendency to determine antagonistically perceived visual motion phenomena.This article is part of the themed issue 'Auditory and visual scene analysis'.

  13. Protein-protein interactions and protein modules in the control of neurotransmitter release.

    PubMed Central

    Benfenati, F; Onofri, F; Giovedí, S

    1999-01-01

    Information transfer among neurons is operated by neurotransmitters stored in synaptic vesicles and released to the extracellular space by an efficient process of regulated exocytosis. Synaptic vesicles are organized into two distinct functional pools, a large reserve pool in which vesicles are restrained by the actin-based cytoskeleton, and a quantitatively smaller releasable pool in which vesicles approach the presynaptic membrane and eventually fuse with it on stimulation. Both synaptic vesicle trafficking and neurotransmitter release depend on a precise sequence of events that include release from the reserve pool, targeting to the active zone, docking, priming, fusion and endocytotic retrieval of synaptic vesicles. These steps are mediated by a series of specific interactions among cytoskeletal, synaptic vesicle, presynaptic membrane and cytosolic proteins that, by acting in concert, promote the spatial and temporal regulation of the exocytotic machinery. The majority of these interactions are mediated by specific protein modules and domains that are found in many proteins and are involved in numerous intracellular processes. In this paper, the possible physiological role of these multiple protein-protein interactions is analysed, with ensuing updating and clarification of the present molecular model of the process of neurotransmitter release. PMID:10212473

  14. Biomarkers of exposure to endogenous oxidative and aldehyde stress.

    PubMed

    Bruce, W Robert; Lee, Owen; Liu, Zhen; Marcon, Norman; Minkin, Salomon; O'Brien, Peter J

    2011-08-01

    We observed an unexpectedly strong association of three different endogenous aldehydes and noted that the association could be explained by multiple reactions in which oxidative stress increased the formation of endogenous aldehydes and endogenous aldehydes increased oxidative stress. These interactions make it reasonable to assess multiple exposures to endogenous oxidative and aldehyde stress with less specific measures such as advanced glycation end-products or protein carbonyls.

  15. [Progress in endogenous plasmid curing of bacteria--a review].

    PubMed

    Feng, Jun; Zhang, Wei; Song, Cunjiang

    2013-11-04

    To investigate the functions of the bacteria endogenous plasmid, which include bacterial drug resistance, symbiosis, capsular formation and heavy metal resistance, the endogenous plasmid needs to be cured first. We reviewed physical, chemical and molecular biological methods of endogenous plasmid curing, clarified the curing principles. The prospective of research on plasmid curing was also discussed, based on our own studies.

  16. In vitro screening of major neurotransmitter systems possibly involved in the mechanism of action of antibodies to S100 protein in released-active form

    PubMed Central

    Gorbunov, Evgeniy A; Ertuzun, Irina A; Kachaeva, Evgeniya V; Tarasov, Sergey A; Epstein, Oleg I

    2015-01-01

    Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand–receptor interaction. [35S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca2+ ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems. PMID:26604768

  17. Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study.

    PubMed

    Shearman, E; Rossi, S; Szasz, B; Juranyi, Z; Fallon, S; Pomara, N; Sershen, H; Lajtha, A

    2006-03-31

    Cholinesterase inhibitors including donepezil, rivastigmine, and galantamine and the N-methyl-D-aspartate (NMDA) antagonist, memantine are the medications currently approved for the treatment of Alzheimer's disease (AD). In addition to their beneficial effects on cognitive and functional domains typically disrupted in AD, these agents have also been shown to slow down the emergence of behavioral and psychotic symptoms associated with this disease. However, the underlying mechanisms for these therapeutic effects remain poorly understood and could involve effects of these medications on non-cholinergic or non-glutamatergic neurotransmitter systems respectively. These considerations prompted us to initiate a series of investigations to examine the acute and chronic effects of donepezil (Aricept (+/-)-2,3-dihydro-5,6-dimethoxy-2-[[1-(phenylmethyl)-4-piperidinyl]methyl]-1H-inden-1-1 hydrochloride and memantine (1-amino-3,5-dimethyladamantane hydrochloride C12H21N.HCl)). The present study focuses on the acute effects of donepezil and memantine on brain extracellular levels of acetylcholine, dopamine, serotonin, norepinephrine and their metabolites. We assayed changes in the ventral and dorsal hippocampus and the prefrontal and medial temporal cortex by microdialysis. Memantine resulted in significant increases in extracellular dopamine (DA), norepinephrine (NE), and their metabolites, in the cortical regions, and in a reduction of DA in the hippocampus. Donepezil produced an increase in extracellular DA in the cortex and in the dorsal hippocampus. Norepinephrine increased in the cortex; with donepezil it increased in the dorsal hippocampus and the medial temporal cortex, and decreased in the ventral hippocampus. Interestingly both compounds decreased extracellular serotonin (5HT) levels. The metabolites of the neurotransmitters were increased in most areas. We also found an increase in extracellular acetylcholine (ACh) by memantine in the nucleus accumbens and the

  18. Environment- and activity-dependent dopamine neurotransmitter plasticity in the adult substantia nigra.

    PubMed

    Aumann, Tim D

    2016-04-01

    The ability of neurons to change the amount or type of neurotransmitter they use, or 'neurotransmitter plasticity', is an emerging new form of adult brain plasticity. For example, it has recently been shown that neurons in the adult rat hypothalamus up- or down-regulate dopamine (DA) neurotransmission in response to the amount of light the animal receives (photoperiod), and that this in turn affects anxiety- and depressive-like behaviors (Dulcis et al., 2013). In this Chapter I consolidate recent evidence from my laboratory suggesting neurons in the adult mouse substantia nigra pars compacta (SNc) also undergo DA neurotransmitter plasticity in response to persistent changes in their electrical activity, including that driven by the mouse's environment or behavior. Specifically, we have shown that the amounts of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) gene promoter activity, TH mRNA and TH protein in SNc neurons increases or decreases after ∼20h of altered electrical activity. Also, infusion of ion-channel agonists or antagonists into the midbrain for 2 weeks results in ∼10% (∼500 neurons) more or fewer TH immunoreactive (TH+) SNc neurons, with no change in the total number of SNc neurons (TH+ and TH-). Targeting ion-channels mediating cell-autonomous pacemaker activity in, or synaptic input and afferent pathways to, SNc neurons are equally effective in this regard. In addition, exposing mice to different environments (sex pairing or environment enrichment) for 1-2 weeks induces ∼10% more or fewer TH+ SNc (and ventral tegmental area or VTA) neurons and this is abolished by concurrent blockade of synaptic transmission in midbrain. Although further research is required to establish SNc (and VTA) DA neurotransmitter plasticity, and to determine whether it alters brain function and behavior, it is an exciting prospect because: (1) It may play important roles in movement, motor learning, reward, motivation, memory and cognition; and (2

  19. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice

    PubMed Central

    Vastagh, Csaba; Rodolosse, Annie; Solymosi, Norbert; Liposits, Zsolt

    2016-01-01

    Gonadotropin-releasing hormone (GnRH) neurons play a key role in the central regulation of reproduction. In proestrous female mice, estradiol triggers the pre-ovulatory GnRH surge, however, its impact on the expression of neurotransmitter receptor genes in GnRH neurons has not been explored yet. We hypothesized that proestrus is accompanied by substantial changes in the expression profile of genes coding for neurotransmitter receptors in GnRH neurons. We compared the transcriptome of GnRH neurons obtained from intact, proestrous, and metestrous female GnRH-GFP transgenic mice, respectively. About 1500 individual GnRH neurons were sampled from both groups and their transcriptome was analyzed using microarray hybridization and real-time PCR. In this study, changes in mRNA expression of genes involved in neurotransmitter signaling were investigated. Differential gene expression was most apparent in GABA-ergic (Gabbr1, Gabra3, Gabrb3, Gabrb2, Gabrg2), glutamatergic (Gria1, Gria2, Grin1, Grin3a, Grm1, Slc17a6), cholinergic (Chrnb2, Chrm4) and dopaminergic (Drd3, Drd4), adrenergic (Adra1b, Adra2a, Adra2c), adenosinergic (Adora2a, Adora2b), glycinergic (Glra), purinergic (P2rx7), and serotonergic (Htr1b) receptors. In concert with these events, expression of genes in the signaling pathways downstream to the receptors, i.e., G-proteins (Gnai1, Gnai2, Gnas), adenylate-cyclases (Adcy3, Adcy5), protein kinase A (Prkaca, Prkacb) protein kinase C (Prkca) and certain transporters (Slc1a4, Slc17a6, Slc6a17) were also changed. The marked differences found in the expression of genes involved in neurotransmitter signaling of GnRH neurons at pro- and metestrous stages of the ovarian cycle indicate the differential contribution of these neurotransmitter systems to the induction of the pre-ovulatory GnRH surge, the known prerequisite of the subsequent hormonal cascade inducing ovulation. PMID:27774052

  20. Selective enrichment and determination of monoamine neurotransmitters by CU(II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection.

    PubMed

    He, Maofang; Wang, Chaozhan; Wei, Yinmao

    2016-01-15

    In this paper, iminodiacetic acid-Cu(II) functionalized Fe3O4@SiO2 magnetic nanoparticles were prepared and used as new adsorbents for magnetic solid phase extraction (MSPE) of six monoamine neurotransmitters (MNTs) from rabbit plasma. The selective enrichment of MNTs at pH 5.0 was motivated by the specific coordination interaction between amino groups of MNTs and the immobilized Cu(II). The employed weak acidic extraction condition avoided the oxidation of MNTs, and thus facilitated operation and ensured higher recoveries. Under optimal conditions, the recoveries of six MNTs from rabbit plasma were in the range of 83.9-109.4%, with RSD of 2.0-10.0%. When coupled the Cu(II) immobilized MSPE with high-performance liquid chromatography-fluorescence detection, the method exhibited relatively lower detection limits than the previously reported methods, and the method was successfully used to determine the endogenous MNTs in rabbit plasma. The proposed method has potential application for the determination of MNTs in biological samples. Also, the utilization of coordination interaction to improve the selectivity might open another way to selectively enrich small alkaloids from complex samples.

  1. Balance between Endogenous Superoxide Stress and Antioxidant Defenses

    PubMed Central

    Gort, Amy Strohmeier; Imlay, James A.

    1998-01-01

    Cells devoid of cytosolic superoxide dismutase (SOD) suffer enzyme inactivation, growth deficiencies, and DNA damage. It has been proposed that the scant superoxide (O2−) generated by aerobic metabolism harms even cells that contain abundant SOD. However, this idea has been difficult to test. To determine the amount of O2− that is needed to cause these defects, we modulated the O2− concentration inside Escherichia coli by controlling the expression of SOD. An increase in O2− of more than twofold above wild-type levels substantially diminished the activity of labile dehydratases, an increase in O2− of any more than fourfold measurably impaired growth, and a fivefold increase in O2− sensitized cells to DNA damage. These results indicate that E. coli constitutively synthesizes just enough SOD to defend biomolecules against endogenous O2− so that modest increases in O2− concentration diminish cell fitness. This conclusion is in excellent agreement with quantitative predictions based upon previously determined rates of intracellular O2− production, O2− dismutation, dehydratase inactivation, and enzyme repair. The vulnerability of bacteria to increased intracellular O2− explains the widespread use of superoxide-producing drugs as bactericidal weapons in nature. E. coli responds to such drugs by inducing the SoxRS regulon, which positively regulates synthesis of SOD and other defensive proteins. However, even toxic amounts of endogenous O2− did not activate SoxR, and SoxR activation by paraquat was not at all inhibited by excess SOD. Therefore, in responding to redox-cycling drugs, SoxR senses some signal other than O2−. PMID:9515906

  2. Susceptibility of porcine endogenous retrovirus to anti-retroviral inhibitors

    PubMed Central

    Argaw, Takele; Colon-Moran, Winston; Wilson, Carolyn

    2016-01-01

    Background Porcine endogenous retrovirus (PERV) is an endogenous retrovirus that poses a risk of iatrogenic transmission in the context of pig-to-human xenotransplantation. The lack of a means to control PERV infection in the context of pig-to-human xenotransplantation is a major concern in the field. In this study, we set out to evaluate the ability of currently licensed anti-HIV drugs, and other types of anti-retroviral compounds, to inhibit PERV infection in vitro. Methods We used target cells stably expressing one of the known PERV viral receptors, an infectious molecular clone, PERV-A 14/220, and at least one drug from each class of anti-retroviral inhibitors as well as off-label drugs shown to have anti-viral activities. The susceptibility of PERV-A 14/220 LacZ to the anti-retroviral drugs was determined from infected cells by histochemical staining. Results We extend the results of previous studies by showing that, in addition to raltegravir, dolutegravir is found to have a potent inhibitory activity against PERV replication (IC50 8.634 ±0.336 and IC50 3.06 ± 0.844 nm, respectively). The anti-HIV drug zidovudine (AZT) showed considerable anti-PERV activity with IC50 of 1.923 ±0.691 μm as well. Conclusions The study results indicate that some of the licensed antiretroviral drugs may be useful for controlling PERV infection. However, the efficacy at nanomolar concentrations put forward integrase inhibitors as a drug that has the potential to be useful in the event that xenotransplantation recipients have evidence of PERV transmission and replication. PMID:27028725

  3. A Derivatization and Validation Strategy for Determining the Spatial Localization of Endogenous Amine Metabolites in Tissues using MALDI Imaging Mass Spectrometry

    PubMed Central

    Manier, M. Lisa; Spraggins, Jeffrey M.; Reyzer, Michelle L.; Norris, Jeremy L.; Caprioli, Richard M.

