Science.gov

Sample records for endogenous opioid involvement

  1. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    PubMed Central

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  2. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde

    PubMed Central

    Font, Laura; Luján, Miguel Á.; Pastor, Raúl

    2013-01-01

    Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR. PMID:23914161

  3. Microwave-induced post-exposure hyperthermia: Involvement of endogenous opioids and serotonin

    SciTech Connect

    Lai, H.; Chou, C.K.; Guy, A.W.; Horita, A.

    1984-08-01

    Acute exposure to pulsed microwaves (2450 MHz, 1 mW/ cm/sup 2/, SAR 0.6 W/kg, 2-..mu..s pulses, 500 pulses/s) induces a transient post-exposure hyperthermia in the rat. The hyperthermia was attenuated by treatment with either the narcotic antagonist naltrexone or one of the serotonin antagonists cinanserin, cyproheptadine, or metergoline. It was not affected, however, by treatment with the peripheral serotonin antagonist xylamidine nor the dopamine antagonist haloperidol. It thus appears that both endogenous opioids and central serotonin are involved. It is proposed that pulsed microwaves activate endogenous opioid systems, and that they in turn activate a serotonergic mechanism that induces the rise in body temperature.

  4. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  5. Endogenous opioid peptides in regulation of innate immunity cell functions.

    PubMed

    Gein, S V; Baeva, T A

    2011-03-01

    Endogenous opioid peptides comprise a group of bioregulatory factors involved in regulation of functional activity of various physiological systems of an organism. One of most important functions of endogenous opioids is their involvement in the interaction between cells of the nervous and immune systems. Summary data on the effects of opioid peptides on regulation of functions of innate immunity cells are presented.

  6. Involvement of endogenous opioid peptides in the antinociception induced by the novel dermorphin tetrapeptide analog amidino-TAPA.

    PubMed

    Mizoguchi, Hirokazu; Watanabe, Chizuko; Watanabe, Hiroyuki; Moriyama, Kaori; Sato, Bunsei; Ohwada, Keiko; Yonezawa, Akihiko; Sakurada, Tsukasa; Sakurada, Shinobu

    2007-04-10

    The antinociceptive effect of i.t. administered N(alpha)-amidino-Tyr-d-Arg-Phe-beta-Ala (amidino-TAPA), an N-terminal tetrapeptide analog of dermorphin, was characterized in ddY mice. In the opioid receptor ligand-binding assays using mouse brain membranes, amidino-TAPA showed a very high affinity for mu-opioid receptors, a low affinity to delta-opioid receptors and no affinity for kappa-opioid receptors. In the mouse tail-flick test, i.t. treatment with amidino-TAPA produced a potent antinociception. The antinociception induced by amidino-TAPA was significantly attenuated by i.t. pretreatment with the mu-opioid receptor antagonist beta-funaltrexamine, the kappa-opioid receptor antagonist nor-binaltorphimine and the delta-opioid receptor antagonist naltrindole. Moreover, the antinociception induced by amidino-TAPA was significantly attenuated by i.t. pretreatment with antisera against the endogenous kappa-opioid peptides dynorphin A, dynorphin B and alpha-neo-endorphin; and the endogenous delta-opioid peptide [Leu(5)]enkephalin. In mice lacking prodynorphin, the precursor of the endogenous kappa-opioid peptides, the antinociceptive effect of amidino-TAPA was significantly attenuated compared to that in wild-type C57BL/6J mice. However, there was no difference in G-protein activation by amidino-TAPA in the spinal cord membranes from prodynorphin knockout mice and C57BL/6J mice. The present results suggest that the spinal antinociception induced by the mu-opioid receptor selective peptide amidino-TAPA is mediated in part by the release of endogenous opioid peptides in the spinal cord, which is caused by the direct stimulation of mu-opioid receptors.

  7. Nicotine effects and the endogenous opioid system.

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro

    2014-01-01

    Nicotine (NIC) is an exogenous ligand of the nicotinic acetylcholine receptor (nAChR), and it influences various functions in the central nervous system. Systemic administration of NIC elicits the release of endogenous opioids (endorphins, enkephalins, and dynorphins) in the supraspinal cord. Additionally, systemic NIC administration induces the release of methionine-enkephalin in the spinal dorsal horn. NIC has acute neurophysiological actions, including antinociceptive effects, and the ability to activate the hypothalamic-pituitary-adrenal (HPA) axis. The endogenous opioid system participates in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception is mediated by α4β2 and α7 nAChRs, while NIC-induced HPA axis activation is mediated by α4β2, not α7, suggesting that the effects of NIC on the endogenous opioid system are mediated by α7, not α4β2. NIC has substantial physical dependence liability. The opioid-receptor antagonist naloxone (NLX) elicits NIC withdrawal after repeated NIC administration, and NLX-induced NIC withdrawal is inhibited by concomitant administration of an opioid-receptor antagonist. NLX-induced NIC withdrawal is also inhibited by concomitant administration of an α7 antagonist, but not an α4β2 antagonist. Taken together, these findings suggest that NIC-induced antinociception and the development of physical dependence are mediated by the endogenous opioid system, via the α7 nAChR.

  8. Biased Agonism of Endogenous Opioid Peptides at the μ-Opioid Receptor.

    PubMed

    Thompson, Georgina L; Lane, J Robert; Coudrat, Thomas; Sexton, Patrick M; Christopoulos, Arthur; Canals, Meritxell

    2015-08-01

    Biased agonism is having a major impact on modern drug discovery, and describes the ability of distinct G protein-coupled receptor (GPCR) ligands to activate different cell signaling pathways, and to result in different physiologic outcomes. To date, most studies of biased agonism have focused on synthetic molecules targeting various GPCRs; however, many of these receptors have multiple endogenous ligands, suggesting that "natural" bias may be an unappreciated feature of these GPCRs. The μ-opioid receptor (MOP) is activated by numerous endogenous opioid peptides, remains an attractive therapeutic target for the treatment of pain, and exhibits biased agonism in response to synthetic opiates. The aim of this study was to rigorously assess the potential for biased agonism in the actions of endogenous opioids at the MOP in a common cellular background, and compare these to the effects of the agonist d-Ala2-N-MePhe4-Gly-ol enkephalin (DAMGO). We investigated activation of G proteins, inhibition of cAMP production, extracellular signal-regulated kinase 1 and 2 phosphorylation, β-arrestin 1/2 recruitment, and MOP trafficking, and applied a novel analytical method to quantify biased agonism. Although many endogenous opioids displayed signaling profiles similar to that of DAMGO, α-neoendorphin, Met-enkephalin-Arg-Phe, and the putatively endogenous peptide endomorphin-1 displayed particularly distinct bias profiles. These may represent examples of natural bias if it can be shown that they have different signaling properties and physiologic effects in vivo compared with other endogenous opioids. Understanding how endogenous opioids control physiologic processes through biased agonism can reveal vital information required to enable the design of biased opioids with improved pharmacological profiles and treat diseases involving dysfunction of the endogenous opioid system.

  9. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain

    PubMed Central

    Labuz, Dominika; Celik, Melih Ö.; Zimmer, Andreas; Machelska, Halina

    2016-01-01

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment. PMID:27605249

  10. Distinct roles of exogenous opioid agonists and endogenous opioid peptides in the peripheral control of neuropathy-triggered heat pain.

    PubMed

    Labuz, Dominika; Celik, Melih Ö; Zimmer, Andreas; Machelska, Halina

    2016-09-08

    Neuropathic pain often results from peripheral nerve damage, which can involve immune response. Local leukocyte-derived opioid peptides or exogenous opioid agonists inhibit neuropathy-induced mechanical hypersensitivity in animal models. Since neuropathic pain can also be augmented by heat, in this study we investigated the role of opioids in the modulation of neuropathy-evoked heat hypersensitivity. We used a chronic constriction injury of the sciatic nerve in wild-type and opioid peptide-knockout mice, and tested opioid effects in heat and mechanical hypersensitivity using Hargreaves and von Frey tests, respectively. We found that although perineural exogenous opioid agonists, including peptidergic ligands, were effective, the endogenous opioid peptides β-endorphin, Met-enkephalin and dynorphin A did not alleviate heat hypersensitivity. Specifically, corticotropin-releasing factor, an agent triggering opioid peptide secretion from leukocytes, applied perineurally did not attenuate heat hypersensitivity in wild-type mice. Exogenous opioids, also shown to release opioid peptides via activation of leukocyte opioid receptors, were equally analgesic in wild-type and opioid peptide-knockout mice, indicating that endogenous opioids do not contribute to exogenous opioid analgesia in heat hypersensitivity. Furthermore, exogenously applied opioid peptides were ineffective as well. Conversely, opioid peptides relieved mechanical hypersensitivity. Thus, both opioid type and sensory modality may determine the outcome of neuropathic pain treatment.

  11. The endogenous opioid system: a common substrate in drug addiction.

    PubMed

    Trigo, José Manuel; Martin-García, Elena; Berrendero, Fernando; Robledo, Patricia; Maldonado, Rafael

    2010-05-01

    Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.

  12. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory.

  13. Alterations in endogenous opioid functional measures in chronic back pain.

    PubMed

    Martikainen, Ilkka K; Peciña, Marta; Love, Tiffany M; Nuechterlein, Emily B; Cummiford, Chelsea M; Green, Carmen R; Harris, Richard E; Stohler, Christian S; Zubieta, Jon-Kar

    2013-09-11

    The absence of consistent end organ abnormalities in many chronic pain syndromes has led to a search for maladaptive CNS mechanisms that may explain their clinical presentations and course. Here, we addressed the role of brain regional μ-opioid receptor-mediated neurotransmission, one of the best recognized mechanisms of pain regulation, in chronic back pain in human subjects. We compared μ-opioid receptor availability in vivo at baseline, during pain expectation, and with moderate levels of sustained pain in 16 patients with chronic nonspecific back pain (CNBP) and in 16 age- and gender-matched healthy control subjects, using the μ-opioid receptor-selective radioligand [(11)C]carfentanil and positron emission tomography. We found that CNBP patients showed baseline increases in thalamic μ-opioid receptor availability, contrary to a previously studied sample of patients diagnosed with fibromyalgia. During both pain expectation and sustained pain challenges, CNBP patients showed regional reductions in the capacity to activate this neurotransmitter system compared with their control sample, further associated with clinical pain and affective state ratings. Our results demonstrate heterogeneity in endogenous opioid system functional measures across pain conditions, and alterations in both receptor availability and endogenous opioid function in CNBP that are relevant to the clinical presentation of these patients and the effects of opioid analgesics on μ-opioid receptors.

  14. Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins.

    PubMed

    Li, Yingxue; Lefever, Mark R; Muthu, Dhanasekaran; Bidlack, Jean M; Bilsky, Edward J; Polt, Robin

    2012-02-01

    Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.

  15. [Endomorphins--endogenous ligands of the mu-opioid receptor].

    PubMed

    Perlikowska, Renata; Fichna, Jakub; Janecka, Anna

    2009-01-01

    Two endogenous opioid peptides with extremely high mu-opioid receptor affinity and selectivity, endomorphin-1 and endomorphin-2, were: discovered and isolated from the mammalian brain in 1997. Endomorphins are amidated tetrapeptides, structurally different from so called typical opioids: enkephalins, dynorphins and endorphins. A protein precursor of endomorphins and a gene encoding their sequence remain unknown. Endomorphins are unable to cross the blood-brain barrier because of their low hydrophobicity. In animal models, these peptides turned out to be very potent in relieving neuropathic and inflammatory pain. In comparison with morphine, a prototype opioid receptor ligand, endomorphins produces less undesired side effects. In this article we describe the discovery of endomorphins, their cellular localization and functions in the organism, as well as their structure-activity relationships and biodegradation pathways.

  16. Borderline Personality Disorder: A Dysregulation of the Endogenous Opioid System?

    ERIC Educational Resources Information Center

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-01-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids…

  17. Antinociception induced by intravenous dipyrone (metamizol) upon dorsal horn neurons: involvement of endogenous opioids at the periaqueductal gray matter, the nucleus raphe magnus, and the spinal cord in rats.

    PubMed

    Vazquez, Enrique; Hernandez, Norma; Escobar, William; Vanegas, Horacio

    2005-06-28

    Microinjection of dipyrone (metamizol) into the periaqueductal gray matter (PAG) in rats causes antinociception. This is mediated by endogenous opioidergic circuits located in the PAG itself, in the nucleus raphe magnus and adjacent structures, and in the spinal cord. The clinical relevance of these findings, however, is unclear. Therefore, in the present study, dipyrone was administered intravenously, and the involvement of endogenous opioidergic circuits in the so-induced antinociception was investigated. In rats, responses of dorsal spinal wide-dynamic range neurons to mechanical noxious stimulation of a hindpaw were strongly inhibited by intravenous dipyrone (200 mg/kg). This effect was abolished by microinjection of naloxone (0.5 microg/0.5 microl) into the ventrolateral and lateral PAG or into the nucleus raphe magnus or by direct application of naloxone (50 microg/50 microl) onto the spinal cord surface above the recorded neuron. These results show that dipyrone, a non-opioid analgesic with widespread use in Europe and Latin America, when administered in a clinically relevant fashion causes antinociception by activating endogenous opioidergic circuits along the descending pain control system.

  18. Borderline personality disorder: a dysregulation of the endogenous opioid system?

    PubMed

    Bandelow, Borwin; Schmahl, Christian; Falkai, Peter; Wedekind, Dirk

    2010-04-01

    The neurobiology of borderline personality disorder (BPD) remains unclear. Dysfunctions of several neurobiological systems, including serotoninergic, dopaminergic, and other neurotransmitter systems, have been discussed. Here we present a theory that alterations in the sensitivity of opioid receptors or the availability of endogenous opioids constitute part of the underlying pathophysiology of BPD. The alarming symptoms and self-destructive behaviors of the affected patients may be explained by uncontrollable and unconscious attempts to stimulate their endogenous opioid system (EOS) and the dopaminergic reward system, regardless of the possible harmful consequences. Neurobiological findings that support this hypothesis are reviewed: Frantic efforts to avoid abandonment, frequent and risky sexual contacts, and attention-seeking behavior may be explained by attempts to make use of the rewarding effects of human attachment mediated by the EOS. Anhedonia and feelings of emptiness may be an expression of reduced activity of the EOS. Patients with BPD tend to abuse substances that target mu-opioid receptors. Self-injury, food restriction, aggressive behavior, and sensation seeking may be interpreted as desperate attempts to artificially set the body to survival mode in order to mobilize the last reserves of the EOS. BPD-associated symptoms, such as substance abuse, anorexia, self-injury, depersonalization, and sexual overstimulation, can be treated successfully with opioid receptor antagonists. An understanding of the neurobiology of BPD may help in developing new treatments for patients with this severe disorder.

  19. Activation of endogenous opioid gene expression in human keratinocytes and fibroblasts by pulsed radiofrequency energy fields

    PubMed Central

    Moffett, John; Fray, Linley M; Kubat, Nicole J

    2012-01-01

    Background Pulsed radiofrequency energy (PRFE) fields are being used increasingly for the treatment of pain arising from dermal trauma. However, despite their increased use, little is known about the biological and molecular mechanism(s) responsible for PRFE-mediated analgesia. In general, current therapeutics used for analgesia target either endogenous factors involved in inflammation, or act on endogenous opioid pathways. Methods and Results Using cultured human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), we investigated the effect of PRFE treatment on factors, which are involved in modulating peripheral analgesia in vivo. We found that PRFE treatment did not inhibit cyclooxygenase enzyme activity, but instead had a positive effect on levels of endogenous opioid precursor mRNA (proenkephalin, pro-opiomelanocortin, prodynorphin) and corresponding opioid peptide. In HEK cells, increases in opioid mRNA were dependent, at least in part, on endothelin-1. In HDF cells, additional pathways also appear to be involved. PRFE treatment was also followed by changes in endogenous expression of several cytokines, including increased levels of interleukin-10 mRNA and decreased levels of interleukin-1β mRNA in both cell types. Conclusion These findings provide a new insight into the molecular mechanism underlying PRFE-mediated analgesia reported in the clinical setting. PMID:23055776

  20. Food cravings, endogenous opioid peptides, and food intake: a review.

    PubMed

    Mercer, M E; Holder, M D

    1997-12-01

    Extensive research indicates a strong relationship between endogenous opioid peptides (EOPs) and food intake. In the present paper, we propose that food cravings act as an intervening variable in this opioid-ingestion link. Specifically, we argue that altered EOP activity may elicit food cravings which in turn may influence food consumption. Correlational support for this opioidergic theory of food cravings is provided by examining various clinical conditions (e.g. pregnancy, menstruation, bulimia, stress, depression) which are associated with altered EOP levels, intensified food cravings, and increased food intake.

  1. Endogenous opioids regulate moment-to-moment neuronal communication and excitability

    PubMed Central

    Winters, Bryony L.; Gregoriou, Gabrielle C.; Kissiwaa, Sarah A.; Wells, Oliver A.; Medagoda, Danashi I.; Hermes, Sam M.; Burford, Neil T.; Alt, Andrew; Aicher, Sue A.; Bagley, Elena E.

    2017-01-01

    Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. PMID:28327612

  2. Mindfulness-Meditation-Based Pain Relief Is Not Mediated by Endogenous Opioids

    PubMed Central

    Adler-Neal, Adrienne L.; Wells, Rebecca E.; Stagnaro, Emily; May, Lisa M.; Eisenach, James C.; McHaffie, John G.; Coghill, Robert C.

    2016-01-01

    Mindfulness meditation, a cognitive practice premised on sustaining nonjudgmental awareness of arising sensory events, reliably attenuates pain. Mindfulness meditation activates multiple brain regions that contain a high expression of opioid receptors. However, it is unknown whether mindfulness-meditation-based analgesia is mediated by endogenous opioids. The present double-blind, randomized study examined behavioral pain responses in healthy human volunteers during mindfulness meditation and a nonmanipulation control condition in response to noxious heat and intravenous administration of the opioid antagonist naloxone (0.15 mg/kg bolus + 0.1 mg/kg/h infusion) or saline placebo. Meditation during saline infusion significantly reduced pain intensity and unpleasantness ratings when compared to the control + saline group. However, naloxone infusion failed to reverse meditation-induced analgesia. There were no significant differences in pain intensity or pain unpleasantness reductions between the meditation + naloxone and the meditation + saline groups. Furthermore, mindfulness meditation during naloxone produced significantly greater reductions in pain intensity and unpleasantness than the control groups. These findings demonstrate that mindfulness meditation does not rely on endogenous opioidergic mechanisms to reduce pain. SIGNIFICANCE STATEMENT Endogenous opioids have been repeatedly shown to be involved in the cognitive inhibition of pain. Mindfulness meditation, a practice premised on directing nonjudgmental attention to arising sensory events, reduces pain by engaging mechanisms supporting the cognitive control of pain. However, it remains unknown if mindfulness-meditation-based analgesia is mediated by opioids, an important consideration for using meditation to treat chronic pain. To address this question, the present study examined pain reports during meditation in response to noxious heat and administration of the opioid antagonist naloxone and placebo saline

  3. Endogenous Opioid Peptides and Epilepsy: Quieting the Seizing Brain?

    DTIC Science & Technology

    1988-08-01

    neurons ments using low doses of highly ebral metabolism targeted the are mixed, exhibiting predominant selective 1-opioid ligands have limbic forebrain...1981 demonstrating with low doses of antagonists in be critically important to the initia- that enkephalin or P-enclorphin various models of...turned tance for endogenous K systems in jections of low (pharmacological) our attention towards determining seizure mechanisms. Indeed, the doses of

  4. Enkephalinase inhibition and hippocampal excitatory effects of exogenous and endogenous opioids.

    PubMed

    Sagratella, S

    1994-10-01

    1. The relationships between the in vivo and in vitro epileptogenic effects of opioids or enkephalins and the electrophysiological activity of inhibitors of endogenous enkephalinase were analyzed. 2. The functional effects of the inhibition of the endogenous enkephalinase has been compared with the role of the endogenous opioid peptidergic system in the control of neuronal excitability.

  5. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration.

    PubMed

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2011-01-15

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32 °C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32 °C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm.

  6. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration

    PubMed Central

    Parikh, Drupad; Hamid, Abdul; Friedman, Theodore C.; Nguyen, Khanh; Tseng, Andy; Marquez, Paul; Lutfy, Kabirullah

    2010-01-01

    Stress is known to elicit pain relief, a phenomenon referred to as stress-induced analgesia. Based on stress parameters, opioid and non-opioid intrinsic pain inhibitory systems can be activated. In the present study, we assessed whether changing the duration of stress would affect the involvement of endogenous opioids in antinociception elicited by swim in warm water (32°C), known to be opioid-mediated. Using mice lacking beta-endorphin, enkephalins or dynorphins and their respective wild-type littermates, we assessed the role of each opioid peptide in antinociception induced by a short (3 min) vs. long (15 min) swim. Mice were tested for baseline hot plate latency, exposed to swim (3 or 15 min) in warm water (32°C) and then tested for antinociception at 5, 15 and 30 min. Our results revealed that both swim paradigms induced significant antinociception in wild-type mice. However, the short swim failed to induce antinociception in beta-endorphin-deficient mice, illustrating that beta-endorphin is important in this form of stress-induced antinociception. On the other hand, antinociception elicited by the long swim was only slightly reduced in beta-endorphin-deficient mice despite pretreatment with naloxone, a non-selective opioid receptor antagonist, significantly attenuated the antinociception elicited by the long swim. Nevertheless, a delayed hyperalgesic response developed in mice lacking beta-endorphin following exposure to either swim paradigm. On the other hand, mice lacking enkephalins or dynorphins and their respective wild-type littermates expressed a comparable antinociceptive response and did not exhibit the delayed hyperalgesic response. Together, our results suggest that the endogenous opioid peptide beta-endorphin not only mediates antinociception induced by the short swim but also prevents the delayed hyperalgesic response elicited by either swim paradigm. PMID:21044625

  7. TGF-β and opioid receptor signaling crosstalk results in improvement of endogenous and exogenous opioid analgesia under pathological pain conditions.

    PubMed

    Lantero, Aquilino; Tramullas, Mónica; Pílar-Cuellar, Fuencisla; Valdizán, Elsa; Santillán, Rosa; Roques, Bernard P; Hurlé, María A

    2014-04-09

    Transforming growth factor-β1 (TGF-β1) protects against neuroinflammatory events underlying neuropathic pain. TGF-β signaling enhancement is a phenotypic characteristic of mice lacking the TGF-β pseudoreceptor BAMBI (BMP and activin membrane-bound inhibitor), which leads to an increased synaptic release of opioid peptides and to a naloxone-reversible hypoalgesic/antiallodynic phenotype. Herein, we investigated the following: (1) the effects of BAMBI deficiency on opioid receptor expression, functional efficacy, and analgesic responses to endogenous and exogenous opioids; and (2) the involvement of the opioid system in the antiallodynic effect of TGF-β1. BAMBI-KO mice were subjected to neuropathic pain by sciatic nerve crash injury (SNI). Gene (PCR) and protein (Western blot) expressions of μ- and δ-opioid receptors were determined in the spinal cord. The inhibitory effects of agonists on the adenylyl cyclase pathway were investigated. Two weeks after SNI, wild-type mice developed mechanical allodynia and the functionality of μ-opioid receptors was reduced. By this time, BAMBI-KO mice were protected against allodynia and exhibited increased expression and function of opioid receptors. Four weeks after SNI, when mice of both genotypes had developed neuropathic pain, the analgesic responses induced by morphine and RB101 (an inhibitor of enkephalin-degrading enzymes, which increases the synaptic levels of enkephalins) were enhanced in BAMBI-KO mice. Similar results were obtained in the formalin-induced chemical-inflammatory pain model. Subcutaneous TGF-β1 infusion prevented pain development after SNI. The antiallodynic effect of TGF-β1 was naloxone-sensitive. In conclusion, modulation of the endogenous opioid system by TGF-β signaling improves the analgesic effectiveness of exogenous and endogenous opioids under pathological pain conditions.

  8. Antinociception induced by acute oral administration of sweet substance in young and adult rodents: the role of endogenous opioid peptides chemical mediators and μ(1)-opioid receptors.

    PubMed

    de Freitas, Renato Leonardo; Kübler, João Marcus Lopes; Elias-Filho, Daoud Hibraim; Coimbra, Norberto Cysne

    2012-04-01

    The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the μ(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 μL of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4 mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective μ(1)-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and μ(1)-opioid receptor actions.

  9. [Do enkephalins and other endogenous opioids participate in regulation of cancer growth?].

    PubMed

    Kajdaniuk, D; Marek, B; Buntner, B; Zwirska-Korczala, K

    2000-01-01

    Attempts are interesting exploratory trend to define precisely relations between endogenous opioid system and neoplastic process development. Mechanism in which enkephalins and other endogenous opioides could influence on cancer growth is not clear. Several hypothesis were put and presented in the paper.

  10. Endogenous opioid peptides contribute to associative LTP in the hippocampal CA3 region.

    PubMed

    Martinez, Carlo O; Do, Viet H; Derrick, Brian E

    2011-09-01

    The medial and lateral perforant path projections to the hippocampal CA3 region display distinct mechanisms of long-term potentiation (LTP) induction, N-methyl-d-aspartate (NMDA) and opioid receptor dependent, respectively. However, medial and lateral perforant path projections to the CA3 region display associative LTP with coactivation, suggesting that while they differ in receptors involved in LTP induction they may share common downstream mechanisms of LTP induction. Here we address this interaction of LTP induction mechanisms by evaluating the contribution of opioid receptors to the induction of associative LTP among the medial and lateral perforant path projections to the CA3 region in vivo. Local application of the opioid receptor antagonists naloxone or Cys2-Tyr3-Orn5-Pen7-amide (CTOP) normally block induction of lateral perforant path-CA3 LTP. However, these opioid receptor antagonists failed to block associative LTP in lateral perforant path-CA3 synapses when it was induced by strong coactivation of the medial perforant pathway which displays NMDAR-dependent LTP. Thus strong activation of non-opioidergic afferents can substitute for the opioid receptor activation required for lateral perforant path LTP induction. Conversely, medial perforant path-CA3 associative LTP was blocked by opioid receptor antagonists when induced by strong coactivation of the opioidergic lateral perforant path. These data indicate endogenous opioid peptides contribute to associative LTP at coactive synapses when induced by strong coactivation of an opioidergic afferent system. These data further suggest that associative LTP induction is regulated by the receptor mechanisms of the strongly stimulated pathway. Thus, while medial and lateral perforant path synapses differ in their mechanisms of LTP induction, associative LTP at these synapses share common downstream mechanisms of induction.

  11. Involvement of opioid peptides in the regulation of reproduction in the prawn Penaeus indicus

    NASA Astrophysics Data System (ADS)

    Sreenivasula Reddy, P.

    The possible involvement of an endogenous opioid system in the regulation of ovarian development in the prawn Penaeus indicus was investigated. Injection of leucine-enkephalin significantly increased the ovarian index and oocyte diameter in a dose-dependent manner. In contrast, injection of methionine-enkephalin significantly decreased the ovarian index and oocyte diameters. These results provide evidence to support the hypothesis that an opioid system is involved in the regulation of reproduction in crustaceans.

  12. Event-related potentials in performance monitoring are influenced by the endogenous opioid system.

    PubMed

    Pfabigan, Daniela M; Pripfl, Jürgen; Kroll, Sara L; Sailer, Uta; Lamm, Claus

    2015-10-01

    Recent research suggests that not only the dopamine neurotransmitter system but also the endogenous opioid system is involved in performance monitoring and the generation of prediction error signals. Heightened performance monitoring is also associated with psychopathology such as internalizing disorders. Therefore, the current study investigated the potential link between the functional opioid peptide prodynorphin (PDYN) 68 bp VNTR genetic polymorphism and neuronal correlates of performance monitoring. To this end, 47 healthy participants genotyped for this polymorphism, related to high-, intermediate-, and low-expression levels of PDYN, performed a choice-reaction task while their electroencephalogram (EEG) was recorded. On the behavioural level, no differences between the three PDYN groups could be observed. EEG data, however, showed significant differences. High PDYN expression individuals showed heightened neural error processing indicated by higher ERN amplitudes, compared to intermediate and low expression individuals. Later stages of error processing, indexed by late Pe amplitudes, and stimulus-driven conflict processing, indexed by N2 amplitudes, were not affected by PDYN genotype. The current results corroborate the notion of an indirect effect of endogenous opioids on performance monitoring, probably mediated by the mesencephalic dopamine system. Overall, enhanced ERN amplitudes suggest a hyper-active performance monitoring system in high PDYN expression individuals, and this might also be an indicator of a higher risk for internalizing disorders.

  13. Cafestol, a coffee-specific diterpene, induces peripheral antinociception mediated by endogenous opioid peptides.

    PubMed

    Guzzo, Luciana S; Perez, Andrea C; Romero, Thiago Rl; Azevedo, Adolfo O; Duarte, Igor Dg

    2012-05-01

    The opioid peptides have been implicated in peripheral antinociception induced by non-opioidergic compounds, including non-steroidal anti-inflammatory drugs and α(2) -adrenoceptor agonists. The aims of the present study were to investigate the possible peripheral antinociceptive effect of cafestol, a diterpene present in the oil derived from coffee beans, and to evaluate the involvement of opioid peptides in its effect. The rat paw pressure test was used to assess antinocipeptive effects. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (2 μg/paw). All drugs were locally administered into the hind-paws of male Wistar rats. Intraplantar injection of cafestol (20, 40 and 80 μg) induced peripheral antinociception. The antinociceptive effect of cafestol was due to a local action because the higher dose (80 μg/paw) did not produce any effect in the contralateral paw. The opioid receptor antagonist naloxone (25, 50 and 100 μg/paw) prevented the action of cafestol (80 μg/paw), whereas the aminopeptidase inhibitor bestatin (400 μg/paw) potentiated the antinociceptive effect of cafestol (40 μg/paw). The results of the present study provide evidence that cafestol treatment has a peripheral antinociceptive effect and suggest that this effect is mediated by the release of endogenous opioids.

  14. Spatiotemporal expression of endogenous opioid processing enzymes in mouse uterus at peri-implantation.

    PubMed

    Wu, Weiwei; Kong, Shuangbo; Wang, Bingyan; Chen, Yongjie; Wang, Haibin

    2016-02-01

    Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.

  15. Opioid neurotransmission in the post-ictal analgesia: involvement of mu(1)-opioid receptor.

    PubMed

    Coimbra, N C; Freitas, R L; Savoldi, M; Castro-Souza, C; Segato, E N; Kishi, R; Weltson, A; Resende, G C

    2001-06-08

    Pentylenetetrazol (PTZ), a non-competitive antagonist that blocks GABA-mediated Cl(-) flux, was used in the present work to induce seizures in animals. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significative increase in the tail-flick latencies (TFL), for at least 120 min of the post-ictal period. Peripheral administration of naltrexone (5 mg/kg, 10 mg/kg and 20 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. These data were corroborated with peripheral administration of naloxonazine (10 mg/kg and 20 mg/kg), a mu(1)-opioid blocker, in the same doses used for non-specific antagonist. These results indicate that endogenous opioids may be involved in the post-ictal analgesia. The involvement of mu(1)-opioid receptor was also considered.

  16. [Endogenous opioid system as a mediator of acute and long-term adaptation to stress. Prospects for clinical use of opioid peptides].

    PubMed

    Lishmanov, Iu B; Maslov, L N; Naryzhnaia, N V; Pei, J M; Kolar, F; Zhang, Y; Portnichenko, A G; Wang, N

    2012-01-01

    It has been well established that opioid peptides (OPs) affect various hormonal systems. Opioids exhibit stress-limiting and gastro-protective effects in stressed animals, acting via mu- and delta-opioid receptors (OR). Peripheral mu-OR stimulation by endogenous and exogenous opioids increases cardiac tolerance to pathological consequences of stress. Enhancement ofprostacyclin synthesis, decrease of thromboxane production as well as suppression of lipid peroxidation can be directly responsible for cardioprotective effects of OPs in stressed animals. Adaptive responses are accompanied by increased OP levels in blood and tissues. Reduction of ventricular arrhythmias induced by repeated short-term immobilization stress is mediated via mu-OR stimulation by endogenous opioids, while delta-OR account for an antiarrhythmic effect of adaptation to chronic intermittent hypobaric hypoxia. The mechanism of infarct size-limiting effect of continuous normobaric hypoxia involves both mu- and delta-OR stimulation. Peptide OR agonists can be considered in future clinical practice for treatment of withdrawal syndrome, stress-related cardiac disease or myocardial injury caused by ischemia-reperfusion insult.

  17. A6V polymorphism of the human μ-opioid receptor decreases signalling of morphine and endogenous opioids in vitro

    PubMed Central

    Knapman, Alisa; Santiago, Marina; Connor, Mark

    2015-01-01

    Background and Purpose Polymorphisms of the μ opioid receptor (MOPr) may contribute to the variation in responses to opioid drugs in clinical and unregulated situations. The A6V variant of MOPr (MOPr-A6V) is present in up to 20% of individuals in some populations, and may be associated with heightened susceptibility to drug abuse. There are no functional studies examining the acute signalling of MOPr-A6V in vitro, so we investigated potential functional differences between MOPr and MOPr-A6V at several signalling pathways using structurally distinct opioid ligands. Experimental Approach CHO and AtT-20 cells stably expressing MOPr and MOPr-A6V were used. AC inhibition and ERK1/2 phosphorylation were assayed in CHO cells; K channel activation was assayed in AtT-20 cells. Key Results Buprenorphine did not inhibit AC or stimulate ERK1/2 phosphorylation in CHO cells expressing MOPr-A6V, but buprenorphine activation of K channels in AtT-20 cells was preserved. [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, morphine and β-endorphin inhibition of AC was significantly reduced via MOPr-A6V, as was signalling of all opioids to ERK1/2. However, there was little effect of the A6V variant on K channel activation. Conclusions and Implications Signalling to AC and ERK via the mutant MOPr-A6V was decreased for many opioids, including the clinically significant drugs morphine, buprenorphine and fentanyl, as well endogenous opioids. The MOPr-A6V variant is common and this compromised signalling may affect individual responses to opioid therapy, while the possible disruption of the endogenous opioid system may contribute to susceptibility to substance abuse. PMID:25521224

  18. Endogenous Opioid Activity in the Anterior Cingulate Cortex Is Required for Relief of Pain

    PubMed Central

    Navratilova, Edita; Xie, Jennifer Yanhua; Meske, Diana; Qu, Chaoling; Morimura, Kozo; Okun, Alec; Arakawa, Naohisa; Ossipov, Michael; Fields, Howard L.

    2015-01-01

    Pain is aversive, and its relief elicits reward mediated by dopaminergic signaling in the nucleus accumbens (NAc), a part of the mesolimbic reward motivation pathway. How the reward pathway is engaged by pain-relieving treatments is not known. Endogenous opioid signaling in the anterior cingulate cortex (ACC), an area encoding pain aversiveness, contributes to pain modulation. We examined whether endogenous ACC opioid neurotransmission is required for relief of pain and subsequent downstream activation of NAc dopamine signaling. Conditioned place preference (CPP) and in vivo microdialysis were used to assess negative reinforcement and NAc dopaminergic transmission. In rats with postsurgical or neuropathic pain, blockade of opioid signaling in the rostral ACC (rACC) inhibited CPP and NAc dopamine release resulting from non-opioid pain-relieving treatments, including peripheral nerve block or spinal clonidine, an α2-adrenergic agonist. Conversely, pharmacological activation of rACC opioid receptors of injured, but not pain-free, animals was sufficient to stimulate dopamine release in the NAc and produce CPP. In neuropathic, but not sham-operated, rats, systemic doses of morphine that did not affect withdrawal thresholds elicited CPP and NAc dopamine release, effects that were prevented by blockade of ACC opioid receptors. The data provide a neural explanation for the preferential effects of opioids on pain affect and demonstrate that engagement of NAc dopaminergic transmission by non-opioid pain-relieving treatments depends on upstream ACC opioid circuits. Endogenous opioid signaling in the ACC appears to be both necessary and sufficient for relief of pain aversiveness. PMID:25948274

  19. Neuropathic Pain Activates the Endogenous κ Opioid System in Mouse Spinal Cord and Induces Opioid Receptor Tolerance

    PubMed Central

    Xu, Mei; Petraschka, Michael; McLaughlin, Jay P.; Westenbroek, Ruth E.; Caron, Marc G.; Lefkowitz, Robert J.; Czyzyk, Traci A.; Pintar, John E.; Terman, Gregory W.; Chavkin, Charles

    2008-01-01

    Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [κ opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4 –L5 spinal dorsal horn of wild-type C57BL/6 mice (7–21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the κ agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance. PMID:15140929

  20. [A mechanism of endogenous opioid peptides for rapid onset of acupuncture effect in treatment of depression].

    PubMed

    Wang, Xin-jun; Wang, Ling-ling

    2010-11-01

    Clinical and experimental studies show that the onset of effect of acupuncture on depression is more rapid than selective serotonin reuptake inhibitors, a class of antidepressants. Acupuncture treatment is characterized by controlling anxiety and gastrointestinal discomfort. The onset time of acupuncture treatment for various pains is a week or so, which is the same as the rapid onset time of antidepressant effect of acupuncture, and the main pathway of acupuncture analgesia is through endogenous opioid system. Opioid peptides can produce pleasure, and decrease anxiety and gastrointestinal discomfort, so opioid peptides are considered to have antidepressant effect. Accordingly, the main pathway of acupuncture analgesia-the endogenous opioid system, is considered a mechanism for rapid onset of acupuncture effects on depression.

  1. Role of endogenous opioid peptides in the pathogenesis of motion sickness

    SciTech Connect

    Yasnetsov, V.V.; Il'ina, S.L.; Karsanova, S.K.; Medvedev, O.S.; Mokrousova, A.V.; Sabaev, V.V.; Shashkov, V.A.; Tigranyan, R.A.; Vakulina, O.P

    1986-01-01

    This paper examines the pathogenesis of motion sickness and the role of the various neurochemical systems of the body in the genesis of the condition. It has been shown that the endogenous opioid system participates in the genesis of several pathological processes; this was the motivation for the study. The plasma beta-endorphin level was determined in samples from 19 clinically healthy males. Considering the positive prophylactic and therapeutic effect of naloxone against motion sickness it can be postulated that endogenous opioid peptides participate in the genesis of the vestibulo-autonomic disorders in motion sickness.

  2. Do inhalation general anesthetic drugs induce the neuronal release of endogenous opioid peptides?

    PubMed

    Quock, Raymond M; Vaughn, Linda K

    2005-10-07

    The antagonism of some effects of inhalation general anesthetic agents by naloxone suggests that there may be an opioid component to anesthetic action. There is evidence that this opioid action component is due to neuronal release of endogenous opioid peptides. The strongest evidence is provided by studies that monitor changes in the concentration of opioid peptides in the perfused brain following inhalation of the anesthetic. Indirect or circumstantial evidence also comes from studies of anesthetic effects on regional brain levels of opioid peptides, antagonism of selected anesthetic effects by antisera to opioid peptides and anesthetic-induced changes radioligand binding to opioid receptors. It is likely that some inhalation general anesthetics (e.g., nitrous oxide) can induce neuronal release of opioid peptides and that this may contribute to certain components of general anesthesia (e.g., analgesia). More definitive studies utilizing in vivo microdialysis or autoradiography in selected areas of the brain during induction and successive states of general anesthesia have yet to be conducted.

  3. Downregulation of the endogenous opioid peptides in the dorsal striatum of human alcoholics

    PubMed Central

    Sarkisyan, Daniil; Hussain, Muhammad Z.; Watanabe, Hiroyuki; Kononenko, Olga; Bazov, Igor; Zhou, Xingwu; Yamskova, Olga; Krishtal, Oleg; Karpyak, Victor M.; Yakovleva, Tatiana; Bakalkin, Georgy

    2015-01-01

    The endogenous opioid peptides dynorphins and enkephalins may be involved in brain-area specific synaptic adaptations relevant for different stages of an addiction cycle. We compared the levels of prodynorphin (PDYN) and proenkephalin (PENK) mRNAs (by qRT-PCR), and dynorphins and enkephalins (by radioimmunoassay) in the caudate nucleus and putamen between alcoholics and control subjects. We also evaluated whether PDYN promoter variant rs1997794 associated with alcoholism affects PDYN expression. Postmortem specimens obtained from 24 alcoholics and 26 controls were included in final statistical analysis. PDYN mRNA and Met-enkephalin-Arg-Phe, a marker of PENK were downregulated in the caudate of alcoholics, while PDYN mRNA and Leu-enkephalin-Arg, a marker of PDYN were decreased in the putamen of alcoholics carrying high risk rs1997794 C allele. Downregulation of opioid peptides in the dorsal striatum may contribute to development of alcoholism including changes in goal directed behavior and formation of a compulsive habit in alcoholics. PMID:26029055

  4. Endogenous Opioids May Buffer Effects of Anger Arousal on Sensitivity to Subsequent Pain

    PubMed Central

    Burns, John W.; Bruehl, Stephen; Chung, Ok Y.; Magid, Edward; Chont, Melissa; Goodlad, James K.; Gilliam, Wesley; Matsuura, Justin; Somar, Kristin

    2014-01-01

    Evidence suggests that anger and pain are related, yet it is not clear by what mechanisms anger may influence pain. We have proposed that effects of anger states and traits on pain sensitivity are partly opioid-mediated. In this study, we tested the extent to which analgesic effects of acute anger arousal on subsequent pain sensitivity were opioid-mediated by subjecting healthy participants to anger-induction and pain either under opioid blockade (oral naltrexone) or placebo. Participants were 160 healthy individuals. A double-blind, placebo-controlled, between-subjects opioid blockade design was used, with participants assigned randomly to one of two Drug conditions (placebo or naltrexone), and to one of two Task Orders (anger-induction followed by pain or vice versa). Results of ANOVAs showed significant Drug Condition × Task Order interactions for sensory pain ratings (MPQ-Sensory) and angry and nervous affect during pain-induction, such that participants who underwent anger-induction prior to pain while under opioid blockade (naltrexone) reported more pain, and anger and nervousness than those who underwent the tasks in the same order, but did so on placebo. Results suggest that for people with intact opioid systems, acute anger arousal may trigger endogenous opioid release that reduces subsequent responsiveness to pain. Conversely, impaired endogenous opioid function, such as that found among some chronic pain patients, may leave certain people without optimal buffering from the otherwise hyperalgesic affects of anger arousal, and so may lead to greater pain and suffering following upsetting or angry events. PMID:19682793

  5. It still hurts: altered endogenous opioid activity in the brain during social rejection and acceptance in major depressive disorder.

    PubMed

    Hsu, D T; Sanford, B J; Meyers, K K; Love, T M; Hazlett, K E; Walker, S J; Mickey, B J; Koeppe, R A; Langenecker, S A; Zubieta, J-K

    2015-02-01

    The μ-opioid receptor (MOR) system, well known for dampening physical pain, is also hypothesized to dampen 'social pain.' We used positron emission tomography scanning with the selective MOR radioligand [(11)C]carfentanil to test the hypothesis that MOR system activation (reflecting endogenous opioid release) in response to social rejection and acceptance is altered in medication-free patients diagnosed with current major depressive disorder (MDD, n=17) compared with healthy controls (HCs, n=18). During rejection, MDD patients showed reduced endogenous opioid release in brain regions regulating stress, mood and motivation, and slower emotional recovery compared with HCs. During acceptance, only HCs showed increased social motivation, which was positively correlated with endogenous opioid release in the nucleus accumbens, a reward structure. Altered endogenous opioid activity in MDD may hinder emotional recovery from negative social interactions and decrease pleasure derived from positive interactions. Both effects may reinforce depression, trigger relapse and contribute to poor treatment outcomes.

  6. Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers

    PubMed Central

    Mick, Inge; Myers, Jim; Ramos, Anna C; Stokes, Paul R A; Erritzoe, David; Colasanti, Alessandro; Gunn, Roger N; Rabiner, Eugenii A; Searle, Graham E; Waldman, Adam D; Parkin, Mark C; Brailsford, Alan D; Galduróz, José C F; Bowden-Jones, Henrietta; Clark, Luke; Nutt, David J; Lingford-Hughes, Anne R

    2016-01-01

    Pathological gambling is a psychiatric disorder and the first recognized behavioral addiction, with similarities to substance use disorders but without the confounding effects of drug-related brain changes. Pathophysiology within the opioid receptor system is increasingly recognized in substance dependence, with higher mu-opioid receptor (MOR) availability reported in alcohol, cocaine and opiate addiction. Impulsivity, a risk factor across the addictions, has also been found to be associated with higher MOR availability. The aim of this study was to characterize baseline MOR availability and endogenous opioid release in pathological gamblers (PG) using [11C]carfentanil PET with an oral amphetamine challenge. Fourteen PG and 15 healthy volunteers (HV) underwent two [11C]carfentanil PET scans, before and after an oral administration of 0.5 mg/kg of d-amphetamine. The change in [11C]carfentanil binding between baseline and post-amphetamine scans (ΔBPND) was assessed in 10 regions of interest (ROI). MOR availability did not differ between PG and HV groups. As seen previously, oral amphetamine challenge led to significant reductions in [11C]carfentanil BPND in 8/10 ROI in HV. PG demonstrated significant blunting of opioid release compared with HV. PG also showed blunted amphetamine-induced euphoria and alertness compared with HV. Exploratory analysis revealed that impulsivity positively correlated with caudate baseline BPND in PG only. This study provides the first evidence of blunted endogenous opioid release in PG. Our findings are consistent with growing evidence that dysregulation of endogenous opioids may have an important role in the pathophysiology of addictions. PMID:26552847

  7. The endogenous opioid system in cocaine addiction: what lessons have opioid peptide and receptor knockout mice taught us?

    PubMed Central

    Yoo, Ji Hoon; Kitchen, Ian; Bailey, Alexis

    2012-01-01

    Cocaine addiction has become a major concern in the UK as Britain tops the European ‘league table’ for cocaine abuse. Despite its devastating health and socio-economic consequences, no effective pharmacotherapy for treating cocaine addiction is available. Identifying neurochemical changes induced by repeated drug exposure is critical not only for understanding the transition from recreational drug use towards compulsive drug abuse but also for the development of novel targets for the treatment of the disease and especially for relapse prevention. This article focuses on the effects of chronic cocaine exposure and withdrawal on each of the endogenous opioid peptides and receptors in rodent models. In addition, we review the studies that utilized opioid peptide or receptor knockout mice in order to identify and/or clarify the role of different components of the opioid system in cocaine-addictive behaviours and in cocaine-induced alterations of brain neurochemistry. The review of these studies indicates a region-specific activation of the µ-opioid receptor system following chronic cocaine exposure, which may contribute towards the rewarding effect of the drug and possibly towards cocaine craving during withdrawal followed by relapse. Cocaine also causes a region-specific activation of the κ-opioid receptor/dynorphin system, which may antagonize the rewarding effect of the drug, and at the same time, contribute to the stress-inducing properties of the drug and the triggering of relapse. These conclusions have important implications for the development of effective pharmacotherapy for the treatment of cocaine addiction and the prevention of relapse. PMID:22428846

  8. Endogenous μ-opioid peptides modulate immune response towards malignant melanoma.

    PubMed

    Boehncke, Sandra; Hardt, Katja; Schadendorf, Dirk; Henschler, Reinhard; Boehncke, Wolf-Henning; Duthey, Beatrice

    2011-01-01

    Opioids exert major effects not only in the central nervous system but also in immune responses. We investigated the effects of μ-opioid peptides, secreted by tumor cells, on anti-tumor immune responses. For this purpose, tumor growth was studied in wild-type and μ-opioid receptor-deficient (MOR-/-) mice injected with B16 melanoma cells. The ability of these cells to produce opioids was studied by Western blots in vitro. Finally, biopsy material from human melanomas was investigated by immunohistochemistry for ß endorphin expression. Injection of B16 melanoma cells, producing endogenous ß endorphin, in the flank of MOR-/- mice revealed a profound reduction in tumor growth, paralleled by a significantly higher infiltration of immune cells into the tumors, when compared to tumor growth after injection of B16 melanoma cells into wild-type mice. Opioids present in B16 cell supernatant significantly reduced the proliferation of normal but not MOR-/- leucocytes. Immunohistochemical analyses of biopsies from human melanoma tissues showed a positive correlation between expression of ß endorphin and tumor progression. Our data provide evidence that μ-opioid peptides may play a major role in cancer progression by modulating immune response. This finding may have implications for the future optimization of immunointerventions for cancer.

  9. Cholecystokinin and endogenous opioid peptides: interactive influence on pain, cognition, and emotion.

    PubMed

    Hebb, Andrea L O; Poulin, Jean-François; Roach, Sean P; Zacharko, Robert M; Drolet, Guy

    2005-12-01

    It is well documented that stressful life experiences contribute to the etiology of human mood disorders. Cholecystokinin (CCK) is a neuropeptide found in high concentrations throughout the central nervous system, where it is involved in numerous physiological functions. A role for CCK in the induction and persistence of anxiety and major depression appears to be conspicuous. While increased CCK has been associated with motivational loss, anxiety and panic attacks, an increase in mesocorticolimbic opioid availability has been associated with coping and mood elevation. The close neuroanatomical distribution of CCK with opioid peptides in the limbic system suggests that there may be an opioid-CCK link in the modulation and expression of anxiety or stressor-related behaviors. In effect, while CCK induces relatively protracted behavioral disturbances in both animal and human subjects following stressor applications, opioid receptor activation may change the course of psychopathology. The antagonistic interaction of CCK and opioid peptides is evident in psychological disturbances as well as stress-induced analgesia. There appears to be an intricate balance between the memory-enhancing and anxiety-provoking effects of CCK on one hand, and the amnesic and anxiolytic effects of opioid peptides on the other hand. Potential anxiogenic and mnemonic influences of site-specific mesocorticolimbic CCK and opioid peptide availability, the relative contributions of specific CCK and opioid receptors, as well as the time course underlying neuronal substrates of long-term behavioral disturbances as a result of stressor manipulations, are discussed.

  10. Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS.

    PubMed

    Marrone, Gina F; Grinnell, Steven G; Lu, Zhigang; Rossi, Grace C; Le Rouzic, Valerie; Xu, Jin; Majumdar, Susruta; Pan, Ying-Xian; Pasternak, Gavril W

    2016-03-29

    The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3'-iodobenzoyl-6β-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50, 488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia.

  11. Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS

    PubMed Central

    Marrone, Gina F.; Grinnell, Steven G.; Lu, Zhigang; Rossi, Grace C.; Le Rouzic, Valerie; Xu, Jin; Majumdar, Susruta; Pan, Ying-Xian; Pasternak, Gavril W.

    2016-01-01

    The clinical management of severe pain depends heavily on opioids acting through mu opioid receptors encoded by the Oprm1 gene, which undergoes extensive alternative splicing. In addition to generating a series of prototypic seven transmembrane domain (7TM) G protein-coupled receptors (GPCRs), Oprm1 also produces a set of truncated splice variants containing only six transmembrane domains (6TM) through which selected opioids such as IBNtxA (3′-iodobenzoyl-6β-naltrexamide) mediate a potent analgesia without many undesirable effects. Although morphine analgesia is independent of these 6TM mu receptor isoforms, we now show that the selective loss of the 6TM variants in a knockout model eliminates the analgesic actions of delta and kappa opioids and of α2-adrenergic compounds, but not cannabinoid, neurotensin, or muscarinic drugs. These observations were confirmed by using antisense paradigms. Despite their role in analgesia, loss of the 6TM variants were not involved with delta opioid-induced seizure activity, aversion to the kappa drug U50,488H, or α2-mediated hypolocomotion. These observations support the existence of parallel opioid and nonopioid pain modulatory systems and highlight the ability to dissociate unwanted delta, kappa1, and α2 actions from analgesia. PMID:26976581

  12. Evidence of CNIH3 involvement in opioid dependence

    PubMed Central

    Nelson, Elliot C.; Agrawal, Arpana; Heath, Andrew C.; Bogdan, Ryan; Sherva, Richard; Zhang, Bo; Al-Hasani, Ream; Bruchas, Michael R.; Chou, Yi-Ling; Demers, Catherine H.; Carey, Caitlin E.; Conley, Emily D.; Fakira, Amanda K.; Farrer, Lindsay A.; Goate, Alison; Gordon, Scott; Henders, Anjali K.; Hesselbrock, Victor; Kapoor, Manav; Lynskey, Michael T.; Madden, Pamela A.F.; Moron, Jose A.; Rice, John P.; Saccone, Nancy L.; Schwab, Sibylle G.; Shand, Fiona L.; Todorov, Alexandre A.; Wallace, Leanne; Wang, Ting; Wray, Naomi R.; Zhou, Xin; Degenhardt, Louisa; Martin, Nicholas G.; Hariri, Ahmad R.; Kranzler, Henry R.; Gelernter, Joel; Bierut, Laura J.; Clark, David J.; Montgomery, Grant W.

    2015-01-01

    Opioid dependence, a severe addictive disorder and major societal problem, has been demonstrated to be moderately heritable. We conducted a genome-wide association study in Comorbidity and Trauma Study data comparing opioid dependent daily injectors (N=1167) with opioid misusers who never progressed to daily injection (N=161). The strongest associations, observed for CNIH3 SNPs, were confirmed in two independent samples, the Yale-Penn genetic studies of opioid, cocaine, and alcohol dependence and the Study of Addiction: Genetics and Environment, which both contain non-dependent opioid misusers and opioid dependent individuals. Meta-analyses found 5 genome-wide significant CNIH3 SNPs. The A allele of rs10799590, the most highly associated SNP, was robustly protective [p=4.30E-9; OR 0.64 (95%CI 0.55 – 0.74)]. Epigenetic annotation predicts that this SNP is functional in fetal brain. Neuroimaging data from the Duke Neurogenetics Study (N=312) provide evidence of this SNP’s in vivo functionality; rs10799590 A allele carriers displayed significantly greater right amygdala habituation to threat-related facial expressions, a phenotype associated with resilience to psychopathology. Computational genetic analyses of physical dependence on morphine across 23 mouse strains yielded significant correlations for haplotypes in CNIH3 and functionally-related genes. These convergent findings support CNIH3 involvement in the pathophysiology of opioid dependence complementing prior studies implicating the AMPA glutamate system. PMID:26239289

  13. Panic, Suffocation False Alarms, Separation Anxiety and Endogenous Opioids

    PubMed Central

    Preter, Maurice; Klein, Donald F.

    2008-01-01

    This review paper presents an amplification of the suffocation false alarm theory (SFA) of spontaneous panic (Klein, 1993). SFA postulates the existence of an evolved physiologic suffocation alarm system that monitors information about potential suffocation. Panic attacks maladaptively occur when the alarm is erroneously triggered. That panic is distinct from Cannon’s emergency fear response and Selye’s General Alarm Syndrome is shown by the prominence of intense air hunger during these attacks. Further, panic sufferers have chronic sighing abnormalities outside of the acute attack. Another basic physiologic distinction between fear and panic is the counter-intuitive lack of hypothalamic-pituitary-adrenal (HPA) activation in panic. Understanding panic as provoked by indicators of potential suffocation, such as fluctuations in pCO2 and brain lactate, as well as environmental circumstances fits the observed respiratory abnormalities. However, that sudden loss, bereavement and childhood separation anxiety are also antecedents of “spontaneous” panic requires an integrative explanation. Because of the opioid system’s central regulatory role in both disordered breathing and separation distress, we detail the role of opioidergic dysfunction in decreasing the suffocation alarm threshold. We present results from our laboratory where the naloxone-lactate challenge in normals produces supportive evidence for the endorphinergic defect hypothesis in the form of a distress episode of specific tidal volume hyperventilation paralleling challenge-produced and clinical panic. PMID:17765379

  14. Involvement of Endogenous Retroviruses in Prion Diseases

    PubMed Central

    Lee, Yun-Jung; Jeong, Byung-Hoon; Choi, Eun-Kyung; Kim, Yong-Sun

    2013-01-01

    For millions of years, vertebrates have been continuously exposed to infection by retroviruses. Ancient retroviral infection of germline cells resulted in the formation and accumulation of inherited retrovirus sequences in host genomes. These inherited retroviruses are referred to as endogenous retroviruses (ERVs), and recent estimates have revealed that a significant portion of animal genomes is made up of ERVs. Although various host factors have suppressed ERV activation, both positive and negative functions have been reported for some ERVs in normal and abnormal physiological conditions, such as in disease states. Similar to other complex diseases, ERV activation has been observed in prion diseases, and this review will discuss the potential involvement of ERVs in prion diseases. PMID:25437206

  15. Supraspinal peroxynitrite modulates pain signaling by suppressing the endogenous opioid pathway

    PubMed Central

    Little, Joshua W.; Chen, Zhoumou; Doyle, Tim; Porreca, Frank; Ghaffari, Mahsa; Neumann, William L.; Salvemini, Daniela

    2012-01-01

    Peroxynitrite (PN, ONOO−) is a potent oxidant and nitrating agent that contributes to pain through peripheral and spinal mechanisms, but its supraspinal role is unknown. We present evidence here that PN in the rostral ventromedial medulla (RVM) is essential for descending nociceptive modulation in rats during inflammatory and neuropathic pain through PN-mediated suppression of opioid signaling. Carrageenan-induced thermal hyperalgesia was associated with increased 3-nitrotyrosine (NT), a PN biomarker, in the RVM. Furthermore, intra-RVM microinjections of the PN decomposition catalyst (PNDC), Fe(III)-5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)porphyrin (FeTMPyP5+) dose-dependently reversed this thermal hyperalgesia. These effects of FeTMPyP5+ were abrogated by intra-RVM naloxone, implicating potential interplay between PN and opioids. In support, we identified NT co-localization with the endogenous opioid, enkephalin (ENK), in the RVM during thermal hyperalgesia, suggesting potential in situ interactions. To address the functional significance of such interactions, we exposed methionine-enkephalin (MENK) to PN and identified the major metabolite, 3-nitrotyrosine-methionine-sulfoxide (NSO-MENK), using liquid chromatography-mass spectrometry (LCMS). Next, we isolated, purified, and tested NSO-MENK for opioid receptor binding affinity and analgesic effects. Compared to MENK, this NSO-MENK metabolite lacked appreciable binding affinity for δ, µ, and κ opioid receptors. Intrathecal injection of NSO-MENK in rats did not evoke antinociception suggesting that PN-mediated chemical modifications of ENK suppress opioid signaling. When extended to chronic pain, intra-RVM FeTMPyP5+ produced naloxone-sensitive reversal of mechanical allodynia in rats following chronic constriction injury (CCI) of the sciatic nerve. Collectively, our data reveal the central role of PN in RVM descending facilitation during inflammatory and neuropathic pain potentially through anti-opioid

  16. Sensory Neuropeptides and Endogenous Opioids Expression in Human Dental Pulp with Asymptomatic Inflammation: In Vivo Study

    PubMed Central

    Chavarria-Bolaños, Daniel; Flores-Reyes, Hector; Lombana-Sanchez, Nelson; Cerda-Cristerna, Bernardino; Pozos-Guillen, Amaury

    2015-01-01

    Purpose. This study quantified the expression of substance P (SP), calcitonin gene-related peptide (CGRP), β-endorphins (β-End), and methionine-enkephalin (Met-Enk) in human dental pulp following orthodontic intrusion. Methods. Eight patients were selected according to preestablished inclusion criteria. From each patient, two premolars (indicated for extraction due to orthodontic reasons) were randomly assigned to two different groups: the asymptomatic inflammation group (EXPg), which would undergo controlled intrusive force for seven days, and the control group (CTRg), which was used to determine the basal levels of each substance. Once extracted, dental pulp tissue was prepared to determine the expression levels of both neuropeptides and endogenous opioids by radioimmunoassay (RIA). Results. All samples from the CTRg exhibited basal levels of both neuropeptides and endogenous opioids. By day seven, all patients were asymptomatic, even when all orthodontic-intrusive devices were still active. In the EXPg, the SP and CGRP exhibited statistically significant different levels. Although none of the endogenous opioids showed statistically significant differences, they all expressed increasing trends in the EXPg. Conclusions. SP and CGRP were identified in dental pulp after seven days of controlled orthodontic intrusion movement, even in the absence of pain. PMID:26538838

  17. The role of endogenous opioids in non-suicidal self-injurious behavior: methodological challenges.

    PubMed

    Kirtley, Olivia J; O'Carroll, Ronan E; O'Connor, Rory C

    2015-01-01

    Relief from emotional pain is a frequently cited reason for engaging in non-suicidal self-injury. The exact mechanism by which self-injury brings about this relief is unknown, but the potential role of endogenous opioids in affective regulation has been posited. Few studies have investigated this and there are a number of methodological challenges to measuring endogenous opioid activity in this population. Furthermore as the majority of research to date has focused on inpatients with borderline personality disorder (BPD), it is uncertain if the findings of previous studies would also apply to those who self-injure but who do not have BPD. Whether or not altered endogenous opioid levels are a cause or a consequence of self-injury is unknown and to this end, comparing self-injury ideators with enactors, may offer a window of insight. Another candidate system, the endocannabinoid system, should also be explored in relation to this research question. The current commentary aims to tease apart the methodological issues in this area of research and stimulate further discussion of this topic.

  18. Endogenous nociceptin system involvement in stress responses and anxiety behavior.

    PubMed

    Fulford, Allison Jane

    2015-01-01

    The mechanisms underpinning stress-related behavior and dysfunctional events leading to the expression of neuropsychiatric disorders remain incompletely understood. Novel candidates involved in the neuromodulation of stress, mediated both peripherally and centrally, provide opportunities for improved understanding of the neurobiological basis of stress disorders and may represent targets for novel therapeutic development. This chapter provides an overview of the mechanisms by which the opioid-related peptide, nociceptin, regulates the neuroendocrine stress response and stress-related behavior. In our research, we have employed nociceptin receptor antagonists to investigate endogenous nociceptin function in tonic control over stress-induced activity of the hypothalamo-pituitary-adrenal axis. Nociceptin demonstrates a wide range of functions, including modulation of psychological and inflammatory stress responses, modulation of neurotransmitter release, immune homeostasis, in addition to anxiety and cognitive behaviors. Greater appreciation of the complexity of limbic-hypothalamic neuronal networks, together with attention toward gender differences and the roles of steroid hormones, provides an opportunity for deeper understanding of the importance of the nociceptin system in the context of the neurobiology of stress and behavior.

  19. Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5

    PubMed Central

    Kokrashvili, Zaza; Rodriguez, Deniliz; Yevshayeva, Valeriya; Zhou, Hang; Margolskee, Robert F

    2009-01-01

    Background & Aims Enteroendocrine cells, the largest and most diverse population of mammalian endocrine cells, comprise a number of different cell types in the gut mucosa that produce, store, and secrete small molecules, peptides and/or larger proteins that regulate many aspects of gut physiology. Little is known about less-typical endocrine cells in the intestinal mucosa that do not contain secretory granules, such as brush or caveolated cells. We studied a subset of these enteroendocrine cells in duodenum that produce several peptides, including endogenous opioids, and that also express the Trpm5 cation channel. Methods We studied expression patterns of Trpm5 and other molecules by immunohistochemical and ELISA analyses of intestinal tissues from transgenic mice that express green fluorescent protein from theTrpm5 promoter, as well as wild-type and Trpm5-null mice. Results We describe a type of enteroendocrine cell in mouse duodenum that is defined by the presence of the Trpm5, that does not contain typical secretory granules, yet expresses endogenous opioids (β-endorphin and Met-enkephalin) and uroguanylin in apical compartments close to the lumen of the gut. Conclusion Solitary chemosensory cells that co-express β-endorphin, Met-enkephalin, uroguanylin and Trpm5 exist in mouse duodenum. These cells are likely to secrete the bioactive peptides into the intestinal lumen in response to dietary factors; release of the opioid peptides requires the Trpm5 ion channel. PMID:19272386

  20. Possible role of a dysregulation of the endogenous opioid system in antisocial personality disorder.

    PubMed

    Bandelow, Borwin; Wedekind, Dirk

    2015-11-01

    Around half the inmates in prison institutions have antisocial personality disorder (ASPD). A recent theory has proposed that a dysfunction of the endogenous opioid system (EOS) underlies the neurobiology of borderline personality disorder (BPD). In the present theoretical paper, based on a comprehensive database and hand search of the relevant literature, this hypothesis is extended to ASPD, which may be the predominant expression of EOS dysfunction in men, while the same pathology underlies BPD in women. According to evidence from human and animal studies, the problematic behaviours of persons with antisocial, callous, or psychopathic traits may be seen as desperate, unconscious attempts to stimulate their deficient EOS, which plays a key role in brain reward circuits. If the needs of this system are not being met, the affected persons experience dysphoric mood, discomfort, or irritability, and strive to increase binding of endogenous opioids to receptors by using the rewarding effects of aggression by exertion of physical or manipulative power on others, by abusing alcohol or substances that have the reward system as target, by creating an "endorphin rush" by self-harm, by increasing the frequency of their sexual contacts, or by impulsive actions and sensation seeking. Symptoms associated with ASPD can be treated with opioid antagonists like naltrexone, naloxone, or nalmefene.

  1. Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice.

    PubMed

    Ukai, M; Watanabe, Y; Kameyama, T

    2001-06-08

    The effects of intracerebroventricular administration of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on passive avoidance learning associated with long-term memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (17.5 microg) produced a significant decrease in step-down latency in a passive avoidance learning task. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (17.5 microg)- and endomorphin-2 (17.5 microg)-induced shortening of step-down latency, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on the effects of endomorphins 1 and 2. These results suggest that endomorphins 1 and 2 impair long-term memory through the mediation of mu-opioid receptors in the brain.

  2. Differential involvement of the opioid receptor antagonist naloxone in motivational and hedonic aspects of reward.

    PubMed

    Schneider, Miriam; Heise, Verena; Spanagel, Rainer

    2010-04-02

    In the present study dose-dependent effects of the opioid receptor antagonist naloxone were investigated on the rewarding effects of sweetened condensed milk (SCM) in four behavioral paradigms addressing hedonic, consummatory as well as motivational aspects of a reward: odour-conditioned pleasure attenuation of the acoustic startle response (PAS), conditioned place preference (CPP), voluntary consumption in a limited access paradigm, as well as break point determination in a progressive ratio (PR) task. A dose-dependent reduction in reward-related behavior was observed in all paradigms, with exception of the break point in the PR task, which was not affected by naloxone at all. CPP for SCM was only affected by the highest dose of naloxone. The present results indicate that naloxone is more effective in suppressing the hedonic than motivational aspects of reward, further supporting the involvement of the endogenous opioid system in the mediation of hedonic properties of food reward.