    2014-01-01

    Imaging mass spectrometry (IMS) studies increasingly focus on endogenous small molecular weight metabolites and consequently bring special analytical challenges. Since analytical tissue blanks do not exist for endogenous metabolites, careful consideration must be given to confirm molecular identity. Here we present approaches for the improvement in detection of endogenous amine metabolites such as amino acids and neurotransmitters in tissues through chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) IMS. Chemical derivatization with 4-hydroxy-3-methoxycinnamaldehyde (CA) was used to improve sensitivity and specificity. CA was applied to the tissue via MALDI sample targets precoated with a mixture of derivatization reagent and ferulic acid (FA) as a MALDI matrix. Spatial distributions of chemically derivatized endogenous metabolites in tissue were determined by high-mass resolution and MSn imaging mass spectrometry. We highlight an analytical strategy for metabolite validation whereby tissue extracts are analyzed by high-performance liquid chromatography (HPLC)-MS/MS to unambiguously identify metabolites and distinguish them from isobaric compounds. PMID:25044893

  4. An Update of the Classical and Novel Methods Used for Measuring Fast Neurotransmitters During Normal and Brain Altered Function

    PubMed Central

    Cifuentes Castro, Victor Hugo; López Valenzuela, Carmen Lucía; Salazar Sánchez, Juan Carlos; Peña, Kenia Pardo; López Pérez, Silvia J.; Ibarra, Jorge Ortega; Villagrán, Alberto Morales

    2014-01-01

    To understand better the cerebral functions, several methods have been developed to study the brain activity, they could be related with morphological, electrophysiological, molecular and neurochemical techniques. Monitoring neurotransmitter concentration is a key role to know better how the brain works during normal or pathological conditions, as well as for studying the changes in neurotransmitter concentration with the use of several drugs that could affect or reestablish the normal brain activity. Immediate response of the brain to environmental conditions is related with the release of the fast acting neurotransmission by glutamate (Glu), γ-aminobutyric acid (GABA) and acetylcholine (ACh) through the opening of ligand-operated ion channels. Neurotransmitter release is mainly determined by the classical microdialysis technique, this is generally coupled to high performance liquid chromatography (HPLC). Detection of neurotransmitters can be done by fluorescence, optical density, electrochemistry or other detection systems more sophisticated. Although the microdialysis method is the golden technique to monitor the brain neurotransmitters, it has a poor temporal resolution. Recently, with the use of biosensor the drawback of temporal resolution has been improved considerably, however other inconveniences have merged, such as stability, reproducibility and the lack of reliable biosensors mainly for GABA. The aim of this review is to show the important advances in the different ways to measure neurotransmitter concentrations; both with the use of classic techniques as well as with the novel methods and alternant approaches to improve the temporal resolution. PMID:25977677

  5. Distribution of endogenous retroviruses in crocodilians.

    PubMed

    Jaratlerdsiri, Weerachai; Rodríguez-Zárate, Clara J; Isberg, Sally R; Damayanti, Chandramaya Siska; Miles, Lee G; Chansue, Nantarika; Moran, Chris; Melville, Lorna; Gongora, Jaime

    2009-10-01

    Knowledge of endogenous retroviruses (ERVs) in crocodilians (Crocodylia) is limited, and their distribution among extant species is unclear. Here we analyzed the phylogenetic relationships of these retroelements in 20 species of crocodilians by studying the pro-pol gene. The results showed that crocodilian ERVs (CERVs) cluster into two major clades (CERV 1 and CERV 2). CERV 1 clustered as a sister group of the genus Gammaretrovirus, while CERV 2 clustered distantly with respect to all known ERVs. Interestingly, CERV 1 was found only in crocodiles (Crocodylidae). The data generated here could assist future studies aimed at identifying orthologous and paralogous ERVs among crocodilians.

  6. Diverging patterns with endogenous labor migration.

    PubMed

    Reichlin, P; Rustichini, A

    1998-05-05

    "The standard neoclassical model cannot explain persistent migration flows and lack of cross-country convergence when capital and labor are mobile. Here we present a model where both phenomena may take place.... Our model is based on the Arrow-Romer approach to endogenous growth theory. We single out the importance of a (however weak) scale effect from the size of the workforce.... The main conclusion of this simple model is that lack of convergence, or even divergence, among countries is possible, even with perfect capital mobility and labor mobility."

  7. AMPA receptor inhibition by synaptically released zinc

    PubMed Central

    Kalappa, Bopanna I.; Anderson, Charles T.; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses. PMID:26647187

  8. Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters

    PubMed Central

    Wu, Li-Li; Liu, Yan; Pan, Yi; Su, Jun-Fang; Wu, Wei-Kang

    2016-01-01

    The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA) and water-EtOH soluble fraction (Fraction B, FB) prepared from the Danzhi-xiaoyao-san (DZXYS) by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats. PMID:27413389

  9. Evidence that tachykinins are the main NANC excitatory neurotransmitters in the guinea-pig common bile duct

    PubMed Central

    Patacchini, Riccardo; De Giorgio, Roberto; Barthó, Lorand; Barbara, Giovanni; Corinaldesi, Roberto; Alberto Maggi, Carlo

    1998-01-01

    -azophenyl-2′,4′-disulphonic acid (PPADS, 30 μM). PPADS (30 μM) selectively blocked (75±9 and 50±7% inhibition, n=4 each) the contractile responses produced by 100 and 300 μM ATP. Tachykinin-containing nerve fibres were detected by using immunohistochemical techniques in all parts of the bile duct, being distributed to the muscle layer and lamina propria of mucosa. In the terminal part of the duct (ampulla) some labelled ganglion cells were observed. In conclusion, this study shows that in the guinea-pig terminal biliary tract tachykinins, released from intrinsic neuronal elements, are the main NANC excitatory neurotransmitters, which act by stimulating tachykinin NK2 (and possibly NK1) receptors. ATP is also involved as excitatory neurotransmitter. Nitric oxide and opioids act as inhibitory mediators/modulators in this preparation. PMID:9756387

  10. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    PubMed

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  11. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    PubMed Central

    Moffett, John; Fray, Linley M; Kubat, Nicole J

    2012-01-01

    Background Pulsed radiofrequency energy (PRFE) fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s) responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways. Methods and Results Using cultured human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin) and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types. Conclusion These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting. PMID:23055776

  12. Prion diseases and adult neurogenesis: How do prions counteract the brain's endogenous repair machinery?

    PubMed Central

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process; however, it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies. PMID:24831876

  13. In vivo regulation of replicative Legionella pneumophila lung infection by endogenous tumor necrosis factor alpha and nitric oxide.

    PubMed Central

    Brieland, J K; Remick, D G; Freeman, P T; Hurley, M C; Fantone, J C; Engleberg, N C

    1995-01-01

    The in vivo role of endogenous tumor necrosis factor alpha (TNF-alpha) and reactive nitrogen intermediates (RNIs) in modulation of growth of Legionella pneumophila in the lung was assessed using a murine model of replicative L. pneumophila lung infection. Intratracheal inoculation of mice with L. pneumophila resulted in induction of endogenous TNF-alpha, which preceded clearance of L. pneumophila from the lung. Inhibition of endogenous TNF-alpha activity, via in vivo administration of TNF-alpha neutralizing antibody, or inhibition of endogenous RNIs, via administration of the nitric oxide (NO) synthetase inhibitor N-monomethyl-L-arginine (NMMA), resulted in enhanced growth of L. pneumophila in the lung at > or = 3 days postinfection (when compared with untreated L. pneumophila-infected mice). Because of the similar kinetics of enhanced pulmonary growth of L. pneumophila in mice treated in vivo with either anti-TNF-alpha antibody or NMMA, the immunomodulatory effect of NO on endogenous TNF-alpha activity in the lung was assessed. Administration of NMMA to L. pneumophila-infected mice resulted in a significant decrease in endogenous TNF-alpha activity in the lung during replicative L. pneumophila infections in vivo. However, administration of exogenous TNF-alpha to NMMA-treated mice failed to significantly enhance clearance of L. pneumophila from the lung. Results of these studies indicate that both endogenous NO and TNF-alpha facilitate resolution of replicative L. pneumophila lung infections and that regulation of L. pneumophila replication by TNF-alpha is mediated, at least in part, by NO. PMID:7642253

  14. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium

    PubMed Central

    Fu, Xiao Wen; Rekow, Stephen S.

    2012-01-01

    Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABAA receptors (GABAAR) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABAAR, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABAAR and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression. PMID:22923641

  15. Inhibition of MMPs by alcohols

    PubMed Central

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  16. Live Imaging of Endogenous PSD-95 Using ENABLED: A Conditional Strategy to Fluorescently Label Endogenous Proteins

    PubMed Central

    Fortin, Dale A.; Tillo, Shane E.; Yang, Guang; Rah, Jong-Cheol; Melander, Joshua B.; Bai, Suxia; Soler-Cedeño, Omar; Qin, Maozhen; Zemelman, Boris V.; Guo, Caiying

    2014-01-01

    Stoichiometric labeling of endogenous synaptic proteins for high-contrast live-cell imaging in brain tissue remains challenging. Here, we describe a conditional mouse genetic strategy termed endogenous labeling via exon duplication (ENABLED), which can be used to fluorescently label endogenous proteins with near ideal properties in all neurons, a sparse subset of neurons, or specific neuronal subtypes. We used this method to label the postsynaptic density protein PSD-95 with mVenus without overexpression side effects. We demonstrated that mVenus-tagged PSD-95 is functionally equivalent to wild-type PSD-95 and that PSD-95 is present in nearly all dendritic spines in CA1 neurons. Within spines, while PSD-95 exhibited low mobility under basal conditions, its levels could be regulated by chronic changes in neuronal activity. Notably, labeled PSD-95 also allowed us to visualize and unambiguously examine otherwise-unidentifiable excitatory shaft synapses in aspiny neurons, such as parvalbumin-positive interneurons and dopaminergic neurons. Our results demonstrate that the ENABLED strategy provides a valuable new approach to study the dynamics of endogenous synaptic proteins in vivo. PMID:25505322

  17. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity

    PubMed Central

    Thompson, Georgina L.; Canals, Meritxell; Poole, Daniel P.

    2014-01-01

    This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals. PMID:25506328

  18. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis

    PubMed Central

    Kass, Itamar; Hoke, David E.; Costa, Mauricio G. S.; Reboul, Cyril F.; Porebski, Benjamin T.; Cowieson, Nathan P.; Leh, Hervé; Pennacchietti, Eugenia; McCoey, Julia; Kleifeld, Oded; Borri Voltattorni, Carla; Langley, David; Roome, Brendan; Mackay, Ian R.; Christ, Daniel; Perahia, David; Buckle, Malcolm; Paiardini, Alessandro; De Biase, Daniela; Buckle, Ashley M.

    2014-01-01

    The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5′-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5′-phosphate–binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies. PMID:24927554

  19. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis.

    PubMed

    Kass, Itamar; Hoke, David E; Costa, Mauricio G S; Reboul, Cyril F; Porebski, Benjamin T; Cowieson, Nathan P; Leh, Hervé; Pennacchietti, Eugenia; McCoey, Julia; Kleifeld, Oded; Borri Voltattorni, Carla; Langley, David; Roome, Brendan; Mackay, Ian R; Christ, Daniel; Perahia, David; Buckle, Malcolm; Paiardini, Alessandro; De Biase, Daniela; Buckle, Ashley M

    2014-06-24

    The human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form. GAD65, but not GAD67, is a prevalent autoantigen, with autoantibodies to GAD65 being detected at high frequency in patients with autoimmune (type 1) diabetes and certain other autoimmune disorders. The significance of GAD65 autoinactivation into the apo form for regulation of neurotransmitter levels and autoantibody reactivity is not understood. We have used computational and experimental approaches to decipher the nature of the holo → apo conversion in GAD65 and thus, its mechanism of autoinactivation. Molecular dynamics simulations of GAD65 reveal coupling between the C-terminal domain, catalytic loop, and pyridoxal 5'-phosphate-binding domain that drives structural rearrangement, dimer opening, and autoinactivation, consistent with limited proteolysis fragmentation patterns. Together with small-angle X-ray scattering and fluorescence spectroscopy data, our findings are consistent with apoGAD65 existing as an ensemble of conformations. Antibody-binding kinetics suggest a mechanism of mutually induced conformational changes, implicating the flexibility of apoGAD65 in its autoantigenicity. Although conformational diversity may provide a mechanism for cofactor-controlled regulation of neurotransmitter biosynthesis, it may also come at a cost of insufficient development of immune self-tolerance that favors the production of GAD65 autoantibodies.

  20. Effects of colistin on amino acid neurotransmitters and blood-brain barrier in the mouse brain.

    PubMed

    Wang, Jian; Yi, Meishuang; Chen, Xueping; Muhammad, Ishfaq; Liu, Fangping; Li, Rui; Li, Jian; Li, Jichang

    2016-01-01

    Neurotoxicity is one of the major potential side effects of colistin therapy. However, the mechanistic aspects of colistin-induced neurotoxicity remain largely unknown. The objective of this study was to examine the effects of colistin on the blood-brain barrier (BBB) and amino acid neurotransmitters in the cerebral cortex of mouse. Mice were divided into four groups (n=5) and were administrated intravenously with 15mg/kg/day of colistin sulfate for 1, 3 and 7days successively while the control group was administrated intravenously with saline solution. The permeability and ultrastructure of the BBB were detected using the Evans blue (EB) dye and transmission electron microscopy (TEM), and the expression of Claudin-5 were determined by real-time PCR examination and western blotting. The brain uptake of colistin was measured by high-performance liquid chromatography (HPLC). The effects of colistin on amino acid neurotransmitters and their receptors were also examined by HPLC and real-time PCR. The results of EB extravasation, TEM and expression of Claudin-5 showed that colistin treatment did not affect the BBB integrity. In addition, multiple doses of colistin could induce accumulation of this compound in the brain parenchyma although there was poor brain uptake of colistin. Moreover, colistin exposure significantly increased the contents of glutamate (Glu) and gamma aminobutyric acid (GABA), and enhanced the mRNA expression levels of gamma aminobutyric acid type A receptor (GABAAR), gamma aminobutyric acid type B receptor (GABABR), N-methyl-d-aspartate 1 receptor (NR1), N-methyl-d-aspartate 2A receptor (NR2A) and N-methyl-d-aspartate 2B receptor (NR2B) in the cerebral cortex. Our data demonstrate that colistin is able to accumulate in the mouse brain and elevate the levels of amino acid neurotransmitters. These findings may be associated with colistin-induced neurotoxicity.

  1. Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmitter pathways in mouse brain.

    PubMed

    Tiwari, Vivek; Veeraiah, Pandichelvam; Subramaniam, Vaidyanathan; Patel, Anant Bahadur

    2014-03-01

    This study investigates the effects of ethanol on neuronal and astroglial metabolism using (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of [1,6-(13)C2]/[1-(13)C]glucose or [2-(13)C]acetate, respectively. A three-compartment metabolic model was fitted to the (13)C turnover of GluC3 , GluC4, GABAC 2, GABAC 3, AspC3 , and GlnC4 from [1,6-(13)C2 ]glucose to determine the rates of tricarboxylic acid (TCA) and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The ratio of neurotransmitter cycle to TCA cycle fluxes for glutamatergic and GABAegic neurons was obtained from the steady-state [2-(13)C]acetate experiment and used as constraints during the metabolic model fitting. (1)H MRS measurement suggests that depletion of ethanol from cerebral cortex follows zero order kinetics with rate 0.18 ± 0.04 μmol/g/min. Acute exposure of ethanol reduces the level of glutamate and aspartate in cortical region. GlnC4 labeling was found to be unchanged from a 15 min infusion of [2-(13)C]acetate suggesting that acute ethanol exposure does not affect astroglial metabolism in naive mice. Rates of TCA and neurotransmitter cycle associated with glutamatergic and GABAergic neurons were found to be significantly reduced in cortical and subcortical regions. Acute exposure of ethanol perturbs the level of neurometabolites and decreases the excitatory and inhibitory activity differentially across the regions of brain. Depletion of ethanol and its effect on brain functions were measured using (1)H and (1)H-[(13)C]-NMR spectroscopy in conjunction with infusion of (13)C-labeled substrates. Ethanol depletion from brain follows zero order kinetics. Ethanol perturbs level of glutamate, and the excitatory and inhibitory activity in mice brain.

  2. Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex.

    PubMed

    Kumar, Gajendra; Au, Ngan Pan Bennett; Lei, Elva Ngai Yu; Mak, Yim Ling; Chan, Leanne Lai Hang; Lam, Michael Hon Wah; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-09-10

    Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.

  3. Secondary neurotransmitter deficiencies in epilepsy caused by voltage-gated sodium channelopathies: A potential treatment target?

    PubMed

    Horvath, Gabriella A; Demos, Michelle; Shyr, Casper; Matthews, Allison; Zhang, Linhua; Race, Simone; Stockler-Ipsiroglu, Sylvia; Van Allen, Margot I; Mancarci, Ogan; Toker, Lilah; Pavlidis, Paul; Ross, Colin J; Wasserman, Wyeth W; Trump, Natalie; Heales, Simon; Pope, Simon; Cross, J Helen; van Karnebeek, Clara D M

    2016-01-01

    We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities.

  4. Self administration of oxycodone by adolescent and adult mice affects striatal neurotransmitter receptor gene expression.

    PubMed

    Mayer-Blackwell, B; Schlussman, S D; Butelman, E R; Ho, A; Ott, J; Kreek, M J; Zhang, Y

    2014-01-31

    Illicit use of prescription opioid analgesics (e.g., oxycodone) in adolescence is a pressing public health issue. Our goal was to determine whether oxycodone self administration differentially affects striatal neurotransmitter receptor gene expression in the dorsal striatum of adolescent compared to adult C57BL/6J mice. Groups of adolescent mice (4 weeks old, n=12) and of adult mice (11 weeks old, n=11) underwent surgery during which a catheter was implanted into their jugular veins. After recovering from surgery, mice self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or served as yoked saline controls. Mice were sacrificed within 1h after the last self-administration session and the dorsal striatum was isolated for mRNA analysis. Gene expression was analyzed with real time PCR using a commercially available neurotransmitter receptor PCR array containing 84 genes. We found that adolescent mice self administered less oxycodone than adult mice over the 14 days. Monoamine oxidase A (Maoa) and neuropeptide Y receptor 5 mRNA levels were lower in adolescent mice than in adult mice without oxycodone exposure. Oxycodone self administration increased Maoa mRNA levels compared to controls in both age groups. There was a positive correlation of the amount of oxycodone self administered in the last session or across 14 sessions with Maoa mRNA levels. Gastrin-releasing peptide receptor mRNA showed a significant Drug × Age interaction, with point-wise significance. More genes in the dorsal striatum of adolescents (19) changed in response to oxycodone self administration compared to controls than in adult (4) mice. Overall, this study demonstrates that repeated oxycodone self administration alters neurotransmitter receptors gene expression in the dorsal striatum of adolescent and adult mice.

  5. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site.

    PubMed

    Piscitelli, Chayne L; Krishnamurthy, Harini; Gouaux, Eric

    2010-12-23

    Neurotransmitter/sodium symporters (NSSs) couple the uptake of neurotransmitter with one or more sodium ions, removing neurotransmitter from the synaptic cleft. NSSs are essential to the function of chemical synapses, are associated with multiple neurological diseases and disorders, and are the targets of therapeutic and illicit drugs. LeuT, a prokaryotic orthologue of the NSS family, is a model transporter for understanding the relationships between molecular mechanism and atomic structure in a broad range of sodium-dependent and sodium-independent secondary transporters. At present there is a controversy over whether there are one or two high-affinity substrate binding sites in LeuT. The first-reported crystal structure of LeuT, together with subsequent functional and structural studies, provided direct evidence for a single, high-affinity, centrally located substrate-binding site, defined as the S1 site. Recent binding, flux and molecular simulation studies, however, have been interpreted in terms of a model where there are two high-affinity binding sites: the central, S1, site and a second, the S2 site, located within the extracellular vestibule. Furthermore, it was proposed that the S1 and S2 sites are allosterically coupled such that occupancy of the S2 site is required for the cytoplasmic release of substrate from the S1 site. Here we address this controversy by performing direct measurement of substrate binding to wild-type LeuT and to S2 site mutants using isothermal titration calorimetry, equilibrium dialysis and scintillation proximity assays. In addition, we perform uptake experiments to determine whether the proposed allosteric coupling between the putative S2 site and the S1 site manifests itself in the kinetics of substrate flux. We conclude that LeuT harbours a single, centrally located, high-affinity substrate-binding site and that transport is well described by a simple, single-substrate kinetic mechanism.

  6. Endogenous ciliary neurotrophic factor modulates anxiety and depressive-like behavior.

    PubMed

    Peruga, Isabella; Hartwig, Silvia; Merkler, Doron; Thöne, Jan; Hovemann, Bernhard; Juckel, Georg; Gold, Ralf; Linker, Ralf A

    2012-04-15

    On a molecular level, depression is characterized by an altered monoaminergic neurotransmission as well as a modulation of cytokines and other mediators in the central nervous system. In particular, neurotrophic factors may influence affective behavior including depression and anxiety. Ciliary neurotrophic factor (CNTF) plays an important role in the regulation of neuronal development, neuroprotection and may also influence cognitive processes. Here we investigate the affective behavior in mice deficient for CNTF (CNTF -/- mice) at young age of 10-20 weeks. CNTF -/- mice displayed an increased anxiety-like behavior with a 30% reduction of the time spent in the bright compartment of the light/dark box as well as a significantly increased startle response. In the learned helplessness paradigm, CNTF -/- mice are more prone to depressive-like behavior. In the hippocampus of 20 weeks old, but not 10 weeks old, CNTF -/- mice, these changes correlated with a loss of parvalbumin immunoreactive GABAergic interneurons and a reduction of serotonin levels as well as 5-HT receptor 1A expression. Modulation of monoaminergic neurotransmitter levels via chronic application of the antidepressants amitriptyline and citalopram did not exert beneficial effects. These data imply that endogenous CNTF plays a pivotal role for the structural maintenance of hippocampal functions and thus has an important impact on the modulation of affective behavior in rodent models of anxiety and depression.

  7. Endogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons

    PubMed Central

    Maas, James W. Jr.; Yang, Jing; Edwards, Robert H.

    2017-01-01

    Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) produce the most common inherited form of Parkinson’s disease (PD) but the function of LRRK2 remains poorly understood. The presynaptic role of multiple genes linked to PD including α-synuclein (α-syn) has suggested that LRRK2 may also influence neurotransmitter release, a possibility supported by recent work. However, the use of disease-associated mutants that cause toxicity complicates the analysis. To determine whether LRRK2 normally influences the synaptic vesicle, we have now used a combination of imaging and electrophysiology to study LRRK2 knockout (KO) mice. Surprisingly, we find that in hippocampal (generally excitatory) neurons, the loss of LRRK2 does not affect synaptic vesicle exocytosis, endocytosis or the mobility of α-syn. Double KO (DKO) mice lacking LRRK1 as well as LRRK2 also show no defect in transmitter release by hippocampal neurons. However, in striatal neurons, which express LRRK2 at higher levels, the loss of LRRK2 leads to modest acceleration of synaptic vesicle endocytosis. Thus, endogenous LRRK2 normally slows synaptic vesicle recycling at striatal terminals. PMID:28280464

  8. Adolescent brain maturation, the endogenous cannabinoid system and the neurobiology of cannabis-induced schizophrenia.