  3. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain.

    PubMed

    Roques, Bernard P; Fournié-Zaluski, Marie-Claude; Wurm, Michel

    2012-04-01

    Chronic pain remains unsatisfactorily treated, and few novel painkillers have reached the market in the past century. Increasing the levels of the main endogenous opioid peptides - enkephalins - by inhibiting their two inactivating ectopeptidases, neprilysin and aminopeptidase N, has analgesic effects in various models of inflammatory and neuropathic pain. Stemming from the same pharmacological concept, fatty acid amide hydrolase (FAAH) inhibitors have also been found to have analgesic effects in pain models by preventing the breakdown of endogenous cannabinoids. Dual enkephalinase inhibitors and FAAH inhibitors are now in early-stage clinical trials. In this Review, we compare the effects of these two potential classes of novel analgesics and describe the progress in their rational design. We also consider the challenges in their clinical development and opportunities for combination therapies.

  4. Contribution of Endogenous Spinal Endomorphin 2 to Intrathecal Opioid Antinociception in Rats Is Agonist-Dependent and Sexually Dimorphic

    PubMed Central

    Kumar, Arjun; Liu, Nai-Jiang; Madia, Priyanka A.; Gintzler, Alan R.

    2016-01-01

    Interactions between exogenous and endogenous opioids are not commonly investigated as a basis for sexually dimorphic opioid analgesia. We investigated the influence of spinal endomorphin 2 (EM2), an endogenous mu-opioid receptor (MOR) ligand, on the spinal antinociception produced by intrathecally administered opioids. Activation of spinal MORs facilitated spinal EM2 release. This effect was sexually dimorphic, occurring in males but not females. Although activational effects of testosterone were required for opioid facilitation of spinal EM2 release in males, the absence of this facilitation in females resulted from neither insufficient levels of testosterone nor mitigating effects of estrogens. Strikingly, in males, the contribution of spinal EM2 to the analgesia produced by intrathecally applied MOR agonists depended on their analgesic efficacy relative to that of EM2. Spinal EM2 released by the higher efficacy MOR agonist sufentanil diminished sufentanil’s analgesic effect, whereas EM2 released by the lower efficacy morphine had the opposite effect on spinal morphine antinociception. Understanding antithetical contributions of endogenous EM2 to intrathecal opioid antinociception not only enlightens the selection of opioid medications for pain management, but also helps explain variable sex-dependence of the antinociception produced by different opioids, facilitating the acceptance of sexually dimorphic antinociception as a basic tenet. Perspective The male-specific MOR-coupled enhancement of spinal EM2 release implies a parallel ability to harness endogenous EM2 antinociception. The inferred diminished ability of females to utilize the spinal EM2 antinociceptive system could contribute to their greater frequency and severity of chronic pain syndromes. PMID:26342648

  5. Partial characterization of a novel endogenous opioid in human cerebrospinal fluid

    SciTech Connect

    Miller, B.E.; Lipman, J.J.; Byrne, W.L.

    1987-12-07

    Human cerebrospinal fluid (CSF) contains many uncharacterized endogenous opioids, in addition to the known enkephalins, endorphins, and dynorphins. These opioids may be separated by gel filtration chromatography and identified by radioreceptor assay for opioid activity. One region of the chromatographic elution profile, designated Peak B has previously been shown to be related to the pain status of chronic pain patients. The authors now report that human Peak B isolated from the CSF of pain-free elective surgery patients is present at a typical concentration equivalent in activity to 1.4 pmol of morphine sulfate per ml of CSF measured by radioreceptor assay. At a dose of 0.06 and 0.12 pmol morphine sulfate equivalents of CSF (MSE), injected into the cerebroventricular system of the mouse, Peak B produced an antinociceptive effect, the intensity and duration of which was dose-dependent and which was antagonized by naloxone. The mouse vas deferens (MVD) preparation was inhibited by Peak B in a manner that was sensitive to antagonism by naloxone only at low (< 1.0 ..mu..M) but not at higher (>6.0 ..mu..M) concentrations of the antagonist. Peak B activity in the MVD assay was unaffected by treatment with trypsin or ..cap alpha..-chymotrypsin. 32 references, 4 figures, 1 table.

  6. Opioid modulation of immunocompetence: Receptor characterization and second messenger involvement

    SciTech Connect

    Hemmick, L.M.

    1989-01-01

    The purpose of this thesis was to examine the effects of opioids on several indices of immunocompetence, determined the receptor specificity of these effects, and ascertain whether the actions of opioids on lymphocytes could be correlated with activation of second messenger systems. By measuring {sup 45}Ca{sup 2+} uptake into lymphocytes, it was demonstrated that {beta}-endorphin 1-31 ({beta}-END 1-31) enhanced rat thymocyte Ca{sup 2+} uptake in response to concanavalin A (Con A) but not phytohemagglutinin (PHA). Related opioid peptides and alkaloids were unable to mimic the effect, and naloxone did not block it, suggesting that {beta}-END 1-31 acted by binding to specific, non-opioid receptors on the thymocytes. Rat splenocyte Con A-stimulated Ca{sup 2+} uptake was not affected by {beta}-END 1-31. {beta}-END 1-31 did not affect basal Ca{sup 2+} uptake by either cell type. Using ({sup 3}H)thymidine uptake as an index of lymphocyte proliferation, {beta}-END 1-31 and several related opioid peptides reversed prostaglandin E{sub 1} (PGE{sub 1}) suppression of rat lymph node cell Con A- and PHA-stimulated proliferation. Naloxone did not block the reversal. {beta}-END 1-31 was unable to reverse forskolin and cholera toxin suppression of proliferation, indicating that the lowering of cyclic AMP levels was not the mechanism involved. Verapamil inhibition of proliferation was also not reversed by {beta}-END 1-31, suggesting that promotion of Ca{sup 2+} influx was not a major mechanism involved.

  7. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans.

    PubMed

    Sims-Williams, Hugh; Matthews, Julian C; Talbot, Peter S; Love-Jones, Sarah; Brooks, Jonathan Cw; Patel, Nikunj K; Pickering, Anthony E

    2017-02-01

    Deep brain stimulation (DBS) of the periaqueductal gray (PAG) is used in the treatment of severe refractory neuropathic pain. We tested the hypothesis that DBS releases endogenous opioids to exert its analgesic effect using [(11)C]diprenorphine (DPN) positron emission tomography (PET). Patients with de-afferentation pain (phantom limb pain or Anaesthesia Dolorosa (n=5)) who obtained long-lasting analgesic benefit from DBS were recruited. [(11)C]DPN and [(15)O]water PET scanning was performed in consecutive sessions; first without, and then with PAG stimulation. The regional cerebral tracer distribution and kinetics were quantified for the whole brain and brainstem. Analysis was performed on a voxel-wise basis using statistical parametric mapping (SPM) and also within brainstem regions of interest and correlated to the DBS-induced improvement in pain score and mood. Brain-wide analysis identified a single cluster of reduced [(11)C]DPN binding (15.5% reduction) in the caudal, dorsal PAG following DBS from effective electrodes located in rostral dorsal/lateral PAG. There was no evidence for an accompanying focal change in blood flow within the PAG. No correlation was found between the change in PAG [(11)C]DPN binding and the analgesic effect or the effect on mood (POMSSV) of DBS. The analgesic effect of DBS in these subjects was not altered by systemic administration of the opioid antagonist naloxone (400ug). These findings indicate that DBS of the PAG does indeed release endogenous opioid peptides focally within the midbrain of these neuropathic pain patients but we are unable to further resolve the question of whether this release is responsible for the observed analgesic benefit.

  8. Endogenous Opioid Antagonism in Physiological Experimental Pain Models: A Systematic Review

    PubMed Central

    Werner, Mads U.; Pereira, Manuel P.; Andersen, Lars Peter H.; Dahl, Jørgen B.

    2015-01-01

    Opioid antagonists are pharmacological tools applied as an indirect measure to detect activation of the endogenous opioid system (EOS) in experimental pain models. The objective of this systematic review was to examine the effect of mu-opioid-receptor (MOR) antagonists in placebo-controlled, double-blind studies using ʻinhibitoryʼ or ʻsensitizingʼ, physiological test paradigms in healthy human subjects. The databases PubMed and Embase were searched according to predefined criteria. Out of a total of 2,142 records, 63 studies (1,477 subjects [male/female ratio = 1.5]) were considered relevant. Twenty-five studies utilized ʻinhibitoryʼ test paradigms (ITP) and 38 studies utilized ʻsensitizingʼ test paradigms (STP). The ITP-studies were characterized as conditioning modulation models (22 studies) and repetitive transcranial magnetic stimulation models (rTMS; 3 studies), and, the STP-studies as secondary hyperalgesia models (6 studies), ʻpainʼ models (25 studies), summation models (2 studies), nociceptive reflex models (3 studies) and miscellaneous models (2 studies). A consistent reversal of analgesia by a MOR-antagonist was demonstrated in 10 of the 25 ITP-studies, including stress-induced analgesia and rTMS. In the remaining 14 conditioning modulation studies either absence of effects or ambiguous effects by MOR-antagonists, were observed. In the STP-studies, no effect of the opioid-blockade could be demonstrated in 5 out of 6 secondary hyperalgesia studies. The direction of MOR-antagonist dependent effects upon pain ratings, threshold assessments and somatosensory evoked potentials (SSEP), did not appear consistent in 28 out of 32 ʻpainʼ model studies. In conclusion, only in 2 experimental human pain models, i.e., stress-induced analgesia and rTMS, administration of MOR-antagonist demonstrated a consistent effect, presumably mediated by an EOS-dependent mechanisms of analgesia and hyperalgesia. PMID:26029906

  9. Endogenous Opioid System Influences Depressive Reactions to Socially Painful Targeted Rejection Life Events

    PubMed Central

    Slavich, George M.; Tartter, Molly A.; Brennan, Patricia A.; Hammen, Constance

    2014-01-01

    Although exposure to a recent major life event is one of the strongest known risk factors for depression, many people who experience such stress do not become depressed. Moreover, the biological mechanisms underlying differential emotional reactions to social adversity remain largely unknown. To investigate this issue, we examined whether the endogenous opioid system, which is known to influence sensitivity to physical pain, is also implicated in differential risk for depression following socially painful targeted rejection versus non-targeted rejection life events. Adolescents (n = 420) enrolled in a large longitudinal birth cohort study had their recent stress exposure and current mental health status assessed using self-report and interview-based methods. Participants were also genotyped for the A118G polymorphism in the μ-opioid receptor gene (OPRM1, rs1799971), which has been found to influence neural and psychological responses to rejection, likely by affecting opioid receptor expression and signaling efficiency. As hypothesized, G allele carriers, who are known to exhibit less opioid receptor expression and signaling efficiency, were more severely depressed and twice as likely to meet criteria for major depressive disorder following a recent targeted rejection major life event (e.g., being broken up with, getting fired) relative to A/A homozygotes who experienced such stress. However, A118G genotype did not moderate the effects of other similarly severe major life events on depression. These data thus elucidate a biological pathway that may specifically influence sensitivity to social pain and rejection, which in turn has implications for understanding differential risk for depression and several other social stress-related disorders. PMID:25086307

  10. Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists

    PubMed Central

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”. PMID:24350273

  11. Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists.

    PubMed

    Murányi, Marianna; Cinar, Resat; Kékesi, Orsolya; Birkás, Erika; Fábián, Gabriella; Bozó, Beáta; Zentai, András; Tóth, Géza; Kicsi, Emese Gabriella; Mácsai, Mónika; Dochnal, Roberta; Szabó, Gyula; Szücs, Mária

    2013-01-01

    Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid(2)-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the "so-called biased agonism" or "functional selectivity".

  12. Central effects of ethanol interact with endogenous mu opioid activity to control isolation-induced analgesia in maternally separated infant rats

    PubMed Central

    Nizhnikov, Michael E.; Kozlov, Andrey P.; Kramskaya, Tatiana. A.; Varlinskaya, Elena I.; Spear, Norman E.

    2014-01-01

    Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12–day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol–mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu- opioid activity that increases the pup’s sensitivity to appetitive taste

  13. Central effects of ethanol interact with endogenous mu-opioid activity to control isolation-induced analgesia in maternally separated infant rats.

    PubMed

    Nizhnikov, Michael E; Kozlov, Andrey P; Kramskaya, Tatiana A; Varlinskaya, Elena I; Spear, Norman E

    2014-03-01

    Endogenous opioid activity plays an important role in ethanol consumption and reinforcement in infant rats. Opioid systems are also involved in mediation and regulation of stress responses. Social isolation is a stressful experience for preweanling rats and changes the effects of ethanol through opioid-dependent mechanisms. The present study assessed effects of intracisternal (i.c.) administration of a selective mu-opioid antagonist (CTOP) and i.p. administration of a nonspecific opioid antagonist (naloxone) on voluntary intake and behavior in socially isolated 12-day-old (P12) pups treated with 0.5 g/kg ethanol. Voluntary intake of 0.1% saccharin or water, locomotion, rearing activity, paw licking and grooming were assessed during short-term isolation from littermates (STSI; 8-min duration). Thermal nociceptive reactivity was measured before and after this intake test, with normalized differences between pre- and post-test latencies of paw withdrawal from a hot plate (49°C) used as an index of isolation-induced analgesia (IIA). Results indicated several effects of social isolation and ethanol mediated through the mu-opioid system. Effects of low dose ethanol (0.5 g/kg) and voluntary consumption of saccharin interacted with endogenous mu-opioid activity associated with STSI. Blockade of mu-opioid receptors on saccharin consumption and paw licking-grooming affected intoxicated animals. Low dose ethanol and ingestion of saccharin blunted effects of CTOP on rearing behavior and nociceptive reactivity. Central injections of CTOP stimulated paw licking and grooming dependent on ethanol dose and type of fluid ingested. Ethanol selectively increased saccharin intake during STSI in females, naloxone and CTOP blocked ethanol-mediated enhancement of saccharin intake. We suggest that enhancement of saccharin intake by ethanol during STSI is the product of synergism between isolation-induced mu-opioid activity that increases the pup's sensitivity to appetitive taste

  14. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation

    PubMed Central

    2014-01-01

    Background Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund’s adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. Results In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48–96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. Conclusion Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4

  15. Endomorphins, endogenous opioid peptides, induce apoptosis in human leukemia HL-60 cells.

    PubMed

    Lin, Xin; Chen, Qiang; Xue, Li-Ying; Ma, Xiao-Jun; Wang, Rui

    2004-11-01

    Opioids play a role in the apoptosis machinery. We studied the induction of apoptosis in endomorphin 1 (EM1) and endomorphin 2 (EM2), 2 newly isolated endogenous mu-opioid receptor agonists. These endomorphins were able to reduce the viability of cultured HL-60 cells. The antiproliferative properties of endomorphins appeared to be attributable to their induction of apoptotic cell death as determined by ultrastructural change, internucleosomal DNA fragmentation, and increased proportion of the subdiploid cell population. To elucidate molecular events in the apoptosis, protein expressions of Bcl-2, Bax, Fas, and FasL were measured by western blotting using specific antibodies in HL-60 cells. The level of Bcl-2 indicated down-regulation, but the Bax, Fas, and FasL expression showed up-regulation as compared with the untreated control cells. These data support the idea that endomorphins induce apoptosis in HL-60 cells through the activation of the Bcl-2-Bax and the Fas-FasL pathway. We suggest that endomorphins may play an important role in the regulation of tumor cell death.

  16. Endogenous Opioid Signaling in the Medial Prefrontal Cortex is Required for the Expression of Hunger-Induced Impulsive Action.

    PubMed

    Selleck, Ryan A; Lake, Curtis; Estrada, Viridiana; Riederer, Justin; Andrzejewski, Matthew; Sadeghian, Ken; Baldo, Brian A

    2015-09-01

    Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a 'low-drive' condition (2-h food deprivation), and also after a motivational shift to a 'high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered 'high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features.

  17. Endogenous Opioid Signaling in the Medial Prefrontal Cortex is Required for the Expression of Hunger-Induced Impulsive Action

    PubMed Central

    Selleck, Ryan A; Lake, Curtis; Estrada, Viridiana; Riederer, Justin; Andrzejewski, Matthew; Sadeghian, Ken; Baldo, Brian A

    2015-01-01

    Opioid transmission and dysregulated prefrontal cortex (PFC) activity have both been implicated in the inhibitory-control deficits associated with addiction and binge-type eating disorders. What remains unknown, however, is whether endogenous opioid transmission within the PFC modulates inhibitory control. Here, we compared intra-PFC opioid manipulations with a monoamine manipulation (d-amphetamine), in two sucrose-reinforced tasks: progressive ratio (PR), which assays the motivational value of an incentive, and differential reinforcement of low response rates (DRLs), a test of inhibitory control. Intra-PFC methylnaloxonium (M-NX, a limited diffusion opioid antagonist) was given to rats in a ‘low-drive' condition (2-h food deprivation), and also after a motivational shift to a ‘high-drive' condition (18-h food deprivation). Intra-PFC DAMGO (D-[Ala2,N-MePhe4, Gly-ol]-enkephalin; a μ-opioid agonist) and d-amphetamine were also tested in both tasks, under the low-drive condition. Intra-PFC M-NX nearly eliminated impulsive action in DRL engendered by hunger, at a dose (1 μg) that significantly affected neither hunger-induced PR enhancement nor hyperactivity. At a higher dose (3 μg), M-NX eliminated impulsive action and returned PR breakpoint to low-drive levels. Conversely, intra-PFC DAMGO engendered ‘high-drive-like' effects: enhancement of PR and impairment of DRL performance. Intra-PFC d-amphetamine failed to produce effects in either task. These results establish that endogenous PFC opioid transmission is both necessary and sufficient for the expression of impulsive action in a high-arousal, high-drive appetitive state, and that PFC-based opioid systems enact functionally unique effects on food impulsivity and motivation relative to PFC-based monoamine systems. Opioid antagonists may represent effective treatments for a range of psychiatric disorders with impulsivity features. PMID:25865930

  18. Endogenous opioids regulate expression of experimental autoimmune encephalomyelitis: a new paradigm for the treatment of multiple sclerosis.

    PubMed

    Zagon, Ian S; Rahn, Kristen A; Turel, Anthony P; McLaughlin, Patricia J

    2009-11-01

    Preclinical investigations utilizing murine experimental auto-immune encephalomyelitis (EAE), as well as clinical observations in patients with multiple sclerosis (MS), may suggest alteration of endogenous opioid systems in MS. In this study we used the opioid antagonist naltrexone (NTX) to invoke a continuous (High Dose NTX, HDN) or intermittent (Low Dose NTX, LDN) opioid receptor blockade in order to elucidate the role of native opioid peptides in EAE. A mouse model of myelin oligodendrocyte glycoprotein (MOG)-induced EAE was employed in conjunction with daily treatment of LDN (0.1 mg/kg, NTX), HDN (10 mg/kg NTX), or vehicle (saline). No differences in neurological status (incidence, severity, disease index), or neuropathological assessment (activated astrocytes, demyelination, neuronal injury), were noted between MOG-induced mice receiving HDN or vehicle. Over 33% of the MOG-treated animals receiving LDN did not exhibit behavioral signs of disease, and the severity and disease index of the LDN-treated mice were markedly reduced from cohorts injected with vehicle. Although all LDN animals demonstrated neuropathological signs of EAE, LDN-treated mice without behavioral signs of disease had markedly lower levels of activated astrocytes and demyelination than LDN- or vehicle-treated animals with disease. These results imply that endogenous opioids, evoked by treatment with LDN and acting in the rebound period from drug exposure, are inhibitory to the onset and progression of EAE, and suggest that clinical studies of LDN are merited in MS and possibly in other autoimmune disorders.

  19. Inflammation mobilizes local resources to control hyperalgesia: the role of endogenous opioid peptides.

    PubMed

    Alves, Daniela P; da Motta, Patrícia G; Lima, Patrícia P; Queiroz-Junior, Celso M; Caliari, Marcelo V; Pacheco, Daniela F; Pacheco, Cinthia F; Francischi, Janetti N; Duarte, Igor D G

    2012-01-01

    The aim of the present study was to investigate the mechanisms underlying the endogenous control of nociception at a peripheral level during inflammation. Using a pharmacological approach and the rat paw pressure test, we assessed the effect of an intraplantar injection of naloxone, an opioid receptor antagonist, and bestatin, an aminopeptidase inhibitor, on hyperalgesia induced by carrageenan, which mimics an inflammatory process, or prostaglandin E(2) (PGE(2)), which directly sensitizes nociceptors. Naloxone induced a significant and dose-dependent (25, 50 or 100 μg) increase in carrageenan-induced hyperalgesia, but not PGE(2)-induced hyperalgesia. Bestatin (400 μg/paw) significantly counteracted carrageenan-induced hyperalgesia, inducing an increase in the nociceptive threshold compared to control, but it did not modify hyperalgesia induced by PGE(2) injection into the rat paw. Positive β-endorphin immunoreactivity was increased in paw inflammation induced by carrageenan in comparison with the control group. However, PGE(2) did not significantly alter the immunostained area. These results provide evidence for activation of the endogenous opioidergic system during inflammation and indicate that this system regulates hyperalgesia through a negative feedback mechanism, modulating it at a peripheral level.

  20. Functional interactions between endogenous cannabinoid and opioid systems: focus on alcohol, genetics and drug-addicted behaviors.

    PubMed

    López-Moreno, J A; López-Jiménez, A; Gorriti, M A; de Fonseca, F Rodríguez

    2010-04-01

    Although the first studies regarding the endogenous opioid system and addiction were published during the 1940s, addiction and cannabinoids were not addressed until the 1970s. Currently, the number of opioid addiction studies indexed in PubMed-Medline is 16 times greater than the number of cannabinoid addiction reports. More recently, functional interactions have been demonstrated between the endogenous cannabinoid and opioid systems. For example, the cannabinoid brain receptor type 1 (CB1) and mu opioid receptor type 1 (MOR1) co-localize in the same presynaptic nerve terminals and signal through a common receptor-mediated G-protein pathway. Here, we review a great variety of behavioral models of drug addiction and alcohol-related behaviors. We also include data providing clear evidence that activation of the cannabinoid and opioid endogenous systems via WIN 55,512-2 (0.4-10 mg/kg) and morphine (1.0-10 mg/kg), respectively, produces similar levels of relapse to alcohol in operant alcohol self-administration tasks. Finally, we discuss genetic studies that reveal significant associations between polymorphisms in MOR1 and CB1 receptors and drug addiction. For example, the SNP A118G, which changes the amino acid aspartate to asparagine in the MOR1 gene, is highly associated with altered opioid system function. The presence of a microsatellite polymorphism of an (AAT)n triplet near the CB1 gene is associated with drug addiction phenotypes. But, studies exploring haplotypes with regard to both systems, however, are lacking.

  1. [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Yamamoto, Chizuko

    2014-10-01

    Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7

  2. Endogenous opiates and behavior: 2014.

    PubMed

    Bodnar, Richard J

    2016-01-01

    This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular

  3. Involvement of peripheral mu opioid receptors in scratching behavior in mice.

    PubMed

    Yamamoto, Atsuki; Sugimoto, Yukio

    2010-12-15

    Pruritus is a common adverse effect of opioid treatment. However, the mechanism by which pruritus is induced by opioid administration is unclear. In this study, we examined the effects of the intradermal injection of loperamide, a peripherally restricted opioid receptor agonist, on the itch sensation. When injected intradermally into the rostral part of the back in mice, loperamide elicited scratching behavior. We also examined the effects of the selective mu opioid receptor agonist [d-Ala², N-Me-Phe⁴, Gly⁵-ol]-enkephalin acetate (DAMGO), the selective delta opioid receptor agonist [d-Pen(2,5)]-enkephalin (DPDPE), and the selective kappa opioid receptor agonist U-50488H on scratching behavior in mice in order to determine which subtype is involved in opioid-induced pruritus. Following intradermal injection into the rostral part of the back in mice, DAMGO elicited scratching behavior, while DPDPE and U-50488H did not. This suggests that peripheral mu opioid activation elicits the itch sensation. Next, we focused on the treatment of opioid-induced itch sensation without central adverse effects. Naloxone methiodide is a peripherally restricted opioid receptor antagonist. In the present study, naloxone methiodide significantly suppressed scratching behavior induced by loperamide and DAMGO. These findings suggest that mu opioid receptors play a primary role in peripheral pruritus and that naloxone methiodide may represent a possible remedy for opioid-induced itching.

  4. Electroacupuncture suppresses capsaicin-induced secondary hyperalgesia through an endogenous spinal opioid mechanism

    PubMed Central

    Kim, Hee Young; Wang, Jigong; Lee, Inhyung; Kim, Hee Kee; Chung, Kyungsoon; Chung, Jin Mo

    2009-01-01

    Central sensitization, caused either by tissue inflammation or peripheral nerve injury, plays an important role in persistent pain. An animal model of capsaicin-induced pain has well-defined peripheral and central sensitization components, thus is useful for studying the analgesic effect on two separate components. The focus of this study is to examine the analgesic effects of electroacupuncture (EA) on capsaicin-induced secondary hyperalgesia, which represents central sensitization. Capsaicin (0.5%, 10 μl) was injected into the plantar side of the left hind paw, and foot withdrawal thresholds in response to von Frey stimuli (mechanical sensitivity) were determined for both primary and secondary hyperalgesia in rats. EA (2 Hz, 3 mA) was applied to various pairs of acupoints, GB30-GB34, BL40-BL60, GV2-GV6, LI3-LI6 and SI3-TE8, for 30 min under isofluraine anesthesia and then the effect of EA on mechanical sensitivity of paw was determined. EA applied to the ipsilateral SI3-TE8, but none the other acupoints, significantly reduced capsaicin-induced secondary hyperalgesia but not primary hyperalgesia. EA analgesic effect was inhibited by a systemic non-specific opioid receptor (OR) antagonist or an intrathecal μ- or δ-OR antagonist. EA analgesic effect was not affected by an intrathecal κ-OR antagonist or systemic adrenergic receptor antagonist. This study demonstrates that EA produces a stimulation point specific analgesic effect on capsaicin-induced secondary hyperalgesia (central sensitization), mediated by activating endogenous spinal μ and δ opioid receptors. PMID:19646817

  5. Involvement of kappa type opioids on ethanol drinking

    SciTech Connect

    Sandi, C.; Borrell, J.; Guaza, C.

    1988-01-01

    The effects of the administration of the kappa agonist dynorphin/sub 1/..sqrt../sub 17/ andor the kappa antagonist MR-2266-BS on ethanol preference was investigated using a paradigm by which rats develop alcohol preference. Administration of dynorphin shortly before or after the conditioning session (forced ethanol exposure) failed to affect later ethanol preference. However, dynorphin treatment prior to the first choice session reduced ethanol preference during the three consecutive testing days. This effect was reversed by the simultaneous administration of the kappa antagonist MR-2266-BS. The results of the present study provide further support for evidence of the involvement of dynorphinergic systems on drinking behavior and suggest that kappa-type opioid mechanisms may be involved in the consumption and development of preference to ethanol in rats. 32 references, 3 figures, 2 tables

  6. Constitutive opioid receptor activation: a prerequisite mechanism involved in acute opioid withdrawal.

    PubMed

    Freye, E; Levy, Jv

    2005-06-01

    The opioid receptor antagonist naltrexone, which is used in detoxification and rehabilitation programmes in opioid addicts, can precipitate opioid withdrawal symptoms even in patients who have no opioid present. We tested the hypothesis that in order to precipitate withdrawal, opioids need to convert the inactive opioid receptor site via protein kinase C into a constitutively active form on which the antagonist precipitates withdrawal. Acute microg/kg), given for 6 days, which was followed by the antagonist naltrexone (20 microg/kg i.v.) in the awake trained canine (n = 10). Abrupt displacement of opioid binding resulted in acute withdrawal symptoms: increase in blood pressure, heart rate, increase in amplitude height of somatosensory evoked potential, reduced tolerance to colon distention and a significant increase in grading of vegetative variables (restlessness, panting, thrashing of the head, whining, yawning, gnawing, salivation and/or rhinorrhoea, mydriasis, stepping of extremities and vomiting). Following a washout period of 14 days, the same animals were given the highly specific protein kinase C inhibitor H7 (250 microg/kg) prior to the same dosages of sufentanil and naltrexone. Such pretreatment was able to either attenuate or completely abolish the acute withdrawal symptoms. The data suggest that for precipitation of withdrawal, intracellular phosphorylation is a prerequisite in order to activate the opioid mu-receptor. In such a setting, naltrexone acts like an 'inverse agonist' relative to the action of the antagonist on a non-preoccupied receptor site not being exposed previously to a potent opioid agonist.

  7. Inhibiting roles of berberine in gut movement of rodents are related to activation of the endogenous opioid system.

    PubMed

    Feng, Yajing; Li, Yongyu; Chen, Chunqiu; Lin, Xuhong; Yang, Yuehua; Cai, Haidong; Lv, Zhongwei; Cao, Minghua; Li, Kun; Xu, Jing; Li, Sainan; Jia, Yijun

    2013-10-01

    Although Berberine (BER) is popular in treating gastrointestinal (GI) disorders, its mechanisms are not clear yet. In order to investigate the effects and possible mechanism of BER on GI motility in rodents, we first explored GI motility by recording the myoelectrical activity of jejunum and colon in rats, and upper GI transit with a charcoal marker in mice. Then, the plasma levels of gastrin, motilin, somatostatin and glucagon-like-peptide-1 (Glp-1) were measured by ELISA or radioimmunoassay (RIA). Furthermore, endogenous opioid-peptides (β-endorphin, dynorphin-A, met-enkephalin) were detected by RIA after treatment with BER. Our results showed that BER concentration-dependently inhibited myoelectrical activity and GI transit, which can be antagonized by opioid-receptor antagonists to different extents. The elevated somatostatin and Glp-1, and decreased gastrin and motilin in plasma, which were caused by BER application, also could be antagonized by the opioid-receptor antagonists. Additionally, plasma level of β-endorphin, but not dynorphin-A and met-enkephalin, was increased by applying BER. Taken together, these studies show that BER plays inhibiting roles on GI motility and up-regulating roles on somatostatin, Glp-1 and down-regulating roles on gastrin, motilin. The pharmacological mechanisms of BER on GI motility and plasma levels of GI hormones were discovered to be closely related to endogenous opioid system.

  8. Endomorphins, endogenous opioid peptides, provide antioxidant defense in the brain against free radical-induced damage.

    PubMed

    Lin, Xin; Yang, Ding-Jian; Cai, Wen-Qing; Zhao, Qian-Yu; Gao, Yan-Feng; Chen, Qiang; Wang, Rui

    2003-11-20

    Oxidative stress has been considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. The brain appears to be more susceptible to oxidative damage than other organs. Therefore, the existence of antioxidants may be essential in brain protective systems. The antioxidative and free radical scavenging effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, have been investigated in vitro. The oxidative damage was initiated by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrocholoride) (AAPH) and hydrogen peroxide (H2O2). The linoleic acid peroxidation, DNA and protein damage were monitored by formation of hydroperoxides, by plasmid pBR 322 DNA nicking assay and single-cell alkaline electrophoresis, and by SDS-polyacrylamide gel electrophoresis. Endomorphins can inhibit lipid peroxidation, DNA strand breakage, and protein fragmentation induced by free radical. Endomorphins also reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. In all assay systems, EM1 was more potent than EM2 and GSH, a major intracellular water-soluble antioxidant. We propose that endomorphins are one of the protective systems against free radical-induced damage in the brain.

  9. Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation.

    PubMed

    Lin, Xin; Xue, Li-Ying; Wang, Rui; Zhao, Qian-Yu; Chen, Qiang

    2006-03-01

    Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.

  10. Building up analgesia in humans via the endogenous μ-opioid system by combining placebo and active tDCS: a preliminary report.

    PubMed

    DosSantos, Marcos F; Martikainen, Ilkka K; Nascimento, Thiago D; Love, Tiffany M; DeBoer, Misty D; Schambra, Heidi M; Bikson, Marom; Zubieta, Jon-Kar; DaSilva, Alexandre F

    2014-01-01

    Transcranial Direct Current Stimulation (tDCS) is a method of non-invasive brain stimulation that has been frequently used in experimental and clinical pain studies. However, the molecular mechanisms underlying tDCS-mediated pain control, and most important its placebo component, are not completely established. In this pilot study, we investigated in vivo the involvement of the endogenous μ-opioid system in the global tDCS-analgesia experience. Nine healthy volunteers went through positron emission tomography (PET) scans with [11C]carfentanil, a selective μ-opioid receptor (MOR) radiotracer, to measure the central MOR activity during tDCS in vivo (non-displaceable binding potential, BPND)--one of the main analgesic mechanisms in the brain. Placebo and real anodal primary motor cortex (M1/2mA) tDCS were delivered sequentially for 20 minutes each during the PET scan. The initial placebo tDCS phase induced a decrease in MOR BPND in the periaqueductal gray matter (PAG), precuneus, and thalamus, indicating activation of endogenous μ-opioid neurotransmission, even before the active tDCS. The subsequent real tDCS also induced MOR activation in the PAG and precuneus, which were positively correlated to the changes observed with placebo tDCS. Nonetheless, real tDCS had an additional MOR activation in the left prefrontal cortex. Although significant changes in the MOR BPND occurred with both placebo and real tDCS, significant analgesic effects, measured by improvements in the heat and cold pain thresholds, were only observed after real tDCS, not the placebo tDCS. This study gives preliminary evidence that the analgesic effects reported with M1-tDCS, can be in part related to the recruitment of the same endogenous MOR mechanisms induced by placebo, and that such effects can be purposely optimized by real tDCS.

  11. Cannabidiol and endogenous opioid peptide-mediated mechanisms modulate antinociception induced by transcutaneous electrostimulation of the peripheral nervous system.

    PubMed

    Gonçalves, Thais Cristina Teixeira; Londe, Anna Karla; Albano, Rafael Isaac Pires; de Araújo Júnior, Artur Teixeira; de Aguiar Azeredo, Mariana; Biagioni, Audrey Francisco; Vasconcellos, Thiago Henrique Ferreira; Dos Reis Ferreira, Célio Marcos; Teixeira, Dulcinéa Gonçalves; de Souza Crippa, José Alexandre; Vieira, Débora; Coimbra, Norberto Cysne

    2014-12-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacological therapy for the treatment of pain. The present work investigated the effect of cannabidiol, naloxone and diazepam in combination with 10 Hz and 150 Hz TENS. Male Wistar rats were submitted to the tail-flick test (baseline), and each rodent received an acute administration (intraperitoneal) of naloxone (3.0mg/kg), diazepam (1.5mg/kg) or cannabidiol (0.75 mg/kg, 1.5mg/kg, 3.0mg/kg, 4.5mg/kg, 6.0mg/kg and 12.0mg/kg); 10 min after the acute administration, 10 Hz or 150 Hz TENS or a sham procedure was performed for 30 min. Subsequently, tail-flick measures were recorded over a 90-min period, at 5-min intervals. 10 Hz TENS increased the nociceptive threshold during the 90-min period. This antinociceptive effect was reversed by naloxone pre-treatment, was not altered by diazepam pre-treatment and was abolished by cannabidiol pre-treatment (1.5mg/kg). Moreover, 150 Hz TENS increased tail-flick latencies by 35 min post-treatment, which was partially inhibited by naloxone pre-treatment and totally inhibited by cannabidiol (1.5mg/kg). These data suggest the involvement of the endogenous opioid system and the cannabinoid-mediated neuromodulation of the antinociception induced by transcutaneous electrostimulation at 10 Hz and 150 Hz TENS.

  12. Prescription monitoring programs and emergency department visits involving opioids, 2004–2011

    PubMed Central

    Maughan, Brandon C.; Bachhuber, Marcus A.; Mitra, Nandita; Starrels, Joanna L.

    2016-01-01

    Objective To determine the association between prescription drug monitoring program (PDMP) implementation and emergency department (ED) visits involving opioid analgesics. Methods Rates of ED visits involving opioid analgesics per 100,000 residents were estimated from the Drug Abuse Warning Network dataset for 11 geographically diverse metropolitan areas in the United States on a quarterly basis from 2004 to 2011. Generalized estimating equations assessed whether implementation of a prescriber-accessible PDMP was associated with a difference in ED visits involving opioid analgesics. Models were adjusted for calendar quarter, metropolitan area, metropolitan area-specific linear time trends, and unemployment rate. Results Rates of ED visits involving opioid analgesics increased in all metropolitan areas. PDMP implementation was not associated with a difference in ED visits involving opioid analgesics (mean difference of 0.8 visits [95% CI: −3.7 to 5.2] per 100,000 residents per quarter). Conclusions During 2004–2011, PDMP implementation was not associated with a change in opioid-related morbidity, as measured by emergency department visits involving opioid analgesics. Urgent investigation is needed to determine the optimal PDMP structure and capabilities to improve opioid analgesic safety. PMID:26454836

  13. Parent and Metabolite Opioid Drug Concentrations in Unintentional Deaths Involving Opioid and Benzodiazepine Combinations.

    PubMed

    Fields, Marcia D; Abate, Marie A; Hu, Lan; Long, D Leann; Blommel, Matthew L; Haikal, Nabila A; Kraner, James C

    2015-07-01

    Effects of benzodiazepines on postmortem opioid parent and parent/metabolite blood concentration ratios were determined for fentanyl-, hydrocodone-, methadone-, or oxycodone-related accidental deaths. These opioids are partially metabolized by the CYP3A4 enzyme system, which is also affected by diazepam and alprazolam. Opioid/metabolite combinations examined were as follows: fentanyl/norfentanyl, hydrocodone/dihydrocodeine, methadone/EDDP, and oxycodone/oxymorphone. Parent opioid concentrations were analyzed for 877 deaths. Parent/metabolite concentration ratios were analyzed for 349 deaths, excluding cases with co-intoxicants present known to interfere with opioid elimination. Alprazolam in combination with diazepam significantly decreased median hydrocodone concentrations by 48% (p = 0.01) compared to hydrocodone alone. The methadone parent/metabolite concentration ratio was reduced by 35% in the presence of diazepam compared to methadone alone (p = 0.03). Benzodiazepines did not statistically significantly affect fentanyl or oxycodone concentrations. Possible factors affecting opioid concentrations and possible toxicity development, including any differential effects on specific opioids, should continue to be explored.

  14. Differential mechanism of G-protein activation induced by endogenous mu-opioid peptides, endomorphin and beta-endorphin.

    PubMed

    Mizoguchi, Hirokazu; Tseng, Leon F; Suzuki, Tsutomu; Sora, Ichiro; Narita, Minoru

    2002-07-01

    It is well documented that the mu-opioid receptor (MOP-R) is expressed by neurons in several central nervous system regions. Its occupancy with agonist drugs modulate a variety of physiological processes including pain, reward, stress, immune responses, neuroendocrine functions, and cardiovascular control. Based on the receptor binding assay, endomorphin-1 and endomorphin-2 have the highest specificity and affinity for the MOP-R of any endogenous substance so far described in the mammalian nervous system. In contrast, beta-endorphin exhibits the strongest actions among endogenous opioid peptides mainly through the MOP-R; however, it also shows the distinct pharmacological actions. Recent cloning and expression studies have indicated that MOP-Rs are seven-transmembrane domain receptors whose actions are mediated through activation of heterotrimeric guanine nucleotide binding proteins (G-proteins). The activation of G-proteins by MOP-Rs can be measured by assessing agonist-induced stimulation of membrane binding of guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTPgammaS). The subject of the present review is to focus on the differential mechanism underlying G-protein activation induced by these mu-opioid peptides using the [35S]GTPgammaS binding assay.

  15. Anger regulation style, anger arousal and acute pain sensitivity: evidence for an endogenous opioid “triggering” model

    PubMed Central

    Burns, John W.; Bruehl, Stephen; Chont, Melissa

    2014-01-01

    Findings suggest that greater tendency to express anger is associated with greater sensitivity to acute pain via endogenous opioid system dysfunction, but past studies have not addressed the role of anger arousal. We used a 2 × 2 factorial design with Drug Condition (placebo or opioid blockade with naltrexone) crossed with Task Order (anger-induction/pain-induction or pain-induction/anger-induction), and with continuous Anger-out Subscale scores. Drug × Task Order × Anger-out Subscale interactions were tested for pain intensity during a 4-min ischemic pain task performed by 146 healthy people. A significant Drug × Task Order × Anger-out Subscale interaction was dissected to reveal different patterns of pain intensity changes during the pain task for high anger-out participants who underwent pain-induction prior to anger-induction compared to those high in anger-out in the opposite order. Namely, when angered prior to pain, high anger-out participants appeared to exhibit low pain intensity under placebo that was not shown by high anger-out participants who received naltrexone. Results hint that people with a pronounced tendency to express anger may suffer from inadequate opioid function under simple pain-induction, but may experience analgesic benefit to some extent from the opioid triggering properties of strong anger arousal. PMID:23624641

  16. Effects of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on spontaneous alternation performance in mice.

    PubMed

    Ukai, M; Watanabe, Y; Kameyama, T

    2000-05-03

    The effects of intracerebroventricular (i.c.v.) administration of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on the spontaneous alternation performance associated with spatial working memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (10 microg) produced a significant decrease in percent alternation without affecting total arm entries. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced decrease in percent alternation, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on alternation performance. These results suggest that endomorphins impair spatial working memory through the mediation of mu-opioid receptors.

  17. The endogenous mu-opioid receptor agonists endomorphins 1 and 2 have novel hypotensive activity in the rabbit.

    PubMed

    Champion, H C; Zadina, J E; Kastin, A J; Hackler, L; Ge, L J; Kadowitz, P J

    1997-06-27

    The endogenous peptides endomorphins 1 and 2 are newly isolated, potent, and selective mu-opioid receptor agonists. In the present study, responses to the endomorphin peptides were investigated in the systemic vascular bed of the rabbit. Endomorphins 1 and 2 induced dose-related decreases in systemic arterial pressure when injected in doses of 1-30 nmol/kg i.v. In terms of relative vasodepressor activity, endomorphins 1 and 2 were similar to the ORL1 receptor ligand, nociceptin (Orphanin FQ), and met-enkephalin in decreasing systemic arterial pressure. Vasodepressor responses to endomorphins 1 and 2 were inhibited by the opioid receptor antagonist, naloxone, in a dose of 2 mg/kg i.v. These results demonstrate that endomorphins 1 and 2 have significant naloxone-sensitive, vasodepressor activity in the rabbit.

  18. The neural mobilization technique modulates the expression of endogenous opioids in the periaqueductal gray and improves muscle strength and mobility in rats with neuropathic pain

    PubMed Central

    2014-01-01

    Background The neural mobilization (NM) technique is a noninvasive method that has been proven to be clinically effective in reducing pain; however, the molecular mechanisms involved remain poorly understood. The aim of this study was to analyze whether NM alters the expression of the mu-opioid receptor (MOR), the delta-opioid receptor (DOR) and the Kappa-opioid receptor (KOR) in the periaqueductal gray (PAG) and improves locomotion and muscle force after chronic constriction injury (CCI) in rats. Methods The CCI was imposed on adult male rats followed by 10 sessions of NM every other day, starting 14 days after the CCI injury. At the end of the sessions, the PAG was analyzed using Western blot assays for opioid receptors. Locomotion was analyzed by the Sciatic functional index (SFI), and muscle force was analyzed by the BIOPAC system. Results An improvement in locomotion was observed in animals treated with NM compared with injured animals. Animals treated with NM showed an increase in maximal tetanic force of the tibialis anterior muscle of 172% (p < 0.001) compared with the CCI group. We also observed a decrease of 53% (p < 0.001) and 23% (p < 0.05) in DOR and KOR levels, respectively, after CCI injury compared to those from naive animals and an increase of 17% (p < 0.05) in KOR expression only after NM treatment compared to naive animals. There were no significant changes in MOR expression in the PAG. Conclusion These data provide evidence that a non-pharmacological NM technique facilitates pain relief by endogenous analgesic modulation. PMID:24884961

  19. Involvement of endogenous opiates in regulation of gastric emptying of fat test meals in mice

    SciTech Connect

    Fioramonti, J.; Fargeas, M.J.; Bueno, L.

    1988-08-01

    The role of endogenous opioids and cholecystokinin (CCK) in gastric emptying was investigated in mice killed 30 min after gavage with /sup 51/Cr-radiolabeled liquid meals. The meals consisted of 0.5 ml of milk or one of five synthetic meals containing arabic gum, glucose and/or arachis oil and/or casein. Naloxone (0.1 mg/kg sc) significantly (P less than 0.01) accelerated gastric emptying of milk and meals containing fat but did not modify gastric emptying of nonfat meals. The CCK antagonist asperlicin (0.1 mg/kg ip) increased by 25% gastric emptying of milk. The gastric emptying of meals containing glucose and casein but not fat was reduced after administration of the COOH-terminal octapeptide of cholecystokinin (CCK-8, 4 micrograms/kg ip). This decrease was antagonized by both asperlicin (10 mg/kg ip) and naloxone (0.1 mg/kg sc). Intracerebroventricular (icv) administration of an opiate antagonist that poorly crosses the blood-brain barrier, methyl levallorphan (10 micrograms/kg), did not modify gastric emptying of milk but accelerated it when peripherally administered (0.1 mg/kg sc). Similarly, asperlicin (icv) administered at a dose of 1 mg/kg did not affect milk emptying. These results indicate that endogenous opiates are involved at peripheral levels in the regulation of gastric emptying of fat meals only and that such regulation involves release of CCK.

  20. Post-ictal analgesia: involvement of opioid, serotoninergic and cholinergic mechanisms.

    PubMed

    Coimbra, N C; Castro-Souza, C; Segato, E N; Nora, J E; Herrero, C F; Tedeschi-Filho, W; Garcia-Cairasco, N

    2001-01-12

    The neural mechanisms involved in post-ictal analgesia remain to be elucidated. Pentylenetetrazol (PTZ) is used experimentally to induce seizure in animal subjects. This non-competitive antagonist blocks GABA-mediated Cl(-) flux. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significant increase in the tail-flick latencies (TFL), at least for 30 min of the post-ictal period. Peripheral administration of naloxone (5 mg/kg and 10 mg/kg), atropine (1 mg/kg and 5 mg/kg), methysergide (1 mg/kg and 5 mg/kg) and ketanserine (1 mg/kg and 2 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. However, while naloxone antagonized analgesia 15 and 25 min post convulsions, the other drugs caused a blockade of the post-ictal analgesia in a relatively greater period of time. These results indicate that endogenous opioids, serotonin and acetylcholine may be involved in post-ictal analgesia.

  1. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves μ-Opioid Receptors

    PubMed Central

    Xu, Changqing; Fitting, Sylvia

    2016-01-01

    Due to combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with high prevalence of mild forms of neurocognitive impairments, also referred to as HIV-associated neurocognitive disorders (HAND). Although opiate drug use can exacerbate HIV-1 Tat-induced neuronal damage, it remains unknown how and to what extent opioids interact with Tat on the GABAergic system. We conducted whole-cell recordings in mouse striatal slices and examined the effects of HIV-1 Tat in the presence and absence of morphine (1 μM) and damgo (1 μM) on GABAergic neurotransmission. Results indicated a decrease in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) by Tat (5–50 nM) in a concentration-dependent manner. The significant Tat-induced decrease in IPSCs was abolished when removing extracellular and/or intracellular calcium. Treatment with morphine or damgo alone significantly decreased the frequency, but not amplitude of IPSCs. Interestingly, morphine but not damgo indicated an additional downregulation of the mean frequency of mIPSCs in combination with Tat. Pretreatment with naloxone (1 μM) and CTAP (1 μM) prevented the Tat-induced decrease in sIPSCs frequency but only naloxone prevented the combined Tat and morphine effect on mIPSCs frequency. Results indicate a Tat- or opioid-induced decrease in GABAergic neurotransmission via μ-opioid receptors with combined Tat and morphine effects involving additional opioid receptor-related mechanisms. Exploring the interactions between Tat and opioids on the GABAergic system may help to guide future research on HAND in the context of opiate drug use. PMID:27877102

  2. Opioid Receptors.

    PubMed

    Stein, Christoph

    2016-01-01

    Opioids are the oldest and most potent drugs for the treatment of severe pain. Their clinical application is undisputed in acute (e.g., postoperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny. This article reviews mechanisms underlying opioid analgesia and other opioid actions. It discusses the structure, function, and plasticity of opioid receptors; the central and peripheral sites of analgesic actions and side effects; endogenous and exogenous opioid receptor ligands; and conventional and novel opioid compounds. Challenging clinical situations, such as the tension between chronic pain and addiction, are also illustrated.

  3. Effects of rearing conditions on behaviour and endogenous opioids in rats with alcohol access during adolescence.

    PubMed

    Palm, Sara; Daoura, Loudin; Roman, Erika; Nylander, Ingrid

    2013-01-01

    Causal links between early-life stress, genes and later psychiatric diagnoses are not possible to fully address in human studies. Animal models therefore provide an important complement in which conditions can be well controlled and are here used to study and distinguish effects of early-life stress and alcohol exposure. The objective of this study was to investigate the impact of rearing conditions on behaviour in young rats and if these changes could be followed over time and to examine interaction effects between early-life environment and adolescent alcohol drinking on behaviour and immunoreactive levels of the opioid peptides dynorphin B, met-enkephalin-Arg(6)Phe(7) and beta-endorphin. We employed a rodent model, maternal separation, to study the impact of rearing conditions on behaviour, voluntary alcohol consumption and alcohol-induced effects. The consequences of short, 15 min (MS 15), and long, 360 min (MS 360), maternal separation in combination with adolescent voluntary alcohol consumption on behaviour and peptides were examined. A difference in the development of risk taking behaviour was found between the MS15 and MS360 while the development of general activity was found to differ between intake groups. Beta-endorphin levels in the pituitary and the periaqueductal gray area was found to be higher in the MS15 than the MS360. Adolescent drinking resulted in higher dynorphin B levels in the hippocampus and higher met-enkephalin-Arg(6)Phe(7) levels in the amygdala. Amygdala and hippocampus are involved in addiction processes and changes in these brain areas after adolescent alcohol drinking may have consequences for cognitive function and drug consumption behaviour in adulthood. The study shows that individual behavioural profiling over time in combination with neurobiological investigations provides means for studies of causality between early-life stress, behaviour and vulnerability to psychiatric disorders.

  4. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors.

    PubMed

    Hijazi, Mohamad Ali; El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome.

  5. Evaluation of Analgesic Activity of Papaver libanoticum Extract in Mice: Involvement of Opioids Receptors

    PubMed Central

    El-Mallah, Ahmed; Aboul-Ela, Maha; Ellakany, Abdalla

    2017-01-01

    Papaver libanoticum is an endemic plant to Lebanese region (family Papaveraceae) that has not been investigated before. The present study aimed to explore the analgesic activity of dried ethanolic extract of Papaver libanoticum (PLE) using tail flick, hot plate, and acetic acid induced writhing models in mice. The involvement of opioid receptors in the analgesic mechanism was investigated using naloxone antagonism. Results demonstrated that PLE exhibited a potent dose dependent analgesic activity in all tested models for analgesia. The analgesic effect involved activation of opioid receptors in the central nervous system, where both spinal and supraspinal components might be involved. The time course for analgesia revealed maximum activity after three hours in both tail flick and hot plate methods, which was prolonged to 24 hours. Metabolites of PLE could be responsible for activation of opioid receptors. The EC50 of PLE was 79 and 50 mg/kg in tail flick and hot plate tests, respectively. The total coverage of analgesia by PLE was double that of morphine in both tests. In conclusion, PLE proved to have opioid agonistic activity with a novel feature of slow and prolonged effect. The present study could add a potential tool in the armaments of opioid drugs as a natural potent analgesic and for treatment of opioid withdrawal syndrome. PMID:28280516

  6. Avoiding Opioids and Their Harmful Side Effects in the Postoperative Patient: Exogenous Opioids, Endogenous Endorphins, Wellness, Mood, and Their Relation to Postoperative Pain.

    PubMed

    Stephan, Bradley C; Parsa, Fereydoun D

    2016-03-01

    Prescribed opioids are routinely used for many postoperative patients. However, these medications have daunting adverse effects on the body's innate pain management system--the action of the beta-endorphins. The prescribed opioids not only severely impair the function of the mu-opioid receptors, but also inhibit the release of beta-endorphin. This is unfortunate, because beta-endorphin appears to be a much more potent agonist of the mu-opioid receptor than opioids. In addition, beta-endorphin indirectly elevates dopamine, a neurotransmitter related to feelings of euphoria. Therefore, by prescribing opioids, practitioners may inadvertently prolong and increase the overall intensity of the postoperative patients' pain as well as herald anhedonia. This article highlights the relationships between prescribed (exogenous) opioids, beta-endorphins, mu-opioid receptors, wellness, mood, and postoperative pain. The role of patient education, opioid alternatives, and additional recommendations regarding pain control in the postoperative patient are also discussed.

  7. Poisoning deaths involving opioid analgesics - New York State, 2003-2012.

    PubMed

    Sharp, Mark J; Melnik, Thomas A

    2015-04-17

    Deaths involving opioid analgesics have increased dramatically in the United States. Approximately 4,000 such deaths were documented in 1999, increasing to 16,235 in 2013, reflecting a nearly quadrupled death rate from 1.4 to 5.1 deaths per 100,000. To investigate this increase in New York state, trends in poisoning deaths involving opioid analgesics from 2003 to 2012 were examined. Data sources used were New York state vital statistics multiple-cause-of-death data, consisting of data from both the New York City (NYC)* and non-NYC reporting jurisdictions, as well as statewide Medicaid enrollment data. Deaths involving opioid analgesics increased both in number and as a percentage of all drug poisoning deaths, and rates were highest among men, whites, persons aged 45-64 years, persons residing outside of NYC, and Medicaid enrollees. The analysis found that, in 2012, 70.7% of deaths involving opioid analgesics also involved at least one other drug, most frequently a benzodiazepine. These results underscore the potential to mitigate the trend of increasing opioid analgesic-related mortality through initiatives such as New York state's Internet System for Tracking Over-Prescribing (I-STOP) law,† which took effect on August 27, 2013. Provisions under I-STOP include the requirements that providers consult the Prescription Monitoring Program (PMP) Registry when writing prescriptions for controlled substances, and that they use electronic prescribing.

  8. Morphine, Endogenous Opioid Peptides, and Reproduction in the Male Rhesus Monkey

    DTIC Science & Technology

    1983-05-18

    Levels 40 Mechanisms of Acute Drug Effects on Reproductive Hormones 59 Page 5. DISCUSSION g2 Drug Effects on Testosterone, LH, and PRL - Opioid...effects of the opiate drugs on reproductive endocrinology in the primate and on the mechanisms that produce these effects. The disruptive effects of...fertility have been reported,. Laboratory investigations in rodents, however, have provided the majority of the information on the mechanisms of these

  9. Strategies to Improve Bioavailability and In Vivo Efficacy of the Endogenous Opioid Peptides Endomorphin-1 and Endomorphin-2.

    PubMed

    De Marco, Rossella; Janecka, Anna

    2015-01-01

    Morphine and the other alkaloids found in the opium poppy plant still represent the preferred therapeutic tools to treat severe pain in first aid protocols, as well as chronic pain. The use of the opiate alkaloids is accompanied by several unwanted side effects; additionally, some forms of pain are resistant to standard treatments (e.g. neuropathic pain from cancer). For these reasons, there is currently renewed interest in the design and assay of modified versions of the potent endogenous opioid peptides endomorphin-1 and endomorphin-2. This review presents a selection of the strategies directed at preparing highly stable peptidomimetics of the endomorphins, and of the strategies aimed at improving central nervous system bioavailability, for which increased in vivo antinociceptive efficacy was clearly demonstrated.

  10. Asymmetry of the Endogenous Opioid System in the Human Anterior Cingulate: a Putative Molecular Basis for Lateralization of Emotions and Pain

    PubMed Central

    Watanabe, Hiroyuki; Fitting, Sylvia; Hussain, Muhammad Z.; Kononenko, Olga; Iatsyshyna, Anna; Yoshitake, Takashi; Kehr, Jan; Alkass, Kanar; Druid, Henrik; Wadensten, Henrik; Andren, Per E.; Nylander, Ingrid; Wedell, Douglas H.; Krishtal, Oleg; Hauser, Kurt F.; Nyberg, Fred; Karpyak, Victor M.; Yakovleva, Tatjana; Bakalkin, Georgy

    2015-01-01

    Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 “classical” neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left–right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain. PMID:23960211

  11. Asymmetry of the endogenous opioid system in the human anterior cingulate: a putative molecular basis for lateralization of emotions and pain.

    PubMed

    Watanabe, Hiroyuki; Fitting, Sylvia; Hussain, Muhammad Z; Kononenko, Olga; Iatsyshyna, Anna; Yoshitake, Takashi; Kehr, Jan; Alkass, Kanar; Druid, Henrik; Wadensten, Henrik; Andren, Per E; Nylander, Ingrid; Wedell, Douglas H; Krishtal, Oleg; Hauser, Kurt F; Nyberg, Fred; Karpyak, Victor M; Yakovleva, Tatjana; Bakalkin, Georgy

    2015-01-01

    Lateralization of the processing of positive and negative emotions and pain suggests an asymmetric distribution of the neurotransmitter systems regulating these functions between the left and right brain hemispheres. By virtue of their ability to selectively mediate euphoria, dysphoria, and pain, the μ-, δ-, and κ-opioid receptors and their endogenous ligands may subserve these lateralized functions. We addressed this hypothesis by comparing the levels of the opioid receptors and peptides in the left and right anterior cingulate cortex (ACC), a key area for emotion and pain processing. Opioid mRNAs and peptides and 5 "classical" neurotransmitters were analyzed in postmortem tissues from 20 human subjects. Leu-enkephalin-Arg (LER) and Met-enkephalin-Arg-Phe, preferential δ-/μ- and κ-/μ-opioid agonists, demonstrated marked lateralization to the left and right ACC, respectively. Dynorphin B (Dyn B) strongly correlated with LER in the left, but not in the right ACC suggesting different mechanisms of the conversion of this κ-opioid agonist to δ-/μ-opioid ligand in the 2 hemispheres; in the right ACC, Dyn B may be cleaved by PACE4, a proprotein convertase regulating left-right asymmetry formation. These findings suggest that region-specific lateralization of neuronal networks expressing opioid peptides underlies in part lateralization of higher functions, including positive and negative emotions and pain in the human brain.

  12. Participation of the Endogenous Opioid System in the Acquisition of a Prenatal Ethanol-Related Memory: Effects on Neonatal and Preweanling Responsiveness to Ethanol

    PubMed Central

    Morales, R. Sebastián Miranda; Molina, Juan Carlos; Spear, Norman E.; Abate, Paula

    2011-01-01

    The present study tested the involvement of the opioid system in the acquisition and expression of prenatal ethanol-related memories. We evaluated how this prenatal experience modulates ethanol self-administration in newborn rats, and preweanling’s ingestion of the drug. During Gestational Days (GDs) 17-20, four groups of dams were treated with ethanol (2 g/Kg) or water, followed immediately by naloxone (10 mg/Kg) or saline administration. A fifth group received a similar dose of naloxone 20 min before ethanol administration. On PD 1, pups were tested on an operant learning procedure to obtain milk or 3% ethanol. One hour later, an extinction session was performed. At Postnatal Days (PDs) 14 and 15, preweanlings representing each prenatal treatment were evaluated in an intake test with infusions of 5% ethanol or water. Prior to the intake test on PD14, preweanlings were administered naloxone (1 mg/Kg), saline or remained untreated. In both tests, animals representative of both genders were utilized. One-day-old pups rapidly learned the operant behavior to gain access to milk. In contrast, only pups prenatally treated with ethanol (administered immediately before naloxone or saline injection) increased operant responding to gain access to ethanol. On an intake test at PDs 14 and 15, those animals prenatally exposed to naloxone 20 min before ethanol administration consumed significantly lower ethanol levels than the remaining prenatal ethanol groups. Postnatal treatment with naloxone diminished intake of all solutions at PD14. These results suggest that prenatal ethanol exposure facilitates neonatal operant learning reinforced by intraoral administration of ethanol and increases ethanol consumption during PDs 14-15. The endogenous opioid system apparently is involved in the acquisition of prenatal ethanol memories, which can modulate the reinforcing attributes of the drug in neonatal and preweanling rats. PMID:20451537

  13. Involvement of Endogenous Enkephalins and β-Endorphin in Feeding and Diet-Induced Obesity.

    PubMed

    Mendez, Ian A; Ostlund, Sean B; Maidment, Nigel T; Murphy, Niall P

    2015-08-01

    Studies implicate opioid transmission in hedonic and metabolic control of feeding, although roles for specific endogenous opioid peptides have barely been addressed. Here, we studied palatable liquid consumption in proenkephalin knockout (PENK KO) and β-endorphin-deficient (BEND KO) mice, and how the body weight of these mice changed during consumption of an energy-dense highly palatable 'cafeteria diet'. When given access to sucrose solution, PENK KOs exhibited fewer bouts of licking than wild types, even though the length of bouts was similar to that of wild types, a pattern that suggests diminished food motivation. Conversely, BEND KOs did not differ from wild types in the number of licking bouts, even though these bouts were shorter in length, suggesting that they experienced the sucrose as being less palatable. In addition, licking responses in BEND, but not PENK, KO mice were insensitive to shifts in sucrose concentration or hunger. PENK, but not BEND, KOs exhibited lower baseline body weights compared with wild types on chow diet and attenuated weight gain when fed cafeteria diet. Based on this and related findings, we suggest endogenous enkephalins primarily set a background motivational tone regulating feeding behavior, whereas β-endorphin underlies orosensory reward in high need states or when the stimulus is especially valuable. Overall, these studies emphasize complex interplays between endogenous opioid peptides targeting μ-receptors, such as enkephalins and endorphins, underlying the regulation of feeding and body weight that might explain the poor efficacy of drugs that generally target μ-opioid receptors in the long-term control of appetite and body weight.

  14. Sandmeyer reaction repurposed for the site-selective, non-oxidizing radioiodination of fully-deprotected peptides: studies on the endogenous opioid peptide α-neoendorphin.

    PubMed

    Pickett, Julie E; Nagakura, Kunihiko; Pasternak, Anna R; Grinnell, Steven G; Majumdar, Susruta; Lewis, Jason S; Pasternak, Gavril W

    2013-08-01

    Standard radioiodination methods lack site-selectivity and either mask charges (Bolton-Hunter) or involve oxidative reaction conditions (chloramine-T). Opioid peptides are very sensitive to certain structural modifications, making these labeling methods untenable. In our model opioid peptide, α-neoendorphin, we replaced a tyrosyl hydroxyl with an iodine, and in cell lines stably expressing mu, delta, or kappa opioid receptors, we saw no negative effects on binding. We then optimized a repurposed Sandmeyer reaction using copper(I) catalysts with non-redoxing/non-nucleophilic ligands, bringing the radiochemical yield up to around 30%, and site-selectively incorporated radioactive iodine into this position under non-oxidizing reaction conditions, which should be broadly compatible with most peptides. The (125)I- and (131)I-labeled versions of the compound bound with high affinity to opioid receptors in mouse brain homogenates, thus demonstrating the general utility of the labeling strategy and of the peptide for exploring opioid binding sites.

  15. Endogenous Opioid-Masked Latent Pain Sensitization: Studies from Mouse to Human

    PubMed Central

    Dahl, Jørgen B.; Werner, Marianne; Taylor, Bradley K.; Werner, Mads U.

    2015-01-01

    Following the resolution of a severe inflammatory injury in rodents, administration of mu-opioid receptor inverse agonists leads to reinstatement of pain hypersensitivity. The mechanisms underlying this form of latent pain sensitization (LS) likely contribute to the development of chronic pain, but LS has not yet been demonstrated in humans. Using a C57BL/6 mouse model of cutaneous mild heat injury (MHI) we demonstrated a dose-dependent reinstatement of pain sensitization, assessed as primary (P < 0.001) and secondary hyperalgesia (P < 0.001) by naloxone (0.3–10 mg/kg), 168 hrs after the induction of MHI. Forward-translating the dose data to a human MHI model (n = 12) we could show that LS does indeed occur after naloxone 2 mg/kg, 168 hrs after a MHI. Our previous unsuccessful efforts to demonstrate unmasking of LS in humans are thus likely explained by an insufficient naloxone dose (0.021 mg/kg). However, while LS was consistently demonstrated in 21/24 mice, LS was only seen in 4/12 subjects. This difference is likely due to selection bias since the C57BL/6 mouse strain exhibits markedly enhanced pain sensitivity in assays of acute thermal nociception. Future exploratory studies in humans should prioritize inclusion of “high-sensitizers” prone to develop LS and use post-surgical models to elucidate markers of vulnerability to chronic postsurgical pain. Trial Registration EudraCT 2012-005663-27 PMID:26305798

  16. Chemical neuroanatomical and psychopharmacological evidence that κ receptor-mediated endogenous opioid peptide neurotransmission in the dorsal and ventral mesencephalon modulates panic-like behaviour.

    PubMed

    da Silva, Juliana Almeida; de Freitas, Renato Leonardo; Eichenberger, Gustavo Cavalcanti Dutra; Padovan, Cláudia Maria; Coimbra, Norberto Cysne

    2013-01-05

    The chemical neuroanatomy and the effects of central administration of opioid antagonists on the innate fear-induced responses elicited by electrical (at escape behaviour threshold) stimulation of the midbrain tectum were determined. The aim of the present work was to investigate the interaction between the tecto-nigral endogenous opioid peptide-mediated disinhibitory pathways and nigro-tectal inhibitory links in the control of panic-like behaviour and their organisation in the continuum comprised by the deep layers of the superior colliculus (dlSC) and the dorsolateral columns of the periaqueductal grey matter (dlPAG). Beta-endorphin-labelled neurons and fibres were found in the dorsal midbrain and also in the substantia nigra. Opioid varicose fibres and terminal buttons were widely distributed in PAG columns and in all substantia nigra subdivisions. Microinjections of naltrexone (a non-selective opioid receptor antagonist; 5.0 μg/0.2 μl) or nor-binaltorphimine (a selective κ-opioid receptor antagonist; 5.0 μg/0.2 μl) in the dlSC/dlPAG continuum, in independent groups of animals, induced significant increases in the escape thresholds for midbrain tectum electrical stimulation. The microinjection of naltrexone or nor-binaltorphimine into the SNpr also increased the escape behaviour threshold for electrical stimulation of dlSC/dlPAG. These morphological and neuropharmacological findings support previous evidence from our team for the role played by the interaction between opioidergic and GABAergic mechanisms in the modulation of innate fear-induced responses. The present data offer a neuroanatomical basis for both intratectal axo-axonic/pre-synaptic and tecto-nigral axo-somatic opioid inhibition of GABAergic nigro-tectal neurons that modulate the dorsal midbrain neurons related to the organisation of fear-related emotional responses.