    PubMed

    Bossong, Matthijs G; Niesink, Raymond J M

    2010-11-01

    Cannabis use during adolescence increases the risk of developing psychotic disorders later in life. However, the neurobiological processes underlying this relationship are unknown. This review reports the results of a literature search comprising various neurobiological disciplines, ultimately converging into a model that might explain the neurobiology of cannabis-induced schizophrenia. The article briefly reviews current insights into brain development during adolescence. In particular, the role of the excitatory neurotransmitter glutamate in experience-dependent maturation of specific cortical circuitries is examined. The review also covers recent hypotheses regarding disturbances in strengthening and pruning of synaptic connections in the prefrontal cortex, and the link with latent psychotic disorders. In the present model, cannabis-induced schizophrenia is considered to be a distortion of normal late postnatal brain maturation. Distortion of glutamatergic transmission during critical periods may disturb prefrontal neurocircuitry in specific brain areas. Our model postulates that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the primary psychoactive substance in cannabis, transiently disturbs physiological control of the endogenous cannabinoid system over glutamate and GABA release. As a result, THC may adversely affect adolescent experience-dependent maturation of neural circuitries within prefrontal cortical areas. Depending on dose, exact time window and duration of exposure, this may ultimately lead to the development of psychosis or schizophrenia. The proposed model provides testable hypotheses which can be addressed in future studies, including animal experiments, reanalysis of existing epidemiological data, and prospective epidemiological studies in which the role of the dose-time-effect relationship should be central.

  9. Endogenous Leucine-Rich Repeat Kinase 2 Slows Synaptic Vesicle Recycling in Striatal Neurons.

    PubMed

    Maas, James W Jr; Yang, Jing; Edwards, Robert H

    2017-01-01

    Dominant mutations in leucine-rich repeat kinase 2 (LRRK2) produce the most common inherited form of Parkinson's disease (PD) but the function of LRRK2 remains poorly understood. The presynaptic role of multiple genes linked to PD including α-synuclein (α-syn) has suggested that LRRK2 may also influence neurotransmitter release, a possibility supported by recent work. However, the use of disease-associated mutants that cause toxicity complicates the analysis. To determine whether LRRK2 normally influences the synaptic vesicle, we have now used a combination of imaging and electrophysiology to study LRRK2 knockout (KO) mice. Surprisingly, we find that in hippocampal (generally excitatory) neurons, the loss of LRRK2 does not affect synaptic vesicle exocytosis, endocytosis or the mobility of α-syn. Double KO (DKO) mice lacking LRRK1 as well as LRRK2 also show no defect in transmitter release by hippocampal neurons. However, in striatal neurons, which express LRRK2 at higher levels, the loss of LRRK2 leads to modest acceleration of synaptic vesicle endocytosis. Thus, endogenous LRRK2 normally slows synaptic vesicle recycling at striatal terminals.

  10. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  11. Evidence that the modulator of the glucocorticoid-receptor complex is the endogenous molybdate factor.

    PubMed Central

    Bodine, P V; Litwack, G

    1988-01-01

    We have recently purified the modulator of the glucocorticoid-receptor complex from rat liver. Purified modulator inhibits glucocorticoid-receptor complex activation and stabilizes the steroid-binding ability of the unoccupied glucocorticoid receptor. Since these activities are shared by exogenous sodium molybdate, modulator appears to be the endogenous factor that sodium molybdate mimics. In this report, we present additional evidence for the mechanism of action of purified modulator. (i) Molybdate and modulator inhibit receptor activation as measured by DNA-cellulose binding, DEAE-cellulose chromatography, and Sepharose 4B gel filtration. (ii) The ability of molybdate and modulator to inhibit receptor activation and stabilize the unoccupied receptor appears to be additive. (iii) Scatchard analysis of heat-destabilized unoccupied receptors indicates that the number of steroid-binding sites is reduced during destabilization, whereas the steroid dissociation constant remains unchanged. Molybdate and modulator stabilize the receptor by maintaining the number of steroid-binding sites. (iv) Molybdate and modulator do not inhibit alkaline phosphatase-induced destabilization of the unoccupied receptor. However, alkaline phosphatase-induced destabilization is reversed by the addition of dithiothreitol in the presence, but not in the absence, of molybdate or modulator. These results suggest that the mechanism of action for modulator is identical to that of sodium molybdate, and we propose that modulator is the endogenous molybdate factor for the glucocorticoid receptor. PMID:3422744

  12. In Vivo Assessment of Neurotransmitters and Modulators with Magnetic Resonance Spectroscopy: Application to Schizophrenia

    PubMed Central

    Wijtenburg, S. Andrea; Yang, Shaolin; Fischer, Bernard A.; Rowland, Laura M.

    2015-01-01

    In vivo measurement of neurotransmitters and modulators is now feasible with advanced proton magnetic resonance spectroscopy (1H-MRS) techniques. This review provides a basic tutorial of MRS, describes the methods available to measure brain glutamate, glutamine, γ-aminobutyric acid, glutathione, N-acetylaspartylglutamate, glycine, and serine at magnetic field strengths of 3Tesla or higher, and summarizes the neurochemical findings in schizophrenia. Overall, 1H-MRS holds great promise for producing biomarkers that can serve as treatment targets, prediction of disease onset, or illness exacerbation in schizophrenia and other brain diseases. PMID:25614132

  13. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  14. Modulation of extracellular neurotransmitter levels in the nucleus accumbens by a taurine uptake inhibitor.

    PubMed

    Olive, M F; Mehmert, K K; Hodge, C W

    2000-12-15

    Using in vivo microdialysis, we examined the effect of local perfusion of the taurine uptake inhibitor guanidinoethyl sulfonate on extracellular levels of various neurotransmitters in the rat nucleus accumbens. Guanidinoethyl sulfonate (500 microM-50 mM) produced a concentration-dependent increase in extracellular taurine levels. While 500 microM and 5 mM concentrations of guanidinoethyl sulfonate were largely without effect, 50 mM guanidinoethyl sulfonate produced a significant decrease in extracellular levels of aspartate, glutamate and glycine, with no effect on extracellular dopamine levels. These results indicate that guanidinoethyl sulfonate can modulate extracellular amino acid levels in the nucleus accumbens.

  15. Synaptic optical imaging platforms: Examining pharmacological modulation of neurotransmitter release at discrete synapses.

    PubMed

    Merchant, Paolomi; Sulzer, David; Sames, Dalibor

    2015-11-01

    Chemical synapses are not only fundamental functional units of the brain but also anatomical and functional biomarkers of numerous brain disorders. Therefore, new experimental readouts of synaptic function are needed--with the spatial resolution of single synapses and the scale to image large ensembles of synapses in specific circuits--for the study of both acute and chronic effects of pharmacological agents on synaptic plasticity in living mammals. In this article we discuss the design and use of fluorescent false neurotransmitters (FFNs) as an important step in the development of versatile synaptic imaging platforms. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.

  16. Exploration of inclusion complexes of neurotransmitters with β-cyclodextrin by physicochemical techniques

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Saha, Subhadeep; Kundu, Mitali; Saha, Binoy Chandra; Barman, Siti

    2016-07-01

    Molecular assemblies of β-cyclodextrin with few of the most important neurotransmitters, viz., dopamine hydrochloride, tyramine hydrochloride and (±)-epinephrine hydrochloride in aqueous medium have been explored by reliable spectroscopic and physicochemical techniques as potential drug delivery systems. Job plots confirm the 1:1 host-guest inclusion complexes, while surface tension and conductivity studies illustrate the inclusion process. The inclusion complexes were characterized by 1H NMR spectroscopy and association constants have been calculated by using Benesi-Hildebrand method. Thermodynamic parameters for the formation of inclusion complexes have been derived by van't Hoff equation, which demonstrate that the overall inclusion processes are thermodynamically favorable.

  17. Coexistence of Several Putative Neurotransmitters in Single Identified Neurosn of Aplysia

    PubMed Central

    Brownstein, Michael J.; Saavedra, Juan M.; Axelrod, Julius; Zeman, Gary H.; Carpenter, David O.

    1974-01-01

    By sensitive enzymatic micromethods several putative neurotransmitters were measured in four identifiable neurons of Aplysia californica (R-2, R-14, L-11, and C-1). Serotonin was found in all of these neurons, and octopamine in all but C-1. Acetylcholine has been previously reported to be present in R-2 and L-11. The catecholamines, norepinephrine and dopamine, were not detected in the four cells examined. The possible biological consequence of the presence of several putative transmitters in single identifiable neurons is discussed. PMID:4373726

  18. Hydrophilic interaction chromatography combined with dispersive liquid-liquid microextraction as a preconcentration tool for the simultaneous determination of the panel of underivatized neurotransmitters in human urine samples.

    PubMed

    Konieczna, Lucyna; Roszkowska, Anna; Niedźwiecki, Maciej; Bączek, Tomasz

    2016-01-29

    determination of trace amounts of polar endogenous compounds, such as neurotransmitters, in human urine samples, including samples with a reduced volume obtained from pediatric patients.

  19. Accelerating Quinoline Biodegradation and Oxidation with Endogenous Electron Donors.

    PubMed

    Bai, Qi; Yang, Lihui; Li, Rongjie; Chen, Bin; Zhang, Lili; Zhang, Yongming; Rittmann, Bruce E

    2015-10-06

    Quinoline, a recalcitrant heterocyclic compound, is biodegraded by a series of reactions that begin with mono-oxygenations, which require an intracellular electron donor. Photolysis of quinoline can generate readily biodegradable products, such as oxalate, whose bio-oxidation can generate endogenous electron donors that ought to accelerate quinoline biodegradation and, ultimately, mineralization. To test this hypothesis, we compared three protocols for the biodegradation of quinoline: direct biodegradation (B), biodegradation after photolysis of 1 h (P1h+B) or 2 h (P2h+B), and biodegradation by adding oxalate commensurate to the amount generated from photolysis of 1 h (O1+B) or 2 h (O2+B). The experimental results show that P1h+B and P2h+B accelerated quinoline biodegradation by 19% and 50%, respectively, compared to B. Protocols O1+B and O2+B also gave 19% and 50% increases, respectively. During quinoline biodegradation, its first intermediate, 2-hydroxyquinoline, accumulated gradually in parallel to quinoline loss but declined once quinoline was depleted. Mono-oxygenation of 2-hydroxyquinoline competed with mono-oxygenation of quinoline, but the inhibition was relieved when extra electrons donors were added from oxalate, whether formed by UV photolysis or added exogenously. Rapid oxalate oxidation stimulated both mono-oxygenations, which accelerated the overall quinoline oxidation that provided the bulk of the electron donor.

  20. Ultrastructural effects of acetamizuril on endogenous phases of Eimeria tenella.

    PubMed

    Liu, Lili; Chen, Huiya; Fei, Chenzhong; Wang, Xiaoyang; Zheng, Wenli; Wang, Mi; Zhang, Keyu; Zhang, Lifang; Li, Tao; Xue, Feiqun

    2016-03-01

    To explore the primary stage or site of action of acetamizuril (AZL), a novel triazine anticoccidial compound, the ultrastructural development of Eimeria tenella at different endogenous stages was studied in experimentally infected chickens treated with a single oral dose of 15 mg/kg AZL. As a result of drug action, the differentiations of second-generation schizonts and microgamonts were largely inhibited and merozoites became irregular in shape. Meanwhile, the outer membrane blistering and perinuclear space enlargement were obvious in the second-generation schizonts and microgamonts, which were never observed in the classic triazine anticoccidiosis drug diclazuril-treated E. tenella. The chromatin aggregation, anachromasis, and marginalization were visible in merozoites and microgamonts. Furthermore, the abnormal evagination of microgametes finally resulted in the degeneration of microgamonts and the failure of subsequent fertilization. The most marked micromorphological alteration occurring in the macrogamonts was the WFB2. Even if the fertilization occurred, the formation of oocyst wall became malformed and the zygote proceeded to the obvious degeneration. In addition, mitochondria swelling and cytoplasm vacuolization were discerned in respective intracellular stages, while endoplasmic reticulum and Golgi body swelling was less seen. These alterations may be the causes leading to the final death of E. tenella and also provide some information for further exploring the mechanism of action of AZL at the molecular level.

  1. Saccade latency indexes exogenous and endogenous object-based attention.

    PubMed

    Şentürk, Gözde; Greenberg, Adam S; Liu, Taosheng

    2016-10-01

    Classic studies of object-based attention have utilized keypress responses as the main dependent measure. However, people typically make saccades to fixate important objects. Recent work has shown that attention may act differently when it is deployed covertly versus in advance of a saccade. We further investigated the link between saccades and attention by examining whether object-based effects can be observed for saccades. We adapted the classical double-rectangle cueing paradigm of Egly, Driver, and Rafal (1994), and measured both the first saccade latency and the keypress reaction time (RT) to a target that appeared at the end of one of the two rectangles. Our results showed that saccade latencies exhibited higher sensitivity than did RTs for detecting effects of attention. We also assessed the generality of the attention effects by testing three types of cues: hybrid (predictive and peripheral), exogenous (nonpredictive and peripheral), and endogenous (predictive and central). We found that both RTs and saccade latencies exhibited effects of both space-based and object-based attentional selection. However, saccade latencies showed a more robust attentional modulation than RTs. For the exogenous cues, we observed a spatial inhibition of return along with an object-based effect, implying that object-based attention is independent of space-based attention. Overall, our results revealed an oculomotor correlate of object-based attention, suggesting that, in addition to spatial priority, object-level priority also affects saccade planning.

  2. Integrated self-powered microchip biosensor for endogenous biological cyanide.

    PubMed

    Deng, Liu; Chen, Chaogui; Zhou, Ming; Guo, Shaojun; Wang, Erkang; Dong, Shaojun

    2010-05-15

    In this work we developed a fully integrated biofuel cell on a microchip, which consisted of glucose dehydrogenase supported (carbon nanotubes/thionine/gold nanoparticles)(8) multilayer as the anode, and the (carbon nanotubes/polylysine/laccase)(15) multilayer as the cathode. The as-obtained biofuel cell produced open circuit potential 620 mV and power density 302 microW cm(-2), showing great potential as a small power resource of portable electronics. Most importantly, for the first time we demonstrated the feasibility of developing a self-powered biosensor based on the inhibitive effect on microchip enzyme biofuel cell. With cyanide employed as the model analyte, this method showed a linear range of 3.0 x 10(-7) to 5.0 x 10(-4) M and a detection limit with 1.0 x 10(-7) M under the optimal conditions. The detection limit was lower than the acceptable cyanide concentration in drinking water (1.9 x 10(-6) M) according to the World Health Organization (WHO). This self-powered sensor was successfully used to detect the cyanide concentration in a real sample, cassava, which is the main carbohydrate resource in South America and Africa. This presented biosensor combined with a resistor and a multimeter demonstrated the general applicability as a fast and simple detection method in the determination of endogenous biological cyanide.

  3. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

    PubMed

    Merovci, Aurora; Solis-Herrera, Carolina; Daniele, Giuseppe; Eldor, Roy; Fiorentino, Teresa Vanessa; Tripathy, Devjit; Xiong, Juan; Perez, Zandra; Norton, Luke; Abdul-Ghani, Muhammad A; DeFronzo, Ralph A

    2014-02-01

    Chronic hyperglycemia impairs insulin action, resulting in glucotoxicity, which can be ameliorated in animal models by inducing glucosuria with renal glucose transport inhibitors. Here, we examined whether reduction of plasma glucose with a sodium-glucose cotransporter 2 (SGLT2) inhibitor could improve insulin-mediated tissue glucose disposal in patients with type 2 diabetes. Eighteen diabetic men were randomized to receive either dapagliflozin (n = 12) or placebo (n = 6) for 2 weeks. We measured insulin-mediated whole body glucose uptake and endogenous glucose production (EGP) at baseline and 2 weeks after treatment using the euglycemic hyperinsulinemic clamp technique. Dapagliflozin treatment induced glucosuria and markedly lowered fasting plasma glucose. Insulin-mediated tissue glucose disposal increased by approximately 18% after 2 weeks of dapagliflozin treatment, while placebo-treated subjects had no change in insulin sensitivity. Surprisingly, following dapagliflozin treatment, EGP increased substantially and was accompanied by an increase in fasting plasma glucagon concentration. Together, our data indicate that reduction of plasma glucose with an agent that works specifically on the kidney to induce glucosuria improves muscle insulin sensitivity. However, glucosuria induction following SGLT2 inhibition is associated with a paradoxical increase in EGP. These results provide support for the glucotoxicity hypothesis, which suggests that chronic hyperglycemia impairs insulin action in individuals with type 2 diabetes.

  4. Endogenous phospholipase A2 inhibitors in snakes: a brief overview.

    PubMed

    Campos, Patrícia Cota; de Melo, Lutiana Amaral; Dias, Gabriel Latorre Fortes; Fortes-Dias, Consuelo Latorre

    2016-01-01

    The blood plasma of numerous snake species naturally comprises endogenous phospholipase A2 inhibitors, which primarily neutralize toxic phospholipases A2 that may eventually reach their circulation. This inhibitor type is generally known as snake blood phospholipase A2 inhibitors (sbPLIs). Most, if not all sbPLIs are oligomeric glycosylated proteins, although the carbohydrate moiety may not be essential for PLA2 inhibition in every case. The presently known sbPLIs belong to one of three structural classes - namely sbαPLI, sbβPLI or sbγPLI - depending on the presence of characteristic C-type lectin-like domains, leucine-rich repeats or three-finger motifs, respectively. Currently, the most numerous inhibitors described in the literature are sbαPLIs and sbγPLIs, whereas sbβPLIs are rare. When the target PLA2 is a Lys49 homolog or an Asp49 myotoxin, the sbPLI is denominated a myotoxin inhibitor protein (MIP). In this brief overview, the most relevant data on sbPLIs will be presented. Representative examples of sbαPLIs and sbγPLIs from two Old World - Gloydius brevicaudus and Malayopython reticulatus - and two New World - Bothrops alternatus and Crotalus durissus terrificus - snake species will be emphasized.

  5. Endogenous Asymmetric Dimethylarginine Pathway in High Altitude Adapted Yaks

    PubMed Central

    Mizuno, Shiro; Ishizaki, Takeshi; Toga, Hirohisa; Sakai, Akio; Isakova, Jainagul; Taalaibekova, Elnura; Baiserkeev, Zamirbek; Kojonazarov, Baktybek; Aldashev, Almaz

    2015-01-01

    Hypoxia-induced and high altitude pulmonary hypertension are a major problem in the mountain areas of the world. The asymmetric methylarginines (ADMA) inhibit nitric oxide (NO) synthesis by competing with L-arginine, and high levels of plasma ADMA predict adverse outcomes in pulmonary hypertension. However, little is known about the regulation of the ADMA-NO pathway in animals adapted to high altitudes. We measured the plasma ADMA concentration, endothelial NO synthase (eNOS), dimethylarginine dimethylaminohydrolases (DDAH) protein expression, and DDAH activities in the lungs from yaks. Although the yaks are hypoxemic, cardiac function and pulmonary arterial pressures are almost normal, and we found decreased DDAH expression and activity in association with reduced plasma ADMA concentrations. The eNOS expression was significantly higher in yaks. These results indicate that augmented endogenous NO activity in yaks through the ADMA-DDAH pathway and eNOS upregulation account for the low pulmonary vascular tone observed in high altitude adapted yaks. PMID:26380264

  6. Rabbit endogenous retrovirus-H encodes a functional protease.

    PubMed

    Voisset, Cécile; Myers, Richard E; Carne, Alex; Kellam, Paul; Griffiths, David J

    2003-01-01

    Recent studies have revealed that 'human retrovirus-5' sequences found in human samples belong to a rabbit endogenous retrovirus family named RERV-H. A part of the gag-pro region of the RERV-H genome was amplified by PCR from DNA in human samples and several forms of RERV-H protease were expressed in bacteria. The RERV-H protease was able to cleave itself from a precursor protein and was also able to cleave the RERV-H Gag polyprotein precursor in vitro whereas a form of the protease with a mutation engineered into the active site was inactive. Potential N- and C-terminal autocleavage sites were characterized. The RERV-H protease was sensitive to pepstatin A, showing it to be an aspartic protease. Moreover, it was strongly inhibited by PYVPheStaAMT, a pseudopeptide inhibitor specific for Mason-Pfizer monkey virus and avian myeloblastosis-associated virus. A structural model of the RERV-H protease was constructed that, together with the activity data, confirms that this is a retroviral aspartic protease.

  7. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator.

    PubMed

    Fontanilla, Dominique; Johannessen, Molly; Hajipour, Abdol R; Cozzi, Nicholas V; Jackson, Meyer B; Ruoho, Arnold E

    2009-02-13

    The sigma-1 receptor is widely distributed in the central nervous system and periphery. Originally mischaracterized as an opioid receptor, the sigma-1 receptor binds a vast number of synthetic compounds but does not bind opioid peptides; it is currently considered an orphan receptor. The sigma-1 receptor pharmacophore includes an alkylamine core, also found in the endogenous compound N,N-dimethyltryptamine (DMT). DMT acts as a hallucinogen, but its receptor target has been unclear. DMT bound to sigma-1 receptors and inhibited voltage-gated sodium ion (Na+) channels in both native cardiac myocytes and heterologous cells that express sigma-1 receptors. DMT induced hypermobility in wild-type mice but not in sigma-1 receptor knockout mice. These biochemical, physiological, and behavioral experiments indicate that DMT is an endogenous agonist for the sigma-1 receptor.

  8. Presynaptic functional trkB receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina II (substantia gelatinosa) of postnatal rat spinal cord.

    PubMed

    Merighi, Adalberto; Bardoni, Rita; Salio, Chiara; Lossi, Laura; Ferrini, Francesco; Prandini, Massimiliano; Zonta, Micaela; Gustincich, Stefano; Carmignoto, Giorgio

    2008-03-01

    A subset of primary sensory neurons produces BDNF, which is implicated in control of nociceptive neurotransmission. We previously localized full-length trkB receptors on their terminals within lamina II. To functionally study these receptors, we here employed patch-clamp recordings, calcium imaging and immunocytochemistry on slices from 8-12 days post-natal rats. In this preparation, BDNF (100-500 ng/mL) enhances the release of sensory neurotransmitters (glutamate, substance P, CGRP) in lamina II by acting on trkB receptors expressed by primary afferent fibers of the peptidergic nociceptive type (PN-PAFs). Effect was blocked by trk antagonist K252a or anti-trkB antibody clone 47. A pre-synaptic mechanism was demonstrated after (i) patch-clamp recordings where the neurotrophin induced a significant increase in frequency, but not amplitude, of AMPA-mediated mEPSCs, (ii) real time calcium imaging, where sustained application of BDNF evoked an intense response in up to 57% lamina II neurons with a significant frequency rise. Antagonists of ionotropic glutamate receptors and NK(1) receptors completely inhibited the calcium response to BDNF. Reduction of CGRP (a specific marker of PN-PAFs) and substance P content in dorsal horn following BDNF preincubation, and analysis of the calcium response after depletion with capsaicin, confirmed that the neurotrophin presynaptically enhanced neurotransmitter release from PN-PAFs. This is the first demonstration that trkB receptors expressed by PN-PAF terminals in lamina II are functional during postnatal development. Implications of this finding are discussed considering that BDNF can be released by these same terminals and microglia, a fraction of which (as shown here) contains BDNF also in unactivated state.

  9. Involvement of Endogenous Retroviruses in Prion Diseases

    PubMed Central

    Lee, Yun-Jung; Jeong, Byung-Hoon; Choi, Eun-Kyung; Kim, Yong-Sun

    2013-01-01

    For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases. PMID:25437206

  10. Endogenous GABAA receptor activity suppresses glioma growth.

    PubMed

    Blanchart, A; Fernando, R; Häring, M; Assaife-Lopes, N; Romanov, R A; Andäng, M; Harkany, T; Ernfors, P

    2017-02-09

    Although genome alterations driving glioma by fueling cell malignancy have largely been resolved, less is known of the impact of tumor environment on disease progression. Here, we demonstrate functional GABAA receptor-activated currents in human glioblastoma cells and show the existence of a continuous GABA signaling within the tumor cell mass that significantly affects tumor growth and survival expectancy in mouse models. Endogenous GABA released by tumor cells, attenuates proliferation of the glioma cells with enriched expression of stem/progenitor markers and with competence to seed growth of new tumors. Our results suggest that GABA levels rapidly increase in tumors impeding further growth. Thus, shunting chloride ions by a maintained local GABAA receptor activity within glioma cells has a significant impact on tumor development by attenuating proliferation, reducing tumor growth and prolonging survival, a mechanism that may have important impact on therapy resistance and recurrence following tumor resection.