  17. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network.

    PubMed

    Boettiger, Charlotte A; Kelley, Elizabeth A; Mitchell, Jennifer M; D'Esposito, Mark; Fields, Howard L

    2009-09-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate ("Now") and larger delayed rewards ("Later"). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROIs) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX's therapeutic effects.

  18. Now or Later? An fMRI study of the effects of endogenous opioid blockade on a decision-making network

    PubMed Central

    Boettiger, Charlotte A.; Kelley, Elizabeth A.; Mitchell, Jennifer M.; D’Esposito, Mark; Fields, Howard L.

    2009-01-01

    Previously, we found that distinct brain areas predict individual selection bias in decisions between small immediate (“Now”) and larger delayed rewards (“Later”). Furthermore, such selection bias can be manipulated by endogenous opioid blockade. To test whether blocking endogenous opioids with Naltrexone (NTX) alters brain activity during decision-making in areas predicting individual bias, we compared fMRI BOLD signal correlated with Now versus Later decision-making after acute administration of NTX (50 mg) or placebo. We tested abstinent alcoholics and control subjects in a double-blind two-session design. We defined regions of interest (ROI) centered on activation peaks predicting Now versus Later selection bias. NTX administration significantly increased BOLD signal during decision-making in the right lateral orbital gyrus ROI, an area where enhanced activity during decision-making predicts Later bias. Exploratory analyses identified additional loci where BOLD signal during decision-making was enhanced (left orbitofrontal cortex, left inferior temporal gyrus, and cerebellum) or reduced (right superior temporal pole) by NTX. Additional analyses identified sites, including the right lateral orbital gyrus, in which NTX effects on BOLD signal predicted NTX effects on selection bias. These data agree with opioid receptor expression in human frontal and temporal cortices, and suggest possible mechanisms of NTX’s therapeutic effects. PMID:19258022

  19. Receipt of Pharmacotherapy for Opioid Use Disorder by Justice-Involved U.S. Veterans Health Administration Patients

    PubMed Central

    Finlay, Andrea K.; Harris, Alex H.S.; Rosenthal, Joel; Blue-Howells, Jessica; Clark, Sean; McGuire, Jim; Timko, Christine; Frayne, Susan M.; Smelson, David; Oliva, Elizabeth; Binswanger, Ingrid

    2016-01-01

    Background Pharmacotherapy – methadone, buprenorphine, or naltrexone – is an evidence-based treatment for opioid use disorder, but little is known about receipt of these medications among veterans involved in the justice system. The current study examines receipt of pharmacotherapy for opioid use disorder among veterans with a history of justice involvement at U.S. Veterans Health Administration (VHA) facilities compared to veterans with no justice involvement. Methods Using national VHA clinical and pharmacy records, we conducted a retrospective cohort study of veterans with an opioid use disorder diagnosis in fiscal year 2012. Using a mixed-effects logistic regression model, we examined receipt of pharmacotherapy in the 1-year period following diagnosis as a function of justice involvement, adjusting for patient and facility characteristics. Results The 1-year rate of receipt for pharmacotherapy for opioid use disorder was 27% for prison-involved veterans, 34% for jail/court-involved veterans, and 33% for veterans not justice-involved. Compared to veterans not justice-involved, those prison-involved had 0.75 lower adjusted odds (95% confidence interval [CI]: 0.65–0.87) of receiving pharmacotherapy whereas jail/court-involved veterans did not have significantly different adjusted odds. Conclusions Targeted efforts to increase receipt of pharmacotherapy for opioid use disorder among veterans exiting prison is needed as they have lower odds of receiving these medications. PMID:26832998

  20. Pain-Related Depression of the Mesolimbic Dopamine System in Rats: Expression, Blockade by Analgesics, and Role of Endogenous κ-opioids

    PubMed Central

    Leitl, Michael D; Onvani, Sara; Bowers, M Scott; Cheng, Kejun; Rice, Kenner C; Carlezon, William A; Banks, Matthew L; Negus, S Stevens

    2014-01-01

    Pain is often associated with depression of behavior and mood, and relief of pain-related depression is a common goal of treatment. This study tested the hypothesis that pain-related behavioral depression is mediated by activation of endogenous κ-opioid systems and subsequent depression of mesolimbic dopamine release. Adult male Sprague–Dawley rats were implanted with electrodes targeting the medial forebrain bundle (for behavior studies of intracranial self-stimulation (ICSS)) or with cannulae for microdialysis measures of nucleus accumbens dopamine (NAc DA). Changes in ICSS and NAc DA were examined after treatment with a visceral noxious stimulus (intraperitoneal injection of dilute lactic acid) or an exogenous κ-agonist (U69593). Additional studies examined the sensitivity of acid and U69593 effects to blockade by two analgesics (the nonsteroidal antiinflammatory drug ketoprofen and the μ-opioid agonist morphine) or by the κ-antagonist norbinaltorphimine (norBNI). The effects of acid were also examined on mRNA expression for prodynorphin (PDYN) and κ-opioid receptors (KORs) in mesocorticolimbic brain regions. Both acid and U69593 depressed ICSS and extracellular levels of NAc DA. Pain-related acid effects were blocked by ketoprofen and morphine but not by norBNI. The U69593 effects were blocked by norBNI but not by ketoprofen, and were only attenuated by morphine. Acid did not significantly alter PDYN or KOR in NAc, but it produced a delayed increase in PDYN in prefrontal cortex. These results support a key role for the mesolimbic DA system, but a more nuanced role for endogenous κ-opioid systems, in mediating acute pain-related behavioral depression in rats. PMID:24008352

  1. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory.

  2. Fentanyl Law Enforcement Submissions and Increases in Synthetic Opioid-Involved Overdose Deaths - 27 States, 2013-2014.

    PubMed

    Gladden, R Matthew; Martinez, Pedro; Seth, Puja

    2016-08-26

    In March and October 2015, the Drug Enforcement Administration (DEA) and CDC, respectively, issued nationwide alerts identifying illicitly manufactured fentanyl (IMF) as a threat to public health and safety (1,2). IMF is unlawfully produced fentanyl, obtained through illicit drug markets, includes fentanyl analogs, and is commonly mixed with or sold as heroin (1,3,4). Starting in 2013, the production and distribution of IMF increased to unprecedented levels, fueled by increases in the global supply, processing, and distribution of fentanyl and fentanyl-precursor chemicals by criminal organizations (3). Fentanyl is a synthetic opioid 50-100 times more potent than morphine (2).* Multiple states have reported increases in fentanyl-involved overdose (poisoning) deaths (fentanyl deaths) (2). This report examined the number of drug products obtained by law enforcement that tested positive for fentanyl (fentanyl submissions) and synthetic opioid-involved deaths other than methadone (synthetic opioid deaths), which include fentanyl deaths and deaths involving other synthetic opioids (e.g., tramadol). Fentanyl deaths are not reported separately in national data. Analyses also were conducted on data from 27 states(†) with consistent death certificate reporting of the drugs involved in overdoses. Nationally, the number of fentanyl submissions and synthetic opioid deaths increased by 426% and 79%, respectively, during 2013-2014; among the 27 analyzed states, fentanyl submission increases were strongly correlated with increases in synthetic opioid deaths. Changes in fentanyl submissions and synthetic opioid deaths were not correlated with changes in fentanyl prescribing rates, and increases in fentanyl submissions and synthetic opioid deaths were primarily concentrated in eight states (high-burden states). Reports from six of the eight high-burden states indicated that fentanyl-involved overdose deaths were primarily driving increases in synthetic opioid deaths. Increases in

  3. Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor.

    PubMed

    Wang, Jing-Wen; Lundeberg, Thomas; Yu, Long-Chuan

    2003-10-15

    Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.

  4. Neuropsychological Functions of μ- and δ-Opioid Systems

    PubMed Central

    Polunina, Anna G.; Bryun, Evgeny A.

    2013-01-01

    Brain opioid innervation is involved in many pathophysiological processes related to drug addiction. The main idea of the present review is that μ-/δ-opioid innervation is an intrinsic component of the motor/approach behavior network, which is activated synergetically with dopaminergic mesocorticolimbic network. Contribution of opioid innervation to the motor/approach behavior processing includes generation of positive emotions and inhibition of pain and stress reactions in order that the individual would be able to reach the vital goal. We cite the neuroanatomical data which showed that motor subcortical nuclei contain the most abundant opioid innervation and its activation is an obligatory component of positive emotions. In the majority of life situations, motor/approach behavior network concomitantly activates pain/stress control opioid network. Intensive cognitive activity induces activation of opioid innervation as well, and both enhancing and impairing effects of opioid agonists on cognitive functioning were demonstrated. Overall, the functioning of endogenous opioid networks may be summarized as following: NO physical/cognitive activity = NO positive emotions plus NO pain/stress control. We suppose that contemporary findings concerning neuropsychological functions of endogenous opioid system explain many controversial issues in neuropsychiatric conditions predisposing to drug addiction and neurological mechanisms of opioid addiction. PMID:25938117

  5. Endogenous regulators of G protein signaling differentially modulate full and partial mu-opioid agonists at adenylyl cyclase as predicted by a collision coupling model.

    PubMed

    Clark, M J; Linderman, J J; Traynor, J R

    2008-05-01

    Regulator of G protein signaling (RGS) proteins accelerate the endogenous GTPase activity of Galpha(i/o) proteins to increase the rate of deactivation of active Galpha-GTP and Gbetagamma signaling molecules. Previous studies have suggested that RGS proteins are more effective on less efficiently coupled systems such as with partial agonist responses. To determine the role of endogenous RGS proteins in functional responses to mu-opioid agonists of different intrinsic efficacy, Galpha(i/o) subunits with a mutation at the pertussis toxin (PTX)-sensitive cysteine (C351I) and with or without a mutation at the RGS binding site (G184S) were stably expressed in C6 glioma cells expressing a mu-opioid receptor. Cells were treated overnight with PTX to inactivate endogenous G proteins. Maximal inhibition of forskolin-stimulated adenylyl cyclase by the low-efficacy partial agonists buprenorphine and nalbuphine was increased in cells expressing RGS-insensitive Galpha(o)(CIGS), Galpha(i2)(CIGS), or Galpha(i3)(CIGS) compared with their Galpha(CI) counterparts, but the RGS-insensitive mutation had little or no effect on the maximal inhibition by the higher efficacy agonists DAMGO and morphine. The potency of all the agonists to inhibit forskolin-stimulated adenylyl cyclase was increased in cells expressing RGS-insensitive Galpha(o)(CIGS), Galpha(i2)(CIGS), or Galpha(i3)(CIGS), regardless of efficacy. These data are comparable with predictions based on a collision coupling model. In this model, the rate of G protein inactivation, which is modulated by RGS proteins, and the rate of G protein activation, which is affected by agonist intrinsic efficacy, determine the maximal agonist response and potency at adenylyl cyclase under steady state conditions.

  6. Reversion of muscarinic autoreceptor agonist-induced acetylcholine decrease and learning impairment by dynorphin A (1–13), an endogenous κ-opioid receptor agonist

    PubMed Central

    Hiramatsu, Masayuki; Murasawa, Hiroyasu; Mori, Hiromasa; Kameyama, Tsutomu

    1998-01-01

    We investigated whether carbachol, a muscarinic receptor agonist, induces learning and memory impairment, and if so, dynorphin A (1–13), an endogenous κ-opioid receptor agonist, ameliorates the impairment of learning and memory induced by carbachol, by use of a step-through type passive avoidance task.Carbachol induced a dose-related dual response. Carbachol (1.66 pmol per rat) administered directly into the hippocampus significantly shortened the step-through latency, while lower (0.166 pmol per rat) and higher (16.6 pmol per rat) doses of carbachol did not induce learning or memory impairment.Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) administered 5 min after carbachol injection significantly reversed carbachol-induced impairment of learning and memory.Perfusion with carbachol (3×10−4 M) significantly decreased acetylcholine release in the hippocampus during perfusion as determined by in vivo brain microdialysis. This decrease in acetylcholine release was suppressed by co-perfusion with a low dose of atropine (10−7 M).Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) immediately before carbachol perfusion completely blocked this decrease in extracellular acetylcholine concentration induced by carbachol.These antagonistic effects of dynorphin A (1–13) were abolished by treatment with nor-binaltorphimine (5.44 nmol per rat, i.c.v.), a selective κ-opioid receptor antagonist, 5 min before dynorphin A (1–13) treatment.These results suggest that the neuropeptide dynorphin A (1–13) ameliorates the carbachol-induced impairment of learning and memory, accompanied by attenuation of the reductions in acetylcholine release which may be associated with dysfunction of presynaptic cholinergic neurones via κ-opioid receptors. PMID:9535021

  7. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins.

    PubMed

    Jiang, Jing; Fan, Ling Wen; Wu, Wei Hua

    2005-08-01

    Although there were reports suggesting the involvement of endogenous cAMP in plant defense signaling cascades, there is no direct evidence supporting this notion yet and the detailed mechanism is unclear. In the present study, we have used pathogenic fungi Verticillium dahliae and Arabidopsis plants as a model system of plant-microb interaction to demonstrate the function of endogenous cAMP in Arabidopsis defense responses. Both V. dahliae inoculation and Verticillium toxins injection induced typical "wilt" symptoms in Arabidopsis seedlings. When either 8-Br-AMP (a membrane permeable cAMP analogue) or salicylic acid (SA) was applied to Arabidopsis, the plants became resistant to V. dahliae toxins. However, addition of 8-Br-AMP did not increase the resistance of Arabidopsis transgenic plants deficient in SA to the toxins, suggesting that cAMP might act upstream of SA in plant defense signaling pathway. Indeed, 8-Br-cAMP and forskolin, an activator of adenylyl cyclase, significantly stimulated the endogenous SA level in plants, whereas DDA, an inhibitor of adenylyl cyclase dramatically reduced toxin-induced SA increase. Both the endogenous cAMP and SA increased significantly in Arabidopsis seedlings treated with toxins. Furthermore, transcription level of pathogenesis-related protein 1 gene (PR1) was strongly induced by both 8-Br-cAMP and the toxin treatment. Taken together, our data demonstrate that endogenous cAMP is involved in plant defense responses against Verticillium-secreted toxins by regulating the production of the known signal SA in plant defense pathway.

  8. New opioids.

    PubMed

    Mercadante, Sebastiano; Porzio, Giampiero; Gebbia, Vittorio

    2014-06-01

    Despite the skilled use of opioid analgesics, which is crucial to the relief of cancer pain, there is a lack of evidence to support many aspects of current clinical practice. Therefore, there is a significant need for more effective treatment options. New opioids have been marketed in the past years, including hydrocodone and oxymorphone. Moreover, mixed opioids with combined mechanisms of action have been developed; one such agent, tapentadol, is a centrally acting oral analgesic that possesses a combined mechanism of action: μ-opioid receptor activation with norepinephrine reuptake inhibition. Drug development strategies involving naloxone have been initiated to reduce peripheral opioid-related adverse effects. The rationale is based on the local antagonist activity of naloxone in intestinal opioid receptors and the negligible oral bioavailability of naloxone, particularly in a prolonged-release formulation. New delivery systems have been developed to provide rapid analgesia with potent opioid drugs such as fentanyl. Despite the upcoming availability of these new drugs and technologies that will add to existing types of opioid medication, their benefits and liabilities will ultimately need to be determined by the individual physician and individual patient experiencing pain.

  9. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors

    PubMed Central

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L

    2015-01-01

    BACKGROUND AND PURPOSE We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. EXPERIMENTAL APPROACH Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. KEY RESULTS All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. CONCLUSIONS AND IMPLICATIONS We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24827408

  10. Tolerance to non-opioid analgesics in PAG involves unresponsiveness of medullary pain-modulating neurons in male rats.

    PubMed

    Tortorici, Victor; Aponte, Yexica; Acevedo, Humberto; Nogueira, Lourdes; Vanegas, Horacio

    2009-03-01

    Opiate analgesia can be hampered by a reduction in pharmacological effectiveness (tolerance), and this crucially depends on the periaqueductal gray matter (PAG). Non-opioids like metamizol (dipyrone) or aspirin also induce PAG-dependent analgesia and tolerance, but the neuronal bases of this tolerance are unknown. Metamizol is a pyrazolon derivative and cyclooxygenase inhibitor with widespread use as an analgesic in Europe and Latin America. Metamizol was microinjected into the PAG of awake male rats, and antinociception was assessed by the tail flick (TF) and hot plate (HP) tests. Microinjection twice daily for 2.5 days caused tolerance to metamizol. The rats were then anesthetized and recordings from pain-facilitating on-cells and pain-inhibiting off-cells of the rostral ventromedial medulla (RVM) were performed. PAG microinjection of morphine or metamizol depresses on-cells, activates off-cells and thus inhibits nociception, including TF and HP. In metamizol-tolerant rats, however, PAG microinjection of metamizol failed to affect on- or off-cells, and this is interpreted as the reason for tolerance. In metamizol-tolerant rats morphine microinjection into PAG also failed to affect RVM neurons or nociception (cross-tolerance). In naïve, non-tolerant rats the antinociceptive effect of PAG-microinjected metamizol or morphine was blocked when CTOP, a mu-opioid antagonist, was previously microinjected into the same PAG site. These results emphasize a close relationship between opioid and non-opioid analgesic mechanisms in the PAG and show that, like morphine, tolerance to metamizol involves a failure of on- and off-cells to, respectively, disfacilitate and inhibit nociception. Cross-tolerance between non-opioid and opioid analgesics should be important in the clinical setting.

  11. GABA(B) receptors and opioid mechanisms involved in homotaurine-induced analgesia.

    PubMed

    Serrano, M I; Serrano, J S; Fernández, A; Asadi, I; Serrano-Martino, M C

    1998-03-01

    1. The involvement of GABA(B) receptors and opioid mechanisms in homotaurine-induced analgesia has been investigated in current models of nociception by using a GABA(B) receptor antagonist, morphine, and naloxone. CGP 35348 (50-200 mg/kg IP), a highly selective GABA(B) antagonist, was administered prior to carrying out a dose-response curve of homotaurine (22.6-445 mg/kg IP) antinociceptive effect in the abdominal constriction (mice) and tail flick (rats) tests. 2. The tail flick test was performed in animals pretreated with morphine (0.5 mg/kg SC) and naloxone (1 mg/kg), 15 min before amino acid. Animals treated with saline 10 ml/kg (mice) or 1.25 ml/kg (rats) were included as control for the vehicle used. 3. CGP 35348 antagonized the antinociceptive effect of homotaurine in both tests. The range of doses affected by the interaction depended on the test assayed, but it was coincident for the main part of the dose-response curve. 4. A subanalgesic dose of morphine potentiated the antinociceptive effect of lower doses of homotaurine in the tail flick test. Naloxone pretreatment inhibited the antinociceptive effect of homotaurine. 5. These data imply that GABA(B) receptor subpopulations and opiate mechanisms are involved in the antinociceptive effect of homotaurine. Because functional relationships have been found between GABAergic and opiate systems in analgesic effects, an interaction of the two mechanisms may be operating in the effects described for homotaurine.

  12. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7

    PubMed Central

    Minett, Michael S.; Pereira, Vanessa; Sikandar, Shafaq; Matsuyama, Ayako; Lolignier, Stéphane; Kanellopoulos, Alexandros H.; Mancini, Flavia; Iannetti, Gian D.; Bogdanov, Yury D.; Santana-Varela, Sonia; Millet, Queensta; Baskozos, Giorgios; MacAllister, Raymond; Cox, James J.; Zhao, Jing; Wood, John N.

    2015-01-01

    Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids. PMID:26634308

  13. Endogenous opioids contribute to insensitivity to pain in humans and mice lacking sodium channel Nav1.7.

    PubMed

    Minett, Michael S; Pereira, Vanessa; Sikandar, Shafaq; Matsuyama, Ayako; Lolignier, Stéphane; Kanellopoulos, Alexandros H; Mancini, Flavia; Iannetti, Gian D; Bogdanov, Yury D; Santana-Varela, Sonia; Millet, Queensta; Baskozos, Giorgios; MacAllister, Raymond; Cox, James J; Zhao, Jing; Wood, John N

    2015-12-04

    Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.

  14. Involvement of Cholinergic and Opioid System in γ-Terpinene-Mediated Antinociception

    PubMed Central

    Passos, Flávia Franceli de Brito; Lopes, Everton Moraes; de Araújo, Jonas Moura; de Sousa, Damião Pergentino; Veras, Leiz Maria C.; Leite, José Roberto S. A.; Almeida, Fernanda Regina de Castro

    2015-01-01

    The literature shows that the monoterpenes are great candidates for the development of new drugs for the treatment of various pathological processes, including painful conditions. The gamma terpinene (γ-TPN) is a monoterpene present in plant species that have multiple pharmacological properties and has structural similarity to antinociceptive monoterpenes, such as limonene and alpha-phellandrene. The γ-TPN molecular mass was evaluated by mass spectrometry and showed a pseudomolecular ion with m/z 137.0 Da. The animals did not present any signs of acute toxicity at 2 g/kg, p.o. γ-TPN (1.562 to 50 mg/kg, p.o.) showed an antinociceptive effect in the formalin, capsaicin, and glutamate tests. γ-TPN has antinociceptive action when administered by others routes in glutamate test. To eliminate a possible sedative effect of γ-TPN, the open field and rota-rod test were conducted and the γ-TPN did not show muscle relaxant activity or central depressant effect. To investigate the mechanisms of action, the animals were pretreated with naloxone, glibenclamide, atropine, mecamylamine, or L-arginine in the glutamate test. γ-TPN antinociception was inhibited in the presence of naloxone, glibenclamide, atropine, and mecamylamine. The results suggest that the γ-TPN (p.o.) produced antinociceptive effect in models of chemical nociception through the cholinergic and opioid systems involvement. PMID:26170885

  15. Anticonvulsant activity of Dorema ammoniacum gum: evidence for the involvement of benzodiazepines and opioid receptors

    PubMed Central

    Motevalian, Manijeh; Mehrzadi, Saeed; Ahadi, Samira; Shojaii, Asie

    2017-01-01

    This study investigated the anticonvulsant activity and possible mechanism of action of an aqueous solution of Dorema ammoniacum gum (DAG) which has been used traditionally in the treatment of convulsions. In this study, the anticonvulsant activity of DAG was examined using the pentylentetrazole (PTZ) model in mice. Thirty male albino mice were divided randomly and equally to 5 groups, and pretreated with normal saline, diazepam, or various doses of DAG (500, 700, and 1000 mg/kg, i.p.), prior to the injection of PTZ (60 mg/kg, i.p.). The latency and duration of seizures were recorded 30 min after PTZ injection. Pretreatments with naloxone and flumazenil in different groups were studied to further clarify the mechanisms of the anticonvulsant action. Phytochemical screening and thin layer chromatography (TLC) fingerprinting of ammoniacum gum was also determined. DAG showed significant anticonvulsant activity at all doses used. The gum delayed both the onset and the duration of seizures induced by PTZ. Treatment with flumazenil before DAG (700 mg/kg) inhibited the effect of gum on seizure duration and latency to some extent and administration of naloxone before DAG also significantly inhibited changes in latency and duration of seizure produced by DAG. The percentage inhibition was greater with naloxone than with flumazenil. This study showed that DAG had significant anticonvulsant activity in PTZ-induced seizures, and GABAergic and opioid systems may be involved. More studies are needed to further investigate its detailed mechanism. PMID:28255314

  16. Nigella sativa (black cumin) seed extract alleviates symptoms of allergic diarrhea in mice, involving opioid receptors.

    PubMed

    Duncker, Swantje C; Philippe, David; Martin-Paschoud, Christine; Moser, Mireille; Mercenier, Annick; Nutten, Sophie

    2012-01-01

    The incidence of food hypersensitivity and food allergies is on the rise and new treatment approaches are needed. We investigated whether N. sativa, one of its components, thymoquinone, or synthetic opioid receptor (OR)-agonists can alleviate food allergy. Hence, ovalbumin (OVA)-sensitized BALB/c-mice were pre-treated either with a hexanic N. sativa seed extract, thymoquinone, kappa-(U50'4889) or mu-OR-agonists (DAMGO) and subsequently challenged intra-gastrically with OVA. All 4 treatments significantly decreased clinical scores of OVA-induced diarrhea. N. sativa seed extract, thymoquinone, and U50'488 also decreased intestinal mast cell numbers and plasma mouse mast cell protease-1 (MMCP-1). DAMGO, in contrast, had no effect on mast cell parameters but decreased IFNγ, IL-4, IL-5, and IL-10 concentration after ex vivo re-stimulation of mesenteric lymphocytes. The effects on allergy symptoms were reversible by OR-antagonist pre-treatment, whereas most of the effects on immunological parameter were not. We demonstrate that N. sativa seed extract significantly improves symptoms and immune parameters in murine OVA-induced allergic diarrhea; this effect is at least partially mediated by thymoquinone. ORs may also be involved and could be a new target for intestinal allergy symptom alleviation. N. sativa seed extract seems to be a promising candidate for nutritional interventions in humans with food allergy.

  17. Effects of opioid peptides on thermoregulation

    SciTech Connect

    Clark, W.G.

    1981-11-01

    In a given species, injected opioid peptides usually cause changes in temperature similar to those caused by nonpeptide opioids. The main effect in those species most studied, the cat, rat, and mouse, is an increase in the level about which body temperature is regulated; there is a coordinated change in the activity of thermoregulatory effectors such that hyperthermia is produced in both hot and cold environments. Larger doses may depress thermoregulation, thereby causing body temperature to decrease in the cold. Elicitation of different patterns of response over a range of environmental temperatures and studies with naloxone and naltrexone indicate that stimulation of a number of different receptors by both peptide and nonpeptide opioids can evoke thermoregulatory responses. ..beta..-Endorphin is readily antagonized by naloxone whereas methionine-enkephalin can act on naloxone-insensitive receptors. Moreover, synthetic peptide analogs do not necessarily evoke the same response as does the related endogenous peptide. The lack of effect of naloxone on body temperature of subjects housed at usual laboratory temperature or on pyrogen-induced increases in body temperature indicates that an action of endogenous peptides on naloxone-sensitive receptors plays little, if any, role in normal thermoregulation or in fever. However, there is some evidence that such an action may be involved in responses to restraint or ambient temperature-induced stress. Further evaluation of possible physiological roles of endogenous opioid peptides will be facilitated when specific antagonists at other types of opioid receptors become available.

  18. The pharmacological basis of opioids

    PubMed Central

    Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Bianchi, Enrica

    2015-01-01

    Summary An opioid is a chemical that binds to opioid receptors, which are widely distributed in the central and peripheral nervous system and gastrointestinal tract. The different effects elicited by activation of these receptors are due to their specific neuronal and extraneuronal distribution. The painkiller effect of opioids is induced by the synergy of the two events, namely reduction of pain threshold and emotional detachment from pain. The opioid effects transcending analgesia include sedation, respiratory depression, constipation and a strong sense of euphoria. There are opioid-like substances endogenously produced by the body. Naturally occurring peptides, called enkephalins, have opioid-like activities but are not derived from opium and exert opioid-like effects by interacting with opioid receptors on cell membranes. Yet, animals do contain the same morphine precursors and metabolites as opium poppy and are able to synthesize endogenous morphine alkaloid. Experimental and clinical studies show that opioids, at doses comparable to those of endogenous opioids, can activate pronociceptive systems, leading to pain hypersensitivity and short-term tolerance, a phenomenon encountered in postoperative pain management by acute opioid administration. Whether endogenous opioids play a role in the acute pain necessary to the survival of the individual, remains an open question. PMID:26811699

  19. Opioid dependence

    PubMed Central

    2009-01-01

    Introduction Dependence on opioids is a multifactorial condition involving genetic and psychosocial factors. There are three approaches to treating opioid dependence. Stabilisation is usually by opioid substitution treatments, and aims to ensure that the drug use becomes independent of mental state (such as craving and mood) and independent of circumstances (such as finance and physical location). The next stage is to withdraw (detox) from opioids. The final aim is relapse prevention. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for stabilisation (maintenance) in people with opioid dependence? What are the effects of drug treatments for withdrawal in people with opioid dependence? What are the effects of drug treatments for relapse prevention in people with opioid dependence? We searched: Medline, Embase, The Cochrane Library, and other important databases up to May 2008 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 23 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: buprenorphine; clonidine; lofexidine; methadone; naltrexone; and ultra-rapid withdrawal regimes. PMID:21696648

  20. Involvement of the opioid system in the hypokinetic state induced in cockroaches by a parasitoid wasp.

    PubMed

    Gavra, Tali; Libersat, Frederic

    2011-03-01

    The parasitoid wasp Ampulex compressa stings and injects venom into the cockroach brain to induce a long-lasting hypokinetic state. This state is characterized by decreased responsiveness to aversive stimuli, suggesting the manipulation of a neuromodulatory system in the cockroach's central nervous system. A likely candidate is the opioid system, which is known to affect responsiveness to stimuli in insects. To explore this possibility, we injected cockroaches with different opioid receptor agonists or antagonists before they were stung by a wasp and tested the escape behavior of these cockroaches to electric foot shocks. Antagonists significantly decreased the startle threshold in stung individuals, whereas agonists led to an increased startle threshold in controls. Yet, neither agonists nor antagonists had any effect on grooming. To further characterize the interaction between the venom and opioid receptors, we used an antenna-heart preparation. In un-stung individuals external application of crude venom completely inhibits antenna-heart contractions. In stung individuals the antenna-heart showed no contractions. Although acetylcholine restored contractions, the opioid receptor antagonist naloxone was unable to antagonize the venom inhibition. These results suggest that the venom of A. compressa might contribute to the manipulation of cockroach behavior by affecting the opioid system.

  1. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats.

    PubMed

    Tortorici, Victor; Nogueira, Lourdes; Aponte, Yexica; Vanegas, Horacio

    2004-11-01

    The analgesic effect of non-steroidal anti-inflammatory drugs (NSAIDs) is partly due to an action upon the periaqueductal gray matter (PAG), which triggers the descending pain control system and thus inhibits nociceptive transmission. This action of NSAIDs engages endogenous opioids at the PAG, the nucleus raphe magnus and the spinal cord. Repeated administration of NSAIDs such as dipyrone (metamizol) and acetylsalicylate thus induces tolerance to these compounds and cross-tolerance to morphine. Since cholecystokinin plays a key role in opioid tolerance, the present study in rats investigated whether PAG cholecystokinin is also responsible for tolerance to PAG-microinjected dipyrone. Microinjection of cholecystokinin (1 ng/0.5 microl) into PAG blocked the antinociceptive effect of a subsequent microinjection of dipyrone (150 microg/0.5 microl) into the same site, as evaluated by the tail flick and hot plate tests. Microinjection of proglumide (0.4 microg/0.5 microl), a non-selective cholecystokinin antagonist, into PAG prevented the development of tolerance to subsequent microinjections of dipyrone, as well as cross-tolerance to microinjection of morphine (5 microg/0.5 microl) into the same site. In rats tolerant to PAG dipyrone, a PAG microinjection of proglumide restored the antinociceptive effect of a subsequent microinjection of dipyrone or morphine. These results suggest that PAG-microinjected dipyrone triggers and/or potentiates local opioidergic circuits leading to descending inhibition of nociception, on the one hand, and to a local antiopioid action by cholecystokinin, on the other. Reiteration of these events would then result in an enhancement of cholecystokinin's antiopioid action and thus tolerance to opioids and dipyrone in the PAG.

  2. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    PubMed Central

    Flores-Ramos, José María; Díaz-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral administration of diclofenac, caffeine, or their combination. Opioid involvement was analyzed through intracerebroventricular (i.c.v.) administration of naloxone followed by the oral administration of the study drugs. Diclofenac presented a dose-dependent effect, with a mean effective dose (ED50) of 6.7 mg/kg. Caffeine presented an analgesic effect with a 17–36% range. The combination of subeffective doses of each of the two drugs presented the greatest synergism with an effect of 57.7 ± 5.6%. The maximal antinociceptive effect was obtained with the combination of 10.0 mg/kg diclofenac and 1.0 mg/kg of caffeine, with an effect of 76.7 ± 5.6%. The i.c.v. administration of naloxone inhibited the effect of diclofenac, both separately and combined. In conclusion, caffeine produces antinociceptive synergism when administered in combination with diclofenac, and this synergism is partially mediated by opioid mechanisms at the central level. PMID:27335871

  3. Involvement of endogenous salicylic acid in iron-deficiency responses in Arabidopsis.

    PubMed

    Shen, Chenjia; Yang, Yanjun; Liu, Kaidong; Zhang, Lei; Guo, Hong; Sun, Tao; Wang, Huizhong

    2016-07-01

    Several phytohormones have been demonstrated to be involved in iron (Fe) homeostasis. We took advantage of a salicylic acid (SA) biosynthesis defective mutant phytoalexin deficient 4 (pad4: T-DNA Salk_089936) to explore the possible effects of endogenous SA on the morphological and physiological responses to Fe deprivation. The morphological and physiological analysis was carried out between Col-0 and the pad4 mutant. Under an Fe-deficiency treatment, Col-0 showed more severe leaf chlorosis and root growth inhibition compared with the pad4 mutant. The soluble Fe concentrations were significantly higher in pad4 than in Col-0 under the Fe-deficiency treatment. Fe deficiency significantly induced SA accumulation in Col-0 and the loss-of-function of PAD4 blocked this process. The requirement of endogenous SA accumulation for Fe-deficiency responses was confirmed using a series of SA biosynthetic mutants and transgenic lines. Furthermore, a comparative RNA sequencing analysis of the whole seedling transcriptomes between Col-0 and the pad4 mutant was also performed. Based on the transcriptome data, the expression levels of many auxin- and ethylene-response genes were altered in pad4 compared with Col-0. Fe deficiency increases SA contents which elevates auxin and ethylene signalling, thereby activating Fe translocation via the bHLH38/39-mediated transcriptional regulation of downstream Fe genes.

  4. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors

    PubMed Central

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-01-01

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially. PMID:26967251

  5. The antinociceptive effects of ferulic acid on neuropathic pain: involvement of descending monoaminergic system and opioid receptors.

    PubMed

    Xu, Ying; Lin, Dan; Yu, Xuefeng; Xie, Xupei; Wang, Liqun; Lian, Lejing; Fei, Ning; Chen, Jie; Zhu, Naping; Wang, Gang; Huang, Xianfeng; Pan, Jianchun

    2016-04-12

    Neuropathic pain can be considered as a form of chronic stress that may share common neuropathological mechanism between pain and stress-related depression and respond to similar treatment. Ferulic acid (FA) is a major active component of angelica sinensis and has been reported to exert antidepressant-like effects; however, it remains unknown whether FA ameliorate chronic constriction injury (CCI)-induced neuropathic pain and the involvement of descending monoaminergic system and opioid receptors. Chronic treatment with FA (20, 40 and 80 mg/kg) ameliorated mechanical allodynia and thermal hyperalgesia in von Frey hair and hot plate tasks, accompanied by increasing spinal noradrenaline (NA) and serotonin (5-HT) levels. Subsequent study suggested that treatment of CCI animals with 40 and 80 mg/kg FA also inhibited spinal MAO-A levels. FA's effects on mechanical allodynia or thermal hyperalgesiawas blocked by 6-hydroxydopamine (6-OHDA) or p-chlorophenylalanine (PCPA) via pharmacological depletion of spinal noradrenaline or serotonin. Moreover, the anti-allodynic action of FA on mechanical stimuli was prevented by pre-treatment with beta2-adrenoceptor antagonist ICI 118,551, or by the delta-opioid receptor antagonist naltrindole. While the anti-hyperalgesia on thermal stimuli induced by FA was blocked by pre-treatment with 5-HT1A receptor antagonist WAY-100635, or with the irreversible mu-opioid receptor antagonist beta-funaltrexamine. These results suggest that the effect of FA on neuropathic pain is potentially mediated via amelioration of the descending monoaminergic system that coupled with spinal beta2- and 5-HT1A receptors and the downstream delta- and mu-opioid receptors differentially.

  6. Renal carbonic anhydrases are involved in the reabsorption of endogenous nitrite.

    PubMed

    Chobanyan-Jürgens, Kristine; Schwarz, Alexandra; Böhmer, Anke; Beckmann, Bibiana; Gutzki, Frank-Mathias; Michaelsen, Jan T; Stichtenoth, Dirk O; Tsikas, Dimitrios

    2012-02-15

    Nitrite (ONO(-)) exerts nitric oxide (NO)-related biological actions and its concentration in the circulation may be of particular importance. Nitrite is excreted in the urine. Hence, the kidney may play an important role in nitrite/NO homeostasis in the vasculature. We investigated a possible involvement of renal carbonic anhydrases (CAs) in endogenous nitrite reabsorption in the proximal tubule. The potent CA inhibitor acetazolamide was administered orally to six healthy volunteers (5 mg/kg) and nitrite was measured in spot urine samples before and after administration. Acetazolamide increased abruptly nitrite excretion in the urine, strongly suggesting that renal CAs are involved in nitrite reabsorption in healthy humans. Additional in vitro experiments support our hypothesis that nitrite reacts with CO(2), analogous to the reaction of peroxynitrite (ONOO(-)) with CO(2), to form acid-labile nitrito carbonate [ONOC(O)O(-)]. We assume that this reaction is catalyzed by CAs and that nitrito carbonate represents the nitrite form that is actively transported into the kidney. The significance of nitrite reabsorption in the kidney and the underlying mechanisms, notably a direct involvement of CAs in the reaction between nitrite and CO(2), remain to be elucidated.

  7. Controlled cross-over study in normal subjects of naloxone-preceding-lactate infusions; respiratory and subjective responses: relationship to endogenous opioid system, suffocation false alarm theory and childhood parental loss

    PubMed Central

    Preter, M.; Lee, S. H.; Petkova, E.; Vannucci, M.; Kim, S.; Klein, D. F.

    2015-01-01

    Background The expanded suffocation false alarm theory (SFA) hypothesizes that dysfunction in endogenous opioidergic regulation increases sensitivity to CO2, separation distress and panic attacks. In panic disorder (PD) patients, both spontaneous clinical panics and lactate-induced panics markedly increase tidal volume (TV), whereas normals have a lesser effect, possibly due to their intact endogenous opioid system. We hypothesized that impairing the opioidergic system by naloxone could make normal controls parallel PD patients' response when lactate challenged. Whether actual separations and losses during childhood (childhood parental loss, CPL) affected naloxone-induced respiratory contrasts was explored. Subjective panic-like symptoms were analyzed although pilot work indicated that the subjective aspect of anxious panic was not well modeled by this specific protocol. Method Randomized cross-over sequences of intravenous naloxone (2 mg/kg) followed by lactate (10 mg/kg), or saline followed by lactate, were given to 25 volunteers. Respiratory physiology was objectively recorded by the LifeShirt. Subjective symptomatology was also recorded. Results Impairment of the endogenous opioid system by naloxone accentuates TV and symptomatic response to lactate. This interaction is substantially lessened by CPL. Conclusions Opioidergic dysregulation may underlie respiratory pathophysiology and suffocation sensitivity in PD. Comparing specific anti-panic medications with ineffective anti-panic agents (e.g. propranolol) can test the specificity of the naloxone + lactate model. A screen for putative anti-panic agents and a new pharmacotherapeutic approach are suggested. Heuristically, the experimental unveiling of the endogenous opioid system impairing effects of CPL and separation in normal adults opens a new experimental, investigatory area. PMID:20444308

  8. Opioid dependence

    PubMed Central

    2011-01-01

    Introduction Dependence on opioids is a multifactorial condition involving genetic and psychosocial factors. There are three stages to treating opioid dependence. Stabilisation is usually by opioid substitution treatments, and aims to ensure that the drug use becomes independent of mental state (such as craving and mood) and independent of circumstances (such as finance and physical location). The next stage is to withdraw (detox) from opioids. The final stage is relapse prevention. This treatment process contributes to recovery of the individual, which also includes improved overall health and wellbeing, as well as engagement in society. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of drug treatments for stabilisation (maintenance) in people with opioid dependence? What are the effects of drug treatments for withdrawal in people with opioid dependence? What are the effects of drug treatments for relapse prevention in people with opioid dependence? We searched: Medline, Embase, The Cochrane Library, and other important databases up to March 2011 (Clinical Evidence reviews are updated periodically; please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 26 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review, we present information relating to the effectiveness and safety of the following interventions: buprenorphine; clonidine; lofexidine; methadone; naltrexone; and ultra-rapid withdrawal regimens. PMID:21929827

  9. Involvement of endogenous cholecystokinin in pancreatic regeneration after cerulein-induced acute pancreatitis.

    PubMed

    Jurkowska, G; Grondin, G; Morisset, J

    1992-01-01

    This study was undertaken to determine the involvement of endogenous cholecystokinin (CCK) in the regeneration of pancreatic tissue after cerulein-induced acute pancreatitis treated by the CCK receptor antagonist L364,718. Acute pancreatitis was induced in rats by s.c. injections of cerulein in gelatin (12 micrograms/kg) three times a day for 2 days with controls receiving saline in gelatin. Rats were then divided into four treatment groups: saline-dimethyl sulfoxide (DMSO) (SD), saline-L364,718 (SA), cerulein-pancreatitis-DMSO (CD), and cerulein-pancreatitis-L364,718 (CA). In the first experiment, rats were treated for 3 or 10 days with DMSO or L364,718 (0.1 mg/kg, twice a day). In the second experiment, rats were treated for 13 days with DMSO or L364,718 (1.0 mg/kg, twice a day). After the rats were killed, pancreata were weighed and evaluated for their total protein, amylase, chymotrypsin, RNA, and DNA. We found that destruction of the pancreatic tissue occurred after cerulein-induced pancreatitis and that regeneration of the tissue was in progress but incomplete after 10 days; the low dose of L364,718 did not prevent regeneration. After 13 days, regeneration was still incomplete but the 1-mg dose of L364,718 strongly inhibited spontaneous regeneration. These data suggest that endogenous CCK is an important and potent trophic factor in the regeneration process of pancreatic tissue following an episode of acute pancreatitis.

  10. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  11. Antinociception by neutrophil-derived opioid peptides in noninflamed tissue--role of hypertonicity and the perineurium.

    PubMed

    Rittner, H L; Hackel, D; Yamdeu, R-S; Mousa, S A; Stein, C; Schäfer, M; Brack, A

    2009-05-01

    Inflammatory pain can be controlled by intraplantar opioid injection or by secretion of endogenous opioid peptides from leukocytes in inflamed rat paws. Antinociception requires binding of opioid peptides to opioid receptors on peripheral sensory nerve terminals. In the absence of inflammation, hydrophilic opioid peptides do not penetrate the perineurial barrier and, thus, do not elicit antinociception. This study was designed to examine the conditions under which endogenous, neutrophil-derived hydrophilic opioid peptides (i.e. Met-Enkephalin and beta-endorphin) can raise nociceptive thresholds in noninflamed tissue in rats. Intraplantar injection of the chemokine CXCL2/3 (macrophage inflammatory protein-2) induced selective neutrophil recruitment without overt signs of inflammation or changes in mechanical nociceptive thresholds (paw pressure threshold). Following intraplantar injection of hypertonic saline, the perineurial barrier was permeable for hours and intraplantar injection of opioid peptides increased mechanical nociceptive thresholds. While formyl-Met-Leu-Phe (fMLP) triggered opioid peptide release from neutrophils in vitro, nociceptive thresholds were unchanged in vivo. In vitro, hypertonicity interfered with fMLP-induced p38 mitogen activated kinase (MAPK) phosphorylation and opioid peptide release from neutrophils. These inhibitory effects were fully reversible by washout. In vivo, return to normotonicity occurred within 30min while the perineurium remained permeable for hours. Under these conditions, fMLP triggered MAPK phosphorylation and induced opioid peptide-mediated increases in nociceptive thresholds in the noninflamed paw. Taken together, antinociception mediated by endogenous opioids in noninflamed tissue has two important requirements: (i) opening of the perineurial barrier for opioid peptide access and (ii) opioid peptide release from neutrophils involving p38 MAPK.

  12. Cocaine- and amphetamine-related transcript is involved in the orexigenic effect of endogenous anandamide.

    PubMed

    Osei-Hyiaman, Douglas; Depetrillo, Michael; Harvey-White, Judith; Bannon, Anthony W; Cravatt, Benjamin F; Kuhar, Michael J; Mackie, Ken; Palkovits, Miklós; Kunos, George

    2005-01-01

    Endocannabinoids acting at CB1 cannabinoid receptors (CB1) increase appetite. In view of the predominant presynaptic localization of CB1 in the brain, we tested the hypothesis that the orexigenic effect of endocannabinoids involves inhibition of the release of a tonically active anorexigenic mediator, such as the peptide product of the cocaine- and amphetamine-related transcript (CART). The CB1 antagonist rimonabant inhibited food intake in food-restricted wild-type mice, but not in their CART-deficient littermates. Mice deficient in fatty acid amide hydrolase (FAAH), the enzyme responsible for the in vivo metabolism of the endocannabinoid anandamide, have reduced levels of CART-immunoreactive nerve fibers and terminals in several brain regions implicated in appetite control, including the arcuate, dorsomedial and periventricular nuclei of the hypothalamus, the amygdala, the bed nucleus of the stria terminalis and the nucleus accumbens, and treatment of FAAH(-/-) mice with rimonabant, 3 mg/kg/day for 7 days, increased CART levels toward those seen in FAAH(+/+) wild-type controls. In contrast, no difference in the density of CART-immunoreactive fibers was observed in the median eminence and the paraventricular nucleus of FAAH(+/+) and FAAH(-/-) mice. Acute treatment of wild-type mice with the cannabinoid agonist HU-210 resulted in elevated CART levels in the dorsomedial nucleus and the shell portion of the nucleus accumbens. These observations are compatible with CART being a downstream mediator of the CB1-mediated orexigenic effect of endogenous anandamide.

  13. Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death.

    PubMed

    Izumi, Yasuhiko; Ezumi, Masayuki; Takada-Takatori, Yuki; Akaike, Akinori; Kume, Toshiaki

    2014-06-01

    The herbicide paraquat is an environmental factor that may be involved in the etiology of Parkinson's disease (PD). Systemic exposure of mice to paraquat causes a selective loss of dopaminergic neurons in the substantia nigra pars compacta, although paraquat is not selectively incorporated in dopaminergic neurons. Here, we report a contribution of endogenous dopamine to paraquat-induced dopaminergic cell death. Exposure of PC12 cells to paraquat (50μM) caused delayed toxicity from 36 h onward. A decline in intracellular dopamine content achieved by inhibiting tyrosine hydroxylase (TH), an enzyme for dopamine synthesis, conferred resistance to paraquat toxicity on dopaminergic cells. Paraquat increased the levels of cytosolic and vesicular dopamine, accompanied by transiently increased TH activity. Quinone derived from cytosolic dopamine conjugates with cysteine residues in functional proteins to form quinoproteins. Formation of quinoprotein was transiently increased early during exposure to paraquat. Furthermore, pretreatment with ascorbic acid, which suppressed the elevations of intracellular dopamine and quinoprotein, almost completely prevented paraquat toxicity. These results suggest that the elevation of cytosolic dopamine induced by paraquat participates in the vulnerability of dopaminergic cells to delayed toxicity through the formation of quinoproteins.

  14. Prescription drug monitoring program data tracking of opioid addiction treatment outcomes in integrated dual diagnosis care involving injectable naltrexone

    PubMed Central

    Sajid, Ayesha; Whiteman, Aaron; Bell, Richard L.; Greene, Marion S.; Engleman, Eric A.

    2016-01-01

    Background and Objectives Fourfold increases in opioid prescribing and dispensations over 2 decades in the U.S. has paralleled increases in opioid addictions and overdoses, requiring new preventative, diagnostic, and treatment strategies. This study examines Prescription Drug Monitoring Program (PDMP) tracking as a novel measure of opioid addiction treatment outcomes in a university‐affiliated integrated mental health‐addiction treatment clinic. Methods Repeated measure parametrics examined PDMP and urine drug screening (UDS) data before and after first injection for all patients (N = 68) who received at least one long‐acting naltrexone injection (380 mg/IM) according to diagnostic groupings of having either (i) alcohol (control); (ii) opioid; or (iii) combined alcohol and opioid use disorders. Results There were no group differences post‐injection in treatment days, injections delivered, or treatment service encounters. UDS and PDMP measures of opioid exposures were greater in opioid compared to alcohol‐only patients. Post‐first injection, UDS's positive for opioids declined (p < .05) along with PDMP measures of opioid prescriptions (p < .001), doses (p < .01), types (p < .001), numbers of dispensing prescribers (p < .001) and pharmacies (p < .001). Opioid patients without alcohol disorders showed the best outcomes with 50% to 80% reductions in PDMP‐measures of opioids, down to levels of alcohol‐only patients. Conclusions This study shows PDMP utility for measuring opioid addiction treatment outcomes, supporting the routine use of PDMPs in clinical and research settings. Scientific Significance These findings demonstrate that opioid addiction in patients with complex addictions and mental illnesses comorbidities can show effective treatment responses as measured by PDMP tracking of decreases in opioid prescriptions to those patients. (Am J Addict 2016;25:557–564) PMID:27647699

  15. Mechanism(s) involved in opioid drug abuse modulation of HAND.

    PubMed

    Dutta, Raini; Roy, Sabita

    2012-07-01

    Drug abuse and HIV infection are interlinked. From the onset of the HIV/AIDS epidemic, the impact of illicit drug use on HIV disease progression has been a focus of many investigations. Both laboratory-based and epidemiological studies strongly indicate that drug abuse may exacerbate HIV disease progression and increase mortality and morbidity in these patients. Increase susceptibility to opportunistic infection has been implicated as one of the major causes for this detriment. Furthermore, opioids are known to elicit prevalence of neurodegenerative disorders in HIV-infected patients. Numerous authors have delineated various molecular as well as cellular mechanisms associated with neurological complications in these patients. This review gives an overview of these findings. Understanding the mechanisms will allow for the development of targeted therapies aimed at reducing the progression of neurocognitive decline in the drug abusing HIV infected individuals.

  16. Sex-dependent effects of periadolescent exposure to the cannabinoid agonist CP-55,940 on morphine self-administration behaviour and the endogenous opioid system.

    PubMed

    Biscaia, Miguel; Fernández, Beatriz; Higuera-Matas, Alejandro; Miguéns, Miguel; Viveros, Maria-Paz; García-Lecumberri, Carmen; Ambrosio, Emilio

    2008-04-01

    Early cannabinoid consumption may predispose individuals to the misuse of addictive drugs later in life. However, there is a lack of experimental evidence as to whether cannabinoid exposure during adolescence might differently affect opiate reinforcing efficacy and the opioid system in adults of both sexes. Our aim was to examine whether periadolescent chronic exposure to the cannabinoid agonist CP-55,940 could exert sex-dependent effects on morphine reinforcing and the opioid system in adulthood. Morphine reinforcing was studied under a progressive ratio (PR) reinforcement schedule in adult male and female rats that previously acquired morphine self-administration under a fixed ratio 1 (FR1) schedule. Binding levels and functionality of mu-opioid receptors were also evaluated. Periadolescent cannabinoid exposure altered morphine self-administration and the opioid system in adult rats in a sex-dependent manner. CP-55,940-exposed males exhibited higher self-administration rates under a FR1, but not under a PR schedule. In females, CP-55,940 did not modify morphine self-administration under either schedule. Moreover, CP-55,940 also increased mu-opioid receptor levels in the subcallosal streak of pre-treated animals and decreased mu-opioid receptor functionality in the nucleus accumbens shell but again, only in males. Our data indicate that adult male rats exposed to the cannabinoid in adolescence self-administer more morphine than females, but only when the demands required by the schedule of reinforcement are low, which might be related to the decrease in mu-opioid receptor functionality in the NAcc-shell observed in these animals.

  17. Opioid Basics: Prescription Opioids

    MedlinePlus

    ... Data Fentanyl Encounters Data CDC Guideline for Prescribing Opioids for Chronic Pain For Patients For Providers Guideline Resources Clinical Tools ... Green CJ, Merrill JO, Sullivan MD, et al. Opioid prescriptions for chronic pain and overdose: a cohort study. Ann Intern Med. ...

  18. Anticonvulsant Activity of Hydroalcoholic Extract of Citrullus colocynthis Fruit: Involvement of Benzodiazepine and Opioid Receptors.

    PubMed

    Mehrzadi, Saeed; Shojaii, Asie; Pur, Sogol Attari; Motevalian, Manijeh

    2016-10-01

    This study investigated the anticonvulsant activity of Citrullus colocynthis fruit extract used traditionally in the treatment of convulsion. Albino mice were pretreated with extract in different doses (10, 25, 50, and 100 mg/kg), prior to injection of pentylenetetrazole. Animals received pretreatments with naloxone and flumazenil to further clarify the mechanisms of anticonvulsant action. The total flavonoid content of Citrullus colocynthis extract was also determined. Citrullus colocynthis hydroalcoholic extract with doses 25 and 50 mg/kg prolonged the onset of seizures and decreased the duration compared with control group. Pretreatment by flumazenil could inhibit the effect of Citrullus colocynthis on latency of seizure to some extent and administration of naloxone significantly inhibited changes in latency and duration of seizure produced by Citrullus colocynthis This study showed that Citrullus colocynthis has significant anticonvulsant effect in pentylenetetrazole-induced seizures in mice, and these effects may be related to its effect on γ-aminobutyric acid-ergic and opioid systems. These results confirmed the traditional use of Citrullus colocynthis in Iranian traditional medicine.

  19. Rhode Island Board of Medical Licensure and Discipline: Illustration of the disciplinary process as it pertains to cases involving opioid prescribing.

    PubMed

    McDonald, James V

    Prescription-drug overuse/overdose and misuse is an important and pivotal issue to state medical boards. This is an illustration of how some cases involving overprescribing of opioids have been addressed by the Rhode Island Board of Medical Licensure and Discipline.

  20. Exploring the opioid system by gene knockout.

    PubMed

    Kieffer, Brigitte L; Gavériaux-Ruff, Claire

    2002-04-01

    The endogenous opioid system consists of three opioid peptide precursor genes encoding enkephalins (preproenkephalin, Penk), dynorphins (preprodynorphin, Pdyn) and beta-endorphin (betaend), proopiomelanocortin (POMC) and three receptor genes encoding mu-opiod receptor (MOR), delta-opiod receptor (DOR) and kappa-opiod receptor (KOR). In the past years, all six genes have been inactivated in mice by homologous recombination. The analysis of spontaneous behavior in mutant mice has demonstrated significant and distinct roles of each gene in modulating locomotion, pain perception and emotional behaviors. The observation of opposing phenotypes of MOR- and DOR-deficient mice in several behaviors highlights unexpected roles for DOR to be further explored genetically and using more specific delta compounds. The analysis of responses of mutant mice to exogenous opiates has definitely clarified the essential role of MOR in both morphine analgesia and addiction, and demonstrated that DOR and KOR remain promising targets for pain treatment. These studies also show that prototypic DOR agonists partially require MOR for their biological activity and provide some support for the postulated mu-delta interactions in vivo. Finally, data confirm and define a role for several genes of the opioid system in responses to other drugs of abuse, and the triple opioid receptor knockout mutant allows exploring non-classical opioid pharmacology. In summary, the study of null mutant mice has extended our previous knowledge of the opioid system by identifying the molecular players in opioid pharmacology and physiology. Future studies should involve parallel behavioral analysis of mice lacking receptors and peptides and will benefit from more sophisticated gene targeting approaches, including site-directed and anatomically-restricted mutations.

  1. κ-opioid receptor is involved in the cardioprotection induced by exercise training.

    PubMed

    Geng, Xiao; Zhao, Honglin; Zhang, Shumiao; Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming

    2017-01-01

    The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway.

  2. κ-opioid receptor is involved in the cardioprotection induced by exercise training

    PubMed Central

    Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming

    2017-01-01

    The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473

  3. Prescription of Opioids for Opioid-Naive Medical Inpatients

    PubMed Central

    Lail, Sharan; Sequeira, Kelly; Lieu, Jenny; Dhalla, Irfan A

    2014-01-01

    Background: Harms associated with prescription opioids are a major and increasing public health concern. Prescribing of opioids for inpatients may contribute to the problem, especially if primary care practitioners continue opioid therapy that is initiated in hospital. Objectives: To describe the extent and nature of opioid prescribing for opioid-naive patients (i.e., no use of opioids within 2 weeks before admission) on an internal medicine unit. Methods: This single-centre study involved chart review for opioid-naive patients admitted to the internal medicine unit of a large academic health sciences centre in Toronto, Ontario. Over 12 weeks, patients were prospectively identified for the study, and charts were later reviewed to characterize opioid use during the hospital stay and upon discharge. The primary outcomes were the proportions of opioid-naive patients for whom opioids were prescribed in hospital and upon discharge. Data on serious adverse events related to opioid use (e.g., need for naloxone or occurrence of falls) were also collected through chart review. Results: From July 4 to September 22, 2011, a total of 721 patients were admitted to the study unit, of whom 381 (53%) were classified as opioid-naive. Opioids were prescribed for 82 (22%) of these opioid-naive patients while they were in hospital. Among the opioid-naive patients, there were a total of 247 opioid prescriptions, with hydromorphone (110 prescriptions) and morphine (92 prescriptions) being the drugs most commonly prescribed. For 23 (28%) of the patients with a prescription for opioids in hospital (6% of all opioid-naive patients), an opioid was also prescribed upon discharge. The indication for opioids was documented in 16 (70%) of the 23 discharge prescriptions. No adverse events or deaths related to opioid use were identified during the hospital stays. Conclusions: Among opioid-naive patients admitted to the internal medicine unit, opioids were prescribed for about 1 in 5 patients, and

  4. Touch Perception Altered by Chronic Pain and by Opioid Blockade1,2,3

    PubMed Central

    Gracely, John L.; Richards, Emily A.; Olausson, Håkan

    2016-01-01

    Abstract Touch plays a significant role in human social behavior and social communication, and its rewarding nature has been suggested to involve opioids. Opioid blockade in monkeys leads to increased solicitation and receipt of grooming, suggesting heightened enjoyment of touch. We sought to study the role of endogenous opioids in perception of affective touch in healthy adults and in patients with fibromyalgia, a chronic pain condition shown to involve reduced opioid receptor availability. The pleasantness of touch has been linked to the activation of C-tactile fibers, which respond maximally to slow gentle touch and correlate with ratings of pleasantness. We administered naloxone to patients and healthy controls to directly observe the consequences of µ-opioid blockade on the perceived pleasantness and intensity of touch. We found that at baseline chronic pain patients showed a blunted distinction between slow and fast brushing for both intensity and pleasantness, suggesting reduced C-tactile touch processing. In addition, we found a differential effect of opioid blockade on touch perception in healthy subjects and pain patients. In healthy individuals, opioid blockade showed a trend toward increased ratings of touch pleasantness, while in chronic pain patients it significantly decreased ratings of touch intensity. Further, in healthy individuals, naloxone-induced increase in touch pleasantness was associated with naloxone-induced decreased preference for slow touch, suggesting a possible effect of opioid levels on processing of C-tactile fiber input. These findings suggest a role for endogenous opioids in touch processing, and provide further evidence for altered opioid functioning in chronic pain patients. PMID:27022625

  5. Opioid analgesics: does potency matter?

    PubMed

    Passik, Steven D; Webster, Lynn

    2014-01-01

    Prescription opioid analgesics with a wide range of potencies are currently used for the treatment of chronic pain. Yet understanding the clinical relevance and therapeutic consequences of opioid potency remains ill defined. Both patients and clinicians alike have misperceptions about opioid potency, expecting that less-potent opioids will be less effective or fearing that more-potent opioids are more dangerous or more likely to be abused. In this review, common myths about the potency of opioid analgesics will be discussed. Clinicians should understand that pharmacologic potency per se does not necessarily imply more effective analgesia or higher abuse liability. Published dose conversion tables may not accurately calculate the dose for effective and safe rotation from one opioid to another in patients receiving long-term opioid therapy because they are based on limited data that may not apply to chronic pain. Differences in pharmacologic potency are largely accounted for by the actual doses prescribed, according to individualized patient need. Factors for achieving effective analgesia and reducing the risks involved with opioid use include careful medication selection based on patient characteristics, appropriate dosing titration and opioid rotation practices, knowledge of product formulation characteristics (eg, extended release, immediate release, and tamper-resistant features), and an awareness of differences in opioid pharmacokinetics and metabolism. Clinicians should remain vigilant in monitoring patients on any opioid medication, regardless of classification along the opioid potency continuum.

  6. Endogenous adenosine release is involved in the control of heart rate in rats.

    PubMed

    Jammes, Yves; Joulia, Fabrice; Steinberg, Jean Guillaume; Ravailhe, Sylvie; Delpierre, Stéphane; Condo, Jocelyne; Guieu, Regis; Delliaux, Stéphane

    2015-08-01

    Intravenous (i.v.) injections of adenosine exert marked effects on heart rate (HR) and arterial blood pressure (BP), but the role of an endogenous adenosine release by vagal stimulation has not been evaluated. In anaesthetized rats, we examined HR and BP changes induced by 1 min electrical vagal stimulation in the control condition, and then after i.v. injections of (i) atropine, (ii) propranolol, (iii) caffeine, (iv) 8 cyclopentyl-1,3-dipropylxanthine (DPCPX), or (v) dipyridamole to increase the plasma concentration of adenosine (APC). APC was measured by chromatography in the arterial blood before and at the end of vagal stimulation. The decrease in HR in the controls during vagal stimulation was markedly attenuated, but persisted after i.v. injections of atropine and propranolol. When first administered, DPCPX modestly but significantly reduced the HR response to vagal stimulation, but this disappeared after i.v. caffeine administration. Both the HR and BP responses were significantly accentuated after i.v. injection of dipyridamole. Vagal stimulation induced a significant increase in APC, proportional to the magnitude of HR decrease. Our data suggest that the inhibitory effects of electrical vagal stimulations on HR and BP were partly mediated through the activation of A1 and A2 receptors by an endogenous adenosine release. Our experimental data could help to understand the effects of ischemic preconditioning, which are partially mediated by adenosine.

  7. Role of the mu opioid receptor in opioid modulation of immune function

    PubMed Central

    Ninković, Jana; Roy, Sabita

    2014-01-01

    SUMMARY Endogenous opioids are synthesized in vivo in order to modulate pain mechanisms and inflammatory pathways. Endogenous and exogenous opioids mediate analgesia in response to painful stimuli by binding to opioid receptors on neuronal cells. However, wide distribution of opioid receptors on tissues and organ systems outside the CNS, such as the cells of the immune system, indicate that opioids are capable of exerting additional effects in the periphery, such as immunomodulation. The increased prevalence of infections in opioid abusers based epidemiological studies further highlights the immunosuppressive effects of opioids. In spite of their many debilitating side effects, prescription opioids remain a gold standard for treatment of chronic pain. Therefore, given the prevalence of opioid use and abuse, opioid mediated immune suppression presents a serious concern in our society today. It is imperative to understand the mechanisms by which exogenous opioids modulate immune processes. In this review we will discuss the role of opioid receptors and their ligands in mediating immune suppressive functions. We will summarize recent studies on direct and indirect opioid modulation of the cells of the immune system as well as the role of opioids in exacerbation of certain disease states. PMID:22170499

  8. A novel non-opioid binding site for endomorphin-1.

    PubMed

    Lengyel, I; Toth, F; Biyashev, D; Szatmari, I; Monory, K; Tomboly, C; Toth, G; Benyhe, S; Borsodi, A

    2016-08-01

    Endomorphins are natural amidated opioid tetrapeptides with the following structure: Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2). Endomorphins interact selectively with the μ-opioid or MOP receptors and exhibit nanomolar or sub-nanomolar receptor binding affinities, therefore they suggested to be endogenous agonists for the μ-opioid receptors. Endomorphins mediate a number of characteristic opioid effects, such as antinociception, however there are several physiological functions in which endomorphins appear to act in a fashion that does not involve binding to and activation of the μ-opioid receptor. Our recent data indicate that a radiolabelled [(3)H]endomorphin-1 with a specific radioactivity of 2.35 TBq/mmol - prepared by catalytic dehalogenation of the diiodinated peptide precursor in the presence of tritium gas - is able to bind to a second, naloxone insensitive recognition site in rat brain membranes. Binding heterogeneity, i.e., the presence of higher (Kd = 0.4 nM / Bmax = 120 fmol/mg protein) and lower (Kd = 8.2 nM / Bmax = 432 fmol/mg protein) affinity binding components is observed both in saturation binding experiments followed by Schatchard analysis, and in equilibrium competition binding studies. The signs of receptor multiplicity, e.g., curvilinear Schatchard plots or biphasic displacement curves are seen only if the non-specific binding is measured in the presence of excess unlabeled endomorphin-1 and not in the presence of excess unlabeled naloxone. The second, lower affinity non-opioid binding site is not recognized by heterocyclic opioid alkaloid ligands, neither agonists such as morphine, nor antagonists such as naloxone. On the contrary, endomorphin-1 is displaced from its lower affinity, higher capacity binding site by several natural neuropeptides, including methionine-enkephalin-Arg-Phe, nociceptin-orphanin FQ, angiotensin and FMRF-amide. This naloxone-insensitive, consequently non-opioid binding site seems

  9. [Opioid overdose].

    PubMed

    Reingardiene, Dagmara; Vilcinskaite, Jolita

    2002-01-01

    The dangers of opioid overdose have been recognized for as long as the use of opium itself. When used correctly for medical purposes, opioids are remarkably safe and effective agents. However, excessive dosing, whether with therapeutic, suicidal, or euphoric intent, may results in significant toxicity. In a number of countries the use of heroin and other opioids in nonmedical contexts in associated with on increasing rate of overdose and often of fatal opioid overdose. This review article discusses opioid-receptor pharmacology, which is necessary for understanding of the signs and symptoms of opioid ingestion and management principles, clinical and toxic effects mediated with the opioids, the diagnosis and management guidelines in opioid intoxication, a clinical prediction rule to identify patients who can be safely discharge from hospital, the problems of the significant morbidity and mortality associated with opioid overdose.

  10. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    SciTech Connect

    Heiss, Anika; Ammer, Hermann; Eisinger, Daniela A.

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  11. Differences in the morphine-induced inhibition of small and large intestinal transit: Involvement of central and peripheral μ-opioid receptors in mice.

    PubMed

    Matsumoto, Kenjiro; Umemoto, Hiroyuki; Mori, Tomohisa; Akatsu, Ryuya; Saito, Shinichiro; Tashima, Kimihito; Shibasaki, Masahiro; Kato, Shinichi; Suzuki, Tsutomu; Horie, Syunji

    2016-01-15

    Constipation is the most common side effect of morphine. Morphine acts centrally and on peripheral sites within the enteric nervous system. There are a few comprehensive studies on morphine-induced constipation in the small and large intestine by the activation of central and peripheral μ-opioid receptors. We investigated the differences in the inhibition of the small and large intestinal transit in normal and morphine-tolerant mice. Morphine reduced the geometric center in the fluorescein isothiocyanate-dextran assay and prolonged the bead expulsion time in a dose-dependent manner. The inhibitory effects of morphine were blocked by μ-opioid antagonist β-funaltrexamine, but not by δ- and κ-opioid antagonists. The peripheral opioid receptor antagonist, naloxone methiodide, partially blocked morphine's effect in the small intestine and completely blocked its effect in the large intestine. The intracerebroventricular administration of naloxone significantly reversed the delay of small intestinal transit but did not affect morphine-induced inhibition of large intestinal transit. Naloxone methiodide completely reversed the inhibition of large intestinal transit in normal and morphine-tolerant mice. Naloxone methiodide partially reversed the morphine-induced inhibition of small intestinal transit in normal mice but completely reversed the effects of morphine in tolerant mice. Chronic treatment with morphine results in tolerance to its inhibitory effect on field-stimulated contraction in the isolated small intestine but not in the large intestine. These results suggest that peripheral and central opioid receptors are involved in morphine-induced constipation in the small and large intestine during the early stage of treatment, but the peripheral receptors mainly regulate constipation during long-term morphine treatment.

  12. American Society of Addiction Medicine (ASAM) National Practice Guideline for the Use of Medications in the Treatment of Addiction Involving Opioid Use.

    PubMed

    Kampman, Kyle; Jarvis, Margaret

    2015-01-01

    The Centers for Disease Control have recently described opioid use and resultant deaths as an epidemic. At this point in time, treating this disease well with medication requires skill and time that are not generally available to primary care doctors in most practice models. Suboptimal treatment has likely contributed to expansion of the epidemic and concerns for unethical practices. At the same time, access to competent treatment is profoundly restricted because few physicians are willing and able to provide it. This "Practice Guideline" was developed to assist in the evaluation and treatment of opioid use disorder, and in the hope that, using this tool, more physicians will be able to provide effective treatment. Although there are existing guidelines for the treatment of opioid use disorder, none have included all of the medications used at present for its treatment. Moreover, few of the existing guidelines address the needs of special populations such as pregnant women, individuals with co-occurring psychiatric disorders, individuals with pain, adolescents, or individuals involved in the criminal justice system. This Practice Guideline was developed using the RAND Corporation (RAND)/University of California, Los Angeles (UCLA) Appropriateness Method (RAM) - a process that combines scientific evidence and clinical knowledge to determine the appropriateness of a set of clinical procedures. The RAM is a deliberate approach encompassing review of existing guidelines, literature reviews, appropriateness ratings, necessity reviews, and document development. For this project, American Society of Addiction Medicine selected an independent committee to oversee guideline development and to assist in writing. American Society of Addiction Medicine's Quality Improvement Council oversaw the selection process for the independent development committee. Recommendations included in the guideline encompass a broad range of topics, starting with the initial evaluation of the

  13. Cyclization in opioid peptides.

    PubMed

    Piekielna, Justyna; Perlikowska, Renata; Gach, Katarzyna; Janecka, Anna

    2013-06-01

    Endogenous opioid peptides have been studied extensively as potential therapeutics for the treatment of pain. The major problems of using natural opioid peptides as drug candidates are their poor receptor specificity, metabolic instability and inability to reach the brain after systemic administration. A lot of synthetic efforts have been made to opioid analogs with improved pharmacological properties. One important structural modification leading to such analogs is cyclization of linear sequences. Intramolecular cyclization has been shown to improve biological properties of various bioactive peptides. Cyclization reduces conformational freedom responsible for the simultaneous activation of two or more receptors, increases metabolic stability and lipophilicity which may result in a longer half-life and easier penetration across biological membranes. This review deals with various strategies that have been employed to synthesize cyclic analogs of opioid peptides. Discussed are such bridging bonds as amide and amine linkages, sulfur-containing bonds, including monosulfide, disulfide and dithioether bridges, bismethylene bonds, monosulfide bridges of lanthionine and, finally, carbonyl and guanidine linkages. Opioid affinities and activities of cyclic analogs are given and compared with linear opioid peptides. Analgesic activities of analogs evaluated in the in vivo pain tests are also discussed.

  14. Cyclic Opioid Peptides.

    PubMed

    Remesic, Michael; Lee, Yeon Sun; Hruby, Victor J

    2016-01-01

    For decades the opioid receptors have been an attractive therapeutic target for the treatment of pain. Since the first discovery of enkephalin, approximately a dozen endogenous opioid peptides have been known to produce opioid activity and analgesia, but their therapeutics have been limited mainly due to low blood brain barrier penetration and poor resistance to proteolytic degradation. One versatile approach to overcome these drawbacks is the cyclization of linear peptides to cyclic peptides with constrained topographical structure. Compared to their linear parents, cyclic analogs exhibit better metabolic stability, lower offtarget toxicity, and improved bioavailability. Extensive structure-activity relationship studies have uncovered promising compounds for the treatment of pain as well as further elucidate structural elements required for selective opioid receptor activity. The benefits that come with employing cyclization can be further enhanced through the generation of polycyclic derivatives. Opioid ligands generally have a short peptide chain and thus the realm of polycyclic peptides has yet to be explored. In this review, a brief history of designing ligands for the opioid receptors, including classic linear and cyclic ligands, is discussed along with recent approaches and successes of cyclic peptide ligands for the receptors. Various scaffolds and approaches to improve bioavailability are elaborated and concluded with a discourse towards polycyclic peptides.

  15. Attentional bias for prescription opioid cues among opioid dependent chronic pain patients.

    PubMed

    Garland, Eric L; Froeliger, Brett E; Passik, Steven D; Howard, Matthew O

    2013-12-01

    Recurrent use of prescription opioid analgesics by chronic pain patients may result in opioid dependence, which involves implicit neurocognitive operations that organize and impel craving states and compulsive drug taking behavior. Prior studies have identified an attentional bias (AB) towards heroin among heroin dependent individuals. The aim of this study was to determine whether opioid-dependent chronic pain patients exhibit an AB towards prescription opioid-related cues. Opioid-dependent chronic pain patients (n = 32) and a comparison group of non-dependent opioid users with chronic pain (n = 33) completed a dot probe task designed to measure opioid AB. Participants also rated their opioid craving and self-reported arousal associated with opioid-related and neutral images, pain severity, and relief from pain treatments. Repeated-measures ANOVA revealed a significant group (opioid-dependent vs. non-dependent opioid user) × presentation duration (200. vs. 2,000 ms.) interaction, such that opioid-dependent individuals evidenced a significant AB towards opioid cues presented for 200 ms but not for cues presented for 2,000 ms, whereas non-dependent opioid users did not exhibit a significant mean AB at either stimulus duration. Among opioid-dependent individuals, 200 ms opioid AB was significantly associated with opioid craving, while among non-dependent opioid users, 200 ms opioid AB was significantly associated with relief from pain treatments. Furthermore, dependent and non-dependent opioid users experienced opioid cues as significantly more arousing than neutral cues. Opioid dependence among chronic pain patients appears to involve an automatic AB towards opioid-related cues. When coupled with chronic pain, attentional fixation on opioid cues may promote compulsive drug use and addictive behavior.

  16. Utility of next-generation RNA-sequencing in identifying chimeric transcription involving human endogenous retroviruses.

    PubMed

    Sokol, Martin; Jessen, Karen Margrethe; Pedersen, Finn Skou

    2016-01-01

    Several studies have shown that human endogenous retroviruses and endogenous retrovirus-like repeats (here collectively HERVs) impose direct regulation on human genes through enhancer and promoter motifs present in their long terminal repeats (LTRs). Although chimeric transcription in which novel gene isoforms containing retroviral and human sequence are transcribed from viral promoters are commonly associated with disease, regulation by HERVs is beneficial in other settings; for example, in human testis chimeric isoforms of TP63 induced by an ERV9 LTR protect the male germ line upon DNA damage by inducing apoptosis, whereas in the human globin locus the γ- and β-globin switch during normal hematopoiesis is mediated by complex interactions of an ERV9 LTR and surrounding human sequence. The advent of deep sequencing or next-generation sequencing (NGS) has revolutionized the way researchers solve important scientific questions and develop novel hypotheses in relation to human genome regulation. We recently applied next-generation paired-end RNA-sequencing (RNA-seq) together with chromatin immunoprecipitation with sequencing (ChIP-seq) to examine ERV9 chimeric transcription in human reference cell lines from Encyclopedia of DNA Elements (ENCODE). This led to the discovery of advanced regulation mechanisms by ERV9s and other HERVs across numerous human loci including transcription of large gene-unannotated genomic regions, as well as cooperative regulation by multiple HERVs and non-LTR repeats such as Alu elements. In this article, well-established examples of human gene regulation by HERVs are reviewed followed by a description of paired-end RNA-seq, and its application in identifying chimeric transcription genome-widely. Based on integrative analyses of RNA-seq and ChIP-seq, data we then present novel examples of regulation by ERV9s of tumor suppressor genes CADM2 and SEMA3A, as well as transcription of an unannotated region. Taken together, this article highlights

  17. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors

    PubMed Central

    Hsueh, Yuan-Shuo; Yen, Chueh-Chuan; Shih, Neng-Yao; Chiang, Nai-Jung; Li, Chien-Feng; Chen, Li-Tzong

    2013-01-01

    Gastrointestinal stromal tumor (GIST) is a prototype of mutant KIT oncogene-driven tumor. Prolonged tyrosine kinase inhibitor (TKI) treatment may result in a resistant phenotype through acquired secondary KIT mutation. Heat shock protein 90 (HSP90AA1) is a chaperone protein responsible for protein maturation and stability, and KIT is a known client protein of HSP90AA1. Inhibition of HSP90AA1 has been shown to destabilize KIT protein by enhancing its degradation via the proteasome-dependent pathway. In this study, we demonstrated that NVP-AUY922 (AUY922), a new class of HSP90AA1 inhibitor, is effective in inhibiting the growth of GIST cells expressing mutant KIT protein, the imatinib-sensitive GIST882 and imatinib-resistant GIST48 cells. The growth inhibition was accompanied with a sustained reduction of both total and phosphorylated KIT proteins and the induction of apoptosis in both cell lines. Surprisingly, AUY922-induced KIT reduction could be partially reversed by pharmacological inhibition of either autophagy or proteasome degradation pathway. The blockade of autophagy alone led to the accumulation of the KIT protein, highlighting the role of autophagy in endogenous KIT turnover. The involvement of autophagy in endogenous and AUY922-induced KIT protein turnover was further confirmed by the colocalization of KIT with MAP1LC3B-, acridine orange- or SQSTM1-labeled autophagosome, and by the accumulation of KIT in GIST cells by silencing either BECN1 or ATG5 to disrupt autophagosome activity. Therefore, the results not only highlight the potential application of AUY922 for the treatment of KIT-expressing GISTs, but also provide the first evidence for the involvement of autophagy in endogenous and HSP90AA1 inhibitor-induced KIT degradation. PMID:23196876

  18. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans

    PubMed Central

    Liao, Zebin; Yan, Yu; Dong, Huaihuai; Zhu, Zhenyu; Jiang, Yuanying; Cao, Yingying

    2016-01-01

    The aim of the present study was to investigate the role of nitric oxide (NO) in the antifungal activity of Shikonin (SK) against Candida albicans (C. albicans) and to clarify the underlying mechanism. The results showed that the NO donors S-nitrosoglutathione (GSNO) and L-arginine could enhance the antifungal activity of SK, whereas the NO production inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) attenuated antifungal action. Using the fluorescent dye 3-amino,4-aminomethyl-2′, 7-difluorescein, diacetate (DAF-FM DA), we found that the accumulation of NO in C. albicans was increased markedly by SK in a time- and dose-dependent manner. In addition, the results of real-time reverse transcription-PCR (RT-PCR) demonstrated that the transcription level of YHB1 in C. albicans was greatly increased upon incubation of SK. Consistently, the YHB1-null mutant (yhb1Δ/Δ) exhibited a higher susceptibility to SK than wild-type cells. In addition, although the transcription level of CTA4 in C. albicans was not significantly changed when exposed to SK, the CTA4-null mutant (cta4Δ/Δ) was more susceptible to SK. Collectively, SK is the agent found to execute its antifungal activity directly via endogenous NO accumulation, and NO-mediated damage is related to the suppression of YHB1 and the function of CTA4. PMID:27530748

  19. Evaluation of endogenous species involved in brain tumors using multiphoton photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Dahal, Sudhir; Cullum, Brian M.

    2013-05-01

    It has been shown that using non-resonant multiphoton photoacoustic spectroscopy (NMPPAS), excised brain tumor (grade III astrocytoma) and healthy tissue can be differentiated from each other, even in neighboring biopsy samples[1, 2]. Because of this, this powerful technique offers a great deal of potential for use as a surgical guidance technique for tumor margining with up to cellular level spatial resolution[3]. NMPPAS spectra are obtained by monitoring the non-radiative relaxation pathways via ultrasonic detection, following two-photon excitation with light in the optical diagnostic window (740nm-1100nm). Based upon significant differences in the ratiometric absorption of the tissues following 970nm and 1100nm excitation, a clear classification of the tissue can be made. These differences are the result of variations in composition and oxidation state of certain endogenous biochemical species between healthy and malignant tissues. In this work, NADH, NAD+ and ATP were measured using NMPPAS in model gelatin tissue phantoms to begin to understand which species might be responsible for the observed spectral differences in the tissue. Each species was placed in specific pH environments to provide control over the ratio of oxidized to reduced forms of the species. Ratiometric analyses were then conducted to account for variability caused due to instrumental parameters. This paper will discuss the potential roles of each of the species for tumor determination and their contribution to the spectral signature.

  20. Study the Antinociceptive Effect of Intracerebroventricular Injection of Aqueous Extract of Origanum Vulgare Leaves in Rat: Possible Involvement of Opioid System

    PubMed Central

    Pahlavan, Yasaman; Sepehri, Gholamreza; Sheibani, Vahid; Afarinesh khaki, Mohammadreza; Gojazadeh, Morteza; Pahlavan, Bahare; Pahlavan, Fereshteh

    2013-01-01

    Objective(s): The aim of study was to investigate the antinociceptive effect of intracerebroventricular (ICV) microinjection of Origanum vulgare (ORG) extract and possible involvement of opioid receptors. Materials and Methods: Cannula was inserted into left ventricle of male rats. Five days after surgery Tail Flick Latency (TFL) was measured after ICV microinjection of, ORG (1, 3 and 6 µg / rat). Effective dose of ORG was injected ICV in concomitant with morphine (2 mg/kg, IP), naloxone (2 mg / kg, IP) and saline (0.5 µl/rat) and TFL was recorded. Results: The co- administration of ORG extract with morphine showed a significant increase in TFL and naloxone, pretreatment significantly inhibited the antinociceptive activity of ORG and morphine. Conclusion: The aqueous extract of ORG possesses antinociceptive activities in the tail-flick test in a dose dependent manner. ORG - induced antinociception may have been mediated by opioid systems. PMID:24379969

  1. Opioid intoxication

    MedlinePlus

    ... morphine, heroin, oxycodone, and synthetic (man-made) opioid narcotics. Prescription opioids are used to treat pain. Intoxication ... central nervous system (such medicine is called a narcotic antagonist) Other medicines as needed Since the effect ...

  2. Life-Threatening Opioid Toxicity

    DTIC Science & Technology

    1987-01-01

    receptor is currently the object of much it- "ention. This receptor is postulated to me- diate hallucinations, delusions, and dys- occurring peptides ...teraction with endogenous opioid receptors, peptides have also been shown to function opiate drugs are classified as agonists as neurotransmitters...activity of others; Table 1). function.Ŗ’ 3 Delta sleep-inducing peptide Modulation of opioid receptor activity oc- (DSIP) has also been implicated

  3. Protein kinase C involvement in homologous desensitization of delta-opioid receptor coupled to Gi1-phospholipase C activation in Xenopus oocytes.

    PubMed

    Ueda, H; Miyamae, T; Hayashi, C; Watanabe, S; Fukushima, N; Sasaki, Y; Iwamura, T; Misu, Y

    1995-11-01

    We have developed the coexpression system of both delta-opioid receptor (DOR1) and M2-muscarinic receptor (M2) which mediate agonist-evoked currents due to common post-receptor mechanisms including Gi1 and phospholipase C (PLC) activation in Xenopus oocytes reconstituted with Gi1 alpha. The DOR1-currents by 100 nM D-Ser2-leu-enkephalin-Thr6 (DSLET) were selectively desensitized by 10 nM phorbol 12-myristate 13-acetate (PMA). The PMA-desensitization of DSLET-currents was abolished in the presence of calphostin C, a protein kinase C inhibitor, or reversed by an intracellular injection of calcineurin, a protein phosphatase 2B. When a higher concentration (3 microM) of DSLET was used, DSLET-currents were rapidly desensitized by repeated challenges of DSLET itself. However, repeated challenges of 10 microM ACh caused no influence on such DSLET- or M2-currents. The desensitization of DSLET-currents was selectively reversed by protein kinase C inhibitors. Similar results were also obtained with various delta-opioid agonists. These results suggest that protein kinase C is involved in the homologous desensitization of delta-opioid receptors.

  4. Opioid Analgesics.

    PubMed

    Jamison, Robert N; Mao, Jianren

    2015-07-01

    Chronic pain is an international health issue of immense importance that is influenced by both physical and psychological factors. Opioids are useful in treating chronic pain but have accompanying complications. It is important for clinicians to understand the basics of opioid pharmacology, the benefits and adverse effects of opioids, and related problematic issues of tolerance, dependence, and opioid-induced hyperalgesia. In this article, the role of psychiatric comorbidity and the use of validated assessment tools to identify individuals who are at the greatest risk for opioid misuse are discussed. Additionally, interventional treatment strategies for patients with chronic pain who are at risk for opioid misuse are presented. Specific behavioral interventions designed to improve adherence with prescription opioids among persons treated for chronic pain, such as frequent monitoring, periodic urine screens, opioid therapy agreements, opioid checklists, and motivational counseling, are also reviewed. Use of state-sponsored prescription drug monitoring programs is also encouraged. Areas requiring additional investigation are identified, and the future role of abuse-deterrent opioids and innovative technology in addressing issues of opioid therapy and pain are presented.

  5. Endogenous basic fibroblast growth factor isoforms involved in different intracellular protein complexes.

    PubMed Central

    Patry, V; Bugler, B; Maret, A; Potier, M; Prats, H

    1997-01-01

    Four forms of basic fibroblast growth factor (bFGF or FGF-2) result from an alternative initiation of translation involving one AUG (155-amino acid form) and three CUGs (210-, 201- and 196-amino acid forms). These different forms of bFGF show different intracellular biological activities. To identify their intracellular targets, the 210- and 155-amino acid forms of bFGF were independently transfected into CHO cells and their correct subcellular localizations were verified, the 155-amino acid bFGF form being essentially cytoplasmic whereas the 210-amino acid protein was nuclear. The radiation fragmentation method was used to determine the target size of the different bFGF isoforms in the transfected CHO cells and to show that the 210- and 155-amino acids bFGF isoforms were included in protein complexes of 320 and 130 kDa respectively. Similar results were obtained using the SK-Hep1 cell line, which naturally expressed all forms of bFGF. Co-immunoprecipitation assays using different chimaeric bFGF-chloramphenicol acetyltransferase proteins showed that different cellular proteins are associated with different parts of the bFGF molecule. We conclude that bFGF isoforms are involved in different molecular complexes in the cytosol and nucleus, which would reflect different functions for these proteins. PMID:9337877

  6. Buprenorphine for opioid addiction

    PubMed Central

    Ling, Walter; Mooney, Larissa; Torrington, Matthew

    2014-01-01

    SUMMARY Buprenorphine is a partial opioid agonist of the µ-receptor, and is used as a daily dose sublingual tablet or filmstrip for managing opioid addiction. In the USA, the Drug Addiction Treatment Act of 2000 made buprenorphine the only opioid medication for opioid addiction that can be prescribed in an office-based setting. Owing to its high affinity for the µ-receptor, buprenorphine inhibits the reinforcing effect of exogenous opioids. The ceiling effect of buprenorphine's µ-agonist activity reduces the potential for drug overdose and confers low toxicity even at high doses. Buprenorphine pharmacotherapy has proven to be a treatment approach that supports recovery from addiction while reducing or curtailing the use of opioids. This article examines buprenorphine pharmacotherapy for opioid addiction, focusing on the situation in the USA, and is based on a review of pertinent literature, and the authors’ research and clinical experience. The references in this paper were chosen according to the authors’ judgment of quality and relevance, and with respect to their familiarity and involvement in related research. PMID:24654720

  7. Opioid peptides in peripheral pain control.

    PubMed

    Lesniak, Anna; Lipkowski, Andrzej W

    2011-01-01

    Opioids have a long history of therapeutic use as a remedy for various pain states ranging from mild acute nociceptive pain to unbearable chronic advanced or end-stage disease pain. Analgesia produced by classical opioids is mediated extensively by binding to opioid receptors located in the brain or the spinal cord. Nevertheless, opioid receptors are also expressed outside the CNS in the periphery and may become valuable assets in eliciting analgesia devoid of shortcomings typical for the activation of their central counterparts. The discovery of endogenous opioid peptides that participate in the formation, transmission, modulation and perception of pain signals offers numerous opportunities for the development of new analgesics. Novel peptidic opioid receptor analogs, which show limited access through the blood brain barrier may support pain therapy requiring prolonged use of opioid drugs.

  8. The opioid receptors as targets for drug abuse medication.

    PubMed

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-08-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse.

  9. The opioid receptors as targets for drug abuse medication

    PubMed Central

    Noble, Florence; Lenoir, Magalie; Marie, Nicolas

    2015-01-01

    The endogenous opioid system is largely expressed in the brain, and both endogenous opioid peptides and receptors are present in areas associated with reward and motivation. It is well known that this endogenous system plays a key role in many aspects of addictive behaviours. The present review summarizes the modifications of the opioid system induced by chronic treatment with drugs of abuse reported in preclinical and clinical studies, as well as the action of opioid antagonists and agonists on the reinforcing effects of drugs of abuse, with therapeutic perspectives. We have focused on the effects of chronic psychostimulants, alcohol and nicotine exposure. Taken together, the changes in both opioid peptides and opioid receptors in different brain structures following acute or chronic exposure to these drugs of abuse clearly identify the opioid system as a potential target for the development of effective pharmacotherapy for the treatment of addiction and the prevention of relapse. PMID:25988826

  10. Involvement of endogenous CCK and CCK1 receptors in colonic motor function

    PubMed Central

    Varga, Gábor; Bálint, András; Burghardt, Beáta; D'Amato, Massimo

    2004-01-01

    Cholecystokinin (CCK) is a brain-gut peptide; it functions both as a neuropeptide and as a gut hormone. Although the pancreas and the gallbladder were long thought to be the principal peripheral targets of CCK, CCK receptors are found throughout the gut. It is likely that CCK has a physiological role not only in the stimulation of pancreatic and biliary secretions but also in the regulation of gastrointestinal motility. The motor effects of CCK include postprandial inhibition of gastric emptying and inhibition of colonic transit. It is now evident that at least two different receptors, CCK1 and CCK2 (formerly CCK-A and CCK-B, respectively), mediate the actions of CCK. Both localization and functional studies suggest that the motor effects of CCK are mediated by CCK1 receptors in humans. Since CCK is involved in sensory and motor responses to distension in the intestinal tract, it may contribute to the symptoms of constipation, bloating and abdominal pain that are often characteristic of functional gastrointestinal disorders in general and irritable bowel syndrome (IBS), in particular. CCK1 receptor antagonists are therefore currently under development for the treatment of constipation-predominant IBS. Clinical studies suggest that CCK1 receptor antagonists are effective facilitators of gastric emptying and inhibitors of gallbladder contraction and can accelerate colonic transit time in healthy volunteers and patients with IBS. These drugs are therefore potentially of great value in the treatment of motility disorders such as constipation and constipation-predominant IBS. PMID:15100163

  11. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn

  12. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn

  13. Involvement of mu opioid receptors of periaqueductal gary (PAG) in acupuncture inhibition of noxious blood pressure response in rabbits.

    PubMed

    Gao, M; Xu, W; Chen, W; He, L

    1994-01-01

    Strong electric shock stimulation of the rabbit front paw elicited a pressor blood pressure response regarded as noxious response. Ligands of mu opioid receptors were microinjected into the PAG to observe their effects on acupunture inhibition of the pressor response. (1) Ohmefentanyl (OMF), a mu agonist, significantly attenuated the pressor response. Mu antagonist TCTAP greatly enhanced the pressor response. (2) Electroacupuncture (EA) significantly inhibited the pressor response, the inhibition being readily reversed by TCTAP. The response after TCTAP was significantly greater than that of the control before EA. The results suggest that noxious stimulation is able to activate the mu opioid receptor of the PAG to modulate the noxious response and EA is able to enhance the activation.

  14. Involvement of μ- and δ-opioid receptor function in the rewarding effect of (±)-pentazocine.

    PubMed

    Mori, Tomohisa; Itoh, Toshimasa; Yoshizawa, Kazumi; Ise, Yuya; Mizuo, Keisuke; Saeki, Tomoya; Komiya, Sachiko; Masukawa, Daiki; Shibasaki, Masahiro; Suzuki, Tsutomu

    2015-07-01

    Most opioid receptor agonists have abuse potential, and the rewarding effects of opioids can be reduced in the presence of pain. While each of the enantiomers of pentazocine has a differential pharmacologic profile, (±)-pentazocine has been used clinically for the treatment of pain. However, little information is available regarding which components of pentazocine are associated with its rewarding effects, and whether the (±)-pentazocine-induced rewarding effects can be suppressed under pain. Therefore, the present study was performed to investigate the effects of pain on the acquisition of the rewarding effects of (±)-pentazocine, and to examine the mechanism of the rewarding effects of (±)-pentazocine using the conditioned place preference paradigm. (±)-Pentazocine and (-)-pentazocine, but not (+)-pentazocine, produced significant rewarding effects. Even though the rewarding effects induced by (±)-pentazocine were significantly suppressed under pain induced by formalin, accompanied by increase of preprodynorphin mRNA levels in the nucleus accumbens, a high dose of (±)-pentazocine produced significant rewarding effects under pain. In the normal condition, (±)-pentazocine-induced rewarding effects were blocked by a low dose of naloxone, whereas the rewarding effects induced by high doses of pentazocine under pain were suppressed by naltrindole (a δ-opioid receptor antagonist). Interestingly, (±)-pentazocine did not significantly affect dopamine levels in the nucleus accumbens. These findings suggest that the rewarding effects of (-)-pentazocine may contribute to the abuse potential of (±)-pentazocine through μ- as well as δ-opioid receptors, without robust activation of the mesolimbic dopaminergic system. We also found that neural adaptations can reduce the abuse potential of (±)-pentazocine under pain.

  15. American Society of Addiction Medicine (ASAM) National Practice Guideline for the Use of Medications in the Treatment of Addiction Involving Opioid Use

    PubMed Central

    Kampman, Kyle; Jarvis, Margaret

    2015-01-01

    The Centers for Disease Control have recently described opioid use and resultant deaths as an epidemic. At this point in time, treating this disease well with medication requires skill and time that are not generally available to primary care doctors in most practice models. Suboptimal treatment has likely contributed to expansion of the epidemic and concerns for unethical practices. At the same time, access to competent treatment is profoundly restricted because few physicians are willing and able to provide it. This “Practice Guideline” was developed to assist in the evaluation and treatment of opioid use disorder, and in the hope that, using this tool, more physicians will be able to provide effective treatment. Although there are existing guidelines for the treatment of opioid use disorder, none have included all of the medications used at present for its treatment. Moreover, few of the existing guidelines address the needs of special populations such as pregnant women, individuals with co-occurring psychiatric disorders, individuals with pain, adolescents, or individuals involved in the criminal justice system. This Practice Guideline was developed using the RAND Corporation (RAND)/University of California, Los Angeles (UCLA) Appropriateness Method (RAM) – a process that combines scientific evidence and clinical knowledge to determine the appropriateness of a set of clinical procedures. The RAM is a deliberate approach encompassing review of existing guidelines, literature reviews, appropriateness ratings, necessity reviews, and document development. For this project, American Society of Addiction Medicine selected an independent committee to oversee guideline development and to assist in writing. American Society of Addiction Medicine's Quality Improvement Council oversaw the selection process for the independent development committee. Recommendations included in the guideline encompass a broad range of topics, starting with the initial evaluation of

  16. Prescription Pain Medications (Opioids)

    MedlinePlus

    ... Drug Facts / Prescription Pain Medications (Opioids) Prescription Pain Medications (Opioids) Print What is prescription opioid misuse? Also ... Hillbilly Heroin, OC, or Vikes Prescription opioids are medications that are chemically similar to endorphins – opioids that ...

  17. Endogenous and Exogenous Calcium Involved in the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide.

    PubMed

    Fan, Guizhi; Jian, Duan; Sun, Meiling; Zhan, Yaguang; Sun, Feifei

    2016-02-01

    Using pharmacological and biochemical approaches, Ca(2+) involved in the betulin production in mycelia of Phellinus linteus induced by hydrogen sulfide (H2S) were investigated. The results showed that 2 mM H2S donor NaHS or 10 mM CaCl2 was found to enhance the betulin content in the mycelia of Phellinus to the maximum, which were 112.43 and 93.24% higher than that in the control, respectively. Further, NaHS and CaCl2 co-treatment also showed positive outcome, which were 128.95 or 24.52% higher than that in the control or NaHS treatment. At the same time, NaHS also enhanced the content of Ca(2+) and CaM. But, the above positive inductive effects for Ca(2+), CaM, and betulin production can be blocked with either Ca(2+) channel blocker (LaCl3, 2-aminoethoxydiphenyl borate) or Ca(2+) chelator (ethylenediaminetetraacetic acid (EDTA)). Among of them, betulin content was reduced 35.06% by NaHS and EGTA to the minimum, and this reduction could be reversed by the application of CaCl2 (NaHS + EGTA + CaCl2). From above results, it can be concluded that endogenous and exogenous calcium involved in the betulin production from submerged culture of P. linteus induced by hydrogen sulfide.

  18. Endogenous Opiates and Behavior: 2006

    PubMed Central

    Bodnar, Richard J.

    2009-01-01

    This paper is the twenty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning thirty years of research. It summarizes papers published during 2006 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurological disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17). PMID:17949854

  19. Interactions between opioids and anabolic androgenic steroids: implications for the development of addictive behavior.

    PubMed

    Nyberg, Fred; Hallberg, Mathias

    2012-01-01

    Over the past decades, research on doping agents, such as anabolic androgenic steroids (AAS), has revealed that these compounds are often used in combination with other drugs of abuse. It seems that misuse of AAS probably involves more than a desire to enhance appearance or sports performance and studies have revealed that steroids are commonly connected with alcohol, opioids, tobacco, and psychotropic drugs. We have observed that AAS may interact with the endogenous opioids, excitatory amino acids, and dopaminergic pathways involved in the brain reward system. Furthermore, our studies provide evidence that AAS may induce an imbalance in these signal systems leading to an increased sensitivity toward opioid narcotics and central stimulants. In fact, studies performed in various clinics have shown that individuals taking AAS are likely to get addicted to opioids like heroin. This chapter reviews current knowledge on interactions between AAS and endogenous as well as exogenous opioids based not only on research in our laboratory but also on research carried out by several other clinical and preclinical investigators.

  20. The evolution of vertebrate opioid receptors

    PubMed Central

    Stevens, Craig W.

    2011-01-01

    The proteins that mediate the analgesic and other effects of opioid drugs and endogenous opioid peptides are known as opioid receptors. Opioid receptors consist of a family of four closely-related proteins belonging to the large superfamily of G-protein coupled receptors. The three types of opioid receptors shown unequivocally to mediate analgesia in animal models are the mu (MOR), delta (DOR), and kappa (KOR) opioid receptor proteins. The role of the fourth member of the opioid receptor family, the nociceptin or orphanin FQ receptor (ORL), is not as clear as hyperalgesia, analgesia, and no effect was reported after administration of ORL agonists. There are now cDNA sequences for all four types of opioid receptors that are expressed in the brain of six species from three different classes of vertebrates. This review presents a comparative analysis of vertebrate opioid receptors using bioinformatics and data from recent human genome studies. Results indicate that opioid receptors arose by gene duplication, that there is a vector of opioid receptor divergence, and that MOR shows evidence of rapid evolution. PMID:19273128

  1. Peripheral interactions between cannabinoid and opioid systems contribute to the antinociceptive effect of crotalphine

    PubMed Central

    Machado, F C; Zambelli, V O; Fernandes, A C O; Heimann, A S; Cury, Y; Picolo, G

    2014-01-01

    Background and Purpose Crotalphine is an antinociceptive peptide that, despite its opioid-like activity, does not induce some of the characteristic side effects of opioids, and its amino acid sequence has no homology to any known opioid peptide. Here, we evaluated the involvement of the peripheral cannabinoid system in the crotalphine effect and its interaction with the opioid system. Experimental Approach Hyperalgesia was evaluated using the rat paw pressure test. Involvement of the cannabinoid system was determined using a selective cannabinoid receptor antagonist. Cannabinoid and opioid receptor activation were evaluated in paw slices by immunofluorescence assays using conformation state-sensitive antibodies. The release of endogenous opioid peptides from skin tissue was measured using a commercial enzyme immunoassay (EIA). Key Results Both p.o. (0.008–1.0 μg·kg−1) and intraplantar (0.0006 μg per paw) administration of crotalphine induced antinociception in PGE2-induced hyperalgesia. Antinociception by p.o. crotalphine (1 μg·kg−1) was blocked by AM630 (50 μg per paw), a CB2 receptor antagonist, and by antiserum anti-dynorphin A (1 μg per paw). Immunoassay studies confirmed that crotalphine increased the activation of both κ-opioid (51.7%) and CB2 (28.5%) receptors in paw tissue. The local release of dynorphin A from paw skin was confirmed by in vitro EIA and blocked by AM630. Conclusions and Implications Crotalphine-induced antinociception involves peripheral CB2 cannabinoid receptors and local release of dynorphin A, which is dependent on CB2 receptor activation. These results enhance our understanding of the mechanisms involved in the peripheral effect of crotalphine, as well as the interaction between the opioid and cannabinoid systems. PMID:24460677

  2. Generation of a KOR-Cre Knockin Mouse Strain to Study Cells Involved in Kappa Opioid Signaling

    PubMed Central

    Kuzirian, Marissa S.; Snyder, Lindsey M.; Matsushita, Megumi; Lee, Michael C.; Ferguson, Carolyn; Homanics, Gregg E.; Barth, Alison L.; Ross, Sarah E.

    2015-01-01

    The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non-neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR-Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR-Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR-Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR-Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR-Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR. PMID:26575788

  3. Tolerance to Non-Opioid Analgesics is Opioid Sensitive in the Nucleus Raphe Magnus.

    PubMed

    Tsagareli, Merab G; Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz

    2011-01-01

    Repeated injection of opioid analgesics can lead to a progressive loss of effect. This phenomenon is known as tolerance. Several lines of investigations have shown that systemic, intraperitoneal administration or the microinjection of non-opioid analgesics, non-steroidal anti-inflammatory drugs (NSAIDs) into the midbrain periaqueductal gray matter induces antinociception with some effects of tolerance. Our recent study has revealed that microinjection of three drugs analgin, ketorolac, and xefocam into the central nucleus of amygdala produce tolerance to them and cross-tolerance to morphine. Here we report that repeated administrations of these NSAIDs into the nucleus raphe magnus (NRM) in the following 4 days result in progressively less antinociception compare to the saline control, i.e., tolerance develops to these drugs in male rats. Special control experiments showed that post-treatment with the μ-opioid antagonist naloxone into the NRM significantly decreased antinociceptive effects of NSAIDs on the first day of testing in the tail-flick (TF) reflex and hot plate (HP) latency tests. On the second day, naloxone generally had trend effects in both TF and HP tests and impeded the development of tolerance to the antinociceptive effect of non-opioid analgesics. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, repeated injections of NSAIDs progressively lead to tolerance to them, cross-tolerance to morphine, and the risk of a withdrawal syndrome. Therefore, these results are important for human medicine too.

  4. Involvement of the renin-angiotensin system in endogenous central histamine-induced reversal of critical haemorrhagic hypotension in rats.

    PubMed

    Jochem, J

    2004-03-01

    The study was undertaken to examine the involvement of the renin-angiotensin system in the reversal by endogenous central histamine of critical haemorrhagic hypotension in anaesthetised Wistar rats. Histamine N-methyltransferase inhibitor metoprine (20 microg) administered intracerebroventricularly at 5 min of critical hypotension 20-25 mmHg produced increases in histamine concentrations as measured 20 min after treatment in the hypothalamus (581.33 +/- 63.23 vs. 488.26 +/- 56.34 ng/g of wet tissue; P < 0.01) and medulla oblongata (53.42 +/- 14.65 vs. 34.68 +/- 13.52 ng/g of wet tissue; P < 0.05). That was accompanied by 34.7% higher plasma angiotensin II concentration in comparison to the control group. Metoprine produced dose-dependent (5-20 microg) rises in mean arterial pressure (MAP) and heart rate, which were significantly higher than those in normotensive animals. The resuscitating action of metoprine (20 microg) was associated with rises in renal, mesenteric and hindquarters blood flows, and a 100% survival at 2 h after treatment, while in the saline-treated group, all the animals died within 30 min. Angiotensin type 1 (AT(1)) receptor antagonist ZD 7155 (0.5 mg/kg; iv) decreased regional vascular resistance and inhibited metoprine-induced increase in MAP, whereas AT(2) receptor blocker PD 123319 (10 mg/kg; i.v.) had no effect. Angiotensin-converting enzyme inhibitor captopril (30 mg/kg; i.v.) reduced the increase in plasma angiotensin II level and the haemodynamic effects of metoprine. Neither capropril, nor angiotensin receptor antagonists influence the survival at 2 h after treatment. In conclusion, the renin-angiotensin system is involved in central histamine-induced resuscitating action in rats.

  5. Comparing analgesia and μ-opioid receptor internalization produced by intrathecal enkephalin

    PubMed Central

    Chen, Wenling; Song, Bingbing; Lao, Lijun; Pérez, Orlando A.; Kim, Woojae; Marvizón, Juan Carlos G.

    2007-01-01

    Summary Opioid receptors in the spinal cord produce strong analgesia, but the mechanisms controlling their activation by endogenous opioids remain unclear. We have previously shown in spinal cord slices that peptidases preclude μ-opioid receptor (MOR) internalization by opioids. Our present goals were to investigate whether enkephalin-induced analgesia is also precluded by peptidases, and whether it is mediated by MORs or δ-opioid receptors (DORs). Tail-flick analgesia and MOR internalization were measured in rats injected intrathecally with Leu-enkephalin and peptidase inhibitors. Without peptidase inhibitors, Leu-enkephalin produced neither analgesia nor MOR internalization at doses up to 100 nmol, whereas with peptidase inhibitors it produced analgesia at 0.3 nmol and MOR internalization at 1 nmol. Leu-enkephalin was ten times more potent to produce analgesia than to produce MOR internalization, suggesting that DORs were involved. Selective MOR or DOR antagonists completely blocked the analgesia elicited by 0.3 nmol Leu-enkephalin (a dose that produced little MOR internalization), indicating that it involved these two receptors, possibly by an additive or synergistic interaction. The selective MOR agonist endomorphin-2 produced analgesia even in the presence of a DOR antagonist, but at doses substantially higher than Leu-enkephalin. Unlike Leu-enkephalin, endomorphin-2 had the same potencies to induce analgesia and MOR internalization. We concluded that low doses of enkephalins produce analgesia by activating both MORs and DORs. Analgesia can also be produced exclusively by MORs at higher agonist doses. Since peptidases prevent the activation of spinal opioid receptors by enkephalins, the coincident release of opioids and endogenous peptidase inhibitors may be required for analgesia. PMID:17845806

  6. Opioid receptors in the gastrointestinal tract

    PubMed Central

    Holzer, Peter

    2011-01-01

    Opium is arguably one of the oldest herbal medicines, being used as analgesic, sedative and antidiarrheal drug for thousands of years. These effects mirror the actions of the endogenous opioid system and are mediated by the principal μ-, κ- and δ-opioid receptors. In the gut, met-enkephalin, leu-enkephalin, β-endorphin and dynorphin occur in both neurons and endocrine cells. When released, opioid peptides activate opioid receptors on the enteric circuitry controlling motility and secretion. As a result, inhibition of gastric emptying, increase in sphincter tone, induction of stationary motor patterns and blockade of peristalsis ensue. Together with inhibition of ion and fluid secretion, these effects cause constipation, one of the most frequent and troublesome adverse reactions of opioid analgesic therapy. Although laxatives are most frequently used to ameliorate opioid-induced bowel dysfunction, their efficacy is unsatisfactory. Specific antagonism of peripheral opioid receptors is a more rational approach. This goal is addressed by the use of opioid receptor antagonists with limited absorption such as oral prolonged-release naloxone and opioid receptor antagonists that do not penetrate the blood-brain barrier such as methylnaltrexone and alvimopan. Preliminary evidence indicates that peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right. PMID:19345246

  7. Disturbance of endogenous hydrogen sulfide generation and endoplasmic reticulum stress in hippocampus are involved in homocysteine-induced defect in learning and memory of rats.

    PubMed

    Li, Man-Hong; Tang, Ji-Ping; Zhang, Ping; Li, Xiang; Wang, Chun-Yan; Wei, Hai-Jun; Yang, Xue-Feng; Zou, Wei; Tang, Xiao-Qing

    2014-04-01

    Homocysteine (Hcy) is a risk factor for Alzheimer's disease (AD). Hydrogen sulfide (H2S) acts as an endogenous neuromodulator and neuroprotectant. It has been shown that endoplasmic reticulum (ER) stress is involved in the pathological mechanisms of the learning and memory dysfunctions and that H2S exerts its neuroprotective role via suppressing ER stress. In the present work, we explored the effects of intracerebroventricular injection of Hcy on the formation of learning and memory, the generation of endogenous H2S, and the expression of ER stress in the hippocampus of rats. We found that intracerebroventricular injection of Hcy in rats leads to learning and memory dysfunctions in the Morris water maze and novel of object recognition test and decreases in the expression of cystathionine-β-synthase, the major enzyme responsible for endogenous H2S generation, and the generation of endogenous H2S in the hippocampus of rats. We also showed that exposure of Hcy could up-regulate the expressions of glucose-regulated protein 78 (GRP78), CHOP, and cleaved caspase-12, which are the major mark proteins of ER stress, in the hippocampus of rats. Taken together, these results suggest that the disturbance of hippocampal endogenous H2S generation and the increase in ER stress in the hippocampus are related to Hcy-induced defect in learning and memory.

  8. Combination opioid analgesics.

    PubMed

    Smith, Howard S

    2008-01-01

    Although there is no "ideal analgesic," scientists and clinicians alike continue to search for compounds with qualities which may approach the "ideal analgesic." Characteristics of an "ideal" analgesic may include: the agent is a full agonist providing optimal/maximal analgesia for a wide range/variety of pain states (e.g., broad spectrum analgesic activity), it does not exhibit tolerance, it produces no unwanted effects and minimal adverse effects, it has no addictive potential, it does not facilitate pain/hyperalgesia, it has a long duration, it has high oral bioavailability, it is not vulnerable to important drug interactions, it is not significantly bound to plasma proteins, it has no active metabolites, it has linear kinetics, and it is eliminated partly by hydrolysis to an inactive metabolite (without involvement of oxidative and conjugative enzymes). Investigators have concentrated on ways to alter existing analgesics or to combine existing analgesic compounds with compounds which may improve efficacy over time or minimize adverse effects. The addition of an analgesic with a second agent (which may or may not also be an analgesic) to achieve a "combination analgesic" is a concept which has been exploited for many years. Although there may be many reasons to add 2 agents together in efforts to achieve analgesia, for purposes of this article - reasons for combining an opioid with a second agent to produce a combination opioid analgesic may be classified into 6 major categories: 1.) combinations to prolong analgesic duration; 2.) combinations to enhance or optimize analgesic efficacy (e.g., analgesic synergy); 3.) combinations to diminish or minimize adverse effects; 4.) combinations to diminish opioid effects which are not beneficial (or contrariwise to or enhance beneficial opioid effects); 5.) combinations to reduce opioid tolerance/opioid-induced hyperalgesia; and 6.) combinations to combat dependency issues/addiction potential/craving sensations

  9. The role of δ-opioid receptors in learning and memory underlying the development of addiction

    PubMed Central

    Klenowski, Paul; Morgan, Michael; Bartlett, Selena E

    2015-01-01

    Opioids are important endogenous ligands that exist in both invertebrates and vertebrates and signal by activation of opioid receptors to produce analgesia and reward or pleasure. The μ-opioid receptor is the best known of the opioid receptors and mediates the acute analgesic effects of opiates, while the δ-opioid receptor (DOR) has been less well studied and has been linked to effects that follow from chronic use of opiates such as stress, inflammation and anxiety. Recently, DORs have been shown to play an essential role in emotions and increasing evidence points to a role in learning actions and outcomes. The process of learning and memory in addiction has been proposed to involve strengthening of specific brain circuits when a drug is paired with a context or environment. The DOR is highly expressed in the hippocampus, amygdala, striatum and other basal ganglia structures known to participate in learning and memory. In this review, we will focus on the role of the DOR and its potential role in learning and memory underlying the development of addiction. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24641428

  10. Selective involvement of kappa opioid and phencyclidine receptors in the analgesic and motor effects of dynorphin-A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro.

    PubMed

    Shukla, V K; Bansinath, M; Dumont, M; Lemaire, S

    1992-09-18

    Dynorphin A-(1-13)-Tyr-Leu-Phe-Asn-Gly-Pro (Dyn Ia; 1-8 nmol) injected intracerebroventricularly in the mouse produces two independent behavioral effects: (1) a norbinaltorphimine (kappa opioid antagonist)-reversible analgesia in the acetic acid-induced writhing test and (2) motor dysfunction characterized by wild running, pop-corn jumping, hindlimb jerking and barrel rolling and antagonized by the irreversible phencyclidine (PCP) and sigma (sigma) receptor antagonist, metaphit and the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonists, dextromethorphan and ketamine. The specific involvement of the PCP receptor in the motor effects of Dyn Ia is supported by the direct competitive interaction of the peptide with the binding of [3H]MK-801 (Ki: 0.63 microM) and [3H]TCP (Ki: 4.6 microM) to mouse brain membrane preparations.

  11. Opioid Addiction

    MedlinePlus

    ... brain responds to pain. Doctors most often prescribe opioids to relieve pain from toothaches and dental procedures, injuries, surgeries, and chronic conditions such as cancer. Some prescription cough medicines ...

  12. Opioid Abuse and Addiction

    MedlinePlus

    ... oxycodone, hydrocodone, fentanyl, and tramadol. The illegal drug heroin is also an opioid. Some opioids are made ... NAS). Opioid abuse may sometimes also lead to heroin use, because some people switch from prescription opioids ...

  13. Alcohol involvement in opioid pain reliever and benzodiazepine drug abuse-related emergency department visits and drug-related deaths - United States, 2010.

    PubMed

    Jones, Christopher M; Paulozzi, Leonard J; Mack, Karin A

    2014-10-10

    The abuse of prescription drugs has led to a significant increase in emergency department (ED) visits and drug-related deaths over the past decade. Opioid pain relievers (OPRs) and benzodiazepines are the prescription drugs most commonly involved in these events. Excessive alcohol consumption also accounts for a significant health burden and is common among groups that report high rates of prescription drug abuse. When taken with OPRs or benzodiazepines, alcohol increases central nervous system depression and the risk for overdose. Data describing alcohol involvement in OPR or benzodiazepine abuse are limited. To quantify alcohol involvement in OPR and benzodiazepine abuse and drug-related deaths and to inform prevention efforts, the Food and Drug Administration (FDA) and CDC analyzed 2010 data for drug abuse-related ED visits in the United States and drug-related deaths that involved OPRs and alcohol or benzodiazepines and alcohol in 13 states. The analyses showed alcohol was involved in 18.5% of OPR and 27.2% of benzodiazepine drug abuse-related ED visits and 22.1% of OPR and 21.4% of benzodiazepine drug-related deaths. These findings indicate that alcohol plays a significant role in OPR and benzodiazepine abuse. Interventions to reduce the abuse of alcohol and these drugs alone and in combination are needed.

  14. The role of the opioid system in binge eating disorder

    PubMed Central

    Chiara, Giuliano; Pietro, Cottone

    2015-01-01

    Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems regulating the anticipatory incentive processes preceding binge eating hedonic episodes. PMID:26499083

  15. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    PubMed Central

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  16. CNS penetration of the opioid glycopeptide MMP-2200: A microdialysis study

    PubMed Central

    Mabrouk, Omar S.; Falk, Torsten; Sherman, Scott J.; Kennedy, Robert T.; Polt, Robin

    2012-01-01

    Endogenous opioid peptides enkephalin and dynorphin are major co-transmitters of striatofugal pathways of the basal ganglia. They are involved in the genesis of levodopa-induced dyskinesia and in the modulation of direct and indirect striatal output pathways that are disrupted in Parkinson’s disease. One pharmacologic approach is to develop synthetic glycopeptides closely resembling endogenous peptides to restore their normal functions. Glycosylation promotes penetration of the blood-brain barrier. We investigated CNS penetration of the opioid glycopeptide MMP-2200, a mixed δ/μ-agonist based on leu-enkephalin, as measured by in vivo microdialysis and subsequent mass spectrometric analysis in awake, freely moving rats. The glycopeptide (10 mg/kg) reaches the dorsolateral striatum (DLS) rapidly after systemic (i.p.) administration and is stably detectable for the duration of the experiment (80 min). The detected level at the end of the experiment (around 250 pM) is about 10-fold higher than the level of the endogenous leu-enkephalin, measured simultaneously. This is one of the first studies to directly prove that glycosylation of an endogenous opioid peptide leads to excellent blood-brain barrier penetration after systemic injection, and explains robust behavioral effects seen in previous studies by measuring how much glycopeptide reaches the target structure, in this case the DLS. PMID:23127847

  17. Reward Processing by the Opioid System in the Brain

    PubMed Central

    MERRER, JULIE LE; BECKER, JÉRÔME A. J.; BEFORT, KATIA; KIEFFER, BRIGITTE L.

    2015-01-01

    The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder. PMID:19789384

  18. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions

    PubMed Central

    Iwaszkiewicz, Katerina S.; Schneider, Jennifer J.; Hua, Susan

    2013-01-01

    Mechanisms of endogenous pain control are significant. Increasing studies have clearly produced evidence for the clinical usefulness of opioids in peripheral analgesia. The immune system uses mechanisms of cell migration not only to fight pathogens but also to control pain and inflammation within injured tissue. It has been demonstrated that peripheral inflammatory pain can be effectively controlled by an interaction of immune cell-derived opioid peptides with opioid receptors on peripheral sensory nerve terminals. Experimental and clinical studies have clearly shown that activation of peripheral opioid receptors with exogenous opioid agonists and endogenous opioid peptides are able to produce significant analgesic and anti-inflammatory effects, without central opioid mediated side effects (e.g., respiratory depression, sedation, tolerance, dependence). This article will focus on the role of opioids in peripheral inflammatory conditions and the clinical implications of targeting peripheral opioid receptors. PMID:24167491

  19. Expression of corticotropin-releasing factor in inflamed tissue is required for intrinsic peripheral opioid analgesia.

    PubMed Central

    Schafer, M; Mousa, S A; Zhang, Q; Carter, L; Stein, C

    1996-01-01

    Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS. Images Fig. 4 PMID:8650225

  20. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: involvement of benzodiazepine and opioid receptors

    PubMed Central

    Nassiri-Asl, Marjan; Shariati-Rad, Schwann; Zamansoltani, Farzaneh

    2007-01-01

    Background Passion flower (Passiflora incarnata) is used in traditional medicine of Europe and South America to treat anxiety, insomnia and seizure. Recently, it has shown antianxiety and sedative effects in human. Methods In this study, anticonvulsant effects of hydro- alcoholic extract of Passiflora, Pasipay, were examined by using pentylentetrazole model (PTZ) on mice. Pasipay, diazepam, and normal saline were injected intraperitoneally at the doses 0.4–0.05 mg/kg, 0.5–1 mg/kg and 10 ml/kg respectively 30 minutes before PTZ (90 mg/kg, i.p). The time taken before the onset of clonic convulsions, the duration of colonic convulsions, and the percentage of seizure and mortality protection were recorded. For investigating the mechanism of Pasipay, flumazenil (2 mg/kg, i.p) and naloxone (5 mg/kg, i.p) were also injected 5 minutes before Pasipay. Results An ED50 value of Pasipay in the PTZ model was 0.23 mg/kg (%95 CL: 0.156, 0.342). Pasipay at the dose of 0.4 mg/kg prolonged the onset time of seizure and decreased the duration of seizures compared to saline group (p < 0.001). At the dose of 0.4 mg/kg, seizure and mortality protection percent were 100%. Flumazenil and naloxone could suppress anticonvulsant effects of Pasipay. Conclusion It seems that Pasipay could be useful for treatment absence seizure and these effects may be related to effect of it on GABAergic and opioid systems. More studies are needed in order to investigate its exact mechanism. PMID:17686156

  1. Endogenous abscisic acid is involved in methyl jasmonate-induced reactive oxygen species and nitric oxide production but not in cytosolic alkalization in Arabidopsis guard cells.

    PubMed

    Ye, Wenxiu; Hossain, Mohammad Anowar; Munemasa, Shintaro; Nakamura, Yoshimasa; Mori, Izumi C; Murata, Yoshiyuki

    2013-09-01

    We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.

  2. Possible Involvement of Endogenous Beta-Endorphin in the Pathophysiological Mechanisms of Pichinde Virus-Infected Guinea Pigs

    DTIC Science & Technology

    1992-01-01

    without significant histopathological changes. treatment of arenavirus -induced Lassa fever in humans Furthermore, among many other organs ex;amined, no S(1... fever , leukopenia, Pichinde virus infection and after fl-endorphin intra- thrombopenia, inalertness, terminal hypothermia, and venous infusion...Science 245:188-190, 1989. Lassa fever contrasted. Rev Infect Dis 2(supplement 4):S743- 28. Holaday JW. Cardiovascular effects of endogenous opiate sys

  3. Native human interferon-α is a strong inductor of endogenous cytokines involved in the suppression of procollagen type I.

    PubMed

    Santak, G; Santak, M; Forčić, D

    2013-09-01

    Native human interferon-α (nHuIFN-α) has a stronger reductive effect on procollagen type I mRNA expression than recombinant human interferon-α (rHuIFN-α). It is partially due to the additive activity of interleukin-1β (IL-1β), which is present in small concentrations in nHuIFN-α. Here, we show that the reductive effect is also the result of the endogenous cytokines induced by the activity of nHuIFN-α. In the culture of MRC5 fibroblasts, we have further found that nHuIFN-α induces endogenous interferons in higher amounts than rHuIFN-α, measured with PCR. That is more pronounced when interferon-γ (IFN-γ) is measured. This result puts a new light on IFN-γ activity in the nHuIFN-α treatment because its role was neglected due to the loss of its activity during the nHuIFN-α preparation process. The findings lead to the conclusion that endogenous cytokines play a significant role in the nHuIFN-α -mediated reduction of procollagen type I mRNA and are therefore an important factor in potential therapeutic usage.

  4. Relaxation Training and Opioid Inhibition of Blood Pressure Response to Stress.

    ERIC Educational Resources Information Center

    McCubbin, James A.; And Others

    1996-01-01

    Sought to determine the role of endogenous opioid mechanisms in the circulatory effects of relaxation training. Subjects were 32 young men with mildly elevated casual arterial pressure. Assessed opioid mechanisms by examining the effects of opioid receptor blockade with naltrexone on acute cardiovascular reactivity to laboratory stress before and…

  5. Designing Opioids That Deter Abuse

    PubMed Central

    Raffa, Robert B.; Pergolizzi, Joseph V.; Muñiz, Edmundo; Taylor, Robert; Pergolizzi, Jason

    2012-01-01

    Prescription opioid formulations designed to resist or deter abuse are an important step in reducing opioid abuse. In creating these new formulations, the paradigm of drug development target should be introduced. Biological targets relating to the nature of addiction may pose insurmountable hurdles based on our current knowledge and technology, but products that use behavioral targets seem logical and feasible. The population of opioid abusers is large and diverse so behavioral targets are more challenging than they appear at first glance. Furthermore, we need to find ways to correlate behavioral observations of drug liking to actual use and abuse patterns. This may involve revisiting some pharmacodynamic concepts in light of drug effect rather than peak concentration. In this paper we present several new opioid analgesic agents designed to resist or deter abuse using physical barriers, the inclusion of an opioid agonist or antagonist, an aversive agent, and a prodrug formulation. Further, this paper also provides insight into the challenges facing drug discovery in this field. Designing and screening for opioids intended to resist or deter abuse is an important step to meet the public health challenge of burgeoning prescription opioid abuse. PMID:23213510

  6. Evidences for Chlorogenic Acid — A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit

    PubMed Central

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple (‘Golden Delicious’) pulp discs prepared from pre-climacteric fruit were treated with 50 mg L-1 CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence. PMID:26756813

  7. Evidences for Chlorogenic Acid--A Major Endogenous Polyphenol Involved in Regulation of Ripening and Senescence of Apple Fruit.

    PubMed

    Xi, Yu; Cheng, Dai; Zeng, Xiangquan; Cao, Jiankang; Jiang, Weibo

    2016-01-01

    To learn how the endogenous polyphenols may play a role in fruit ripening and senescence, apple pulp discs were used as a model to study the influences of chlorogenic acid (CHA, a major polyphenol in apple pulp) on fruit ripening and senescence. Apple ('Golden Delicious') pulp discs prepared from pre-climacteric fruit were treated with 50 mg L(-1) CHA and incubated in flasks with 10 mM MES buffer (pH 6.0, 11% sorbitol). Compared to the control samples, treatment with CHA significantly reduced ethylene production and respiration rate, and enhanced levels of firmness and soluble solids content of the pulp discs during incubation at 25°C. These results suggested that CHA could retard senescence of the apple pulp discs. Proteomics analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry (MALDI-TOF/TOF) revealed that the expressions of several key proteins correlated to fruit ripening and senescence were affected by the treatment with CHA. Further study showed that treating the pulp discs with CHA remarkably reduced levels of lipoxygenase, β-galactosidase, NADP-malic enzyme, and enzymatic activities of lipoxygenase and UDP-glucose pyrophosphorylase, all of which are known as promoters of fruit ripening and senescence. These results could provide new insights into the functions of endogenous phenolic compounds in fruit ripening and senescence.

  8. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed

    Cahill, Catherine M; Taylor, Anna M W; Cook, Christopher; Ong, Edmund; Morón, Jose A; Evans, Christopher J

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.

  9. Does the kappa opioid receptor system contribute to pain aversion?

    PubMed Central

    Cahill, Catherine M.; Taylor, Anna M. W.; Cook, Christopher; Ong, Edmund; Morón, Jose A.; Evans, Christopher J.

    2014-01-01

    The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain. PMID:25452729

  10. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats.

    PubMed

    Emerich, Bruna Luiza; Ferreira, Renata C M; Cordeiro, Marta N; Borges, Márcia Helena; Pimenta, Adriano M C; Figueiredo, Suely G; Duarte, Igor Dimitri G; de Lima, Maria Elena

    2016-04-12

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E₂, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB₁ receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models.

  11. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    PubMed Central

    Wang, Fu-rong; Qiao, Ming-qi; Xue, Ling; Wei, Sheng

    2015-01-01

    Recently μ opioid receptor (MOR) has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants. PMID:25821488

  12. δ-Ctenitoxin-Pn1a, a Peptide from Phoneutria nigriventer Spider Venom, Shows Antinociceptive Effect Involving Opioid and Cannabinoid Systems, in Rats

    PubMed Central

    Emerich, Bruna Luiza; Ferreira, Renata C. M.; Cordeiro, Marta N.; Borges, Márcia Helena; Pimenta, Adriano M. C.; Figueiredo, Suely G.; Duarte, Igor Dimitri G.; de Lima, Maria Elena

    2016-01-01

    PnTx4(6-1), henceforth renamed δ-Ctenitoxin-Pn1a (δ-CNTX-Pn1a), a peptide from Phoneutria nigriventer spider venom, initially described as an insect toxin, binds to site 3 of sodium channels in nerve cord synaptosomes and slows down sodium current inactivation in isolated axons in cockroaches (Periplaneta americana). δ-CNTX-Pn1a does not cause any apparent toxicity to mice, when intracerebroventricularly injected (30 μg). In this study, we evaluated the antinociceptive effect of δ-CNTX-Pn1a in three animal pain models and investigated its mechanism of action in acute pain. In the inflammatory pain model, induced by carrageenan, δ-CNTX-Pn1a restored the nociceptive threshold of rats, when intraplantarly injected, 2 h and 30 min after carrageenan administration. Concerning the neuropathic pain model, δ-CNTX-Pn1a, when intrathecally administered, reversed the hyperalgesia evoked by sciatic nerve constriction. In the acute pain model, induced by prostaglandin E2, intrathecal administration of δ-CNTX-Pn1a caused a dose-dependent antinociceptive effect. Using antagonists of the receptors, we showed that the antinociceptive effect of δ-CNTX-Pn1a involves both the cannabinoid system, through CB1 receptors, and the opioid system, through μ and δ receptors. Our data show, for the first time, that δ-Ctenitoxin-Pn1a is able to induce antinociception in inflammatory, neuropathic and acute pain models. PMID:27077886

  13. Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells.

    PubMed Central

    Peterson, P K; Sharp, B; Gekker, G; Brummitt, C; Keane, W F

    1987-01-01

    Mounting evidence suggests that opiate addiction and stress are associated with impaired cell-mediated immunity. We tested the hypothesis that morphine and the endogenous opioid beta-endorphin (beta-END), a pituitary peptide released in increased concentrations during stress, can suppress the production of the key macrophage-activating lymphokine interferon-gamma (IFN-gamma) by cultured human peripheral blood mononuclear cells (PBMNC). Using a radioimmunoassay to measure IFN-gamma, we found that exposure of PBMNC to biologically relevant concentrations of both opioids significantly inhibited IFN-gamma generation by cells stimulated with concanavalin A and varicella zoster virus. Studies of the mechanism of suppression revealed (a) a classical opioid receptor is involved (suppression was antagonized by naloxone and was specific for the NH2 terminus of beta-END), (b) monocytes are the primary target cell for opioids (monocyte-depleted lymphocyte preparations showed little suppression), and (c) reactive oxygen intermediates (ROI) and prostaglandin E2 are important mediators (scavengers of ROI and indomethacin eliminated the suppression). Based on these findings we suggest that opioid-triggered release of inhibitory monocyte metabolites may play a role in the immunodeficiency associated with narcotic addiction and stress. Images PMID:3040807

  14. Naloxone exacerbates memory impairments and depressive-like behavior after mild traumatic brain injury (mTBI) in mice with upregulated opioid system activity.

    PubMed

    Lesniak, Anna; Leszczynski, Pawel; Bujalska-Zadrozny, Magdalena; Pick, Chaim G; Sacharczuk, Mariusz

    2017-03-08

    The neuroprotective role of the endogenous opioid system in the pathophysiological sequelae of brain injury remains largely ambiguous. Noteworthy, almost no data is available on how its genetically determined activity influences the outcome of mild traumatic brain injury. Thus, the aim of our study was to examine the effect of opioid receptor blockage on cognitive impairments produced by mild traumatic brain injury in mice selectively bred for high (HA) and low (LA) swim-stress induced analgesia that show innate divergence in opioid system activity. Mild traumatic brain injury was induced with a weight-drop device on anaesthetized mice. Naloxone (5mg/kg) was intraperitoneally delivered twice a day for 7days to non-selectively block opioid receptors. Spatial memory performance and manifestations of depressive-like behavior were assessed using the Morris Water Maze and tail suspension tests, respectively. Mild traumatic brain injury resulted in a significant deterioration of spatial memory performance and severity of depressive-like behavior in the LA mouse line as opposed to HA mice. Opioid receptor blockage with naloxone unmasked cognitive deficits in HA mice but was without effect in the LA line. The results suggest a protective role of genetically predetermined enhanced opioid system activity in suppression of mild brain trauma-induced cognitive impairments. Mice selected for high and low swim stress-induced analgesia might therefore be a useful model to study the involvement of the opioid system in the pathophysiology and neurological outcome of traumatic brain injury.

  15. Involvement of endogenous central hydrogen sulfide (H2S) in hypoxia-induced hypothermia in spontaneously hypertensive rats.

    PubMed

    Sabino, João Paulo J; Soriano, Renato N; Donatti, Alberto F; Fernandez, Rodrigo Restrepo; Kwiatkoski, Marcelo; Francescato, Heloísa D C; Coimbra, Terezila M; Branco, Luiz G S

    2017-02-01

    Spontaneously hypertensive rats (SHR) display autonomic imbalance and abnormal body temperature (Tb) adjustments. Hydrogen sulfide (H2S) modulates hypoxia-induced hypothermia, but its role in SHR thermoregulation is unknown. We tested the hypothesis that SHR display peculiar thermoregulatory response to hypoxia and that endogenous H2S overproduced in the caudal nucleus of the solitary tract (NTS) of SHR modulates this response. SHR and Wistar rats were microinjected into the fourth ventricle with aminooxyacetate (AOA, H2S-synthezing enzyme inhibitor) or sodium sulfide (Na2S, H2S donor) and exposed to normoxia (21% inspired O2) or hypoxia (10% inspired O2, 30 min). Tb was continuously measured, and H2S production rate was assessed in caudal NTS homogenates. In both groups, AOA, Na2S, or saline (i.e., control; 1 μL) did not affect euthermia. Hypoxia caused similar decreases in Tb in both groups. AOA presented a longer latency to potentiate hypoxic hypothermia in SHR. Caudal NTS H2S production rate was higher in SHR. We suggest that increased bioavailability of H2S in the caudal NTS of SHR enables the adequate modulation of excitability of peripheral chemoreceptor-activated NTS neurons that ultimately induce suppression of brown adipose tissue thermogenesis, thus accounting for the normal hypoxic hypothermia.