  11. Endogenous Group Formation via Unproductive Costs

    PubMed Central

    Aimone, Jason A.; Iannaccone, Laurence R.; Makowsky, Michael D.; Rubin, Jared

    2013-01-01

    Sacrifice is widely believed to enhance cooperation in churches, communes, gangs, clans, military units, and many other groups. We find that sacrifice can also work in the lab, apart from special ideologies, identities, or interactions. Our subjects play a modified VCM game—one in which they can voluntarily join groups that provide reduced rates of return on private investment. This leads to both endogenous sorting (because free-riders tend to reject the reduced-rate option) and substitution (because reduced private productivity favours increased club involvement). Seemingly unproductive costs thus serve to screen out free-riders, attract conditional cooperators, boost club production, and increase member welfare. The sacrifice mechanism is simple and particularly useful where monitoring difficulties impede punishment, exclusion, fees, and other more standard solutions. PMID:24808623

  12. Chitin is endogenously produced in vertebrates.

    PubMed

    Tang, W Joyce; Fernandez, Javier G; Sohn, Joel J; Amemiya, Chris T

    2015-03-30

    Chitin, a biopolymer of N-acetylglucosamine, is abundant in invertebrates and fungi and is an important structural molecule [1, 2]. There has been a longstanding belief that vertebrates do not produce chitin; however, we have obtained compelling evidence to the contrary. Chitin synthase genes are present in numerous fishes and amphibians, and chitin is localized in situ to the lumen of the developing zebrafish gut, in epithelial cells of fish scales, and in at least three different cell types in larval salamander appendages. Chitin synthase gene knockdowns and various histochemical experiments in zebrafish further authenticated our results. Finally, a polysaccharide was extracted from scales of salmon that exhibited all the chemical hallmarks of chitin. Our data and analyses demonstrate the existence of endogenous chitin in vertebrates and suggest that it serves multiple roles in vertebrate biology.

  13. Chitin is endogenously produced in vertebrates

    PubMed Central

    Sohn, Joel J.; Amemiya, Chris T.

    2015-01-01

    Chitin, a biopolymer of N-acetylglucosamine, is abundant in invertebrates and fungi, and is an important structural molecule. There has been a longstanding belief that vertebrates do not produce chitin, however, we have obtained compelling evidence to the contrary. Chitin synthase genes are present in numerous fishes and amphibians, and chitin is localized in situ to the lumen of the developing zebrafish gut, in epithelial cells of fish scales, and in at least three different cell types in larval salamander appendages. Chitin synthase gene knockdowns and various histochemical experiments in zebrafish further authenticated our results. Finally, a polysaccharide was extracted from scales of salmon that exhibited all the chemical hallmarks of chitin. Our data and analyses demonstrate the existence of endogenous chitin in vertebrates and suggest that it serves multiple roles in vertebrate biology. PMID:25772447

  14. [Endogenous retroviruses are associated with autoimmune diseases].

    PubMed

    Nexø, Bjørn A; Jensen, Sara B; Hansen, Bettina; Laska, Magdalena J

    2016-06-13

    Retroviruses can be transmitted in two fundamentally different ways: 1) They can be horizontally transmitted as infectious virus, or 2) they can integrate in the germ line and be transmitted to offspring and the offsprings' offspring as DNA. The latter is called endogenous viruses. The mode of transmission is called vertical. Viral variants of importance for development of disease must be more frequent among diseased persons than among healthy individuals. Multiple sclerosis, diabetes and rheumatoid arthritis are all associated with sets of endogenouos retroviruses but not the same sets. If a virus grows and this contributes to disease, one should be able to alleviate disease with antiretroviral drugs. We call for clinical trials to elucidate this issue.

  15. Dynamic option pricing with endogenous stochastic arbitrage

    NASA Astrophysics Data System (ADS)

    Contreras, Mauricio; Montalva, Rodrigo; Pellicer, Rely; Villena, Marcelo

    2010-09-01

    Only few efforts have been made in order to relax one of the key assumptions of the Black-Scholes model: the no-arbitrage assumption. This is despite the fact that arbitrage processes usually exist in the real world, even though they tend to be short-lived. The purpose of this paper is to develop an option pricing model with endogenous stochastic arbitrage, capable of modelling in a general fashion any future and underlying asset that deviate itself from its market equilibrium. Thus, this investigation calibrates empirically the arbitrage on the futures on the S&P 500 index using transaction data from September 1997 to June 2009, from here a specific type of arbitrage called “arbitrage bubble”, based on a t-step function, is identified and hence used in our model. The theoretical results obtained for Binary and European call options, for this kind of arbitrage, show that an investment strategy that takes advantage of the identified arbitrage possibility can be defined, whenever it is possible to anticipate in relative terms the amplitude and timespan of the process. Finally, the new trajectory of the stock price is analytically estimated for a specific case of arbitrage and some numerical illustrations are developed. We find that the consequences of a finite and small endogenous arbitrage not only change the trajectory of the asset price during the period when it started, but also after the arbitrage bubble has already gone. In this context, our model will allow us to calibrate the B-S model to that new trajectory even when the arbitrage already started.

  16. How Active Are Porcine Endogenous Retroviruses (PERVs)?

    PubMed Central

    Denner, Joachim

    2016-01-01

    Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology. PMID:27527207

  17. Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced by elevated levels of endogenous superoxide

    PubMed Central

    Tyagi, Priyanka; Dharmaraja, Allimuthu T.; Bhaskar, Ashima; Chakrapani, Harinath; Singh, Amit

    2015-01-01

    Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. PMID:25819161

  18. Effect of handling on neurotransmitter profile in pig brain according to fear related behaviour.

    PubMed

    Arroyo, Laura; Carreras, Ricard; Valent, Daniel; Peña, Raquel; Mainau, Eva; Velarde, Antonio; Sabrià, Josefa; Bassols, Anna

    2016-12-01

    Chemical neurotransmitters (NT) are principal actors in all neuronal networks of animals. The central nervous system plays an important role in stress susceptibility and organizes the response to a stressful situation through the interaction of the dopaminergic and the serotonergic pathways, leading to the activation of the hypothalamus-pituitary-adrenal axis (HPA). This study was designed to investigate: a) the effects of stressful handling of pigs at the slaughterhouse on the neurotransmitter profile in four brain areas: amygdala, prefrontal cortex (PFC), hippocampus and hypothalamus, and b) whether the alterations in the brain NT profile after stressful handling were associated with fear, determined by the tonic immobility (TI) test. In the first place, the characterization of the NT profile allowed to distinguish the four brain areas in a principal component analysis. The most crucial pathway involved in the reaction of pigs to a stressful handling was the serotonergic system, and changes were observed in the amygdala with a decrease in serotonin (5-HT) and total indoleamines, and in the hippocampus, where this pathway was activated. Fearful and non-fearful pigs did not show significant differences in their NT profile in control conditions, but when subjected to a stressful handling in the slaughterhouse, fearful animals showed a significant variation in the serotonin pathway and, in a lesser extent, the dopamine (DA) pathway. In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's response toward stressful challenges, and the serotonergic system seems to play a central role in this response.

  19. Genetic variants of neurotransmitter-related genes and miRNAs in Egyptian autistic patients.

    PubMed

    Salem, Ahmed M; Ismail, Samira; Zarouk, Waheba A; Abdul Baky, Olwya; Sayed, Ahmed A; Abd El-Hamid, Sawsan; Salem, Sohair

    2013-01-01

    Autism is a neurodevelopmental disorder with indisputable evidence for a genetic component. This work studied the association of autism with genetic variations in neurotransmitter-related genes, including MAOA uVNTR, MAOB rs1799836, and DRD2 TaqI A in 53 autistic patients and 30 healthy individuals. The study also analyzed sequence variations of miR-431 and miR-21. MAOA uVNTR was genotyped by PCR, MAOB and DRD2 polymorphisms were analyzed by PCR-based RFLP, and miR-431 and miR-21 were sequenced. Low expressing allele of MAOA uVNTR was frequently higher in female patients compared to that in controls (OR = 2.25). MAOB G allele frequency was more significantly increased in autistic patients than in controls (P < 0.001 for both males and females). DRD2 A1+ genotype increased autism risk (OR = 5.1). Severity of autism tends to be slightly affected by MAOA/B genotype. Plasma MAOB activity was significantly reduced in G than in A allele carrying males. There was no significant difference in patients and maternal plasma MAOA/B activity compared to controls. Neither mutations nor SNPs in miR-431 and miR-21 were found among studied patients. This study threw light on some neurotransmitter-related genes suggesting their potential role in Autism pathogenesis that warrants further studies and much consideration.

  20. Determination of neurotransmitter levels in models of Parkinson's disease by HPLC-ECD.

    PubMed

    Yang, Lichuan; Beal, M Flint

    2011-01-01

    Parkinson's disease (PD) is a neurological disorder caused by progressive degeneration of dopaminergic neurons in the nigrostriatal area of the brain. The decrease in dopamine (DA) neurotransmitter levels in the striatum and substantia nigra pars compacta is a neurochemistry hallmark of PD. Therefore, determination of dopamine and its metabolites levels in biological samples provides an important key to understanding the neurochemistry profile of PD. This chapter describes the use of reversed-phase HPLC with electrochemical detection (ECD) for simultaneously measuring monoamine neurotransmitters, including dopamine and its metabolites, norepinephrine as well as serotonin and its metabolite. ECD provides an ultrasensitive measurement, which detects at the picogram level. One run for each sample finishes within 18 min, shows clear chromatographic peaks and a complete separation, and produces excellent precision and reproducibility. Once set up, HPLC-ECD is economic and efficient for analyzing a large number of samples. This method has been broadly used for analyzing a variety of biological samples, such as cerebrospinal fluids, plasma, microdialysis elutes, tissues, and cultured cells. In recent days, it has been reported to be able to detect the dopamine level in a single drosophila head.

  1. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    PubMed

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc.

  2. Deletion of mouse FXR gene disturbs multiple neurotransmitter systems and alters neurobehavior

    PubMed Central

    Huang, Fei; Wang, Tingting; Lan, Yunyi; Yang, Li; Pan, Weihong; Zhu, Yonghui; Lv, Boyang; Wei, Yuting; Shi, Hailian; Wu, Hui; Zhang, Beibei; Wang, Jie; Duan, Xiaofeng; Hu, Zhibi; Wu, Xiaojun

    2015-01-01

    Farnesoid X receptor (FXR) is a nuclear hormone receptor involved in bile acid synthesis and homeostasis. Dysfunction of FXR is involved in cholestasis and atherosclerosis. FXR is prevalent in liver, gallbladder, and intestine, but it is not yet clear whether it modulates neurobehavior. In the current study, we tested the hypothesis that mouse FXR deficiency affects a specific subset of neurotransmitters and results in an unique behavioral phenotype. The FXR knockout mice showed less depressive-like and anxiety-related behavior, but increased motor activity. They had impaired memory and reduced motor coordination. There were changes of glutamatergic, GABAergic, serotoninergic, and norepinephrinergic neurotransmission in either hippocampus or cerebellum. FXR deletion decreased the amount of the GABA synthesis enzyme GAD65 in hippocampus but increased GABA transporter GAT1 in cerebral cortex. FXR deletion increased serum concentrations of many bile acids, including taurodehydrocholic acid, taurocholic acid, deoxycholic acid (DCA), glycocholic acid (GCA), tauro-α-muricholic acid, tauro-ω-muricholic acid, and hyodeoxycholic acid (HDCA). There were also changes in brain concentrations of taurocholic acid, taurodehydrocholic acid, tauro-ω-muricholic acid, tauro-β-muricholic acid, deoxycholic acid, and lithocholic acid (LCA). Taken together, the results from studies with FXR knockout mice suggest that FXR contributes to the homeostasis of multiple neurotransmitter systems in different brain regions and modulates neurobehavior. The effect appears to be at least partially mediated by bile acids that are known to cross the blood-brain barrier (BBB) inducing potential neurotoxicity. PMID:25870546

  3. Effect of champagne compared to still white wine on peripheral neurotransmitter concentrations.

    PubMed

    Boyer, Jean-Christophe; Bancel, Etiennette; Perray, Pascale Fabbro; Pouderoux, Philippe; Balmes, Jean-Louis; Bali, Jean-Pierre

    2004-09-01

    To evaluate how the peripheral release of neurotransmitters such as serotonin, dopamine, cholecystokinin, and beta-endorphin is involved in drinking behavior, blood concentrations of these neurotransmitters were followed in 40 healthy young volunteers during the first hour after ingestion of a moderate dose of some common alcoholic beverages (champagne, still white wine) as compared to water. Concerning serotonin levels, two groups of subjects are statistically distinct: one with low basal serotonin levels (< 620 nmol/L) which responded with an increase in serotonin (52% in 10 minutes), and a second group with higher basal serotonin levels (> 620 nmol/L) which responded with a decrease ( 190% in 60 minutes). Variations in serotonin concentrations appear to depend upon the alcoholic content of the beverage. A rapid increase in plasma dopamine concentrations after consumption of champagne seems to be due to the nonalcoholic content of the beverage. Cholecystokinin values were not significantly different between the three beverages: the observed increase can be explained by a moderate gastric distention. Beta-endorphin levels didn't change significantly after drinking. In conclusion, some significant blood variations of serotonin and dopamine appeared even after moderately dose of champagne or still white wine. These changes might be partially responsible for the different drinking behavior.