  16. Endomorphins and related opioid peptides.

    PubMed

    Okada, Yoshio; Tsuda, Yuko; Bryant, Sharon D; Lazarus, Lawrence H

    2002-01-01

    Opioid peptides and their G-protein-coupled receptors (delta, kappa, mu) are located in the central nervous system and peripheral tissues. The opioid system has been studied to determine the intrinsic mechanism of modulation of pain and to develop uniquely effective pain-control substances with minimal abuse potential and side effects. Two types of endogenous opioid peptides exist, one containing Try-Gly-Gly-Phe as the message domain (enkephalins, endorphins, dynorphins) and the other containing the Tyr-Pro-Phe/Trp sequence (endomorphins-1 and -2). Endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has high mu receptor affinity (Ki = 0.36 nM) and remarkable selectivity (4000- and 15,000-fold preference over the delta and kappa receptors, respectively), was isolated from bovine and human brain. In addition, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), isolated from the same sources, exhibited high mu receptor affinity (Ki = 0.69 nM) and very high selectivity (13,000- and 7500-fold preference relative to delta and kappa receptors, respectively). Both opioids bind to mu-opioid receptors, thereby activating G-proteins, resulting in regulation of gastrointestinal motility, manifestation of antinociception, and effects on the vascular systems and memory. To develop novel analgesics with less addictive properties, evaluation of the structure-activity relationships of the endomorphins led to the design of more potent and stable analgesics. Opioidmimetics and opioid peptides containing the amino acid sequence of the message domain of endomorphins, Tyr-Pro-Phe/Trp, could exhibit unique binding activity and lead to the development of new therapeutic drugs for controlling pain.

  17. Exposure to ethanol on prenatal days 19-20 increases ethanol intake and palatability in the infant rat: involvement of kappa and mu opioid receptors.

    PubMed

    Díaz-Cenzano, Elena; Gaztañaga, Mirari; Gabriela Chotro, M

    2014-09-01

    Prenatal exposure to ethanol on gestation Days 19-20, but not 17-18, increases ethanol acceptance in infant rats. This effect seems to be a conditioned response acquired prenatally, mediated by the opioid system, which could be stimulated by ethanol's pharmacological properties (mu-opioid receptors) or by a component of the amniotic fluid from gestation-day 20 (kappa-inducing factor). The latter option was evaluated administering non-ethanol chemosensory stimuli on gestation Days 19-20 and testing postnatal intake and palatability. However, prenatal exposure to anise or vanilla increased neither intake nor palatability of these tastants on postnatal Day 14. In experiment 2, the role of ethanol's pharmacological effect was tested by administering ethanol and selective antagonists of mu and kappa opioid receptors prenatally. Blocking the mu-opioid receptor system completely reversed the effects on intake and palatability, while antagonizing kappa receptors only partially reduced the effects on palatability. This suggests that the pharmacological effect of ethanol on the fetal mu opioid system is the appetitive reinforcer, which induces the prenatally conditioned preference detected in the preweanling period.

  18. Involvement of exon 11-associated variants of the mu opioid receptor MOR-1 in heroin, but not morphine, actions.

    PubMed

    Pan, Ying-Xian; Xu, Jin; Xu, Mingming; Rossi, Grace C; Matulonis, Joshua E; Pasternak, Gavril W

    2009-03-24

    Heroin remains a major drug of abuse and is preferred by addicts over morphine. Like morphine, heroin has high affinity and selectivity for mu-receptors, but its residual analgesia in exon 1 MOR-1 knockout mice that do not respond to morphine suggests a different mechanism of action. MOR-1 splice variants lacking exon 1 have been observed in mice, humans, and rats, raising the possibility that they might be responsible for the residual heroin and morphine-6beta-glucuronide (M6G) analgesia in the exon 1 knockout mice. To test this possibility, we disrupted exon 11 of MOR-1, which eliminates all of the variants that do not contain exon 1. Morphine and methadone analgesia in the exon 11 knockout mouse was normal, but the analgesic actions of heroin, M6G, and fentanyl were markedly diminished in the radiant heat tail-flick and hot-plate assays. Similarly, the ability of M6G to inhibit gastrointestinal transit was greatly diminished in these exon 11 knockout mice, whereas the ability of morphine was unchanged. These findings identify receptors selectively involved with heroin and M6G actions and confirm the relevance of the exon 11-associated variants and raise important issues regarding the importance of atypical truncated G-protein-coupled receptors.

  19. Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent delta-opioid pathways.

    PubMed

    Javelot, H; Messaoudi, M; Garnier, S; Rougeot, C

    2010-06-01

    Human opiorphin protects enkephalins from degradation by human neutral endopeptidase and aminopeptidase-N and inhibits pain perception in various behavioral rodent models of pain via endogenous enkephalin-related activation of opioidergic pathways. In addition to pain control, endogenous opioid pathways are also implicated in the modulation of emotion-related behaviors. Thus, we explored the dose-dependent motivational responses induced by opiorphin using the forced swim test, the standard rat model of depression. In addition, to further understand the endogenous events triggered by opiorphin, we investigated the specific involvement of mu- or delta-opioid receptor-dependent pathways. In parallel, the locomotor activity test was used to detect possible sedation or hyperactivity. Here, we report for the first time that at 1-2 mg/kg i.v. doses, opiorphin elicited antidepressant-like effects by activating endogenous delta-opioidergic pathways, since that activation was reversed by the selective delta-opioid antagonist naldrindole (10 mg/kg i.p.). The antidepressive behavioral responses exerted by opiorphin are specific at systemically active doses. Treated-rats did not develop either hypo- or hyper-active responses in a locomotor test or amnesic behavioral response in the passive avoidance rat model. In addition, opiorphin did not induce either anxiolytic-, or anxiogenic-like responses in the conditioned defensive burying test. Taking the data together, we conclude that opiorphin is able to elicit antidepressant-like effects, mediated via delta-opioid receptor-dependent pathways, by modulating the concentrations of endogenous enkephalin released in response to specific physical and/or psychological stimuli. Thus, opiorphin or optimized derivatives is a promising single candidate to treat disorders that include both pain and mood disorders, particularly depression.

  20. Co-occurring risk factors for arrest among persons with opioid abuse and dependence: implications for developing interventions to limit criminal justice involvement.

    PubMed

    Fisher, William H; Clark, Robin; Baxter, Jeffrey; Barton, Bruce; O'Connell, Elizabeth; Aweh, Gideon

    2014-09-01

    Persons who abuse or are dependent on opioids are at elevated risk for arrest. Co-occurring behavioral health problems may exacerbate that risk, although the extent of any such increase has not been described. This study examines such risk factors among 40,238 individuals with a diagnosis of opioid abuse or dependence who were enrolled in the Massachusetts Medicaid program in 2010. Medicaid data were merged with statewide arrest data to assess the effects of co-existing mental illness, substance abuse, and previous arrests on arrest during 2010. Persons with serious mental illnesses (psychotic and bipolar disorders) and those with two or more pre-2010 arrests had significantly increased greater odds of arrest. We believe this to be the first study examining effects of co-occurring risk factors on arrest in a large population with opioid dependency/abuse. These findings identify predictors of arrest that could be used to design interventions targeting specific co-occurring risk factors.

  1. Chronic nicotine treatment impacts the regulation of opioid and non-opioid peptides in the rat dorsal striatum.

    PubMed

    Petruzziello, Filomena; Falasca, Sara; Andren, Per E; Rainer, Gregor; Zhang, Xiaozhe

    2013-06-01

    The chronic use of nicotine, the main psychoactive ingredient of tobacco smoking, alters diverse physiological processes and consequently generates physical dependence. To understand the impact of chronic nicotine on neuropeptides, which are potential molecules associated with dependence, we conducted qualitative and quantitative neuropeptidomics on the rat dorsal striatum, an important brain region implicated in the preoccupation/craving phase of drug dependence. We used extensive LC-FT-MS/MS analyses for neuropeptide identification and LC-FT-MS in conjunction with stable isotope addition for relative quantification. The treatment with chronic nicotine for 3 months led to moderate changes in the levels of endogenous dorsal striatum peptides. Five enkephalin opioid peptides were up-regulated, although no change was observed for dynorphin peptides. Specially, nicotine altered levels of nine non-opioid peptides derived from precursors, including somatostatin and cerebellin, which potentially modulate neurotransmitter release and energy metabolism. This broad but selective impact on the multiple peptidergic systems suggests that apart from the opioid peptides, several other peptidergic systems are involved in the preoccupation/craving phase of drug dependence. Our finding permits future evaluation of the neurochemical circuits modulated by chronic nicotine exposure and provides a number of novel molecules that could serve as potential therapeutic targets for treating drug dependence.

  2. In vivo assessment of opioid agonists and antagonists on ovarian maturation in the red swamp crayfish, Procambarus clarkii.

    PubMed

    Sarojini, R; Nagabhushanam, R; Fingerman, M

    1996-10-01

    The possible involvement of an endogenous opioid system in the regulation of ovarian development in the red swamp crayfish, Procambarus clarkii, was investigated in vivo. Injections of the opioid, methionine (Met) enkephalin, into females significantly slowed ovarian maturation in a dose-dependent manner. In contrast, injection of the general opioid antagonist, naloxone, produced dose-dependent ovarian maturation. Furthermore, the highly selective delta opioid agonist, DADLE, also inhibited ovarian maturation, whereas a highly selective delta receptor antagonist, ICI-174,864, stimulated ovarian maturation. In view of these results and the fact that Met-enkephalin is a relatively selective delta receptor agonist, we hypothesize that in the crayfish the inhibitory effect of Met-enkephalin involves this type of binding site. Furthermore, it is hypothesized that the inhibitory action of these opioids is due to either (a) stimulation of release of the gonad-inhibiting hormone, (b) inhibition of release of the gonad-stimulating hormone or (c) both (a) and (b).

  3. Opioid system in L-DOPA-induced dyskinesia.

    PubMed

    Pan, Jing; Cai, Huaibin

    2017-01-01

    L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is a major clinical complication in the treatment of Parkinson's disease (PD). This debilitating side effect likely reflects aberrant compensatory responses for a combination of dopaminergic neuron denervation and repeated L-DOPA administration. Abnormal endogenous opioid signal transduction pathways in basal ganglia have been well documented in LID. Opioid receptors have been targeted to alleviate the dyskinesia. However, the exact role of this altered opioid activity is remains under active investigation. In the present review, we discuss the current understanding of opioid signal transduction in the basal ganglia and how the malfunction of opioid signaling contributes to the pathophysiology of LID. Further study of the opioid system in LID may lead to new therapeutic targets and improved treatment of PD patients.

  4. Major Depressive Disorder and Kappa Opioid Receptor Antagonists

    PubMed Central

    Li, Wei; Sun, Huijiao; Chen, Hao; Yang, Xicheng; Xiao, Li; Liu, Renyu; Shao, Liming; Qiu, Zhuibai

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disease worldwide. The clinical use of tricyclic antidepressants (TCAs), monoamine oxidase inhibitors (MAOIs) and selective serotonin reuptake inhibitors (SSRIs)/serotonin–norepinephrine reuptake inhibitor (SNRIs) for this condition have been widely accepted, but they were challenged by unacceptable side-effects, potential drug-drug interactions (DDIs) or slow onset/lack of efficacy. The endogenous opioid system is involved in stress and emotion regulatory processes and its role in MDD has been implicated. Although several KOR antagonists including JDTic and PF-04455242 were discontinued in early clinical trials, ALKS 5461 and CERC-501(LY-2456302) survived and entered into Phase-III and Phase-II trials, respectively. Considering the efficacy and safety of early off-label use of buprenorphine in the management of the treatment-resistant depression (TRD), it will be not surprising to predict the potential success of ALKS 5461 (a combination of buprenorphine and ALKS-33) in the near future. Moreover, CERC-501 will be expected to be available as monotherapy or adjuvant therapy with other first-line antidepressants in the treatment of TRD, if ongoing clinical trials continue to provide positive benefit-risk profiles. Emerging new researches might bring more drug candidates targeting the endogenous opioid system to clinical trials to address current challenges in MDD treatment in clinical practice. PMID:27213169

  5. Treating Pain with Opioids

    MedlinePlus

    ... with using opioids to treat acute pain, or chronic pain if a Opioid p s a : t H ie o n w ... these options before you take an opioid because opioids alone are rarely enough to treat chronic pain over a long period of time. 2 Medicines ...

  6. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: Involvement of endogenous copper and a putative mechanism for anticancer properties

    SciTech Connect

    Bhat, S.H.; Azmi, A.S.; Hadi, S.M. . E-mail: smhadi@vsnl.com

    2007-02-01

    Plant-derived dietary material contains several classes of polyphenols such as flavonoids, curcuminoids, stilbenes and hydroxycinnamic acids. They are recognized as naturally occurring antioxidants but also act as prooxidants catalyzing cellular DNA degradation in the presence of transition metal ions such as copper. Earlier we have shown that the stilbene resveratrol is able to mobilize endogenous copper ions leading to oxidative breakage of cellular DNA. In this paper, we show that caffeic acid (a hydroxycinnamic acid), which is a major constituent of coffee, is also capable of DNA breakage in human peripheral lymphocytes. Incubation of lymphocytes with neocuproine inhibited the DNA degradation confirming that Cu(I) is an intermediate in the DNA cleavage reaction. Further, we have also shown that caffeic acid generates oxidative stress in lymphocytes, which is inhibited by scavengers of reactive oxygen species and neocuproine. These results are in further support of our hypothesis that anticancer mechanism of plant polyphenols involves mobilization of endogenous copper, possibly chromatin bound copper, and the consequent prooxidant action.

  7. Mutation of the endogenous p53 gene in cells transformed by HPV-16 E7 and EJ c-ras confers a growth advantage involving an autocrine mechanism.

    PubMed Central

    Peacock, J W; Benchimol, S

    1994-01-01

    Rat embryo fibroblasts transformed with the HPV-16 E7 gene and the activated c-H-ras gene fall into two distinct phenotypic classes. At high cell density, clones of one class form colonies in methylcellulose supplemented with low serum; at low cell density, these cells display responsiveness to mitogenic factors present in serum-free conditioned medium from rat embryo fibroblasts. In contrast, clones of the second class exhibit an absolute dependency on growth factors present in serum at all cell densities in the methylcellulose colony assay and fail to respond to conditioned medium. We find that the status of the endogenous p53 gene is tightly correlated with these two classes of clones. Clones of the first class contain missense mutations in the p53 gene and have lost the wild-type allele. Clones of the second class express wild-type p53 protein. The importance of mutant p53 expression in reducing the growth factor dependency of transformed clones was confirmed in a separate series of experiments in which rat embryo fibroblasts were transformed with three genes, E7 + ras + mutant p53. The growth behaviour of these triply transfected clones was similar to that of the E7 + ras clones expressing endogenous mutant p53. We demonstrate that the enhanced proliferation of E7 + ras clones expressing mutant p53 protein involves an autocrine mechanism. Images PMID:8131742

  8. Peripheral kappa and delta opioid receptors are involved in the antinociceptive effect of crotalphine in a rat model of cancer pain.

    PubMed

    Brigatte, Patricia; Konno, Katsuhiro; Gutierrez, Vanessa Pacciari; Sampaio, Sandra Coccuzzo; Zambelli, Vanessa Olzon; Picolo, Gisele; Curi, Rui; Cury, Yara

    2013-08-01

    Cancer pain is an important clinical problem and may not respond satisfactorily to the current analgesic therapy. We have characterized a novel and potent analgesic peptide, crotalphine, from the venom of the South American rattlesnake Crotalus durissus terrificus. In the present work, the antinociceptive effect of crotalphine was evaluated in a rat model of cancer pain induced by intraplantar injection of Walker 256 carcinoma cells. Intraplantar injection of tumor cells caused the development of hyperalgesia and allodynia, detected on day 5 after tumor cell inoculation. Crotalphine (6 μg/kg), administered p.o., blocked both phenomena. The antinociceptive effect was detected 1 h after treatment and lasted for up to 48 h. Intraplantar injection of nor-binaltorphimine (50 g/paw), a selective antagonist of κ-opioid receptors, antagonized the antinociceptive effect of the peptide, whereas N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864, 10 μg/paw), a selective antagonist of δ-opioid receptors, partially reversed this effect. On the other hand, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide (CTOP, 20 g/paw), an antagonist of μ-opioid receptors, did not modify crotalphine-induced antinociception. These data indicate that crotalphine induces a potent and long lasting opioid-mediated antinociception in cancer pain.

  9. Co-Occurring Risk Factors for Arrest among Persons with Opioid Abuse and Dependence: Implications for Developing Interventions to Limit Criminal Justice Involvement

    PubMed Central

    Fisher, William H.; Clark, Robin; Baxter, Jeffrey; Barton, Bruce; O’Connell, Elizabeth; Aweh, Gideon

    2015-01-01

    Persons who abuse opioids or are dependent on opioids are at elevated risk for arrest. Co-occurring behavioral health problems may exacerbate that risk, although the extent of any such increase has not been described. This study examines such risk factors among 40,238 individuals with a diagnosis of opioid abuse or dependence who were enrolled in the Massachusetts Medicaid program in 2010. Medicaid data were merged with statewide arrest data to assess the effects of co-existing mental illness, substance abuse, and previous arrests on arrest during 2010. Persons with serious mental illnesses (psychotic and bipolar disorders) and those with two or more pre-2010 arrests had significantly increased greater odds of arrest. We believe this to be the first study examining effects of co-occurring risk factors on arrest in a large population with opioid dependency/abuse. These findings identify predictors of arrest that could be used to design interventions targeting specific co-occurring risk factors. PMID:25012550

  10. [Opioid receptors of the CNS: function, structure and distribution].

    PubMed

    Slamberová, R

    2004-01-01

    Even though the alkaloids of opium, such as morphine and codeine, were isolated at the beginning of 19th century, the opioid receptors were not determined until 1970's. The discovery of endogenous opioid peptides, such as endorphins, enkephalins and dynorphins, has helped to differentiate between the specific opioid receptor subtypes, mu, delta and kappa, that are used up to now. Opioid receptors are distributed in the central nervous system unevenly. Each receptor subtype has its own specific and nonspecific agonists and antagonists. Opioides, as exogenous opioid receptor agonists, are drugs that are often used in medicine for their analgesic effects, but they are also some of the most heavily abused drugs in the world. Opioides may also induce long-term changes in the numbers and binding activities of opioid receptors. Some of our studies in fact demonstrate that prenatal morphine exposure can alter opioid receptors of adult rats. This may begin to provide insight into the sources of some of the morphological and behavioral changes in the progeny of mothers that received or abused opioides during pregnancy.

  11. [Endogenous hypertriglyceridemia].

    PubMed

    Tsukamoto, Kazuhisa

    2013-09-01

    Endogenous hypertriglyceridemia, which includes familial hypertriglyceridemia and idiopathic hypertriglyceridemia, is characterized by the increased level of VLDL-triglycerides in the blood. Increased production of VLDL from the liver and the decreased catabolism of VLDL-TG in the vessel, which are also the main metabolic features of insulin resistance, have been proposed to be the causes of endogenous hypertriglyceridemia. Genetic factors responsible for endogenous hypertriglyceridemia have been elucidated in several studies, however, these factors have so far not been clearly identified yet; thus the causes of endogenous hypertriglyceridemia would be polygenic. Recent advances in the genetic analytical methods like genome-wide association study would hopefully unveil the whole pictures of endogenous hypertriglyceridemia.

  12. Current Research on Opioid Receptor Function

    PubMed Central

    Feng, Yuan; He, Xiaozhou; Yang, Yilin; Chao, Dongman; Lazarus, Lawrence H.; Xia, Ying

    2012-01-01

    The use of opioid analgesics has a long history in clinical settings, although the comprehensive action of opioid receptors is still less understood. Nonetheless, recent studies have generated fresh insights into opioid receptor-mediated functions and their underlying mechanisms. Three major opioid receptors (μ-opioid receptor, MOR; δ-opioid receptor, DOR; and κ-opioid receptor, KOR) have been cloned in many species. Each opioid receptor is functionally sub-classified into several pharmacological subtypes, although, specific gene corresponding each of these receptor subtypes is still unidentified as only a single gene has been isolated for each opioid receptor. In addition to pain modulation and addiction, opioid receptors are widely involved in various physiological and pathophysiological activities, including the regulation of membrane ionic homeostasis, cell proliferation, emotional response, epileptic seizures, immune function, feeding, obesity, respiratory and cardiovascular control as well as some neurodegenerative disorders. In some species, they play an essential role in hibernation. One of the most exciting findings of the past decade is the opioid-receptor, especially DOR, mediated neuroprotection and cardioprotection. The up-regulation of DOR expression and DOR activation increase the neuronal tolerance to hypoxic/ischemic stress. The DOR signal triggers (depending on stress duration and severity) different mechanisms at multiple levels to preserve neuronal survival, including the stabilization of homeostasis and increased pro-survival signaling (e.g., PKC-ERK-Bcl 2) and anti-oxidative capacity. In the heart, PKC and KATP channels are involved in the opioid receptor-mediated cardioprotection. The DOR-mediated neuroprotection and cardioprotection have the potential to significantly alter the clinical pharmacology in terms of prevention and treatment of life-threatening conditions like stroke and myocardial infarction. The main purpose of this article

  13. Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis

    PubMed Central

    Shikina, Shinya; Chiu, Yi-Ling; Chung, Yi-Jou; Chen, Chieh-Jhen; Lee, Yan-Horn; Chang, Ching-Fong

    2016-01-01

    To date,the molecular and cellular mechanisms underlying coral sexual reproduction remain largely unknown. We then performed a differential screen to identify genes related to oogenesis in the stony coral Euphyllia ancora. We identified a clone encoding a novel red fluorescent protein cDNA of E. ancora (named EaRFP). Microscopic observation and quantitative RT-PCR revealed that EaRFP is almost exclusively expressed in the ovary of the adult coral. The combination of the ovarian-cell separation method and the RT-PCR analysis revealed that the oocytes, but not the ovarian somatic cells, are the cells expressing EaRFP. Immunohistochemical analysis revealed that the expression of EaRFP starts in the early stage of the oocyte and continues until the maturation period. Furthermore, recombinant EaRFP was shown to possess an H2O2 degradation activity. These results raise the possibility that EaRFP plays a role in protecting the oocytes from oxidative stress from the early to late stages of oogenesis. The present study provides not only the first evidence for the potential involvement of FPs in coral oogenesis but also an insight into a cellular strategy underlying coral sexual reproduction. PMID:27167722

  14. Kappa-opioid ligands in the study and treatment of mood disorders

    PubMed Central

    Carlezon, William A.; Béguin, Cécile; Knoll, Allison T.; Cohen, Bruce M.

    2009-01-01

    The biological basis of mood is not understood. Most research on mood and affective states has focused on the roles of brain systems containing monoamines (e.g., dopamine, norepinephrine, serotonin). However, it is becoming clear that endogenous opioid systems in the brain may also be involved in regulation of mood. In this review, we focus on the potential utility of kappa-opioid receptor (KOR) ligands in the study and treatment of psychiatric disorders. Research from our group and others suggests that KOR antagonists might be useful for depression, KOR agonists might be useful for mania, and KOR partial agonists might be useful for mood stabilization. Currently available agents have some unfavorable properties that might be addressed through medicinal chemistry. The development of KOR-selective agents with improved drug-like characteristics would facilitate preclinical and clinical studies designed to evaluate the possibility that KORs are a feasible target for new medications. PMID:19497337

  15. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of mu(1)- and kappa-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus.

    PubMed

    Osaki, M Y; Castellan-Baldan, L; Calvo, F; Carvalho, A D; Felippotti, T T; de Oliveira, R; Ubiali, W A; Paschoalin-Maurin, T; Elias-Filho, D H; Motta, V; da Silva, L A; Coimbra, N C

    2003-12-05

    Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses

  16. Dopamine is differentially involved in the locomotor hyperactivity produced by manipulations of opioid, GABA and glutamate receptors in the median raphe nucleus.

    PubMed

    Shim, Insop; Stratford, Thomas R; Wirtshafter, David

    2014-03-15

    The median raphe nucleus (MR) has been shown to exert a powerful influence on behavioral arousal and marked locomotor hyperactivity can be produced by intra-MR injections of a variety of drugs including GABAA and GABAB agonists, excitatory amino acid antagonists, and μ- and δ-opioid agonists. Other studies have indicated that the MR exerts an inhibitory influence on ascending dopamine systems, suggesting that MR induced alterations in activity may be mediated through changes in dopaminergic transmission. In the present study, we explored this possibility by examining whether systemic administration of the preferential D2 dopamine antagonist haloperidol is able to antagonize the hyperactivity produced by intra-MR injections of various drugs. We found that haloperidol completely blocked the locomotor response to intra-MR injections of the μ-opioid receptor agonist DAMGO and the δ-opioid receptor agonist DPDPE. In marked contrast, at doses which abolished the locomotor response to systemic amphetamine, haloperidol had no effect on the hyperactivity induced by intra-MR injections of GABAA agonist muscimol, the GABAB agonist baclofen, or the kainate/quisqualate antagonist pBB-PZDA, even though it suppressed baseline activity in these same animals. These results indicate that there must be at least two mechanisms capable of influencing behavioral arousal within the MR region, one of which is dependent on D2 dopamine receptors and the other is not.

  17. Involvement of mu(1)-opioid receptors and cholinergic neurotransmission in the endomorphins-induced impairment of passive avoidance learning in mice.

    PubMed

    Ukai, Makoto; Lin, Hui Ping

    2002-02-01

    The effects of naloxonazine, a mu(1)-opioid receptor antagonist, and physostigmine, a cholinesterase inhibitor, on the endomorphins-induced impairment of passive avoidance learning were investigated in mice. Endomorphin-1 (10 microg) and endomorphin-2 (10 microg) significantly impaired passive avoidance learning, while naloxonazine (35 mg/kg, s.c.), a mu(1)-opioid receptor antagonist, which alone failed to influence passive avoidance learning significantly inhibited the endomorphin-1 (10 microg)- but not endomorphin-2 (10 microg)-induced disturbance of such learning. A rather nonselective higher dose (50 mg/kg, s.c.) of naloxonazine almost completely antagonized the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced impairment of passive avoidance learning. In contrast, physostigmine (0.025 and 0.05 mg/kg, i.p.) significantly reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced disturbance of passive avoidance learning, whereas physostigmine (0.025 and 0.05 mg/kg, i.p.) alone did not influence such learning. These results suggest that endomorphin-1 but not endomorphin-2 impairs learning and memory resulting from cholinergic dysfunction, and from activation of mu(1)-opioid receptors.

  18. Prescription opioid abuse based on representative postmortem toxicology.

    PubMed

    Häkkinen, Margareeta; Vuori, Erkki; Ojanperä, Ilkka

    2014-12-01

    Opioids are important medications for pain and opioid maintenance treatment. Increasing use and abuse of prescription opioids has, however, caused worldwide concern. Our aim was to estimate the ratio between prescription opioid abuse and total use, based on representative postmortem toxicology. Our material included all the medico-legally examined deaths in Finland during 2010-2011 involving positive findings involving buprenorphine, codeine, fentanyl, methadone, oxycodone, or tramadol. We studied drug abuse by age group, with "abuse" meaning licit opioids used illicitly as narcotics. Drug-abuse history, drug injecting, or laboratory findings of illicit drugs defined an abuser case. We then compared abuser cases and other opioid-related cases between the opioids with the number of fatal poisonings, accidents, suicides, alcohol findings, concomitant opioid use, and median postmortem blood opioid concentrations. Opioid findings numbered 2499 in 2088 cases. Drug abuse involved 545 opioid-positive cases, which in Finland represented 0.5% of those deceased. The proportion of abuser cases among all opioid-related cases for buprenorphine was 85.5%, for methadone 82.4%, for tramadol 29.4%, for codeine 16.3%, for fentanyl 14.5%, and for oxycodone 6.9%. Abuse in age-groups >60 was rare. Concomitant other opioid findings were more frequent in abuser- than in other cases for codeine, oxycodone, and tramadol, whereas alcohol findings were more frequent in buprenorphine, codeine, and fentanyl abuse. Buprenorphine and methadone were most often related to drug abuse. Every other opioid studied involved some abuse, and especially tramadol. Abuse and fatal poisonings were concentrated in men aged 20-49.

  19. Opioid peptides and opiate alkaloids in immunoregulatory processes.

    PubMed

    Stefano, George B; Kream, Richard M

    2010-06-30

    Among the various non-neuronal cell types known to express and utilize neuropeptides, those of the immune system have received much attention in recent years. In particular, comparative studies in vertebrates and invertebrates have shown that endogenous opioid peptides are engaged in receptor mediated autoregulatory immune and neuroendocrine processes. The majority of these immune processes are stimulatory, as determined by their effects on conformational changes indicative of immunocyte activation, cellular motility, and phagocytosis. Endogenous opioid peptides form an effective network of messenger molecules in cooperation with cytokines, opiate alkaloids, and certain regulatory enzymes (neutral endopeptidase 24.11). Peptide-mediated immunostimulatory effects observed in this system are operationally counteracted by the inhibitory effects of morphine and related opiates. Opioid/opiate signaling processes are mediated by several types of receptors with different degrees of selectivity. Among them the recently identified, opioid insensitive µ(3) receptor deserves attention on account of its specificity for opiate alkaloids.

  20. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse.

    PubMed

    Charbogne, Pauline; Kieffer, Brigitte L; Befort, Katia

    2014-01-01

    The endogenous opioid system is expressed throughout the brain reinforcement circuitry, and plays a major role in reward processing, mood control and the development of addiction. This neuromodulator system is composed of three receptors, mu, delta and kappa, interacting with a family of opioid peptides derived from POMC (β-endorphin), preproenkephalin (pEnk) and preprodynorphin (pDyn) precursors. Knockout mice targeting each gene of the opioid system have been created almost two decades ago. Extending classical pharmacology, these mutant mice represent unique tools to tease apart the specific role of each opioid receptor and peptide in vivo, and a powerful approach to understand how the opioid system modulates behavioral effects of drugs of abuse. The present review summarizes these studies, with a focus on major drugs of abuse including morphine/heroin, cannabinoids, psychostimulants, nicotine or alcohol. Genetic data, altogether, set the mu receptor as the primary target for morphine and heroin. In addition, this receptor is essential to mediate rewarding properties of non-opioid drugs of abuse, with a demonstrated implication of β-endorphin for cocaine and nicotine. Delta receptor activity reduces levels of anxiety and depressive-like behaviors, and facilitates morphine-context association. pEnk is involved in these processes and delta/pEnk signaling likely regulates alcohol intake. The kappa receptor mainly interacts with pDyn peptides to limit drug reward, and mediate dysphoric effects of cannabinoids and nicotine. Kappa/dynorphin activity also increases sensitivity to cocaine reward under stressful conditions. The opioid system remains a prime candidate to develop successful therapies in addicted individuals, and understanding opioid-mediated processes at systems level, through emerging genetic and imaging technologies, represents the next challenging goal and a promising avenue in addiction research. This article is part of a Special Issue entitled 'NIDA

  1. Effects of the Mu Opioid Receptor Polymorphism (OPRM1 A118G) on Pain Regulation, Placebo Effects and Associated Personality Trait Measures

    PubMed Central

    Peciña, Marta; Love, Tiffany; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2015-01-01

    Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to

  2. Effects of the Mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures.

    PubMed

    Peciña, Marta; Love, Tiffany; Stohler, Christian S; Goldman, David; Zubieta, Jon-Kar

    2015-03-01

    Mu-opioid receptors (MOPRs) are critically involved in the modulation of pain and analgesia, and represent a candidate mechanism for the development of biomarkers of pain conditions and their responses to treatment. To further understand the human implications of genetic variation within the opioid system in pain and opioid-mediated placebo responses, we investigated the association between the functional single-nucleotide polymorphism (SNP) in the μ-opioid receptor gene (OPRM1), A118G, and psychophysical responses, personality traits, and neurotransmitter systems (dopamine (DA), opioid) related to pain and placebo analgesia. OPRM1 G carriers, compared with AA homozygotes, showed an overall reduction of baseline μ-opioid receptor availability in regions implicated in pain and affective regulation. In response to a sustained painful stimulus, we found no effect of A118G on pain-induced endogenous opioid release. Instead, AA homozygotes showed a blunted DA response in the nucleus accumbens (NAc) in response to the pain challenge. After placebo administration, G carriers showed more pronounced mood disturbances and lower placebo-induced μ-opioid system activation in the anterior insula (aINS), the amygdala (AMY), the NAc, the thalamus (THA), and the brainstem, as well as lower levels of DA D2/3 activation in the NAc. At a trait level, G carriers reported higher NEO-Neuroticism scores; a personality trait previously associated with increased pain and lower placebo responses, which were negatively correlated with baseline μ-opioid receptor availability in the aINS and subgenual anterior cingulate cortex (sgACC). Our results demonstrate that the A118G OPRM1 polymorphism contributes to interindividual variations in the function of neurotransmitters responsive to pain (endogenous opioid and dopamine), as well as their regulation through cognitive-emotional influences in the context of therapeutic expectations, the so-called placebo effect. These effects are relevant to

  3. Pharmacological characterization of an opioid receptor in the ciliate Tetrahymena.

    PubMed

    Chiesa, R; Silva, W I; Renaud, F L

    1993-01-01

    A pharmacological characterization has been performed of the opioid receptor involved in modulation of phagocytosis in the protozoan ciliate Tetrahymena. Studies on inhibition of phagocytosis by mammalian prototypic opioid agonists revealed that morphine and beta-endorphin have the highest intrinsic activity, whereas all the other opioids tested can only be considered partial agonists. However, morphine (a mu-receptor agonist) is twice as potent as beta-endorphin (a delta-receptor agonist). Furthermore, the sensitivity for the opioid antagonist naloxone, determined in the presence of morphine and beta-endorphin, is very similar to the sensitivity exhibited by mammalian tissues rich in mu-opioid receptors. We suggest that the opioid receptor coupled to phagocytosis in Tetrahymena is mu-like in some of its pharmacological characteristics and may serve as a model system for studies on opioid receptor function and evolution.

  4. Non-opioid actions of opioid peptides.

    PubMed

    Wollemann, Mária; Benyhe, Sándor

    2004-06-04

    Beside the well known actions of opioid peptides on mu-, delta- and kappa-opioid receptors, increasing amount of pharmacological and biochemical evidence has recently been published about non-opioid actions of various opioid peptides. These effects are not abolished by naloxone treatments. Such non-opioid effects are observed both in nervous tissues and in the cellular elements of the immune system. Peptides exhibiting non-opioid effects include beta-endorphin, dynorphin A, nociceptin/OFQ, endomorphins, hemorphins and a number of Proenkephalin A derived peptides, such as Met-enkephalin, Met-enkephalin-Arg-Phe (MERF) and bovine adrenal medullary peptide (BAM22). Non-opioid actions are exerted through different neuronal receptors, e.g., dynorphin hyperalgesia through NMDA receptor, Met-enkephalin induced regulation of cell growth through zeta receptors, pain modulation by nociceptin through ORL-1 or NOP receptors, while BAM22 acts through sensory neuron specific G protein-coupled receptors (SNSR). We have investigated Met-enkephalin-Arg-Phe (MERF) and its analogues by the means of direct and indirect radioligand binding assays. It has been found that in addition to kappa(2) and delta-opioid receptors, MERF can act also through sigma(2)- or probably via FMRF-NH(2) receptors in rat cerebellum. A role of functionally assembling heterodimer receptors in mediating the non-conventional actions of these peptide ligands can not be excluded as well.

  5. Kappa Opioids, Salvinorin A and Major Depressive Disorder

    PubMed Central

    Taylor, George T.; Manzella, Francesca

    2016-01-01

    Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear, however, that the opioids are central players in mood. The implications for mood disorders, particularly clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet, dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors, especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological effects make Salvinorina A an ideal candidate for MDD treatment research. PMID:26903446

  6. Kappa Opioids, Salvinorin A and Major Depressive Disorder.

    PubMed

    Taylor, George T; Manzella, Francesca

    2016-01-01

    Opioids are traditionally associated with pain, analgesia and drug abuse. It is now clear, however, that the opioids are central players in mood. The implications for mood disorders, particularly clinical depression, suggest a paradigm shift from the monoamine neurotransmitters to the opioids either alone or in interaction with monoamine neurons. We have a special interest in dynorphin, the last of the major endogenous opioids to be isolated and identified. Dynorphin is derived from the Greek word for power, dynamis, which hints at the expectation that the neuropeptide held for its discoverers. Yet, dynorphin and its opioid receptor subtype, kappa, has always taken a backseat to the endogenous b-endorphin and the exogenous morphine that both bind the mu opioid receptor subtype. That may be changing as the dynorphin/ kappa system has been shown to have different, often opposite, neurophysiological and behavioral influences. This includes major depressive disorder (MDD). Here, we have undertaken a review of dynorphin/ kappa neurobiology as related to behaviors, especially MDD. Highlights include the unique features of dynorphin and kappa receptors and the special relation of a plant-based agonist of the kappa receptor salvinorin A. In addition to acting as a kappa opioid agonist, we conclude that salvinorin A has a complex pharmacologic profile, with potential additional mechanisms of action. Its unique neurophysiological effects make Salvinorina A an ideal candidate for MDD treatment research.

  7. Hyperthermic responses to central injections of some peptide and non-peptide opioids in the guinea-pig

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl normetazocine and an agonist at both kappa and sigma receptors, pentazocine, was found to induce hyperthermia in guinea pigs. The similar administration of peptide opioids like beta endorphin, methionine endkephalin, leucine endkephaline, and several of their synthetic analogues was also found to cause hyperthermia. Only the liver-like transport system of the three anion transport systems (iodide, hippurate, and liver-like) present in the choroid plexus was determined to be important to the central inactivation of beta-endorphin and two synthetic analogues. Prostaglandins and norepinephrine (NE) as well as cAMP were not involved in peptide and nonpeptide opioid-induced hyperthermia. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine and beta-endorphin, while hyperthermic responses to ketocyclazocine, N-allyl normetazocine, pentazocine, Met-enkephalin, Leu-enkephalin, and two of the synthetic analogues were not antagonized by nalozone. The lack of antagonism of naloxone on pyrogen, arachidonic acid, PGE2, dibutyryl cAMP, and NE-induced hyperthermia shows that endogenous opioid peptides are not likely to be central mediators of the hyperthermia induced by these agents.

  8. Delta Opioid Receptor and Its Peptide: A Receptor-Ligand Neuroprotection

    PubMed Central

    Staples, Meaghan; Acosta, Sandra; Tajiri, Naoki; Pabon, Mibel; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies. PMID:23979422

  9. Differences in basal and ethanol-induced levels of opioid peptides in Wistar rats from five different suppliers.

    PubMed

    Palm, Sara; Roman, Erika; Nylander, Ingrid

    2012-07-01

    One major cause for discrepancies in results from animal experimental studies is the use of different animal strains and suppliers. We have previously reported that Wistar rats from five different suppliers display profound differences in ethanol intake and behavior. One of the neurobiological processes that could be underlying these differences is the endogenous opioid system, which has been implicated in the rewarding and reinforcing effects of alcohol. We therefore hypothesized that the differences between the supplier groups would also be evident in the endogenous opioid system. Radioimmunoassay was used to determine the levels of the opioid peptides Met-enkephalin-Arg(6)Phe(7) and dynorphin B in several brain areas of ethanol-drinking and ethanol naïve Wistar rats from five different suppliers. In the ethanol naïve animals, differences between the supplier groups were found in the pituitary gland, hypothalamus, frontal cortex, dorsal striatum and hippocampus. In the ethanol-drinking rats, differences were found in the same structures, with the addition of medial prefrontal cortex and substantia nigra. Correlations between ethanol intake and peptide levels were also found in several of the areas examined. The structures in which differences were found have all been implicated in the transition from drug use to addiction and these differences may lead to different propensities and vulnerability to this transition. Because the endogenous opioids have been suggested to be involved in a number of neurobiological disorders the results do not only have implications for research on alcohol or drug addiction, but many other fields as well.

  10. Neonatal opioid withdrawal and antenatal opioid prescribing

    PubMed Central

    Gomes, Tara; Camacho, Ximena; Yao, Zhan; Guttmann, Astrid; Mamdani, Muhammad M.; Juurlink, David N.; Dhalla, Irfan A.

    2015-01-01

    Background The incidence of neonatal opioid withdrawal is increasing in both Canada and the United States. However, the degree to which the treatment of pain with opioids, rather than the misuse of prescription opioids or heroin, contributes to the prevalence of neonatal opioid withdrawal remains unknown. Methods We conducted a retrospective, population-based, cross-sectional study between 1992 and 2011 in Ontario with 2 objectives. First, we determined the annual incidence of neonatal abstinence syndrome. Second, using data from a subset of women eligible for publicly funded prescription drugs, we determined what proportion of women who deliver an infant with neonatal abstinence syndrome were given a prescription for an opioid before and during pregnancy. Results The incidence of neonatal abstinence syndrome in Ontario increased 15-fold during the study period, from 0.28 per 1000 live births in 1992 to 4.29 per 1000 live births in 2011. During the final 5 years of the study, we identified 927 deliveries of infants with neonatal abstinence syndrome to mothers who were public drug plan beneficiaries. Of these mothers, 67% had received an opioid prescription in the 100 days preceding delivery, including 53.3% who received methadone, an increase from 28.6% in the interval spanning 1 to 2 years before delivery (p < 0.001). Prescription for nonmethadone opioids decreased from 38% to 17% (p < 0.001). Interpretation The incidence of neonatal opioid withdrawal in Ontario has increased substantially over the last 20 years. Most of the women in this cohort who delivered an infant with neonatal abstinence syndrome had received a prescription for an opioid both before and during their pregnancy. PMID:25844370

  11. Structure of the [delta]-opioid receptor bound to naltrindole

    SciTech Connect

    Granier, Sébastien; Manglik, Aashish; Kruse, Andrew C.; Kobilka, Tong Sun; Thian, Foon Sun; Weis, William I.; Kobilka, Brian K.

    2012-07-11

    The opioid receptor family comprises three members, the {mu}-, {delta}- and {kappa}-opioid receptors, which respond to classical opioid alkaloids such as morphine and heroin as well as to endogenous peptide ligands like endorphins. They belong to the G-protein-coupled receptor (GPCR) superfamily, and are excellent therapeutic targets for pain control. The {delta}-opioid receptor ({delta}-OR) has a role in analgesia, as well as in other neurological functions that remain poorly understood. The structures of the {mu}-OR and {kappa}-OR have recently been solved. Here we report the crystal structure of the mouse {delta}-OR, bound to the subtype-selective antagonist naltrindole. Together with the structures of the {mu}-OR and {kappa}-OR, the {delta}-OR structure provides insights into conserved elements of opioid ligand recognition while also revealing structural features associated with ligand-subtype selectivity. The binding pocket of opioid receptors can be divided into two distinct regions. Whereas the lower part of this pocket is highly conserved among opioid receptors, the upper part contains divergent residues that confer subtype selectivity. This provides a structural explanation and validation for the 'message-address' model of opioid receptor pharmacology, in which distinct 'message' (efficacy) and 'address' (selectivity) determinants are contained within a single ligand. Comparison of the address region of the {delta}-OR with other GPCRs reveals that this structural organization may be a more general phenomenon, extending to other GPCR families as well.

  12. Chronic pain and ultrarapid opioid detoxification.

    PubMed

    Kaye, Alan D; Banister, Ron E; Hoover, Jason M; Baluch, Amir R; Jacobs, Scott; Shah, Rinoo V

    2005-03-01

    Availability of opiate substances through physicians and on the street has led to a rise in dependence and in addiction resulting in countless numbers of people hooked on these drugs. Long-term use of these agents results in reduction of endogenous supply of opiate replaced by these exogenous compounds. A technique known as Ultrarapid Detoxification (UROD) has been developed and appears more promising than conventional modalities. UROD has been modified over 3 decades resulting in a safe and an effective general anesthetic that results in hemodynamically stable withdrawal without manifestation of central nervous system hyperarousal. A cornerstone of this technique involves clonidine, which stimulates reuptake of catecholamines and allows for large doses of opioid antagonist to be delivered without significant changes in heart rate or blood pressure, displacing the opiate. Though techniques vary from center to center, safety should be paramount with the technique performed in an intensive care unit with trained professional anesthesiologists. Psychosocial issues should be evaluated by a trained addictionalist and most people will succeed from the UROD procedure without experiencing the horrible withdrawal syndrome. Patients must have realistic goals and be prepared to deal with psychosocial issues post-procedure.

  13. Alcohol Screening among Opioid Agonist Patients in a Primary Care Clinic and an Opioid Treatment Program.

    PubMed

    Klimas, Jan; Muench, John; Wiest, Katharina; Croff, Raina; Rieckman, Traci; McCarty, Dennis

    2015-01-01

    Problem alcohol use is associated with adverse health and economic outcomes, especially among people in opioid agonist treatment. Screening, brief intervention, and referral to treatment (SBIRT) are effective in reducing alcohol use; however, issues involved in SBIRT implementation among opioid agonist patients are unknown. To assess identification and treatment of alcohol use disorders, we reviewed clinical records of opioid agonist patients screened for an alcohol use disorder in a primary care clinic (n = 208) and in an opioid treatment program (n = 204) over a two-year period. In the primary care clinic, 193 (93%) buprenorphine patients completed an annual alcohol screening and six (3%) had elevated AUDIT scores. In the opioid treatment program, an alcohol abuse or dependence diagnosis was recorded for 54 (27%) methadone patients. Practitioner focus groups were completed in the primary care (n = 4 physicians) and the opioid treatment program (n = 11 counselors) to assess experience with and attitudes towards screening opioid agonist patients for alcohol use disorders. Focus groups suggested that organizational, structural, provider, patient, and community variables hindered or fostered alcohol screening. Alcohol screening is feasible among opioid agonist patients. Effective implementation, however, requires physician training and systematic changes in workflow.

  14. Inhibition of the cancer stem cells-like properties by arsenic trioxide, involved in the attenuation of endogenous transforming growth factor beta signal.

    PubMed

    Li, Yuan; Jiang, Fei; Liu, Qinqiang; Shen, Jian; Wang, Xingxing; Li, Zhong; Zhang, Jianping; Lu, Xiang

    2015-01-01

    The elevation of cancer stem cells (CSCs)-like properties is involved in the initiation and progression of various human cancers. Current standard practices for treatment of cancers are less than satisfactory because of CSCs-mediated recurrence. For this reason, targeting the CSCs or the cancer cells with CSCs-like properties has become the new approach for the cancer treatments. In addition to treating leukemia, arsenic trioxide (As₂O₃) also suppresses other solid tumors. However, the roles of As₂O₃ in the regulation of CSCs-like properties remain largely uninvestigated. Here by using sphere formation assay, luciferase reporter assay, and some other molecular biology approaches, we found that As₂O₃ attenuated the CSCs-like properties in human hepatocellular carcinoma (HCC). Briefly, in HCC cells and mice xenograft models, As₂O₃ improved the expression of miR-491 by DNA-demethylation. MiR-491, which targeted the SMAD3-3'-UTR, decreased the expressions of SMAD3, and inhibited the CSCs-like properties in HCC cells. Knockdown of either miR-491 or SMAD3 attenuated the As₂O₃-induced inhibition of endogenous transforming growth factor beta signal and the CSCs-like properties. Further, in HCC patients, miR-491 is inversely correlated with the expressions of SMAD3, CD133, and the metastasis/recurrence outcome. By understanding a novel mechanism whereby As₂O₃ inhibits the CSCs-like properties in HCC, our study would help in the design of future strategies of developing As₂O₃ as a potential HCC chemopreventive agent when used alone or in combination with other current drugs.

  15. No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia.

    PubMed Central

    Stein, C; Pflüger, M; Yassouridis, A; Hoelzl, J; Lehrberger, K; Welte, C; Hassan, A H

    1996-01-01

    Pain treatment with centrally acting opiates is limited by tolerance. Tolerance is a decreasing effect of a drug with prolonged administration of that drug or of a related (e.g., endogenous) compound acting at the same receptor. This is often associated with a downregulation of receptors. In peripheral inflamed tissue, both locally expressed opioid peptides and morphine can produce powerful analgesia mediated by similar populations of opioid receptors. We hypothesized that the chronic presence of endogenous opioids in inflamed joints might convey downregulation of peripheral opioid receptors and tolerance to the analgesic effects of intraarticular morphine. We assessed these effects after arthroscopic surgery in patients with and without histologically verified synovial cellular infiltration, and we examined synovial opioid peptides and opioid receptors by immunocytochemistry and autoradiography, respectively. We found that, despite an abundance of opioid-containing cells in pronounced synovitis, morphine is at least as effective as in patients without such cellular infiltrations, and there is no major downregulation of peripheral opioid receptors. Thus, opioids expressed in inflamed tissue do not produce tolerance to peripheral morphine analgesia. Tolerance may be less pronounced for peripherally than for centrally acting opioids, which provides a promising perspective for the treatment of chronic pain in arthritis and other inflammatory conditions. PMID:8698872

  16. Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells

    SciTech Connect

    Mouledous, Lionel

    2008-08-15

    *: Mu opioid (MOP) receptor activation can be functionally modulated by stimulation of Neuropeptide FF 2 (NPFF{sub 2}) G protein-coupled receptors. Fluorescence recovery after photobleaching experiments have shown that activation of the NPFF{sub 2} receptor dramatically reduces the fraction of MOP receptors confined in microdomains of the plasma membrane of SH-SY5Y neuroblastoma cells. The aim of the present work was to assess if the direct observation of receptor compartmentation by fluorescence techniques in living cells could be related to indirect estimation of receptor partitioning in lipid rafts after biochemical fractionation of the cell. Our results show that MOP receptor distribution in lipid rafts is highly dependent upon the method of purification, questioning the interpretation of previous data regarding MOP receptor compartmentation. Moreover, the NPFF analogue 1DMe does not modify the distribution profile of MOP receptors, clearly demonstrating that membrane fractionation data do not correlate with direct measurement of receptor compartmentation in living cells.

  17. Involvement of brain opioid receptors in the anti-allodynic effect of hyperbaric oxygen in rats with sciatic nerve crush-induced neuropathic pain.

    PubMed

    Gibbons, Carlee R; Liu, Shulin; Zhang, Yangmiao; Sayre, Casey L; Levitch, Briana R; Moehlmann, Sarah B; Shirachi, Donald Y; Quock, Raymond M

    2013-11-06

    Earlier research has demonstrated that hyperbaric oxygen (HBO2) can produce an antinociceptive effect in models of acute pain. Recent studies have revealed that HBO2 can produce pain relief in animal models of chronic pain as well. The purpose of the present investigation was to ascertain whether HBO2 treatment might suppress allodynia in rats with neuropathic pain and whether this effect might be blocked by the opioid antagonist naltrexone (NTX). Male Sprague Dawley rats were subjected to a sciatic nerve crush under anesthesia and mechanical thresholds were assessed using an electronic von Frey anesthesiometer. The time course of the HBO2-induced anti-allodynic effect in different treatment groups was plotted, and the area-under-the-curve (AUC) was determined for each group. Seven days after the nerve crush procedure, rats were treated with HBO2 at 3.5 atm absolute (ATA) for 60 min and exhibited an anti-allodynic effect, compared to nerve crush-only control rats. Twenty-four hours before HBO2 treatment, another group of rats was implanted with Alzet(®) osmotic minipumps that continuously released NTX into the lateral cerebral ventricle for 7 days. These NTX-infused, HBO2-treated rats exhibited an allodynic response comparable to that exhibited by rats receiving nerve crush only. Analysis of the AUC data showed that HBO2 significantly reduced the nerve crush-induced allodynia; this anti-allodynic effect of HBO2 was reversed by NTX. These results implicate opioid receptors in the pain relief induced by HBO2.

  18. Involvement of brain opioid receptors in the anti-allodynic effect of hyperbaric oxygen in rats with sciatic nerve crush-induced neuropathic pain

    PubMed Central

    Gibbons, Carlee R.; Liu, Shulin; Zhang, Yangmiao; Sayre, Casey L.; Levitch, Briana; Moehlmann, Sarah; Shirachi, Donald Y.; Quock, Raymond M.

    2013-01-01

    Earlier research has demonstrated that hyperbaric oxygen (HBO2) can produce an antinociceptive effect in models of acute pain. Recent studies have revealed that HBO2 can produce pain relief in animal models of chronic pain as well. The purpose of the present investigation was to ascertain whether HBO2 treatment might suppress allodynia in rats with neuropathic pain and whether this effect might be blocked by the opioid antagonist naltrexone (NTX). Male Sprague Dawley rats were subjected to a sciatic nerve crush under anesthesia and mechanical thresholds were assessed using an electronic von Frey anesthesiometer. The time course of the HBO2-induced anti-allodynic effect in different treatment groups was plotted, and the area-under-the-curve (AUC) was determined for each group. Seven days after the nerve crush procedure, rats were treated with HBO2 at 3.5 atmospheres absolute (ATA) for 60 min and exhibited an anti-allodynic effect, compared to nerve crush-only control rats. Twenty-four hours before HBO2 treatment, another group of rats was implanted with Alzet® osmotic minipumps that continuously released NTX into the lateral cerebral ventricle for 7 days. These NTX-infused, HBO2-treated rats exhibited an allodynic response comparable to that exhibited by rats receiving nerve crush only. Analysis of the AUC data showed that HBO2 significantly reduced the nerve crush-induced allodynia; this anti-allodynic effect of HBO2 was reversed by NTX. These results implicate opioid receptors in the pain relief induced by HBO2. PMID:23998986

  19. Association between the A107V substitution in the δ-opioid receptors and ethanol drinking in mice selected for high and low analgesia.

    PubMed

    Sacharczuk, Mariusz; Lesniak, Anna; Lipkowski, Andrzej W; Korostynski, Michal; Przewlocki, Ryszard; Sadowski, Bogdan

    2014-07-01

    Experimental evidence suggests that endogenous opioids play an important role in the development of ethanol addiction. In this study, we employed two mouse lines divergently bred for opioid-mediated stress-induced analgesia. In comparison with HA (high analgesia line) mice, LA (low analgesia line) mice, having lower opioid receptor system activity, manifest enhanced basal as well as stress-induced ethanol drinking. Here, we found that recently discovered C320T transition in exon 2 of the δ-opioid receptor gene (EU446125.1), which results in an A107V substitution (ACA23171.1), leads to higher ethanol preference in CT mice compared with CC homozygotes. This genetic association is particularly evident under chronic mild stress (CMS) conditions. The interaction between stress and ethanol intake was significantly stronger in HA than in LA mice. Ethanol almost completely attenuated the pro-depressive effect of CMS (assessed with the tail suspension test) in both the CC and CT genotypes in the HA line. In the LA mice, a lack of response to ethanol was observed in the CC genotype, whereas ethanol consumption strengthened depressive-like behaviours in CT individuals. Our results suggest that constitutively active A107V substitution in δ-opioid receptors may be involved in stress-enhanced vulnerability to ethanol abuse and in the risk of ethanol dependence.

  20. Is there a role for opioids in the treatment of fibromyalgia?

    PubMed

    Littlejohn, Geoffrey O; Guymer, Emma K; Ngian, Gene-Siew

    2016-05-01

    The use of opioids for chronic pain has increased significantly due to a combination of the high patient burden of pain and the more widespread availability of a range of long-acting opioid preparations. This increased opioid use has translated into the care of many patients with fibromyalgia. The pain mechanism in fibromyalgia is complex but does not seem to involve disturbance of opioid analgesic functions. Hence, there is general concern about the harms in the absence of benefits of opioids in this setting. There is no evidence that pure opioids are effective in fibromyalgia but there is some evidence that opioids with additional actions on the norepinephrine-related pain modulatory pathways, such as tramadol, can be clinically useful in some patients. Novel actions of low-dose opioid antagonists may lead to better understanding of the role of opioid function in fibromyalgia.

  1. Opioids and endocrine dysfunction

    PubMed Central

    Hester, Joan

    2012-01-01

    The endocrine effects of opioids used for the management of persistent pain are poorly understood by clinicians and patients, and hormone levels are rarely measured. It is recognized that opioids exert this effect via the hypothalamic-pituitary-gonadal axis. Additional effects on adrenal hormones, weight, blood pressure and bone density may also occur. Symptoms and signs of sex hormone deficiency occur in both men and women but are under-reported and are often clinically unrecognized. The potential effects of long term opioid therapy on the endocrine system should be explained to patients before opioid therapy is commenced. Monitoring of sex hormones is recommended; if there are deficiencies opioids should be tapered and withdrawn, if this is clinically acceptable. If opioid therapy has to continue, hormone replacement therapy should be initiated and monitored by an endocrinologist. PMID:26516462

  2. Pain as a reward: changing the meaning of pain from negative to positive co-activates opioid and cannabinoid systems.

    PubMed

    Benedetti, Fabrizio; Thoen, Wilma; Blanchard, Catherine; Vighetti, Sergio; Arduino, Claudia

    2013-03-01

    Pain is a negative emotional experience that is modulated by a variety of psychological factors through different inhibitory systems. For example, endogenous opioids and cannabinoids have been found to be involved in stress and placebo analgesia. Here we show that when the meaning of the pain experience is changed from negative to positive through verbal suggestions, the opioid and cannabinoid systems are co-activated and these, in turn, increase pain tolerance. We induced ischemic arm pain in healthy volunteers, who had to tolerate the pain as long as possible. One group was informed about the aversive nature of the task, as done in any pain study. Conversely, a second group was told that the ischemia would be beneficial to the muscles, thus emphasizing the usefulness of the pain endurance task. We found that in the second group pain tolerance was significantly higher compared to the first one, and that this effect was partially blocked by the opioid antagonist naltrexone alone and by the cannabinoid antagonist rimonabant alone. However, the combined administration of naltrexone and rimonabant antagonized the increased tolerance completely. Our results indicate that a positive approach to pain reduces the global pain experience through the co-activation of the opioid and cannabinoid systems. These findings may have a profound impact on clinical practice. For example, postoperative pain, which means healing, can be perceived as less unpleasant than cancer pain, which means death. Therefore, the behavioral and/or pharmacological manipulation of the meaning of pain can represent an effective approach to pain management.

  3. Endogenous dopamine increases extracellular concentrations of glutamate and GABA in striatum of the freely moving rat: involvement of D1 and D2 dopamine receptors.

    PubMed

    Expósito, I; Del Arco, A; Segovia, G; Mora, F

    1999-07-01

    Interactions between endogenous dopamine, glutamate, GABA, and taurine were investigated in striatum of the freely moving rat by using microdialysis. Intrastriatal infusions of the selective dopamine uptake inhibitor nomifensine (NMF) were used to increase the endogenous extracellular dopamine. NMF produced a dose-related increase in extracellular dopamine and also increased extracellular concentrations of glutamate, GABA, and taurine. Extracellular increases of dopamine were significantly correlated with extracellular increases of glutamate and GABA, but not taurine. To investigate whether the increased extracellular dopamine produced by NMF was responsible for the concomitant increase of glutamate and GABA, D1, and D2 receptor antagonists were used. Dopamine receptor antagonists D1 (SCH23390) and D2 (sulpiride) significantly attenuated the increases of glutamate and GABA produced by NMF. These data suggest that endogenous dopamine, through both D1 and D2 dopamine receptors, plays a role in releasing glutamate and GABA in striatum of the freely moving rat.

  4. New approaches to the treatment of opioid-induced constipation

    PubMed Central

    Holzer, Peter

    2015-01-01

    Opiates are indispensable for the treatment of moderate to severe pain. The gastrointestinal tract is one of the major victims of the undesired effects of opiates, because the enteric nervous system expresses all major subtypes of opioid receptors. As a result, propulsive motility and secretory processes in the gut are inhibited by opioid analgesics, and the ensuing constipation is one of the most frequent and troublesome adverse reactions. Many treatments involving laxatives, prokinetic drugs and opioid-sparing regimens have been explored to circumvent opioid-induced bowel dysfunction, but the outcome has in general been unsatisfactory. Specific antagonism of peripheral opioid receptors offers a more rational approach to the management of the adverse actions of opioid analgesics in the gut. This goal is currently addressed by the use of opioid receptor antagonists with limited absorption such as oral naloxone and by the development of peripherally restricted opioid receptor antagonists such as methylnaltrexone and alvimopan. These investigational drugs hold considerable promise in preventing constipation due to opiate treatment, whereas the analgesic action of opiates remains unabated. Postoperative ileus associated with opioid-induced postsurgical pain control is likewise ameliorated by the compounds. With this proof of concept, several phase III studies are under way to define optimal dosage, dosing regimen as well as long-term efficacy and safety of methylnaltrexone and alvimopan. In addition, there is preliminary evidence that these peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right. PMID:18924451

  5. In vitro identification of the cytochrome P450 isozymes involved in the N-demethylation of the active opioid metabolite nortilidine to bisnortilidine.

    PubMed

    Wustrow, Isabel; Riedel, Klaus-Dieter; Mikus, Gerd; Weiss, Johanna

    2012-06-01

    Tilidine exhibits the highest consumption of opioids in Germany. The prodrug is hepatically metabolised in a sequential N-demethylation reaction. Its primary metabolite nortilidine is a selective μ-opioid receptor agonist which can penetrate the blood-brain barrier. Cytochrome P450 isozymes (CYP) 3A4 and CYP2C19 were previously identified as isozymes mediating the formation of nortilidine. This study was set up to identify the enzymes and kinetics of the subsequent N-demethylation to bisnortilidine, thus being able to understand clinical interactions. Human liver microsomes and recombinant CYPs were used to investigate the metabolism of nortilidine to bisnortilidine. Nortilidine and bisnortilidine were quantified using liquid chromatography tandem mass spectrometry. Inhibitor screening kits were used to quantify the inhibition of CYP3A4, CYP2C19, CYP2B6 and CYP2D6 by bisnortilidine. Nortilidine metabolism to bisnortilidine followed the Michaelis-Menten kinetics with K (m) = 141.6 ± 15 μM and V (max) = 46.2 ± 3 nmol/mg/h. Inhibitors of CYP3A4, CYP2C19 and CYP2B6 inhibited this reaction. Assays with recombinant CYPs verified that the N-demethylation is catalysed by CYP3A4, CYP2C19 and CYP2B6. Our results also demonstrated that the metabolism from tilidine to nortilidine is not only mediated by CYP3A4 and CYP2C19, but also by CYP2B6. Moreover, bisnortilidine is a weak inhibitor of CYP3A4 and CYP2B6, a strong inhibitor of CYP2D6, but not an inhibitor of CYP2C19. Our study demonstrated that nortilidine is metabolised via the same CYP isozymes as the prodrug tilidine, whereas the formation of bisnortilidine appears to be the rate-limiting step in the metabolism of tilidine. Pharmacokinetic interactions can be expected with inhibitors or inducers of CYP3A4, CYP2C19 or CYP2B6.

  6. Evaluation and Management of Opioid Dependence in Pregnancy

    PubMed Central

    Park, Eliza M; Meltzer-Brody, Samantha; Suzuki, Joji

    2017-01-01

    Background Opioid use disorders are a growing public health problem in the United States. Most women who are opioid dependent are of childbearing age and management of opioid dependence during pregnancy poses unique challenges. Assessment includes evaluation for addiction, withdrawal syndromes, and co-morbid psychiatric diagnoses. Consultation-liaison psychiatrists may also be involved in acute pain management, perinatal medication management, buprenorphine induction and stabilization. For the past four decades, the standard of care has included methadone maintenance, but the increasing use of buprenorphine creates new treatment issues and opportunities. Objective To educate consultation-liaison psychiatrists in emergency and obstetrical settings about the appropriate approach toward the evaluation and basic management of women with opioid dependence in pregnancy. Method The authors reviewed the consensus literature and all new treatment options on opioid dependence during pregnancy. Discussion In this review, the authors summarize known and emerging management strategies for opioid dependence in pregnancy pertinent to consultation-liaison psychiatrists. PMID:22902085

  7. A comprehensive response to the opioid epidemic: Hazelden's approach.

    PubMed

    Seppala, Marvin D

    2013-03-01

    For years, treatment professionals have debated the virtues of medication maintenance versus psychosocial therapies for treating opioid addiction. In its response to the opioid crisis, Hazelden is attempting to bridge the difference by using a treatment protocol that involves both the conservative use of safe medications and psychosocial therapies while maintaining the ultimate goal of abstinence. This article discusses the recent and precipitous rise in opioid use, abuse, dependence and overdoses in the United States; the physician's role in creating and solving the problem; and Hazelden's unique approach to caring for people with opioid addiction.

  8. The Useage of Opioids and their Adverse Effects in Gastrointestinal Practice: A Review

    PubMed Central

    Khansari, MahmoudReza; Sohrabi, MasourReza; Zamani, Farhad

    2013-01-01

    Opium is one of the oldest herbal medicines currently used as an analgesic, sedative and antidiarrheal treatment. The effects of opium are principally mediated by the μ-, κ- and δ-opioid receptors. Opioid substances consist of all natural and synthetic alkaloids that are derived from opium. Most of their effects on gastrointestinal motility and secretion result from suppression of neural activity. Inhibition of gastric emptying, increase in sphincter tone, changes in motor patterns, and blockage of peristalsis result from opioid use. Common adverse effects of opioid administration include sedation, dizziness, nausea, vomiting, constipation, dependency and tolerance, and respiratory depression. The most common adverse effect of opioid use is constipation. Although stool softeners are frequently used to decrease opioid-induced bowel dysfunction, however they are not efficacious. Possibly, the use of specific opioid receptor antagonists is a more suitable approach. Opioid antagonists, both central and peripheral, could affect gastrointestinal function and visceromotor sensitivity, which suggests an important role for endogenous opioid peptides in the control of gastrointestinal physiology. Underlying diseases or medications known to influence the central nervous system (CNS) often accelerate the opioid’s adverse effects. However, changing the opioid and/or route of administration could also decrease their adverse effects. Appropriate patient selection, patient education and discussion regarding potential adverse effects may assist physicians in maximizing the effectiveness of opioids, while reducing the number and severity of adverse effects. PMID:24829664

  9. Novel Molecular Strategies and Targets for Opioid Drug Discovery for the Treatment of Chronic Pain

    PubMed Central

    Olson, Keith M.; Lei, Wei; Keresztes, Attila; LaVigne, Justin; Streicher, John M.