  4. Neurotransmitter Transporter-Like: A Male Germline-specific SLC6 Transporter Required for Drosophila Spermiogenesis

    PubMed Central

    Chatterjee, Nabanita; Rollins, Janet; Mahowald, Anthony P.; Bazinet, Christopher

    2011-01-01

    The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3′ end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism. PMID:21298005

  5. Chiral analysis of neurotransmitters using cyclodextrin-modified capillary electrophoresis equipped with microfabricated interdigitated electrodes.

    PubMed

    Male, Keith B; Luong, John H T

    2003-06-27

    We present cyclodextrin-modified capillary electrophoresis equipped with a microfabricated chip consisting of an array of eight interdigitated microband platinum electrodes (IDs) for simultaneous analysis of three chiral models: epinephrine, norepinephrine and isoproterenol. The IDE chip, positioned very close to the capillary outlet, served as an amplification/detection system. Emerging neurotransmitters at the IDE surface were oxidized at +1.1 V by seven electrodes of the array and then detected by the remaining electrode, poised at +0.0 V. There was an amplification effect on the detecting electrode owing to the recycle between the reduced and oxidized forms of the optical isomers at the electrode surface. The detecting "amplification" current response was governed by the applied potential, the detecting electrode position, the number of adjacent electrodes used for recycling and the distance between the oxidative and reductive electrodes. The six chiral forms of the three neurotransmitters were resolved using 25 mM heptakis(2,6,di-o-methyl)-beta-cyclodextrin with a detection limit of approximately 5 microM. The scheme detected a reduced compound at a reducing potential instead of conventional oxidation detection to alleviate electrode fouling and electroactive interferences. The concurrent oxidation/reduction detection of compounds also facilitated and ascertained peak identification as interfering compounds were unlikely to have the same oxidative/reductive characteristics and mobilities as the analytes of interrogation.

  6. Evidence for NO. redox form of nitric oxide as nitrergic inhibitory neurotransmitter in gut.

    PubMed

    Goyal, R K; He, X D

    1998-11-01

    A nitric oxide (NO)-like product of the L-arginine NO synthase pathway has been shown to be a major inhibitory neurotransmitter that is involved in the slow component of the inhibitory junction potential (IJP) elicited by stimulation of nonadrenergic, noncholinergic nerves. However, the exact nature of the nitrergic transmitter, the role of cGMP, and the involvement of a potassium or a chloride conductance in the slow IJP remain unresolved. We examined the effects of soluble guanylate cyclase inhibitors LY-83583 and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), potassium-channel blockers and putative chloride-channel blockers diphenylamine-2-carboxylate (DPC) and niflumic acid (NFA) on the hyperpolarization elicited by an NO. donor, diethylenetriamine/NO adduct (DNO), NO in solution, and an NO+ donor, sodium nitroprusside (SNP), in the guinea pig ileal circular muscle. Effects of these blockers on purinergic (fast) and nitrergic (slow) IJP were also examined. DNO-induced hyperpolarization and nitrergic slow IJP were suppressed by LY-83583 or ODQ and DPC or NFA but not by the potassium-channel blocker apamin. In contrast, hyperpolarization caused by SNP or solubilized NO gas and purinergic fast IJP were antagonized by apamin but not by inhibitors of guanylate cyclase or chloride channels. These results demonstrate biological differences in the actions of different redox states of NO and suggest that NO. is the nitrergic inhibitory neurotransmitter.

  7. Validity of urinary monoamine assay sales under the "spot baseline urinary neurotransmitter testing marketing model".

    PubMed

    Hinz, Marty; Stein, Alvin; Uncini, Thomas

    2011-01-01

    Spot baseline urinary monoamine assays have been used in medicine for over 50 years as a screening test for monoamine-secreting tumors, such as pheochromocytoma and carcinoid syndrome. In these disease states, when the result of a spot baseline monoamine assay is above the specific value set by the laboratory, it is an indication to obtain a 24-hour urine sample to make a definitive diagnosis. There are no defined applications where spot baseline urinary monoamine assays can be used to diagnose disease or other states directly. No peer-reviewed published original research exists which demonstrates that these assays are valid in the treatment of individual patients in the clinical setting. Since 2001, urinary monoamine assay sales have been promoted for numerous applications under the "spot baseline urinary neurotransmitter testing marketing model". There is no published peer-reviewed original research that defines the scientific foundation upon which the claims for these assays are made. On the contrary, several articles have been published that discredit various aspects of the model. To fill the void, this manuscript is a comprehensive review of the scientific foundation and claims put forth by laboratories selling urinary monoamine assays under the spot baseline urinary neurotransmitter testing marketing model.

  8. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function

    NASA Astrophysics Data System (ADS)

    Nilsson, Göran E.; Dixson, Danielle L.; Domenici, Paolo; McCormick, Mark I.; Sørensen, Christina; Watson, Sue-Ann; Munday, Philip L.

    2012-03-01

    Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3- and Cl- levels.

  9. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    PubMed Central

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-01-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl− channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to γ-aminobutyric acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders. PMID:12237406

  10. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  11. Cholinergic and other neurotransmitter mechanisms in Parkinson's disease, Parkinson's disease dementia, and dementia with Lewy bodies.

    PubMed

    Francis, Paul T; Perry, Elaine K

    2007-09-01

    It is now 30 years since the beginning of intensive efforts to understand the neurotransmitter biochemistry of dementia as exemplified by Alzheimer's disease and such studies have led to the development of rational treatment strategies, which are continuing to benefit patients. However, as studies became more sophisticated and clinicians rediscovered an interest in dementia, because of the potential for symptomatic treatment, it has become clear that there are several different neurodegenerative conditions that gives rise to dementia syndromes and that each has distinct neurochemical pathology. This has important treatment implications since what works for one may not work for another or at the extreme, may make matters worse. Therefore it is clear that a detailed understanding of the neurotransmitter function in each condition is not merely academic but can lead to rationale drug design and treatment strategies appropriate for that group of patients. Dementia with Lewy bodies (DLB) has clinico-pathological features, which overlap with either AD or Parkinson's disease (PD) as well as features that help to distinguish it, such as fluctuations in cognitive impairment and a higher prevalence of visual hallucinations. On this basis, it would be expected that the neurochemistry would have some similarities with both disorders.

  12. The role of SNARE proteins in trafficking and function of neurotransmitter transporters.

    PubMed

    Quick, M W

    2006-01-01

    The SNARE hypothesis of vesicle fusion proposes that a series of protein-protein interactions governs the delivery of vesicles to various membrane targets such as the Golgi network and the plasma membrane. Key players in this process include members of the syntaxin family of membrane proteins. The first member identified in this family, syntaxin 1A, plays an essential role in the docking and fusion of neurotransmitter-containing vesicles to the presynaptic membrane of neurons. Syntaxin 1A and other syntaxin family members have also been shown to interact with, and directly regulate, a variety of ion channels. More recently, the family of plasma membrane neurotransmitter transporters, proteins that function in part to control transmitter levels in brain, have been shown to be direct targets of syntaxin 1A regulation. This regulation involves both the trafficking of transporters as well as the control of ion and transmitter flux through transporters. In this chapter, the functional effects of syntaxin-transporter interactions are reviewed, and how such interactions may regulate neuronal signaling are considered.

  13. Peptidergic and aminergic neurotransmitters of the exocrine pancreas of the Houbara bustard (Chlamydotis undulata).

    PubMed

    Mensah-Brown, E P; Pallot, D J

    2000-04-01

    The immunochemical distribution of peptidergic and aminergic neurotransmitters in the exocrine pancreas of the Houbara bustard, Chlamydotis undulata, was determined. Immunoreactivity to choline acetyltransferase (ChAT), vasoactive intestinal polypeptide (VIP), and galanin (Gal) occurred mainly as varicose terminals in the walls of capillaries around the acini and arterioles within the connective tissue. Neuronal cell bodies immunoreactive to ChAT were infrequently observed. Neuropeptide Y (NPY), pancreatic polypeptide (PP), and somatostatin (Som) were observed mainly in intra-acinar cell bodies but nerve fibers immunoreactive to these neuropeptides were also seen along the basal surfaces of the acini. Immunoreactivity to NPY and PP was also discernible in cells of the pancreatic ducts. In addition, NPY occurred as varicose terminals in vessels around the ducts. SP occurred rarely in interacinar ganglia. The distribution of tyrosine hydroxylase (TH) was similar to that of ChAT and, in addition, the occasional TH immunoreactive intra-acinar neuronal cell body was observed. Neuronal nitric oxide synthase (nNOS) occurred in neuronal cell bodies among the acinar cells as well as nerve fibers along the bases of the acini. The potential roles of these peptidergic and aminergic neurotransmitters in the neurohormonal control of pancreatic secretion are discussed.

  14. Effect of Dimerization on the Dynamics of Neurotransmitter:Sodium Symporters.

    PubMed

    Gur, Mert; Cheng, Mary Hongying; Zomot, Elia; Bahar, Ivet

    2017-02-07

    Dimerization is a common feature among the members of the neurotransmitter:sodium symporter (NSS) family of membrane proteins. Yet, the effect of dimerization on the mechanism of action of NSS members is not fully understood. In this study, we examined the collective dynamics of two members of the family, leucine transporter (LeuT) and dopamine transporter (DAT), to assess the significance of dimerization in modulating the functional motions of the monomers. We used to this aim the anisotropic network model (ANM), an efficient and robust method for modeling the intrinsic motions of proteins and their complexes. Transporters belonging to the NSS family are known to alternate between outward-facing (OF) and inward-facing (IF) states, which enables the uptake and release of their substrate (neurotransmitter) respectively, as the substrate is transported from the exterior to the interior of the cell. In both LeuT and DAT, dimerization is found to alter the collective motions intrinsically accessible to the individual monomers in favor of the functional transitions (OF ↔ IF), suggesting that dimerization may play a role in facilitating transport.

  15. FMRP Regulates Neurotransmitter Release and Synaptic Information Transmission by Modulating Action Potential Duration via BK channels

    PubMed Central

    Deng, Pan-Yue; Rotman, Ziv; Blundon, Jay A.; Cho, Yongcheol; Cui, Jianmin; Cavalli, Valeria; Zakharenko, Stanislav S.; Klyachko, Vitaly A.

    2013-01-01

    SUMMARY Loss of FMRP causes Fragile X syndrome (FXS), but the physiological functions of FMRP remain highly debatable. Here we show that FMRP regulates neurotransmitter release in CA3 pyramidal neurons by modulating action potential (AP) duration. Loss of FMRP leads to excessive AP broadening during repetitive activity, enhanced presynaptic calcium influx and elevated neurotransmitter release. The AP broadening defects caused by FMRP loss have a cell-autonomous presynaptic origin and can be acutely rescued in postnatal neurons. These presynaptic actions of FMRP are translation-independent and are mediated selectively by BK channels via interaction of FMRP with BK channel’s regulatory β4 subunits. Information-theoretical analysis demonstrates that loss of these FMRP functions causes marked dysregulation of synaptic information transmission. FMRP-dependent AP broadening is not limited to the hippocampus, but also occurs in cortical pyramidal neurons. Our results thus suggest major translation-independent presynaptic functions of FMRP that may have important implications for understanding FXS neuropathology. PMID:23439122

  16. Dystrobrevin controls neurotransmitter release and muscle Ca2+ transients by localizing BK channels in C. elegans

    PubMed Central

    Chen, Bojun; Liu, Ping; Zhan, Haiying; Wang, Zhao-Wen

    2011-01-01

    Dystrobrevin is a major component of a dystrophin-associated protein complex (DAPC). It is widely expressed in mammalian tissues including the nervous system, where it is localized to the presynaptic nerve terminal with unknown function. In a genetic screen for suppressors of a lethargic phenotype caused by a gain-of-function (gf) isoform of SLO-1 in C. elegans, we isolated multiple loss-of-function (lf) mutants of the dystrobrevin gene dyb-1. dyb-1(lf) phenocopied slo-1(lf), causing increased neurotransmitter release at the neuromuscular junction, increased frequency of Ca2+ transients in body-wall muscle, and abnormal locomotion behavior. Neuron- and muscle-specific rescue experiments suggest that DYB-1 is required for SLO-1 function in both neurons and muscle cells. DYB-1 colocalized with SLO-1 at presynaptic sites in neurons and dense body regions in muscle cells, and dyb-1(lf) caused SLO-1 mislocalization in both types of cells without altering SLO-1 protein level. The neuronal phenotypes of dyb-1(lf) were partially rescued by mouse α-dystrobrevin-1 (αDB1). These observations revealed novel functions of the BK channel in regulating muscle Ca2+ transients, and of dystrobrevin in controlling neurotransmitter release and muscle Ca2+ transients by localizing the BK channel. PMID:22131396

  17. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings.