    2017-01-01

    Opioid drugs like morphine and fentanyl are the gold standard for treating moderate to severe acute and chronic pain. However, opioid drug use can be limited by serious side effects, including constipation, tolerance, respiratory suppression, and addiction. For more than 100 years, we have tried to develop opioids that decrease or eliminate these liabilities, with little success. Recent advances in understanding opioid receptor signal transduction have suggested new possibilities to activate the opioid receptors to cause analgesia, while reducing or eliminating unwanted side effects. These new approaches include designing functionally selective ligands, which activate desired signaling cascades while avoiding signaling cascades that are thought to provoke side effects. It may also be possible to directly modulate downstream signaling through the use of selective activators and inhibitors. Separate from downstream signal transduction, it has also been found that when the opioid system is stimulated, various negative feedback systems are upregulated to compensate, which can drive side effects. This has led to the development of multi-functional molecules that simultaneously activate the opioid receptor while blocking various negative feedback receptor systems including cholecystokinin and neurokinin-1. Other novel approaches include targeting heterodimers of the opioid and other receptor systems which may drive side effects, and making endogenous opioid peptides druggable, which may also reduce opioid mediated side effects. Taken together, these advances in our molecular understanding provide a path forward to break the barrier in producing an opioid with reduced or eliminated side effects, especially addiction, which may provide relief for millions of patients. PMID:28356897

  10. Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins

    PubMed Central

    Dunys, Julie; Kawarai, Toshitaka; Wilk, Sherwin; St. George-Hyslop, Peter; Alves Da Costa, Cristine; Checler, Frédéric

    2005-01-01

    PS (presenilin)-dependent γ-secretase occurs as a high-molecular-mass complex composed of either PS1 or PS2 associated with Nct (nicastrin), PEN2 (presenilin enhancer 2 homologue) and APH1 (anterior pharynx defective 1 homologue). Numerous reports have documented the very complicated physical and functional cross-talk between these proteins that ultimately governs the biological activity of the γ-secretase, but very few studies examined the fate of the components of the complex. We show that, in both HEK-293 cells and the TSM1 neuronal cell line, the immunoreactivities of overexpressed myc-tagged-APH1a and -PEN2 were enhanced by the proteasome inhibitors ZIE and lactacystin, whereas a broad range of protease inhibitors had no effect. By contrast, proteasome inhibitors were totally unable to affect the cellular expression of endogenous APH1aL and PEN2 in HEK-293 cells, TSM1 and primary cultured cortical neurons. To explain this apparent discrepancy, we examined the degradation of myc-tagged-APH1a and -PEN2, in vitro, by cell extracts containing endogenous proteasome and by purified 20S proteasome. Strikingly, myc-tagged-APH1a and -PEN2 resist proteolysis by endogenous proteasome and purified 20S proteasome. We also show that endogenous PEN2 expression was drastically higher in wild-type than in PS- and Nct-deficient fibroblasts and was enhanced by proteasome inhibitors only in the two deficient cell systems. However, here again, purified 20S proteasome appeared unable to cleave endogenous PEN2 present in PS-deficient fibroblasts. The levels of endogenous APH1aL-like immunoreactivity were not modified by proteasome inhibitors and were unaffected by PS deficiency. Altogether, our results indicate that endogenous PEN2 and APH1aL do not undergo proteasomal degradation under physiological conditions in HEK-293 cells, TSM1 cells and fibroblasts and that the clearance of PEN2 in PS- and Nct-deficient fibroblasts is not mediated by 20S proteasome. Whether the 26S

  11. Opioid peptides and innate immune response in mollusc.

    PubMed

    Liu, Dong-Wu

    2008-01-01

    The nervous and the immune systems can exchange information through opioid peptides. Furthermore, some opioid peptides can function as endogenous messengers of the immune system, and participate in an important part in the regulation of the various components of the immune response. Since the capacity of immunocytes to release and respond to opioid neuropeptide messengers is not restricted to mammalian organisms, recent studies have indicated that invertebrate models have been particularly useful to understand the mechanisms of the immune response. Moreover, the immunocytes of molluscs resemble cells of the vertebrate monocyte/macrophage lineage and are activated by similar substances, which control the main immune responses, i.e. phagocytosis, chemotaxis, and cytotoxicity. Recently, Mytilus edulis has been the subject of recent studies to determine whether the relationship between the immune and nervous systems seen in vertebrates also exists in invertebrates. The focus of this review is to describe how the opioid peptides participate in immune processes in molluscs.

  12. Kappa opioid receptor/dynorphin system: Genetic and pharmacotherapeutic implications for addiction

    PubMed Central

    Butelman, Eduardo R.; Yuferov, Vadim; Kreek, Mary Jeanne

    2013-01-01

    Addictions to cocaine or heroin/prescription opioids [short-acting mu-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. Kappa-opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN) have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often co-morbid with addictions. In this Opinion article, we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric co-morbidity. PMID:22709632

  13. The opioid peptide beta-endorphin stimulates acrosome reaction in human spermatozoa.

    PubMed

    Urizar-Arenaza, I; Estomba, H; Muñoa-Hoyos, I; Matorras, R; Esposito, A; Candenas, L; Pinto, F M; Valdivia, A; Irazusta, J; Subirán, N

    2016-01-01

    The acrosome reaction occurs in vivo following sperm capacitation and is essential for the acquisition of sperm fertilization ability. However, little is known about the molecular identity of the physiological acrosome reaction regulators. In addition to progesterone, which is produced by cumulus oophorus cells and known to regulate acrosome reaction by activating the specific calcium channel CatSper, endogenous opioid peptides such as beta-endorphin and met-enkephalin are present at high concentrations in the follicular fluid suggesting that the opioid system may be involved in the mechanisms regulating the acrosome reaction in humans. By using Reverse Transcription-PCR, western blot and immunofluorescence approaches, we described the presence and localization of the beta-endorphin precursor, pro-opiomelanocortinin the middle section and in flagellum of human spermatozoa, and inside the seminiferous tubules of human testis. Flow cytometry and intracellular calcium analyses showed that beta-endorphin causes an inversely dose-dependent increase in the percentage of acrosome-reacted sperm cells by a calcium-independent protein kinase C pathway. These findings are important for future studies of sperm physiology and provide new insight into the function of the opioid system as a target of fertility management.

  14. κ-opioid receptor/dynorphin system: genetic and pharmacotherapeutic implications for addiction.

    PubMed

    Butelman, Eduardo R; Yuferov, Vadim; Kreek, Mary Jeanne

    2012-10-01

    Addictions to cocaine or heroin/prescription opioids [short-acting μ-opioid receptor (MOPr) agonists] involve relapsing cycles, with experimentation/escalating use, withdrawal/abstinence, and relapse/re-escalation. κ-Opioid receptors (KOPr; encoded by OPRK1), and their endogenous agonists, the dynorphins (encoded by PDYN), have counter-modulatory effects on reward caused by cocaine or MOPr agonist exposure, and exhibit plasticity in addictive-like states. KOPr/dynorphin activation is implicated in depression/anxiety, often comorbid with addictions. In this opinion article we propose that particular stages of the addiction cycle are differentially affected by KOPr/dynorphin systems. Vulnerability and resilience can be due to pre-existing (e.g., genetic) factors, or epigenetic modifications of the OPRK1 or PDYN genes during the addiction cycle. Pharmacotherapeutic approaches limiting changes in KOPr/dynorphin tone, especially with KOPr partial agonists, may hold potential for the treatment of specific drug addictions and psychiatric comorbidity.

  15. Imaging of opioid receptors in the central nervous system

    PubMed Central

    Henriksen, Gjermund

    2008-01-01

    In vivo functional imaging by means of positron emission tomography (PET) is the sole method for providing a quantitative measurement of μ-, κ and δ-opioid receptor-mediated signalling in the central nervous system. During the last two decades, measurements of changes to the regional brain opioidergic neuronal activation—mediated by endogenously produced opioid peptides, or exogenously administered opioid drugs—have been conducted in numerous chronic pain conditions, in epilepsy, as well as by stimulant- and opioidergic drugs. Although several PET-tracers have been used clinically for depiction and quantification of the opioid receptors changes, the underlying mechanisms for regulation of changes to the availability of opioid receptors are still unclear. After a presentation of the general signalling mechanisms of the opioid receptor system relevant for PET, a critical survey of the pharmacological properties of some currently available PET-tracers is presented. Clinical studies performed with different PET ligands are also reviewed and the compound-dependent findings are summarized. An outlook is given concluding with the tailoring of tracer properties, in order to facilitate for a selective addressment of dynamic changes to the availability of a single subclass, in combination with an optimization of the quantification framework are essentials for further progress in the field of in vivo opioid receptor imaging. PMID:18048446

  16. Molecular and cellular basis of cannabinoid and opioid interactions.

    PubMed

    Viganò, Daniela; Rubino, Tiziana; Parolaro, Daniela

    2005-06-01

    Cannabinoids and opioids have been shown to possess several similar pharmacological effects, including analgesia and stimulation of brain circuitry that are believed to underlie drug addiction and reward. In recent years, these phenomena have supported the possible existence of functional links in the mechanisms of action of both types of drugs. The present review addresses the recent advances in the study of biochemical and molecular mechanisms underlying opioid and cannabinoid interaction. Several hypothesis have been formulated to explain this cross-modulation including the release of opioid peptides by cannabinoids or endocannabinoids by opioids and interaction at the level of receptor and/or their signal transduction mechanisms. Moreover it is important to consider that the nature of cannabinoid and opioid interaction might differ in the brain circuits mediating reward and in those mediating other pharmacological properties, such as antinociception. While in vitro studies point to the presence of interaction at various steps along the signal transduction pathway, studies in intact animals are frequently contradictory pending on the used species and the adopted protocol. The presence of reciprocal alteration in receptor density and efficiency as well as the modification in opioid/cannabinoid endogenous systems often do not reflect the behavioral results. Further studies are needed since a better knowledge of the opioid-cannabinoid interaction may lead to exciting therapeutic possibilities.

  17. Prescription Opioids during Pregnancy

    MedlinePlus

    ... an injury or surgery. Opioids include codeine, fentanyl, morphine and oxycodone. If you take opioids during pregnancy, ... name Vicodin®) Fentanyl (brand name Actiq®, Duragesic®, Sublimaze®) Morphine (brand names Kadian®, Avinza®) Oxycodone (OxyContin®, Percocet®) Tramadol ( ...

  18. Endothelin-converting enzyme 2 differentially regulates opioid receptor activity

    PubMed Central

    Gupta, A; Fujita, W; Gomes, I; Bobeck, E; Devi, L A

    2015-01-01

    BACKGROUND AND PURPOSE Opioid receptor function is modulated by post-activation events such as receptor endocytosis, recycling and/or degradation. While it is generally understood that the peptide ligand gets co-endocytosed with the receptor, relatively few studies have investigated the role of the endocytosed peptide and peptide processing enzymes in regulating receptor function. In this study, we focused on endothelin-converting enzyme 2 (ECE2), a member of the neprilysin family of metallopeptidases that exhibits an acidic pH optimum, localizes to an intracellular compartment and selectively processes neuropeptides including opioid peptides in vitro, and examined its role in modulating μ receptor recycling and resensitization. EXPERIMENTAL APPROACH The effect of ECE2 inhibition on hydrolysis of the endocytosed peptide was examined using thin-layer chromatography and on μ opioid receptor trafficking using either elisa or microscopy. The effect of ECE2 inhibition on receptor signalling was measured using a cAMP assay and, in vivo, on antinociception induced by intrathecally administered opioids by the tail-flick assay. KEY RESULTS The highly selective ECE2 inhibitor, S136492, significantly impaired μ receptor recycling and signalling by only those ligands that are ECE2 substrates and this was seen both in heterologous cells and in cells endogenously co-expressing μ receptors with ECE2. We also found that ECE2 inhibition attenuated antinociception mediated only by opioid peptides that are ECE2 substrates. CONCLUSIONS AND IMPLICATIONS These results suggest that ECE2, by selectively processing endogenous opioid peptides in the endocytic compartment, plays a role in modulating opioid receptor activity. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24990314

  19. ENDOGENOUS ANALGESIA, DEPENDENCE, AND LATENT PAIN SENSITIZATION

    PubMed Central

    Taylor, Bradley K; Corder, Gregory

    2015-01-01

    Endogenous activation of μ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains accelerator), and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR–AC1-mediated pain sensitization create a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either: a) facilitating endogenous opioid

  20. Understanding the Opioid Overdose Epidemic

    MedlinePlus

    ... CDC) released new guidelines suggesting that long-term opioid therapy for chronic pain, outside of end-of-life or cancer care, ... to improve the lives of those suffering with chronic pain.” Read More "Understanding Opioids" Articles Understanding The Opioid Overdose Epidemic / Beyond Opioids: ...

  1. Ca2+ channel inhibition by endomorphins via the cloned mu-opioid receptor expressed in NG108-15 cells.

    PubMed

    Mima, H; Morikawa, H; Fukuda, K; Kato, S; Shoda, T; Mori, K

    1997-12-11

    Endomorphin-1 and -2, recently isolated endogenous peptides specific for the mu-opioid receptor, inhibited Ca2+ channel currents with EC50 of 6 and 9 nM, respectively, in NG108-15 cells transformed to express the cloned rat mu-opioid receptor. On the other hand, they elicited no response in nontransfected NG108-15 cells. It is concluded that endomorphin-1 and -2 induce Ca2+ channel inhibition by selectively activating the mu-opioid receptor.

  2. Activation of the opioid μ1, but not δ or κ, receptors is required for nicotine reinforcement in a rat model of drug self-administration

    PubMed Central

    Liu, Xiu; Jernigan, Courtney

    2010-01-01

    There has long been an interest in examining the involvement of opioid neurotransmission in nicotine rewarding process and addiction to nicotine. Over the past 3 decades, however, clinical effort to test the effectiveness of nonselective opioid antagonists (mainly naloxone and naltrexone) for smoking cessation has yielded equivocal results. In light of the fact that there are three distinctive types of receptors mediating actions of the endogenous opioid peptides, this study, using a rat model of nicotine self-administration, examined involvement of different opioid receptors in the reinforcement of nicotine by selective blockade of the μ1, the δ, and the κ opioid receptors. Male Sprague-Dawley rats were trained in daily 1 h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. After establishment of stable nicotine self-administration behavior, the effects of the opioid antagonists were tested. Separate groups of rats were used to test the effects of naloxanazine (selective for μ1 receptors, 0, 5, 15 mg/kg), naltrindole (selective for δ receptors, 0, 0.5, 5 mg/kg), and 5′-guanidinonaltrindole (GNTI, selective for κ receptors, 0, 0.25, 1 mg/kg). In each individual drug group, the 3 drug doses were tested by using a within-subject and Latin-Square design. The effects of these antagonists on food self-administering behavior were also examined in the same rats in each respective drug group after retrained for food self-administration. Pretreatment with naloxonazine, but not naltrindole or GNTI, significantly reduced responses on the active lever and correspondingly the number of nicotine infusions. None of these antagonists changed lever-pressing behavior for food reinforcement. These results indicate that activation of the opioid μ1, but not the δ or the κ, receptors is required for the reinforcement of nicotine and suggest that opioid neurotransmission via the μ1 receptors would be a promising target for

  3. Activation of the opioid μ1, but not δ or κ, receptors is required for nicotine reinforcement in a rat model of drug self-administration.

    PubMed

    Liu, Xiu; Jernigan, Courtney

    2011-01-15

    There has long been an interest in examining the involvement of opioid neurotransmission in nicotine rewarding process and addiction to nicotine. Over the past 3 decades, however, clinical effort to test the effectiveness of nonselective opioid antagonists (mainly naloxone and naltrexone) for smoking cessation has yielded equivocal results. In light of the fact that there are three distinctive types of receptors mediating actions of the endogenous opioid peptides, this study, using a rat model of nicotine self-administration, examined involvement of different opioid receptors in the reinforcement of nicotine by selective blockade of the μ1, the δ, and the κ opioid receptors. Male Sprague-Dawley rats were trained in daily 1h sessions to intravenously self-administer nicotine (0.03 mg/kg/infusion) on a fixed-ratio 5 schedule. After establishment of stable nicotine self-administration behavior, the effects of the opioid antagonists were tested. Separate groups of rats were used to test the effects of naloxanazine (selective for μ1 receptors, 0, 5 and 15 mg/kg), naltrindole (selective for δ receptors, 0, 0.5 and 5mg/kg), and 5'-guanidinonaltrindole (GNTI, selective for κ receptors, 0, 0.25 and 1mg/kg). In each individual drug group, the 3 drug doses were tested by using a within-subject and Latin-Square design. The effects of these antagonists on food self-administering behavior were also examined in the same rats in each respective drug group after retrained for food self-administration. Pretreatment with naloxonazine, but not naltrindole or GNTI, significantly reduced responses on the active lever and correspondingly the number of nicotine infusions. None of these antagonists changed lever-pressing behavior for food reinforcement. These results indicate that activation of the opioid μ1, but not the δ or the κ, receptors is required for the reinforcement of nicotine and suggest that opioid neurotransmission via the μ1 receptors would be a promising target

  4. Development of Kappa Opioid Receptor Antagonists

    PubMed Central

    Carroll, F. Ivy; Carlezon, William A.

    2013-01-01

    Kappa opioid receptors (KORs) belong to the G-protein coupled class of receptors (GPCRs). They are activated by the endogenous opioid peptide dynorphin (DYN) and expressed at particularly high levels within brain areas implicated in modulation of motivation, emotion, and cognitive function. Chronic activation of KORs in animal models has maladaptive effects including increases in behaviors that reflect depression, the propensity to engage in drug-seeking behavior, and drug craving. The fact that KOR activation has such a profound influence on behaviors often triggered by stress has led to interest in selective KOR antagonists as potential therapeutic agents. This perspective provides a description of preclinical research conducted in the development of several different classes of selective KOR antagonists, a summary of the clinical studies conducted thus far, and recommendations for the type of work needed in the future to determine if these agents would be useful as pharmacotherapies for neuropsychiatric illness. PMID:23360448

  5. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors

    PubMed Central

    Anderson, Rachel I.; Lopez, Marcelo F.; Becker, Howard C.

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  6. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors.

    PubMed

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  7. Morphine treatment during juvenile isolation increases social activity and opioid peptides release in the adult rat.

    PubMed

    Van den Berg, C L; Kitchen, I; Gerrits, M A; Spruijt, B M; Van Ree, J M

    1999-05-29

    The consequences of juvenile isolation and morphine treatment on general activity, social activity and endogenous opioid release during a social interaction test were investigated in the adult rat. Rats were either isolated or socially housed during weeks 4 and 5 of age and treated daily during this isolation period subcutaneously with either saline or morphine. Directly after a social interaction test at 10 weeks of age, rats were injected with [3H]-diprenorphine and subsequently prepared for in vivo autoradiography. The autoradiographic technique was used to visualise neuroanatomical changes in opioid receptor occupancy, probably reflecting changes in opioid peptide release, as a result of social activity. Juvenile isolation increased general activity during the social interaction test, an effect which was accompanied by a reduction of opioid receptor occupancy in many brain areas, suggesting an increased opioid peptide release as a consequence of socially-induced general activity. Morphine treatment in isolated rats caused an increase in adult social activity and enhanced opioid peptide release in some cortical regions and the ventral tegmental area as compared to saline treated rats. Both social activity and opioid receptor occupancy were unaffected by morphine treatment in non-isolated rats. The present study underscores the role of opioid systems in adult social behaviors as a consequence of juvenile isolation. The results suggest a relationship between social activity and opioid peptide release during social contact. Increased social activity seems to be accompanied by elevated opioid peptide release in distinct brain areas after morphine treatment during juvenile isolation.

  8. Parenteral opioids for maternal pain management in labour

    PubMed Central

    Ullman, Roz; Smith, Lesley A; Burns, Ethel; Mori, Rintaro; Dowswell, Therese

    2014-01-01

    Background Parenteral opioids are used for pain relief in labour in many countries throughout the world. Objectives To assess the acceptability, effectiveness and safety of different types, doses and modes of administration of parenteral opioids given to women in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved studies. Selection criteria We included randomised controlled trials examining the use of intramuscular or intravenous opioids (including patient controlled analgesia) for women in labour. We looked at studies comparing an opioid with another opioid, placebo, other non-pharmacological interventions (TENS) or inhaled analgesia. Data collection and analysis At least two review authors independently assessed study eligibility, collected data and assessed risk of bias. Main results We included 57 studies involving more than 7000 women that compared an opioid with placebo, another opioid administered intramuscularly or intravenously or compared with TENS to the back. The 57 studies reported on 29 different comparisons, and for many outcomes only one study contributed data. Overall, the evidence was of poor quality regarding the analgesic effect of opioids, satisfaction with analgesia, adverse effects and harm to women and babies. There were few statistically significant results. Many of the studies had small sample sizes, and low statistical power. Overall findings indicated that parenteral opioids provided some pain relief and moderate satisfaction with analgesia in labour, although up to two-thirds of women who received opioids reported moderate or severe pain and/or poor or moderate pain relief one or two hours after administration. Opioid drugs were associated with maternal nausea, vomiting and drowsiness, although different opioid drugs were associated with different adverse effects. There was no clear evidence of adverse effects of opioids on the newborn. We

  9. A hormonal role for endogenous opiate alkaloids: vascular tissues.

    PubMed

    Stefano, George B; Zhu, Wei; Cadet, Patrick; Mantione, Kirk; Bilfinger, Thomas V; Bianchi, Enrica; Guarna, Massimo

    2002-02-01

    The distribution of morphine-containing cells in the central nervous system, adrenal gland, and its presence in blood may serve to demonstrate that this signal molecule can act as a hormone besides its role in cell-to-cell signaling within the brain. This speculative review is the result of a literature evaluation with an emphasis on studies from our laboratory. Opioid peptides and opiate alkaloids have been found to influence cardiac and vascular function. They have also been reported to promote ischemic preconditioning protection in the heart. Given the presence of morphine and the novel mu(3) opiate receptor on vascular endothelial cells, including cardiac and vascular endothelial cells in the median eminence, it would appear that endogenous opiate alkaloids are involved in modulating cardiac function, possible at the hormonal level. This peripheral target tissue, via nitric oxide coupling to mu opiate receptors, may serve to down regulate the excitability of this tissue given the heart's high performance state as compared to that of the saphenous vein, a passive resistance conduit. With this in mind, morphine and other endogenous opiate alkaloids may function as a hormone.

  10. Opioid Basics: Fentanyl

    MedlinePlus

    ... for States Promising State Strategies State Prescription Drug Laws State Successes Enhanced State Surveillance Data-Driven Prevention ... other than methadone in 2015. 3 Reports from law enforcement indicate that much of the synthetic opioid ...

  11. Understanding the Opioid Epidemic

    MedlinePlus

    ... Safety Parents Are The Key to Safe Teen Drivers STEADI Initiative for Health Care Providers Traumatic Brain ... Jones CM. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers ...

  12. Characteristics of Opioid-Users Whose Death Was Related to Opioid-Toxicity: A Population-Based Study in Ontario, Canada

    PubMed Central

    Madadi, Parvaz; Hildebrandt, Doris; Lauwers, Albert E.; Koren, Gideon

    2013-01-01

    Background The impact of the prescription opioid public health crisis has been illustrated by the dramatic increase in opioid-related deaths in North America. We aimed to identify patterns and characteristics amongst opioid-users whose cause of death was related to opioid toxicity. Methods This was a population-based study of Ontarians between the years 2006 and 2008. All drug-related deaths which occurred during this time frame were reviewed at the Office of the Chief Coroner of Ontario, and opioid-related deaths were identified. Medical, toxicology, pathology, and police reports were comprehensively reviewed. Narratives, semi-quantitative, and quantitative variables were extracted, tabulated, and analyzed. Results Out of 2330 drug-related deaths in Ontario, 58% were attributed either in whole or in part, to opioids (n = 1359). Oxycodone was involved in approximately one-third of all opioid-related deaths. At least 7% of the entire cohort used opioids that were prescribed for friends and/or family, 19% inappropriately self-administered opioids (injection, inhalation, chewed patch), 3% were recently released from jail, and 5% had been switched from one opioid to another near the time of death. Accidental deaths were significantly associated with personal history of substance abuse, enrollment in methadone maintenance programs, cirrhosis, hepatitis, and cocaine use. Suicides were significantly associated with mental illness, previous suicide attempts, chronic pain, and a history of cancer. Significance/Conclusion These results identify novel, susceptible groups of opioid-users whose cause of death was related to opioids in Ontario and provide the first evidence to assist in quantifying the contribution of opioid misuse and diversion amongst opioid-related mortality in Canada. Multifaceted prevention strategies need to be developed based on subpopulations of opioid users. PMID:23577131

  13. Opioid modulation of taste hedonics within the ventral striatum.

    PubMed

    Kelley, A E; Bakshi, V P; Haber, S N; Steininger, T L; Will, M J; Zhang, M

    2002-07-01

    There is a long-standing interest in the role of endogenous opioid peptides in feeding behavior and, in particular, in the modulation of food reward and palatability. Since drugs such as heroin, morphine, alcohol, and cannabinoids, interact with this system, there may be important common neural substrates between food and drug reward with regard to the brain's opioid systems. In this paper, we review the proposed functional role of opioid neurotransmission and mu opiate receptors within the nucleus accumbens and surrounding ventral striatum. Opioid compounds, particularly those selective for the mu receptor, induce a potent increase in food intake, sucrose, salt, saccharin, and ethanol intake. We have explored this phenomenon with regard to macronutrient selection, regional specificity, role of output structures, Fos mapping, analysis of motivational state, and enkephalin gene expression. We hypothesize that opioid-mediated mechanisms within ventral striatal medium spiny neurons mediate the affective or hedonic response to food ('liking' or food 'pleasure'). A further refinement of this hypothesis is that activation of ventral striatal opioids specifically encodes positive affect induced by tasty and/or calorically dense foods (such as sugar and fat), and promotes behaviors associated with this enhanced palatability. It is proposed that this brain mechanism was beneficial in evolutionary development for ensuring the consumption of relatively scarce, high-energy food sources. However, in modern times, with unlimited supplies of high-calorie food, it has contributed to the present epidemic of obesity.

  14. Brain opioids and mother-infant social motivation.

    PubMed

    Panksepp, J; Nelson, E; Siviy, S

    1994-06-01

    Brain opioids were the first neurochemical system to be implicated in the elaboration of social-bonding processes. Although a variety of neurochemical systems help elaborate social rewards and specific social behaviors, the role of opioids in the control of maternal behavior remains controversial. Although a great deal of data indicate that intermediate doses of morphine can reduce maternal behavior, the evidence, taken together, suggests that endogenous opioids promote the regulatory control of maternal behavior, probably by providing feedback concerning the satisfaction that can be had from indulging in various maternal behaviors. Thus opioid blockade with naltrexone can reduce maternal competence in animals, while at the same time increasing maternal motivation. Opiate blockade likewise appears to increase the social motivation of rat pups, but reduces the reinforcing quality of interaction with the mother, suggesting that opioids provide feedback concerning the pleasurable qualities of social interaction in both mothers and infants. The clinical implications of this knowledge are not straightforward, but they generally suggest that clinically deficient social bonding might be capable of being strengthened via manipulation of brain opioid systems.

  15. Endomorphins fully activate a cloned human mu opioid receptor.

    PubMed

    Gong, J; Strong, J A; Zhang, S; Yue, X; DeHaven, R N; Daubert, J D; Cassel, J A; Yu, G; Mansson, E; Yu, L

    1998-11-13

    Endomorphins were recently identified as endogenous ligands with high selectivity for mu opioid receptors. We have characterized the ability of endomorphins to bind to and functionally activate the cloned human mu opioid receptor. Both endomorphin-1 and endomorphin-2 exhibited binding selectivity for the mu opioid receptor over the delta and kappa opioid receptors. Both agonists inhibited forskolin-stimulated increase of cAMP in a dose-dependent fashion. When the mu opioid receptor was coexpressed in Xenopus oocytes with G protein-activated K+ channels, application of either endomorphin activated an inward K+ current. This activation was dose-dependent and blocked by naloxone. Both endomorphins acted as full agonists with efficacy similar to that of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO). These data indicate that endomorphins act as full agonists at the human mu opioid receptor, capable of stimulating the receptor to inhibit the cAMP/adenylyl cyclase pathway and activate G-protein-activated inwardly rectifying potassium (GIRK) channels.

  16. Differential effects of exercise on brain opioid receptor binding and activation in rats.

    PubMed

    Arida, Ricardo Mario; Gomes da Silva, Sérgio; de Almeida, Alexandre Aparecido; Cavalheiro, Esper Abrão; Zavala-Tecuapetla, Cecilia; Brand, Serge; Rocha, Luisa

    2015-01-01

    Physical exercise stimulates the release of endogenous opioid peptides supposed to be responsible for changes in mood, anxiety, and performance. Exercise alters sensitivity to these effects that modify the efficacy at the opioid receptor. Although there is evidence that relates exercise to neuropeptide expression in the brain, the effects of exercise on opioid receptor binding and signal transduction mechanisms downstream of these receptors have not been explored. Here, we characterized the binding and G protein activation of mu opioid receptor, kappa opioid receptor or delta opioid receptor in several brain regions following acute (7 days) and chronic (30 days) exercise. As regards short- (acute) or long-term effects (chronic) of exercise, overall, higher opioid receptor binding was observed in acute-exercise animals and the opposite was found in the chronic-exercise animals. The binding of [(35) S]GTPγS under basal conditions (absence of agonists) was elevated in sensorimotor cortex and hippocampus, an effect more evident after chronic exercise. Divergence of findings was observed for mu opioid receptor, kappa opioid receptor, and delta opioid receptor receptor activation in our study. Our results support existing evidence of opioid receptor binding and G protein activation occurring differentially in brain regions in response to diverse exercise stimuli. We characterized the binding and G protein activation of mu, kappa, and delta opioid receptors in several brain regions following acute (7 days) and chronic (30 days) exercise. Higher opioid receptor binding was observed in the acute exercise animal group and opposite findings in the chronic exercise group. Higher G protein activation under basal conditions was noted in rats submitted to chronic exercise, as visible in the depicted pseudo-color autoradiograms.

  17. μ-Opioid modulation in the rostral solitary nucleus and reticular formation alters taste reactivity: evidence for a suppressive effect on consummatory behavior

    PubMed Central

    Travers, Susan P.

    2011-01-01

    The neural control of feeding involves many neuromodulators, including the endogenous opioids that bind μ-opioid receptors (MORs). Injections of the MOR agonist, Damgo, into limbic and hypothalamic forebrain sites increase intake, particularly of palatable foods. Indeed, forebrain Damgo injections increase sucrose-elicited licking but reduce aversive responding (gaping) to quinine, suggesting that MOR activation may enhance taste palatability. A μ-opioid influence on taste reactivity has not been assessed in the brain stem. However, MORs are present in the first-order taste relay, the rostral nucleus of the solitary tract (rNST), and in the immediately subjacent reticular formation (RF), a region known to be essential for consummatory responses. Thus, to evaluate the consequences of rNST/dorsal RF Damgo in this region, we implanted rats with intraoral cannulas, electromyographic electrodes, and brain cannulas aimed at the ventral border of the rNST. Licking and gaping elicited with sucrose, water, and quinine were assessed before and after intramedullary Damgo and saline infusions. Damgo slowed the rate, increased the amplitude, and decreased the size of fluid-induced lick and gape bouts. In addition, the neutral stimulus water, which typically elicits licks, began to evoke gapes. Thus, the current results demonstrate that μ-opioid activation in the rNST/dorsal RF exerts complex effects on oromotor responding that contrast with forebrain effects and are more indicative of a suppressive, rather than a facilitatory effect on ingestion. PMID:21697523

  18. Epigenetic Activation of μ-Opioid Receptor Gene via Increased Expression and Function of Mitogen- and Stress-Activated Protein Kinase 1.

    PubMed

    Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H

    2017-04-01

    Since the discovery of μ-opioid receptor (MOR) gene two decades ago, various regulatory factors have been shown to interact with the MOR promoter and modulate transcript levels. However, the majority of early transcriptional studies on MOR gene have not addressed how intracellular signaling pathways mediate extracellular modulators. In this study, we demonstrate that MOR epigenetic regulation requires multiple coordinated signals converging at the MOR promoter, involving mitogen-activated protein kinase (MAPK) activation and mitogen- and stress-activated protein kinase 1 (MSK1)-ranges of intracellular signaling pathways similar to those activated by opioid agonists. Inhibiting p38 MAPK or extracellular signal-regulated kinase (ERK) 1/2 MAPK (upstream activators of MSK1) reduced MOR expression levels; accordingly, the functional role of MSK1, but not MSK2, was demonstrated using genetic approaches. However, for maximal MSK1 effect, an open chromatin configuration was required, because in vitro CpG methylation of the MOR promoter abolished MSK1 activity. Finally, endogenous MSK1 levels concomitantly increased to regulate MOR gene expression during neuronal differentiation of P19 cells, suggesting a conserved role of this kinase in the epigenic activation of MOR in neurons. Taken together, our findings indicate that the expression of MOR gene requires the activity of intracellular signaling pathways that have been implicated in the behavioral outcomes of opioid drugs, which suggests that an autoregulatory mechanism may function in opioid systems.

  19. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia.

    PubMed

    Yesilyurt, Ozgur; Seyrek, Melik; Tasdemir, Serdar; Kahraman, Serdar; Deveci, Mehmet Salih; Karakus, Emre; Halici, Zekai; Dogrul, Ahmet

    2015-09-05

    The opioid and non-opioid types of stress-induced analgesia have been well defined. One of the non-opioid type involve the endocannabinoid system. We previously reported that the spinal serotonin 7 receptor (5-HT7) blockers inhibit both morphine and cannabinoid-induced analgesia, thus we hypothesized that descending serotonergic pathways-spinal 5-HT7 receptor loop might contribute to stress-induced analgesia. Stress-induced analgesia was induced with warm (32°C) or cold (20°C) water swim stress in male Balb-C mice. The effects of intrathecal injection of a selective 5-HT7 receptor antagonist, SB 269970, of the denervation of serotonergic neurons by intrathecal administration of 5,7-dihydroxytryptamine (5,7-DHT) and of lesions of the dorsolateral funiculus on opioid and non-opioid type stress-induced analgesia were evaluated with the tail-flick and hot plate tests. The expression of 5-HT7 receptors mRNA in the dorsal lumbar region of spinal cord were analyzed by RT-PCR following spinal serotonin depletion or dorsolateral funiculus lesion. The effects of the selective 5-HT7 receptor agonists LP 44 and AS 19 were tested on nociception. Intrathecal SB 269970 blocked both opioid and non-opioid type stress-induced analgesia. Dorsolateral funiculus lesion or denervation of the spinal serotonergic neurons resulted in a marked decrease in 5-HT7 receptor expression in the dorsal lumbar spinal cord, accompanied by inhibition of opioid and non-opioid type stress-induced analgesia. However, the systemic or intrathecal LP 44 and AS 19 alone did not produce analgesia in unstressed mice. These results indicate that descending serotonergic pathways and the spinal 5-HT7 receptor loop play a crucial role in mediating both opioid and non-opioid type stress-induced analgesia.

  20. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart.

    PubMed

    Headrick, John P; See Hoe, Louise E; Du Toit, Eugene F; Peart, Jason N

    2015-04-01

    Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.

  1. Capture of syncytin-Mar1, a Fusogenic Endogenous Retroviral Envelope Gene Involved in Placentation in the Rodentia Squirrel-Related Clade

    PubMed Central

    Redelsperger, François; Cornelis, Guillaume; Vernochet, Cécile; Tennant, Bud C.; Catzeflis, François; Mulot, Baptiste; Heidmann, Odile; Dupressoir, Anne

    2014-01-01

    ABSTRACT Syncytin genes are fusogenic envelope protein (env) genes of retroviral origin that have been captured for a function in placentation. Within rodents, two such genes have previously been identified in the mouse-related clade, allowing a demonstration of their essential role via knockout mice. Here, we searched for similar genes in a second major clade of the Rodentia order, the squirrel-related clade, taking advantage of the complete sequencing of the ground squirrel Ictidomys tridecemlineatus genome. In silico search for env genes with full coding capacity identified several candidate genes with one displaying placenta-specific expression, as revealed by quantitative reverse transcription-PCR analysis of a large panel of tissues. This gene belongs to a degenerate endogenous retroviral element, with recognizable hallmarks of an integrated provirus. Cloning of the gene in an expression vector for ex vivo cell-cell fusion and pseudotype assays demonstrated fusogenicity on a large panel of mammalian cells. In situ hybridization on placenta sections showed specific expression in domains where trophoblast cells fuse into a syncytiotrophoblast at the fetomaternal interface, consistent with a role in syncytium formation. Finally, we show that the gene is conserved among the tribe Marmotini, thus dating its capture back to about at least 25 million years ago, with evidence for purifying selection and conservation of fusogenic activity. This gene that we named syncytin-Mar1 is distinct from all seven Syncytin genes identified to date in eutherian mammals and is likely to be a major effector of placentation in its related clade. IMPORTANCE Syncytin genes are fusogenic envelope genes of retroviral origin, ancestrally captured for a function in placentation. Within rodents, two such genes had been previously identified in the mouse-related clade. Here, in the squirrel-related rodent clade, we identified the envelope gene of an endogenous retrovirus with all the

  2. Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the Rodentia squirrel-related clade.

    PubMed

    Redelsperger, François; Cornelis, Guillaume; Vernochet, Cécile; Tennant, Bud C; Catzeflis, François; Mulot, Baptiste; Heidmann, Odile; Heidmann, Thierry; Dupressoir, Anne

    2014-07-01

    Syncytin genes are fusogenic envelope protein (env) genes of retroviral origin that have been captured for a function in placentation. Within rodents, two such genes have previously been identified in the mouse-related clade, allowing a demonstration of their essential role via knockout mice. Here, we searched for similar genes in a second major clade of the Rodentia order, the squirrel-related clade, taking advantage of the complete sequencing of the ground squirrel Ictidomys tridecemlineatus genome. In silico search for env genes with full coding capacity identified several candidate genes with one displaying placenta-specific expression, as revealed by quantitative reverse transcription-PCR analysis of a large panel of tissues. This gene belongs to a degenerate endogenous retroviral element, with recognizable hallmarks of an integrated provirus. Cloning of the gene in an expression vector for ex vivo cell-cell fusion and pseudotype assays demonstrated fusogenicity on a large panel of mammalian cells. In situ hybridization on placenta sections showed specific expression in domains where trophoblast cells fuse into a syncytiotrophoblast at the fetomaternal interface, consistent with a role in syncytium formation. Finally, we show that the gene is conserved among the tribe Marmotini, thus dating its capture back to about at least 25 million years ago, with evidence for purifying selection and conservation of fusogenic activity. This gene that we named syncytin-Mar1 is distinct from all seven Syncytin genes identified to date in eutherian mammals and is likely to be a major effector of placentation in its related clade. Importance: Syncytin genes are fusogenic envelope genes of retroviral origin, ancestrally captured for a function in placentation. Within rodents, two such genes had been previously identified in the mouse-related clade. Here, in the squirrel-related rodent clade, we identified the envelope gene of an endogenous retrovirus with all the features of a

  3. Opioid Use Among Interscholastic Sports Participants: An Exploratory Study From A Sample Of College Students

    PubMed Central

    Veliz, Philip; Epstein-Ngo, Quyen; Austic, Elizabeth; Boyd, Carol; McCabe, Sean Esteban

    2014-01-01

    Purpose Involvement in sports increases the risk of injury and the risk for prescription opioid use and misuse. This was an exploratory retrospective study to examine if previous involvement in interscholastic sports was associated with a greater lifetime prevalence of medical prescription opioid use, lifetime risk of diverting prescribed opioids, and lifetime risk of nonmedical prescription opioid use. Method A web-based survey was self-administered to a sample of 4187 full-time undergraduate students at a large public university located in the Midwest. Student demographics, involvement in interscholastic sports during high school, lifetime medical prescription opioid use, lifetime risk of diverting prescribed opioids, and lifetime risk of nonmedical prescription opioid use were measured and analyzed for this study. Results When compared to their peers who did not participate in interscholastic sports during high school, multiple logistic regression analyses indicated that those who participated in at least one interscholastic sport during high school had greater odds of lifetime medical prescription opioid use on multiple occasions and greater odds of being approached to divert their prescribed opioid medications on multiple occasions. Conclusions The findings indicate some association between previous involvement in interscholastic sports and prescription opioid use and misuse. These findings further suggest that greater awareness should be instilled in parents and coaches regarding this form of substance misuse. PMID:25514090

  4. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    PubMed Central

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  5. Black Cohosh has Central Opioid Activity in Postmenopausal Women: Evidence from Naloxone Blockade and PET Neuroimaging Studies

    PubMed Central

    Reame, Nancy E; Lukacs, Jane L; Padmanabhan, Vasantha; Eyvazzadeh, Aimee D.; Smith, Yolanda R.; Zubieta, Jon-Kar

    2010-01-01

    Objective To test whether black cohosh (BC) exhibits an action on the central endogenous opioid system in postmenopausal women. Design A mechanistic study conducted in the same individuals of LH pulsatility with a saline/naloxone (NAL) challenge (n=6) and PET imaging with [11C]carfentanil, a selective μ-opioid receptor radioligand (n= 5), before and after 12 weeks of unblinded treatment with a popular black cohosh daily supplement. Results Black cohosh treatment for 12 weeks at a standard dose (Remifemin, 40 mg/day) had no effect on spontaneous LH pulsatility or estrogen concentrations. With NAL blockade, there was an unexpected suppression of mean LH pulse frequency (saline vs NAL = 9.0+.6 vs 6.0+.7 pulses/16 hrs; p= 0.056), especially during sleep when the mean interpulse interval (IPI) was prolonged by approximately 90 minutes (SAL night IPI = 103± 9 mins vs NAL night IPI = 191± 31min, p = 0.03). There were significant increases in μ-opioid receptor binding potential (BP) in the posterior and subgenual cingulate, temporal and orbitofrontal cortex, thalamus and nucleus accumbens ranging from 10% to 61 % across regions - brain regions involved in emotional and cognitive function. In contrast, BP reductions of lesser magnitude were observed in regions known to be involved in the placebo response (anterior cingulate and anterior insular cortex). Conclusion Using two different challenge paradigms for the examination of central opioid function, a neuropharmacologic action of black cohosh treatment was demonstrated in postmenopausal women. PMID:18521048

  6. The mu (μ) and delta (δ) opioid receptors modulate boar sperm motility.

    PubMed

    Vicente-Carrillo, Alejandro; Álvarez-Rodríguez, Manuel; Rodríguez-Martínez, Heriberto

    2016-08-01

    Endogenous and exogenous opioids modulate reproductive functions in target cells via opioid receptors (μ, δ, and κ). Sperm motility is a metric of gamete functionality, and serves as a suitable parameter for in vitro drug-induced toxicity assays. This study identifies the presence and location of opioid receptors in pig spermatozoa as well as their functional response after in vitro challenge with known agonists (morphine [μ]; [D-Pen 2,5]-enkephanile [δ]; and U 50488 [κ]) and antagonists (naloxone [μ]; naltrindole [δ]; and nor-binaltrorphimine [κ]). Only the μ- and δ-opioid receptors were present in the boar sperm plasma membrane, overlying the acrosome, neck, and principal piece. Challenge experiments with agonists and antagonists identified both μ- and δ-opioid receptors as regulators of sperm kinematics, wherein μ maintains or increases sperm movement whereas δ decreases sperm motility over time. Mol. Reprod. Dev. 83: 724-734, 2016 © 2016 Wiley Periodicals, Inc.

  7. The genetics of the opioid system and specific drug addictions

    PubMed Central

    Levran, Orna; Yuferov, Vadim; Kreek, Mary Jeanne

    2013-01-01

    Addiction to drugs is a chronic, relapsing brain disease that has major medical, social, and economic complications. It has been established that genetic factors contribute to the vulnerability to develop drug addiction and to the effectiveness of its treatment. Identification of these factors may increase our understanding of the disorders, help in the development of new treatments and advance personalized medicine. In this review we will describe the genetics of the major genes of the opioid system (opioid receptors and their endogenous ligands) in connection to addiction to opioids, cocaine, alcohol and methamphetamines. Particular emphasis is given to association and functional studies of specific variants. We will provide information on the sample populations and the size of each study, as well as a list of the variants implicated in association with addiction-related phenotypes, and with the effectiveness of pharmacotherapy for addiction. PMID:22547174

  8. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys.

    PubMed

    Yekkirala, Ajay S; Banks, Matthew L; Lunzer, Mary M; Negus, Stevens S; Rice, Kenner C; Portoghese, Philip S

    2012-09-19

    Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.

  9. Comparison of fatal poisonings by prescription opioids.

    PubMed

    Häkkinen, Margareeta; Launiainen, Terhi; Vuori, Erkki; Ojanperä, Ilkka

    2012-10-10

    There is a rising trend of fatal poisonings due to medicinal opioids in several countries. The present study evaluates the drug and alcohol findings as well as the cause and manner of death in opioid-related post-mortem cases in Finland from 2000 to 2008. During this period, fatal poisonings by prescription opioids (buprenorphine, codeine, dextropropoxyphene, fentanyl, methadone, oxycodone, tramadol) increased as a share of all drug poisonings from 9.5% to 32.4%, being 22.3% over the whole period. A detailed study including the most prevalent opioids was carried out for the age group of 14-44 years, which is the most susceptible age for drug abuse in Finland. Poisonings by the weak opioids, codeine and tramadol, were found to be associated with large, often suicidal overdoses resulting in high drug concentrations in blood. Methadone poisonings were associated with accidental overdoses with the drug concentration in blood remaining within a therapeutic range. The manner of death was accidental in 43%, 55% and 94% of cases in codeine, tramadol and methadone poisonings, respectively. The median concentration of codeine and the median codeine/morphine concentration ratio were higher in codeine poisonings (1.4 and 22.5 mg/l, respectively) than in other causes of death (0.09 and 5.9 mg/l, respectively). The median concentrations of tramadol and O-desmethyltramadol were higher in tramadol poisonings (5.3 and 0.8 mg/l, respectively) than in other causes of death (0.6 and 0.2 mg/l, respectively). In methadone poisonings, the median concentration of methadone (0.35 mg/l) was not different from that in other causes of death (0.30 mg/l). Sedative drugs and/or alcohol were very frequently found in fatal poisonings involving these prescription opioids.

  10. Inhibition of gastric mucosal prostaglandin synthetase activity by mercaptomethylimidazole, an inducer of gastric acid secretion--plausible involvement of endogenous H2O2.

    PubMed

    Bhattacharjee, M; Chakraborty, T; Ganguly, C; Banerjee, R K

    1998-10-01

    We have reported earlier that mercaptomethylimidazole (MMI), an antithyroid drug of thionamide group, induces gastric acid secretion at least partially through the liberation of histamine, sensitive to cimetidine. Now, we show that the drug has a significant inhibitory effect on the cyclooxygenase and peroxidase activity of the prostaglandin (PG) synthetase of the gastric mucosal microsomal preparation. The effect can also be mimicked by low concentrations of H2O2. While studying the possible intracellular effect of MMI on acid secretion, a cell fraction (F3) enriched in parietal cell was isolated by controlled digestion of the mucosa with protease. This cell fraction is activated by MMI as measured by increased O2 consumption. The activation is sensitive to omeprazole, a proton-pump inhibitor, indicating that the activation is due to increased acid secretion by MMI. MMI was also found to directly inhibit the peroxidase activity of the F3 cell fraction and may thus increase the intracellular level of H2O2. The cyclooxygenase activity of the PG synthetase of the F3 cell fraction is also inhibited by MMI and the effect can be reproduced by low concentrations of H2O2. Both MMI and H2O2 can also inhibit the peroxidase activity of the PG synthetase. We suggest that in addition to the activation of the parietal cell by MMI possibly through endogenous H2O2, MMI induces acid secretion in vivo by inactivating the PG synthetase thereby inhibiting the biosynthesis of PG and removing its inhibitory influence on acid secretion so that the histamine released by MMI can stimulate acid secretion with maximum efficiency.

  11. Cyclic endomorphin analogs in targeting opioid receptors to achieve pain relief.

    PubMed

    Janecka, Anna; Gentilucci, Luca

    2014-01-01

    Endomorphins, the endogenous ligands of the µ-opioid receptor, are attractive candidates for opioid-based pain-relieving agents. These tetrapeptides, with their remarkable affinity for the µ-opioid receptor, display favorable antinociceptive activity when injected directly into the brain of experimental animals. However, the application of endomorphins as clinical analgesics has been impeded by their instability in body fluids and inability to reach the brain after systemic administration. Among numerous modifications of the endomorphin structure aimed at improving their pharmacological properties, cyclization can be viewed as an interesting option. Here, we have summarized recent advances in obtaining endomorphin-based cyclic peptide analogs.

  12. The relationship between opioid and sugar intake: Review of evidence and clinical applications

    PubMed Central

    Mysels, David J; Sullivan, Maria A

    2011-01-01

    Opioid dependence poses significant public health risks arising from associated morbidity and mortality caused by accidents, infectious disease, and social ramifications of crime and unemployment, among other complications. Opioid use, acute and chronic, is also associated with weight gain, glycemic dysregulation, and dental pathology. The literature supporting the connection between opiate use and development of preference for sweet tastes is reviewed, and further association with dental pathology, weight gain, and loss of glycemic control are considered. We discuss the impact of sweet tastes on the endogenous opioid system as well as clinical implications for analgesia and treating the opiate-dependent patient. PMID:21269006

  13. Neuroimmune Interaction in the Regulation of Peripheral Opioid-Mediated Analgesia in Inflammation

    PubMed Central

    Hua, Susan

    2016-01-01

    Peripheral immune cell-mediated analgesia in inflammation is an important endogenous mechanism of pain control. Opioid receptors localized on peripheral sensory nerve terminals are activated by endogenous opioid peptides released from immune cells to produce significant analgesia. Following transendothelial migration of opioid-containing leukocytes into peripheral sites of inflammation, opioid peptides are released into a harsh milieu associated with an increase in temperature, low pH, and high proteolytic activity. Together, this microenvironment has been suggested to increase the activity of opioid peptide metabolism. Therefore, the proximity of immune cells and nerve fibers may be essential to produce adequate analgesic effects. Close associations between opioid-containing immune cells and peripheral nerve terminals have been observed. However, it is not yet determined whether these immune cells actually form synaptic-like contacts with peripheral sensory terminals and/or whether they secrete opioids in a paracrine manner. This review will provide novel insight into the peripheral mechanisms of immune-derived analgesia in inflammation, in particular, the importance of direct interactions between immune cells and the peripheral nervous system. PMID:27532001

  14. Endogenous Opiates in the Nucleus Tractus Solitarius Mediate Electroacupuncture-Induced Sleep Activities in Rats

    PubMed Central

    Cheng, Chiung-Hsiang; Yi, Pei-Lu; Lin, Jaung-Geng; Chang, Fang-Chia

    2011-01-01

    Electroacupuncture (EA) possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17) acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM) sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS). In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors. PMID:19729491

  15. Endogenous opiates in the nucleus tractus solitarius mediate electroacupuncture-induced sleep activities in rats.

    PubMed

    Cheng, Chiung-Hsiang; Yi, Pei-Lu; Lin, Jaung-Geng; Chang, Fang-Chia

    2011-01-01

    Electroacupuncture (EA) possesses various therapeutic effects, including alleviation of pain, reduction of inflammation and improvement of sleep disturbance. The mechanisms of EA on sleep improvement, however, remain to be determined. It has been stated in ancient Chinese literature that the Anmian (EX17) acupoint is one of the trigger points that alleviates insomnia. We previously demonstrated that EA stimulation of Anmian acupoints in rats during the dark period enhances non-rapid eye movement (NREM) sleep, which involves the induction of cholinergic activity in the nucleus tractus solitarius (NTS). In addition to cholinergic activation of the NTS, activation of the endogenous opioidergic system may also be a mechanism by which acupuncture affects sleep. Therefore, this study was designed to investigate the involvement of the NTS opioidergic system in EA-induced alterations in sleep. Our present results indicate that EA of Anmian acupoints increased NREM sleep, but not rapid eye movement sleep, during the dark period in rats. This enhancement in NREM sleep was dose-dependently blocked by microinjection of opioid receptor antagonist, naloxone, and the μ-opioid receptor antagonist, naloxonazine, into the NTS; administrations of δ-receptor antagonist, natrindole, and the κ-receptor antagonist, nor-binaltrophimine, however, did not affect EA-induced alterations in sleep. Furthermore, β-endorphin was significantly increased in both the brainstem and hippocampus after the EA stimuli, an effect blocked by administration of the muscarinic antagonist scopolamine into the NTS. Our findings suggest that mechanisms of EA-induced NREM sleep enhancement may be mediated, in part, by cholinergic activation, stimulation of the opiodergic neurons to increase the concentrations of β-endorphin and the involvement of the μ-opioid receptors.

  16. Influence of Cytochrome P450, Family 2, Subfamily D, Polypeptide 6 (CYP2D6) polymorphisms on pain sensitivity and clinical response to weak opioid analgesics.

    PubMed

    Zahari, Zalina; Ismail, Rusli

    2014-01-01

      CYP2D6 polymorphisms show large geographical and interethnic differences. Variations in CYP2D6 activity may impact upon a patient's pain level and may contribute to interindividual variations in the response to opioids. This paper reviews the evidence on how CYP2D6 polymorphisms might influence pain sensitivity and clinical response to codeine and tramadol. For example, it is shown that (1) CYP2D6 poor metabolizers (PMs) may be less efficient at synthesizing endogenous morphine compared with other metabolizers. In contrast, ultra-rapid metabolizers (UMs) may be more efficient than other metabolizers at synthesizing endogenous morphine, thus strengthening endogenous pain modulation. Additionally, for codeine and tramadol that are bioactivated by CYP2D6, PMs may undergo no metabolite formation, leading to inadequate analgesia. Conversely, UMs may experience quicker analgesic effects but be prone to higher mu-opioid-related toxicity. The literature suggested the potential usefulness of the determination of CYP2D6 polymorphisms in elucidating serious adverse events and in preventing subsequent inappropriate selection or doses of codeine and tramadol. Notably, even though many studies investigated a possible role of the CYP2D6 polymorphisms on pain sensitivity, pharmacokinetics and pharmacodynamics of these drugs, the results of analgesia and adverse effects are conflicting. More studies are required to demonstrate genetically determined unresponsiveness and risk of developing serious adverse events for patients with pain and these should involve larger numbers of patients in different population types.

  17. Opioids and designer drugs.

    PubMed

    Ford, M; Hoffman, R S; Goldfrank, L R

    1990-08-01

    Despite the increasing use of other illicit drugs, opioid abuse, overdose, and the ensuing medical complications continue to pose management challenges for the emergency physician. Heroin use is increasing as abusers of cocaine seek a drug to prolong cocaine's effects while blunting the postcocaine depression. Clandestine chemists have created newer, more powerful compounds--designer drugs--whose potencies are many-fold that of the presently available opioids. Aggressive airway support and use of naloxone enable the emergency physician to salvage many of these patients, leaving the many medical complications of parenteral and inhalational use as the greatest management challenge.

  18. Sustained Suppression of Hyperalgesia during Latent Sensitization by μ-, δ-, and κ-opioid receptors and α2A Adrenergic Receptors: Role of Constitutive Activity

    PubMed Central

    Walwyn, Wendy M.; Chen, Wenling; Kim, Hyeyoung; Minasyan, Ani; Ennes, Helena S.; McRoberts, James A.

    2016-01-01

    Many chronic pain disorders alternate between bouts of pain and periods of remission. The latent sensitization model reproduces this in rodents by showing that the apparent recovery (“remission”) from inflammatory or neuropathic pain can be reversed by opioid antagonists. Therefore, this remission represents an opioid receptor-mediated suppression of a sustained hyperalgesic state. To identify the receptors involved, we induced latent sensitization in mice and rats by injecting complete Freund's adjuvant (CFA) in the hindpaw. In WT mice, responses to mechanical stimulation returned to baseline 3 weeks after CFA. In μ-opioid receptor (MOR) knock-out (KO) mice, responses did not return to baseline but partially recovered from peak hyperalgesia. Antagonists of α2A-adrenergic and δ-opioid receptors reinstated hyperalgesia in WT mice and abolished the partial recovery from hyperalgesia in MOR KO mice. In rats, antagonists of α2A adrenergic and μ-, δ-, and κ-opioid receptors reinstated hyperalgesia during remission from CFA-induced hyperalgesia. Therefore, these four receptors suppress hyperalgesia in latent sensitization. We further demonstrated that suppression of hyperalgesia by MORs was due to their constitutive activity because of the following: (1) CFA-induced hyperalgesia was reinstated by the MOR inverse agonist naltrexone (NTX), but not by its neutral antagonist 6β-naltrexol; (2) pro-enkephalin, pro-opiomelanocortin, and pro-dynorphin KO mice showed recovery from hyperalgesia and reinstatement by NTX; (3) there was no MOR internalization during remission; (4) MORs immunoprecipitated from the spinal cord during remission had increased Ser375 phosphorylation; and (5) electrophysiology recordings from dorsal root ganglion neurons collected during remission showed constitutive MOR inhibition of calcium channels. SIGNIFICANCE STATEMENT Chronic pain causes extreme suffering to millions of people, but its mechanisms remain to be unraveled. Latent

  19. Frog skin opioid peptides: a case for environmental mimicry.

    PubMed Central

    Lazarus, L H; Bryant, S D; Attila, M; Salvadori, S

    1994-01-01

    Naturally occurring environmental substances often mimic endogenous substances found in mammals and are capable of interacting with specific proteins, such as receptors, with a high degree of fidelity and selectivity. Narcotic alkaloids and amphibian skin secretions, introduced into human society through close association with plants and animals through folk medicine and religious divination practices, were incorporated into the armamentarium of the early pharmacopoeia. These skin secretions contain a myriad of potent bioactive substances, including alkaloids, biogenic amines, peptides, enzymes, mucus, and toxins (noxious compounds notwithstanding); each class exhibits a broad range of characteristic properties. One specific group of peptides, the opioids, containing the dermorphins (dermal morphinelike substances) and the deltorphins (delta-selective opioids), display remarkable analgesic properties and include an amino acid with the rare (in a mammalian context) D-enantiomer in lieu of the normal L-isomer. Synthesis of numerous stereospecific analogues and conformational analyses of these peptides provided essential insights into the tertiary composition and microenvironment of the receptor "pocket" and the optimal interactions between receptor and ligand that trigger a biological response; new advances in the synthesis and receptor-binding properties of the deltorphins are discussed in detail. These receptor-specific opioid peptides act as more than mimics of endogenous opioids: their high selectivity for either the mu or delta receptor makes them formidable environmentally derived agents in the search for new antagonists for treating opiate addiction and in the treatment of a wide variety of human disorders. Images p648-a Figure 2. Figure 3. PMID:7895704

  20. The mu-opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in mu-opioid receptor knockout mice.

    PubMed

    Mizoguchi, H; Narita, M; Oji, D E; Suganuma, C; Nagase, H; Sora, I; Uhl, G R; Cheng, E Y; Tseng, L F

    1999-01-01

    There appear to be different relationships between mu-opioid receptor densities and the acute and neuroadaptive mu-opioid agonist-induced responses of the multiple opioid neuronal systems, including important pons/medulla circuits. The recent success in creating mu-opioid receptor knockout mice allows studies of mu-opioid agonist-induced pharmacological and physiological effects in animals that express no, one or two copies of the mu-opioid receptor gene. We now report that the binding of mu-opioid receptor ligand, [3H][D-Ala2,NHPhe4,Gly-ol]enkephalin to membrane preparations of the pons/medulla was reduced by half in heterozygous mu-opioid receptor knockout mice and eliminated in homozygous mu-opioid receptor knockout mice. The endogenous mu-opioid agonist peptides endomorphin-1 and -2 activate G-proteins in the pons/medulla from wild-type mice in a concentration-dependent fashion, as assessed using [35S]guanosine-5'-o-(3-thio)triphosphate binding. This stimulation was reduced to half of the wild-type levels in heterozygous mice and eliminated in homozygous knockout mice. The intracerebroventricular injection of either endomorphin-1 or endomorphin-2 produced marked antinociception in the hot-plate and tail-flick tests in wild-type mice. These antinociceptive actions were significantly reduced in heterozygous mu-opioid receptor knockout mice, and virtually abolished in homozygous knockout mice. The mu-opioid receptors are the principal molecular targets for endomorphin-induced G-protein activation in the pons/medulla and the antinociception caused by the intracerebroventricular administration of mu-opioid agonists. These data support the notion that there are limited physiological mu-opioid receptor reserves for inducing G-protein activation in the pons/medulla and for the nociceptive modulation induced by the central administration of endomorphin-1 and -2.

  1. Beetroot juice reduces infarct size and improves cardiac function following ischemia-reperfusion injury: Possible involvement of endogenous H2S.

    PubMed

    Salloum, Fadi N; Sturz, Gregory R; Yin, Chang; Rehman, Shabina; Hoke, Nicholas N; Kukreja, Rakesh C; Xi, Lei

    2015-05-01

    Ingestion of high dietary nitrate in the form of beetroot juice (BRJ) has been shown to exert antihypertensive effects in humans through increasing cyclic guanosine monophosphate (cGMP) levels. Since enhanced cGMP protects against myocardial ischemia-reperfusion (I/R) injury through upregulation of hydrogen sulfide (H2S), we tested the hypothesis that BRJ protects against I/R injury via H2S. Adult male CD-1 mice received either regular drinking water or those dissolved with BRJ powder (10 g/L, containing ∼ 0.7 mM nitrate). Seven days later, the hearts were explanted for molecular analyses. Subsets of mice were subjected to I/R injury by occlusion of the left coronary artery for 30 min and reperfusion for 24 h. A specific inhibitor of H2S producing enzyme--cystathionine-γ-lyase (CSE), DL-propargylglycine (PAG, 50 mg/kg) was given i.p. 30 min before ischemia. Myocardial infarct size was significantly reduced in BRJ-fed mice (15.8 ± 3.2%) versus controls (46.5 ± 3.5%, mean ± standard error [SE], n = 6/group, P < .05). PAG completely blocked the infarct-limiting effect of BRJ. Moreover, BRJ significantly preserved ventricular function following I/R. Myocardial levels of H2S and its putative protein target--vascular endothelial growth factor receptor 2 (VEGFR2) were significantly increased by BRJ intake, whereas CSE mRNA and protein content did not change. Interestingly, the BRJ-induced cardioprotection was not associated with elevated blood nitrate-nitrite levels following I/R nor induction of cardiac peroxiredoxin 5, a mitochondrial antioxidant enzyme previously linked to nitrate-induced cardioprotection. We conclude that BRJ ingestion protects against post-I/R myocardial infarction and ventricular dysfunction possibly through CSE-mediated endogenous H2S generation. BRJ could be a promising natural and inexpensive nutraceutical supplement to reduce cardiac I/R injury in patients.

  2. Laboratory testing for prescription opioids.

    PubMed

    Milone, Michael C

    2012-12-01

    Opioid analgesic misuse has risen significantly over the past two decades, and these drugs now represent the most commonly abused class of prescription medications. They are a major cause of poisoning deaths in the USA exceeding heroin and cocaine. Laboratory testing plays a role in the detection of opioid misuse and the evaluation of patients with opioid intoxication. Laboratories use both immunoassay and chromatographic methods (e.g., liquid chromatography with mass spectrometry detection), often in combination, to yield high detection sensitivity and drug specificity. Testing methods for opioids originated in the workplace-testing arena and focused on detection of illicit heroin use. Analysis for a wide range of opioids is now required in the context of the prescription opioid epidemic. Testing methods have also been primarily based upon urine screening; however, methods for analyzing alternative samples such as saliva, sweat, and hair are available. Application of testing to monitor prescription opioid drug therapy is an increasingly important use of drug testing, and this area of testing introduces new interpretative challenges. In particular, drug metabolism may transform one clinically available opioid into another. The sensitivity of testing methods also varies considerably across the spectrum of opioid drugs. An understanding of opioid metabolism and method sensitivity towards different opioid drugs is therefore essential to effective use of these tests. Improved testing algorithms and more research into the effective use of drug testing in the clinical setting, particularly in pain medicine and substance abuse, are needed.

  3. Opioid Antagonist Impedes Exposure.

    ERIC Educational Resources Information Center

    Merluzzi, Thomas V.; And Others

    1991-01-01

    Thirty spider-phobic adults underwent exposure to 17 phobic-related, graded performance tests. Fifteen subjects were assigned to naltrexone, an opioid antagonist, and 15 were assigned to placebo. Naltrexone had a significant effect on exposure, with naltrexone subjects taking significantly longer to complete first 10 steps of exposure and with…

  4. A new splice of life for the μ-opioid receptor.

    PubMed

    Iadarola, Michael J; Sapio, Matthew R; Mannes, Andrew J

    2015-07-01

    μ-Opioid agonists mediate their analgesic effect through GPCRs that are generated via alternate splicing of the Oprm1 transcript. While the majority of μ-opioids interact with receptors comprising the canonical 7 transmembrane (7TM) domain, a recently identified class of μ-opioids appears to require a 6TM domain variant. In this issue of the JCI, Lu and colleagues provide an in vivo proof-of-concept demonstration that a 6TM isoform of the μ-opioid receptor can support functional analgesia in Oprm1-deficent animals. The 6TM isoform was pharmacologically distinct from the canonical 7TM μ-opioid receptor, and 6TM agonists had a reduced side effect profile, which confers a strong therapeutic advantage over standard opioid analgesics. The observations of Lu et al. extend the reach of opioid-receptor neurobiology and pharmacology into a new era of analgesic discovery. This advance emerges from a series of fundamental research analyses in which elements of the endogenous opioid system were frequently in the vanguard.

  5. Evidence for the involvement of descending pain-inhibitory mechanisms in the antinociceptive effect of hecogenin acetate.