    PubMed

    Zhang, Long; Chen, Zhen; Zhu, Cheng

    2012-01-01

    The effect of calcium chloride (CaCl2) on rice seedling growth under cadmium chloride (CdCl2) stress, as well as the possible role of endogenous nitric oxide (NO) in this process, was studied. The growth of rice seedlings was seriously inhibited by CdCl2, and the inhibition was significantly mitigated by CaCl2. However, hemoglobin (Hb) and 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) weakened the promotion effect of CaCl2. The results of NO fluorescence localization suggest that growth accelerated by CaCl2 might be associated with elevated NO levels. The content of Cd, protein thiols (PBT), and nonprotein thiols (NPT) in cell walls, cell organelles, and soluble fractions, respectively, of rice seedlings decreased considerably in the presence of CaCl2, whereas the content of pectin, hemicellulose 1 (HC1), and hemicellulose 2 (HC2) increased significantly. Elimination of endogenous NO in Cd+Ca treatment could promote the transportation of Cd2+ to cell organelles and soluble fractions and increase the content of NPT and PBT in leaves. In addition, transportation of Cd2+ to cell organelles and soluble fractions was retarded in roots, the content of NPT increased, and the content of PBT decreased. With elimination of endogenous NO in Cd+Ca treatment, the content of pectin, HC1, and HC2 decreased significantly. Thus, Ca may alleviate Cd toxicity via endogenous NO with variation in the levels of NPT, PBT, and matrix polysaccharides.

  18. LKB1 Regulates Mitochondria-Dependent Presynaptic Calcium Clearance and Neurotransmitter Release Properties at Excitatory Synapses along Cortical Axons

    PubMed Central

    Kwon, Seok-Kyu; Sando, Richard; Maximov, Anton; Polleux, Franck

    2016-01-01

    Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance. PMID:27429220

  19. Impact of Synaptic Neurotransmitter Concentration Time Course on the Kinetics and Pharmacological Modulation of Inhibitory Synaptic Currents

    PubMed Central

    Barberis, Andrea; Petrini, Enrica Maria; Mozrzymas, Jerzy W.

    2011-01-01

    The time course of synaptic currents is a crucial determinant of rapid signaling between neurons. Traditionally, the mechanisms underlying the shape of synaptic signals are classified as pre- and post-synaptic. Over the last two decades, an extensive body of evidence indicated that synaptic signals are critically shaped by the neurotransmitter time course which encompasses several phenomena including pre- and post-synaptic ones. The agonist transient depends on neurotransmitter release mechanisms, diffusion within the synaptic cleft, spill-over to the extra-synaptic space, uptake, and binding to post-synaptic receptors. Most estimates indicate that the neurotransmitter transient is very brief, lasting between one hundred up to several hundreds of microseconds, implying that post-synaptic activation is characterized by a high degree of non-equilibrium. Moreover, pharmacological studies provide evidence that the kinetics of agonist transient plays a crucial role in setting the susceptibility of synaptic currents to modulation by a variety of compounds of physiological or clinical relevance. More recently, the role of the neurotransmitter time course has been emphasized by studies carried out on brain slice models that revealed a striking, cell-dependent variability of synaptic agonist waveforms ranging from rapid pulses to slow volume transmission. In the present paper we review the advances on studies addressing the impact of synaptic neurotransmitter transient on kinetics and pharmacological modulation of synaptic currents at inhibitory synapses. PMID:21734864

  20. Agmatine: identification and inhibition of methamphetamine, kappa opioid, and cannabinoid withdrawal in planarians.

    PubMed

    Rawls, Scott M; Gerber, Kristin; Ding, Zhe; Roth, Christopher; Raffa, Robert B

    2008-12-01

    Agmatine blocks morphine physical dependence in mammals, but its effects on withdrawal signs caused by other abused drugs have been less studied. One of the reasons is that withdrawal to some of these drugs is difficult to quantify in mammals. An alternative to mammals is planarians, a type of flatworm. Planarians possess mammalian-like neurotransmitters and display withdrawal from amphetamines, benzodiazepines, cannabinoids, cocaine, and opioids. The withdrawal is manifested as a reduction in locomotor behavior following discontinuation of drug exposure. In the present study, our goal was to identify agmatine in planarians and to determine if planarians exposed to agmatine display withdrawal to methamphetamine, a cannabinoid receptor agonist (WIN 55,212-2), or a kappa-opioid receptor agonist (U-50,488H). Neurochemical experiments revealed that the concentration of agmatine in planarians was 185 +/- 33.7 pmol per mg of planarian weight (dry weight). In behavioral experiments, withdrawal (i.e., reduced locomotor activity) was observed when planarians exposed to each drug (10 microM) for 60 min were placed into water. The withdrawal was attenuated when methamphetamine- or U-50,488H-exposed planarians were tested in agmatine (100 microM). Withdrawal was inhibited similarly when planarians coexposed to agmatine (100 microM) plus methamphetamine (10 microM), WIN 55,212-2 (10 microM), or U-50,488H (10 microM) were tested in water. Arginine, the metabolic precursor to agmatine, was ineffective. Our results identify endogenous agmatine in planarians and demonstrate that agmatine exposure blocks withdrawal to three different drugs in planarians. This suggests that a change in agmatine signaling is a common mechanism in the withdrawal caused by these drugs, at least in planarians.

  1. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.

    PubMed

    Vetrova, E V; Kudryasheva, N S; Visser, A J W G; van Hoek, A

    2005-01-01

    The bioluminescent bacterial enzyme system NAD(P)H:FMN-oxidoreductase-luciferase has been used as a test system for ecological monitoring. One of the modes to quench bioluminescence is the interaction of xenobiotics with the enzymes, which inhibit their activity. The use of endogenous flavin fluorescence for investigation of the interactions of non-fluorescent compounds with the bacterial luciferase from Photobacterium leiognathi and NAD(P)H:FMN-oxidoreductase from Vibrio fischeri has been proposed. Fluorescence spectroscopy methods have been used to study characteristics of endogenous flavin fluorescence (fluorophore lifetime, the rotational correlation time). The fluorescence anisotropy behaviour of FMN has been analysed and compared to that of the enzyme-bound flavin. The fluorescence characteristics of endogenous flavin of luciferase and NAD(P)H:FMN-oxidoreductase have been shown to be applicable in studying enzymes' interactions with non-fluorescent compounds.

  2. The Role of Neurotransmitters in Protection against Amyloid-β Toxicity by KiSS-1 Overexpression in SH-SY5Y Neurons

    PubMed Central

    Milton, Nathaniel G. N.

    2013-01-01

    Recent studies have suggested that the kisspeptin (KP) and kissorphin (KSO) peptides have neuroprotective actions against the Alzheimer's amyloid-β (Aβ) peptide. Overexpression of the human KiSS-1 gene that codes for KP and KSO peptides in SH-SY5Y neurons has also been shown to inhibit Aβ neurotoxicity. The in vivo actions of KP include activation of neuroendocrine and neurotransmitter systems. The present study used antagonists of KP, neuropeptide FF (NPFF), opioids, oxytocin, estrogen, adrenergic, cholinergic, dopaminergic, serotonergic, and γ-aminobutyric acid (GABA) receptors plus inhibitors of catalase, cyclooxygenase, nitric oxide synthase, and the mitogen activated protein kinase cascade to characterize the KiSS-1 gene overexpression neuroprotection against Aβ cell model. The results showed that KiSS-1 overexpression is neuroprotective against Aβ and the action appears to involve the KP or KSO peptide products of KiSS-1 processing. The mechanism of neuroprotection does not involve the activation of the KP or NPFF receptors. Opioids play a role in the toxicity of Aβ in the KiSS-1 overexpression system and opioid antagonists naloxone or naltrexone inhibited Aβ toxicity. The mechanism of KiSS-1 overexpression induced protection against Aβ appears to have an oxytocin plus a cyclooxygenase dependent component, with the oxytocin antagonist atosiban and the cyclooxygenase inhibitor SC-560 both enhancing the toxicity of Aβ. PMID:24967306

  3. The reverse operation of Na+/Cl−-coupled neurotransmitter transporters–why amphetamines take two to tango

    PubMed Central

    Sitte, Harald H.; Freissmuth, Michael

    2015-01-01

    Sodium-chloride coupled neurotransmitter transporters achieve reuptake of their physiological substrate by exploiting the pre-existing sodium-gradient across the cellular membrane. This terminates the action of previously released substrate in the synaptic cleft. However, a change of the transmembrane ionic gradients or specific binding of some psychostimulant drugs to these proteins, like amphetamine and its derivatives, induce reverse operation of neurotransmitter:sodium symporters. This effect eventually leads to an increase in the synaptic concentration of non-exocytotically released neurotransmitters [and – in the case of the norepinephrine transporters, underlies the well-known indirect sympathomimetic activity]. While this action has long been appreciated, the underlying mechanistic details have been surprisingly difficult to understand. Some aspects can be resolved by incorporating insights into the oligomeric nature of transporters, into the nature of the accompanying ion fluxes, and changes in protein kinase activities. PMID:19891736

  4. Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatography with fluorescence detection.

    PubMed

    Şanlı, Nurullah; Tague, Sarah E; Lunte, Craig

    2015-03-25

    A RP-LC-FL detection method has been developed to identify and quantitate four amino acid neurotransmitters including glutamic acid, glycine, taurine and γ-aminobutyric acid in rat and mouse spinal cord tissue. 3-(4-carboxybenzoyl)-2-quinolinecarboxaldehyde (CBQCA) was employed for the derivatization of these neurotransmitters prior to RP-LC-FL analysis. Different parameters which influenced separation and derivatization were optimized. Under optimum conditions, linearity was achieved within the concentration ranges of 0.50-50.00 μM for all analytes with correlation coefficients from 0.9912 to 0.9997. The LODs ranged from 0.03 μM to 0.06 μM. The proposed method has been successfully applied to the determination of amino acid neurotransmitters in biological samples such as rat and mouse spinal cord with satisfactory recoveries.

  5. Impaired learning of predators and lower prey survival under elevated CO2 : a consequence of neurotransmitter interference.

    PubMed

    Chivers, Douglas P; McCormick, Mark I; Nilsson, Göran E; Munday, Philip L; Watson, Sue-Ann; Meekan, Mark G; Mitchell, Matthew D; Corkill, Katherine C; Ferrari, Maud C O

    2014-02-01

    Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near-future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA-A receptor - a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2 , as a result of impaired learning, could have a major influence on population recruitment.

  6. Strigolactone inhibition of shoot branching.

    PubMed

    Gomez-Roldan, Victoria; Fermas, Soraya; Brewer, Philip B; Puech-Pagès, Virginie; Dun, Elizabeth A; Pillot, Jean-Paul; Letisse, Fabien; Matusova, Radoslava; Danoun, Saida; Portais, Jean-Charles; Bouwmeester, Harro; Bécard, Guillaume; Beveridge, Christine A; Rameau, Catherine; Rochange, Soizic F

    2008-09-11

    A carotenoid-derived hormonal signal that inhibits shoot branching in plants has long escaped identification. Strigolactones are compounds thought to be derived from carotenoids and are known to trigger the germination of parasitic plant seeds and stimulate symbiotic fungi. Here we present evidence that carotenoid cleavage dioxygenase 8 shoot branching mutants of pea are strigolactone deficient and that strigolactone application restores the wild-type branching phenotype to ccd8 mutants. Moreover, we show that other branching mutants previously characterized as lacking a response to the branching inhibition signal also lack strigolactone response, and are not deficient in strigolactones. These responses are conserved in Arabidopsis. In agreement with the expected properties of the hormonal signal, exogenous strigolactone can be transported in shoots and act at low concentrations. We suggest that endogenous strigolactones or related compounds inhibit shoot branching in plants. Furthermore, ccd8 mutants demonstrate the diverse effects of strigolactones in shoot branching, mycorrhizal symbiosis and parasitic weed interaction.