    PubMed

    Gama, Kelly Barbosa; Quintans, Jullyana S S; Antoniolli, Angelo R; Quintans-Júnior, Lucindo J; Santana, Wagno Alcântara; Branco, Alexsandro; Soares, Milena Botelho Pereira; Villarreal, Cristiane Flora

    2013-04-26

    Hecogenin is a sapogenin present in the leaves of species from the Agave genus, with a wide spectrum of reported pharmacological activities. The present study was undertaken to evaluate whether hecogenin acetate (1) has antinociceptive properties and to determine its mechanism of action. The nociceptive threshold was evaluated using the tail flick test in mice. Mice motor performance was evaluated in a Rotarod test. By using Fos expression as a marker of neural activation, the involvement of the periaqueductal gray in 1-induced antinociception was evaluated. Intraperitoneal administration of 1 (5-40 mg/kg) produced a dose-dependent increase in the tail flick latency time compared to vehicle-treated group (p < 0.01). Mice treated with 1 (40 mg/kg) did not show motor performance alterations. The antinociception of 1 (40 mg/kg) was prevented by naloxone (nonselective opioid receptor antagonist; 5 mg/kg), CTOP (μ-opioid receptor antagonist; 1 mg/kg), nor-BNI (κ-opioid receptor antagonist; 0.5 mg/kg), naltrindole (δ-opioid receptor antagonist; 3 mg/kg), or glibenclamide (ATP-sensitive K(+) channel blocker; 2 mg/kg). Systemic administration of 1 (5-40 mg/kg) increased the number of Fos positive cells in the periaqueductal gray. The present study has demonstrated for the first time that 1 produces consistent antinociception mediated by opioid receptors and endogenous analgesic mechanisms.

  6. The major acute-phase protein, serum amyloid P component, in mice is not involved in endogenous resistance against tumor necrosis factor alpha-induced lethal hepatitis, shock, and skin necrosis.

    PubMed

    Van Molle, W; Hochepied, T; Brouckaert, P; Libert, C

    2000-09-01

    The proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) induces lethal hepatitis when injected into D-(+)-galactosamine-sensitized mice on the one hand or systemic inflammatory response syndrome (SIRS) in normal mice on the other hand. We studied whether serum amyloid P component (SAP), the major acute-phase protein in mice, plays a protective role in both lethal models. For this purpose, we used SAP(0/0) mice generated by gene targeting. We studied the lethal response of SAP(0/0) or SAP(+/+) mice to both lethal triggers but found no differences in the sensitivity of both types of mice. We also investigated whether SAP is involved in establishing two types of endogenous protection: one using a single injection of interleukin-1beta (IL-1beta) for desensitization and clearly involving a liver protein, the other by tolerizing mice for 5 days using small doses of human TNF-alpha. Although after IL-1beta or after tolerization the SAP levels in the serum had risen fourfold in the control mice and not in the SAP(0/0) mice, the same extents of desensitization and tolerization were achieved. Finally, we observed that the induction of hemorrhagic necrosis in the skin of mice by two consecutive local injections with TNF-alpha was not altered in SAP(0/0) mice. We conclude that the presence or absence of SAP has no influence on the sensitivity of mice to TNF-alpha-induced hepatitis, SIRS, and hemorrhagic necrosis or on the endogenous protective mechanisms of desensitization or tolerization.

  7. The Diversion of Prescription Opioid Analgesics

    PubMed Central

    Inciardi, James A.; Surratt, Hilary L.; Lugo, Yamilka; Cicero, Theodore J.

    2012-01-01

    Prescription drug diversion involves the unlawful channeling of regulated pharmaceuticals from legal sources to the illicit marketplace, and can occur along all points in the drug delivery process -- from the original manufacturing site, to the wholesale distributor, the physician's office, the retail pharmacy, or the patient. Although a number of recent scientific papers have discussed the problems associated with diversion, empirical data on the scope and magnitude of diversion are limited in the literature. This paper presents findings from a national diversion survey being conducted as part of risk management initiatives supported by Denver Health and Hospital Authority, designed to monitor the abuse and diversion of a variety of prescription opioid analgesics. On a quarterly basis, diversion investigators in 300 jurisdictions distributed throughout the 50 states, the District of Columbia, and Puerto Rico are sent short questionnaires designed to elicit data on the extent of drug diversion in their areas. During the 20-quarter survey period reported in this paper, a total of 64,655 cases of prescription drug diversion were reported from all of the participating sites. The most widely diverted opioid was hydrocodone, in that it was mentioned in 38.2% of the cases, followed by oxycodone, mentioned in 24.3% of the cases. By contrast, the proportions of cases in which other opioids were mentioned were significantly smaller. The diversion of opioids appears in all 50 states, the District of Columbia, and Puerto Rico, with especially high concentrations in rural areas. How all of these prescription opioids are being diverted to the street, however, is not altogether clear, and in many ways, diversion is a “black box” requiring concentrated systematic study. PMID:25267926

  8. Opioids: The Prescription Drug & Heroin Overdose Epidemic

    MedlinePlus

    ... Resources Law Enforcement Resources Opioids: The Prescription Drug & Heroin Overdose Epidemic Opioids are natural or synthetic chemicals ... in your brain or body. Common opioids include heroin and prescription drugs such as oxycodone, hydrocodone, and ...

  9. Opioid switch in palliative care, opioid choice by clinical need and opioid availability.

    PubMed

    Müller-Busch, H C; Lindena, G; Tietze, K; Woskanjan, S

    2005-10-01

    Availability of different WHO-step 3 opioids has encouraged the discussion on their value and led to the concepts of opioid rotation. Rotation is suggested, when other measures fail to achieve optimal analgesia and tolerability in cancer pain treatment. Opioid use was assessed in a prospective cohort study of 412 palliative care patients from 14 inpatient and outpatient palliative care facilities in Germany. The most frequently used opioids at baseline were morphine and fentanyl. The most frequent changes in medication (N=106) occurred from oral to parenteral morphine. Only in 49 cases true switches to other long acting opioids were recorded. This is far less than expected from other reports. True switches and adverse side effects were found to occur more frequently in inpatients, while efficacy problems were more frequently recorded in outpatients. There was no correlation between the opioid used at baseline and switch frequency, but numbers of cases receiving other opioids than fentanyl or morphine were low. Reasons for and frequencies of changes in medication were found to be largely shaped by the setting reflecting patients' needs and clinical necessities. Recommendation of first line therapy and availability of opioid formulations define the frequency of opioid use. This impedes evaluation of specific differences between the opioids.

  10. Early Endogenous Activation of CB1 and CB2 Receptors after Spinal Cord Injury Is a Protective Response Involved in Spontaneous Recovery

    PubMed Central

    Arevalo-Martin, Angel; Garcia-Ovejero, Daniel; Sierra-Palomares, Yolanda; Paniagua-Torija, Beatriz; Gonzalez-Gil, Ines; Ortega-Gutierrez, Silvia; Molina-Holgado, Eduardo

    2012-01-01

    Spinal cord injury (SCI) induces a cascade of processes that may further expand the damage (secondary injury) or, alternatively, may be part of a safeguard response. Here we show that after a moderate-severe contusive SCI in rats there is a significant and very early increase in the spinal cord content of the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (anandamide, AEA). Since 2-AG and AEA act through CB1 and CB2 cannabinoid receptors, we administered at 20 minutes after lesion a single injection of their respective antagonists AM281 and AM630 alone or in combination to block the effects of this early endocannabinoid accumulation. We observed that AM281, AM630 or AM281 plus AM630 administration impairs the spontaneous motor recovery of rats according to the Basso-Beattie-Bresnahan (BBB) locomotor scale. However, blockade of CB1, CB2 or both receptors produced different effects at the histopathological level. Thus, AM630 administration results at 90 days after lesion in increased MHC-II expression by spinal cord microglia/monocytes and reduced number of serotoninergic fibres in lumbar spinal cord (below the lesion). AM281 exerted the same effects but also increased oedema volume estimated by MRI. Co-administration of AM281 and AM630 produced the effects observed with the administration of either AM281 or AM630 and also reduced white matter and myelin preservation and enhanced microgliosis in the epicentre. Overall, our results suggest that the endocannabinoids acting through CB1 and CB2 receptors are part of an early neuroprotective response triggered after SCI that is involved in the spontaneous recovery after an incomplete lesion. PMID:23152849

  11. Exploring the lived experience of adults using prescription opioids to manage chronic noncancer pain

    PubMed Central

    Brooks, Erica A; Unruh, Anita; Lynch, Mary E

    2015-01-01

    BACKGROUND: Chronic noncancer pain (CNCP) and prescription opioid use is a highly complex and growing health care issue in Canada. Many quantitative research studies have investigated the effectiveness of opioids for chronic pain; however, gaps remain in the literature regarding the personal experience of using opioids and their impact on those experiencing CNCP. OBJECTIVE: To explore the lived experience of adults using prescription opioids to manage CNCP, focusing on how opioid medication affected their daily lives. METHODS: In-depth qualitative interviews were conducted with nine adults between 40 and 68 years of age who were using prescription opioids daily for CNCP. Interviews were audiorecorded and transcribed, and subsequently analyzed using interpretive phenomenological analysis. RESULTS: Six major themes identified positive and negative aspects of opioid use associated with social, physical, emotional and psychological dimensions of pain management. These themes included the process of decision making, and physical and psychosocial consequences of using opioids including pharmacological side effects, feeling stigmatized, guilt, fears, ambivalence, self-protection and acceptance. CONCLUSION: Although there were many negative aspects to using opioids daily, the positive effects outweighed the negative for most participants and most of the negative aspects were socioculturally induced rather than caused by the drug itself. The present study highlighted the complexities involved in using prescription opioids daily for management of CNCP for individuals living with pain. PMID:25562838

  12. Opioid pharmaceuticals and addiction: the issues, and research directions seeking solutions.

    PubMed

    Walwyn, Wendy M; Miotto, Karen A; Evans, Christopher J

    2010-05-01

    There are few pharmaceuticals superior to opiates for the treatment of pain. However, with concerns of addiction, withdrawal and questionable efficacy for all types of pain, these compounds are far from a magical panacea for pain-relief. As it is unlikely that other classes of compounds will supersede the opioids in the very near future, it is important to both optimize current opioid therapies and curb the astounding diversion of opioids from their intended analgesic use to non-medical abuse. In optimizing opioid therapeutics it is necessary to enhance the clinical awareness of the benefits of treating pain and combine this with aggressive strategies to reduce diversion for non-medical use. At the heart of the issue of opioid misuse is the role of opioid systems in the reward circuitry, and the adaptive processes associated with repetitive opioid use that manifest during withdrawal. Emerging pharmacological insights of opioid receptors will be reviewed that provide future hope for developing opioid-based analgesics with reduced addictive properties and perhaps, reduced opponent processes. In addition, with the increased understanding of nociceptive circuitry and the molecules involved in transmitting pain, new therapeutic targets have become evident that may result in effective analgesics either alone or in combination with current opioid therapies.

  13. Opioid Abuse after TBI

    DTIC Science & Technology

    2014-07-01

    behaviors and may induce alteration in the brain reward, particularly expression of the dopamine receptor subtype 2. All studies are on-going...conducted to assess expression of the mu opioid receptor, dopamine receptor subtype 1, dopamine receptor subtype 2, dopamine transporter, and tyrosine...receptor: Alomone Labs (catalog #ADR-001) 1:200 dilution in 1% BSA D2 receptor: Alomone Labs (catalog #ADR-002) 1:200 dilution in 1% BSA Dopamine

  14. Peripheral Opioid Analgesia

    DTIC Science & Technology

    1999-07-16

    central nervous system by neurons called primary afferent nociceptors (PANs). These neurons have their cell bodies in the dorsal root ganglia (ORG... neurons , and in particular their role in the generation, propagation and modulation of noxious stimulation will be summarized. The final section of...and processing of each opioid peptide is discussed below. The human POMC gene is 7665 base pairs (bp) long which contains three exons and two

  15. Melanins from opioid peptides.

    PubMed

    Rosei, M A

    1996-12-01

    Opioid peptides and other Tyr-NH2-terminal peptides are substrates in vitro for mushroom and sepia tyrosine, giving rise to synthetic melanins retaining the peptide moiety (opiomelanins). The melanopeptides are characterized by a total solubility in hydrophylic solvents at neutral and basic pH. Opioid peptides (enkephalins, endorphins, and esorphins), if oxidized by tyrosinase in the presence of Dopa, are easily incorporated into Dopa-melanin, producing mixed-type pigments that can also be solubilized in hydrophylic solvents. Melanins derived from opioid peptides exhibit paramagnetism, as evidenced by an EPR spectrum identical to that of Dopa-melanin. However, the presence of the linked peptide chain is able to influence dramatically the electron transfer properties and the oxidizing behaviour of the melanopeptides, so that whereas Tyr-Gly-melanin appears to behave as Dopa-melanin, Enk-melanin does not exhibit any oxidizing activity. Opiomelanins are characterized by a peculiar UV-VIS spectrum; that is, by the presence of a distinct peak (330 nm) that disappears upon chemical treatment by acid hydrolysis. Opiomelanins are stable pigments at neutral and basic pH in the dark, whereas the addition of H2O2 leads to a 15% degradation. Under stimulated solar illumination, opiomelanins are more easily destroyed with respect to Dopa-melanin, with increasing degradation when exposed to increased hydrogen peroxide concentrations and more alkaline pH. Some speculations on the possible existence and role of opiomelanins have been outlined.

  16. Modulation of peripheral μ-opioid analgesia by σ1 receptors.

    PubMed

    Sánchez-Fernández, Cristina; Montilla-García, Ángeles; González-Cano, Rafael; Nieto, Francisco Rafael; Romero, Lucía; Artacho-Cordón, Antonia; Montes, Rosa; Fernández-Pastor, Begoña; Merlos, Manuel; Baeyens, José Manuel; Entrena, José Manuel; Cobos, Enrique José

    2014-01-01

    We evaluated the effects of σ1-receptor inhibition on μ-opioid-induced mechanical antinociception and constipation. σ1-Knockout mice exhibited marked mechanical antinociception in response to several μ-opioid analgesics (fentanyl, oxycodone, morphine, buprenorphine, and tramadol) at systemic (subcutaneous) doses that were inactive in wild-type mice and even unmasked the antinociceptive effects of the peripheral μ-opioid agonist loperamide. Likewise, systemic (subcutaneous) or local (intraplantar) treatment of wild-type mice with the selective σ1 antagonists BD-1063 [1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine dihydrochloride] or S1RA [4-[2-[[5-methyl-1-(2-naphthalenyl)1H-pyrazol-3-yl]oxy]ethyl] morpholine hydrochloride] potentiated μ-opioid antinociception; these effects were fully reversed by the σ1 agonist PRE-084 [2-(4-morpholinethyl)1-phenylcyclohexanecarboxylate) hydrochloride], showing the selectivity of the pharmacological approach. The μ-opioid antinociception potentiated by σ1 inhibition (by σ1-receptor knockout or σ1-pharmacological antagonism) was more sensitive to the peripherally restricted opioid antagonist naloxone methiodide than opioid antinociception under normal conditions, indicating a key role for peripheral opioid receptors in the enhanced antinociception. Direct interaction between the opioid drugs and σ1 receptor cannot account for our results, since the former lacked affinity for σ1 receptors (labeled with [(3)H](+)-pentazocine). A peripheral role for σ1 receptors was also supported by their higher density (Western blot results) in peripheral nervous tissue (dorsal root ganglia) than in several central areas involved in opioid antinociception (dorsal spinal cord, basolateral amygdala, periaqueductal gray, and rostroventral medulla). In contrast to its effects on nociception, σ1-receptor inhibition did not alter fentanyl- or loperamide-induced constipation, a peripherally mediated nonanalgesic opioid effect. Therefore

  17. Opioid Overdose Deaths in the City and County of San Francisco: Prevalence, Distribution, and Disparities.

    PubMed

    Visconti, Adam J; Santos, Glenn-Milo; Lemos, Nikolas P; Burke, Catherine; Coffin, Phillip O

    2015-08-01

    Drug overdose is now the leading cause of unintentional death nationwide, driven by increased prescription opioid overdoses. To better understand urban opioid overdose deaths, this paper examines geographic, demographic, and clinical differences between heroin-related decedents and prescription opioid decedents in San Francisco from 2010 to 2012. During this time period, 331 individuals died from accidental overdose caused by opioids (310 involving prescription opioids and 31 involving heroin). Deaths most commonly involved methadone (45.9%), morphine (26.9%), and oxycodone (21.8%). Most deaths also involved other substances (74.9%), most commonly cocaine (35.3%), benzodiazepines (27.5%), antidepressants (22.7%), and alcohol (19.6%). Deaths were concentrated in a small, high-poverty, central area of San Francisco and disproportionately affected African-American individuals. Decedents in high-poverty areas were significantly more likely to die from methadone and cocaine, whereas individuals from more affluent areas were more likely die from oxycodone and benzodiazepines. Heroin decedents were more likely to be within a younger age demographic, die in public spaces, and have illicit substances rather than other prescription opioids. Overall, heroin overdose death, previously common in San Francisco, is now rare. Prescription opioid overdose has emerged as a significant concern, particularly among individuals in high-poverty areas. Deaths in poor and affluent regions involve different causative opioids and co-occurring substances.

  18. Differentiation of opioid drug effects by hierarchical multi-site phosphorylation.

    PubMed

    Just, Sascha; Illing, Susann; Trester-Zedlitz, Michelle; Lau, Elaine K; Kotowski, Sarah J; Miess, Elke; Mann, Anika; Doll, Christian; Trinidad, Jonathan C; Burlingame, Alma L; von Zastrow, Mark; Schulz, Stefan

    2013-03-01

    Differences in the ability of opioid drugs to promote regulated endocytosis of μ-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drug-specific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxyl-terminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosis-promoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higher-order phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.

  19. Fluoxetine alters mu opioid receptor expression in obese Zucker rat extrahypothalamic regions.

    PubMed

    Churruca, Itziar; Portillo, María P; Zumalabe, José María; Macarulla, María T; Sáenz Del Burgo, Laura; Zarate, Jon; Echevarría, Enrique

    2006-03-01

    The aim of this article was to describe the effects of chronic fluoxetine on mu opioid receptor expression in obese Zucker rat extrahypothalamic regions. Male obese Zucker (fa/fa) rats were administered with fluoxetine (10 mg/kg; i.p.) daily for two weeks. Brain regional immunostaining for mu opioid receptor was carried out. An increase in the numbers of neural cells immunostained for mu opioid receptor in caudatus-putamen, dentate gyrus, lateral septum, amygdala, and frontal, parietal, and piriform cortices was observed. Increased mu opioid receptor expression in the central amygdaloid nuclei suggests a decreased opioidergic tone at this level that could be involved in fluoxetine anorectic action.

  20. Dual allosteric modulation of opioid antinociceptive potency by α2A-adrenoceptors.

    PubMed

    Chabot-Doré, Anne-Julie; Millecamps, Magali; Naso, Lina; Devost, Dominic; Trieu, Phan; Piltonen, Marjo; Diatchenko, Luda; Fairbanks, Carolyn A; Wilcox, George L; Hébert, Terence E; Stone, Laura S

    2015-12-01

    Opioid and α2-adrenoceptor (AR) agonists are analgesic when administered in the spinal cord and show a clinically beneficial synergistic interaction when co-administered. However, α2-AR antagonists can also inhibit opioid antinociception, suggesting a complex interaction between the two systems. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations. Therefore, we investigated whether spinal opioid antinociception and opioid-adrenergic synergy were under allosteric control of the α2A-AR. Drugs were administered intrathecally in wild type (WT) and α2A-knock-out (KO) mice and antinociception was measured using the hot water tail immersion or substance P behavioral assays. The α2A-AR agonist clonidine was less effective in α2A-KO mice in both assays. The absence of the α2A-AR resulted in 10-70-fold increases in the antinociceptive potency of the opioid agonists morphine and DeltII. In contrast, neither morphine nor DeltII synergized with clonidine in α2A-KO mice, indicating that the α2AAR has both positive and negative modulatory effects on opioid antinociception. Depletion of descending adrenergic terminals with 6-OHDA resulted in a significant decrease in morphine efficacy in WT but not in α2A-KO mice, suggesting that endogenous norepinephrine acts through the α2A-AR to facilitate morphine antinociception. Based on these findings, we propose a model whereby ligand-occupied versus ligand-free α2A-AR produce distinct patterns of modulation of opioid receptor activation. In this model, agonist-occupied α2A-ARs potentiate opioid analgesia, while non-occupied α2A-ARs inhibit opioid analgesia. Exploiting such interactions between the two receptors could lead to the development of better pharmacological treatments for pain management.

  1. Dual allosteric modulation of opioid antinociceptive potency by a2A-adrenoceptors

    PubMed Central

    Chabot-Doré, Anne-Julie; Millecamps, Magali; Naso, Lina; Devost, Dominic; Trieu, Phan; Piltonen, Marjo; Diatchenko, Luda; Fairbanks, Carolyn A.; Wilcox, George L.; Hébert, Terence E.; Stone, Laura S.

    2015-01-01

    Opioid and α2-adrenoceptor (AR) agonists are analgesic when administered in the spinal cord and show a clinically beneficial synergistic interaction when co-administered. However, α2-AR antagonists can also inhibit opioid antinociception, suggesting a complex interaction between the two systems. The α2A-AR subtype is necessary for spinal adrenergic analgesia and synergy with opioids for most agonist combinations. Therefore, we investigated whether spinal opioid antinociception and opioid-adrenergic synergy were under allosteric control of the α2A-AR. Drugs were administered intrathecally in wild type (WT) and α2A-knock-out (KO) mice and antinociception was measured using hot water tail immersion or substance P behavioral assays. The α2A-AR agonist clonidine was less effective in α2A-KO mice in both assays. The absence of the α2A-AR resulted in 10–70-fold increases in the antinociceptive potency of the opioid agonists morphine and DeltII. In contrast, neither morphine nor DeltII synergized with clonidine in α2AKO mice, indicating that the α2AAR has both positive and negative modulatory effects on opioid antinociception. Depletion of descending adrenergic terminals with 6-OHDA resulted in a significant decrease in morphine efficacy in WT but not in α2A-KO mice, suggesting that endogenous norepinephrine acts through the α2A-AR to facilitate morphine antinociception. Based on these findings, we propose a model whereby ligand-occupied versus ligand-free α2A-AR produce distinct patterns of modulation of opioid receptor activation. In this model, agonist-occupied α2A-ARs potentiate opioid analgesia, while non-occupied α2A-ARs inhibit opioid analgesia. Exploiting such interactions between the two receptors could lead to the development of better pharmacological treatments for pain management. PMID:26254859

  2. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems

    PubMed Central

    Bruchas, Michael R.; Calo', Girolamo; Cox, Brian M.; Zaveri, Nurulain T.

    2016-01-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  3. Significance of Neuronal Cytochrome P450 Activity in Opioid-Mediated Stress-Induced Analgesia

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Yang, Weizhu; Ding, Xinxin

    2014-01-01

    Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as “stress-induced analgesia”. Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain μ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in μ analgesia. Since μ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female > control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity. PMID:25020125

  4. Co-prescription of opioids with benzodiazepine and other co-medications among opioid users: differential in opioid doses

    PubMed Central

    Zin, Che Suraya; Ismail, Fadhilah

    2017-01-01

    Purpose This study investigated the patterns of opioid co-prescription with benzodiazepine and other concomitant medications among opioid users. Opioid dose in each type of co-prescription was also examined. Patients and methods This cross-sectional study was conducted among opioid users receiving concomitant medications at an outpatient tertiary hospital setting in Malaysia. Opioid prescriptions (morphine, fentanyl, oxycodone, dihydrocodeine and tramadol) that were co-prescribed with other medications (opioid + benzodiazepines, opioid + antidepressants, opioid + anticonvulsants, opioid + antipsychotics and opioid + hypnotics) dispensed from January 2013 to December 2014 were identified. The number of patients, number of co-prescriptions and the individual mean opioid daily dose in each type of co-prescription were calculated. Results A total of 276 patients receiving 1059 co-prescription opioids with benzodiazepine and other co-medications were identified during the study period. Of these, 12.3% of patients received co-prescriptions of opioid + benzodiazepine, 19.3% received opioid + anticonvulsant, 6.3% received opioid + antidepressant and 10.9% received other co-prescriptions, including antipsychotics and hypnotics. The individual mean opioid dose was <100 mg/d of morphine equivalents in all types of co-prescriptions, and the dose ranged from 31 to 66 mg/d in the co-prescriptions of opioid + benzodiazepine. Conclusion Among the opioid users receiving concomitant medications, the co-prescriptions of opioid with benzodiazepine were prescribed to 12.3% of patients, and the individual opioid dose in this co-prescription was moderate. Other co-medications were also commonly used, and their opioid doses were within the recommended dose. Future studies are warranted to evaluate the adverse effect and clinical outcomes of the co-medications particularly in long-term opioid users with chronic non-cancer pain. PMID:28182128

  5. Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: Involvement of PI3K/Akt and MEK/ERK signaling pathways.

    PubMed

    Kokona, Despina; Thermos, Kyriaki

    2015-07-01

    Cannabinoids have been suggested to protect retinal ganglion cells in different models of toxicity, but their effects on other retinal neurons are poorly known. We investigated the neuroprotective actions of the endocannabinoid N-arachidonoyl ethanolamine (Anandamide/AEA) and the synthetic cannabinoids R1-Methanandamide (MethAEA) and HU-210, in an in vivo retinal model of AMPA excitotoxicity, and the mechanisms involved in the neuroprotection. Sprague-Dawley rats were intravitreally injected with PBS or AMPA in the absence or presence of the cannabinoid agonists. Brain nitric oxide synthase (bNOS) and choline acetyltransferase (ChAT) immunoreactivity (IR), as well as TUNEL staining, assessed the AMPA-induced retinal amacrine cell loss and the dose-dependent neuroprotection afforded by cannabinoids. The CB1 receptor selective antagonist AM251 and the PI3K/Akt inhibitor wortmannin reversed the cannabinoid-induced neuroprotection, suggesting the involvement of CB1 receptors and the PI3K/Akt pathway in cannabinoids' actions. Experiments with the CB2 agonist JWH015 and [(3)H]CP55940 radioligand binding suggested that the CB2 receptor is not involved in the neuroprotection. AEA and HU-210 induced phosphorylation of Akt but only AEA induced phosphorylation of ERK1/2 kinases, as revealed by western blot analysis. To investigate the role of caspase-3 in the AMPA-induced cell death, the caspase-3 inhibitor Z-DEVD-FMK was co-injected with AMPA. Z-DEVD-FMK had no effect on AMPA excitotoxicity. Moreover, no difference was observed in the phosphorylation of SAPK/JNK kinases between PBS- and AMPA-treated retinas. These results suggest that endogenous and synthetic cannabinoids protect retinal amacrine neurons from AMPA excitotoxicity in vivo via a mechanism involving the CB1 receptors, and the PI3K/Akt and/or MEK/ERK1/2 signaling pathways.

  6. Opioid antagonists and the sexual satiation phenomenon.

    PubMed

    Rodríguez-Manzo, G; Fernández-Guasti, A

    1995-11-01

    This study evaluates the effects of the IP injection of naloxone (0.3, 3 and 30 mg/kg) and naltrexone (0.2, 2 and 20 mg/kg) on the sexual satiation phenomenon. It was found that both antagonists exert a dose-based biphasic effect on the proportion of sexually exhausted rats displaying copulation. The intermediate doses of both opioid antagonists were more effective than the low and high doses in increasing the percentage of animals engaged in copulation. The analysis of the specific sexual behaviour parameters revealed that naloxone produces a slight inhibitory effect at the lowest dose, evidenced as an increase in the intromission number. The higher doses of this compound facilitated copulation reflected as a shortening of the ejaculation latency and the interintromission interval (III) and an increase in the copulatory rate. Naltrexone treatment had only facilitatory effects at the lower doses by reducing the III. The higher doses of naloxone (3 and 30 mg/kg) and the intermediate dose of naltrexone (2 mg/kg) decreased the spontaneous ambulatory behaviour of sexually satiated rats without impairing sexual behaviour execution. Data suggest a participation of the endogenous opioid systems in the sexual inhibition resulting from sexual exhaustion.

  7. Interim treatment: Bridging delays to opioid treatment access

    PubMed Central

    Sigmon, Stacey C.

    2015-01-01

    Objective Despite the undisputed effectiveness of agonist maintenance for opioid dependence, individuals can remain on waitlists for months, during which they are at significant risk for morbidity and mortality. To mitigate these risks, the Food and Drug Administration in 1993 approved interim treatment, involving daily medication + emergency counseling only, when only a waitlist is otherwise available. We review the published research in the 20 years since the approval of interim opioid treatment. Methods A literature search was conducted to identify all randomized trials evaluating the efficacy of interim treatment for opioid-dependent patients awaiting comprehensive treatment. Results Interim opioid treatment has been evaluated in four controlled trials to date. In three, interim treatment was compared to waitlist or placebo control conditions and produced greater outcomes on measures of illicit opioid use, retention, criminality and likelihood of entry into comprehensive treatment. In the fourth, interim treatment was compared to standard methadone maintenance and produced comparable outcomes in illicit opioid use, retention and criminal activity. Conclusions Interim treatment significantly reduces patient and societal risks when conventional treatment is unavailable. Further research is needed to examine the generality of these findings, further enhance outcomes, and identify the patient characteristics which predict treatment response. PMID:25937593

  8. [Misuse and dependence on prescription opioids: Prevention, identification and treatment].

    PubMed

    Rolland, B; Bouhassira, D; Authier, N; Auriacombe, M; Martinez, V; Polomeni, P; Brousse, G; Schwan, R; Lack, P; Bachellier, J; Rostaing, S; Bendimerad, P; Vergne-Salle, P; Dematteis, M; Perrot, S

    2017-02-14

    Since the 1990s, the use of prescription opioids has largely spread, which has brought a real progress in the treatment of pain. The long-term use of prescription opioid is sometimes required, and may lead to pharmacological tolerance and withdrawal symptoms, i.e. pharmacological dependence on prescription opioids. Occasionally, this may also lead to misuse of prescription opioids (MPO). MPO preferentially occurs in vulnerable individuals, i.e., those with a young age, history of other addictive or psychiatric disorders, especially anxious and depressive disorders. MPO is associated with numerous complications, including an increased risk of fatal overdose. Prevention of MPO begins before the opioid prescription, with the identification of potential vulnerability factors. A planned and personalized monitoring should be systematically implemented. In vulnerable patients, contractualizing the prescription is warranted. During follow-up, the relevance of the prescription should be regularly reconsidered, according to the benefit observed on pain and the potential underlying signs of MPO. Patients with suspected MPO should be referred early to pain or addiction centers. The treatment of MPO should be based on multidisciplinary strategies, involving both the addiction and pain aspects: progressive opioid withdrawal, non-pharmacological measures against pain, or switching to medication-assisted treatment of addiction (i.e., buprenorphine or methadone).

  9. Opioid blockade effect on insulin beta-cells secretory patterns in polycystic ovary syndrome. Oral glucose load versus intravenous glucagon bolus.

    PubMed

    Ciampelli, M; Fulghesu, A M; Guido, M; Murgia, F; Muzj, G; Belosi, C; Fortini, A; Cento, R; Lanzone, A

    1998-01-01

    In order to evaluate the involvement of endogenous opiates in the insulin disorders of polycystic ovary syndrome (PCOs) a total of 25 PCOs women and 11 normo-ovulatory controls were studied by comparing the effect of a chronic opioid blockade on beta-cells responsiveness to oral glucose load and to intravenous glucagon bolus. Each patient, studied on follicular phase, underwent to oral glucose tolerance test (OGTT), and, 2 days later, to a glucagon intravenous bolus (1 mg); these tests were then repeated after 6 weeks of naltrexone treatment (50 mg orally). Naltrexone treatment did not modify the insulin secretory patterns of control subjects, whereas the same therapy significantly reduced, in hyperinsulinemic PCOs women, the beta-cell hyperresponsiveness both to oral glucose load and to intravenous glucagon (p < 0.05 and p < 0.01, respectively), even if with different mean percent decrease (32% OGTT vs. 45% glucagon, p < 0.05). Moreover, normoinsulinemic PCOs patients showed a slight, but not significantly increase in the beta-cells response to OGTT after opioid blockade, whereas, in the same situation, the insulin release after glucagon bolus was significantly reduced (p < 0.01). Chronic opioid blockade did not modify gonadotropins, steroids and SHBG levels in either group. Our data show that naltrexone treatment is able to reduce the beta-cell response to a direct intravenous secretagogue stimulus in all PCOs patients, while only in hyperinsulinemic PCOs subjects the same treatment is effective in reducing the exaggerated insulin secretion after oral glucose load. The reason for such a discrepancy could be ascribed to a different effect of opioids on first- and second-phase insulin secretion, or, alternatively, to an involvement of other secretagogue factors, such as glucoincretins.

  10. Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse

    PubMed Central

    Jackson, K. J.; Negus, S. S.; Damaj, M. I.

    2010-01-01

    Rationale Several lines of evidence support a role for the endogenous opioid system in mediating behaviors associated with drug dependence. Specifically, recent findings suggest that the kappa-opioid receptor (KOR) may play a role in aspects of nicotine dependence, which contribute to relapse and continued tobacco smoking. Objective The objective of this study is to determine the involvement of the KOR in the initial behavioral responses of nicotine, nicotine reward, and nicotine withdrawal using the highly selective KOR antagonist JDTic. JDTic doses of 1, 4, 8, or 16 mg/kg were administered subcutaneously (s.c.) 18 h prior to nicotine treatment. Results JDTic dose-dependently blocked acute nicotine-induced antinociception in the tail-flick but not the hot-plate test and did not significantly attenuate morphine’s antinociceptive effect in either the tail-flick or hot-plate test. Furthermore, JDTic (8 and 16 mg/kg, s.c.) failed to block the expression of nicotine reward as measured by the conditioned place preference model. In contrast, JDTic and the KOR antagonist norBNI attenuated the expression of both the physical (somatic signs and hyperalgesia) and affective (anxiety-related behavior and conditioned place aversion) nicotine withdrawal signs. Conclusions Our findings clearly show that the KOR is involved in mediating the withdrawal aspects of nicotine dependence. The results from this study suggest that blockade of the KOR by selective KOR antagonists may be useful smoking cessation pharmacotherapies. PMID:20232057

  11. Amnesia Affecting Some Opioid Abusers

    MedlinePlus

    ... Health, or the U.S. Department of Health and Human Services. More Health News on: Memory Opioid Abuse and Addiction Recent Health News Related MedlinePlus Health Topics Memory Opioid Abuse and Addiction ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated ...

  12. Preclinical pharmacology and opioid combinations.

    PubMed

    Pasternak, Gavril W

    2012-03-01

    Although effective alone, opioids are often used in combination with other drugs for relief of moderate to severe pain. Guidelines for acute perioperative pain recommend the use of multimodal therapy for pain management, although combinations of opioids are not specifically recommended. Mu opioid drugs include morphine, heroin, fentanyl, methadone, and morphine 6β-glucuronide (M6G). Their mechanism of action is complex, resulting in subtle pharmacological differences among them and with unpredictable differences in their potency, effectiveness, and tolerability among patients. Highly selective mu opioids do not bind to a single receptor. Rather, they interact with a large number of mu receptor subtypes with different activation profiles for the various drugs. Thus, mu-receptor-based drugs are not all the same and it may be possible to utilize these differences for enhanced pain control in a clinical setting. These differences among the drugs raise the question of whether combinations might result in better pain relief with fewer side effects. This concept has already been demonstrated between two mu opioids in preclinical studies and clinical trials on other combinations are ongoing. This article reviews the current state of knowledge about mu opioid receptor pharmacology, summarizes preclinical evidence for synergy from opioid combinations, and highlights the complex nature of the mu opioid receptor pharmacology.

  13. Opioid activity of beta-endorphin-like proteins from Tetrahymena.

    PubMed

    Rodriguez, Enrique; Lazaro, Maria I; Renaud, Fernando L; Marino, Michael

    2004-01-01

    Morphine and other opioids have been reported to modulate phagocytosis in the ciliate Tetrahymena. However, the endogenous signaling molecule responsible for these effects remains uncharacterized. In this work we present evidence for the presence of beta-endorphin-like protein(s) in Tetrahymena thermophila. Subcellular extracts and cell-free culture supernatants were fractionated by hydrophobic chromatography on Sep Pack C18 columns and by affinity chromatography on polyclonal anti-beta-endorphin columns. Both preparations exhibited opioid-like effects in two different systems: 1) they inhibited phagocytosis in murine peritoneal macrophages, and 2) they blocked the response to mechanical stimuli in the ciliate Stentor. Both of these effects were reversed by naloxone, consistent with an opioid receptor-mediated mechanism. Chromatographic (HPLC) fractionation of the subcellular extracts resolved a component with beta-endorphin-like immunoreactivity, whose retention time was similar to that of the human beta-endorphin standard. Fractions were also analyzed by immunoblots using a monoclonal antibody that recognizes the N-terminus of human beta-endorphin. This antibody detected two antigenic components (corresponding to Mr 9,000 and Mr 12,000 polypeptides) in subcellular extracts, but only a single antigen (corresponding to a Mr 7,000 polypeptide) in culture supernatants. These results indicate that Tetrahymena produces one or more proteins that share some properties with beta-endorphin and that these may form part of an opioid mechanism that originated early in evolution.

  14. Antitussive activity of Withania somnifera and opioid receptors.

    PubMed

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways.

  15. mu-Opioid receptor-independent fashion of the suppression of sodium currents by mu-opioid analgesics in thalamic neurons.

    PubMed

    Hashimoto, Keisuke; Amano, Taku; Kasakura, Akiko; Uhl, George R; Sora, Ichiro; Sakai, Norio; Kuzumaki, Naoko; Suzuki, Tsutomu; Narita, Minoru

    2009-03-27

    Most reports in the literature have shown that the effects of opioid analgesics are primarily mediated by mu-opioid receptor (MOR), whereas other potential targets of opioid analgesics have not been thoroughly characterized. In this study, we found that extracellular application of morphine, fentanyl or oxycodone, which are all considered to be MOR agonists, at relatively high concentrations, but not endogenous mu-opioid peptides, produced a concentration-dependent suppression of sodium currents in cultured thalamic neurons. These effects of opioids were not affected by either a MOR antagonist naloxone or a deletion of MOR gene. Among these opioids, fentanyl strongly suppressed sodium currents to the same degree as lidocaine, and both morphine and oxycodone slightly but significantly reduced sodium currents when they were present extracellularly. In contrast, the intracellular application of morphine, but not oxycodone, fentanyl or lidocaine, reduced sodium currents. These results suggest that morphine, fentanyl and oxycodone each produce the MOR-independent suppression of sodium currents by distinct mechanisms in thalamic neurons.

  16. Opiorphin causes a panicolytic-like effect in rat panic models mediated by μ-opioid receptors in the dorsal periaqueductal gray.

    PubMed

    Maraschin, Jhonatan Christian; Rangel, Marcel Pereira; Bonfim, Antonio Joaquim; Kitayama, Mariana; Graeff, Frederico Guilherme; Zangrossi, Hélio; Audi, Elisabeth Aparecida

    2016-02-01

    Reported evidence indicates that endogenous opioid peptides regulate the expression of escape behavior in rats, a panic-related defensive response, through μ-opioid receptors (MORs) in the dorsal periaqueductal gray (dPAG). These peptides are rapidly catabolized by degrading enzymes, including neutral endopeptidase (NEP) and aminopeptidase N (APN). Opiorphin is a peptide inhibitor of both NEP and APN and potentiates the action of endogenous enkephalins. This study evaluated the effects of intravenous and intra-dPAG administration of opiorphin on escape responses in the elevated T-maze and in a dPAG electrical stimulation test in rats. We also evaluated the involvement of MORs in the effects of opiorphin using the selective MOR antagonist CTOP. A dose of 2.0 mg/kg, i.v., of opiorphin impaired escape performance in both tests. Similar effects were observed with intra-dPAG administration of 5.0 nmol of opiorphin. Local pretreatment with 1.0 nmol CTOP antagonized the anti-escape effects of intra-dPAG opiorphin in both tests, as well as the effect of systemically administered opiorphin (2.0 mg/kg, i.v.) in the electrical stimulation test. These results indicate that opiorphin has an antipanic-like effect that is mediated by MORs in the dPAG. They may open new perspectives for the development of opiorphin analogues with greater bioavailability and physicochemical characteristics in the pursuit of new medications for the treatment of panic disorder.

  17. Lobeline, a potential pharmacotherapy for drug addiction, binds to mu opioid receptors and diminishes the effects of opioid receptor agonists.

    PubMed

    Miller, Dennis K; Lever, John R; Rodvelt, Kelli R; Baskett, James A; Will, Matthew J; Kracke, George R

    2007-07-10

    Lobeline diminishes the behavioral and neurochemical effects of nicotine and amphetamines, and is considered a potential pharmacotherapy for drug abuse and addiction. Lobeline has high affinity for nicotinic acetylcholine receptors and inhibits the function of vesicular monoamine and dopamine transporters. The present study investigated the less-explored interaction of lobeline and the endogenous opioid system. In guinea pig brain homogenates, lobeline displaced (K(i)=0.74 microM) the binding of [(3)H]DAMGO [(D-Ala(2), N-ME-Phe(4), Gly(5)-ol)-enkephalin]. In a functional assay system comprised of MOR-1 mu opioid receptors and GIRK2 potassium channels expressed in Xenopus oocytes, lobeline had no effect on the resting current, but maximally inhibited (IC(50)=1.1 microM) morphine- and DAMGO-activated potassium current in a concentration-dependent manner. In a second functional assay, lobeline-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine was not blocked by naltrexone. Importantly, concentrations of lobeline (0.1-0.3 microM) that did not have intrinsic activity attenuated ( approximately 50%) morphine-evoked [(3)H]overflow. Overall, the results suggest that lobeline functions as a mu opioid receptor antagonist. The ability of lobeline to block psychostimulant effects may be mediated by opioid receptor antagonism, and lobeline could be investigated as a treatment for opiate addiction.

  18. From Education to Practice: Addressing Opioid Misuse through Healthcare Provider Training: A Special Issue of SAj.

    PubMed

    Gordon, Adam J; Harding, John Daniel

    2017-03-22

    Opioid misuse may be ignored by providers who are unwilling or not confident in engaging the complex nature of substance use disorders among their patient populations. Addiction is a complex disease and although providers often are comfortable in identifying, assessing, and treating the complex diseases of their patients, basic knowledge and skills of identification, assessment, and treatment expertise involving opioids for pain, addressing opioid misuse, and treatment of opioid use disorder are lacking. Initiatives to improve knowledge of opioid use, misuse, and opioid use disorder among health care providers are emerging. In this issue of the Substance Abuse journal, we examine the science and evidence base of educational interventions and public initiatives addressing opioid use and addiction. These initiatives include naloxone rescue awareness and programs, community-based training initiatives, and system or public health approaches to improve student, trainee, and clinician education/training revolving around opioid misuse and opioid use disorder. We call on stakeholders to fund more research to investigate and implement the proven means to educate undergraduate students, graduate trainees, and clinicians regarding pain and addiction. We also recognize the 2016 peer reviewers of our journal who have performed meritorious, volunteer service to advance the science of addiction.

  19. Biological redundancy of endogenous GPCR ligands in the gut and the potential for endogenous functional selectivity

    PubMed Central

    Thompson, Georgina L.; Canals, Meritxell; Poole, Daniel P.

    2014-01-01

    This review focuses on the existence and function of multiple endogenous agonists of the somatostatin and opioid receptors with an emphasis on their expression in the gastrointestinal tract. These agonists generally arise from the proteolytic cleavage of prepropeptides during peptide maturation or from degradation of peptides by extracellular or intracellular endopeptidases. In other examples, endogenous peptide agonists for the same G protein-coupled receptors can be products of distinct genes but contain high sequence homology. This apparent biological redundancy has recently been challenged by the realization that different ligands may engender distinct receptor conformations linked to different intracellular signaling profiles and, as such the existence of distinct ligands may underlie mechanisms to finely tune physiological responses. We propose that further characterization of signaling pathways activated by these endogenous ligands will provide invaluable insight into the mechanisms governing biased agonism. Moreover, these ligands may prove useful in the design of novel therapeutic tools to target distinct signaling pathways, thereby favoring desirable effects and limiting detrimental on-target effects. Finally we will discuss the limitations of this area of research and we will highlight the difficulties that need to be addressed when examining endogenous bias in tissues and in animals. PMID:25506328

  20. Differential Effect of Membrane Cholesterol Removal on μ- and δ-Opioid Receptors

    PubMed Central

    Levitt, Erica S.; Clark, Mary J.; Jenkins, Paul M.; Martens, Jeffrey R.; Traynor, John R.

    2009-01-01

    According to the lipid raft theory, the plasma membrane contains small domains enriched in cholesterol and sphingolipid, which may serve as platforms to organize membrane proteins. Using methyl-β-cyclodextrin (MβCD) to deplete membrane cholesterol, many G protein-coupled receptors have been shown to depend on putative lipid rafts for proper signaling. Here we examine the hypothesis that treatment of HEK293 cells stably expressing FLAG-tagged μ-opioid receptors (HEK FLAG-μ) or δ-opioid receptors (HEK FLAG-δ) with MβCD will reduce opioid receptor signaling to adenylyl cyclase. The ability of the μ-opioid agonist [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin to acutely inhibit adenylyl cyclase or to cause sensitization of adenylyl cyclase following chronic treatment was attenuated with MβCD. These effects were due to removal of cholesterol, because replenishment of cholesterol restored [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin responses back to control values, and were confirmed in SH-SY5Y cells endogenously expressing μ-opioid receptors. The effects of MβCD may be due to uncoupling of the μ receptor from G proteins but were not because of decreases in receptor number and were not mimicked by cytoskeleton disruption. In contrast to the results in HEK FLAG-μ cells, MβCD treatment of HEK FLAG-δ cells had no effect on acute inhibition or sensitization of adenylyl cyclase by δ-opioid agonists. The differential responses of μ- and δ-opioid agonists to cholesterol depletion suggest that μ-opioid receptors are more dependent on cholesterol for efficient signaling than δ receptors and can be partly explained by localization of μ- but not δ-opioid receptors in cholesterol- and caveolin-enriched membrane domains. PMID:19520863

  1. Peripheral Sensitization Increases Opioid Receptor Expression and Activation by Crotalphine in Rats

    PubMed Central

    Zambelli, Vanessa Olzon; Fernandes, Ana Carolina de Oliveira; Gutierrez, Vanessa Pacciari; Ferreira, Julio Cesar Batista; Parada, Carlos Amilcar; Mochly-Rosen, Daria; Cury, Yara

    2014-01-01

    Inflammation enhances the peripheral analgesic efficacy of opioid drugs, but the mechanisms involved in this phenomenon have not been fully elucidated. Crotalphine (CRP), a peptide that was first isolated from South American rattlesnake C.d. terrificus venom, induces a potent and long-lasting anti-nociceptive effect that is mediated by the activation of peripheral opioid receptors. Because the high efficacy of CRP is only observed in the presence of inflammation, we aimed to elucidate the mechanisms involved in the CRP anti-nociceptive effect induced by inflammation. Using real-time RT-PCR, western blot analysis and ELISA assays, we demonstrate that the intraplantar injection of prostaglandin E2 (PGE2) increases the mRNA and protein levels of the µ- and κ-opioid receptors in the dorsal root ganglia (DRG) and paw tissue of rats within 3 h of the injection. Using conformation state-sensitive antibodies that recognize activated opioid receptors, we show that PGE2, alone does not increase the activation of these opioid receptors but that in the presence of PGE2, the activation of specific opioid receptors by CRP and selective µ- and κ-opioid receptor agonists (positive controls) increases. Furthermore, PGE2 down-regulated the expression and activation of the δ-opioid receptor. CRP increased the level of activated mitogen-activated protein kinases in cultured DRG neurons, and this increase was dependent on the activation of protein kinase Cζ. This CRP effect was much more prominent when the cells were pretreated with PGE2. These results indicate that the expression and activation of peripheral opioid receptors by opioid-like drugs can be up- or down-regulated in the presence of an acute injury and that acute tissue injury enhances the efficacy of peripheral opioids. PMID:24594607

  2. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    SciTech Connect

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  3. Conditioned opioid withdrawal decreases nociceptin/orphanin FQ levels in the frontal cortex and olfactory tubercle.

    PubMed

    Walker, John R; Terenius, Lars; Koob, George F

    2002-08-01

    Clinical evidence suggests that individuals experiencing drug withdrawal can become conditioned to environmental situations, whereby previously neutral stimuli can produce symptoms of withdrawal. It is believed that this "conditioned withdrawal" can have motivational significance, but the neurobiological basis for conditioned withdrawal is unknown. The goal of this study was to determine adaptations in endogenous opioid systems that may be responsible for expression of conditioned withdrawal. Opioid-dependent rats trained to lever press for food were exposed to tone and scent cues in the presence of naloxone or saline. Naloxone but not saline predictably suppressed responding for food. One month later and in a post-dependent state, all rats again were exposed to the cues but not naloxone. The conditioned cues alone suppressed responding for food in the rats previously paired with naloxone, but no suppression was seen in rats previously paired with saline. Radioimmunoassay (RIA) analysis for nociceptin/orphanin FQ (nociceptin), met-enkephalin-Arg-Phe (MEAP), and dynorphin A (dyn A) was performed from dissections of various brain regions of the rats undergoing conditioned withdrawal. Significant reductions in nociceptin peptide levels were seen in the frontal cortex and olfactory tubercle of these rats. Unconditioned opioid withdrawal and unconditioned footshock stress produced different patterns of opioid peptide regulation in separate groups of rats. These results shed light on adaptations of endogenous opioid systems to conditioned cues, stress, and withdrawal, all factors that play a role in motivating drug intake.

  4. Endocannabinoids, through opioids and prostaglandins, contribute to fever induced by key pyrogenic mediators.

    PubMed

    Fraga, Daniel; Zanoni, Cristiane I S; Zampronio, Aleksander R; Parada, Carlos A; Rae, Giles A; Souza, Glória E P

    2016-01-01

    This study aims to explore the contribution of endocannabinoids on the cascade of mediators involved in LPS-induced fever and to verify the participation of prostaglandins and endogenous opioids in fever induced by anandamide (AEA). Body temperature (Tc) of male Wistar rats was recorded over 6h, using a thermistor probe. Cerebrospinal fluid concentration of PGE2 and β-endorphin were measured by ELISA after the administration of AEA. Intracerebroventricular administration of the CB1 receptor antagonist AM251 (5μg, i.c.v.), reduced the fever induced by IL-1β (3ng, i.c.v.), TNF-α (250ng, i.c.v.), IL-6 (300ng, i.c.v.), corticotrophin release factor (CRH; 2.5μg, i.c.v.) and endothelin (ET)-1 (1pmol, i.c.v.), but not the fever induced by PGE2 (250ng, i.c.v.) or PGF2α (250ng, i.c.v.). Systemic administration of indomethacin (2mgkg(-1), i.p.) or celecoxib (5mgkg(-1), p.o.) reduced the fever induced by AEA (1μg, i.c.v.), while naloxone (1mgkg(-1), s.c.) abolished it. The increases of PGE2 and β-endorphin concentration in the CSF induced by AEA were abolished by the pretreatment of rats with AM251. These results suggest that endocannabinoids are intrinsically involved in the pyretic activity of cytokines (IL-1β, TNF-α, IL-6), CRH and ET-1 but not the PGE2 or PGF2α induced fevers. However, anandamide via CB1 receptor activation induces fever that is dependent on the synthesis of prostaglandin and opioids.

  5. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening.

    PubMed Central

    Smart, D; Smith, G; Lambert, D G

    1995-01-01

    We have recently reported that, in SH-SY5Y cells, mu-opioid receptor occupancy activates phospholipase C via a pertussis toxin-sensitive G-protein. In the present study we have further characterized the mechanisms involved in this process. Fentanyl (0.1 microM) caused a monophasic increase in inositol 1,4,5-trisphosphate mass formation, with a peak (20.5 +/- 3.6 pmol/mg of protein) at 15 s. Incubation in Ca(2+)-free buffer abolished this response, while Ca2+ replacement 1 min later restored the stimulation of inositol 1,4,5-trisphosphate formation (20.1 +/- 0.6 pmol/mg of protein). In addition, nifedipine (1 nM-0.1 mM), an L-type Ca(2+)-channel antagonist, caused a dose-dependent inhibition of inositol 1,4,5-trisphosphate formation, with an IC50 of 60.3 +/- 1.1 nM. Elevation of endogenous beta/gamma subunits by selective activation of delta-opioid and alpha 2 adrenoceptors failed to stimulate phospholipase C. Fentanyl also caused a dose-dependent (EC50 of 16.2 +/- 1.0 nM), additive enhancement of carbachol-induced inositol 1,4,5-trisphosphate formation. In summary, we have demonstrated that in SH-SY5Y cells activation of the mu-opioid receptor allows Ca2+ influx to activate phospholipase C. However, the possible role of this mechanism in the process of analgesia remains to be elucidated. PMID:7832776

  6. Venlafaxine Attenuates Heat Hyperalgesia Independent of Adenosine or Opioid System in a Rat Model of Peripheral Neuropathy

    PubMed Central

    Abed, Alireza; Hajhashemi, Valiollah; Banafshe, Hamid Reza; Minaiyan, Mohsen; Mesdaghinia, Azam

    2015-01-01

    Primarily opioidergic and adenosine mechanisms are considered to be involved in the antinociceptive effects of antidepressants. This study was designed to determine the efficacy of acute venlafaxine administration in alleviating symptoms of neuropathic pain and the role of endogenous adenosine and opioid systems in this effect of venlafaxine. We have evaluated the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist and naloxone as an antagonist of opioid receptors on the antinociceptive effects of venlafaxine. Chronic constriction injury of the sciatic nerve resulted in thermal hyperalgesia, mechanical and cold allodynia in the rats. Animals were received on the 7th day after surgery, when the model had been fully established, venlafaxine (20 and 40 mg/Kg i.p.), or venlafaxine (40 mg/Kg) in combination with caffeine (5 mg/Kg i.p.) or naloxone (1 mg/Kg s.c.). Rats were tested for thermal reaction latencies, mechanical and cold allodynia 45 min after drug injection. Acute venlafaxine (40 mg/Kg i.p.) administration consistently decreased the thermal hyperalgesia and this effect was not blocked by concomitant caffeine or naloxone administration. There was no effect by either drug or the drug combination on the tactile and cold allodynia. The results of this study indicate that venlafaxine (40 mg/Kg i.p.) is effective in alleviating thermal hyperalgesia and this effect is independent through manipulation of adenosine or opioid system. This observation demonstrates that venlafaxine, which is a mixed inhibitor of norepinephrine and serotonin reuptake, differs from the other antidepressants in the mechanism of its antinociception action. PMID:26330872

  7. Gene Variants Reduce Opioid Risks

    MedlinePlus

    ... this reduced potency is due to changes in binding to the receptor or to changes in the ... the body’s natural opioids, β-endorphin. Because this binding reduces the number of receptors required to achieve ...

  8. Trait anger expressiveness and pain-induced beta-endorphin release: support for the opioid dysfunction hypothesis.

    PubMed

    Bruehl, Stephen; Chung, Ok Y; Burns, John W; Diedrich, Laura

    2007-08-01

    The anger management styles of anger-in (inhibition) and anger-out (direct expression) are positively associated with pain responsiveness. Opioid blockade studies suggest that hyperalgesic effects of trait anger-out, but not those of trait anger-in, are mediated in part by opioid analgesic system dysfunction. The current study tested the opioid dysfunction hypothesis of anger-out using an alternative index of opioid function: pain-induced changes in plasma endogenous opioids. Plasma beta-endorphin (BE) was assessed at rest and again following exposure to three laboratory acute pain tasks (finger pressure, ischemic, and thermal) in 14 healthy controls and 13 chronic low back pain (LBP) subjects. As expected, acute pain ratings correlated positively with measures of anger-in (both groups) and anger-out (LBP group; p's<.05). Greater pain-induced increases in BE were associated with significantly lower pain ratings in both groups (p's<.05). Hierarchical multiple regression indicated that greater anger-out significantly predicted smaller pain-induced BE increases (p<.05). Subject type did not moderate this association (p>.10). Anger-in did not display significant main or interaction effects on pain-induced BE changes (p's>.10). The significant association between anger-out and BE release partially mediated the hyperalgesic effects of anger-out on pain unpleasantness, and was not attenuated by statistical control of general negative affect. This suggests unique associations with expressive anger regulation. Elevated trait anger-out therefore appears to be associated with opioid analgesic system dysfunction, whether it is indexed by responses to opioid blockade or by examining circulating endogenous opioid levels. Possible "statextrait" interactions on these anger-related opioid system differences are discussed.

  9. A comprehensive review of opioid-induced hyperalgesia.

    PubMed

    Lee, Marion; Silverman, Sanford M; Hansen, Hans; Patel, Vikram B; Manchikanti, Laxmaiah

    2011-01-01

    Opioid-induced hyperalgesia (OIH) is defined as a state of nociceptive sensitization caused by exposure to opioids. The condition is characterized by a paradoxical response whereby a patient receiving opioids for the treatment of pain could actually become more sensitive to certain painful stimuli. The type of pain experienced might be the same as the underlying pain or might be different from the original underlying pain. OIH appears to be a distinct, definable, and characteristic phenomenon that could explain loss of opioid efficacy in some patients. Findings of the clinical prevalence of OIH are not available. However, several observational, cross-sectional, and prospective controlled trials have examined the expression and potential clinical significance of OIH in humans. Most studies have been conducted using several distinct cohorts and methodologies utilizing former opioid addicts on methadone maintenance therapy, perioperative exposure to opioids in patients undergoing surgery, and healthy human volunteers after acute opioid exposure using human experimental pain testing. The precise molecular mechanism of OIH, while not yet understood, varies substantially in the basic science literature, as well as clinical medicine. It is generally thought to result from neuroplastic changes in the peripheral and central nervous system (CNS) that lead to sensitization of pronociceptive pathways. While there are many proposed mechanisms for OIH, 5 mechanisms involving the central glutaminergic system, spinal dynorphins, descending facilitation, genetic mechanisms, and decreased reuptake and enhanced nociceptive response have been described as the important mechanisms. Of these, the central glutaminergic system is considered the most common possibility. Another is the hypothesis that N-methyl-D-aspartate (NMDA) receptors in OIH include activation, inhibition of the glutamate transporter system, facilitation of calcium regulated intracellular protein kinase C, and cross

  10. Endogenous Pyrogen Physiology.

    ERIC Educational Resources Information Center

    Beisel, William R.

    1980-01-01

    Discusses the physiology of endogenous pyrogen (EP), the fever-producing factor of cellular origin. Included are: its hormone-like role, its molecular nature, bioassay procedures, cellular production and mechanisms of EP action. (SA)

  11. Deficit in attachment behavior in mice lacking the mu-opioid receptor gene.

    PubMed

    Moles, Anna; Kieffer, Brigitte L; D'Amato, Francesca R

    2004-06-25

    Endogenous opioid binding to micro receptors is hypothesized to mediate natural rewards and has been proposed to be the basis of infant attachment behavior. Here, we report that micro-opioid receptor knockout mouse pups emit fewer ultrasonic vocalizations when removed from their mothers but not when exposed to cold or male mice odors. Moreover these knockout pups do not show a preference toward their mothers' cues and do not show ultrasonic calls potentiation after brief maternal exposure. Results from this study may indicate a molecular mechanism for diseases characterized by deficits in attachment behavior, such as autism or reactive attachment disorder.

  12. An opioid-like system regulating feeding behavior in C. elegans

    PubMed Central

    Cheong, Mi Cheong; Artyukhin, Alexander B; You, Young-Jai; Avery, Leon

    2015-01-01

    Neuropeptides are essential for the regulation of appetite. Here we show that neuropeptides could regulate feeding in mutants that lack neurotransmission from the motor neurons that stimulate feeding muscles. We identified nlp-24 by an RNAi screen of 115 neuropeptide genes, testing whether they affected growth. NLP-24 peptides have a conserved YGGXX sequence, similar to mammalian opioid neuropeptides. In addition, morphine and naloxone respectively stimulated and inhibited feeding in starved worms, but not in worms lacking NPR-17, which encodes a protein with sequence similarity to opioid receptors. Opioid agonists activated heterologously expressed NPR-17, as did at least one NLP-24 peptide. Worms lacking the ASI neurons, which express npr-17, did not response to naloxone. Thus, we suggest that Caenorhabditis elegans has an endogenous opioid system that acts through NPR-17, and that opioids regulate feeding via ASI neurons. Together, these results suggest C. elegans may be the first genetically tractable invertebrate opioid model. DOI: http://dx.doi.org/10.7554/eLife.06683.001 PMID:25898004

  13. Effects of stress and. beta. -funal trexamine pretreatment on morphine analgesia and opioid binding in rats

    SciTech Connect

    Adams, J.U.; Andrews, J.S.; Hiller, J.M.; Simon, E.J.; Holtzman, S.G.

    1987-12-28

    This study was essentially an in vivo protection experiment designed to test further the hypothesis that stress induces release of endogenous opiods which then act at opioid receptors. Rats that were either subjected to restraint stress for 1 yr or unstressed were injected ICV with either saline or 2.5 ..mu..g of ..beta..-funaltrexamine (..beta..-FNA), an irreversible opioid antagonist that alkylates the mu-opioid receptor. Twenty-four hours later, subjects were tested unstressed for morphine analgesia or were sacrificed and opioid binding in brain was determined. (/sup 3/H)D-Ala/sup 2/NMePhe/sup 4/-Gly/sup 5/(ol)enkephalin (DAGO) served as a specific ligand for mu-opioid receptors, and (/sup 3/H)-bremazocine as a general ligand for all opioid receptors. Rats injected with saline while stressed were significantly less sensitive to the analgesic action of morphine 24 hr later than were their unstressed counterparts. ..beta..-FNA pretreatment attenuated morphine analgesia in an insurmountable manner. Animals pretreated with ..beta..-FNA while stressed were significantly more sensitive to the analgesic effect of morphine than were animals that received ..beta..-FNA while unstressed. ..beta..-FNA caused small and similar decreases in (/sup 3/H)-DAGO binding in brain of both stressed and unstressed animals. 35 references, 2 figures, 2 tables.

  14. Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum.

    PubMed

    Atwood, Brady K; Kupferschmidt, David A; Lovinger, David M

    2014-04-01

    As prescription opioid analgesic abuse rates rise, so does the need to understand the long-term effects of opioid exposure on brain function. The dorsal striatum is an important site for drug-induced neuronal plasticity. We found that exogenously applied and endogenously released opioids induced long-term depression (OP-LTD) of excitatory inputs to the dorsal striatum in mice and rats. Mu and delta OP-LTD, although both being presynaptically expressed, were dissociable in that they summated, differentially occluded endocannabinoid-LTD and inhibited different striatal inputs. Kappa OP-LTD showed a unique subregional expression in striatum. A single in vivo exposure to the opioid analgesic oxycodone disrupted mu OP-LTD and endocannabinoid-LTD, but not delta or kappa OP-LTD. These data reveal previously unknown opioid-mediated forms of long-term striatal plasticity that are differentially affected by opioid analgesic exposure and are likely important mediators of striatum-dependent learning and behavior.

  15. Opioid receptor desensitization: mechanisms and its link to tolerance

    PubMed Central

    Allouche, Stéphane; Noble, Florence; Marie, Nicolas

    2014-01-01

    Opioid receptors (OR) are part of the class A of G-protein coupled receptors and the target of the opiates, the most powerful analgesic molecules used in clinic. During a protracted use, a tolerance to analgesic effect develops resulting in a reduction of the effectiveness. So understanding mechanisms of tolerance is a great challenge and may help to find new strategies to tackle this side effect. This review will summarize receptor-related mechanisms that could underlie tolerance especially receptor desensitization. We will focus on the latest data obtained on molecular mechanisms involved in opioid receptor desensitization: phosphorylation, receptor uncoupling, internalization, and post-endocytic fate of the receptor. PMID:25566076

  16. Mechanisms of Non-Opioid Analgesics Beyond Cyclooxygenase Enzyme Inhibition

    PubMed Central

    Hamza, May; Dionne, Raymond A.

    2009-01-01

    Non-opioid analgesics including both selective and non-selective cyclooxygenase (COX) inhibitors and acetaminophen are the most widely used treatments for pain. Inhibition of COX is thought to be largely responsible for both the therapeutic and adverse effects of this class of drugs. Accumulating evidence over the past two decades has demonstrated effects of non-opioids beyond the inhibition of COX and prostaglandin synthesis that might also explain their therapeutic and adverse effects. These include their interaction with endocannabinoids, nitric oxide, monoaminergic, and cholinergic systems. Moreover, the recent development of microarray technology that allows the study of human gene expression suggests multiple pathways that may be related to the analgesic and anti-inflammatory effects of non-opioids. The present review will discuss the multiple actions of non-opioids and their interactions with these systems during inflammation and pain, suggesting that COX inhibition is an incomplete explanation for the actions of non-opioids and proposes the involvement of multiple selective targets for their analgesic, as well as, their adverse effects. PMID:19779578

  17. Illicit opioid intoxication: diagnosis and treatment.

    PubMed

    Fareed, A; Stout, S; Casarella, J; Vayalapalli, S; Cox, J; Drexler, K

    2011-01-01

    Opioid intoxications and overdose are associated with high rates of morbidity and mortality. Opioid overdose may occur in the setting of intravenous or intranasal heroin use, illicit use of diverted opioid medications, intentional or accidental misuse of prescription pain medications, or iatrogenic overdose. In this review, we focused on the epidemiology of illict opioid use in the United States and on the mechanism of action of opioid drugs. We also described the signs and symptoms, and diagnoses of intoxication and overdose. Lastly, we updated the reader about the most recent recommendations for treatment and prevention of opioid intoxications and overdose.

  18. Optogenetic identification of an intrinsic cholinergically driven inhibitory oscillator sensitive to cannabinoids and opioids in hippocampal CA1.

    PubMed

    Nagode, Daniel A; Tang, Ai-Hui; Yang, Kun; Alger, Bradley E

    2014-01-01

    Neuronal electrical oscillations in the theta (4-14 Hz) and gamma (30-80 Hz) ranges are necessary for the performance of certain animal behaviours and cognitive processes. Perisomatic GABAergic inhibition is prominently involved in cortical oscillations driven by ACh release from septal cholinergic afferents. In neocortex and hippocampal CA3 regions, parvalbumin (PV)-expressing basket cells, activated by ACh and glutamatergic agonists, largely mediate oscillations. However, in CA1 hippocampus in vitro, cholinergic agonists or the optogenetic release of endogenous ACh from septal afferents induces rhythmic, theta-frequency inhibitory postsynaptic currents (IPSCs) in pyramidal cells, even with glutamatergic transmission blocked. The IPSCs are regulated by exogenous and endogenous cannabinoids, suggesting that they arise from type 1 cannabinoid receptor-expressing (CB1R+) interneurons - mainly cholecystokinin (CCK)-expressing cells. Nevertheless, an occult contribution of PV-expressing interneurons to these rhythms remained conceivable. Here, we directly test this hypothesis by selectively silencing CA1 PV-expressing cells optogenetically with halorhodopsin or archaerhodopsin. However, this had no effect on theta-frequency IPSC rhythms induced by carbachol (CCh). In contrast, the silencing of glutamic acid decarboxylase 2-positive interneurons, which include the CCK-expressing basket cells, strongly suppressed inhibitory oscillations; PV-expressing interneurons appear to play no role. The low-frequency IPSC oscillations induced by CCh or optogenetically stimulated ACh release were also inhibited by a μ-opioid receptor (MOR) agonist, which was unexpected because MORs in CA1 are not usually associated with CCK-expressing cells. Our results reveal novel properties of an inhibitory oscillator circuit within CA1 that is activated by muscarinic agonists. The oscillations could contribute to behaviourally relevant, atropine-sensitive, theta rhythms and link cannabinoid and

  19. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  20. 42 CFR 8.11 - Opioid treatment program certification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The...

  1. 42 CFR 8.11 - Opioid treatment program certification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The...

  2. 42 CFR 8.11 - Opioid treatment program certification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The...

  3. 42 CFR 8.11 - Opioid treatment program certification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Substances Act (21 U.S.C. 823(g)(1)) to dispense opioid drugs in the treatment of opioid addiction. An OTP... opioid addiction. (2) To obtain certification from SAMHSA, an OTP must meet the Federal opioid treatment... governmental entities to regulate the use of opioid drugs in the treatment of opioid addiction. The...

  4. A Trigger for Opioid Misuse: Chronic Pain and Stress Dysregulate the Mesolimbic Pathway and Kappa Opioid System

    PubMed Central

    Massaly, Nicolas; Morón, Jose A.; Al-Hasani, Ream

    2016-01-01

    Pain and stress are protective mechanisms essential in avoiding harmful or threatening stimuli and ensuring survival. Despite these beneficial roles, chronic exposure to either pain or stress can lead to maladaptive hormonal and neuronal modulations that can result in chronic pain and a wide spectrum of stress-related disorders including anxiety and depression. By inducing allostatic changes in the mesolimbic dopaminergic pathway, both chronic pain and stress disorders affect the rewarding values of both natural reinforcers, such as food or social interaction, and drugs of abuse. Despite opioids representing the best therapeutic strategy in pain conditions, they are often misused as a result of these allostatic changes induced by chronic pain and stress. The kappa opioid receptor (KOR) system is critically involved in these neuronal adaptations in part through its control of dopamine release in the nucleus accumbens. Therefore, it is likely that changes in the kappa opioid system following chronic exposure to pain and stress play a key role in increasing the misuse liability observed in pain patients treated with opioids. In this review, we will discuss how chronic pain and stress-induced pathologies can affect mesolimbic dopaminergic transmission, leading to increased abuse liability. We will also assess how the kappa opioid system may underlie these pathological changes. PMID:27872581

  5. Characterization of prescription opioid abuse in the United States: focus on route of administration.

    PubMed

    Kirsh, Kenneth; Peppin, John; Coleman, John

    2012-12-01

    Prescription opioids are prescribed increasingly for the management of chronic pain, and this has been accompanied by a dramatic rise in opioid-related abuse, addiction, and overdose deaths. Reports of abuse involving nonoral administration (e.g., snorting, injecting) of prescription opioids are increasing, although the epidemiology of oral versus nonoral abuse is not well understood. Available data indicate that oral abuse is far more common,with 72% to 97% of opioid abusers perferring oral administration. Factors associated with nonoral administration include longer duration of opioid abuse, male gender, and rural setting. Extended-release opioids, because of their relatively high drug load, may be attractive to experienced abusers seeking to manipulate the formulation to facilitate a rapid onset of effect. Putative abuse-deterrent formulations have been developed to decrease the likelihood or consequences of nonoral abuse. In addition, Risk Evaluation and Mitigation Strategies (REMS) are now required for prescribed extended-release/long-acting opioids by the US Food and Drug Administration, although their effectiveness in reducing the risk of abuse, addiction, and overdose has not been evaluated. Physicians should remain vigilant when prescribing opioids and should exercise appropriate patient selection, perform risk analysis and stratification, and maintain continuous patient monitoring to ensure the benefits outweigh these important risks.

  6. Case-control association study of WLS variants in opioid and cocaine addicted populations.

    PubMed

    Crist, Richard C; Ambrose-Lanci, Lisa M; Zeng, Angela; Yuan, Cindy; Kampman, Kyle M; Pettinati, Helen M; Oslin, David W; O'Brien, Charles P; Ferraro, Thomas N; Doyle, Glenn A; Lohoff, Falk W; Berrettini, Wade H

    2013-06-30

    The opioid receptor family is involved in the development and maintenance of drug addiction. The mu-opioid receptor (MOR) mediates the rewarding effects of multiple drugs, including opiates and cocaine. A number of proteins interact with MOR, potentially modulating MOR function and altering the physiological consequences of drug use. These mu-opioid receptor interacting proteins (MORIPs) are potential therapeutic targets for the treatment of addiction. The Wntless (WLS) protein was recently identified as a MORIP in a yeast two-hybrid screen. In this study, we conducted a case-control association analysis of 16 WLS genetic variants in opioid and cocaine addicted individuals of both African-American (opioid n=336, cocaine n=908) and European-American (opioid n=335, cocaine n=336) ancestry. Of the analyzed SNPs, three were nominally associated with opioid addiction and four were nominally associated with cocaine addiction. None of these associations were significant following multiple testing correction. These data suggest that the common variants of WLS analyzed in this study are not associated with opioid or cocaine addiction. However, this study does not exclude the possibilities that rare variants in WLS may affect susceptibility to drug addiction, or that common variants with small effect size may fall below the detection level of our analysis.

  7. Tapering Long-term Opioid Therapy in Chronic Noncancer Pain: Evidence and Recommendations for Everyday Practice.

    PubMed

    Berna, Chantal; Kulich, Ronald J; Rathmell, James P

    2015-06-01

    Increasing concern about the risks and limited evidence supporting the therapeutic benefit of long-term opioid therapy for chronic noncancer pain are leading prescribers to consider discontinuing the use of opioids. In addition to overt addiction or diversion, the presence of adverse effects, diminishing analgesia, reduced function and quality of life, or the absence of progress toward functional goals can justify an attempt at weaning patients from long-term opioid therapy. However, discontinuing opioid therapy is often hindered by patients' psychiatric comorbidities and poor coping skills, as well as the lack of formal guidelines for the prescribers. The aim of this article is to review the existing literature and formulate recommendations for practitioners aiming to discontinue long-term opioid therapy. Specifically, this review aims to answer the following questions: What is an optimal opioid tapering regimen? How can the risks involved in a taper be managed? What are the alternatives to an opioid taper? A PubMed literature search was conducted using the keywords chronic pain combined with opioid withdrawal, taper, wean and detoxification. Six hundred ninety-five documents were identified and screened; 117 were deemed directly relevant and are included. On the base of this literature review, this article proposes evidence-based recommendations and expert-based suggestions for clinical practice. Furthermore, areas of lack of evidence are identified, providing opportunities for further research.

  8. A novel opioid mechanism seems to modulate phagocytosis in Tetrahymena.

    PubMed

    Renaud, F L; Colon, I; Lebron, J; Ortiz, N; Rodriguez, F; Cadilla, C

    1995-01-01

    We have previously reported that a beta-endorphin-like substance inhibits phagocytosis in Tetrahymena perhaps by a mu-like opioid receptor. We now report a further characterization of the elements involved in the signal transduction mechanism of this opioid. Affinity chromatography followed by immunoblots of both intracellular extracts and extracellular medium reveal the presence of two main proteins of 64 and 75 kDa. These molecular weights are much higher than that of any known opioid peptide or precursor protein and suggest that we may be dealing with either a novel opioid or with proteins that by chance cross-react with anti-beta-endorphin antibody. Nevertheless, when the biological activity of these proteins was tested it was found that they had an effect similar to that of mammalian beta-endorphin, namely inhibition of phagocytosis by a naloxone-reversible mechanism. We have probed a size-selected Tetrahymena library with a pro-opiomelanocortin probe and have obtained several positive clones; the sequencing of their inserts should establish whether we are dealing with a bona fide member of the opioid family. Another aspect we have been studying is the G-proteins which appear to be involved in the modulation of phagocytosis. We have found, by means of Western blotting (using an antibody against the conserved GTP-binding region of the alpha-subunit), two bands of 51 and 59 kDa; no alpha-subunit of 59 kDa had been reported previously and may represent a novel G-protein. In spite of these differences, the opioid signal transduction mechanism appears to remarkably resemble that present in more complex organisms.

  9. Nucleus accumbens μ-opioid receptors mediate social reward.

    PubMed

    Trezza, Viviana; Damsteegt, Ruth; Achterberg, E J Marijke; Vanderschuren, Louk J M J

    2011-04-27

    Positive social interactions are essential for emotional well-being and proper behavioral development of young individuals. Here, we studied the neural underpinnings of social reward by investigating the involvement of opioid neurotransmission in the nucleus accumbens (NAc) in social play behavior, a highly rewarding social interaction in adolescent rats. Intra-NAc infusion of morphine (0.05-0.1 μg) increased pinning and pouncing, characteristic elements of social play behavior in rats, and blockade of NAc opioid receptors with naloxone (0.5 μg) prevented the play-enhancing effects of systemic morphine (1 mg/kg, s.c.) administration. Thus, stimulation of opioid receptors in the NAc was necessary and sufficient for morphine to increase social play. Intra-NAc treatment with the selective μ-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly(5)-ol]enkephalin (DAMGO) (0.1-10 ng) and the μ-opioid receptor antagonist Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) (0.3-3 μg) increased and decreased social play, respectively. The δ-opioid receptor agonist DPDPE ([D-Pen(2),D-Pen(5)]-enkephalin) (0.3-3 μg) had no effects, whereas the κ-opioid receptor agonist U69593 (N-methyl-2-phenyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]dec-8-yl]acetamide) (0.01-1 μg) decreased social play. Intra-NAc treatment with β-endorphin (0.01-1 μg) increased social play, but met-enkephalin (0.1-5 μg) and the enkephalinase inhibitor thiorphan (0.1-1 μg) were ineffective. DAMGO (0.1-10 ng) increased social play after infusion into both the shell and core subregions of the NAc. Last, intra-NAc infusion of CTAP (3 μg) prevented the development of social play-induced conditioned place preference. These findings identify NAc μ-opioid receptor stimulation as an important neural mechanism for the attribution of positive value to social interactions in adolescent rats. Altered NAc μ-opioid receptor function may underlie social impairments in psychiatric disorders such as autism

  10. Positive allosteric modulators of the μ-opioid receptor: a novel approach for future pain medications

    PubMed Central

    Burford, N T; Traynor, J R; Alt, A

    2015-01-01

    Morphine and other agonists of the μ-opioid receptor are used clinically for acute and chronic pain relief and are considered to be the gold standard for pain medication. However, these opioids also have significant side effects, which are also mediated via activation of the μ-opioid receptor. Since the latter half of the twentieth century, researchers have sought to tease apart the mechanisms underlying analgesia, tolerance and dependence, with the hope of designing drugs with fewer side effects. These efforts have revolved around the design of orthosteric agonists with differing pharmacokinetic properties and/or selectivity profiles for the different opioid receptor types. Recently, μ-opioid receptor-positive allosteric modulators (μ-PAMs) were identified, which bind to a (allosteric) site on the μ-opioid receptor separate from the orthosteric site that binds an endogenous agonist. These allosteric modulators have little or no detectable functional activity when bound to the receptor in the absence of orthosteric agonist, but can potentiate the activity of bound orthosteric agonist, seen as an increase in apparent potency and/or efficacy of the orthosteric agonist. In this review, we describe the potential advantages that a μ-PAM approach might bring to the design of novel therapeutics for pain that may lack the side effects currently associated with opioid therapy. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2 PMID:24460691

  11. Opioid receptors and cardioprotection – ‘opioidergic conditioning’ of the heart

    PubMed Central

    Headrick, John P; See Hoe, Louise E; Du Toit, Eugene F; Peart, Jason N

    2015-01-01

    Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or ‘developed’ countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia–reperfusion (I–R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I–R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses. PMID:25521834

  12. Opioid and adjuvant analgesics: compared and contrasted.

    PubMed

    Khan, Mohammed Ilyas Ahmed; Walsh, Declan; Brito-Dellan, Norman

    2011-08-01

    An adjuvant (or co-analgesic) is a drug that in its pharmacological characteristic is not necessarily primarily identified as an analgesic in nature but that has been found in clinical practice to have either an independent analgesic effect or additive analgesic properties when used with opioids. The therapeutic role of adjuvant analgesics (AAs) is to increase the therapeutic index of opioids by a dose-sparing effect, add a unique analgesic action in opioid-resistant pain, or reduce opioid side effects. A notable difference between opioids and AAs is that unlike opioids some AAs are associated with permanent organ toxicity, for example, nonsteroidal anti-inflammatory drugs (NSAIDs) and renal failure. It is impossible to predict in advance in a given individual what opioid dose they may require to control cancer pain. Most AAs have a ceiling effect for their analgesic actions, but often with continued dose-related toxicities and side effects (with the exception of glucocorticoids). The blood levels of opioids (and their metabolites) can be measured with great precision and accuracy. There is sometimes a role for drug blood levels of certain AAs, like tricyclic antidepressants or anticonvulsants when used for neuropathic pain. Age affects metabolism of most opioids. The therapeutic window of opioids is wide, with no ceiling effect. Most AAs (except corticosteroids) have a narrow therapeutic window. Naloxone is a pure opioid antagonist that competes and displaces opioids from their receptor sites. All clinically useful opioids are mu opioid receptor agonists. Not all routes of administration are available to all opioids. Adjuvant analgesics lack the versatility in routes of administration that opioids possess. Dosing flexibility is a major advantage when treating cancer-related pain with opioids. Dose flexibility is much less with AAs than opioids. Unlike opioids, the analgesic response is usually observed within hours to days of attaining an adequate dose with most

  13. Effect of the intraperitoneal administration of salmon-calcitonin on the "in vitro" actions of opioid agonists.

    PubMed

    Martin, M I; Goicoechea, C; Ormazabal, M J; Alfaro, M J

    1995-12-01

    1. The interaction of intraperitoneal administration of salmon-calcitonin with opioids was studied. The study was carried out using guinea pig ileum (mu and kappa-opioid receptors), rabbit vas deferens (kappa-opioid receptors) and mouse vas deferens (delta-opioid receptors), and selective mu, delta and kappa agonists were used in the pertinent tissues. 2. The treatment with salmon-calcitonin increased, in a dose-dependent manner, the effect of U-50,488H in guinea pig ileum and rabbit vas deferens and the effects of [D-Pen2, D-Pen5] enkephalin in mouse vas deferens. 3. The treatment with analgesic doses of salmon-calcitonin enhances the in vitro effects of kappa- and delta-opioid agonists. The increase of the effectiveness of the opioid agonists may be one of the mechanisms involved on the analgesia induced by salmon-calcitonin.

  14. The Endogenous Exposome

    PubMed Central

    Nakamura, Jun; Mutlu, Esra; Sharma, Vyom; Collins, Leonard; Bodnar, Wanda; Yu, Rui; Lai, Yongquan; Moeller, Benjamin; Lu, Kun; Swenberg, James

    2014-01-01

    The concept of the Exposome, is a compilation of diseases and one’s lifetime exposure to chemicals, whether the exposure comes from environmental, dietary, or occupational exposures; or endogenous chemicals that are formed from normal metabolism, inflammation, oxidative stress, lipid peroxidation, infections, and other natural metabolic processes such as alteration of the gut microbiome. In this review, we have focused on the Endogenous Exposome, the DNA damage that arises from the production of endogenous electrophilic molecules in our cells. It provides quantitative data on endogenous DNA damage and its relationship to mutagenesis, with emphasis on when exogenous chemical exposures that produce identical DNA adducts to those arising from normal metabolism cause significant increases in total identical DNA adducts. We have utilized stable isotope labeled chemical exposures of animals and cells, so that accurate relationships between endogenous and exogenous exposures can be determined. Advances in mass spectrometry have vastly increased both the sensitivity and accuracy of such studies. Furthermore, we have clear evidence of which sources of exposure drive low dose biology that results in mutations and disease. These data provide much needed information to impact quantitative risk assessments, in the hope of moving towards the use of science, rather than default assumptions. PMID:24767943

  15. Effects of opioid blockade on nociceptive flexion reflex thresholds and nociceptive responding in hypertensive and normotensive individuals

    PubMed Central

    Edwards, Louisa; Ring, Christopher; France, Christopher R.; McIntyre, David; Martin, Una

    2008-01-01

    Hypertension and risk for hypertension have been associated with reduced pain sensitivity. It has been hypothesised that endogenous opioids contribute to this hypertensive hypoalgesia. The nociceptive flexion reflex can be used as a tool to investigate modulation of nociceptive transmission at spinal level. The current study employed a double-blind placebo-controlled design to compare the effects of naltrexone, an opioid antagonist, and placebo on nociceptive flexion reflex thresholds and nociceptive responding in unmedicated patients with essential hypertension and normotensive individuals. Neither nociceptive flexion reflex thresholds nor nociceptive responding differed between hypertensives and normotensives during placebo or naltrexone. These data provide no support for the hypothesis that essential hypertension is characterised by higher levels endogenous opioids in the central nervous system and reveal no association between blood pressure status and nociceptive flexion reflex responses. PMID:18436318

  16. Delta opioid receptors in brain function and diseases

    PubMed Central

    Chung, Paul Chu Sin; Kieffer, Brigitte L.

    2013-01-01

    Evidence that the delta opioid receptor (DOR) is an attractive target for the treatment of brain disorders has strengthened in recent years. This receptor is broadly expressed in the brain, binds endogenous opioid peptides, and shows as functional profile highly distinct from those of mu and kappa opioid receptors. Our knowledge of DOR function has enormously progressed from in vivo studies using pharmacological tools and genetic approaches. The important role of this receptor in reducing chronic pain has been extensively overviewed; therefore this review focuses on facets of delta receptor activity relevant to psychiatric and other neurological disorders. Beneficial effects of DOR agonists are now well established in the context of emotional responses and mood disorders. DOR activation also regulates drug reward, inhibitory controls and learning processes, but whether delta compounds may represent useful drugs in the treatment of drug abuse remains open. Epileptogenic and locomotor-stimulating effects of delta agonists appear drug-dependent, and the possibility of biased agonism at DOR for these effects is worthwhile further investigations to increase benefit/risk ratio of delta therapies. Neuroprotective effects of DOR activity represent a forthcoming research area. Future developments in DOR research will benefit from in-depth investigations of DOR function at cellular and circuit levels. PMID:23764370

  17. Pharmacological traits of delta opioid receptors: pitfalls or opportunities?

    PubMed Central

    van Rijn, Richard M.; DeFriel, Julia N.; Whistler, Jennifer L.

    2013-01-01

    Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders, and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR selective drugs are in clinical trials, but no DOR selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. This review will discuss the existing literature focusing on four aspects: 1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands 2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. 3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. 4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. These combined features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands. PMID:23649885

  18. Mu Opioids and Their Receptors: Evolution of a Concept

    PubMed Central

    Pan, Ying-Xian

    2013-01-01

    Opiates are among the oldest medications available to manage a number of medical problems. Although pain is the current focus, early use initially focused upon the treatment of dysentery. Opium contains high concentrations of both morphine and codeine, along with thebaine, which is used in the synthesis of a number of semisynthetic opioid analgesics. Thus, it is not surprising that new agents were initially based upon the morphine scaffold. The concept of multiple opioid receptors was first suggested almost 50 years ago (Martin, 1967), opening the possibility of new classes of drugs, but the morphine-like agents have remained the mainstay in the medical management of pain. Termed mu, our understanding of these morphine-like agents and their receptors has undergone an evolution in thinking over the past 35 years. Early pharmacological studies identified three major classes of receptors, helped by the discovery of endogenous opioid peptides and receptor subtypes—primarily through the synthesis of novel agents. These chemical biologic approaches were then eclipsed by the molecular biology revolution, which now reveals a complexity of the morphine-like agents and their receptors that had not been previously appreciated. PMID:24076545

  19. Opioids and Alcohol a Dangerous Cocktail

    MedlinePlus

    ... medlineplus.gov/news/fullstory_163489.html Opioids and Alcohol a Dangerous Cocktail Drinking while taking the painkillers ... 2017 WEDNESDAY, Feb. 8, 2017 (HealthDay News) -- Drinking alcohol while taking powerful opioid painkillers can trigger a ...

  20. Denial of urinalysis-confirmed opioid use in prescription opioid dependence.

    PubMed

    Hilario, E Yvette; Griffin, Margaret L; McHugh, R Kathryn; McDermott, Katherine A; Connery, Hilary S; Fitzmaurice, Garrett M; Weiss, Roger D

    2015-01-01

    Although research has generally supported the validity of substance use self-reports, some patients deny urine-verified substance use. We examined the prevalence and patterns of denying urinalysis-confirmed opioid use in a sample of prescription opioid dependent patients. We also identified characteristics associated with denial in this population of increasing public health concern. Opioid use self-reports were compared with weekly urinalysis results in a 12-week multi-site treatment study for prescription opioid dependence. Among those who used opioids during the trial (n=246/360), 44.3% (n=109) denied urinalysis-confirmed opioid use, although usually only once (78%). Overall, 22.9% of opioid-positive urine tests (149/650) were denied on self-report. Multivariable analysis found that initially using opioids to relieve pain was associated with denying opioid use. These findings support the use of both self-reports and urine testing in treating prescription opioid dependence.

  1. Intracerebroventricular opioids for intractable pain

    PubMed Central

    Raffa, Robert B; Pergolizzi, Joseph V

    2012-01-01

    When pain is refractory to systemic opioid and non-opioid analgesic therapy and palliative chemoradiation or ablative or stimulant neurosurgical procedures are not possible, palliative treatment becomes limited, particularly if the patient wishes to be at home at the end of life. Intracerebroventricular (ICV) infusion of morphine in the home setting might be presented as an option. The present article reviews the basic and clinical evidence of the efficacy and safety of ICV administration of opioids. Information was gathered from various bibliographic sources, including PubMed and others, and summarized and evaluated to assess the efficacy and safety of ICV opioids for pain relief. Results from ICV infusion of morphine into terminally ill patients refractory to other pain treatments have been reported since the early 1980s. Good efficacy has been achieved for the vast majority of patients, without serious development of analgesic tolerance. There have also been a low incidence of adverse effects, such as constipation and respiratory depression, and a significant retention of alertness associated with this route of administration. Intracerebroventricular infusion of opioid analgesics thus appears to be a safe and effective therapy for the palliative treatment of refractory pain. PMID:22295988

  2. Opioid-Induced Hyperalgesia - Worsening Pain in Opioid-Dependent Patients

    DTIC Science & Technology

    2013-02-01

    shown to reduce pain . Amantadine is an NMDA receptor antagonist that may mitigate central sensitization. Adjuvant analgesics may lessen nociceptive ...FEB 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Opioid-induced hyperalgesia--worsening pain in opioid-dependent...Report Opioid-induced hyperalgesia—worsening pain in opioid-dependent patients☆ Abstract Patients with chronic opioid use are commonly treated in the

  3. Opioid mediation of amniotic fluid effects on chemosensory responsiveness in the neonatal rat

    PubMed Central

    Méndez-Gallardo, Valerie; Robinson, Scott R.

    2010-01-01

    The present study investigated if oral exposure to milk or amniotic fluid (AF) alters responsiveness to sensory stimulation in the neonatal rat, and whether these effects are mediated by the opioid system. Facial wiping evoked by intraoral lemon infusion was used as a measure of sensory responsiveness. Pups were tested in a supine posture, because they showed more paw-face strokes during facial wiping than pups tested prone (Experiment 1). Moreover, pups orally exposed to milk (Experiment 2) or AF (Experiment 3) showed a diminished wiping response to lemon compared to controls exposed to water. Blockade of opioid receptors with the non-selective antagonist naltrexone (Experiment 4) or the kappa antagonist nor-binaltorphimine (Experiment 5) reinstated higher levels of facial wiping after AF exposure. These findings confirm developmental continuity between fetal and neonatal behavioral responses to AF and the ability of AF to induce activity at kappa receptors of the endogenous opioid system. PMID:21117244

  4. Opioid and nonopioid interactions in two forms of stress-induced analgesia.

    PubMed

    Grisel, J E; Fleshner, M; Watkins, L R; Maier, S F

    1993-05-01

    Stressful environmental events activate endogenous mechanisms of pain inhibition. Under some circumstances the analgesia is blocked by naloxone/naltrexone ("opioid"), while under others it is not ("nonopioid"). The existence of these two categories of analgesia leads to the question of how they are related. In a collateral inhibition model proposed by Kirshgessner, Bodnar, and Pasternak (1982), opiate and nonopiate mechanisms were viewed as acting in a mutually inhibitory fashion. In the present experiments, rats were exposed to either of two environmental stressors that produce a nonopioid stress-induced analgesia (SIA) following injections of the opiate antagonist naltrexone or agonist morphine. In the presence of naltrexone, SIA produced by either cold water swim (CWS) or social defeat was enhanced. These same SIAs were found to attenuate the analgesic effect of morphine, demonstrating that an activation of opioid systems can inhibit nonopioid analgesias. These results support an inhibitory interaction of opioid and nonopioid mechanisms in some forms of stress-induced analgesia.

  5. Opioids in preclinical and clinical trials.

    PubMed

    Nagase, Hiroshi; Fujii, Hideaki

    2011-01-01

    Since 1952, when Gates determined the stereo structure of morphine, numerous groups have focused on discovering a nonnarcotic opioid drug. Although several natural, semisynthetic, and synthetic opioid ligands (alkaloids and peptides) have been developed in clinical studies, very few were nonnarcotic opioid drugs. One of the most important studies in the opioid field appeared in 1976, when Martin and colleagues established types of opioid receptors (these are now classified into mu, delta, and kappa types). Later, Portoghese discovered a highly selective mu type opioid receptor antagonist, beta-funaltrexamine. This led to the finding that the mu type opioid receptor was correlated to drug dependence. Consequently, delta, and particularly kappa, opioid agonists were expected to lead to ideal opioid drugs. Moreover, opioid antagonists were evaluated for the treatment of symptoms related to undesirable opioid system activation. In this chapter, we provide a short survey of opioid ligands in development and describe the discovery of the two most promising drugs, TRK-851 and TRK-820 (nalfurafine hydrochloride).

  6. Opioids in Preclinical and Clinical Trials

    NASA Astrophysics Data System (ADS)

    Nagase, Hiroshi; Fujii, Hideaki

    Since 1952, when Gates determined the stereo structure of morphine, numerous groups have focused on discovering a nonnarcotic opioid drug [1]. Although several natural, semisynthetic, and synthetic opioid ligands (alkaloids and peptides) have been developed in clinical studies, very few were nonnarcotic opioid drugs [2]. One of the most important studies in the opioid field appeared in 1976, when Martin and colleagues [3] established types of opioid receptors (these are now classified into μ, δ, and κ types). Later, Portoghese discovered a highly selective μ type opioid receptor antagonist, β-funaltrexamine [4]. This led to the finding that the μ type opioid receptor was correlated to drug dependence [5]. Consequently, δ, and particularly κ, opioid agonists were expected to lead to ideal opioid drugs. Moreover, opioid antagonists were evaluated for the treatment of symptoms related to undesirable opioid system activation. In this chapter, we provide a short survey of opioid ligands in development and describe the discovery of the two most promising drugs, TRK-851 [6] and TRK-820 (nalfurafine hydrochloride) [7].

  7. Influence of the Hypothalamic Arcuate Nucleus on Intraocular Pressure and the Role of Opioid Peptides

    PubMed Central

    Jin, Ji; Xu, Guo-xu; Yuan, Zhi-lan

    2014-01-01

    Background An opioid peptide neuron/humoral feedback regulation might be involved in changes of intraocular pressure (IOP). The aims of this study are to investigate the effects of arcuate nucleus (ARC) and opioid peptides on intraocular pressure (IOP). Methods Fifty-four healthy purebred New Zealand white rabbits (108eyes) were randomly divided into 4 groups, including control group, electrical stimulation group, [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) group, and [D-Pen 2, D-Pen5]- enkephalin (DPDPE) group. Bilateral IOP was measured after unilateral electrical stimulation of the ARC or unilateral microinjection into the ARC of the selective μ-opioid receptor agonist DAMGO or the selective δ opioid receptor agonist DPDPE, both alone and after pre-administration of either the non-selective opioid receptor antagonist naloxone or saline. Results Both electrical stimulation in ARC and micro-injection either or opioid receptor agonists, DAMGO or DPDPE, respectively, caused a significant bilateral reduction in IOP (P<0.05) which was more pronounced in the ipsilateral than in the contralateral eye. Pretreatment with naloxone prevented some, but not all IOP reductions. Conclusion The ARC takes part in the negative regulation of IOP, an action that may involve opioid neurons. PMID:24691128

  8. Mu opioid receptors are in discrete hippocampal interneuron subpopulations.

    PubMed

    Drake, Carrie T; Milner, Teresa A

    2002-01-01

    In the rat hippocampal formation, application of mu opioid receptor (MOR) agonists disinhibits principal cells, promoting excitation-dependent processes such as epileptogenesis and long-term potentiation. However, the precise location of MORs in particular inhibitory circuits, has not been determined, and the roles of MORs in endogenous functioning are unclear. To address these issues, the distribution of MOR-like immunoreactivity (-li) was examined in several populations of inhibitory hippocampal neurons in the CA1 region using light and electron microscopy. We found that MOR-li was present in many parvalbumin-containing basket cells, but absent from cholecystokinin-labeled basket cells. MOR-li was also commonly in interneurons containing somatostatin-li or neuropeptide Y-li that resembled the "oriens-lacunosum-moleculare" (O-LM) interneurons innervating pyramidal cell distal dendrites. Finally, MOR-li was in some vasoactive intestinal peptide- or calretinin-containing profiles resembling interneurons that primarily innervate other interneurons. These findings indicate that MOR-containing neurons form a neurochemically and functionally heterogeneous subset of hippocampal GABAergic neurons. MORs are most frequently on interneurons that are specialized to inhibit pyramidal cells, and are on a limited number of interneurons that target other interneurons. Moreover, the distribution of MORs to different neuronal types in several laminae, some relatively far from endogenous opioids, suggests normal functional roles that are different from the actions seen with exogenous agonists such as morphine.

  9. Acute and Chronic Mu Opioids Differentially Regulate Thrombospondins 1 and 2 Isoforms in Astrocytes

    PubMed Central

    2013-01-01

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the “reactive” state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms

  10. Acute and chronic mu opioids differentially regulate thrombospondins 1 and 2 isoforms in astrocytes.

    PubMed

    Phamduong, Ellen; Rathore, Maanjot K; Crews, Nicholas R; D'Angelo, Alexander S; Leinweber, Andrew L; Kappera, Pranay; Krenning, Thomas M; Rendell, Victoria R; Belcheva, Mariana M; Coscia, Carmine J

    2014-02-19

    Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic μ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by μ opioids in astrocytes involves crosstalk between three different classes of receptors, μ opioid receptor, EGFR and TGFβR. Moreover, TGFβ1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFβ1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic μ opioids, morphine, and the prototypic μ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFβ1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that μ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, μ opioids may deter synaptogenesis via both TSP1/2 isoforms, but

  11. HMGB1: Endogenous Danger Signaling

    PubMed Central

    Klune, John R; Dhupar, Rajeev; Cardinal, Jon; Billiar, Timothy R; Tsung, Allan

    2008-01-01

    While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions. PMID:18431461

  12. Dynorphin–Still an Extraordinarily Potent Opioid Peptide

    PubMed Central

    2013-01-01

    This issue of Molecular Pharmacology is dedicated to Dr. Avram Goldstein, the journal’s founding editor and one of the leaders in the development of modern pharmacology. This article focuses on his contributions to the discovery of the dynorphins and evidence that members of this family of opioid peptides are endogenous agonists for the kappa opioid receptor. In his original publication describing the purification and sequencing of dynorphin A, Avram described this peptide as ”extraordinarily potent” (“dyn” from the Greek, dynamis = power and “orphin” for endogenous morphine peptide). The name originally referred to its high affinity and great potency in the bioassay that was used to follow its activity during purification, but the name has come to have a second meaning: studies of its physiologic function in brain continue to provide powerful insights to the molecular mechanisms controlling mood disorders and drug addiction. During the 30 years since its discovery, we have learned that the dynorphin peptides are released in brain during stress exposure. After they are released, they activate kappa opioid receptors distributed throughout the brain and spinal cord, where they trigger cellular responses resulting in different stress responses: analgesia, dysphoria-like behaviors, anxiety-like responses, and increased addiction behaviors in experimental animals. Avram predicted that a detailed molecular analysis of opiate drug actions would someday lead to better treatments for drug addiction, and he would be gratified to know that subsequent studies enabled by his discovery of the dynorphins resulted in insights that hold great promise for new treatments for addiction and depressive disorders. PMID:23152558

  13. On the mechanisms of kappa-opioid-induced diuresis.

    PubMed Central

    Blackburn, T. P.; Borkowski, K. R.; Friend, J.; Rance, M. J.

    1986-01-01

    In conscious saline loaded rats, the kappa-opioid agonists tifluadom, U50488, and ethylketocyclazocine, given subcutaneously, induced a characteristic diuresis which could be antagonized by naloxone. Bilateral adrenal demedullation significantly reduced adrenal gland catecholamine content and plasma adrenaline levels, but did not significantly affect plasma corticosterone levels, indicating that the adrenal cortex remained both intact and functional. Seven days following bilateral adrenal demedullation, the subcutaneous administration of the kappa-agonists no longer induced diuresis. However, demedullation did not affect the diuretic response to frusemide or clonidine, nor did it affect the antidiuretic response induced by the mu-opioid agonists morphine and buprenorphine. Adrenal catecholamines do not appear to be involved in kappa-opioid-induced diuresis, since pretreatment with propranolol, prazosin and idazoxan did not affect the diuretic response in intact animals. The results indicate a link between the adrenal medulla and kappa-opioid-induced diuresis and suggest that a peripheral mechanism may also be involved in mediating this effect. PMID:3542107

  14. Examining Fatal Opioid Overdoses in Marion County, Indiana.

    PubMed

    Ray, Bradley; Quinet, Kenna; Dickinson, Timothy; Watson, Dennis P; Ballew, Alfarena

    2017-01-26

    Drug-related overdoses are now the leading injury-related death in the USA, and many of these deaths are associated with illicit opioids and prescription opiate pain medication. This study uses multiple sources of data to examine accidental opioid overdoses across 6 years, 2010 through 2015, in Marion County, IN, an urban jurisdiction in the USA. The primary sources of data are toxicology reports from the county coroner, which reveal that during this period, the most commonly detected opioid substance was heroin. During the study period, 918 deaths involved heroin, and there were significant increases in accidental overdose deaths involving both heroin and fentanyl. In order to disentangle the nature and source of opioid overdose deaths, we also examine data from Indiana's prescription drug monitoring program and the law enforcement forensic services agency. Results suggest that there have been decreases in the number of opiate prescriptions dispensed and increases in law enforcement detection of both heroin and fentanyl. Consistent with recent literature, we suggest that increased regulation of prescription opiates reduced the likelihood of overdoses from these substances, but might have also had an iatrogenic effect of increasing deaths from heroin and fentanyl. We discuss several policy implications and recommendations for Indiana.

  15. The impact of postnatal environment on opioid peptides in young and adult male Wistar rats.

    PubMed

    Gustafsson, Lisa; Oreland, Sadia; Hoffmann, Pernilla; Nylander, Ingrid

    2008-04-01

    Early environmental influences can change the neuronal development and thereby affect behavior in adult life. The aim in the present study was to thoroughly examine the impact of early environmental factors on endogenous opioids by using a rodent maternal separation (MS) model. The endogenous opioid peptide system is not fully developed at birth, and short- and/or long-term alterations may occur in these neural networks in animals exposed to manipulation of the postnatal environment. Rat pups were subjected to one of five rearing conditions; 15 min (MS15) litter (l) or individual (i), 360 min (MS360) l or i daily MS, or housed under normal animal facility rearing (AFR) conditions during postnatal days 1-21. Measurements of immunoreactive (ir) Met-enkephalin-Arg6Phe7 (MEAP) and dynorphin B (DYNB) peptide levels in the pituitary gland and in a number of brain areas, were performed at three and 10 weeks of age, respectively. MS-induced changes were more pronounced in ir MEAP levels, especially in individually separated rats at three weeks of age and in litter-separated rats at 10 weeks of age. The enkephalin and dynorphin systems have different developmental patterns, dynorphin appearing earlier, which may point at a more sensitive enkephalin system during the early postnatal weeks. The results provide evidence that opioid peptides are sensitive for early environmental factors and show that the separation conditions are critical and also result in changes manifesting at different time points. MS-induced effects were observed in areas related to stress, drug reward and dependence mechanisms. By describing effects on opioid peptides, the study addresses the possible role of a deranged endogenous opioid system in the previously described behavioral consequences of MS.

  16. A role for kappa-, but not mu-opioid, receptor activation in acute food deprivation-induced reinstatement of heroin seeking in rats.

    PubMed

    Sedki, Firas; Eigenmann, Karine; Gelinas, Jessica; Schouela, Nicholas; Courchesne, Shannon; Shalev, Uri

    2015-05-01

    Stress is considered to be one of the major triggers to drug relapse, even after prolonged periods of abstinence. In rats, the activation of stress-related brain systems, including corticotropin-releasing factor and norepinephrine, is critical for stress-induced reinstatement of extinguished drug seeking, an animal model for drug relapse. In addition, there are strong indications that activation of the endogenous opioid system is important for the effects of stress on drug seeking. More specifically, activation of the dynorphin/kappa opioid receptor (KOR) system is critically involved in the reinstatement of cocaine seeking following exposure to stressors, such as footshock, forced swimming or social stress. However, studies on the role of the dynorphin/KOR system in stress-induced reinstatement of heroin seeking are scarce. Here, rats were trained to self-administer heroin (0.1 mg/kg/infusion) for 10 days. Drug seeking was then extinguished and the rats were tested for acute (21 hours) food deprivation-induced reinstatement of heroin seeking. In two separate experiments, rats were injected with the mu-opioid receptor (MOR) antagonist, naltrexone (0.0, 1.0, 10.0 mg/kg; s.c.) or the KOR antagonist, norBNI (0.0, 1.0, 10.0 mg/kg; i.p.) before the reinstatement test. Naltrexone treatment did not affect stress-induced reinstatement. In contrast, treatment with norBNI dose-dependently attenuated food deprivation-induced reinstatement of heroin seeking. These results support the hypothesis that activation of KOR, but not MOR, is critically involved in stress-induced reinstatement of drug seeking.

  17. Kappa-opioid receptor signaling and brain reward function

    PubMed Central

    Bruijnzeel, Adrie W.

    2009-01-01

    The dynorphin-like peptides have profound effects on the state of the brain reward system and human and animal behavior. The dynorphin-like peptides affect locomotor activity, food intake, sexual behavior, anxiety-like behavior, and drug intake. Stimulation of kappa-opioid receptors, the endogenous receptor for the dynorphin-like peptides, inhibits dopamine release in the striatum (nucleus accumbens and caudate putamen) and induces a negative mood state in humans and animals. The administration of drugs of abuse increases the release of dopamine in the striatum and mediates the concomitant release of dynorphin-like peptides in this brain region. The reviewed studies suggest that chronic drug intake leads to an upregulation of the brain dynorphin system in the striatum and in particular in the dorsal part of the striatum/caudate putamen. This might inhibit drug-induced dopamine release and provide protection against the neurotoxic effects of high dopamine levels. After the discontinuation of chronic drug intake these neuroadaptations remain unopposed which has been suggested to contribute to the negative emotional state associated with drug withdrawal and increased drug intake. Kappa-opioid receptor agonists have also been shown to inhibit calcium channels. Calcium channel inhibitors have antidepressant-like effects and inhibit the release of norepinephrine. This might explain that in some studies kappa-opioid receptor agonists attenuate nicotine and opioid withdrawal symptomatology. A better understanding of the role of dynorphins in the regulation of brain reward function might contribute to the development of novel treatments for mood disorders and other disorders that stem from a dysregulation of the brain reward system. PMID:19804796

  18. Caring for opioid dependent pregnant women: prenatal and postpartum care considerations

    PubMed Central

    Krans, Elizabeth E.; Cochran, Gerald; Bogen, Debra L.

    2015-01-01

    Pregnancy is an opportune time to identify opioid dependence, facilitate conversion to opioid maintenance treatment, and coordinate care with specialists in addiction medicine, behavioral health and social services. Comprehensive prenatal care for opioid dependent women involves the evaluation and management of co-occurring psychiatric disorders, polysubstance use, infectious diseases, social stressors and counseling regarding the importance of breastfeeding, contraception and neonatal abstinence syndrome. While the complex psychiatric, social and environmental factors faced by this population pose significant challenges to obstetric care providers, the development of strong patient-provider relationships can facilitate the ability to deliver efficient and effective health care during pregnancy. PMID:25775440

  19. Caring for Opioid-dependent Pregnant Women: Prenatal and Postpartum Care Considerations.

    PubMed

    Krans, Elizabeth E; Cochran, Gerald; Bogen, Debra L

    2015-06-01

    Pregnancy is an opportune time to identify opioid dependence, facilitate conversion to opioid maintenance treatment, and coordinate care with specialists in addiction medicine, behavioral health, and social services. Comprehensive prenatal care for opioid-dependent women involves the evaluation and the management of co-occurring psychiatric disorders, polysubstance use, infectious diseases, social stressors, and counseling regarding the importance of breastfeeding, contraception, and neonatal abstinence syndrome. Although the complex psychiatric, social, and environmental factors faced by this population pose significant challenges to obstetric care providers, the development of strong patient-provider relationships can facilitate the ability to deliver efficient and effective health care during pregnancy.

  20. Molecular characterization of opioid receptors

    SciTech Connect

    Howard, A.D.

    1986-01-01

    The aim of this research was to purify and characterize active opioid receptors and elucidate molecular aspects of opioid receptor heterogeneity. Purification to apparent homogeneity of an opioid binding protein from bovine caudate was achieved by solubilization in the non-ionic detergent, digitonin, followed by sequential chromatography on the opiate affinity matrix, ..beta..-naltrexylethylenediamine-CH-Sepharose 4B, and on the lectine affinity matrix, wheat germ agglutinin-agarose. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) followed by autoradiography revealed that radioiodinated purified receptor gave a single band. Purified receptor preparations showed a specific activity of 12,000-15,000 fmol of opiate bound per mg of protein. Radioiodinated human beta-endorphin (/sup 125/I-beta-end/sub H/) was used as a probe to investigate the ligand binding subunits of mu and delta opioid receptors. /sup 125/I-beta-end/sub H/ was shown to bind to a variety of opioid receptor-containing tissues with high affinity and specificity with preference for mu and delta sites, and with little, if any, binding to kappa sites. Affinity crosslinking techniques were employed to covalently link /sup 125/I-beta-end/sub H/ to opioid receptors, utilizing derivatives of bis-succinimidyl esters that are bifunctional crosslinkers with specificities for amino and sulfhydryl groups. This, and competition experiments with high type-selective ligands, permitted the assignment of two labeled peptides to their receptor types, namely a peptide of M/sub r/ = 65,000 for mu receptors and one of M/sub r/ = 53,000 for delta receptors.

  1. Direct association of Mu-opioid and NMDA glutamate receptors supports their cross-regulation: molecular implications for opioid tolerance.

    PubMed

    Garzón, Javier; Rodríguez-Muñoz, María; Sánchez-Blázquez, Pilar

    2012-09-01

    In the nervous system, the interaction of opioids like morphine and its derivatives, with the G protein-coupled Mu-opioid receptor (MOR) provokes the development of analgesic tolerance, as well as physical dependence. Tolerance implies that increasing doses of the drug are required to achieve the same effect, a phenomenon that contributes significantly to the social problems surrounding recreational opioid abuse. In recent years, our understanding of the mechanisms that control MOR function in the nervous system, and that eventually produce opioid tolerance, has increased greatly. Pharmacological studies have identified a number of signaling proteins involved in morphine-induced tolerance, including the N-methyl-D-aspartate acid glutamate receptor (NMDAR), nitric oxide synthase (NOS), protein kinase C (PKC), protein kinase A (PKA), calcium (Ca²⁺)/calmodulin (CaM)-dependent kinase II (CaMKII), delta-opioid receptor (DOR) and the regulators of G-protein signaling (RGS) proteins. There is general agreement on the critical role of the NMDAR/nNOS/CaMKII pathway in this process, which is supported by the recent demonstration of a physical association between MORs and NMDARs in post-synaptic structures. Indeed, it is feasible that treatments that diminish morphine tolerance may target distinct elements within the same regulatory MOR-NMDAR pathway. Accordingly, we propose a model that incorporates the most relevant signaling components implicated in opioid tolerance in which, certain signals originating from the activated MOR are perceived by the associated NMDAR, which in turn exerts a negative feedback effect on MOR signaling. MOR- and NMDAR-mediated signals work together in a sequential and interconnected manner to ultimately induce MOR desensitization. Future studies of these phenomena should focus on adding further components to this signaling pathway in order to better define the mechanism underlying MOR desensitization in neural cells.

  2. Peptide and non-peptide opioid-induced hyperthermia in rabbits

    NASA Technical Reports Server (NTRS)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The intracerebroventricular administration of prototype nonpeptide opioid receptor (mu, kappa, and sigma) agonists, morphine, ketocyclazocine, and N-allyl-normetazocine was found to induce hyperthermia in rabbits. The similar administration of peptide opioids like beta-endorphin (BE), methionine-enkephalin (ME), and its synthetic analogue D-ala2-methionine-enkephalinamide (DAME) was also found to cause hyperthermia. Results indicate that only the liver-like transport system is important to the ventricular inactivation of BE and DAME. Prostaglandins and norepinephrine were determined not to be involved in peptide and nonpeptide opioid-induced hyperthermia. In addition, cAMP was not required since a phosphodiesterase inhibitor, theophylline, did not accentuate the hyperthermia due to peptide and nonpeptide opioids. Naloxone-sensitive receptors were found to be involved in the induction of hyperthermia by morphine, BE, ME, and DAME since naloxone attenuated them. However, the hyperthermic response to ketocyclazocine and N-allyl-normetazocine was not antagonized by naloxone.

  3. Irradiation exposure modulates central opioid functions

    SciTech Connect

    Dougherty, P.M.; Dafny, N.

    1987-11-01

    Exposure to low doses of gamma irradiation results in the modification of both the antinociceptive properties of morphine and the severity of naloxone-precipitated withdrawal in morphine-dependent rats. To better define the interactions between gamma irradiation and these opiate-mediated phenomena, dose-response studies were undertaken of the effect of irradiation on morphine-induced antinociception, and on the naloxone-precipitated withdrawal syndrome of morphine-dependent rats. In addition, electrophysiologic studies were conducted in rats after irradiation exposure and morphine treatment correlating with the behavioral studies. The observations obtained demonstrated that the antinociceptive effects of morphine as well as naloxone-precipitated withdrawal were modified in a dose-dependent manner by irradiation exposure. In addition, irradiation-induced changes in the evoked responses obtained from four different brain regions demonstrated transient alterations in both baseline and morphine-treated responses that may reflect the alterations observed in the behavioral paradigms. These results suggest that the effects of irradiation on opiate activities resulted from physiologic alterations of central endogenous opioid systems due to alterations manifested within peripheral targets.

  4. Long-term opioid therapy reconsidered.

    PubMed

    Von Korff, Michael; Kolodny, Andrew; Deyo, Richard A; Chou, Roger

    2011-09-06

    In the past 20 years, primary care physicians have greatly increased prescribing of long-term opioid therapy. However, the rise in opioid prescribing has outpaced the evidence regarding this practice. Increased opioid availability has been accompanied by an epidemic of opioid abuse and overdose. The rate of opioid addiction among patients receiving long-term opioid therapy remains unclear, but research suggests that opioid misuse is not rare. Recent studies report increased risks for serious adverse events, including fractures, cardiovascular events, and bowel obstruction, although further research on medical risks is needed. New data indicate that opioid-related risks may increase with dose. From a societal perspective, higher-dose regimens account for the majority of opioids dispensed, so cautious dosing may reduce both diversion potential and patient risks for adverse effects. Limiting long-term opioid therapy to patients for whom it provides decisive benefits could also reduce risks. Given the warning signs and knowledge gaps, greater caution and selectivity are needed in prescribing long-term opioid therapy. Until stronger evidence becomes available, clinicians should err on the side of caution when considering this treatment.

  5. Dependence and addiction during chronic opioid therapy.

    PubMed

    Juurlink, David N; Dhalla, Irfan A

    2012-12-01

    The use of opioids for chronic noncancer pain has increased dramatically over the past 25 years in North America and has been accompanied by a major increase in opioid addiction and overdose deaths. The increase in opioid prescribing is multifactorial and partly reflects concerns about the effectiveness and safety of alternative medications, particularly the nonsteroidal anti-inflammatory drugs. However, much of the rise in opioid prescribing reflects the assertion, widely communicated to physicians in the 1990s, that the risks of dependence and addiction during chronic opioid therapy were low, predictable, and could be minimized by the use of controlled-release opioid formulations. In this narrative review, we offer a critical appraisal of the publications most frequently cited as evidence that the risk of addiction during chronic opioid therapy is low. We conclude that very few well-designed studies support the notion that opioid addiction is rare during chronic opioid therapy and that none can be readily generalized to present-day practice. Despite serious methodological limitations, these studies have been repeatedly mischaracterized as showing that the risk of addiction during chronic opioid therapy is rare. These studies are countered by a larger, more rigorous and contemporary body of evidence demonstrating that dependence and addiction are relatively common consequences of chronic opioid therapy, occurring in up to one-third of patients in some series.

  6. Toward a systematic approach to opioid rotation

    PubMed Central

    Smith, Howard S; Peppin, John F

    2014-01-01

    Patients requiring chronic opioid therapy may not respond to or tolerate the first opioid prescribed to them, necessitating rotation to another opioid. They may also require dose increases for a number of reasons, including worsening disease and increased pain. Dose escalation to restore analgesia using the primary opioid may lead to increased adverse events. In these patients, rotation to a different opioid at a lower-than-equivalent dose may be sufficient to maintain adequate tolerability and analgesia. In published trials and case series, opioid rotation is performed either using a predetermined substitute opioid with fixed conversion methods, or in a manner that appears to be no more systematic than trial and error. In clinical practice, opioid rotation must be performed with consideration of individual patient characteristics, comorbidities (eg, concurrent psychiatric, pulmonary, renal, or hepatic illness), and concurrent medications, using flexible dosing protocols that take into account incomplete opioid cross-tolerance. References cited in this review were identified via a search of PubMed covering all English language publications up to May 21, 2013 pertaining to opioid rotation, excluding narrative reviews, letters, and expert opinion. The search yielded a total of 129 articles, 92 of which were judged to provide relevant information and subsequently included in this review. Through a review of this literature and from the authors’ empiric experience, this review provides practical information on performing opioid rotation in clinical practice. PMID:25378948

  7. Non-analgesic effects of opioids: opioids and the endocrine system.

    PubMed

    Elliott, Jennifer A; Opper, Susan E; Agarwal, Sonali; Fibuch, Eugene E

    2012-01-01

    Opioids are among the oldest known and most widely used analgesics. The application of opioids has expanded over the last few decades, especially in the treatment of chronic non-malignant pain. This upsurge in opioid use has been accompanied by the increasingly recognized occurrence of opioid-associated endocrinopathy. This may arise after exposure to enteral, parenteral, or neuraxial opioids. Opioid-associated endocrinopathy consists primarily of hypothalamic-pituitary-gonadal axis or hypothalamic-pituitary-adrenal axis dysfunction and may manifest with symptoms of hypogonadism, adrenal dysfunction, and other hormonal disturbances. Additionally, opioid related endocrine dysfunction may be coupled with such disorders as osteoporosis and mood disturbances including depression. Undesirable changes in pain sensitivity such as opioid-induced hyperalgesia, and reduced potency of opioid analgesia may also be potential consequences of chronic opioid consumption. Few studies to date have been able to establish what degree of opioid exposure, in terms of dose or duration of therapy, may predispose patients to opioid-associated endocrinopathy. This article will review the currently available literature concerning opioid-associated endocrinopathy and will provide recommendations for the evaluation, monitoring, and management of opioid-associated endocrinopathy and its other accompanying undesired effects.

  8. The Impact of Opioids on Cardiac Electrophysiology.

    PubMed

    Wedam, Erich F; Haigney, Mark C

    2016-01-01

    Synthetic opioid agents have been used in modern medicine for over a century and for opioid addiction treatment for over a half-century. Liberal use of opioids in the United States has been attended by an extraordinary increase in opioid-related mortality, with over 16,000 deaths in 2012. As there have been advances in opioid agents for pain and addiction, so have there been advances in our understanding of the cardiac effects of these agents. In the last 10 years, significant data regarding electrophysiologic effects of these agents have been collected. We aim in this review to discuss the effects on cardiac electrophysiology of the various opioid agents currently in use and the evidence that these effects are contributing to the rise in opioid-related mortality.

  9. New technologies for elucidating opioid receptor function

    PubMed Central

    Bruchas, Michael R.; Roth, Bryan L.

    2016-01-01

    Recent advances in technology, including high resolution crystal structures of opioid receptors, novel chemical tools, and new genetic approaches have provided an unparalleled pallette of tools for deconstructing opioid receptor actions in vitro and in vivo. Here we provide a brief description of our understanding of opioid receptor function from both molecular and atomic perspectives, as well as their role in neural circuits in vivo. We then show how insights into the molecular details of opioid actions can facilitate the creation of functionally-selective (biased) and photoswitchable opioid ligands. Finally, we describe how newly engineered opioid receptor-based chemo- and optogenetic tools, and new mouse lines are expanding and transforming our understanding of opioid function and, perhaps, paving the way for new therapeutics. PMID:26833118

  10. Management of opioid-induced constipation.

    PubMed

    Prichard, David; Norton, Christine; Bharucha, Adil E

    Up to 40% of patients taking opioids develop constipation. Opioid-induced constipation (OIC) may limit the adequate dosing of opioids for pain relief and reduce quality of life. Health professionals must therefore inquire about bowel function in patients receiving opioids. The management of OIC includes carefully re-evaluating the necessity, type and dose of opioids at each visit. Lifestyle modification and alteration of aggravating factors, the use of simple laxatives and, when essential, the addition of newer laxatives or opioid antagonists (naloxone, naloxegol or methylnaltrexone) can be used to treat OIC. This review discusses the recent literature regarding the management of OIC and provides a rational approach to assessing and managing constipation in individuals receiving opioids.

  11. The Impact of Opioids on Cardiac Electrophysiology

    PubMed Central

    Wedam, Erich F.; Haigney, Mark C.

    2016-01-01

    Synthetic opioid agents have been used in modern medicine for over a century and for opioid addiction treatment for over a half-century. Liberal use of opioids in the United States has been attended by an extraordinary increase in opioid-related mortality, with over 16,000 deaths in 2012. As there have been advances in opioid agents for pain and addiction, so have there been advances in our understanding of the cardiac effects of these agents. In the last 10 years, significant data regarding electrophysiologic effects of these agents have been collected. We aim in this review to discuss the effects on cardiac electrophysiology of the various opioid agents currently in use and the evidence that these effects are contributing to the rise in opioid-related mortality. PMID:26818485

  12. Epigenetic regulation of spinal cord gene expression contributes to enhanced postoperative pain and analgesic tolerance subsequent to continuous opioid exposure

    PubMed Central

    Liang, De-Yong; Shi, Xiao-You; Sun, Yuan; Clark, J David

    2016-01-01

    Background Opioids have become the mainstay for treatment of moderate to severe pain and are commonly used to treat surgical pain. While opioid administration has been shown to cause opioid-induced hyperalgesia and tolerance, interactions between opioid administration and surgery with respect to these problematic adaptations have scarcely been addressed. Accumulating evidence suggests opioids and nociceptive signaling may converge on epigenetic mechanisms in spinal cord to enhance or prolong neuroplastic changes. Epigenetic regulation of Bdnf (brain-derived neurotrophic factor) and Pdyn (prodynorphin) genes may be involved. Results Four days of ascending doses of morphine treatment caused opioid-induced hyperalgesia and reduced opioid analgesic efficacy in mice. Both opioid-induced hyperalgesia and the reduced opioid analgesic efficacy were enhanced in mice that received hindpaw incisions. The expression of Bdnf and Pdyn (qPCR) was increased after morphine treatment and incision. Chromatin immunoprecipitation assays demonstrated that the Pdyn and Bdnf promoters were more strongly associated with acetylated H3K9 after morphine plus incision than in the morphine or incision alone groups. Selective tropomyosin-related kinase B (ANA-12) and κ-opioid receptor (nor-binaltorphimine) antagonists were administered intrathecally, both reduced hyperalgesia one or three days after surgery. Administration of ANA-12 or nor-binaltorphimine attenuated the decreased morphine analgesic efficacy on day 1, but only nor-binaltorphimine was effective on day 3 after incision in opioid-exposed group. Coadministration of histone acetyltransferase inhibitor anacardic acid daily with morphine blocked the development of opioid-induced hyperalgesia and attenuated incision-enhanced hyperalgesia in morphine-treated mice. Anacardic acid had similar effects on analgesic tolerance, showing the involvement of histone acetylation in the interactions detected. Conclusions Spinal epigenetic changes

  13. The Effects of Opioids and Opioid Analogs on Animal and Human Endocrine Systems

    PubMed Central

    Vuong, Cassidy; Van Uum, Stan H. M.; O'Dell, Laura E.; Lutfy, Kabirullah; Friedman, Theodore C.

    2010-01-01

    Opioid abuse has increased in the last decade, primarily as a result of increased access to prescription opioids. Physicians are also increasingly administering opioid analgesics for noncancer chronic pain. Thus, knowledge of the long-term consequences of opioid use/abuse has important implications for fully evaluating the clinical usefulness of opioid medications. Many studies have examined the effect of opioids on the endocrine system; however, a systematic review of the endocrine actions of opioids in both humans and animals has, to our knowledge, not been published since 1984. Thus, we reviewed the literature on the effect of opioids on the endocrine system. We included both acute and chronic effects of opioids, with the majority of the studies done on the acute effects although chronic effects are more physiologically relevant. In humans and laboratory animals, opioids generally increase GH and prolactin and decrease LH, testosterone, estradiol, and oxytocin. In humans, opioids increase TSH, whereas in rodents, TSH is decreased. In both rodents and humans, the reports of effects of opioids on arginine vasopressin and ACTH are conflicting. Opioids act preferentially at different receptor sites leading to stimulatory or inhibitory effects on hormone release. Increasing opioid abuse primarily leads to hypogonadism but may also affect the secretion of other pituitary hormones. The potential consequences of hypogonadism include decreased libido and erectile dysfunction in men, oligomenorrhea or amenorrhea in women, and bone loss or infertility in both sexes. Opioids may increase or decrease food intake, depending on the type of opioid and the duration of action. Additionally, opioids may act through the sympathetic nervous system to cause hyperglycemia and impaired insulin secretion. In this review, recent information regarding endocrine disorders among opioid abusers is presented. PMID:19903933

  14. Opioid-dependent regulation of high and low fear responses in two inbred mouse strains.

    PubMed

    Szklarczyk, Klaudia; Korostynski, Michal; Cieslak, Przemyslaw Eligiusz; Wawrzczak-Bargiela, Agnieszka; Przewlocki, Ryszard

    2015-10-01

    The molecular mechanisms underlying the susceptibility or resilience to trauma-related disorders remain incompletely understood. Opioids modulate emotional learning, but the roles of specific receptors are unclear. Here, we aimed to analyze the contribution of the opioid system to fear responses in two inbred mouse strains exhibiting distinct behavioral phenotypes. SWR/J and C57BL/6J mice were subjected to five consecutive electric footshocks (1mA each), and the contextual freezing time was measured. Stress-induced alterations in gene expression were analyzed in the amygdala and the hippocampus. In both strains, the fear response was modulated using pharmacological tools. SWR/J mice did not develop conditioned fear but exhibited increased transcriptional expression of Pdyn and Penk in the amygdala region. Blocking opioid receptors prior to the footshocks using naltrexone (2 mg/kg) or naltrindole (5 mg/kg) increased the freezing responses in these animals. The C57BL/6J strain displayed high conditioned fear, although no alteration in the mRNA abundance of genes encoding opioid precursors was observed. Double-injection of morphine (20 mg/kg) following stress and upon context re-exposure prevented the enhancement of freezing. Moreover, selective delta and kappa agonists caused a reduction in conditioned fear responses. To summarize, the increased expression of the Pdyn and Penk genes corresponded to reduced intensity of fear responses. Blockade of the endogenous opioid system restored freezing behavior in stress-resistant animals. The pharmacological stimulation of the kappa and delta opioid receptors in stress-susceptible individuals may alleviate fear. Thus, subtype-selective opioid receptor agonists may protect against the development of trauma-related disorders.

  15. Opioid-independent mechanisms supporting offset analgesia and temporal sharpening of nociceptive information.

    PubMed

    Martucci, K T; Eisenach, J C; Tong, C; Coghill, R C

    2012-06-01

    The mechanisms supporting temporal processing of pain remain poorly understood. To determine the involvement of opioid mechanisms in temporal processing of pain, responses to dynamic noxious thermal stimuli and offset analgesia were assessed after administration of naloxone, a μ-opioid antagonist, and on a separate day, during and after intravenous administration of remifentanil, a μ-opioid agonist, in 19 healthy human volunteers. Multiple end points were sampled from real-time computerized visual analog scale ratings (VAS, 1 to 10) to assess thermal sensitivity, magnitude and duration of offset analgesia, and painful after sensations. It was hypothesized that the magnitude of offset analgesia would be reduced by direct opioid antagonism and during states of acute opioid-induced hypersensitivity (OIH), as well as diminished by the presence of exogenous opioids. Surprisingly, the magnitude of offset analgesia was not altered after naloxone administration, during remifentanil infusion, or after the termination of remifentanil infusion. Because thermal hyperalgesia was observed after both drugs, 8 of the original 19 subjects returned for an additional session without drug administration. Thermal hyperalgesia and increased magnitude of offset analgesia were observed across conditions of remifentanil, naloxone, and no drug within this subset analysis, indicating that repeated heat testing induced thermal hyperalgesia, which potentiated the magnitude of offset analgesia. Thus, it is concluded that the mechanisms subserving temporal processing of nociceptive information are largely opioid-independent, but that offset analgesia may be potentiated by heat-induced thermal hyperalgesia in a proportion of individuals.

  16. Opioid-Independent Mechanisms Supporting Offset Analgesia and Temporal Sharpening of Nociceptive Information

    PubMed Central

    Martucci, K. T.; Eisenach, J. C.; Tong, C.; Coghill, R. C.

    2012-01-01

    The mechanisms supporting temporal processing of pain remain poorly understood. To determine the involvement of opioid mechanisms in temporal processing of pain, responses to dynamic noxious thermal stimuli and offset analgesia were assessed following administration of naloxone, a μ-opioid antagonist, and on a separate day, during and following intravenous administration of remifentanil, a μ-opioid agonist, in 19 healthy human volunteers. Multiple end points were sampled from real time computerized visual analog scale ratings (VAS, 1–10) to assess thermal sensitivity, magnitude and duration of offset analgesia, and painful after sensations. It was hypothesized that the magnitude of offset analgesia would be reduced by direct opioid antagonism and during states of acute opioid-induced hypersensitivity (OIH), as well as diminished by the presence of exogenous opioids. Surprisingly, the magnitude of offset analgesia was not altered following naloxone administration, during remifentanil infusion, or following the termination of remifentanil infusion. Since thermal hyperalgesia was observed following both drugs, 8 of the original 19 subjects returned for an additional session without drug administration. Thermal hyperalgesia and increased magnitude of offset analgesia were observed across conditions of remifentanil, naloxone and no drug within this subset analysis, indicating that repeated heat testing induced thermal hyperalgesia which potentiated the magnitude of offset analgesia. Thus, it is concluded that the mechanisms subserving temporal processing of nociceptive information are largely opioid-independent, but that offset analgesia may be potentiated by heat-induced thermal hyperalgesia in a proportion of individuals. PMID:22503222

  17. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies

    PubMed Central

    Befort, Katia

    2015-01-01

    The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid–cannabinoid interactions may provide novel strategies for therapies in addicted individuals. PMID:25698968

  18. Stimulating endogenous cardiac repair

    PubMed Central

    Finan, Amanda; Richard, Sylvain

    2015-01-01

    The healthy adult heart has a low turnover of cardiac myocytes. The renewal capacity, however, is augmented after cardiac injury. Participants in cardiac regeneration include cardiac myocytes themselves, cardiac progenitor cells, and peripheral stem cells, particularly from the bone marrow compartment. Cardiac progenitor cells and bone marrow stem cells are augmented after cardiac injury, migrate to the myocardium, and support regeneration. Depletion studies of these populations have demonstrated their necessary role in cardiac repair. However, the potential of these cells to completely regenerate the heart is limited. Efforts are now being focused on ways to augment these natural pathways to improve cardiac healing, primarily after ischemic injury but in other cardiac pathologies as well. Cell and gene therapy or pharmacological interventions are proposed mechanisms. Cell therapy has demonstrated modest results and has passed into clinical trials. However, the beneficial effects of cell therapy have primarily been their ability to produce paracrine effects on the cardiac tissue and recruit endogenous stem cell populations as opposed to direct cardiac regeneration. Gene therapy efforts have focused on prolonging or reactivating natural signaling pathways. Positive results have been demonstrated to activate the endogenous stem cell populations and are currently being tested in clinical trials. A potential new avenue may be to refine pharmacological treatments that are currently in place in the clinic. Evidence is mounting that drugs such as statins or beta blockers may alter endogenous stem cell activity. Understanding the effects of these drugs on stem cell repair while keeping in mind their primary function may stri